EPJ Web of Conferences 245, 03022 (2020) https://doi.org/10.1051/epjconf/202024503022
CHEP 2019

Big data solutions for CMS computing monitoring and
analytics

Christian Ariza-Porras!, Valentin Kuznetsov?, and Federica Legger®**

'Universidad de los Andes, Colombia
2Cornell University, Ithaca NY, 14850 USA
3Istituto Nazionale di Fisica Nucleare, via Pietro Giuria 1, 10125 Torino, Italy

Abstract. The CMS computing infrastructure is composed of several
subsystems that accomplish complex tasks such as workload and data
management, transfers, submission of user and centrally managed production
requests. Till recently, most subsystems were monitored through custom tools
and web applications, and logging information was scattered over several
sources and typically accessible only by experts. In the last year, CMS
computing fostered the adoption of common big data solutions based on
open-source, scalable, and no-SQL tools, such as Hadoop, InfluxDB, and
ElasticSearch, available through the CERN IT infrastructure. Such systems
allow for the easy deployment of monitoring and accounting applications using
visualisation tools such as Kibana and Grafana. Alarms can be raised when
anomalous conditions in the monitoring data are met, and the relevant teams
are automatically notified. Data sources from different subsystems are used
to build complex workflows and predictive analytics (such as data popularity,
smart caching, transfer latency), and for performance studies. We describe
the full software architecture and data flow, the CMS computing data sources
and monitoring applications, and show how the stored data can be used to gain
insights into the various subsystems by exploiting scalable solutions based on
Spark.

1 Introduction

The CMS experiment [1] at the Large Hadron Collider (LHC) exploits a tiered distributed
computing infrastructure to process LHC data and produce Monte Carlo simulated events of
relevant physics processes. Data are stored and processed in more than 100 computing centers
worldwide, connected through a set of grid services responsible for storage, computing, and
connectivity. A recent overview of the computing model of the LHC experiments can be
found in [2].

The CMS distributed computing infrastructure includes central services and middleware
that handle authentication, workload and data management. The workload management
system executes payloads in compute nodes provisioned through GlideinWMS [3] and thus
made available as execution slots in a Vanilla Universe HTCondor [4]. HTCondor jobs are
submitted via specific workload management tools: WMAgent for central data processing

*e-mail: federica.legger@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 03022 (2020) https://doi.org/10.1051/epjconf/202024503022
CHEP 2019

and Monte Carlo production jobs, and CRAB for user jobs [5]. The data management system
is modular. The main components are PhAEDEX, the data transfer and location system; the
Data Bookkeeping Service (DBS), a metadata catalog; and the Data Aggregation Service
(DAS), designed to aggregate views and provide them to users and services [6]. Data from
these services are available to CMS collaborators through a web suite of services known as
CMSWEB.

Over the last decade, the various computing services were monitored through custom
tools and web applications, partly developed within the CMS computing community, and
partly by the CERN IT department (monitoring the execution of jobs, data transfers, and
site availability). As a result, the monitoring data were scattered over several sources,
and, mostly, accessible only to experts. The maintenance and operation of the monitoring
applications were therefore becoming increasingly time-consuming and complicated due to
the high turnover of experts in the computing community. Nowadays, several solutions
are available on the market to gather, store and process large amounts of data such as
those produced by monitoring and logging services of computing applications. Many
technologies are available under an open-source licence, and are developed and supported
by large software companies and communities. The CMS computing community decided,
therefore, to gradually abandon in-house solutions, in favour of the adoption of widely-used
technologies such as Collectd, Kafka, Spark, Elasticsearch, InfluxDB, Grafana, and others.
In the following sections we describe MONIT, the monitoring infrastructure at CERN which
is based on the open-source technologies listed above, the organisation of CMS monitoring
applications based on MONIT, and future developments.

2 The monitoring infrastructure at CERN

The monitoring infrastructure at CERN [7], known as MONIT, is based on the following
architecture (see also Fig. 1):

e Data providers: the computing systems and services providing the monitoring data.
In the case of CMS computing, these can be related to the execution of HTCondor
jobs, or performance metrics of various subsystems such as CRAB, WMA, Submission
Infrastructure, PhAEDEX. The data providers are responsible for providing the data in JSON
(JavaScript Object Notation) format.

e Data injection: monitoring data are pushed into MONIT through HTTP, for data providers
inside the CERN network, or through ActiveMQ [8] messaging. CMS data providers are
mostly using ActiveMQ. For the injection of logs, Logstash [9] is used.

e Data transport and processing: monitoring data are routed to an Apache Kafka cluster [10],
whereas Apache Spark [11] and Apache Flume [25] are used for data processing. At this
stage the data may be enriched with additional information or data from several sources
can be aggregated as needed.

e Data sources: data can be stored in MONIT using three different technologies, to be chosen
according to the retention policy and on the amount of information to be stored. Raw data
needed for short term monitoring are stored in ElasticSearch [12]. The time retention policy
varies according to the data source from 30 to 40 days. Raw data needed for a longer time
period are stored in Apache HDFS [13]. Aggregated data in the form of time series can
be stored for 5 years in InfluxDB [14]. In addition, performance metrics of the CMSWEB
cluster are stored in Prometheus [15]. Prometheus is not part of the MONIT infrastructure,
and it is managed by CMS.

EPJ Web of Conferences 245, 03022 (2020) https://doi.org/10.1051/epjconf/202024503022
CHEP 2019

e Data access: depending on the storage technology, several possibilities are available. Data
in ElasticSearch can be visualised using Kibana [16]. Grafana [17] is a visualization tool
that supports several data sources (ElasticSearch, InfluxDB, and Prometheus). In addition,
Grafana can be used to set up simple threshold-based alerts. For analytics purposes data
are accessible through a Grafana proxy. Data on HDFS can be processed using Apache
Spark, for example through the SWAN service [18] at CERN.

Visualization/analysis
Data sources

Data providers e . ' kibana
% elastic A

Condor 15 Grafana

CRAB O ’nf,ux,’ ‘w

PopDB [@hadﬂﬂﬂ I:> Sﬁ ark \
ActiveMQ,

[s][rrepec][e Q-Promcthcus

logstash

Rucio

Panda

XrootD

Figure 1. The architectural diagram of the MONIT infrastructure at CERN, as used by the CMS
monitoring applications.

3 Organisation of CMS monitoring

The main entry point to the CMS monitoring portal is through Grafana (see Fig. 2). The
portal provides access to:

e Monitoring dashboards from various CMS subsystems, organised by topics (for example
HTCondor jobs, CRAB, WMA, Submission Infrastructure, CMSWEB). These are further
divided according to the read/write access policy. Production dashboards are dashboards in
production state, and should be modified by group members only if needed. Development
dashboards are under development by the various groups, and candidates to become
production dashboards at the end of the development cycle. Playground dashboards are
open for everyone to experiment and learn Grafana.

e Data popularity plots produced on a regular basis, to show access patterns of CMS
computing applications.

e The status of the various alerts implemented in Grafana.

e Documentation on CMS data sources and the code used to inject the data into MONIT.

e Various tutorials on data injection into MONIT, data visualisation with Grafana or Kibana,
example Jupyter notebooks showing how to access data in HDFS.

In addition, the CMS monitoring team provides a common set of tools [20] to ease the
transition of CMS monitoring applications to the MONIT infrastructure: a common interface
to push data into MONIT using the Stomp protocol for ActiveMQ, a common tool to fetch
data from MONIT using a Grafana proxy, and a common set of libraries to execute Spark
jobs on the Hadoop clusters at CERN via CMSSpark framework [21].

4 Migration to the MONIT infrastructure

During the last year, several CMS monitoring applications have been ported to use the
MONIT infrastructure, most notably the historical monitoring of HTCondor jobs, the task

EPJ Web of Conferences 245, 03022 (2020) https://doi.org/10.1051/epjconf/202024503022
CHEP 2019

88 CMS monitoring project - w ok # O Olastsmintes Q & ~

cms/| Welcome to the CMS Monitoring project

cms-comp-monit@cern.ch
CMSMONIT JIRA

CMSSDT CMSWEB CRAB Jobs Rucio SI Sites SLS Tier0 VOCMS WMA XrootD Alerts Others

Production ~ Development Playground Infrastructure ~ Sources Training Shifters Contacts ~ Meetings Migrations

Data popularity

Tier0 : CRAB : cmsweb i VOCMS
CMS Tier0 Jobs w CRAB ASOMetrics w CMSWEB Node Metrics w VOCMS EOS QUOTAS w
CMS Tier0 Production w CRAB Metrics g CMSWEB timber w VOCMS GROUP QUOTAS w
CMS Tier0 Replay vocms015 ¥¥ CRAB Overflow via JobRouter ¥ cmsweb usage w VOCMS TIER3 GROUP QUOTAS ¥
CMS Tier0 Replay vocms047 ~ v¢ CRAB Schedds Instant Load ¥ CouchDB w

Figure 2. Screenshot of the CMS monitoring portal based on Grafana.

monitoring dashboards for user jobs, and the production of data popularity plots. The
historical monitoring of HTCondor jobs is based on a limited set of job metrics (such as job
type, the site the job was executed at, job status, software version), aggregated over different
time periods (twelve minutes, one hour, one day, one week). Several visualizations showing
the number of jobs in execution, completed, or waiting to be executed are available to allow
for real time monitoring of the performances of the CMS distributed computing infrastructure
(see Fig. 3). Since InfluxDB performances degrade at high cardinality, effort was put into
selecting only the most relevant metrics and limiting the range of their possible values. We
currently store about twenty metrics, a few with a cardinality of up to 100 values. In total,
the current series cardinality is almost eight million.

The task monitoring dashboard is designed to provide access to information about the
user tasks and jobs, their status, and links to job logs. Due to the number of metrics to be
displayed and the limited history needed (user tasks may need a few days to complete, but
rarely exceed one week of duration), data from ElasticSearch is used. Two views are available
to CMS users: an overview of all their tasks, and a detailed view showing detailed metrics
for each task.

Data popularity plots are produced on a monthly basis by executing Spark jobs on data
stored in HDFS, since access patterns of interest are typically studied over several months or
years. Several visualisations are available to show the number of processed events or accesses
for various input data and access types.

Currently there are more than 50 Grafana production dashboards, organised in more than
10 different topics, and another 50 dashboards in Kibana. The Grafana dashboards are used
to monitor the health of several computing services, notably the CMSWEB services, and
the built-in Grafana alert system is being used to notify the system administrators in case of
failures. CMS monitoring data amount to 30 TB in HDFS, mostly used to store information
about HTCondor jobs and data transfers.

5 Current developments

We are currently migrating the monitoring applications showing the status and availability of
the various CMS sites, also known as Site Status Board (SSB), to the MONIT infrastructure.

EPJ Web of Conferences 245, 03022 (2020) https://doi.org/10.1051/epjconf/202024503022
CHEP 2019

Completed jobs g Running jobs p Pending jobs

15Mil 200K 700K

600K

L A A

) I\ 10K N sk / \ \
Tomi AN N ~1 “\ / \ / \
A / \ / \ 4 \ a0k | v \ / x\ |

750K [\ A / 100K \ |
A \

\ \ \ |
/ Y Ty
, ‘ \ |

500K [
| 200K

| |
| 50K |

o |

0 0
09/23 09/26 09/29 10/02 10/05 10/08 09/23 09/26 09/29 10/02 10/05 10/08 09/23 09/26 09729 10/02 10/05 10/08

analysis ~— production — test == tierd = unknown analysis ~— production = fest == tier0 = unknown analysis — production ~— test == tierd = unknown

Figure 3. Screenshot of the CMS job monitoring dashboard.

The SSB dashboards are currently under review from CMS site experts and operator teams,
and are expected to be in production in early 2020.

In addition to the MONIT infrastructure, we are evaluating additional monitoring
technologies to increase the variety of monitoring applications available to the CMS groups.
For distributed computing operations it is crucial to spot in real time possible failures in
the various subsystems or at the different sites, and promptly notify the experts. Different
operation teams are typically interested in different sets of metrics. For example, a site team
is interested in the performances of all jobs at certain sites, the central production team is
interested in the status of all jobs belonging to a certain production campaign. To tackle
this use case, we deployed a message-based monitoring system using the Neural Autonomic
Transport System (NATS) [22] for message delivering within system components. The
production of the monitoring information is completely decoupled from its distribution and
visualization components. The monitoring data is produced by services and delivered through
NATS. The NATS messages are then converted into the metrics of interest and injected
into VictoriaMetrics [23], an open-source time-series database used as Prometheus back-end
storage. These metrics can be visualized in Grafana dashboards, and the Prometheus
AlertManager [24] is used to notify the operation teams through various channels, such as
Slack or email groups, about potential issues.

6 Conclusion

During the past year, the CMS offline and software computing team ported several of its
monitoring applications from custom solutions to open source products such as ElasticSearch,
InfluxDB and HDFS. The use of such technologies allows the development of a common data
flow for CMS monitoring applications, therefore limiting the needs for custom developments
and easing maintenance in the long term. A complementary approach based on NATS is
available to target specific use cases requiring additional personalisation and prompt delivery
of the monitoring information.

The availability of the monitoring information in widely used technologies such as
ElasticSearch or HDFS allows the easy development and integration of further analytic
workflows, based for example on Apache Spark and its ecosystem of products and libraries.
We envisage for the future that predictive techniques such as anomaly detection will be
studied to further improve the current alert systems. In addition, we are exploring the
possibility to use the monitoring technologies discussed in this paper for a wider range
of applications in CMS (for example, data quality monitoring) than those needed by the
distributed computing systems.

EPJ Web of Conferences 245, 03022 (2020) https://doi.org/10.1051/epjconf/202024503022
CHEP 2019

7 Acknowledgements

This work has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sktodowska-Curie grant agreement LHCBIGDATA
No. 799062.

References

[1] CMS Collaboration, JINST 3 S08004 (2008)

[2] I. Bird et al, CERN-LHCC-2014-014, LCG-TDR-002 (2014)

[3] I Sfiligoi et al, WRI World Congress on Computer Science and Information Engineering,
2428-432 (2009)

[4] D. Thain, T. Tannenbaum, and M. Livny, 17, No.2-4, pages 323-356 (2005)

[5] T. Ivanov et al, EPJ Web Conf. 214 03006 (2019)

[6] M. Giffels, Y. Guo, V. Kuznetsov, N. Magini and T. Wildish, Journal of Physics:
Conference Series, 513, Track 4

[7]1 A. Aimar et al, EPJ Web Conf., 214 08031 (2019)

[8] Apache ActiveMQ, http:/lactivemq.apache.org

[9] Logstash, https./www.elastic.colproductsflogstash

[10] Apache Kafka, http:/kafka.apache.org

[11] Apache Spark, http:/spark.apache.org

[12] Elasticsearch, http:/elastic.co

[13] Apache Hadoop, http:/hadoop.apache.org

[14] InfluxDB, https:/www.influxdata.com/time-series-platform/influxdb/

[15] Prometheus, https:/prometheus.io/

[16] Kibana, https:/fwww.elastic.co/productsfkibana

[17] Grafana, http://grafana.org

[18] Piparo D et al, Future Generation Computer Systems, (2016)

[19] Jupyter, https:/jupyter.org

[20] CMSMonitoring framework, https://github.com/dmwm/CMSMonitoring

[21] CMSSpark framework, https://github.com/dmwm/CMSSpark

[22] NATS https:/nats.io/

[23] VictoriaMetrics https:/victoriametrics.com/

[24] Prometheus AlertManager https.//jprometheus.io/docs/alerting/alertmanager/

[25] Apache Flume https:/jflume.apache.org/

