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Abstract: We discuss applications of the Dirichlet η(s) function in physics. To this end,
we provide an introductory description of one-dimensional (1D) ionic crystals, which are
well-known in the condensed matter physics literature, to illustrate the central issue of
the paper: A generalization of the Coulomb interaction between alternating charges in
such crystalline structures. The physical meaning of the proposed form, characterized by
complex (in the mathematical sense) ion–ion interactions, is argued to have emerged in
many-body systems, which may include effects from vacuum energy fluctuations. We first
consider modifications to the bare Coulomb interaction by adding an imaginary component
to the exponent of the Coulomb law of the form s = 1 + i b, where b is a real number.
We then extend the results to slower-decaying interactions, where the exponent becomes
s = a + i b, presenting numerical results for values 1/2 ≤ a ≤ 2, which include the critical
strip relevant to the Riemann hypothesis scenario.

Keywords: number theory; Riemann zeta function; Dirichlet eta function; complex ionic
lattices; prime number gaps; Riemann hypothesis
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1. Introduction

The Riemann hypothesis, which conjectures that the non-trivial zeros of the Riemann
ζ(s) function, ζ(1/2± i µn) = 0, occur solely for real values of µn, has sparked considerable
interest not just among mathematicians specializing in number theory but also in a wide
range of scientific disciplines, including physics, which is the focus of this paper. The
applications of the ζ(s) function in physics are numerous and have been thoroughly
reviewed in [1]. To provide an overview of the current status of the field, we briefly review
recent works that are relevant to our discussions. We begin with the physical applications.

The connections between the properties of ζ(s), including the Riemann hypothesis,
and scattering amplitudes in quantum field theory are explored in [2]. A relationship
between ζ(s) and a physical system, known as the Hilbert–Pólya conjecture, was proposed
in the early 1900s, suggesting that µn could be interpreted as the eigenvalues of some
quantum mechanical Hamiltonian. Since then, significant efforts have been devoted to
identifying such an operator or uncovering other links to physics. In this context, the author
constructs a closed-form scattering amplitude, revealing the remarkable result that real
‘masses’ µn are consistent with the Riemann hypothesis.

Various physical problems related to the Riemann hypothesis have been reviewed
in [3], including the Hilbert–Pólya conjecture, connections to random matrix theory, the
relationship with the Lee–Yang theorem on the zeros of the partition function, and phase
transitions, as well as topics such as random walks, billiards, and more.
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Numerical series of prime numbers can be generated as sequences of points in a 1D
lattice occupied by electric charges [4]. Based on this mapping, a single-particle Hamiltonian
model is proposed for the distribution of primes ρ(n) along the x-axis, which are treated
as quantum particles located at stationary points, xn, of a Lennard-Jones-like potential.
A particle-counting function, πQ(x), analogous to the prime-counting function, π(x), is
defined and obtained with the help of the Hellmann–Feynman theorem. The conditions
on the sequence of energy eigenvalues, E(n), for the system to ensure that the Riemann
hypothesis holds for πQ(x), are derived.

An alternative approach to the prime-counting function π(x) involves a connection
between the distribution of the zeros of ζ(s) and the poles of the scattering matrix S of a
quantum system. Arguments are presented in [5]. They are aimed at explaining the still
unresolved question of why the poles and zeros of the S-matrix of an ideal system, which
could potentially satisfy the Riemann hypothesis, always occur in pairs and are related by
complex conjugation. This result thus suggests a potential pathway toward a proof of the
Riemann conjecture.

A novel formulation of the zeta function represented as the sum of an infinite series
of delta and cosine functions is studied in [6]. The formula exhibits duality properties,
establishing a link between the Riemann hypothesis and the new formulation. Furthermore,
the quantum behaviors of the energy and eigenstates for this new mathematical model are
examined, offering valuable insights into several key physical phenomena, including the
collapse of the wavefunction during measurement, quantum entanglement, and double-
slit experiments.

An introduction to the Riemann hypothesis using familiar mathematical techniques is
presented in [7], providing useful heuristic arguments in support of the hypothesis. The
latter is shown to be connected to quantum mechanics by interpreting the Dirichlet series
as a superposition of probability amplitudes, which leads to a unique potential with a
logarithmic energy spectrum.

Other aspects of interest for our discussions include the question of non-Hermitian
Hamiltonians, quantum dissipative systems, and the case of complex interactions in many-
body systems. We briefly illustrate these different issues with some examples.

A nonlinear field theory, which describes frictional effects in dissipative systems
through a Schrödinger-type field equation with a logarithmic nonlinearity, has become a
paradigm in the field [8]. The nonlinear field equation for the damped harmonic oscillator
can be solved exactly, showing that wavefunctions and a wavepacket-like solution with
a Gaussian shape display reasonable physical properties that differ from those of the
undamped case. Properties of the nonlinear friction term are examined and compared to
similar terms used by other authors. Finally, a nonlinear friction term equivalent to the
logarithmic nonlinearity is obtained but expressed in terms of combinations of position
and linear momentum operators, along with their mean values.

A purely field-based description of matter, represented by well-defined elementary
densities rather than by classical fields and point particles, allows for overcoming the
present nonphysical divergences in gravitational and Coulomb self-energy [9]. In this
approach, the gravitational mass is linked to the real part of the integral of the complex
densities of matter, while the electric charge is related to the imaginary part of the same
spatial integral in such a way that the field laws would not break down at small distances.

A detailed review of the foundations and applications of non-Hermitian classical
and quantum physics has recently become available [10]. Key theorems and fundamental
concepts in non-Hermitian linear algebra, such as the Jordan normal form, biorthogonality,
exceptional points, pseudo-Hermiticity, and parity-time symmetry, are presented in an
accessible and mathematically rigorous way.
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It is well known that the Hermitian condition for a Hamiltonian, H = H†, is sufficient
to ensure a real energy spectrum and unitary time evolution. However, the requirement of
Hermiticity is not essential to achieve these properties in general [11]. Actually, it is possible
to describe natural processes using non-Hermitian Hamiltonians where the Hermiticity
condition can be replaced by a more physically intuitive condition of parity-time (PT)
symmetry, H = HPT , without violating any fundamental principles of quantum mechanics.
When a Hamiltonian satisfies this relation, it is referred to as PT-symmetric.

From the early days of quantum mechanics, numerous heuristic attempts to model
dissipative phenomena in nuclear, atomic, and molecular physics have relied on effective
non-Hermitian Hamiltonians. In the past two decades, the introduction of parity-time
(PT) symmetry has opened the door for a more systematic exploration of non-Hermitian
physics. It is now understood that non-Hermitian Hamiltonians can be rigorously justified,
as in the case in which the system dynamics is confined either to a subspace or within
the framework of quantum measurement theory, by conditioning quantum trajectories on
specific measurement outcomes [12].

To conclude this brief review, we draw the attention of the reader to recent works
dealing with the mathematical aspects of the Riemann hypothesis. In [13], new sums
over the primes of non-principal Dirichlet characters, which exhibit a conjectured random
walk behavior, have been derived. It is shown that the Euler product formula for their L-
functions holds to the right of the critical line (ℜ(s) > 1/2), which implies that the Riemann
hypothesis is valid for this class of L-functions. From these findings, a new algorithm is
proposed for calculating very high Riemann zeros and computing the googol-th (10100-th)
zero to over 100 digits, which surpasses current computational limits.

The approach discussed in [14] involves an analytical study of the functional equation
of ζ(s) based on a complex function, which is treated as a real function of two real variables,
and its modulus, alongside extensive numerical analysis to support the Riemann hypothesis
within the computational resources. These findings offer a new mathematical perspective
on assessing the validity of Riemann’s hypothesis. Finally, a novel approach to the Riemann
hypothesis, emphasizing the relationship between prime gaps and the non-trivial zeros
of the Riemann zeta function, has been discussed recently [15]. The key findings are that
past non-trivial zeros may predict future prime gaps; nonlinear interactions between prime
gaps and non-trivial zeros are present; and intricate feedback loops between the two may
exist. These insights open new avenues for future mathematical exploration.

In this work, we investigate potential applications of the Riemann ζ(s) function
formalism, particularly in relation to the Dirichlet η(s) function, within condensed matter
physics. While a similar problem is briefly discussed in [1], our model introduces, to the
best of our knowledge, several novel features making it a valuable contribution for readers
interested in ongoing discussions surrounding the Riemann hypothesis in a broader context.

Our work builds on well-established results from condensed matter physics on the
cohesive energy in ionic crystals [16–19]. We focus on the one-dimensional case of an
infinite ionic chain with alternating electric charges. In addition to the Coulomb interaction,
we use the Born exponential form for the repulsive core between neighboring ions, which
prevents the lattice from collapsing, as opposed to a Lennard-Jones type, since in ionic
systems, such as alkali halides, the charge transfer from the alkali atom to the halide atom
is incomplete, which leads to a partially closed shell of outer electrons.

This work is motivated by the following physical considerations concerning many-
body interactions in strongly coupled electron-ion systems. In real materials, it is anticipated
that interactions beyond the fundamental Coulomb force between charges may become
significant. Specifically, the repulsive short-range interaction arises from an interplay of
electrostatic and quantum mechanical effects, such as the Pauli exclusion principle. At
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medium-range distances, induced dipole–dipole (van der Waals) interactions can become
significant, while electron–phonon couplings may also contribute to anomalies in the
structural properties of materials. In addition to these interactions, phenomena related to
vacuum polarization and self-energy effects on electrons may also play a crucial role in
determining the system’s stability in certain conditions.

To account for these complex scenarios in a straightforward manner, we propose
introducing an effective Coulomb (EC) interaction, VEC(r), between charges separated by a
distance r, which leads to the following

CONJECTURE : VEC(r) = ±V0
1
rs

, with s = a + i b. (1)

Here, both a and b are real numbers. To illustrate how the effective interaction VEC(r)

actually works, we apply it to the ionic chain described above because it admits an exact
solution. Applications to real systems go beyond the scope of the present work. We then
show that the total energy per site of the chain can be written as,

ET(a0, s) = −A
h̄c

a0(s)
ℜ[η(s)], (2)

where A is a dimensionless quantity and a0(s) is the lattice constant at equilibrium. Here,
we first consider the case a = 1 and b > 0, which reduces to the bare Coulomb limit when
b = 0, and then present some results for the broader case, 1/2 ≤ a ≤ 2, which covers the
critical strip.

The paper is organized as follows. In Section 2, we review the connection of η(s)

to ζ(s). In Section 3, we define our lattice of charges and revisit the main results for a
standard one-dimensional ionic crystal in Section 3.1. Section 3.2 introduces the Euler–
Riemann–Dirichlet (ERD) lattice model, which uses η(s) to generalize the Coulomb law. We
discuss the implications of this new interaction in detail, providing plausibility arguments
for the physical mechanism behind the complex interaction, which includes imaginary
components. In Section 4, we present ERD results at and near the critical strip, comparing
them with those from the previous section. In addition, we include three appendices:
The first, in Appendix A, discusses the properties of the η(s) function. The second, in
Appendix B, covers prime numbers, presenting both numerical and analytical results that
extend previous literature. The third, in Appendix C, considers the critical strip of the
Riemann zeta function, where the behavior of the non-trivial zeros of ζ(s) is examined.
Finally, our concluding remarks are presented in Section 5.

2. The Function η(s) and Its Relation to ζ(s)

Leonhard Euler was fascinated by infinite numerical series [20]. This culminated
in 1735 while in Saint Petersburg, when he published the solution to the famous Basel
problem, ∑

∞
n=1 n−2 = π2/6. One hundred years later, Bernhard Riemann generalized this

class of series to the complex plane by defining the function [21]

ζ(s) =
∞

∑
n=1

1
ns

, with s = a + i b, (3)

where both (a, b) ∈ R. This is now known as the Riemann zeta function. We note that, in
standard notation, a = σ and b = t. The complex function ζ(s) in Equation (3) is absolutely
convergent when a > 1 with a single pole at s = 1 and residue 1 (see below). In [21],
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Riemann showed that ζ(s) satisfies the functional equation (see the discussion in [20], and
also the detailed monograph in [22]),

ζ(s) = πs−1/2 Γ({1 − s}/2)
Γ(s/2)

ζ(1 − s). (4)

Equation (4) allows one to obtain ζ(s) for a < 0, from ζ(1− s) with 1− s = 1+ |a| − i b.
In particular, note that when a = −2m for integer m > 0, Equation (4) gives the so-called
trivial zeros of the Riemann zeta function, ζ(−2m) = 0, due to the simple poles of Γ(s/2)
at s/2 = −m, with residues (−1)m/m!. The next question is how to calculate ζ(s) within
the range 0 ≤ a ≤ 1, also known as the critical strip, which brings us to the central issue of
this paper.

For this purpose, the alternating Riemann zeta function, commonly known as the
Dirichlet eta function, is emphasized,

η(s) =
∞

∑
n=1

(−1)n−1

ns
, (5)

which converges for ℜ(s) = a > 0. It can be shown that η(s) is proportional to ζ(s),

η(s) =
(

1 − 21−s
)

ζ(s), (6)

thus allowing us to evaluate ζ(s) over the entire range 0 ≤ a ≤ 1, except at s = 1 (a = 1,
b = 0) where the simple pole is located, while the value η(0) = 1/2 can be derived
using the functional relation Equation (4) (see Appendix A and [23] for details). As a
result, Equation (6) yields ζ(0) = −1/2, and using the value η(1) = log 2, one finds
ζ(s) = 1/(s − 1) for s → 1.

Another important result derived from Equation (6) is that η(s) should have simple
zeros, sm, when the factor 1 − 21−sm = 0, which is consistent with the single simple pole of
ζ(s) at s = 1. This yields

η(sm) = 0, with sm = 1 + i
2π m

log 2
, (7)

for integer m ̸= 0. Efficient algorithms have been designed to calculate ζ(s) for generic s

(see, for instance, [24]).

3. Euler–Riemann–Dirichlet Lattices

In Section 3.1, we provide an overview of the known results for standard 1D ionic
lattices, offering the reader the necessary background for developing a more general model
in Section 3.2. The latter is proposed to describe lattices with many-body interactions
between ions, referred to as Euler–Riemann–Dirichlet (ERD) lattices.

3.1. Standard Ionic Lattices

To illustrate applications of the functions defined in Section 1, we begin by considering
a one-dimensional ionic crystal, where the ions are arranged alternately as shown in
Figure 1. In addition to the Coulomb interaction, we assume the presence of a short-range
repulsive force that prevents the lattice from collapsing [16,19]. At equilibrium, the total
Coulomb energy acting on a reference ion is exactly balanced by the short-range forces
between the ion and its two nearest neighbors. Let us specify these forces in detail.
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Figure 1. A one-dimensional ionic crystal: The positive ion (red) located at the center of the chain
is taken as the reference for evaluating the total energy of the system. The distance a0 represents
the lattice constant at equilibrium. Typically, negative ions (cyan) are larger than their positive
counterparts (red), especially when their atomic numbers are comparable. For example, in KCl, with
zK = 19 and zCl = 17, the ionic radii are rK+ = 1.46 Å and rCl− = 1.58 Å [16–18].

We consider the reference ion (index 0 and positive charge qI) to be located at the
origin of coordinates, x0 = 0, and the remaining ions at xj = j a0, with |j| ≥ 1, carrying
charges (−1)jqI. The Coulomb interaction energy between the reference ion and the one at
xj is given by

EC
0j = − q2

I
4πϵ0

(−1)j−1

|xj|
, |j| ≥ 1. (8)

For convenience, we define, qI = ±q e, where q is a positive real number, e is the unit of
electric charge, n = |j|, |xj| = n a0, and the fine-structure constant α0 = e2/(4πϵ0 h̄c) ≃ 1/137.
Therefore, denoting EC(n) ≡ EC

0j, Equation (8) becomes,

EC(n) = −α0q2 h̄c

a0

(−1)n−1

n
, n ≥ 1. (9)

The repulsive interaction energy is modeled using the Born exponential form [16],

ER(n) = E0 e−n a0/ρ, for n = 1, (10)

and for the remaining terms, n > 1, we assume ER(n) = 0, since their contribution is
negligible because in most physical cases, ρ ≪ a0. There are other forms for ER known
in the literature involving short-range power-law repulsions say, ER ≃ E0 (ρ/a0)

mR , with
mR ≈ 12 for a Lennard-Jones type of interaction energy typical of noble gases. We stick at
the Born shape in this work for simplicity (see also the discussion on this matter in [19]).

The total lattice energy per site, ET, is just the sum over all ion positions, which takes
the form

ET = 2
∞

∑
n=1

[ER(n) + EC(n)] = 2E0 e−a0/ρ − 2α0q2 h̄c

a0

∞

∑
n=1

(−1)n−1

n
, (11)

where we recognize the Dirichlet function η(1) = log 2 in the last term (Equation (5)).
Now, the condition of equilibrium requires a stable minimum, i.e., ∂ET/∂a′|a0 = 0,

and ∂2ET/∂a′2|a0 > 0, yielding

∂ET/∂a′|a0 = 0 → a2
0 e−a0/ρ = α0q2η(1)

h̄cρ

E0
, (12)

and

∂2ET/∂a′2|a0 = 2α0 q2η(1)
h̄c

ρa2
0

(

1 − 2
ρ

a0

)

> 0, (13)

while the total energy per site at the minimum becomes,

ET(a0) = −2α0 q2η(1)
h̄c

a0

(

1 − ρ

a0

)

< 0. (14)
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To obtain a0, Equation (12) must be solved numerically. It is convenient to consider an
example to get an idea of the order of magnitude of the quantities involved, as illustrated
in Figure 2. To be noted is that the interaction energies between nearest-neighbor ions give
already the right order of magnitude for the total lattice energy. For instance, according to
Equations (8) and (10) we find, EC(1) ≃ −13.868 eV and ER(1) ≃ +0.922 eV, respectively.

Figure 2. The total lattice energy per site, ET(a′), vs. lattice spacing a′, for a one-dimensional ionic
crystal. The continuous line represents Equation (11) for the set of parameters: E0 = 3 × 104 eV,
ρ = 0.1 × 10−10 m, q = 1, where we have used h̄c = 0.1974 × 10−6 eV m. The minimum energy,
ET(a0) ≃ −17.38 eV (Equation (14)), occurs at a0 ≃ 1.039 × 10−10 m (yellow circle). The second
derivative, Equation (13), yields, a2

0 ∂2ET/∂a′2|a0 ≃ 161.28 eV.

3.2. ERD Complex Lattices: Beyond the Standard Picture

In real systems, there are interactions beyond the Coulomb force. Specifically, the
repulsive short-range interaction, given by Equation (10), arises from a non-trivial com-
bination of both electrostatic and quantum mechanical effects, such as those due to the
Pauli exclusion principle. These short-range interactions are challenging to calculate, but
significant progress has been made by employing density functional theory for the electron
states, coupled with molecular dynamics for the ions [25].

For medium-range distances, the van der Waals (VDW) interaction can play an im-
portant role, particularly between neutral closed-shell atoms. It can be understood as an
induced attractive dipole–dipole interaction (see [19] for a simple derivation of its origin).
In the case of ions, the VDW interaction also contributes to the total energy, introducing
specific power-law terms that decay with the typical sixth-power exponent. These addi-
tional terms can be analyzed in the same way as the Coulomb interaction, leading to a
lattice sum (see, e.g., [16]). A review of different types of lattice sums is provided in [26].

There are also phenomena related to vacuum polarization and self-energy effects on
electrons, which are generally expected to be quite small. However, much less is known
about these effects in confined systems, such as molecules or chains of atoms. Last but not
least, electrons can interact with each other through the vibrational modes of the lattice,
known as phonons, which play a crucial role in superconductivity (see, e.g., the book on
finite fermionic systems that discusses these issues in detail [27]).
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In order to take into account these complex scenarios in a simple way, we suggest to
introduce an effective Coulomb (EC) interaction between charges separated by a distance r,
of the form (Conjecture Equation (1), with a = 1),

VEC(x) = ±V0
1
xs

, with s = 1 + i b, (15)

where x = r/a0, and, for convenience, we define VEC(x) = V0FEC(x), with V0 > 0, where

FEC(x) = ± 1
x
[cos(b log x)− i sin(b log x)], (16)

is a complex scaling function. The latter is illustrated in Figure 3 for opposite charges (i.e.,
corresponding to the negative sign in Equation (15)), and few values of b, for xmin < x < 2.
The lower limit is arbitrary (we use xmin = 0.1 in the plot), and it has been introduced in
order to avoid the non-physical oscillations of FEC(x) when x → 0.

It is interesting to note that, due to the cosine function, the real part of the scaling
function becomes less attractive and even repulsive, compared to the bare Coulomb decay,
−1/x, suggesting some form of screening effect between charges. A plot for the case b = 1
is shown in Figure 4 over a longer range, 0.1 < x < 10.

Figure 3. The scaling function FEC(x) vs. x (Equation (16)), with s = 1 + i b, and b = (2, 1.5, 1, 0.5, 0).
(a) ℜ[FEC(x)] = −x−1 cos(b log x). (b) ℑ[FEC(x)] = x−1 sin(b log x). Here, x ≥ xmin = 0.1. For
x < 1, the zeros of ℜ[FEC(x)] occur at xk = exp[−π(2k + 1)/2b], with integer k ≥ 0, yielding
x0 ≃ (0.042, 0.21, 0.35, 0.46) for b = (0.5, 1, 1.5, 2), respectively. For ℑ[FEC(x)], the zeros occur at
xk = exp(−πk/b), k ≥ 1, yielding x1 ≃ (0.002, 0.043, 0.123, 0.208) for b = (0.5, 1, 1.5, 2), respectively.
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In the following, we apply this model to the ionic lattice and examine its effects on the
total lattice energy and the stability criteria of the chain. To this end, we rewrite Equation (8)
so that it is of the form

EEC
0j (s) = − q2

I
4πϵ0

1
a0

(−1)j−1

(|xj|/a0)s
, |j| ≥ 1, s = 1 + i b, (17)

in which we retain the presence of alternating charges, qI = ±qb e, where qb is still a positive
real number obeying q0 = q. Therefore, denoting EEC(n, s) ≡ EEC

0j (s), Equation (17) becomes,

EEC(n, s) = −α0q2
b

h̄c

a0

(−1)n−1

ns
, n ≥ 1, (18)

such that Equations (17) and (18) reduce to Equations (8) and (9) when b = 0. To keep
the model as simple as possible, we retain the Born exponential form for the repulsive
interaction, as in Equation (10), so that the total lattice energy per site, ET(a′, s), can be
written as

ET(a′, s) = 2E0 e−a′/ρ − 2α0q2
b

h̄c

a′
η(s), s = 1 + i b. (19)

Figure 4. The scaling function FEC(x) vs. x (Equation (16)), with s = 1 + i b, for b = 1, shown on a
longer range of x. Notice the locations of the zeros at x0 = 0.21 for the real part (black line). For the
imaginary part (red line), the zero occurs at x1 = 0.043. The dotted line is the bare case, b = 0.

Due to the presence of η(s), this model brings us close to the issue of non-Hermiticity
mentioned in the introduction. Further analytical work would be required to implement
the effective Coulomb model for applications in quantum systems [10–12]. Since we are
dealing with a complex expression for the total energy, Equation (19), we stipulate that the
physical value is given by ℜ[ET(a′, s)], which corresponds to taking ℜ[η(s)] in (19).

The stability conditions are then the same as those obtained in Equations (12) and (13),
with η(1) replaced by ℜ[η(s)] and q by qb, where now a0(b) is a function of b. The final
expression for the total energy is then given by (Equation (2) with s = 1 + i b)

ET(a0, s) = −2α0 q2
b ℜ[η(1 + i b)]

h̄c

a0(b)

(

1 − ρ

a0(b)

)

. (20)
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To illustrate the behavior of the total lattice energy in the presence of a complex
Coulomb exponent, s = 1 + i b, we have plotted the real values of ET(a′, s) in Figure 5a,
using Equation (19). The values of b chosen for the figure correspond to b = 0 as the
reference case, b ≃ 5.58, yielded the lowest possible lattice energy per site and a case with a
larger value of ET(a′, s), namely b ≃ 8.19.

In Figure 5b, we display the lattice constant, a0(b), as a function of b, showing that
the most stable situation occurs for b ≃ 5.58, where a0 ≃ 0.93425, being about 10% smaller
than in the standard case, b = 0. For b > 5.58, the energy increases, and so does the lattice
constant. This behavior is related to the fact that η(1+ i b) = 0 when b = 2π/ log 2 ≃ 9.065,
as discussed in Equation (7). Clearly, since the generalized Coulomb term vanishes, the
lattice becomes unstable, and no bound state can exist.

Figure 5. (a) The lattice energy per site, ET(a′, s) (real part in Equation (19)) vs. a′, in the cases:
b = (8.19, 0, 5.58). The minimum values are respectively indicated with the (red, black, cyan)
circles. Here, we have used qb = q = 1, E0 = 3 × 104 eV, and ρ = 0.1 × 10−10 m, as in Figure 2.
(b) The lattice constant, a0 at equilibrium, vs. b, in the case s = 1 + i b, where the circles correspond
to the three values of b considered in (a). To be noted is that the first zeros ℑ[η(1 + i b)] = 0
occur for b = (0, 5.27185 . . . , 9.06472 . . . ), the latter given by Equation (7) for m = 1, where also
ℜ[η(1 + i b)] = 0, so that the lattice becomes unstable in this case. The location of ℑ[η(1 + i b1)] = 0,
for b1 = 5.27185, is indicated in the figure, and in Figure 6 below, with the vertical line.

It is interesting to observe that the vanishing of ℑ[η(1 + i b1)] occurs at b1 ≃ 5.27185
(see the position of the vertical line in Figure 5b), which is close to b0 ≃ 5.58, where the
minimum of the total lattice energy occurs. This difference can be easily eliminated by
adjusting the parameters of the model. For example, we fit the ‘renormalized’ charge, qb1 ,
so that the minimum of a0 occurs at b1 ≃ 5.27185 where ℑ[η(1+ i b1)] = 0. This is achieved
by imposing the condition, q2

b1
ℜ[η(1 + i b1)] = ℜ[η(1 + i b0)], yielding,

qb1 =
√

ℜ[η(1 + i b0)]/ℜ[η(1 + i b1)] ≃ 1.0056 ≳ 1, (21)

which is remarkably close to q = 1.
In Figure 6a, we show the results for ET(a0, s) as a function of b, which are consistent

with the previous ones. In Figure 6b, we consider the lattice ‘stiffness’, represented by the
second derivative of the energy with respect to the lattice constant, as given in Equation (13),
with η(1) replaced by ℜ[η(s)], and qb = 1. The phenomenon of stiffness may also have
consequences for the electron–phonon couplings, possibly leading to enhanced effective
electron–electron exchange, which is important for the emergence of superconductivity
properties in materials (see e.g., [28]). We can argue that finite values of the imaginary
component b > 0 may result from the interaction of matter waves with vacuum energy
fluctuations, thus having a purely quantum nature. Therefore, the small excess charge
appearing in Equation (21) can be interpreted as being supplied by the vacuum.
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Figure 6. (a) Total lattice energy, ET(a0, s), s = 1 + i b, vs. b (Equation (20)). Selected values of
b (circles) are from Figure 5, the vertical line denotes the case ℑ[η(1 + i b1)] = 0. (b) The second
derivative of the total energy, a2

0 ∂2ET(a′, s)/∂a′2|a0 vs. b.

4. The ERD Complex Lattices Within the Range: 1/2 ≤ a ≤ 2

In the following, we consider the general case s = a + i b in the expression of the total
lattice energy per site (cf. Equation (20)),

ET(a0, s) = −2α0 q2
b ℜ[η(a + i b)]

h̄c

a0(b)

(

1 − ρ

a0(b)

)

, (22)

to complement the results discussed in Section 3.2. We do not attempt to relate the ERD
lattice model to the question of the non-trivial zeros of η(s). Instead, we study Equation (22)
in the range 1/2 ≤ a ≤ 2, which includes the critical strip 0 < a < 1. Some illustrative
results are reported in Figure 7.

Figure 7. (a) Lattice constant, a0(s), vs. a, with s = a + i b, for different values of b = (0, 1, 2, 3, 4, 5).
The vertical lines delimit half of the critical strip where 1/2 ≤ a ≤ 1. (b) a0(s) vs. b, for different
values of a = (1/2, 3/4, 1, 2). (c) The total lattice energy, ET(a0, s), vs. b, s = a + i b, for different
values of a = (1/2, 1). (d) The second derivative of the total energy, a2

0 ∂2ET(a′, s)/∂a′2|a0 , vs. b, for
the two values of a = (1/2, 1).
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In Figure 7a, we show the behavior of the equilibrium lattice constant, a0(s), s = a+ i b,
as a function of a for selected values of b. We observe that a0(s) decreases with increasing
a, as expected, but for b ≲ 3, the opposite trend occurs, with a0(s) increasing with a. This
suggests that the physics may depend crucially on the imaginary component, b. Similar
results are shown in Figure 7b, where a0(s) is plotted versus b for some values of a, showing
a crossover of the curves near bc ≃ 3.2. In this case, the values a0(1/2, b) are the largest for
b < bc and the smallest for b > bc. Thus, for the latter, the case a = 1/2 is more stable than
for larger values of a.

The results for the total lattice energy per site, ET(a0, s) (Figure 7c), and for the lattice
stiffness (Figure 7d), plotted as a function of b, are consistent with those shown in Figure 7b.
These results suggest a quite rich scenario of the physics of strongly interacting systems
modeled by the simple ERD lattice, which deserves further consideration, both theoretically
and experimentally.

For the interested reader, we have also prepared two appendices dealing with the
Riemann hypothesis: The first, in Appendix B, reviews the connection between ζ(s) and
prime numbers, which contains a wealth of numerical results that complement those in the
literature [29–37]. The second, in Appendix C, discusses simple arguments related to the
Riemann hypothesis.

5. Concluding Remarks

We have presented an application of the Dirichlet η(s) function to describe 1D ionic
systems with alternating charges characterized by a complex Coulomb exponent s = 1 + ib.
This leads to an effective interaction, VEC(r) ∼ ±q2/rs, between charges ±q separated by
a distance r, where the case b = 0 corresponds to the standard Coulomb law. The effects
of a finite imaginary component, b > 0, were studied by calculating the cohesive energy
of a 1D lattice, ET(a0, b) ∼ ℜ[η(s)], from which a new lattice constant, a0(b), is obtained
as a function of b. For small values of b, the lattice shrinks, i.e., a0(b) < a0(0), and its
cohesive energy decreases, ET(a0, b) < ET(a0, 0). Both the lattice constant and the cohesive
energy reach a minimum at b ≃ 5.58 and then start increasing again for larger values of b.
Correspondingly, the lattice stiffness, represented by the second derivative ∂2ET/∂a′2|a0 ,
reaches a maximum at b ≃ 5.58 and begins to decrease for b > 5.58. Finally, the lattice
becomes unstable when η(1 + ibu) = 0, with bu = 2π/ log 2 ≃ 9.065.

We argue that the imaginary component b > 0 could result from effective many-body
interactions between localized electrons due to their coupling with phonons and vacuum
energy fluctuations. Further theoretical work is needed to quantitatively validate these
ideas by comparing the model with experimental observations in various physical contexts.
Specifically, applications to real three-dimensional structures require the use of generalized
forms of the η(s) function to deal with more elaborated lattice sums (see, e.g., [16,26]).

Finally, the connection between the Riemann zeta function and prime numbers has
also been explored in light of the ongoing interest in the still unproven Riemann hypothesis.
Numerical calculations on the prime numbers gaps distribution, as well as an evaluation of
their correlations using a fluctuation analysis method, are discussed. The former follows an
exponentially decaying distribution function, which is derived numerically from the first
two million primes. The fluctuation analysis reveals that hidden correlations exist between
gaps, which tend to disappear as the number of primes increases. This gradual approach to
the asymptotic behavior is typical of other quantities, such as the prime number value as a
function of the number of primes considered. Finally, we demonstrate that the non-trivial
zeros of the Riemann zeta function, ρ = a + ib, exhibit distinct behaviors depending on
whether the real part satisfies a = 1/2 or a ̸= 1/2. This difference is significant and may
suggest that actual zeros can exist only when a = 1/2.
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Appendix A. The Dirichlet Function η(s)

Let us briefly review the derivation of Equation (6) in the case ℜ(s) > 1 where ζ(s)

is convergent. To do this, we consider the partial sums, η2m(s) = ∑
2m
n=1(−1)n−1 n−s, with

integer m > 0, so that

η2m(s) = 1 − 1
2s

+
1
3s

− 1
4s

· · ·+ (−1)2m

(2m)s
, (A1)

= 1 +
1
2s

+
1
3s

+
1
4s

· · ·+ 1
(2m)s

− 2
(

1
2s

+
1
4s

+
1
6s

· · ·+ 1
(2m)s

)

, (A2)

= ζ2m(s)− 21−s

(

1 +
1
2s

+
1
3s

+
1
4s

· · ·+ 1
ms

)

, (A3)

= (1 − 21−s)ζ2m(s) + 21−s
2m

∑
n=m+1

1
ns

, (A4)

where the summation in the second term can be written as

2m

∑
n=m+1

1
ns

=
1

ms

(

1
(1 + 1/m)2 +

1
(1 + 2/m)2 + · · ·+ 1

(1 + m/m)s

)

< m1−s, (A5)

which vanishes when m → ∞ since, by assumption, ℜ(s) > 1. In this limit, both partial
sums, η2m(s) and ζ2m(s), tend to their full series, η(s) and ζ(s), respectively, yielding
Equation (6). Now, if we use the latter in Equation (4), we find the functional form obeyed
by η(s) (see also [23]), that is,

1
πs/2 Γ

( s

2

) η(s)

1 − 21−s
=

1
π(1−s)/2

Γ

(

1 − s

2

)

η(1 − s)

1 − 2s
. (A6)

In particular, for s → 0 one has Γ(s/2) ≃ 2/s, Γ(1/2) =
√

π, and using the Taylor
expansion for log(1 + x) with |x| < 1, together with Abel’s theorem, allows one to prove
that indeed η(1) = log 2, yielding η(0) = 1/2.

Appendix B. Some Properties of Prime Numbers and the
Riemann Hypothesis

There is an explicit connection between ζ(s) and the prime numbers, denoted as
the Euler product formula (proved by Euler for real s), which can be written using the
logarithm as follows,

log ζ(s) = −
∞

∑
i=1

log
(

1 − 1
[P(i)]s

)

, s = a + i b, (A7)

where the sum runs over all prime numbers, P(1) = 2, P(2) = 3, etc., which was used
by Riemann to introduce the complex function carrying his name [21]. He also found
an empirical relation between the function π(x), which counts the number of primes not
exceeding the value x, and Li(x) =

∫ x
2 dt/ log t, denoted as the logarithmic integral.
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The prime number theorem (PNT) asserts that π(x) ∼ x/ log x, for x → ∞, and it was
proved by Hadamard in 1896. Finally, with the use of Riemann’s work, the best possible
approximation to π(x) can be achieved in the form [29],

π(x) = R(x)−
∞

∑
n=1

R(xρn), with R(x) = Li(x)−
∞

∑
n=2

1
n

Li(x1/n), (A8)

where ρn = 1/2 + i bn are the non-trivial zeros of ζ(s), with bn ≃ ± (14.134, 21.022,
25.010, . . . ) [30]. The fact that a = 1/2 constitutes the Riemann hypothesis means that there
are no non-trivial zeros within the critical strip, 0 < a < 1, other than on the critical line at
a = 1/2.

Appendix B.1. Numerical Results on Prime Numbers

In the following, we study the properties of prime numbers related to the PNT. It
can be shown that if PNT holds, then the Nth prime number, P(N) ∼ N log N [31]. We
perform a numerical analysis on P(N) by first looking at the mean distance between
sequential primes, P(N)− P(N − 1), as a function of N, as shown in Figure A1a. It can be
shown that the mean sequential distance obeys,

〈

∆P(N)
〉

= (P(N)− P(1))/N ∼ log N,
in accordance with the numerical results. To be noted, though, is that the asymptotic
logarithmic dependence is approached very slowly. To illustrate this behavior, we have
fitted the numerical results with an effective power-law, (log N)α, yielding α ≃ 0.96296 up
to N = 106 (red line in the figure).

Figure A1. (a) The mean distance,
〈

∆P
〉

, between sequential prime numbers, P(N)− P(N − 1), as
a function of the logarithm of N, for 2 ≤ N ≤ 106, i.e., 0.693 ≲ log N ≲ 13.82. For comparison, we
have added the linear dependence,

〈

∆P(N)
〉

∼ log N (dashed line), suggesting that P(N) ≃ N log N,
asymptotically. The continuous red line is a fit to the data, excluding the first point at (log 2,1), yielding
F = 1.2353 (log N)0.96296. (b) The function C(N) = P(N)/(N log N)− 1 (yellow circles), together
with the approximation (black line): G(x) = (log x− 1)/x+(log x− 2)/x2 − [(log x− 3)2 + 2]/(2x3),
where x = log N [32]. The point at N = 2 1017 corresponds to the prime 8512677386048191063, i.e.,
P(N) ≃ 8.513 1018, yielding C(N) ≃ 0.0684765. The selected values of P(N) up to N ≃ 1010 were
obtained from the Web.

In Figure A1b, we show the deviations of P(N) from its asymptotic behavior in terms
of a correction factor C(N), such that P(N) = [1 + C(N)] N log N, defined according to

C(N) =
P(N)

N log N
− 1, (A9)

which should behave as C(N) → 0 when N → ∞. The continuous line shown in the figure
is an approximation to C(N) due to Cesàro [32] valid for N > 104 (see also [33,34]).
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It is also interesting to study the distribution of ‘gaps’ between consecutive primes
defined as, g = P(N)− P(N − 1), with N ≥ 2. An example of a series of gaps is shown
in Figure A2b. A related quest regards the estimation of the largest gap within the first N

prime numbers. It is suggested that such maximal gaps occur for primes, P(g) ∼ exp(c
√

g),
with c ≳ 1 [35] (see also [36] for large gaps).

Figure A2. (a) A typical profile of sequential prime numbers gaps, P(N)− P(N − 1), vs. N. We
note that the maximal gap shown here, g = 48 at N = 2078 corresponding to P(N) ≃ 18,100, is
consistent with the conjecture, log P(N) ≃ c

√
g, with c ≃ 1.415, and c(g) → 1 when g → ∞ [35].

(b) Distribution of gaps, Pg(g), vs. g. The red line is a guide to the eyes displaying the exponential
decay, y(g) = 4 × 105 exp(−g/13).

As one can see from Figure A2a, the sequence of gaps looks random, and in order to
characterize them, we first calculate their distribution function. As shown in Figure A2b,
the latter appears to be consistent with a simple exponential decay, with a characteristic
mean gap,

〈

g
〉

≈ 13, at least within the first two million primes considered. The question
arises as to whether the gaps may still display some kind of auto-correlations.

Appendix B.2. Fluctuation Analysis

To see this, we apply the so-called fluctuation analysis, which allows us to detect
auto-correlations if they are present in a random series [37]. We briefly discuss the method
adapted to a series of gaps like the one shown in Figure A2a. Let us denote by L0 the total
length of the series, for instance L0 = 200 in the figure. Next, we divide the total length
into M boxes of length L, such that, M L = L0. Within each box j, we calculate the average
value, Bj(L), defined as

Bj(L) =
1
L

L

∑
i=1

R(jL − L + i), 1 ≤ j ≤ M, (A10)

where R(n) denotes the amplitude of the series at location n, with 1 ≤ n ≤ L0.
Then, we evaluate the mean fluctuations, F2(L), of the Bj(L) at ‘length scale’ L, yielding,

F2(L) =
1
M

M−1

∑
j=1

(

Bj+1 − Bj(L)
)2 ≡ 2

(

〈

B2〉−
〈

B
〉2
)

. (A11)

In the following, we consider the case of uncorrelated random numbers, Rn, drawn
from an exponential distribution function, P(R) = R−1

0 exp(−R/R0). This is similar to
Pg(g) for the gaps between primes, and for simplicity, it is assumed to be normalized
according to

∫ ∞

0 dr P(r) = 1.
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For this simple model we can obtain analytical results for the first two moments of the
distribution, i.e.,

〈

B(L)
〉

=
〈

R
〉

= R0, (A12)
〈

B2(L)
〉

=
1
L2

(

L
〈

R2〉+
1
2

L(L − 1)
〈

R
〉2
)

=
1
L2

(

L 2R2
0 +

1
2

L(L − 1) R2
0

)

, (A13)

yielding the following result for F2(L),

F2(L) =
4
L

R2
0

(

1 +
1
4

L − 1
L

)

, (A14)

which can be written in the more convenient form as follows,

F(L)

F(1)
=

(

1 +
1
4

L − 1
L

)1/2
L−1/2. (A15)

The numerical results for the prime gaps are shown in Figure A3, where we have
fitted effective power-laws, F(L) ∼ Lα(N), yielding the exponent α(N), in order to detect
possible departures from the uncorrelated case, Equation (A15). Indeed, we find deviations
from the exponent 1/2 at small L, where α(N) decreases from α(N) ≃ 0.58(2), for N = 105

prime numbers, down to α(N) ≃ 0.555(5), for N = 106.
The case of shuffling the prime gaps, shown as the red circles in the figure, indeed

displays the uncorrelated behavior with α = 1/2. We may conclude that the observed
departures of F(L) from the uncorrelated regime depend on the number of primes N

considered, such that α(N) → 1/2 when N → ∞. The asymptotic behavior is approached
very slowly, similarly to the other quantities discussed previously, e.g., P(N) as described
by Equation (A9).

Figure A3. Fluctuation analysis of distances profiles: F(L)/F(1) vs. L. The numercial data are fitted
with the power law, F(L) ≃ L−α, for the cases N = 105 (dark-yellow circles), where the straight line
has slope α = 0.58(2); N = 2 × 106 (blue-white circles), with α = 0.555(5); N = 2 × 106 (red-white
circles), suffled data yielding α = 1/2. The data have been shifted for visual convenience.
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Appendix C. The Non-Trivial Zeros of ζ(s) Within: 0 < a < 1

In order to elaborate on the locations of possible zeros of ζ(s), s = a + i b, within the
critical strip 0 < a < 1, let us write Equation (4) in the form reported in Equation (A6),

1
πs/2 Γ

( s

2

)

ζ(s) =
1

π(1−s)/2
Γ

(

1 − s

2

)

ζ(1 − s). (A16)

Appendix C.1. The Case a = 1/2

Motivated by the (not yet proved) Riemann hypothesis [21] that the non-trivial zeros of
ζ(s) occur only for a = 1/2, we consider next the case, s = 1/2 + i b, and, 1 − s = 1/2 − i b,
so that Equation (A16) becomes,

A(b) ≡ 1
πib/2 Γ

(

1
4
+ i

b

2

)

ζ

(

1
2
+ i b

)

=
1

π−ib/2 Γ

(

1
4
− i

b

2

)

ζ

(

1
2
− i b

)

≡ A∗(b), (A17)

yielding, A(b) = A∗(b), implying that ℑ(A(b)) = 0, i.e., A(b) is a real-valued function of b.
To proceed further, we denote the real and imaginary components of the functions building
A(b) as follows,

π−i b/2 = ΠR(b) + i ΠI(b), (A18)

where ΠR = cos[(b/2) log π], and ΠI = − sin[(b/2) log π], i.e., Π2
R + Π2

I = 1. For Γ(s/2),
we define,

Γ

(

1
4
+ i

b

2

)

= ΓR(b) + i ΓI(b), (A19)

and for the Riemann zeta function,

ζ

(

1
2
+ i b

)

= ζR(b) + i ζI(b). (A20)

Next, using Equations (A18)–(A20), the auxiliary function A(b) can be written as

A(b) = (ΠR + i ΠI)(ΓR + i ΓI)(ζR + i ζI) = AR(b) + i AI(b), (A21)

where
AR(b) = ζR (ΠRΓR − ΠIΓI)− ζI (ΠRΓI + ΠIΓR), (A22)

AI(b) = ζR (ΠRΓI + ΠIΓR) + ζI (ΠRΓR − ΠIΓI). (A23)

Now, the condition found above for A(b) yields AI(b) = 0, from which we can find a
relation between the components ζR and ζI according to

ζR(b) = −ζI(b)
ΠRΓR − ΠIΓI

ΠRΓI + ΠIΓR
= −ζI(b)

ΓR cos(α) + ΓI sin(α)
ΓI cos(α)− ΓR sin(α)

, (A24)

where α = (b/2) log π, suggesting that the following result holds:

ζR(b)

FR
= − ζI(b)

FI
= ζ0(b), (A25)

where ζ0(b) ∈ ℜ, FR = ΓR cos(α) + ΓI sin(α), and FI = ΓI cos(α)− ΓR sin(α), obeying the
relation F2

R + F2
I = Γ2

R + Γ2
I = |Γ(1/4 + ib/2)|2. Using Equation (A25), we can write ζ0(b)

in terms of ζ(1/2 + ib) as follows,

ζ0(b) = ζ(s)
Γ(s/2)

|Γ(s/2)|2 e−iα, s =
1
2
+ ib. (A26)

where the product ζ0(b) |Γ(s/2)| is known as the Hardy function [22,30].
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Appendix C.2. The General Case 0 < a < 1

Let us next consider the general case, s = a + i b, with a = 1/2 + ε, and 0 ≤ ε < 1/2.
Now, Equation (A16) yields, with β = ε + i b,

π−β/2Γ

(

1
4
+

β

2

)

ζ

(

1
2
+ β

)

= πβ/2Γ

(

1
4
− β

2

)

ζ

(

1
2
− β

)

, (A27)

thus connecting values of ζ(s) for s = 1/2 + β and 1 − s = 1/2 − β (see Figure A4).

Figure A4. The two points in the complex plane, s = 1/2 + ε + i b and 1 − s = 1/2 − ε − i b, are
connected via the functional form in Equation (A27). The red straight line is a guide for the eyes. A
second pair of solutions corresponds to s = 1/2 − ε + i b and 1 − s = 1/2 + ε − i b.

We can write the L.H.S. of Equation (A27) in the same form as in Equations (A22) and (A23)
evaluated at s = 1/2+ β, while the R.H.S. of Equation (A27) is written in terms of AR(1− s)

and AI(1 − s), as follows,

AR(s) = ζR(s) BRR(s)− ζI(s) BIR(s) = AR(1 − s), (A28)

AI(s) = ζR(s) BRI(s) + ζI(s) BII(s) = AI(1 − s), (A29)

where BRR = BII = ΠRΓR − ΠIΓI, BIR = BRI = ΠRΓI + ΠIΓR. The solution can be written
as a function of AR,I(1 − s), yielding,

ζR(s) = [ BRR(s) AR(1 − s) + BIR(s) AI(1 − s)]/D(s), (A30)

ζI(s) = [−BRI(s) AR(1 − s) + BRR(s) AI(1 − s)]/D(s), (A31)

where the determinant of the coefficients, D(s), becomes,

D(s) = B2
RR(s) + B2

RI(s) = π−ε
[

Γ2
R + Γ2

I

]

= π−ε|Γ(s/2)|2 > 0. (A32)

For illustration, we can apply Equations (A30)–(A32) to the previous case, ε = 0. For
the latter, we found that AI(s) = AI(1 − s) = 0, yielding,

ζR(s) = BRR(s) AR(1 − s)
1

D(s)
, (A33)

ζI(s) = −BRI(s) AR(1 − s)
1

D(s)
, (A34)
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which is equivalent to Equation (A25) with,

ζ0(s) = AR(1 − s)
1

D(s)
= AR(s)

1
D(s)

. (A35)

As an attempt to shed light on the question of whether ζ(s) may have zeros for
a ̸= 1/2, we investigate the conditions that Equations (A30) and (A31) must satisfy in
order to behave as in Equations (A25), (A33) and (A34), when a = 1/2, yielding a linear
relationship between ζ(s) and a real function ζ0(s) (Equation (A26)).

To this end, let us write Equations (A30) and (A31) as follows,

ζR(s) = BRR(s) AR(1 − s)
1

D(s)

(

1 +
BRI(s)

BRR(s)

AI(1 − s)

AR(1 − s)

)

, (A36)

ζI(s) = −BRI(s) AR(1 − s)
1

D(s)

(

1 − BRR(s)

BRI(s)

AI(1 − s)

AR(1 − s)

)

. (A37)

Next, if the two factors within parenthesis in the R.H.S. of (A36) and (A37) obey,

1 +
BRI(s)

BRR(s)

AI(1 − s)

AR(1 − s)
= ζ̃R(s), 1 − BRR(s)

BRI(s)

AI(1 − s)

AR(1 − s)
= ζ̃I(s),

with ζ̃R(s) = ζ̃I(s), then ζ(s) can be represented by a single real function, as in
Equation (A26). This can only happen if,

BRI

BRR
= −BRR

BRI
→ B2

RR + B2
RI = D(s) = 0. (A38)

This result implies that the condition for a real-valued function ζ0(s), whose zeros
should determine those of ζ(s) for ε > 0, holds only when D(s) = 0. However, this
contradicts Equation (A32), where D(s) > 0. We can therefore conclude that no solution
ζ(s) = 0 exists based on a relation similar to that in Equation (A26) for the case ε > 0.
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