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Abstract

The level-k U(1) Chern-Simons theory is a spin topological quantum field theory for k odd. Its dynamics 
is captured by the 2d CFT of a compact boson with a certain radius. Recently it was recognized that a 
dependence on the 2d spin structure can be given to the CFT by modifying it using the so-called Arf 
invariant. We demonstrate that one can reorganize the torus partition function of the modified CFT into a 
finite sum involving a finite number of conformal blocks. This allows us to reproduce the modular matrices 
of the spin theory. We use the modular matrices to calculate the partition function of the spin Chern-Simons 
theory on the lens space L(a, ±1), and demonstrate the expected dependence on the 3d spin structure.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

In recent years there has been much progress in understanding the topological phases of mat-
ter. Particularly interesting is the case where the underlying physical system involves fermions. 
At low energies such a system realizes a fermionic topological phase, described by a topological 
quantum field theory (TQFT) sensitive to the spin structure of spacetime. The aim of this note is 
to study a simple example of spin TQFT by extending elementary techniques [1] familiar from 
the study of 2d conformal field theories (CFTs). While we focus on the most basic CFT, we 
believe that our results and considerations will be useful in broader contexts.

It is well-known that the CFT of a free compact boson φ of radius R is rational when R2

is rational. (We use the normalization such that T-duality acts as R → 2/R.) For simplicity 
let k be a positive integer and set R = 2/

√
k (or its T-dual R = √

k). By the bulk-boundary 
correspondence, this “edge state” CFT characterizes the dynamics of the U(1) level-k Chern-
Simons (CS) theory [2].1 We consider the extended chiral algebra generated by

e±i
√

kφL (1.1)

in addition to i∂φL, where φL is the left-moving part of φ. See Appendix C.1 of [3] for a modern 
discussion. For k even, the chiral operators (1.1) are in the physical spectrum, and the usual torus 
partition function can be written as a finite sum in terms of a finite number of characters of the 
algebra [4]. (See Appendix A.)

The case of k odd is somewhat more subtle. As we will see, the would-be generators (1.1) of 
an extended chiral algebra are not in the physical spectrum of the boson theory.2 Also, the U(1)k
Chern-Simons theory is a spin topological quantum field theory [7] although the CFT is bosonic 

1 More precisely the full CFT that glues the left- and right-moving chiral CFTs corresponds to the 3d theory on an 
interval [0, 2] times a 2d space �. The chiral CFTs live on {0} × � and {2} × �.

2 The chiral operators e±2i
√

kφL corresponding to U(1)4k are in the physical spectrum, and the boson torus partition 
function can be written as a finite sum in terms of a finite number of characters for the algebra they generate. The U(1)4k

CS theory is obtained from the U(1)k CS theory by gauging the fermionic parity, i.e., by summing over spin struc-
tures [5,6]. The former is called the “shadow” of the latter, and they are related via a process called “fermionic anyon 
condensation.”
2



T. Okuda, K. Saito and S. Yokoyama Nuclear Physics B 962 (2021) 115272
and does not depend on the 2d spin structure. We will see that these issues are nicely resolved 
by modifying the bosonic CFT into a spin CFT according to the recently proposed procedure 
involving the so-called Arf invariant [8–10].3

In this note we demonstrate that one can rewrite the torus partition function of the modified 
theory as a finite sum in terms of a finite number of spin structure dependent conformal blocks of 
the extended chiral algebra. (For k = 1 and R = 2, this was done in [10].) We use the conformal 
blocks to compute the modular matrices of the modified compact boson CFT. They coincide with 
the matrices obtained from the Chern-Simons theory [15,16] up to conjugation. We then use the 
modular matrices to compute the partition function of the U(1)k spin Chern-Simons theory on 
the lens space L(a, ±1). For k odd and a even, we obtain the expected dependence on the spin 
structure on L(a, ±1).

This paper is organized as follows. In Section 2 we study the free boson theory modified 
by the Arf invariant. We first review the modification procedure as described in [10]. We then 
expand the modified torus partition function in terms of a finite number of conformal blocks. 
Using the conformal blocks we compute the modular matrices. In Section 3 we use the modular 
matrices to compute the partition functions on L(a, ±1). In Appendix A, we summarize the 
modular matrices and the L(a, ±1) partition functions for k even. In Appendix B, we review the 
notions of quadratic refinements and their Arf invariants.

2. Modular matrices of the compact boson spin CFT

We consider the theory Tφ of a free boson φ parametrizing the circle of radius R (φ ∼ φ +
2πR) with an action

S = 1

8π

∫
d2x ∂μφ ∂μφ . (2.1)

In this normalization T-duality acts as R → 2/R. Let τ be the modulus of the torus and set 
q = e2πiτ . The torus partition function is given as the sum over the physical spectrum

Z[Tφ] = 1

|η(τ)|2
∑

n,w∈Z
q

1
2 ( n

R
+ wR

2 )2
q̄

1
2 ( n

R
− wR

2 )2
, (2.2)

where η(τ) is the Dedekind eta function. Each term corresponds to the local operator

eipLφL+ipRφR (2.3)

with pL = n
R

+ wR
2 , pR = n

R
− wR

2 for n, w ∈ Z. For generic R the chiral algebra is generated 
by i∂φL.

We are interested in the so-called rational boson, for which the radius-squared is a rational 
number. We set R = 2(p/p′′)1/2 with p and p′′ relatively prime positive integers. We also set4

k := pp′′ . (2.4)

3 For the earlier related literature see the references mentioned in [11]. The procedure was recently applied to minimal 
models in [12,13] to obtain new types of fermionic minimal models [14].

4 The R = 2/
√

k case mentioned in the introduction corresponds to p = 1, p′′ = k. According to [17], where the case 
with k even was studied, the integers (p, p′′) specify the type of a domain wall placed on {1} × � in the set-up of 
footnote 1.
3
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The chiral operators e±i
√

kφL with (pL, pR) = (±√
k, 0) correspond to (n, w) = ±(p, p′′/2). 

For p′′ even, hence with k even, these are part of the physical spectrum, and extend the chiral 
algebra. For p′′ odd, and especially when k is odd, however, they are not in the spectrum.

2.1. Modification by the Arf invariant

We now introduce the spin structure dependence into the 2d CFT following [10].
The crucial ingredient is the topological theory that we call TArf. It is the low-energy limit of 

the Kitaev Majorana chain [18] and has the partition function given as

Z[TArf;ρ] = eπiArf[ρ] , (2.5)

where Arf[ρ] is the so-called Arf invariant5 determined by the spin structure ρ on a 2d surface. It 
is identified with the index mod 2 of the Dirac operator given by the spin structure ρ. In particular 
we have

Arf[ρ] =
{

1 if ρ = PP ,

0 if ρ = PA,AP ,AA
(2.6)

for the four spin structures on the torus, where P and A denote periodic and anti-periodic bound-
ary conditions, respectively.6

On a general surface �, a Z2 gauge field S is an element of H 1(�, Z2) and acts on the spin 
structure: ρ → S · ρ. Indeed a Z2 gauge field can be regarded as a Z2 holonomy and it modifies 
the boundary condition of a fictitious spinor along a closed path dictated by ρ. The holonomy 
along the horizontal (resp. vertical) direction can be regarded as the insertion of a topological 
defect along the vertical (resp. horizontal) direction. The defect is the symmetry generator of the 
0-form (i.e., ordinary) Z2 global symmetry [20]. Thus the topological theory TArf has a global 
Z2 symmetry, even though it has no local operators on which the symmetry acts.

The boson theory Tφ also has a symmetry ZS
2 generated by the shift φ → φ + πR.7 We now 

consider the theory

(Tφ × TArf)/Z
diag
2 , (2.7)

obtained by gauging the diagonal subgroup Zdiag
2 of the product of ZS

2 and the symmetry 
group Z2 of TArf. To write down formulas for the torus partition function succinctly, we choose 
a reference spin structure on the torus, say ρ0 = AA,8 and identify general spin structures ρ with 
Z2 gauge fields S = (S1, S2) via ρ = S · ρ0:

AA ↔ S = (0,0) , AP ↔ (0,1) , PA ↔ (1,0) , PP ↔ (1,1) . (2.8)

To compute the torus partition function we sum over dynamical Zdiag
2 gauge fields s = (s1, s2)

and divide by |Zdiag
2 | = 2. We get9

5 More precisely, this is the Arf invariant of a quadratic refinement of the intersection pairing on H1(�, Z2), which is 
in one-to-one correspondence with a spin structure on the surface � [19]. The Arf invariant also appears in [15], where 
it is called the mod 2 index, but it plays different roles.

6 For example, PA corresponds to the periodic boundary condition in the space (horizontal) direction and the anti-
periodic boundary condition in the time (vertical) direction.

7 Another symmetry ZC
2 generated by φ → −φ would replace ZS

2 if we work in the T-dual frame.
8 This choice is motivated by the labeling (characteristics) of the theta functions ϑab(ν; τ). See (2.23).
9 This is equivalent to (3.28) of [10] with Sthere = C = 0.
4
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Z[(Tφ × TArf)/Z
diag
2 ;R;ρ = S · ρ0]

= 1

2|η(τ)|2
∑

s=(s1,s2)

(−1)(S1+s1)(S2+s2)
∑
n∈Z

∑
w∈Z+ 1

2 s1

(−1)ns2q
1
2 ( n

R
+ wR

2 )2
q̄

1
2 ( n

R
− wR

2 )2
.

(2.9)

The sign (−1)(S1+s1)(S2+s2) is the partition function (2.5) of TArf for the spin structure (S +s) ·ρ0. 
The winding number w is a half-odd integer in the twisted sector (s1 = 1). The momentum n

induces a sign (−1)n under the shift φ → φ + πR. Explicitly, we have10

Z[(Tφ × TArf)/Z
diag
2 ;R;ρ] = 1

|η(τ)|2 ×

×
∑

m,m̄∈Z

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q
1
8

(
m

(
2
R

+ R
2

)
+m̄

(
2
R

− R
2

))2

q̄
1
8

(
m̄

(
2
R

+ R
2

)
+m

(
2
R

− R
2

))2

ρ = AA,

(−1)m+m̄q
1
8

(
m

(
2
R

+ R
2

)
+m̄

(
2
R

− R
2

))2

q̄
1
8

(
m̄

(
2
R

+ R
2

)
+m

(
2
R

− R
2

))2

ρ = AP ,

q
1
8

(
m

(
2
R

+ R
2

)
+m̄

(
2
R

− R
2

)
+ 2

R

)2

q̄
1
8

(
m̄

(
2
R

+ R
2

)
+m

(
2
R

− R
2

)
+ 2

R

)2

ρ = PA,

(−1)m+m̄+1q
1
8

(
m

(
2
R

+ R
2

)
+m̄

(
2
R

− R
2

)
+ 2

R

)2

q̄
1
8

(
m̄

(
2
R

+ R
2

)
+m

(
2
R

− R
2

)
+ 2

R

)2

ρ = PP .

(2.10)

These partition functions should be interpreted as TrH∗q
L0−1/24q̄L̄0−1/24 for ρ = ∗A and as 

TrH∗(−1)F qL0−1/24q̄L̄0−1/24 for ρ = ∗P , where ∗ is either A or P .
In the NS sector (∗ = A in the spatial direction), the physical spectrum is given by

pL = 1

2

[
m

(
2

R
+ R

2

)
+ m̄

(
2

R
− R

2

)]
, pR = 1

2

[
m̄

(
2

R
+ R

2

)
+ m

(
2

R
− R

2

)]
(2.11)

with m, m̄ ∈Z. The Fermion number is (−1)F = (−1)m+m̄.
In the R sector (∗ = P in the spatial direction), the physical spectrum is given by

pL = 1

2

[
m

(
2

R
+ R

2

)
+ m̄

(
2

R
− R

2

)
+ 2

R

]
,

pR = 1

2

[
m̄

(
2

R
+ R

2

)
+ m

(
2

R
− R

2

)
+ 2

R

]
(2.12)

with m, m̄ ∈Z. The Fermion number is (−1)F = (−1)m+m̄+1.
For R = 2(p/p′′)1/2 and k = pp′′, the generators e±i

√
kφL of the extended chiral algebra have 

(pL, pR) = (±√
k, 0). For p and p′′ both odd, they are physical and are in the NS sector, with 

(m, m̄) = (
p+p′′

2 , p−p′′
2 ).

10 We have the relations n = m + m̄ + S1, w = (m − m̄)/2.
5



T. Okuda, K. Saito and S. Yokoyama Nuclear Physics B 962 (2021) 115272
2.2. Torus conformal blocks

We can expand the spin structure dependent torus partition function (2.10), or its generaliza-
tion by U(1) symmetries, as a finite sum in terms of a finite number of conformal blocks.11

We need some preparation. We define

p1 := p′′ + p

2
, p2 := p′′ − p

2
, (2.13)

which are relatively prime integers because p and p′′ are odd and relatively prime. Let us choose 
m0, m̄0 ∈Z such that m0p1 + m̄0p2 = 1 and set

ω := m0p2 + m̄0p1 . (2.14)

It can be shown that

ω(mp1 + m̄p2) = mp2 + m̄p1 mod k . (2.15)

The compact boson has two U(1) symmetries whose charges are the momentum and the 
winding number. Their linear combinations give left- and right-moving U(1) symmetries. We let 
z := e2πiν and z̄ := e−2πiν̄ be their corresponding fugacities.

Let us define the function

Kλ(z, τ ) := 1

η(τ)

∑
n∈Z

q
(kn+λ)2

2k zn , (2.16)

and the conformal blocks L
(S1,S2)
λ (ν, τ) (S1,2 ∈ {0, 1})12

L
(S1,S2)
λ (ν, τ ) = iS1S2zλ/kKλ((−1)S2z, τ ) , λ ∈ Z+ S1

2 . (2.17)

The blocks L
(S1,0)
λ (S1 = 0, 1) coincide with the characters of the extended chiral algebra

L
(S1,0)
λ (ν, τ ) = TrVλ

qL0− 1
24 zJ0 , (2.18)

where J0 = pL/
√

k, and Vλ is the representation that contains the state corresponding to the 

chiral operator e
i λ√

k
φL .13

11 Our method is brute force. This result can be obtained more systematically by applying the orbifold method of [12]
to the compact boson and the Z2 symmetry generated by φ → φ + πR.
12 These are essentially the specialization of the conformal blocks (the physical wave functions) considered in [15] to 
the case with genus one and gauge group U(1).
13 The functions L

(S1,1)
λ (S1 = 0, 1) are roughly the “supercharacters” TrVλ

(−1)FLq
L0− 1

24 zJ0 , where FL is a would-
be left-moving fermion number. We do not try to make this precise. Our normalization is motivated by the relation (2.23).
6
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For ρ = AA, the torus partition function with U(1) fugacities is

Z[(Tφ × TArf)/Z
diag
2 ;R = 2(p/p′′)1/2;ρ = AA]

= 1

|η(τ)|2
∑

m,m̄∈Z
q

1
8

(
m

(
2
R

+ R
2

)
+m̄

(
2
R

− R
2

))2

z
1

2k1/2

(
m

(
2
R

+ R
2

)
+m̄

(
2
R

− R
2

))

× q̄
1
8

(
m̄

(
2
R

+ R
2

)
+m

(
2
R

− R
2

))2

z̄
1

2k1/2

(
m̄

(
2
R

+ R
2

)
+m

(
2
R

− R
2

))

= 1

|η(τ)|2
∑

m,m̄∈Z
q

1
2k

(mp1+m̄p2)
2
z(mp1+m̄p2)/kq̄

1
2k

(mp2+m̄p1)
2
z̄(m̄p1+mp2)/k

= 1

|η(τ)|2
k−1∑
λ=0

∑
n,n̄∈Z

q
1

2k
(kn+λ)2

zn+(λ/k)q̄
1

2k
(kn̄+ωλ)2

z̄n̄+ω(λ/k)

=
k−1∑
λ=0

L
(0,0)
λ (ν, τ )L

(0,0)
ωλ (ν, τ ) .

(2.19)

Similarly for AP ,

Z[(Tφ × TArf)/Z
diag
2 ;R = 2(p/p′′)1/2;ρ = AP ]

= 1

|η(τ)|2
∑

m,m̄∈Z
(−1)m+m̄q

1
8

(
m

(
2
R

+ R
2

)
+m̄

(
2
R

− R
2

))2

z
1

2k1/2

(
m

(
2
R

+ R
2

)
+m̄

(
2
R

− R
2

))

× q̄
1
8

(
m̄

(
2
R

+ R
2

)
+m

(
2
R

− R
2

))2

z̄
1

2k1/2

(
m̄

(
2
R

+ R
2

)
+m

(
2
R

− R
2

))

=
k−1∑
λ=0

(−1)(1+ω)λL
(0,1)
λ (ν, τ )L

(0,1)
ωλ (z, τ ) .

(2.20)

For ρ = PA,

Z[(Tφ × TArf)/Z
diag
2 ;R = 2(p/p′′)1/2;ρ = PA]

= 1

|η(τ)|2
∑

m,m̄∈Z
q

1
8

(
m

(
2
R

+ R
2

)
+m̄

(
2
R

− R
2

)
+ 2

R

)2

z
1

2k1/2

[
m

(
2
R

+ R
2

)
+m̄

(
2
R

− R
2

)
+ 2

R

]

× q̄
1
8

(
m̄

(
2
R

+ R
2

)
+m

(
2
R

− R
2

)
+ 2

R

)2

z̄
1

2k1/2

[
m̄

(
2
R

+ R
2

)
+m

(
2
R

− R
2

)
+ 2

R

]

=
k−1∑
λ=0

L
(1,0)

λ+p′′/2(ν, τ )L
(1,0)

ωλ+p′′/2(ν, τ ) .

(2.21)

Finally for ρ = PP ,
7
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Z[(Tφ × TArf)/Z
diag
2 ;R = 2(p/p′′)1/2;ρ = PP ]

= −1

|η(τ)|2
∑

m,m̄∈Z
(−1)m+m̄q

1
8

(
m

(
2
R

+ R
2

)
+m̄

(
2
R

− R
2

)
+ 2

R

)2

z
1

2k1/2

[
m

(
2
R

+ R
2

)
+m̄

(
2
R

− R
2

)
+ 2

R

]

× q̄
1
8

(
m̄

(
2
R

+ R
2

)
+m

(
2
R

− R
2

)
+ 2

R

)2

z̄
1

2k1/2

[
m̄

(
2
R

+ R
2

)
+m

(
2
R

− R
2

)
+ 2

R

]

=
k−1∑
λ=0

(−1)(1+ω)λ+1L
(1,1)

λ+p′′/2(ν, τ )L
(1,1)

ωλ+p′′/2(ν, τ ) .

(2.22)

For k = 1 our conformal blocks are related to Jacobi’s theta functions ϑab(ν, τ) and the 
Dedekind eta function as

L
(S1,S2)
λ=S1/2(ν, τ ) = ϑS1S2(ν, τ )

η(τ )
. (2.23)

2.3. Modular matrices

We note the relation

Kλ+1/2(z, τ ) = q
λ
2k

+ 1
8k Kλ(q

1/2z, τ ) . (2.24)

For λ ∈ 1
2Z, the function Kλ(z, τ) transforms as

Kλ(z, τ + 1) = e− πi
12 e

πi
k

λ2
Kλ((−1)2λ+1z, τ ) , (2.25)

Kλ(e
2πiν/τ ,−1/τ) = eπi ν2

kτ
1

k1/2

k−1∑
μ=0

e−2πi
μλ
k e−2πi λ

k
ν
τ e2πi

μ
k
νKμ((−1)2λe2πiν, τ ) . (2.26)

These can be used to show, for λ ∈Z + S1
2 , that

L
(S1,S2)
λ (ν, τ + 1) = e− πi

12 e
πi
k

λ2
L

(S1,S1+S2+1)
λ (ν, τ ) , (2.27)

L
(S1,S2)
λ (ν/τ,−1/τ) = eπi ν2

kτ
1

k1/2

k−1+S2/2∑
μ=S2/2

e−2πi
λμ
k L(S2,S1)

μ (ν, τ ) . (2.28)

In terms of the functions K(S1,S2)
λ (ν, τ, ρ) := e−2πiρ/kL

(S1,S2)
λ (ν, τ) that depend on an extra pa-

rameter ρ ∈ C, we can write these transformations as14

K
(S1,S2)
λ (ν, τ + 1, ρ) =

∑
T1,T2,μ

T (S1,S2;λ) (T1,T2;μ)K
(T1,T2)
μ (ν, τ, ρ) , (2.30)

K
(S1,S2)
λ

(
ν

τ
,− 1

τ
,ρ + ν2

2τ

)
=

∑
T1,T2,μ

S(S1,S2;λ) (T1,T2;μ)K
(T1,T2)
μ (ν, τ, ρ) , (2.31)

14 The following is a well-defined action of the group SL(2, Z).

(
a b

c d

)
: (ν; τ ;ρ) 	→

(
ν

cτ + d
; aτ + b

cτ + d
;ρ + c|ν|2

2(cτ + d)

)
. (2.29)
8
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with the matrices S and T given as15

S(S1,S2;λ) (T1,T2;μ) = 1√
k
δS1T2δS2T1e

− 2πi
k

λμ , (2.32)

T (S1,S2;λ) (T1,T2;μ) = δS1T1δ
mod 2
S1+S2+1,T2

δλμe− πi
12 e

πi
k

λ2
. (2.33)

Here Si, Ti ∈ {0, 1} and we have λ ∈ {0, 1, . . . , k − 1} + S1/2, μ ∈ {0, 1, . . . , k − 1} + T1/2. The 
matrices S and T respectively represent the generators of SL(2, Z)16

S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
. (2.34)

3. U(1)k=odd Chern-Simons theory on L(a, ±1)

As an application of (2.32) and (2.33), we compute the partition function of the U(1)k Chern-
Simons theory, with k odd, on the lens space L(a, ±1).

3.1. Gluing matrix for L(a, b)

We begin, rather pedantically, by reviewing how the general lens space L(a, b) (a > 0, a and b
relatively prime) is obtained by gluing two copies of solid torus. Let us view the three-sphere S3

as a subset S3 = {
(z1, z2) ∈ C2

∣∣|z1|2 + |z2|2 = 1
}

of C2. We take two integers a ≥ 1 and b that 
are relatively prime. There exists a non-unique pair of integers a′ and b′ such that bb′ − aa′ = 1. 
The lens space L(a, b) is defined as a Za quotient

L(a, b) := S3/Za , (3.1)

where the Za-action depends on b and is specified by the action of the generator

(z1, z2) 	→ (e
2πi
a z1, e

2πib
a z2) . (3.2)

The lens space L(a, b) can be obtained by gluing two copies of solid torus D2 × S1:

L(a, b) �
(
(D2 × S1)1 ∪ (D2 × S1)2

)/
∼ , (3.3)

where the boundaries of the first copy

(D2 × S1)1 := {
(reiφ1 , eiφ2) ∈ C2

∣∣0 ≤ r ≤ 1 , φ1, φ2 ∈ [0,2π)
}

(3.4)

and the second copy

(D2 × S1)2 := {
(r̃eiφ̃1, eiφ̃2) ∈ C2

∣∣0 ≤ r̃ ≤ 1 , φ̃1, φ̃2 ∈ [0,2π)
}

(3.5)

at r = r̃ = 1 are identified via the relation17

15 The modular matrices in [15] were corrected in [16], and are related to ours by conjugation.
16 The matrices satisfy the defining relations S4 = 1 and (ST )3 = S2 of SL(2, Z).
17 In terms of the variables (ψ1, ψ2) such that z1 = cos θ

2 eiψ1 , z2 = sin θ
2 eiψ2 , we have the relations

(
ψ1
ψ2

)
=

(
1 b′/a
0 1/a

)(
φ1
φ2

)
=

(
0 1/a

−1 b/a

)(
φ̃1
φ̃2

)
. (3.6)
9
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(
φ̃1

φ̃2

)
= U

(
φ1
φ2

)
mod 2π , U =

(
b a′
a b′

)
∈ SL(2,Z) . (3.7)

We note that the shift (b, a′) → (b + ja, a′ + jb′) corresponds to multiplying U by T j from 
the left. Similarly the shift (a′, b′) 	→ (a′ + jb, b′ + ja) corresponds to the multiplication by T j

from the right.
The transformation(

φ1
φ2

)
	→ M

(
φ1
φ2

)
, M =

(
α β

γ δ

)
∈ SL(2,Z) (3.8)

on the angular coordinates of the two-dimensional torus18 induces the transformation

τ 	→ ατ + β

γ τ + δ
(3.9)

of the modulus τ defined as the ratio τ = ω2/ω1 of two periods ω1, ω2 ∈ C\{0} such that 
Im(ω2/ω1) > 0 if we adopt the convention where (φ1, φ2) corresponds to a point (φ2ω1 −
φ1ω2)/2π on the complex plane C.

For a bosonic TQFT such as the SU(2)k Chern-Simons theory considered in [24], the partition 
function on L(a, b) is computed as follows. Let Fi(τ ) be the torus conformal blocks (characters) 
of the edge state CFT. Under the transformation (3.9), the blocks behave as

Fi

(
ατ + β

γ τ + δ

)
=

∑
j

M ijFj (τ ) , (3.10)

where the matrix M = (M ij ) represents M on the space spanned by the conformal blocks. In [24]
a formula was given in terms of the matrix U for the L(a, b) partition function of the Chern-
Simons theory. It reads

Z[L(a, b)] = U00 , (3.11)

where 0 denotes the identity state, and U represents the gluing matrix U in (3.7). In this note we 
choose to ignore framing dependence [24].

3.2. Spin structures in 2d and 3d

For a spin TQFT, the partition function depends on the choice of a spin structure.
An orientable manifold admits a spin structure if and only if its second Stiefel-Whitney class 

w2 vanishes. Any orientable 3-manifold admits a spin structure because its tangent bundle is 
trivial (and hence w2 = 0). The cohomology H 1(X, Z2) of any manifold X acts on the spin 
structures on X transitively and freely, and thus classifies them. (We stated this fact in terms of 
Z2 gauge fields in Section 2.1.) The cohomology H 1(L(a, b), Z2) is 0 for a odd and Z2 for a
even.

Thus L(a, b) admits a single spin structure for a odd and two spin structures for a even. This 
can also be seen in terms of spin structures on the 2d torus as follows.

18 The meridian ∂D2 × pt and the longitude pt × S1 are parametrized by φ1 and φ2, respectively. This implies that 
our matrix convention in (3.8) is consistent with those of [21–23]. In addition, the transformation (3.9) of τ is consistent 
with [24] and the CFT literature.
10
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The lens space L(a, b) is obtained by gluing two copies of the solid tori as in (3.3). Their 
boundaries (T 2)1 := ∂(D2 × S1)1 and (T 2)2 := ∂(D2 × S1)2 carry 2d spin structures. A spin 
structure on T 2 is specified by periodic (P ↔ 1) or anti-periodic (A ↔ 0) boundary conditions 
(for an auxiliary spinor) along the two circles. The 2d spin structures on the two tori that are 
compatible with gluing give rise to a 3d spin structure ρ3d on L(a, b). Let us study the boundary 
conditions on the auxiliary spinor

�(φ1, φ2) = �̃(φ̃1, φ̃2) (3.12)

with coordinates related via (3.7). We have

�(φ1, φ2) = (−1)1+S1�(φ1 + 2π,φ2) = (−1)1+S2�(φ1, φ2 + 2π) ,

�̃(φ̃1, φ̃2) = (−1)1+T1�(φ̃1 + 2π, φ̃2) = (−1)1+T2�(φ̃1, φ̃2 + 2π) .
(3.13)

We see that the spin structure ρ = (S1, S2) · ρ0 on (T 2)1 and another σ = (T1, T2) · ρ0 on (T 2)2
are related as

S1 = 1 + (1 − T1)b + (1 − T2)a

S2 = 1 + (1 − T1)a
′ + (1 − T2)b

′ mod 2 . (3.14)

It is well known that the boundary condition along the boundary of a disk is necessarily anti-
periodic (A ↔ 0) corresponding to the NSNS sector [25]. Thus we necessarily have S1 = T1 = 0. 
For a given U in (3.7) with bb′ − aa′ = 1, the equations (3.14) then admit two solutions for S2
and T2 if a is even, and a unique solution if a odd:

a = 0 ⇒ b = b′ = 1 ⇒ S2 = 0 or 1 , T2 = a′ + S2
a = 1 ⇒ a′ = bb′ + 1 ⇒ S2 = b′ , T2 = b

}
all mod 2. (3.15)

Thus the lens space L(a, b) admits two spin structures for a even and a single spin structure for 
a odd, as expected.

We expect that for a general spin TQFT, the edge state CFT with a chiral algebra symmetry 
is a spin CFT whose conformal blocks depend on the spin structure ρ on the surface, as in (2.2). 
Let Fρ,i(τ ) denote the torus conformal blocks that depend on the spin structure ρ, in addition to 
the representation i of the algebra and the modulus τ . The modular matrices are introduced by

Fρ,i(−1/τ) =
∑
σ

∑
j

S(ρ,i)(σ,j)Fσ,j (τ ) , Fρ,i(τ + 1) =
∑
σ

∑
j

T (ρ,i)(σ,j)Fσ,j (τ ) ,

(3.16)

Fρ,i

(
bτ + a′

aτ + b′

)
=

∑
σ

∑
j

U (ρ,i)(σ,j)Fσ,j (τ ) . (3.17)

The matrix U represents the gluing matrix U in (3.7) for the lens space. We propose that the lens 
space partition function of the spin TQFT for a given 3d spin structure ρ3d is given by

Z[L(a, b);ρ3d] = U (ρ,0)(σ,0) , (3.18)

where 0 denotes the representation that contains the ground state in the given sector, and the pair 
(ρ, σ) of 2d spin structures corresponds to the 3d spin structure ρ3d.
11
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3.3. Partition function on lens space L(a, ±1)

For the lens space L(a, ε = ±1), the gluing matrix is

U =
(

ε 0
a ε

)
= SεT −εaS−1 . (3.19)

Using the formulas (2.32) and (2.33) we obtain, for U = SεT −εaS−1,

U (S1,S2;λ) (T1,T2;μ) = e
εa
12 πiδmod 2

S1+a(S2+1),T1
δS2T2

1

k

k−1+S2/2∑
ν=S2/2

e
2πi
k

ν(−ελ+μ)e− εa
k

πiν2
. (3.20)

Here Si, Ti ∈ {0, 1} and we have λ ∈ {0, 1, . . . , k − 1} + S1/2, μ ∈ {0, 1, . . . , k − 1} + T1/2.
Let us recall from (3.15) that the possible spin structures on the 2d torus depend on a. For 

both a even and odd, there exists a 3d spin structure corresponding to the 2d spin structures ρ =
σ = (0, 1) · ρ0 = AP for which we obtain via the reciprocity formula for the Gauss sum:19

Z = U (0,1;0) (0,1;0) = e
εa
12 πie− πi

4 ε

√
ka

a−1∑
h=0

eεπi k
a
h2

e−πih = e
εa
12 πie− πi

4 ε

√
ka

a−1∑
h=0

eεπi k
a
(1−a)h2

.

(3.22)

We interpret h as a label for the gauge bundles that we sum over in the path integral.20 For a even, 
there is another 3d spin structure corresponding to ρ = ρ′ = (0, 0) · ρ0 = AA, which gives21

Z = U (0,0;0) (0,0;0) = e
εa
12 πie− πi

4 ε

√
ka

a−1∑
h=0

eεπi k
a
h2

. (3.23)

We see that ε = 1 and ε = −1 are related by complex conjugation as expected; a change of 
orientation should replace the partition function by its complex conjugate [28].

We note that the sums in (3.22) and (3.23) involve the so-called quadratic refinements of the 
linking pairing on H 2(L(a, ±1), Z) = Za . Let us consider the bilinear paring B : Z × Z → Z
defined by B(x, y) = εaxy. Correspondingly [29] we have the bilinear pairing L : Za × Za →
Q/Z given by L(h, h′) = hh′/εa mod Z. For v ∈ {0, 1}, let us try to define the map ψv : Za →
Q/Z defined by

ψv(h) := 1

2
h

(
1

εa
h + v

)
mod Z . (3.24)

When a is odd, ψ0 is well-defined and is the unique quadratic refinement of L. When a is even, 
both ψ0 and ψ1 are well-defined and are the only possible quadratic refinements of L. The integer 

19 Let α, β, γ be integers with αγ �= 0 and αγ + β even. Then (see for example Section 1.2 of [26])

|γ |−1∑
n=0

e
πi

αn2+βn
γ =

∣∣∣γ
α

∣∣∣1/2
e

πi
4 (sgn(αγ )− β2

αγ )
|α|−1∑
n=0

e−πi
γ n2+βn

α . (3.21)

20 The bundles can be specified either by the U(1) holonomy around the generator of π1(L(a, ±1)) = Za , or by the 
first Chern class c1(L) ∈ H 2(L(a, ±1), Z).
21 The difference between eεπi k

a (1−a)h2
in (3.22) and eεπi k

a h2
in (3.23) is identical to the difference noted in footnote 

2 of [27].
12
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v is called a Wu class for B in [29]. The exponentials in (3.22) and (3.23) involve ψ1 and ψ0, 
respectively.

4. Discussion

4.1. Comments on the relation between conformal blocks and Wilson line operators

The spin structure-dependent conformal blocks we introduced in (2.17) are similar to the 
wave functions obtained by the canonical quantization of Chern-Simons theory in [15]. They 
should be interpreted as providing basis states for the spin structure-dependent Hilbert spaces 
for the 3d spin TQFT. For a 3d non-spin Chern-Simons theory, a torus conformal block of the 
corresponding Wess-Zumino-Witten model is identified with a state obtained by the path integral 
on a solid torus with a Wilson line operator inserted along a non-contractible cycle [24].22

We observe that such a correspondence does not hold for the U(1) spin Chern-Simons the-
ory and for the spin structure-dependent basis states on a torus, at least when the following 
classification of Wilson lines is assumed. The Wilson operator Wμ := expμ 

∮
A has topologi-

cal spin θμ := exp πi
k

μ2. Then for μ an integer, Wμ+k has topological spin θμ+k = θμ(−1)k , 
which differs from θμ by a sign for k odd. For this reason one usually classifies Wilson oper-
ators by μ ∈ Z with the identification μ ∼ μ + 2k. See for example [3]. The operator Wk has 
topological spin −1 and represents a transparent fermion line. (For k = 1, W1 corresponds to 
the 2d Dirac fermion, which is eiφL upon bosonization.) The spin structure-dependent confor-
mal blocks in (2.17) are instead labeled by λ ∈ 1

2Z with the restriction 0 ≤ λ < k. (For k = 1, the 
Dirac fermion, which is in the NS sector and is nothing but the fermionic current for the extended 
chiral superalgebra [7], contributes to the conformal blocks L

(S1=0,S2)
λ=0 = ϑ0S2/η with S2 = 0, 1.)

The structure we found, where the identity and the transparent fermion are grouped into a 
single object, is also seen in the category-based approach [30] (Table 2.4.1) to fermionic anyon 
condensation.23 We emphasize that spin structure-dependent conformal blocks are the basis rel-
evant for computing 3d partition functions and topological invariants.

Instead of labeling conformal blocks by the temporal spin structure S2, one may alternatively 
consider the characters for (2d chiral) states with definite fermion numbers [8,12]. Such a basis 
of 3d states would correspond to the insertion of a Wilson line in the solid torus. (For k = 1
the identity and the Dirac fermion have different fermion numbers and are separated in the new 
basis.) Still, to account for the conformal blocks with S1 = 1 (Ramond boundary condition in 
the spatial direction), one would need to introduce Wilson lines whose charges are half odd 
integers and which are not gauge invariant in the usual sense. The parent theory U(1)4k does 
have counterparts of these operators. It would be interesting to understand how to make sense of 
such line operators, presumably with the help of spin structures, within the spin theory U(1)k .

22 For k even the Wilson operator expμ 
∮

A is identified with exp(μ + k) 
∮

A. The corresponding conformal blocks Kμ

defined in (A.2) also satisfy Kμ+k = Kμ for μ ∈Z.
23 The fermion line Wk of U(1)k comes from the fermion Wilson line W(4k)

2k
of charge 2k in the bosonic parent theory 

U(1)4k . In the language of [5], W(4k)
2k

combines with the fermion line of an invertible spin TQFT called K3 to form a 
bosonic line that generates a non-anomalous Z2 one-form symmetry, gauging which leads to U(1)k . Such a gauging is 
equivalent to condensing the boson line obtained from the two fermion lines.
13
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4.2. Other issues and future directions

We focused in this paper on one of the simplest classes of spin TQFTs and the corresponding 
2d CFTs. It will be interesting to apply the analysis of this paper to more general 2d CFTs such 
as WZW models and compute the modular matrices and the partition functions of the corre-
sponding spin TQFTs. It also seems worthwhile to revisit the general U(1)N spin Chern-Simons 
theory [15,31] and compare it with the boson CFT with the target space T N modified by the Arf 
invariant.

For k odd, the relation between the U(1)k and U(1)4k Chern-Simons theories mentioned in 
footnote 2 is an example of “fermionic anyon condensation” [5,32,30]. It seems natural to com-
bine our approach, base on the 2d Arf invariant, with the study of fermionic anyon condensation 
based on the study of appropriate categories. This will involve generalizing earlier results on 
bosonic anyon condensation (see for example [33–35]) and incorporate results on fermionic (or 
super) fusion categories (see for example [36,30,37]).

Our factorization results (2.19)-(2.22) should admit an interpretation in terms of a gapped do-
main wall in the spin U(1) Chern-Simons theory, generalizing the results of [17] in the non-spin 
case. Another worthwhile future direction would be the computation of the partition functions 
on more general lens spaces [38].

As we mentioned at the end of Section 3.1, we ignored in this paper the dependence of the 
3d partition function on the framing of the manifold [24]. The choice of U in (3.19) for the lens 
space L(a, ±1) implicitly specifies the framing. In the non-spin case the framing dependence was 
studied in detail, for example, in [21,22]. It would be interesting to see whether new structures 
appear in the spin case.
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Appendix A. k even

Recall that R = 2(p/p′′)1/2 and k = pp′′. Let us consider the case p′′ = 2p′ even (hence k
even). Since p and p′ are relatively prime there exist integers (r0, s0) such that pr0 − p′s0 = 1. 
We set ω0 = pr0 + p′s0. Then we can expand the original torus partition function (2.2) as

Z[Tφ] =
k−1∑

Kλ(τ)Kω0λ(τ ) , (A.1)

λ=0

14
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where

Kλ(τ) := 1

η(τ)

∑
n∈Z

q(kn+λ)2/2k . (A.2)

See Exercise 10.21 of [1]. We have

Kλ(−1/τ) =
k−1∑
μ=0

SλμKμ(τ) , Kλ(τ + 1) =
k−1∑
μ=0

T λμKμ(τ) , (A.3)

where

Sλμ = 1√
k
e− 2πi

k
λμ , T λμ := eπi λ2

k e− πi
12 δλμ . (A.4)

See (2.25) and (2.26). Using the reciprocity formula (3.21) one can check that these give rise to 
a genuine (rather than projective) representation of SL(2, Z).

For L(a, ε = ±1) the partition function is computed via (3.11) and (3.21) as

Z = (SεT −εaS−1)00 = e
εa
12 πi

k

k−1∑
ν=0

e−ε πi
k

aν2 = eε πi
12 ae− πi

4 ε

√
ka

a−1∑
h=0

eε πi
a

kh2
. (A.5)

This is the same expression as (3.23). There is no dependence on the 3d spin structure.

Appendix B. Quadratic refinements and their Arf invariants

Let K be a finite abelian group, and L : K × K → Q/Z a symmetric bilinear pairing. Here 
Q is the additive group of rational numbers. We assume that L is non-degenerate, meaning that 
if L(x, y) = 0 for all x ∈ K then y = 0.

In this paper we define a quadratic refinement over L to be a map ψ : K →R/Z such that24

ψ(x + y) − ψ(x) − ψ(y) = L(x, y) for x, y ∈ K (B.1)

and

ψ(nx) = n2ψ(x) , n ∈Z x ∈ K . (B.2)

Given (B.1), the condition (B.2) is equivalent to 2ψ(x) = L(x, x).
Following [29], we define the Arf invariant Arf(ψ) of a quadratic refinement ψ by

e2πiArf(ψ) :=
∑
x∈K

e2πiψ(x). (B.3)

It is known that Arf(ψ) takes values in Q/Z.
The Arf invariant Arf[ρ] for 2d spin structures ρ, discussed in Section 2.1, fits the defi-

nition (B.3) up to normalization. Indeed the spin structures ρ on a closed surface � are in 
one-to-one correspondence with the quadratic refinements ψρ of the pairing L = (1/2)φ on 

24 In some references such as [15] the term “quadratic refinement” refers to a more general map ψ ′ : K → R/Z
satisfying ψ ′(x + y) − ψ ′(x) − ψ ′(y) + ψ ′(0) = L(x, y) for x, y ∈ K . A quadratic refinement in the sense of this paper 
is called a quadratic function over L in [29]. Our terminology coincides with that of [39]. We note that an identity similar 
to (B.1) is satisfied by the WZW action [40,41].
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K = H1(�, Z2), where φ is the Z2-valued intersection form (a, b) 	→ φ(a, b) = #(a ∩ b) mod 
Z2 [19]. We have the relation

Arf[ρ] = 1

2
Arf(ψρ) (B.4)

under the correspondence.
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