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1. INTRODUCTION

Infrared divergence phenomend are already well known from semi-
classical arguments. For example, suppose an electron in motion is de-
flected due to its interaction with a potential. The Lorentz-contracted proper
field of the electron will be altered by the collision, and the change in the
proper field will be emitted as electromagnetic radiation. For sufficiently
long wavelengths (kR < < 1, where k is the wave number and R is a dimension
of the scattering region), the radiation can be calculated without knowledge
of the details of the trajectory in the scattering region. It depends only on
the initial and final momenta of the electron and the direction in which the
radiation is observed (assuming the electron suffers no time delay in the
scattering region). As is well known, the energy emitted per unit frequency
is constant in this limit, Making the transcription to the photon description,
it is clear that the number of photons emitted per unit frequency range is
inversely proportional to the frequency; i.e., the photon spectrum is of
the form dk/k, which diverges as k —~ 0. This is the infrared divergence
for real photons. ’ :

The angular distribution can also be understood by the semiclassical
argument. In the extreme relativistic limit, the proper fields will be L.orentz-
contracted in a small region near the plane perpendicular to the direction
of motion of the charge and moving along with the charge. This leads to a
strong peaking of the radiation parallel either to the incident or final di-
rection of motion.

The essential idea for understanding the problems posed by infrared
divergences was introduced by BLOCK and NORDSIECK [1] in 1937. They
pointed out that in any practical experiment involving charged particles it
is impossible to specify completely the final state of the system. Because
individual photons can be emitted with arbitrarily small energies, it is al-
ways possible that some photons will escape detection. In fact, they showed
that the probability that only a finite number of photons will escape detection
is precisely zero; this is due to the infrared divergence associated with soft
virtual photons. On the other hand, when the cross-section is summed over
all final states compatible with the detection arrangement, including all
possible undetected photons, a nonvanishing result is obtained. In fact, the
observed cross-section is very nearly the cross-section that would be ob-
tained if all radiative corrections were ignored. This is the well known
cancellation between the real and virtual infrared divergences.
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2. SEMICLASSICAL PHENOMENA, HIGH-ENERGY PROCESSES AND REGGE
POLES ,

Now I want to begin by describing how these semiclassical phenomena
emerge from quantum electrodynamics. A well-defined separation into in-
frared terms and '"shorter wavelength' terms can be made, and the infrared
terms calculated explicitly to all orders. This infrared terms turn out to
have special significance in high energy processes, and among other things
they contain a Regge - like behaviour. Up to the discussion of the Regge be-
haviour, I shall follow the paper of YENNIE, FRAUTSCHI and SUURA [2],
where references to some of the alternative treatments of the subject [3]
can be found.
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A representation of the matrix element M,.
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Some of the ways in which an additional virtual photon can be inserted in Fig,1

Consider a process in which an electron scatters from a state of 4-
momentum p into one of p’. Let My be the matrix element corresponding to
any set of Feynman diagrams (Fig.1.). Add one virtual photon to M,, in
the manner indicated in Fig.2. That part of the contribution which diverges
at small k can be represented by My ¢ B where B is the gauge-invariant
expression
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and A is a fictitious photon mass. At small k the integral has the form dk/k,
characteristic of the infrared divergence.

Now add a second virtual photon in the same way - inserting it only into
the outside lines of the previous diagrams. Symmetrize the two virtual pho-
tons, introducing a factor 4! to prevent double counting. One obtains M,

(@ B)2 /2 1 plus other terms. Some of these other terms also have an in-
frared divergence, but a careful check reveals that they cancel when all

other ways of introducing two virtual photons into My are considered [2].
The same property is found in higher orders, so the addition of arbitrary
numbers of virtual photons to M, yields the series
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ML (@B /(o )= Mo exp (a B (2)

plus terms M' which have no infrared divergence. We can proceed to treat
M* in the same way as My, and eventually we find that the entire matrix
element has a common factor exp {a@ B).

Since infrared effects are "long range', it is not surprising that the
corresponding Feynman diagrams involve virtual photons emitted from ex-
ternal electron lines (Fig.3). This provides electron propagators which are
nearly real at small k and can spread far out into space. The exponential
form (2) is also reasonable. Emission and absorption of low energy, low
momentum photons do not appreciably disturb the motion of the electron;
this means that such photons are emitted and absorbed independently, re-
sulting in a Poisson distribution (¢ B)" /(n!).
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Fig.3

A typical infrared diagram involving several virtual photons,

Equation (2) leads to a cross-section dog, proportional to exp (2 a B).
We must add to this cross-section the cross-section for emission of an unde-
tected real photon, with energy bounded by K, in order to escape detection,
The infrared terms are associated with diagrams in which the real photon
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An additional real photon, inserted into M, in these ways, gives an infrared-divergent contribution,

is emitted from the external lines (Flg 4), and one obtains essentially
22 B dog where 2 o Bis given by a product of phase space and squared-
matrix element:
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(for correction factors arising from a more careful treatment of energy

conservation, see Ref.[2]).

At small k the integral again has the form dk/k. At high energy, where

]ﬁl ~ E, etc, we see that the photon tends to emerge along the initial or

final electron direction, as expected from the semiclassical argument.
The cross-section for emission of two undetected real photons must

also be added., As in the case of virtual photons, this gives (2 a BP (27
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doy, plus terms which have no infrared divergence. The sum over all un-
detected real photons gives

don L (2.0 B)? /(n1) = dog exp (22 B) (4)

and the observed cross-section is proportional to exp 2 a (B + ﬁ).

It is well known, and can easily be verified explicitly from Eqs (;) and
(3), that the infrared divergence in the lowest order real and virtual photon
radiative corrections 2 « (B + B) cancel, leaving a finite result. Since the
higher order infrared terms simply raise 2 @ (B + B ) to an exponential,
the cancellation holds in all orders. One also finds that B approaches - «
as A — 0, ensuring that the cross-section for emission of no undetected
"~ real photons vanishes.

An attractive feature of these results is that the factor exp 2a (B + B)
is known in general, independent of the details of short-range interactions
in the matrix element. In the case of electron scattering from a nuclear
target, for example, exp 2 o (B + B) has the same form whether the target
is left in its ground state or an excited state.

Another interesting aspect of the infrared factor can be seen from its
form at large electron energies and momentum transfers (E > >m, E'>>m?
p.p'>> m?). If E/Kp islargetheleading (double logarithm) term is:

exp[ -(a/7) In (2 p.p'/mz) in (EE’/szj. (5)

Here the small denominators which allow the virtual particles in infrared
terms to travel far out from the target have been integrated over to give
large logarithmic factors. Shorter wavelength photons are associated with
at most one small denominator, and give at most single logarithms. Thus
the infrared terms tend to provide the dominant radiative correction at high
energy. '

This result means that while the power of @ provides a good index to the
size of a radiative correction, the "range" of the correction should also
receive some attention; long-range effects should be treated with special
care,

Consider, for example, corrections of order a to electron-electron
scattering. TSAI [4] has considered a clashing beam arrangement in which
the two scattered electrons are detected in coincidence with good angular
resolution A6 but virtually no energy resolution {(AE ~ E). It is clear that
if a photon is emitted parallel to either final electron, K is then of order E.
However, if it is emitted perpendicular to the direction of the final electrons,
Km ismuch smaller and is determined by the angular resolution (AE ~EAS).
Thus K {6) has a very strong angular dependence. An incorrect treatment of
this angular dependence would change the double log term {5) by several
per cent; the experimental energy resolution has to be treated carefully -
before it becomes worth while to calculate shorter range correctiohs of the
same order in o but with no logarithms,

A numerical example will illustrate the related point that azln terms
can be at least as important as shorter range terms of order o, If E is 500
MeV, K' =5 MeV, E'~ 500 MeV, p.p*' = E% then the ¢ 4n*term obtained
by expanding (5) contributes + 3%, :
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Another aspect of the infrared terms can be seen by recasting them as
functions of the 4 - momentum transfer t = (p-p’)? = 2m? - 2p, p'. The virtual
photon factor exp {2 a B) behaves like a form factor for electron scattering
and depends only on t. But the real photon factor exp (2 o B) introduces ener-
gy dependence as well (we let E = E' now for simplicity), and(5) has the

form:
2
.20 1,,(2__2_m ~x>
2a, (2—————’1‘2 - t)ln B =(E > ' o (5.2)
exp | -—~In -~ K., K, .

Since the differential cross-section is proportional to this exponential,(5. 2)
resembles the formula

2 -2
do/dt ~E 'O (6)

expressing the exchange of a Regge pole with spin J(t) at high energies [5].

A
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Fig.5

Fig.3 as seen in the t channel,

Do we expect to find a state of spin J(t) in the t channel? Consider Fig. 5,
a typical infrared diagram as seen in the t channel where the incoming parti-
cles are an electron with 4 - momentumm and a positron with - p!, The Fig,
is obviously a ladder diagram with multiple exchange of photons, It would
not be surprising if such diagrams gave some hint of the Bohr or positronium
states which cluster just below threshold at t = 4m2, The angular momenta
of the positronium states (ignoring decay into photons) increase through the
integers from J = 0 to J =9 as threshold is approached, accdrding to the
Bohr formula

g/2p = (-uc2a2/2(n+ J+ 1)2 (7)

where u is the reduced mass and g the momentum of the electron in the
centre-of-mass, It is known [ 6] that a Regge pole with spin J(t) interpolates
smoothly between the integer J, still following Eq.(7), for each n. The
Regge pole with highest J at each energy level corresponds to n = 0, and
with the specializationsy = m/2, ¢ =1, 4qi2= t- 4m2, appropriate to our
case, one finds from (7); o

J) = -1+ ma///4m? - 1, L)

Before the infrared factor is compared with this result it must be re-
calculated, since the form(5.a)is valid only at large Itl (Note that even the
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threshold for the t channel is wrong in (5.a). One finds that near t = 4m?
the leading term in the infrared factor is

2am 2 . (9)
P et KJ (K> -

The other factors in the cross-section give much smaller powers of energy,
which are nearly constant in the region of the Bohr levels, Thus when a
cross-section containing the infrared factor (9) is interpreted according to
the Regge form do /dt ~ E¥©O-2, it gives essentially the Bohr trajectory (8)
at t ~ 4 m? towithin a constant of order one,

3. CONCLUSION

In conclusion I should mention several peculiar features:

(1) Although the infrared factor essentially contains the power asso-
ciated with the Bohr trajectory, it does not contain the poles asso-
ciated with the Bohr levels. After all, we have only taken the
lowest order radiative correction, which has no bound state poles,
and raised it to an exponential, which does not introduce further
singularities, A fuller treatment of the scattering would be required
to obtain the poles [7]. _

(2) Eq. (5b) can alternatively be written in a form appropriate for large

] v

oo [ 22 (s B ()

giving a power whose rate of variation depends on the experimental
energy resolution,

(3) The power of lab energy in (9) can be identified with 2J(t)-2, where
J(t) refers to the Bohr trajectory, only if Ky isenergy-independent
in the laboratory.
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