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Abstract. The BTZ black Hole is (2+1) dimensional black hole solution asymptotic to anti-de-
Sitter space-time. We study the discretized quantum scalar fields in background of non-rotating
BTZ black hole space-time and construct the entanglement thermodynamics for massless scalar
field. The behavior of the entanglement energy is understood by red shift factor caused by
the curved background. The entanglement thermodynamics is compared with the black hole
thermodynamics.

1. Introduction
Black hole is region of space time where gravitational pull is so strong that even light can
not escape. The event horizon is defined as the null surface in space time. The total area
of the event horizon never decreases in any physical process. This is analogous to entropy in
thermodynamics, which never decreases in a physical process. Thus the black holes can be
assigned entropy proportional to the area of black hole horizon. One can ask the question about
microscopic degrees of freedom responsible for entropy as nothing comes out of black holes. The
quantum mechanical treatment predicts that the black holes radiates and the radiation carries
no information as it is thermal in nature.

In this paper we carry the investigation of entanglement thermodynamics of BTZ black hole
in three dimensional space-time with negative cosmological constant [1, 2]. This solution can
be embedded in string theory and a microscopic counting of degrees of freedom responsible for
black hole entropy is also known [3]. The near horizon geometry of BTZ black hole is anti-de-
Sitter space time and the machinery of AdS/CFT correspondence can also be applied. Thus
BTZ black hole can be used as a laboratory to study the quantum aspects of black holes. There
are several attempts to understand the microscopic origin of black hole entropy and its relation
with horizon area [2–14].

In this paper, we investigate the entanglement thermodynamics of scalar fields in the
background of BTZ black hole space-time. The entanglement entropy Sent is always proportional
to the area A of the event horizon of the black hole as expected, Sent = CS A/a. Here ’a’ is cut-
off length and Cs is model dependent coefficient, which we have calculated numerically in this
paper. Entanglement entropy Sent is independent of the position of an observer once a quantum
state is fixed [7, 10, 14]. We also calculate the entanglement energy of the BTZ black hole.
The behavior of the entanglement energy is understood by the redshift factor caused by curved
background. Because of the gravitational redshift, these energies are related as E =

√
−gttEent.

National Conference on Contemporary Issues in High Energy Physics and Cosmology IOP Publishing
Journal of Physics: Conference Series 481 (2014) 012014 doi:10.1088/1742-6596/481/1/012014

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



2. Entanglement entropy of scalar field in non-rotating BTZ black hole
The BTZ black hole is a solution of Einstein’s gravity in (2+1) dimensions with a negative
cosmological constant ( 1

l2
). The metric of non rotating BTZ black hole can be written as [1];

ds2 = −(−M + r2/l2)dt2 +
1

(−M + r2/l2)
dr2 + r2dφ2. (1)

The horizon of the black hole is located at r+ =
√
M l. The proper length from the horizon

is defined as, ρ =
∫ r
r+

(r′2/l2 −M)−1/2 dr′ = l log[(
√
u2 +M + u)/r+], where we have defined

u =
√
r2/l2 −M . The metric can be rewritten in term of proper distance as:

ds2 = −u2dt2 + dρ2 + r2+

(
u2

M
+ 1

)
dφ2. (2)

Let us consider a massless scalar field in BTZ black hole space-time. Using the separation of
variable as appropriate for the cylindrical symmetry of the system; Φ(t, ρ, φ) =

∑
m Φm(t, ρ) eimφ,

and defining a new variable, ψm(t, ρ) =
[{
r+
√

(u2/M) + 1
}
/u
]1/2

Φm(t, ρ), the Hamiltonian

of the system can be written as,

H =
1

2

∫
dρ π2m(ρ) +

1

2

∫
dρ dρ′ ψm(ρ) Vm(ρ, ρ′) ψm(ρ′),

where

ψm(ρ)V (ρ, ρ′)ψm(ρ′) =

u√u2/M + 1

{
∂ρ

(√
u√

(u2/M + 1)
ψm

)}2

+ m2 u2

r2+ (u2/M + 1)
ψ2
m

 .
(3)

The system can be discretized as ρ → (A − 1/2)a and δ(ρ − ρ′) → δAB/a, where A,B=1,2
....N and a is cut-off length. The corresponding Hamiltonian of the discretized system can be
obtained by the replacement: ψm(ρ)→ qA, πm(ρ)→ pA/a, V (ρ, ρ′)→ VAB/a

2.
The discretized Hamiltonian resembles to the set of N coupled harmonic oscillators [5, 6],

H =
N∑

A,B=1

[ 1

2a
δABpA pB +

1

2
VAB q

A
m q

B
]

(4)

To calculate the entanglement entropy, we divide the system into two sub-systems and define,

(W )AB =
√
a VAB =

(
Aab Baβ

(BT )αb D
(2)
αβ

)
,

and the indices ‘a,b..’ and ‘α, β...’ refer to two subsystems.
The entanglement entropy of the system is given by S = −tr[ρ log ρ], where ρ is the density

matrix. The density matrix of the system is defined as,

ρ(q, q′) =

∫ N∏
i=1

dqiψ(q1, ......qn; qn+1, .......qN )ψ?(q1, ......qn; qn+1, .......qN ). (5)

The corresponding density matrix can be calculated as,

ρ0(q, q
′) = exp

[
− (qTD′q + q′TD′q′)/2 + qT (D −D′)q

]
(6)

where D′ = D − 1
2B

TA−1B.

The entanglement entropy can be written as Sent =
∑N−nB
i=1 Si, where Si = −µi(1 −

µi)
−1 ln µi − ln (1 − µi) and µi := λ−1i (

√
1 + λi − 1)2. The λi are the eigenvalues of the WAB

matrix. Using these relations, we evaluate the entanglement entropy of the system.
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Figure 1. The numerical calculation for Sent, H1 (upper panel), H2, Htot (lower panel) of the
scalar field in BTZ space-time, for nB =1,3,5 is shown as a functions of r+/a with N = 100 and
m = 0.

3. Numerical estimation
3.1. Entanglement entropy
We are interested in the numerical estimation of the entanglement entropy of the scalar fields
in the background of BTZ black hole for the above mentioned system. The result for the
entanglement entropy of the discretized system is; Sent ' 0.01 (r+/a), where the proportionality
constant is evaluated numerically for nB = 1. The results are shown in Fig.1 for different values
of nB. The entropy is proportional to r+, which in turn is proportional to horizon area.

3.2. Entanglement energy
We also calculate the entanglement energy of the scalar fields in the background of BTZ black
hole. For the subsystem ’1’ the entanglement energy is given by,

〈: H1 :〉 =
1

4a

[
aV

(1)
ab

˜(A)
ab

+Aabδ
ab − 2w

(1)
ab δ

ab
]

(7)

Using this, we estimate the numerical value of the entanglement energy. 〈: H1 :〉 ' 0.014
(
r+
a

)
,

The results are shown in Fig.1 for different values of nB.
Similarly for the subsystem ’2’ the entanglement energy is given by,

〈: H2 :〉 =
1

4a

[
aV

(2)
αβ

˜(D)
αβ

+Dαβδ
ab − 2w

(1)
αβδ

αβ
]

(8)

Using this, we estimate the numerical value of the entanglement energy.〈: H2 :〉 ' 0.019
(
r+
a

)
.

The results are shown in Fig.1 for different values of nB.
We also estimate the total energy of the system ,

〈: Htot :〉ρ′ =
1

4a
Tr[aVM−1 −W ] =

1

4
Tr[V (M−1 −W−1)] = −1

2
[V T
intB̃], (9)

which is given by;〈: Htot :〉ρ′ ' .045
(
r+
a

)
, The results for total energy are shown in Fig.1 for

different values of nB.
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The entanglement entropy and energy of the BTZ black hole looks like as Sent ∝ A and
Eent ∝ A, where A = 2πr+ is area of the black hole and r+ =

√
Ml. The corresponding

entanglement entropy and energy of the thermal AdS space-time are given as, Sent ∝ A and
Eent ∝ A2, where A is area of the slice of radius r. Thus the discrepancy between entanglement
energy of the BTZ black hole and thermal AdS space time. This discrepancy can be removed
by consideration of the redshift factor.

The entropy of black hole has the same behavior as that measured by the observer at infinity,
since the degree of freedom are independent of nB. The results for the entanglement energy is
dependent on nB and one can try to understand this is in terms of red shift of energy

√
−gttEent

in curved spacetime [7], as measured by an observer who is at proper distance nB a from the
horizon. The entanglement energy is redshifted by the factor ρ r+, where

√
−gtt = ρ r+, and ρ is

the proper distance from the horizon correspond to stationary observer. The gravitational effect
restores the agreement between entanglement thermodynamics and black hole thermodynamics.

4. Conclusion
In this paper, we have calculated the entanglement entropy and energy of quantum scalar fields
in BTZ black hole space-time. The model is very similar to a bunch of harmonic oscillators for
free fields in curved space-time but seem to capture area law of black hole thermodynamic. The
results can be compared with corresponding quantum field entropy in Schwarzschild black hole
space-times in four dimensions [7]. The discrepancy between BTZ Black hole thermodynamics
and thermal AdS space-time has been removed by gravitational redshift factor. It would be
interesting to generalize these results for Fermionic degrees of freedom.
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