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Chapter 1

Introduction

It is generally assumed that during the Big Bang equal amounts of matter and antimatter
were produced, but the amount of matter in the visible Universe is presently much larger
than that of antimatter. Sakharov (1967) argued that one of the three conditions to explain
this discrepancy is that at some point in the history of the Universe CP invariance should
have been violated!. CP is the combined transformation of charge conjugation (C) and a
parity transformation (P). Apparently, as there is more matter than antimatter, CP was (at
least at some point) not a symmetry of Nature.

In 1964 it was discovered by Christenson, Cronin, Fitch, and Turlay that the weak
interaction violates CP invariance. They observed CP-violating decays of neutral kaons.
These experimental results were explained later by Kobayashi and Maskawa (1973). Be-
cause the weak interaction violates CP invariance, CP is also not a symmetry of the Stan-
dard Model. However, the amount of violation from this interaction is not enough to
explain the observed abundance of matter (Dine and Kusenko, 2004).

What about the strong interaction? In the strong interaction there is also a theoretical
possibility of CP violation, which is connected to the existence of topologically nontrivial
solutions to the classical equations of motion of Quantum Chromodynamics (QCD) called
instantons. The Lagrangian of QCD naturally incorporates a term that can lead to the
violation of CP invariance, the #-term. The amount of CP invariance from this term is
set by the dimensionless parameter 6, known as the vacuum angle of QCD, which has a
periodicity of 2. The #-term can be written as a total derivative (cf. next section), and
one would naively expect that this term cannot have physical implications. This reasoning
is indeed true for Quantum Electrodynamics, but because of the existence of instantons,
in QCD the #-term can influence the physics.

Naturalness arguments would imply a value of 6 of approximately 1, but from mea-
surements of the electric dipole moment of the neutron it is known that the amount of
strong CP violation is very small, the present upper bound on 6 is 107!, The reason
for this smallness is currently unknown and is referred to as the strong CP problem. In

"The other conditions of Sakharov are that the interactions that cause the asymmetry violate both charge-
conjugation invariance and baryon number. In addition, these interactions should take place out-of-equilibrium.



this thesis we will not address the strong CP problem, but investigate, among others, the
possibility of spontaneous CP violation in the strong interaction.

At 6 = 0, the Lagrangian of QCD is invariant under CP. In addition, the Vafa-Witten
theorem states that parity cannot be spontaneously violated at 6 = 0 (Vafa and Witten,
1984). For C-even terms their conclusions also hold for CP. This means that spontaneous
CP violation is not possible in the vacuum at 6 = 0. However, Kharzeev, Pisarski, and
Tytgat conjectured that it might be possible that parity and CP-violating bubbles can be
created in heavy-ion collisions with nonzero density and temperature. Earlier suggestions
for such states were made by Lee (1973) and also by Morley and Schmidt (1985). Other
work on such CP-odd bubbles, especially on their dynamics, was done by Buckley, Fu-
gleberg, and Zhitnitsky (2000). Such a CP-violating bubble would correspond to a state
with an effective 6. If these states exist, they might also be relevant for the early Universe.
However, they can probably not account for the asymmetry of matter and antimatter as
nonzero 6 is a C-even effect. Possible experimental signatures for such bubbles in heavy-
ion collisions were discussed by Voloshin (2004, 2009), Selyuzhenkov (2006, 2009), and
Abelev et al. (2009a,b). Nonzero 6, effective or not, corresponds to explicit CP violation,
except for the cases 8 = nn, with integer n.

A special case for the parameter 6 is the value 7. Also in this case the Lagrangian is
invariant under CP, but now there is a possibility of a CP-violating ground state, i.e. spon-
taneous CP violation, which was already discovered by Dashen (1971) before the advent
of QCD. The conditions for spontaneous CP violation have been investigated further by
studying the 6-behavior of the strong interaction (see e.g. Witten, 1980; di Vecchia and
Veneziano, 1980; Smilga, 1999; Tytgat, 2000; Akemann, Lenaghan, and Splittorff, 2002;
Creutz, 2004; Metlitski and Zhitnitsky, 2005, 2006; Fujihara, Inagaki, and Kimura, 2007).
These investigations may lead to a better understanding of the topological structure of the
QCD vacuum.

Investigations of the 6-term and instantons are very difficult due to their nonpertur-
bative nature. Even in lattice QCD it is impossible to study the full 8-dependence as
the fermion determinant becomes complex at nonzero 6. Most knowledge about the 6-
dependence of the strong interaction has been obtained using the low-energy effective
theory called chiral perturbation theory. Another possibility is to use model calculations,
which we will do in this work. In Chapter 4, based on Boer and Boomsma (2008), the in-
fluence of 8 and instantons on the QCD phase diagram is studied using such a model, the
two-flavor Nambu—Jona-Lasinio (NJL) model, which we will introduce in Chapter 3. In
this work we especially investigate the conditions for spontaneous CP violation. We will
see that the occurrence of spontaneous CP violation depends on the instanton interaction
strength with respect to the quark masses. Another observation is that CP invariance is
restored at high temperature in a second order phase transition.

Mizher and Fraga (2009) investigated the temperature dependence of spontaneous CP
violation at # = x in the linear sigma model coupled to quarks. They found at high
temperature a first order CP-restoring phase transition, in disagreement with our findings
in the NJL model. In Chapter 5 we will elaborate on the differences between the two
models and discuss how they lead to a different order of the phase transition. A first-order
transition and a crossover have rather different experimental signatures, as usually in a
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first-order transition energy is released (or absorbed), which does not happen in a second
order transition or a crossover. Mizher and Fraga (2009) also observed that the phase
transition becomes stronger if one includes a strong magnetic field. Moreover, also at
6 = 0 the phase structure of quark matter is modified by a strong magnetic field.

The inclusion of a strong magnetic field was inspired by the investigations of
Kharzeev, McLerran, and Warringa (2008), who observed that in non-central heavy-ion
collisions very strong magnetic fields can be produced, of order 10'° G. Furthermore,
they noted that variations of topological charge, which induce variations of net chirality,
in a strong magnetic field give rise to an electrical current. This induced current is known
as the chiral magnetic effect and could perhaps be observed in heavy-ion collisions. In-
stantons are a possible source for these variations of topological charge. The interplay
between instantons and strong magnetic fields will be investigated in Chapter 6.

Apart from heavy-ion collisions, more situations in the Universe exist (or have ex-
isted) where very strong magnetic fields and quark matter plays a role, namely in a spe-
cial class of neutron stars, called magnetars. Possibly also during the electroweak phase
transition in the early Universe huge magnetic fields were produced (Vachaspati, 1991;
Olesen, 1992). Much effort has been put into the study how strong magnetic fields change
the behavior of nuclear matter, for a review see Lattimer and Prakash (2007) and refer-
ences therein. As already noted in the previous paragraph, a magnetic field can affect the
phase structure of a material considerably. This is because the orbital motion of charged
particles is quantized inside a magnetic field, known as Landau quantization. But the
up and down quark have of course different charges, so this quantization is different for
them and this leads to different behavior for the two quarks. However, instanton effects
induce mixing between the quarks, which has an equalizing effect. In Chapter 6 we will
see that the competition between the effects of magnetic fields and instantons gives rise
to interesting phenomena, such as spontaneous isospin violation, and also sets of nearly
degenerate minima with very different amounts of chiral symmetry breaking arise.

A brief outline of this thesis is as follows: we will begin with a short review of in-
stantons and the 6-term. The next chapter is a review of the QCD phase diagram, where
we start with a general discussion of phase diagrams and phase transitions, after which
we discuss the standard phase diagram as a function of temperature and baryon chemi-
cal potential. We also consider non-standard phase diagrams, e.g. as a function of 6 or
the quark masses. Furthermore, we briefly discuss how one obtains both theoretical and
experimental information about the QCD phase diagram. In Chapter 3 the NJL model is
introduced. We continue with a detailed study of the §-dependence of the phase structure
of this model in Chapter 4, which is an extended version of the work published in Boer
and Boomsma (2008). Then we compare the high temperature results of the NJL model
with the linear sigma model coupled to quarks (LSMg) in Chapter 5, based on Boomsma
and Boer (2009). In the two related models a different order of the CP restoring phase
transition is predicted; we discuss how this difference comes about. Finally in Chapter 6
the influence of magnetic field and instantons on quark matter is discussed, based on
Boomsma and Boer (2010). The thesis ends with a summary and conclusions.



1.1. QCD, instantons and the 6-term

1.1 QCD, instantons and the 6-term

Quantum Chromodynamics (QCD) is the quantum field theory that describes the strong
interaction. In this section only a glance at the theory will be presented, for more infor-
mation see for instance the books of Muta (1998) and Smilga (2001). QCD is an SU(3)
Yang-Mills theory with quarks and gluons as the degrees of freedom. The Lagrangian is
equal to

_ . | B
Loe = ) Uy (i~ my)uy~ JFUF, (1.1)
f
where

D,=0, - igt“AZ,
Fi, = 0,A% - 8,A% — g f " AL A, (1.2)

the *’s are the generators of SU(3) in the fundamental representation, normalized as
Tr1't” = 6°/2. (1.3)

The gauge fields Ay, represent the gluons and the yy-field denotes the quark field of flavor
f. The strength of the interactions is set by the coupling constant oy = g?/4x. Finally,
f“"” are the structure constants of SU(3).

The Lagrangian of QCD looks simple, but leads to a large variety of remarkable phe-
nomena. Asymptotic freedom is one of the most famous ones, which is the fact that the
coupling constant becomes small at energies higher than approximately 1 GeV. A small
coupling constant means that perturbative methods can be used, i.e., quantities in the the-
ory can be expanded in the coupling constant. Asymptotic freedom was one of the main
reasons to consider QCD as the theory for the strong interaction.

In this thesis the vacuum structure of QCD is studied, this means energies smaller
than 1 GeV, so unfortunately perturbation theory can not be used. For a large part, the
vacuum structure is determined by the symmetries of the theory. Since we are interested
in the low energy structure of QCD, only quarks that are much lighter than 1 GeV have to
be considered, i.e. the up, down and strange quark. In most of this thesis, also the strange
quark is neglected.

The Lagrangian of massless QCD is invariant under the global symmetry group

U(Nf)L ® U(Nf)R = SU(Nf)L ®SU(Nf)R QU()yU(1),. (1.4)

This symmetry is assumed to be spontaneously broken by a nonzero (J)-condensate,
after which SU(Ny)y ® U(1)y remains. However, this would imply the existence of NJ%
Goldstone bosons. In the case of two flavors, one can interpret three particles as Goldstone
bosons, the pions, connected to the broken SU(2) symmetry. The pions are not entirely
massless due to the small explicit symmetry breaking from the quark masses. This can
be generalized to three flavors, although the remaining SU(3)y-symmetry is broken con-
siderably, as my; > m, 4. The kaons, together with the 7, are then also interpreted as

4
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Goldstone bosons, which are all connected to the broken SU(3) symmetry. But now there
is a problem, where is the ninth Goldstone boson? The 7’ has the right quantum numbers,
but is in reality much heavier than the other bosons and can therefore not be interpreted
as a Goldstone boson. The puzzle of the missing Goldstone boson was named the U(1),4
problem in the 1970’s and was solved by ’t Hooft (1976, 1986).

The solution of ’t Hooft is connected to instantons. The solution starts with the ob-
servation that U(1)4 is not really a symmetry of the theory. Whereas the action of the
massless theory is invariant under U(1),, the measure of the fermion fields is not. Under
the U(1), transformation

U — &y, (1.5)
the measure changes as (Fujikawa, 1979)
_ —iag’N - -
DYDY — exp(% f d4xFZVFﬂV) DYDY, (1.6)
T

where we have introduce the dual field F;” = 1" F ¢ Eq. (1.6) leads to the axial
anomaly equation, in the chiral limit given by

Byt = —2Nq(), (1.7)

where j’; is the singlet axial current,

A= ap sy (1.8)
f

and ¢g(x) is the topological charge density

2
g a v
=——=F F,. 1.9
q('x) 3271_2 uvtoa ( )

If the field F* at infinity corresponds to a pure gauge field, the integral of g(x) over
space-time yields integer values. Eq. (1.7) indicates that the singlet axial current is not
conserved on the quantum level, U(1)4 is only a symmetry of the classical theory.

The extra term that is created by the transformation in Eq. (1.6) can be written as a
total derivative,

2
8 Ny a Uy
s Pl = 0K, (1.10)
where the current K, equals
8Ny 1 abe ga4b gc
K" = WG’WPO’ (A‘japA(“T + §gf“ cAﬂApAff). (1.11)

One would naively expect that such a term vanishes when integrated over, which is indeed
true in QED, but not in Yang-Mills theories like QCD. Belavin et al. (1975) pointed out
that Yang-Mills theories allow for topologically nontrivial field configurations that give

5
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a nonvanishing result for the integral of Eq. (1.6). ’t Hooft (1976, 1986) called these
configurations instantons. For a review of instantons and how they contribute to meson
masses, see for example the texts of Cheng and Li (1984) and Weinberg (1996). The most
important fact at this point is that U(1)4 is not a symmetry of the quantum theory, it is
anomalously broken and there is no missing Goldstone boson.

Thus the solution to the U(1), problem is the existence of instantons, but this leads
to a new problem, the strong CP problem. In an SU(N) gauge theory like QCD the
vacuum is topologically nontrivial. Multiple vacuum states with equal energies exist,
each with a different topological quantum number, the winding number. These different
quantum states cannot be continuously deformed into each other and are separated by
finite energy barriers. Instantons represent tunneling solutions between these vacuum
states, consequently the true vacuum of QCD is a superposition of vacua with different
winding numbers. This true vacuum can be written as

)= > " n), (1.12)

n

where |0) is the true vacuum, characterized by the angle 6 and |n) is a vacuum state with
winding number n. The angle 6 is a new parameter in the theory and has to be determined
from experiment. Using naturalness arguments one would expect a value of order 1 as the
parameter is dimensionless.
Standard perturbative QCD is an expansion around the vacuum with winding number
0, it does not include tunneling effects between the different winding number vacua. As a
consequence, effects of nonzero 6 can never be seen in perturbation theory.
The effect of nonzero 6 can be calculated by incorporating an extra term in the La-
grangian,
08 ru puv
Ly = WFWF“ . (1.13)
When 6 is not equal to O (mod ) this term violates P and CP. Note that this #-term
can only have physical consequences when all the quarks are massive, more on this in
Sect. 1.5. In Sect. 1.3 we will argue, following the low-energy arguments of Crewther
et al. (1979) and experimental results that 6 is very small, smaller than 10~1°. The reason
for this is unknown and commonly referred to as the strong CP problem, arguably the
largest unresolved issue in QCD besides confinement.

1.2 The 6-dependence of low-energy effective theories

Effective theories have to be used to study the 6-dependence of QCD due to the nonper-
turbative nature of the #-term. Using Chiral Perturbation Theory (yPT), the low-energy
effective theory of the pseudo-Goldstone bosons of QCD, a condition for the ground state
can be found, see Sect. 1.3. As previously mentioned, the pseudo-Goldstone bosons of
QCD are the pions, kaons and the  meson. The masses of these particles are due the
explicit symmetry breaking by the quark masses. For an introduction to yPT see for ex-
ample Weinberg (1996). In the construction of yPT the philosophy of Weinberg (1979) is

6



Chapter 1. Introduction

followed, the theory contains all possible interactions consistent with the low-energy sym-
metries of the strong interaction and is a combined expansion in the masses and momenta
of the mesons.

To second order in the masses and momenta, the most general Lagrangian for the
pseudo-Goldstone bosons is quite simple, it has the following form

2
Z= 7T [0,U6"U'| + ZRe [Tr (MU)], (1.14)
where U is an SU(Ny) field representing the pseudo-Goldstone bosons, f; is the pion
decay constant, the constant X equals | (J¢) | and the matrix M denotes the quark mass
matrix. In our numerical analyses in this chapter, we employ the parameters used by
Tytgat (2000), m,, = 4MeV, my; = 7MeV, my; = 150MeV and X = (250 MeV)?3, which
reproduce the experimental values for the meson masses reasonably well. Furthermore,
the chosen value for the chiral condensate is quite close to the result obtained using QCD
sum rules (Dosch and Narison, 1998) and lattice calculations (Giusti et al., 1999).
Standard yPT does not include the 7" meson, as it is not a pseudo-Goldstone bo-
son. However, the effect of the anomaly disappears in the large-N, limit, turning the
pseudoscalar singlet 77/ into a pseudo-Goldstone boson. If one also expands in 1/N,, the
i’ can be incorporated in the framework. The effects of the anomaly have to be included in
Eq. (1.14). Witten (1980) and di Vecchia and Veneziano (1980) have shown using large-
N, arguments that the effects of the anomaly and instantons can be included by promoting
U to become an element of U(Ny), i.e. also take the pseudo-scalar singlet into account,
and adding an extra interaction term

Lrnomaly = —%(i logdet U + 6)%, (1.15)

where 7 is the topological susceptibility, defined in terms of the topological charge den-

sity as 7 = f d*x (q(x)g(0)). This interaction term breaks the U(1)4 symmetry and con-

sequently gives a mass to the 7 meson, even in the chiral limit. In the chiral limit the

topological susceptibility is directly related to the mass of the ° meson (Witten, 1979;
Veneziano, 1979) L,
Jemy,

T= o, (1.16)

In the large-N, limit, the topological susceptibility is of order O(1), f? and X are of
order O(N,) and the quark masses are of order O(1). From these large-N, counting rules
we can conclude that when N. — oo, the effects of the anomaly disappear (Zanomaly < -£)
and the " meson becomes a Goldstone boson.

In the following 7 = (200 MeV)*, also used by Tytgat (2000), which leads to a rea-
sonable value for the mass of the 7 meson. The topological susceptibility can also be
calculated on the lattice; for a recent comparison of the various lattice results see Table 1
of Vicari and Panagopoulos (2009). The chosen value is consistent with these values.

Now we are ready to find the ground state of the theory, this means we have to mini-
mize the potential that is contained in the Lagrangian Zipira = £ + Zinomaty, Which we

7



1.3. The value of 6 in Nature

will refer to as the chiral Lagrangian. At 6 = 0, the field U that minimizes the potential is
just the unit matrix. But at 6 # O this is not true anymore. Using U(Ny); ® U(Ny)g trans-
formations, the field that minimizes the potential can always be put in diagonal form, but
as a consequence the mass term may be affected, more on this in Sect. 1.5. Let us focus
for now on the three flavor case. The minimum can always be brought to the following
form

eitu

(U) = el . (1.17)
el¢_§

A CP transformation exchanges U <> U, so whenever one or more of the ¢; are unequal
to 0 (mod m), the ground state violates CP invariance.
The minimization of the potential boils down to solving the following coupled equa-

tions
T &
m,~sm¢,~=§[9—;¢j), (1.18)

with the considered choice of parameters, 7/X = 102MeV. At 6 = 0 the solution for
(U) with the lowest energy is always equal to the unit matrix, which means that CP is
conserved, consistent with the Vafa-Witten theorem?. At 6 # 0, this is not true anymore.
Due to the explicit CP violation, the ground state is then also CP-violating. At 8 = n,
the situation is again different, the Lagrangian is then invariant under CP, but this does
not hold automatically for the ground state. At this value for 8 it may be possible that
Eq. (1.18) has a nontrivial solution that minimizes the potential. Such a solution violates
CP invariance, which will be discussed in more detail in the next section, after which we
present the arguments for the claim that & < 107! in Nature. We continue in Sect. 1.4
with the possibility of CP-violating local minima at 6 = 0.

1.3 The value of 0 in Nature

At 6 = & spontaneous CP violation can occur. At this value for 8 the action is invariant
under CP. However, this is not always the case for the ground state. Depending on the
value of the quark masses, 7 and X, there can be a two-fold degenerate CP-violating
ground state. The two ground states are related by a CP transformation. This phenomenon
is named after Dashen (1971), who discovered it before the introduction of QCD. At the
time it was believed that a CP-violating condensate could be the source of the observed
CP violation in experiments (Nuyts, 1971), but was later ruled out because it gives a too
high value for the amplitude  — 7w (Bég, 1971).

For realistic values of the parameters in Eq. (1.18) and 6 = , the ground state is
CP-conserving, so how can we differentiate between the cases # = 0 and 6 = 7 without

2In this thesis we make two assumptions regarding the #-dependence of the strong interaction. Firstly, we
assume that also at 6 # 0, there is still confinement and chiral symmetry is also still broken. However, this may
not be the case, see for example Schierholz (1995). Secondly, we assume that at 6 = O the free energy is smooth,
see Asorey (2004) for a discussion about this property.
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CP violation? Crewther et al. (1979) argued that this can be done by looking at ratios of
meson masses. Their argument goes as follows, they start with the observation that the
case # = m with positive up-quark mass is equivalent to # = 0 and a negative up-quark
mass, see Sect. 1.5. In that situation, with |m,| > |m,|, the potential is still minimized by
the unit matrix, which means that the condensates all have equal sign. Using (U) = 1 as
the vacuum, the following ratio of meson masses can be derived at § = 0:

my — my,
(mio—m%ﬁ —mfr(, +m,21+)/m72r0 = m (119)
which is always smaller than one. According to Crewther et al. (1979), at 6 = x the ratio
equals

my +m,

(o — e = m2y + m2) fmy = ﬁ (1.20)
which is larger than one. If one inserts the physical values of these masses, the ratio equals
approximately 0.3, implying that 6 = 0, or at least very close to zero. In Chapter 4 we
will add an argument why in Nature 6 ~ 0, again by looking at meson masses.

We can go further in restricting 6 by looking at the electric dipole moment (EDM) of
the neutron. On dimensional grounds, for small 6 the neutron EDM should be of order

(Baluni, 1979; Crewther et al., 1979)
d, ~ |flem? /m3, ~ 107|6le cm (1.21)

The experimental upper bound for the neutron EDM is 2.9x 1072 cm (Baker et al., 2006),
leading to an upper limit for 6 of order 10717, A less stringent bound of |6] < (2—3)x 1077
is obtained by looking at parity violation in nuclear reactions (Kawarabayashi and Ohta,
1981).

1.4 Metastable CP-violating states at 6 = 0

Kharzeev, Pisarski, and Tytgat (1998) pointed out that Eq. (1.18) allows for metastable
CP-violating solutions at 6 = 0. This possibility arises when 7/ is smaller than the light-
est quark mass. Then Eq. (1.18) has nontrivial solutions, where ¢, 4 # 0 and therefore
violate CP invariance, effectively they correspond to states with a nonzero 6. Using our
values of the parameters, the local minima arise when 7/ < 0.251m,,. In Nature 7/X is
much larger than the lightest quark mass, so these metastable states do not normally occur.
However, Kharzeev et al. argued that these states might be relevant at high-temperature
in heavy-ion collisions.

The argument of Kharzeev, Pisarski, and Tytgat goes as follows, they considered the
option that 7/X is temperature dependent. Using large N, arguments, it can be argued that
the topological susceptibility 7 decreases with increasing temperature. This temperature
dependence can be inferred from the fact that 7 ~ O(1) at zero temperature and 7 ~ e~“Ne
at high temperatures (Gross, Pisarski, and Yaffe, 1981). The parameter a = 812/ gzNC is
constant in the large-N, limit, indicating that 7 = 0O at high temperatures and large N,.
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Furthermore, also £ decreases when one increases the temperature. It is assumed that
there is only one phase transition at high temperature, which is of second order. The tem-
perature dependence of the parameters is taken to correspond to the mean field behavior,
ie. T~ (Ty;—T)"Y?and v ~ (T, — T)?, hence 7/ ~ (T; — T)*?. Here T, denotes the
temperature of the phase transition. If we now insert the chosen values for the parameters,
we can see that the temperature must be very close to the transition temperature in order
for the local minima to occur. Such metastable states could in principle be seen in heavy-
ion collisions. Kharzeev, Pisarski, and Tytgat (1998) discuss two possible experimental
signatures. First of all, because the metastable state violates parity invariance, parity vio-
lating decays become possible, such as 7 — 7%7°. Furthermore, it is in principle possible
to observe P- and CP-violating bubbles using pion correlations that are P and CP odd,
but one needs large event samples and the estimated magnitude of the effect is uncertain
(Kharzeev, 2006, and references therein). Another method suggested by Kharzeev is that
a parity odd bubble would lead to charge separation. Voloshin (2004) proposed an observ-
able that would measure this separation. For a discussion of the experimental results, see
Voloshin (2009), Selyuzhenkov (2006, 2009) and Abelev et al. (2009a,b). These results
indicate that CP odd effects may indeed be present in heavy-ion collisions, but alternative
explanations for charge separation may exist. In Chapter 4 we will address the issue of
local minima in the NJL. model.

1.5 Chiral transformations and negative quark mass

As discussed in Sect. 1.3, a theory with & = 7 can be related to a theory with a negative
quark mass. Since this sometimes leads to confusion concerning the terminology used for
the meson spectrum, we will elaborate on this relation in this section.

We start with the QCD partition function including the 6 term:

Z= f DYDIDA ¢ | 45 1Zaco+Zil, (1.22)
where

_ | R
Zocp =y (i —m)y — ZFI; F.

2= 28 po 1.23
0= patwha: (1.23)
Eq. (1.6) shows that the fermion measure of gauge theories is not invariant under chiral
transformations, which can be used to remove .%). Since the mass term is not invariant
under chiral transformations either, a 6 dependence then appears in the mass term. One
obtains

Z= f DYDY DA & | ¢ Zcn, (1.24)

Although the physical results one obtains using the transformed expression will be equiva-
lent, one has to be careful when evaluating vacuum expectation values. We define vacuum
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Chapter 1. Introduction

expectation values of an operator O = O(Y, §) in terms of the original fields (the one of
the Lagrangian (1.23)) and in terms of the transformed or “primed” fields as follows:

(0)y = f@l//Z)JIDA oW, ) eifd4x[30cn+$a]’

(0 = f DY DY DA O' W, ) & 4+ Fieo, (1.25)

The condensates (O), and (O’), differ for 6 # 0 and are related by a 6-dependent transfor-
mation. For instance,

<'p¢>g — f@w@lp.@A &d’ eifd4x[$Q(‘D+fn] + f@lp’D&,@A &/wl eifd4x$éCD — (l/;/w/)e )

(1.26)

When discussing a vacuum expectation value like (i), it has to be accompanied by a
statement about which Lagrangian one is using.

In what follows we will select the chiral transformation that only affects the up quark:

u; = e’ig/zu’L,
Ug = e’p/zu;{. (1.27)
This removes % from the Lagrangian and the up-quark mass term changes according to
amuu = i’ [my, cos 0+ myiyssin0]u’. (1.28)

For 8 = m a negative up-quark mass results. In addition,

(liuyg = (i'u" Yy cos 0 + (it iysu' ), sin 6. (1.29)
Later in this thesis, we will use the following notation for the meson condensates:
(o) = W), (@) = (WAY)
() = WAolysw) () = (YAiysy) (1.30)

where the 1, = (4o, A) denote the generators of U(2), normalized as Tr A,4, = 20,.
These condensates transform according to:

1 1 1 1
(o) = 3 (cosO+ 1) (o) + 3 (cosf—1) <a8’> + 3 sin@ (') + 3 sin@ ("),
0 6
(ay) = cos > (ag’y + sin > (n*'y,
0 1 ’ 1 0r 1 : ’ 1 . 0r
{ap) = 5(0030—1)(0’)+§(cos9+1)(a0)+§sm0(n)+§sm0(7r ),
1 1 1 1
) = 3 (cos@+1) (') + 3 (cosO—1) (x) - 3 sin@ (o) — 3 sin @ (a8'>,
+ o0 +/ .0 +/
(™) = cosz <7T_>—Sln§ (ay"),

(ny = %(oose -1 'y + % (cos@+ 1) (n) - %sin@ (o) - %sin@ (ay)y.

(1.31)
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Therefore, one has to be careful assigning the names 7° and 7 to the condensates after
doing a chiral transformation. For example, Fujihara, Inagaki, and Kimura (2007) dis-
cuss a (7°)-condensate using a Lagrangian without 6 term, but with negative up or down
quark mass. This corresponds to an (n7)-condensate using a Lagrangian with positive
quark masses and a #-term with 6 = 7. We emphasize that these transformations are
just a matter of consistently naming mesons and vacuum expectations values, but this is
nevertheless important for the comparison of quantities from different calculations. For
instance, (n°) # 0, while (7*) = 0 would suggest SU(2)y-breaking, whereas (5) # 0
indicates U(1)4-breaking (for the Ny = 2-case), an important distinction.

1.6 Summary

In this chapter QCD and its low-energy symmetries were discussed. The QCD vacuum is
topologically nontrivial, characterized by the QCD vacuum angle 6. Due to the existence
of nonperturbative objects called instantons, nonzero 6 can have observable effects. When
0 # 0 (mod m), the theory is explicitly CP-violating.

We continued with reviewing the low-energy effective theory of the strong interaction,
chiral perturbation theory (yPT). We discussed how instanton effects can be incorporated
in this theory. This extension of yPT is widely used in the literature to study the 6-
dependence of the QCD vacuum. The case 6§ = 7 is special, as it allows for spontaneous
CP violation, known as Dashen’s phenomenon, which we will study in detail using the
NJL model in Chapter 4 and 5. Our investigations will also include finite temperature and
density effects.

We presented the arguments that in Nature 8 ~ 0, which indicates that the ground
state of the strong interaction is to very good approximation CP-conserving. However,
conjectures about metastable CP-violating states at high temperatures have been put for-
ward in connection with heavy-ion collisions. In these states 8 is effectively nonzero,
consequences of them may be probed in heavy-ion collisions.

Finally we discussed the relation between a theory with § = 7 and positive quark
masses and the case § = 0 with one of the quark masses negative. Observables are equal
in both cases, but this does not apply to the meson condensates expressed in terms of the
quark fields. This fact is often not explicitly addressed in the literature, but important in
the discussion of symmetry breaking.

We continue our introduction in the next chapter with reviewing what is known about
QCD matter in extreme conditions.
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Chapter 2

The QCD phase diagram

In this chapter the phase diagram of the strong interaction will be discussed. First we
introduce some general aspects of phase diagrams and phase transitions. Then we will
summarize the “standard” phase diagram as function of temperature and baryon chemical
potential, which is a measure of the baryon density, and discuss how one obtains both
experimental and theoretical knowledge about the phase diagram. We continue with what
is known about the phases of QCD as a function of some other parameters, like the number
of flavors, masses, and 6. This chapter puts the rest of the thesis in a larger perspective. It
is based on Braun-Munzinger and Wambach (2009), Meyer-Ortmanns and Reisz (2007),
to which we refer for further details and also to the books of Shuryak (2004), Kapusta and
Gale (2006), Kogut and Stephanov (2004).

2.1 Phase transitions

Usually a phase diagram consists of various different phases as a function of the external
parameters. One can change the phase of the system by changing these external parame-
ters, for example, water becomes ice when cooled under atmospheric pressure. In this
example the change of phase is induced by temperature. Of course, also the other exter-
nal parameters, like the magnetic field and chemical potential can induce such a phase
transition.

Phase transitions are usually connected to changes in the symmetry of the system.
Let us discuss as an example the chiral phase transition in QCD. As we already men-
tioned in Sect. 1.1, in massless QCD, chiral symmetry is broken at low temperatures due
to a nonzero {Yny) condensate. However, at high temperatures it is assumed that chiral
symmetry is restored, the condensate then is zero. Between the two phases there is a dif-
ference in chiral symmetry corresponding to a zero or nonzero value of (Yn/) respectively.
We will loosely call such a quantity that is zero in one phase and nonzero in the other an
order parameter, albeit it is in some cases actually a disorder parameter.

Very often it happens that order parameters can only be found in some idealized form
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of the theory, like (Y in the case of the chiral phase transition in massless QCD. In the
case of massive QCD, (/) never becomes zero and the symmetry does not get fully re-
stored due to explicit symmetry breaking from the quark masses. Usually it is nevertheless
possible to use a quantity like (/1)) as an order parameter since it behaves qualitatively
differently in the two phases. In the case of chiral symmetry breaking one speaks about
the phase with broken chiral symmetry and the phase where chiral symmetry is approx-
imately restored. For convenience, we will refer to the first phase as the chiral-broken
phase and to the second one as the approximate chiral-restored phase.

Phase transitions are characterized by how derivatives of the thermodynamic poten-
tial behave across the phase transition. When one of the first derivatives of the potential
is discontinuous, it is classified as a first order transition. When it is the second or higher
derivative that is discontinuous, it is called a second order phase transition. The transition
is called a crossover when the potential is analytic across the transition. In the case of
the chiral phase transition, the order of the phase transition can be determined by look-
ing at the order parameter itself, since the chiral condensate is the first derivative of the
thermodynamic potential with respect to the quark mass.

The behavior of systems near first order transitions is qualitatively different from sec-
ond order phase transitions and crossovers. A first order transition has latent heat, i.e.,
energy is released or absorbed during the transition. Furthermore, first order transitions
allow for metastable phenomena, such as supercooling and overheating. Since there is a
change of energy across a first order transition it is relatively easy to see in experiments.
Second order transitions are more difficult to see, but at the transition, some correlation
lengths diverge, leading to experimental consequences. In addition, near a second order
phase transition, the system is scale-invariant and the phenomenon of criticality occurs.
A crossover is even harder to find in experimental data, but if it is rapid enough (as a
function of the parameter that is varied, usually the temperature), there is still a chance of
measurable effects.

2.2 Phase diagram as function of uz and T

The question what happens to nuclear matter at high temperature and density was already
raised by Fermi in the 1950s. He inferred the phase diagram shown in Fig. 2.1 using the
knowledge of the constituents of matter at that time, protons, neutrons, and electrons.

In the 1970s it became clear that hadrons are not the basic constituents of matter, but
that they are composed of quarks and gluons. At normal densities and temperatures, these
are confined into hadrons, but Collins and Perry (1975), Cabibbo and Parisi (1975) argued
that at high temperature and density, the hadrons will overlap and the quarks and gluons
can move freely, a phase later called a quark-gluon plasma (QGP) (Shuryak, 1978). The
fact that QCD has asymptotic freedom indicates that at (asymptotically) high temperatures
and densities, the quarks and gluons are almost free. In such a system, the color charge is
screened, just like in a normal plasma there is screening of electric charge. The inferred
phase diagram is shown in Fig. 2.2, there are two phases, a confined and a deconfined one.
Soon after, the possibility of color superconductivity was pointed out by Barrois (1977)
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Figure 2.1: Phase diagram of nuclear matter conjectured by Fermi in his handwritten notes on
“Matter under Unusual Conditions”, taken from Bernardini and Bonolis (2004).

and Frautschi (1978), where quark pairs form a condensate, see Fig. 2.3. Other early work
on color superconductivity was done by Bailin and Love (1984), but the whole subject of
color superconductivity lay dormant for almost 20 years. The field was reopened by
Alford, Rajagopal, and Wilczek (1998) and Rapp et al. (1998).

Apart from the deconfinement phase transition, it is also expected that at high tem-
perature and also at high baryon chemical potential, chiral symmetry is restored. Often it

A

fs

T

Figure 2.2: The phase diagram as a function of baryon density and temperature conjectured by
Cabibbo and Parisi (1975).
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Figure 2.3: The phase diagram as a function of baryon density and temperature conjectured by
Frautschi (1978), already including color superconductivity, the phase with the gg pairs.

is assumed that the two coincide, but this correlation is not necessarily true. Most lattice
results suggest that the two phase transitions for the light quarks coincide at zero chemical
potential (Cheng et al., 2006, 2008), but there are conflicting results (Aoki et al., 2006,
2009). The problem is that only in the case of infinite quark masses a (dis)order parameter
for the deconfinement phase transition is known, the expectation value of the Polyakov
loop. The deconfinement phase transition is connected to the breaking of the global Z(3)
center symmetry of SU(3) in the deconfined phase corresponding to a nonzero value for
the expectation value of the Polyakov loop (McLerran and Svetitsky, 1981b). For a re-
view of the center symmetry of gauge theories and its relation to confinement, see Weiss
(1993). No deconfinement order parameter is known for realistic quark masses, but usu-
ally the expectation value of the Polyakov loop is still used. The situation is similar to
the restoration of chiral symmetry; (J) is only a real order parameter when the current
quark masses are zero. The absence of real order parameters makes the discussion of the
QCD phase transitions difficult, especially in determining whether they coincide or not.

As lattice calculations cannot be performed at large finite chemical potential (i.e.
up = T), it is not clear whether the correlation between the two phase transitions con-
tinues at finite chemical potentials. McLerran and Pisarski (2007) have proposed a new
phase, called the quarkyonic phase, using large N, arguments. This quarkyonic phase is
a confined phase with nonzero baryon number. It is conjectured that inside the quarky-
onic phase the chiral phase transition occurs. Consequently, a chiral symmetric phase that
confines exists and the phase transitions are decoupled. The conjectured phase diagram
is shown in Fig. 2.4. At finite N, the quarkyonic and chiral phase transition are probably
coupled. The quarkyonic phase has been further investigated using model calculations by,
for example, Fukushima (2008), McLerran, Redlich, and Sasaki (2009), and Abuki et al.
(2008).
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In this thesis we concentrate on the NJL model, which does not exhibit confinement
and hence the deconfinement phase transition does not appear within the model. However,
an extension of the NJL model exists which does incorporate a form of confinement,
the Polyakov-NJL model, introduced by Fukushima (2004) and which is also studied in
connection with the quarkyonic phase.

Let us now briefly discuss what is known about the phase diagram as a function of
temperature and baryon chemical potential. In Fig. 2.5 an example of the modern view of
the QCD phase diagram is displayed, including color superconductivity. The current view
of the phase structure shows a rich structure. However, the form of this diagram is largely
schematic, it is mostly based on theoretical arguments, which we will briefly discuss.

From lattice results it is expected that at zero chemical potential, no phase transition
exists between the hadronic phase and the QGP, it is a crossover. Furthermore, most
model calculations show that at zero temperature and finite chemical potential probably a
first order phase transition should occur. Consequently, a critical point (i.e., a point where
the first order phase transition ends and becomes a crossover) must exist, which could
possibly be seen in heavy-ion collisions. However, the lattice results of de Forcrand and
Philipsen (2007) suggest that the first order transition may not exist, contrary to theoretical
expectations.

At high chemical potential color superconductivity occurs, where the quarks form
Cooper pairs. Various color superconducting phases are possible, they differ in the pair-
ing mechanisms. Using perturbation theory one can derive that at asymptotically high
chemical potentials the color superconducting phase of color flavor locking (CFL) exists.
In this phase the color and flavor of quarks become correlated. At lower chemical poten-
tial one has to rely on model calculations, for instance using the NJL. model. For a review
about color superconductivity see for example Alford et al. (2008). In this thesis we will
not concentrate on deconfinement and color superconductivity, but on chiral symmetry
breaking and phases that violate CP invariance.

T
De-Confined

v e o

Mesonic Quarkyoni

Mpg UB

Figure 2.4: The QCD phase diagram including the quarkyonic phase and without color supercon-
ducting phases (McLerran, Redlich, and Sasaki, 2009).
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Figure 2.5: An example of a modern view of the QCD phase diagram as a function of baryon
chemical potential and temperature (Alford et al., 2008).

2.3 Probes of the QCD phase diagram

The extreme conditions required to study the QCD phase diagram can be found in three
different physical situations, the Big Bang, heavy-ion collisions and neutron stars. The
Big Bang and heavy-ion collisions are described by high temperature and low baryon
chemical potential, for neutron stars it is the other way around. Some heavy-ion collisions
probe the intermediate regime, mainly to investigate the QCD critical point.

2.3.1 The Big Bang

The Universe was created approximately 14 billion years ago in the Big Bang. At first
the Universe was very hot and dense. As the Universe evolved, it rapidly cooled down
and expanded. During its evolution the Universe underwent several phase transitions,
for example, after 107'°'s the electroweak phase transition occurred at a temperature of
approximately 100 GeV ~ 10" K. In this phase transition the original SU(2)® U(1) sym-
metry of the electroweak theory broke down to the U(1) symmetry of electromagnetism.

After approximately 1073 s at a temperature of typically 200 MeV the confinement
phase transition occurred. Lattice results indicate that the chiral phase transition occurred
roughly at the same time as the confinement one. Before the transition the quarks and
gluons could be described by a quark-gluon plasma. Afterwards, the phase structure
is how we know it today, i.e., quarks and gluons confined into hadrons. One of the most
important reasons to study the QCD phase diagram is to understand what happened during
this transition.
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2.3.2 Heavy-ion collisions

Experimentally, the phase diagram is studied using heavy-ion collisions. In some sense,
these heavy-ion collisions can be seen as “little bangs” (McLerran, 1981), somewhat
equivalent to the real big-bang. For recent reviews, see Gyulassy and McLerran (2005)
and Braun-Munzinger and Stachel (2007).

The earliest experiments took place at the Alternating Gradient Synchroton (AGS)
in Brookhaven and at the Super Proton Synchotron (SPS) at CERN. After these pre-
liminary experiments, a special accelerator devoted to heavy-ion collisions was built in
Brookhaven, the Relativistic Heavy-lon collider (RHIC). At this collider gold and cop-
per nuclei are collided with a center-of-mass energy per nucleon pair equal to +/syy =
200GeV. In the near future also at the LHC heavy-ion collisions will take place. There
lead ions will be used, with an expected center-of-mass energy of 5.5 TeV per nucleon
pair.

In these experiments the nuclei collide and a “fireball” is created, which cools and
expands until it hadronizes after passing the deconfinement temperature. As the energies
in the experiments are much lower than the big bang, the timescales and baryon chemical
potential are very different. It is expected that for about 1072% s such a fireball exists, in
which probably a quark-gluon plasma is formed.

The hadrons that emerge after a heavy-ion collision are very well described assuming
that they are created from a thermally and chemically equilibrated state. Furthermore,
the fireball expands hydrodynamically, which is also consistent with an equilibrated state.
So it appears that equilibration takes place in such collisions in a remarkably short time,
consequently temperature and chemical potential are well defined.

That hydrodynamics can be used in order to describe the fireball created in heavy-ion
collision surprised theorists, because it indicates that the system is strongly coupled. It
was generally believed that the system created in a heavy-ion collisions would be more
like a gas, i.e. weakly coupled. Moreover, the calculations show that the created system
behaves like a perfect liquid, without almost any viscosity.

Up to now, most experiments investigate the low baryon chemical potential regime,
which resembles the early Universe. But there are planned experiments to look for the
critical point at the SPS, RHIC and also at the future Facility for Antiproton and Ion
Research (FAIR) at the heavy-ion research center GSI in Darmstadt (see e.g. Braun-
Munzinger and Stachel, 2007).

Finally, we would like to mention that topological effects could be seen in heavy-ion
collisions, which we already briefly discussed in the introduction. An example is that CP-
violating bubbles are created, which behave as regions with an effective nonzero value
for 6. Another example is the Chiral Magnetic Effect, discussed by Kharzeev, McLerran,
and Warringa (2008), which is a combined effect of strong magnetic fields and variations
of topology. In relation to this, Kharzeev, McLerran, and Warringa (2008) noted that in
non-central heavy-ion collisions magnetic fields of magnitude 2 x 10'° G can be created.
These variations of topology could for example be induced by instantons. The combined
effects of instantons and magnetic fields on the phase structure of the NJL. model will be
investigated in detail in Chapter 6.
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2.3.3 Neutron stars

The third system where extreme QCD matter is assumed to play a role is in the interior
of neutron stars. Neutron stars are compact stars built mostly from neutrons, in which
the neutron degeneracy pressure counterbalances the gravitational force leading to a hy-
drostatic equilibrium. The densities inside are probably large enough to allow for quark
matter, maybe even for color superconductivity.

A neutron star is the end product of the evolution of a heavy star, which has a mass
roughly between 2 — 8 solar masses. The fusion processes of such a star continues until
an iron-nickel core has formed. Iron is the element which has the lowest nuclear binding
energy, so fusion processes with iron atoms do not create energy. After the iron core
has been formed, the temperature of the star will go down and with it the pressure. At
some point, the pressure will be so low that it is not high enough anymore to counter the
gravitational force and the star collapses until nuclear densities are achieved. During the
collapse, the gravitational potential energy is released, which heats and expels the outer
layers, resulting in a supernova. The core that remains continues cooling, resulting in a
neutron star, or, if the density is even higher, a black hole.

The big question concerning neuron stars is what happens in the interior. Using the
equation-of-state from different models and the Tolman-Oppenheimer-Volkoff relation
(Tolman, 1939; Oppenheimer and Volkoff, 1939), mass-radius relations can be derived.
The models for the equations-of-state that are used vary from ones containing neutrons
and hyperons to ones that also contain quark matter and also hybrid models. Unfortu-
nately it is very difficult to differentiate between the models as they give usually very
similar results for observables in the relevant mass region.

Neutron stars are very dense, the density being comparable to the density that is ob-
tained when the solar mass is squeezed into a sphere with a diameter of about 20 kilometer.
Furthermore, they also spin very rapidly due to the conservation of angular momentum
during the collapse. Finally we note that observations indicate that the magnetic fields of
neutron stars are also very large, up to 10'2 — 10'3 G (Manchester et al., 2005). A spe-
cial class of neutron stars have magnetic fields that even exceed those values, they have
magnetic fields in the range 10'* — 10'G (Duncan and Thompson, 1992; Thompson and
Duncan, 1993, 1996) and are known as magnetars. In the core even stronger magnetic
fields could occur. These magnetic fields affect the matter inside the star considerably, for
a recent review see Lattimer and Prakash (2007). Some aspects of the effect of magnetic
fields on quark matter will be discussed in Chapter 6.

2.4 Theoretical techniques

There are several ways of attacking the problem of studying the phase diagram of QCD.
The most straightforward one is perturbative QCD, which unfortunately only works at
asymptotically high temperatures and chemical potentials, because only then the coupling
constant of QCD becomes small as typical for a nonabelian gauge theory. Furthermore
perturbative calculations indicate that the system is still not near the ideal gas limit at
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temperatures of order 7 ~ 10007, signalling that the system is rather strongly coupled up
to these academically high temperatures (Andersen et al., 2002). Properties of a strongly
coupled liquid could for instance be calculated using the AdS/CFT correspondence, which
we will briefly discuss at the end of this section.

Another method that is in principle very reliable is lattice QCD. Creutz (1980) devel-
oped techniques to simulate QCD on the lattice. McLerran and Svetitsky (1981a,b), Kuti,
Polonyi, and Szlachanyi (1981), and Engels et al. (1981) discussed how to implement
finite temperature QCD on the lattice, for a review see Karsch (2002). But also in lattice
calculations there are problems. The most severe one is that one cannot compute at finite
baryon chemical potentials using the standard probabilistic methods to evaluate the func-
tional integral, since the fermionic determinant becomes complex. Methods are developed
to solve this problem, see for example Allton et al. (2005), but usually only work for a
limited range of chemical potentials. For the same reason, lattice calculations at finite
6 are also not possible. One can simulate however, the dependence on isospin chemi-
cal potentials, first noted by Son and Stephanov (2001), relevant for asymmetric quark
matter that occurs in heavy-ion collisions and neutron stars. In this case the possibility
of pion condensation arises, which we will discuss in some more detail in Chapter 4.
Simulations of finite isospin were performed by Kogut and Sinclair (2002), Kogut and
Sinclair (2004), Nishida (2004), de Forcrand, Stephanov, and Wenger (2007), Detmold
et al. (2008). These results can then be compared with model calculations.

The method adopted in this thesis is to use low energy models for QCD. Different
models can be used to study the phase diagram, all with some advantages and disadvan-
tages. Chiral perturbation theory is the most reliable, as it is really an effective theory
following the arguments of Weinberg (1979). However, the theory is only valid at tem-
peratures lower than approximately 150 MeV (Gerber and Leutwyler, 1989). Therefore
instead we use in this thesis two different models that describe chiral symmetry breaking,
but that can also describe the restoration of chiral symmetry, namely the Nambu-Jona-
Lasinio (NJL) model and the linear sigma model coupled to quarks (LSMg). The LSMgq
model is a hybrid model containing both mesons and quarks, the NJL model only contains
quark degrees of freedom. Both of them describe the low energy meson spectrum of QCD
quite well. In Chapters 3 and 5 we will give more elaborate introductions to the models.

As noted in Sect. 2.3.2, the matter created in heavy-ion collisions is a strongly coupled
quark-gluon plasma. A final, quite modern method to investigate how such strongly cou-
pled QCD matter behaves is by using the AdS/CFT correspondence (Maldacena, 1998).
This method uses the conjectured correspondence of a string theory in anti-de Sitter space
and a strongly coupled conformal field theory. Of course, QCD is neither conformal nor
supersymmetric, so the correspondence gives at best hints about what is going on in a
strongly coupled quark-gluon plasma. Currently much effort is put in trying to find the
gravity dual of QCD, for example by Son and Stephanov (2004) and Erlich et al. (2005).
One of the promising predictions of the AdS/CFT correspondence is that the pressure of a
strongly coupled plasma equals 3/4 of the one found in the weak coupling limit (Gubser,
Klebanov, and Tseytlin, 1998). Around a few times the critical temperature this value for
the pressure is approached in lattice calculations, see Panero (2009).
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2.5 Non-standard QCD phase diagrams

Apart from the usual phase diagram as a function of temperature and baryon chemical
potential, it is also very illuminating to study the phase diagram as a function of other
parameters. In this section we will discuss some of the possible diagrams, mainly those
we will later refer to in this thesis. Some of the parameters discussed in this section
are fixed in Nature, but varying their values can give us valuable insights in the phase
structure of the strong interaction. In fact, that is what we do in this thesis. We study the
QCD phase diagram as a function of 6, the strength of the instanton interaction, quark
masses, isospin chemical potential and magnetic fields.

The order of the phase transition at finite temperature is strongly dependent on the
parameters of QCD, for example, the number of active flavors and the values of the quark
masses. For instance, in Fig 2.6 the phase diagram is shown as a function of the up, down,
and strange current quark masses. The up and down current masses are taken degenerate.
The order of the phase transition of the current quark masses was first studied this way
by Brown et al. (1990), later in much more detail by for instance Karsch, Laermann, and
Peikert (2001).

As from most lattice results it is assumed that the chiral phase transition roughly
coincides with the deconfinement one at zero baryon chemical potential, they are not con-

Ns=2 Pure
o - Gauge
2nd order
¥ order
crgs‘éover N;=1

m,, Mmy

Figure 2.6: The phase diagram as a function of the quark masses, the up and down quark are taken
degenerate (Peikert, Karsch, and Laermann, 2000).
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Figure 2.7: The phase diagram of three-flavor yPT as a function of the up and down quark mass
(Creutz, 2004). The matrix X is the matrix U of Sect. 1.2.

sidered separately in Fig. 2.6. In the chiral limit (m, = my; = my; = 0) it is expected that
the chiral phase transition is of first order (Pisarski and Wilczek, 1984). At infinite quark
masses, when the theory only contains gluons, lattice results indicate that the deconfine-
ment transition is first order (Svetitsky and Yaffe, 1982a,b). At zero up and down quark
mass and infinite strange quark mass the chiral phase transition is of second order, as this
phase transition is expected to belong to the O(4) universality class (Pisarski and Wilczek,
1984). If the up and down quark obtain a mass, the transition becomes a crossover. Lattice
results suggest that the real world is in the crossover region of Fig. 2.6.

The phase diagram for negative up and/or down current quark masses with a fixed
(positive) strange quark mass has been studied using chiral perturbation theory by Creutz
(2004), the result is shown in Fig. 2.7. As discussed in Sect. 1.5 the case that one of
the current quark masses is negative corresponds to § = x. In this diagram a large CP-
violating region was found, Dashen’s phenomenon.

The phase structure as a function of the up and down quark mass was also studied
in the two-flavor case using a chiral Lagrangian by Tytgat (2000). Using his results,
Fig. 2.8 can be obtained. One sees that also in the two flavor case a region of quark
masses exists where the theory violates CP invariance. The shape of this region depends
on the magnitude of the topological susceptibility with respect to the value of the chiral
condensate. Chiral perturbation theory corresponds to the case 7 — oo which shrinks
the CP-violating region to the line of equal current quark masses. Note that one of the
boundaries of the three-flavor case is missing in the two-flavor case. The phase structure
as function of the up and down quark mass will be discussed in more detail for the two-
flavor NJL model in Chapter 4. In that model also an upper boundary exists, similar to
the three-flavor case discussed by Creutz (2004).
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Figure 2.8: The phase diagram at & = m as a function of the up and down quark mass using the
two-flavor chiral Lagrangian.

The phase structure as a function of isospin chemical potential (u; = w, — pg) has
been studied to describe matter with unequal amounts of up and down quarks, which
occurs in heavy-ion collisions and quark stars. From studies using chiral perturbation
theory it is known that when the isospin chemical potential becomes larger than the pion
mass, a condensate of charged pions is created (Son and Stephanov, 2001), which was
also confirmed in the NJL model (Barducci et al., 2004; Barducci et al., 2003; He and
Zhuang, 2005; Warringa, Boer, and Andersen, 2005). Metlitski and Zhitnitsky (2006)
also studied the phase diagram as a function of isospin chemical potential, combined with
the #-dependence of the theory. The masses of the Goldstone bosons become #-dependent,
but the phase transition still occurs when the isospin chemical potential equals the mass of
the Goldstone bosons. A similar relation will be considered in more detail in Chapter 4,
with different results however.

2.6 Summary

In this chapter the phase structure of the strong interaction was discussed, which turns out
to be very rich. For instance, at high densities and temperatures there exists a phase called
the quark-gluon plasma, a state of matter with deconfined quarks and gluons. Also exotic
phases exist, like color superconductivity at high chemical potential and low temperature.

In the literature, the phase structure has been investigated as a function of other pa-
rameters as well, such as the quark masses, the number of active flavors and the vacuum
angle 6. In that case more possible phases emerge, including CP-violating ones. Some of
these phases are only relevant for theoretical studies, while others can have consequences
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for the structure of neutron stars, the Big Bang and the matter created in heavy-ion colli-
sions.

We discussed four theoretical approaches to study QCD matter, namely perturba-
tive methods, lattice calculations, the conjectured AdS/CFT correspondence and effective
models. Perturbative methods only work at asymptotically high temperatures and chem-
ical potentials. The applicability of lattice calculations is limited to very small chemical
potentials. The AdS/CFT correspondence is expected to give only qualitative results as
QCD is not conformal.

In the rest of this thesis we will use model calculations, which do not give exact results
but do allow us to explore a large region in parameter space qualitatively. We will focus
in particular on the role of instantons on the phase structure. These investigations are
mainly performed in the framework of the NJL model, which we will introduce in the
next chapter.
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Chapter 3

The Nambu-Jona-Lasinio model

In this chapter the Nambu—Jona-Lasinio (NJL) model is introduced. It is mainly based
on the reviews of Klevansky (1992) and Buballa (2005). In Sect. 3.1 the original NJL
model is introduced, a model for interacting nucleons. We continue in Sect. 3.2 with the
reinterpretation of the model as a quark model. Then the vacuum structure of the model
at zero temperature and chemical potential is discussed in Sect. 3.3, including the bound
states of the model, which can be interpreted as the mesons. Furthermore, some low-
energy relations are derived. The chapter ends with Sect. 3.4, in which the values of the
parameters that are used in this thesis are presented.

3.1 Introduction

The NJL model is a model for the strong interaction. It was first considered in 1961, be-
fore the discovery of quarks. In its original form, it was a model for interacting nucleons.
In those days notions of chiral symmetry in the strong interaction were already known,
leading to current algebra and the concept of a (partially) conserved axial vector cur-
rent (PCAC). A model with (approximate) chiral symmetry is described by a Lagrangian
with (almost) massless fermions. Inspired by superconductivity, Nambu and Jona-Lasinio
(1961a,b) introduced their model, with the following Lagrangian

L =P p—myy+ Gy + Giysaw)}. 3.1

Here ¢ is a SU(2) doublet describing the nucleons. The nucleons interact through a local
four-fermion interaction with coupling constant G. This interaction is chirally symmetric
(i.e., invariant under SU(2); ® SU(2)g). The A; are the Pauli matrices and m is a small
bare mass for the nucleons.

In the same way as the electrons form Cooper pairs in superconductivity, in the NJL
model the nucleons form pairs with anti-nucleons and condense when G is strong enough.
The condensate (¢//) becomes nonzero, signalling a breakdown of chiral symmetry. Fol-
lowing the Goldstone theorem, three massless pseudoscalar bosons should appear, since
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the pions are much lighter than the nucleons and are pseudoscalars, they were interpreted
as these Goldstone bosons. Results from current algebra could indeed be explained by
this interpretation. Of course, pions are not really massless; the small mass of the pions
comes from the explicit symmetry breaking by a small bare mass of the nucleons in the
Lagrangian. Furthermore, the interaction creates a large self energy for the nucleons, even
when the bare mass is taken to zero, and was seen as the explanation of the large mass of
the nucleons, while being (almost) massless at the Lagrangian level.

3.2 The NJL model as quark model

After the discovery of QCD, the NJL model was reinterpreted as a quark model (Klein-
ert, 1976; Volkov, 1984; Hatsuda and Kunihiro, 1984). The fermion doublet becomes a
doublet containing the up and down quark fields. In the new interpretation, the vacuum is
not described by a nucleon-antinucleon condensate, but by a quark-antiquark condensate.
However, the pions are still interpreted to represent the Goldstone bosons.

When the NJL model is used as a quark model, one has to be careful as some features
of QCD are not contained within the model. First of all, the model does not contain glu-
ons; this is resolved by the assumption that the gluons are “integrated out”, leading to the
four-quark interaction. In principle, this integrating-out would also lead to six and higher
point interactions, but the coupling constants of these interactions are suppressed by A~°
and higher, where A is an ultraviolet cut-off. Secondly, the model contains four-fermion
interactions, making it non-renormalizable. When viewed as an effective model, non-
renormalizability is not a problem as there is natural a cut-off that limits the applicability.
Lastly, the model does not implement confinement. In this thesis confinement will not
play a role. This is clearly an omission, but many aspects of QCD can be described with-
out considering confinement, especially chiral symmetry breaking and the light meson
masses.

Since its introduction, the model has evolved along several lines. In the 1980s the
model has been extended to also include the strange quark (Ebert and Reinhardt, 1986;
Bernard, Jaffe, and Meissner, 1987; Hatsuda and Kunihiro, 1987). In the 1990s diquark
interactions were incorporated in the NJL model. These interactions lead to color su-
perconductivity; for a recent review see Alford et al. (2008). Color superconductivity is
expected to arise at high baryon chemical potential and low temperatures. In this thesis
we will not consider color superconductivity.

Apart from the form of the interaction used originally by Nambu and Jona-Lasinio,
many more chirally symmetric interactions can be written down, for example, vector and
axial-vector interaction terms. However, not all of these terms are independent, they are
related via Fierz transformations (Klevansky, 1992; Buballa, 2005). Qualitatively, the
vacuum structure of these models with more interaction terms behaves similarly to the
version that only contains scalar and pseudoscalar interaction, therefore for simplicity in
this thesis only the latter two will be taken into account. As a consequence, only scalar
and pseudoscalar mesons will be considered.
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Chapter 3. The Nambu—Jona-Lasinio model

Here the following form of the NJL model will be used
L=y (i)/"c'i# + )’0/1) = L+ Lgg + Liets (3.2)
where the mass term of the Lagrangian is
L = UMy, (3.3)

and p = (uy, 1q) denotes the quark chemical potential. We choose an appropriate basis of
quark fields, such that the mass-matrix M is diagonal, i.e.,

m, O
( 0 my ) 3.4)
Furthermore,
Ly = G [(FA) + (Aaiys)? |, 3.5)

is the chirally symmetric interaction, similar to the one of Eq. (3.1). Actually, this in-
teraction is equal to the attractive part of the gg channel of the Fierz transformed color
current-current interaction (Buballa, 2005). Finally,

Lot =8G,e" det (Yryr1) + h.c.
=G, cos 0| Aoy)? + W ditysy)® = (FAw)* = (FAoiysy)’|
— 2G5 sin 0[P AP Aoiysih) — A FAiiys)] (3.6)

is the "t Hooft determinant interaction which depends on the QCD vacuum angle 6 ('t Hooft,
1976, 1986). This term is the effective interaction induced by instantons, it breaks the
U(1)4-symmetry (which is present in Eq. (3.5)).

Often G| and G, are taken equal, which at 8 = 0 means that the low energy spectrum
consists of o and 7 fields only. We will restrict ourselves to the two flavor case, using 4,
witha =0, ..., 3 as generators of U(2).

The symmetry structure of the NJL model is very similar to that of QCD. In the
absence of quark masses and the instanton interaction there is a global SU(3), X U(2)g X
U(2);-symmetry. The instanton interaction breaks it to SU(3). xSU2) . XSU2)gxU(1)p.
For nonzero, but equal quark masses this symmetry is reduced to SU(3).xSU(2)yxU(1)p.
For unequal quark masses and chemical potentials one is left with SU(3). x U(1)gx U(1),,
where B and [ stand respectively for baryon number and isospin.

Because we want to investigate the effects of instantons on the vacuum, we are in-
terested in its dependence on the strength of the determinant interaction, which is the
effective instanton interaction. Frank, Buballa, and Oertel (2003) have investigated the
effects of this interaction at 6 = 0, in particular flavor-mixing effects, on the QCD phase
diagram, by choosing the following expressions for G, and G, (where our c is their @)

G =(-0Gy, G, =cGy. (3.7)

In this way, the strength of the instanton interaction is controlled by the parameter c, while
the value for the quark condensate at 6 = O (which is determined by the combination
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Figure 3.1: The Schwinger-Dyson equation for the quark propagator in the Hartree approximation.
The bare and dressed propagators are denoted by the thin and bold line respectively.

G| + G») is kept fixed. As mentioned, for G| = G, or equivalently ¢ = % only the o and

7 mesons are present. In order for the model to have a stable ground state, 0 < ¢ < %, see
Eq. (4.8)

3.3 Constituent quarks, mesons and low-energy theorems

In this section the vacuum properties of the NJL. model are discussed; it is largely based
on Buballa (2005). At zero temperature and density, the chiral symmetry that is present
in the Lagrangian of the NJL model (and in QCD) is broken by a (Y1) condensate. Later
in this thesis we will also allow for other pairing patterns, but let us stick for now to this
condensate. The condensate gives a large self-energy to the quarks, usually calculated in
the Hartree approximation. The corresponding self-consistent Schwinger-Dyson equation
is shown in Fig. 3.1. The self-energy is p-independent in this approximation, i.e. it only
shifts the mass of the quarks by a constant,

. d*p
M = m+21G0fWTrS(p), (38)

where M is usually called the constituent mass as it behaves as an effective mass for the
quarks. For simplicity we have set m, = my = m and ¢ = 0. S(p) is the dressed quark
propagator, equal to S(p) = (p — M + ie)"'. If Gy is large enough, this equation has a
nontrivial solution, where M # m. This equation is usually referred to as the gap equation,
as it is analogous to the gap equation in superconductivity. Using the expression for ()

- d* M—-m
@ =i [ Sl () = 5 (3.9)
it is clear that the appearance of a (Y¢/) condensate is intimately related to a large value
of the constituent quark mass. The integral contained in Eq. (3.8) is divergent and needs
to be regulated. The model is nonrenormalizable, so the results are scheme dependent.
In this work a noncovariant three-dimensional UV cut-off A is employed. As discussed
by Buballa (2005), such a cut-off is relatively simple and preserves the analytical struc-
ture of the integrals. Moreover, Buballa argues that the three-dimensional cut-off has the
least impact on the medium parts of the integrals when performing calculations at finite
temperature and chemical potential, as we will do in Chapter 4.
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Meson properties are calculated within the NJL model by identifying the quark-antiquark
T-matrix with meson exchange. The T matrix is usually calculated in the random-phase
approximation (RPA). Graphically this identification is shown in Fig. 3.2. Here we will
discuss the basic results and defer the details to Appendix A. As an example we discuss
the pions, the other mesons go similarly.

The T-matrix in the pion channel is equal to

2G
To(q") = 5 (3.10)
‘ 1 = 2GT1,,(¢%)
where I1,, is the quark-antiquark polarization in the pion channel, equal to
> . d4p . .
Hr(q) =i | =5 Tr [iysAiS (p + @)iysAiS (p)]
(27)
1 m
=—1——)— 2 4 4M?) Io(P), 3.11
3. (1= 37) = (@ + 4 bt (3.11)
where we have used the gap equation. The integral Io(¢?) is given by
d*p 1
Io(q*) = —4N,i : 3.12
=i [ o O

The T-matrix has a pole when the following relation holds, which can be viewed as the
definition of the pion mass

1 = 2GoIl,, (¢* = m2) = 0. (3.13)
If we write
_g2
T (q’) = 5=, (3.14)
q- —my
it follows that the coupling g.,, between the quarks and pion is given by
dri,,
2 _ Wy
8rqq = 0 |t (3.15)

Combining Eq. (3.13) with Eq. (3.11) and the gap equation leads to the following expres-

sion for the mass of the pion

m 1
my; = — ———,
T M2Goly

> XX oK

Figure 3.2: The T-matrix in the pion channel calculated in the RPA identified as pion exchange.

2 (3.16)
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Sy = = = .

Figure 3.3: One-pion-to-vacuum matrix element in the RPA.

where we have made the assumption that Io(¢?) is a smooth and slowly varying function
of ¢* (Klevansky, 1992), i.e. Iy(¢*) =~ Io(0) = Iy. Eq. (3.16) shows that the pions are
massless in the chiral limit, as expected for Goldstone bosons. Furthermore, combining
Egs. (3.15) and (3.11) using the same approximation yields

8reg = o, (3.17)

thus the NJL model predicts a value for the coupling constant between quarks and mesons,
an observation that will be of importance in Chapter 5.

Another important quantity related to pion physics is the pion decay constant. It is
calculated from the matrix element (0| JiS” | ;, depicted graphically in Fig. 3.3 and which
is equal to

u d4p 1 /li .
Jxd"6ij = 8rqq WTr [7 Y558 (p+ @iys;S(p)
= 8ragM " 10(q)5;. (3.18)
Again neglecting the ¢*>-dependence of Iy(¢%), we obtain
gﬂqqfﬂ =M, (3.19)

which is the quark level version of the m-nucleon Goldberger-Treiman relation (Gold-
berger and Treiman, 1958). Moreover, combining Egs. (3.17) and (3.16) with Eq. (3.9)
and expanding the result to first order in m gives the Gell-Mann—Oakes—Renner rela-
tion (Gell-Mann, Oakes, and Renner, 1968)

2y~ —m () (3.20)

To conclude this section, the NJL. model reproduces the results of current algebra, which
is to be expected, since these results are all consequences of chiral symmetry breaking.
Because the model reproduces the low-energy theorems of current algebra, it can be used
to describe low-energy QCD.

3.4 Choice of parameters

The NJL model employed in this thesis has five free parameters, Gy, the cut-off A, the
current quark masses m, and my, and the strength of the instanton interaction c¢. Using
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Figure 3.4: The c-dependence of the meson masses. The masses are calculated in the RPA.

the relations that were derived in the previous section, the first four parameters can be
fitted to the pion decay constant f;, the pion mass and the quark condensates (iu) and
(dd). Following Frank, Buballa, and Oertel (2003) we choose for our numerical studies
the following parameters, unless stated otherwise: m = m, = my; = 6 MeV in case of
degenerate quark masses, a three-dimensional momentum cut-off A = 590 MeV/c and
GoA? = 2.435. These values corresponds to a pion mass of 140.2 MeV, a pion decay
constant of 92.6 MeV and finally, a quark condensate (i) = (dd) = (-241.5 MeV)>.
These values are in reasonable agreement with experimental determinations.

For the last free parameter of the model, c, it is more difficult to obtain a realistic
value. The parameter sets the amount of breaking of U(1)4, consequently it determines
the masses of the 1 and ay mesons. The c-dependence of the masses of the mesons
calculated in the RPA are shown in Fig. 3.4. At ¢ = 0, the U(1)4 symmetry is restored
and the mass of 17 equals the mass of the pions, for the same reason the mass of the sigma
equals the mass of the ay mesons. When c is increased, the U(1)4 symmetry gets broken
and both the masses of 7 meson and the ay mesons increase monotonically. When ¢
approaches 1/2, the masses of those mesons go to infinity, which means that at ¢ = 1/2
the spectrum only consists of o and the pions, as mentioned in Sect. 3.2.

The problem now is to associate a mass to the n particle. In a pure SU(2) world this
would indeed be the physical 7, leading to a value for ¢ of 0.11. However, as discussed
by Frank, Buballa, and Oertel (2003), it is unrealistic to describe the 7 meson without
strange quarks. Using the SU(3)-version of the NJL model, they obtain a slightly higher
estimate for ¢, between 0.16 and 0.21. Note that in the physical Ny = 3 world, 7 is not a
flavor singlet. Furthermore, Frank, Buballa, and Oertel argue that as the instanton liquid
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model is so successful in describing vacuum correlators, the instanton interaction is the
dominant one, so one should choose an even higher value for c.

The parameter c is related to the topological susceptibility 7. Using expressions for
the 17 mass, this relation can be made explicit. In the chiral limit, the relation between the
n mass and 7 is given by the Witten—Veneziano relation (Eq. (1.16)), which for Ny = 2
yields

4

Using the procedure discussed in Sect. 3.3, one obtains the following expression for the
mass in the NJL model, ~
2 c 2 M

"TT e 2

(3.21)

hence,

1 ¢ _
rr s M. (3.22)
1

From this expression we can infer that when ¢ — 35, 7 — co. In this work the value of ¢
will be left free in order to study the influence of instantons.
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Chapter 4

Spontaneous CP violation in the
strong interaction at 6 =

In this chapter the 8-dependence of the phase structure of the two-flavor NJL. model will
be discussed. The full §-dependence of the vacuum will be studied (briefly), but the main
focus is on the 8 = m-case, which allows for spontaneous CP violation. The depen-
dence of the phase structure, and in particular of the CP-violating phase, on the quark
masses, instanton interaction strength, temperature, baryon and isospin chemical poten-
tial is examined in detail. When available a comparison to earlier results from effective
theories is made. From our results we conclude that spontaneous CP violation in the
strong interaction is an inherently low-energy phenomenon. Furthermore, inside the CP-
violating phase, the masses and the mixing of the mesons display some unusual features
as a function of the instanton interaction strength. This chapter is partly based on Boer
and Boomsma (2008).

4.1 Introduction

As discussed in Chapter 1, the possibility of spontaneous CP violation in the strong inter-
action, known as Dashen’s phenomenon, is one of the reasons why the #-dependence of
this interaction has been studied. Furthermore, metastable states have been proposed to
occur in heavy-ion collisions that violate CP invariance; such states would be described
by an effective nonzero 6. It is very difficult to study finite § in QCD due to the non-
perturbative nature of the #-term. Even in lattice QCD, studies are limited to small 6,
because of the problem of how to deal with complex phases. Therefore, the #-dependence
of the strong interaction and Dashen’s phenomenon have been studied extensively us-
ing low energy effective theories, such as chiral perturbation theory and using the chi-
ral Lagrangian (Witten, 1980; di Vecchia and Veneziano, 1980; Smilga, 1999; Tytgat,
2000; Akemann, Lenaghan, and Splittorff, 2002; Creutz, 2004; Metlitski and Zhitnitsky,
2005, 20006), or by using specific models, such as the NJL model (Fujihara, Inagaki, and

35



4.1. Introduction

Kimura, 2007). In a quark model, like the NJL model, the effects of instantons and the
f-term are incorporated via an effective interaction, the 't Hooft determinant interaction,
see Sect. 3.2. In Sect. 1.2 it was argued that chiral perturbation theory can be expanded
to include these effects in a similar way via a log determinant interaction (Witten, 1980;
di Vecchia and Veneziano, 1980).

The discussion of chiral perturbation theory together with the log determinant interac-
tion presented in Sect. 1.2 and 1.3 shows that whether or not the strong interaction exhibits
spontaneous CP violation at 8 = 7 depends on the topological susceptibility 7, the chiral
condensate X and on the values of the quark masses. We will now discuss this dependence
in some more detail. Two limiting cases were considered in the literature. Witten (1980),
who studied the lowest order (LO) chiral Lagrangian, argued that when 7/% is nonzero
but much smaller than the quark masses, the theory always exhibits spontaneous CP vio-
lation at 8 = m, independent of the values of the quark masses and number of flavors. The
opposite case (Witten, 1980; di Vecchia and Veneziano, 1980; Tytgat, 2000), i.e. when the
masses of the quarks are much smaller than 7/Z, leads to different results. In this case it
does depend on the values of the quark masses. In the two-flavor case for 7 — oo (which
means no 17 meson is included and thus corresponds to chiral perturbation theory), spon-
taneous CP violation only occurs for degenerate quark masses. For finite 7/ > m,, my
spontaneous CP violation also occurs for nondegenerate quark masses in a finite interval
of my/m, around 1, as was shown by Tytgat (2000), see Fig. 2.8. In the three-flavor case,
a region exists in the (m,, my)-plane where the theory spontaneously violates CP invari-
ance (Creutz, 2004), as shown in Fig. 2.7. The asymptotes depend on the value of the
strange quark mass.

When performing calculations with the LO chiral Lagrangian there are only a few
parameters, namely the quark masses, the pion decay constant, the value of the quark
condensate and the strength of the determinant interaction. It is therefore interesting to
study CP violation in a somewhat richer situation, such as chiral perturbation theory be-
yond leading order, which has been studied by Smilga (1999) and corresponds to 7 — oo.
In this chapter we will make a comprehensive study of the §-dependence and especially
spontaneous CP violation at § = 7 within the framework of the two-flavor NJL. model in
the mean-field approximation. We will study the dependence on the effective instanton
interaction strength ¢, not only in the two limiting cases, but for all possible values. This
c is related to the topological susceptibility 7 as given in Eq. (3.22).

We find that there is a critical value of the interaction strength at # = m above which
spontaneous CP violation occurs and which depends linearly on the quark masses, as
expected from axial anomaly considerations. As will be discussed, the two-flavor NJL.
model allows for Dashen’s phenomenon also for nondegenerate quark masses (as is the
case for chiral perturbation theory only at next-to-leading order (Tytgat, 2000)). We find a
region in the (m,, my)-plane very similar to the three-flavor LO chiral perturbation theory
result shown in Fig. 2.7. However, for the two-flavor NJL model the asymptotes are
determined by the strength of the instanton induced interaction, instead of m;.

Next we study the influence of nonzero temperature and baryon and isospin chemi-
cal potential. It has been suggested that in those cases the Vafa-Witten theorem may no
longer apply (see for instance Cohen (2001) for some explicit arguments, but also Ein-
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horn and Wudka (2003) for counterarguments). But even if it does apply, spontaneous CP
violation at finite temperature or baryon chemical potential (through metastable states)
has been considered in the literature (Lee, 1973; Morley and Schmidt, 1985; Kharzeeyv,
Pisarski, and Tytgat, 1998; Buckley, Fugleberg, and Zhitnitsky, 2000) and possible ex-
perimental signatures in heavy ion collisions have been put forward (Kharzeev and Pis-
arski, 2000; Voloshin, 2004; Kharzeev and Zhitnitsky, 2007; Kharzeev, McLerran, and
Warringa, 2008). This would also be relevant in the early universe, when possibly 6 was
nonzero and later relaxed to zero, for example via a Peccei-Quinn-like mechanism (Peccei
and Quinn, 1977b,a; Wilczek, 1978). We therefore wish to check the Vafa-Witten theo-
rem and the possible presence of CP-violating local minima in the NJL model at finite
temperature and density.

Spontaneous CP violation at # = & within the two-flavor NJL model including tem-
perature dependence has been considered before in Fujihara, Inagaki, and Kimura (2007),
but only for a very limited range of quark masses: |m, =m,| < 6 MeV at ¢ = % and without
chemical potentials.

In Metlitski and Zhitnitsky (2006) the phase diagram as a function of 8 and isospin
chemical potential has been investigated within first-order chiral perturbation theory for
two flavors. We will compare this to our results at nonzero isospin chemical potential,
where a modification of the pattern of charged pion condensation is observed at 6 = .

In this chapter the ground state is obtained by minimizing the effective potential, an
approach equivalent to the one discussed in the previous chapter, i.e. solving the gap equa-
tion, which is convenient when discussing the bound states of the model. The effective
potential will be calculated in the mean-field approximation, the minimization is done
numerically.

This chapter is organized as follows, first we discuss the effect of chiral transforma-
tions on the model, which is relevant for the calculation of the effective potential and for
a comparison to earlier results from the literature. We continue with a discussion of the
0-dependence of the ground state, including temperature effects and nonzero baryon and
isospin chemical potential. Also we discuss the c-dependence of the meson masses and
mixing in the CP-violating phase. We end with conclusions and a further discussion of
the results.

4.2 Chiral transformations in the NJL model

In Sect. 1.5 we discussed the relation between a negative quark mass and QCD with
6 = m. Here we extend this discussion to the NJL model. The NJL model is not a gauge
theory, so the fermion measure is invariant under chiral rotations. But now the Lagrangian
contains two terms that are not invariant under chiral transformations, the mass-term and
the determinant interaction. The latter is #-dependent. Like for QCD, this 8-dependence
can be absorbed in the up-quark mass using a chiral rotation. So the analysis for the NJL
model is similar to the one for QCD, but instead of a noninvariant measure we have a
noninvariant effective interaction.

The calculation of the ground state of the NJL-model is more conveniently done with
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4.3. Calculation of the ground state

the 6-dependence in the up-quark mass term, i.e. we use in Eq. (3.2)

r = —i6_ 7 37 ’
M = dpmye”uy + dpmgd; +hec.,

Ly = 8Gydet (Yryy) + hec., 4.1
with
up = e/ ),
ug = " u .2)

Therefore, below we will calculate the effective potential using the transformed (primed)
fields, but discuss the ground state phase structure solely in terms of the condensates in
terms of the original fields. Only in the latter case the SU(2)y symmetry among the three
pions (and among the ap-mesons) is manifest when we consider degenerate quark masses
for instance.

4.3 Calculation of the ground state

In Chapter 3 the ground state of the NJL. model was calculated at zero temperature and
chemical potential, and with equal current masses for the up and down quark. The method
used in that chapter to obtain the ground state was to solve the gap equation, the approach
originally used by Nambu and Jona-Lasinio. In this section an equivalent method will
be presented, namely minimizing the effective potential. This approach generalizes much
easier to other pairing mechanisms than the one when only (o) becomes nonzero.

The ground state of a theory is obtained by finding the state that minimizes the free
energy Q. Very often it is assumed that the ground state does not depend on position,
which corresponds to translational invariance and allows for the introduction of the effec-

tive potential V
Q InZ
(V_Tq//_Tﬂj/, (4.3)
where 7 is the volume of space, T is temperature and Z is the grand canonical partition
function. In the case of a ground state that does not depend on position, one has to
minimize the effective potential.

We will calculate the effective potential in the mean-field approximation, which is
equivalent to the Hartree approximation and in this case leading order in the 1/N, expan-
sion. In order to perform this calculation a Hubbard-Stratonovich transformation will be
performed. First we introduce 8 real auxiliary fields @, and 8, in Eq. (3.2) as follows

af +B? QP +pP
Loy = Ly — —— - L0 (4.4)
METTNE 4G+ Gy 4G -Gy
Shifting these auxiliary fields according to
af) e a6 + 2(G1 + Gz)lz//l()lﬁ/ (I; - CZ; + 2(G1 — Gz)l;//lilﬂ,
By = By + 2(G1 = G doirysy’ Bi = B +2(Gi + G diiysy/ 4.5
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Chapter 4. Spontaneous CP violation in the strong interaction at 0 = 1

eliminates the four-quark interactions and the Lagrangian becomes quadratic in the fermion
fields
” 2 2 2

% * P i L NN
4Gi+Gy) 4G -Gy)
The integration over the quark fields is straightforward to perform. In the mean-field ap-
proximation fluctuations of the auxiliary fields are not taken into account, which means
that in Eq. (4.6) the auxiliary fields are replaced by their vacuum expectation values
(VEVs). From now on, a, and S, will denote the VEVs of the corresponding fields.
These vev’s are directly related to the quark condensates

@) ==2(Gy +G) (o), o' = -2(Gi - Gy){ay),
By =—2G -G '), B’ =-2G +Gy)(n'). 4.7

All quantities in this section refer to the primed fields, but for notational convenience we
will drop the primes from now on in this section only. Results presented in the subsequent
sections will refer exclusively to the unprimed quantities.

One obtains the following expression for the thermal effective potential V in the
mean-field approximation (see e.g. Warringa, Boer, and Andersen, 2005)

@B @B
4G +Gy) MG -Gy

L, = (V"0 — Ml — ada — iysByda) ¥ —

—-TN., f(z X logdet K 4.8)
po=2n+1)nT

where K is a matrix in flavor and Dirac space,
K =15 ® (iyopo + yipi) —H®yo — A 4.9)
is the inverse quark propagator, and

M =m,(cosOA, @ Ilg+sinfA, ®iys) + mgdy Q lg + a,d, ® 1y
+ Bada ® iys, (4.10)

with 4, = (g + A3)/2 and A; = (g — A3)/2.

The values of the condensates are found by minimizing the effective potential with
respect to these condensates. By exploiting U(1) flavor symmetry one only has to study
the condensates «y, @, @3, 80,61, and 53. Warringa, Boer, and Andersen (2005) ignored
the By and B3 condensates based on the Vafa-Witten theorem. As we wish to check the
validity of this theorem at finite temperature and density in our model calculation, we do
take these condensates into account.

In order to calculate the effective potential, it is convenient to multiply K with 1 ®
Yo which leaves the determinant invariant and yields a new matrix K with ipy’s on the
diagonal. The determinant of K can be calculated as det K = ]‘[?=l (A — ipo), where A;
are the eigenvalues of K with py = 0. After performing the sum over the Matsubara
frequencies, we obtain

T Z logdetK = Z

po=Qn+)nT

L Tlog(1 ﬂf”)} . 4.11)
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4.3. Calculation of the ground state

Finally we need to integrate over the three-momenta p up to the ultraviolet cutoff A to
determine the effective potential.
Minimizing V implies solving the equations

IV

— =0, 4.12
ax; (4.12)

where x = {ag, a1, @3,B0,B81,83}. The derivatives of the effective potential can be calcu-
lated from the expression (Warringa, 2006)

0 13 2
T— > logdethézlbij(l—m)sgn(/l,-), (4.13)

xj po=Q2n+1)nT

where b;; = (U TOK (py = 0)/0x U )ii. Here U is a unitary matrix which contains in the i-th

column the normalized eigenvector of K with eigenvalue A;. Again, one has to integrate
over p to obtain the complete derivative. Since this calculation does not use the finite dis-
tance method, the derivatives can be determined very accurately. Also, it is very efficient
as one needs the eigenvalues of K anyway in order to calculate the effective potential.

When a solution to Eq. (4.12) has been found, it has to be checked whether the solution
is indeed a minimum and not a maximum or saddle-point. This is checked by verifying
that the Hessian of the solution only has positive eigenvalues. If more than one minimum
is found, the one with the lowest value is chosen. Also the continuity of the effective
potential is checked.

The speed of the calculation mainly depends on how fast the eigenvalues of K can be
calculated. To speed up the evaluation of the calculation of the eigenvalues, one can make
use of the fact that the determinant of K is invariant under the interchanging of rows and
columns. This can be used to bring K to a block-diagonal form of two 4 x 4-matrices.
This reduces the computing time to determine the eigenvalues with a factor of four as the
time to numerically calculate the eigenvalues scales cubically with the dimension of the
matrix. Another way of improving the speed of the calculation is to choose p to lie along
the z-direction, exploiting the fact that det K does not depend on the direction of p.

As we said in the beginning of this section, the method presented here is equivalent
to solving the gap equation, discussed in Chapter 3 for zero temperature and chemical
potential. In that case we can assume that only @y becomes nonzero (if we also take
m, = mg = mand 8 = 0). The absolute values of the 4; become all equal to |4;| =

\Vp? + (ap + m)2. Consequently it is straightforward to evaluate Eq. (4.12), only x; = aq
has to be taken into account

d3
(')_(V _ 070 AN, )4 ag+m
0wy 2(G1 +G))

=0, (4.14)

Q213 \/p? + (ap + m? -

which is equivalent to Eq. (3.8) after performing the trace and py-integration. Note that
a( + m equals the constituent quark mass.

One final remark we have to make regarding Eq. (4.8) is the fact that in order for the
effective potential to have a minimum at finite values for the condensates, the coupling
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Chapter 4. Spontaneous CP violation in the strong interaction at 0 = 1

G has to satisfy -G < G, < Gy, and correspondingly, —% <c< % From Eq. (3.6)
we can see that a negative value for G, corresponds to shifting § — 6 + 7, implying that
the minimum of the theory will be at 6 = x, in violation of the Vafa-Witten theorem at
zero temperature and density. Therefore, we will restrict to 0 < ¢ < % The case ¢ = % is
special, because then only the o and 7’ fields are present in the theory, which means at
6 = 0 the o and 7 mesons and at § = & the 7 and a( mesons.

4.4 Convexity of the effective potential

A well known result from statistical physics is that the effective potential is convex. But
if one calculates the effective potential in the mean-field approximation, sometimes local
minima arise and hence a non-convex effective potential is found. In textbooks such as
Peskin and Schroeder (1995) and Weinberg (1996) it is shown how one obtains a convex
effective potential from a nonconvex one. Here we will briefly repeat the argument, which
is a field-theoretical analogue to a Maxwell construction.

Let us discuss for simplicity a scalar field theory with field operator ®. We assume
that the effective potential as a function of vacuum expectation value of the field ¢ has
the form of Fig. 4.1, which has a concave region. The expectation values of the minima
are ¢; and ¢,. Now consider that for states between the two minima, the state is a linear
combination of the two minimizing states, i.e.

9y = VXl + VI=xlg), O<x<l. (@.15)

For the value of the expectation value ¢ between the two minima we obtain (Peskin and
Schroeder, 1995)
¢ = xp1 + (1 = x)¢2, (4.16)

leading to an effective potential between the two minima of the form
V(p) = xV(g1) + (1 = x)V(¢2), (4.17)

as interference terms vanish in the infinite volume limit (Weinberg, 1996). The potential
of Eq. (4.17) has a lower value between the two minima. Weinberg (1996) states that
the effective potential is defined as: V(¢) is the minimum of the expectation value of
the energy density for all states constrained by the condition that the scalar field ® has
expectation value ¢. Using this definition we see that Eq. (4.17) corresponds to the “real”
effective potential, which obtains the form given in Fig. 4.2, indeed a convex function. In
other words, the convexity applies to the equilibrium effective potential.

The solution to the convexity problem that we just presented is a formal one, one of
its consequences is that metastable states are not possible. However, in physical systems
metastable phases do arise. How can these states be described? The important assump-
tion when discussing the formal effective potential is that one assumes that all quantum
fluctuations are taken into account, including ones that are very long-ranged and take a
very long time, like tunneling effects. In real physical situations, like in heavy-ion colli-
sions, not all fluctuations ought to be taken into account as the system has finite size and
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4.4. Convexity of the effective potential

01 02

Figure 4.1: A possible form of the effective potential as a function of the expectation value of the
field ¢ (Peskin and Schroeder, 1995).

L LELY
- e,

01 02
Figure 4.2: The “convex” potential obtained from Fig. 4.1 by using Eq. (4.17).

exists for a finite amount of time. The “physical” (coarse-grained) effective potential, is
consequently not necessarily convex.

The situation is analogous to the phenomenon of phase separation in thermodynamics,
if the system is in the concave region it is unstable and phase separation will take place. If
the system is in a convex region (but not in the global minimum), the system stays there
for some time until a large fluctuation takes the system to the global minimum. The point
where the curvature of the effective potential flips sign is called a spinodal, it represents
the end-point of stability of a certain phase.

Another indication that local minima have a physical interpretation is that they can
become the global one when changing external parameters like 6, T', u, etcetera, usually
connected to a first order transition. The latter suggests that the local minima are indeed
metastable states. However, the physics of a metastable state cannot be described by effec-
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Figure 4.3: The (¢, m) phase diagram at 6 = 7.

tive potential considerations alone, as it is inherently a non-stable and non-homogeneous
situation. For example, for the calculation of the lifetime of a metastable state one would
need to perform a calculation using the effective action. We will not do this for the local
minima that we encounter, hence no conclusions about the lifetime of metastable states
will be reached.

4.5 The ground state of the NJL model

This section deals with our results for the ground state of the NJL model. First we dis-
cuss the 8-dependence of the condensates and the effective potential. It turns out that for
nonzero c, two different situations can be distinguished: below a certain critical ¢ value
(ceit) no spontaneous CP violation takes place at & = m, whereas for ¢ larger than this
critical value it does take place. The value of this c.; depends on the values of the quark
masses. In Fig. 4.3 we show the phase diagram at § = 7 in the (¢, m)-plane for degenerate
quark masses m, = my = m, two phases can be distinguished,

1. (o) # 0, the ordinary chiral condensate.
2. (o) # 0,(n) # 0, the CP-violating phase.

The phase transition corresponds to ¢ and is of second order. A linear relation exists
between the quark mass and ¢ (more on this in Sect. 4.7.1). Note that the value of the
(o) condensate in phase 2 is significantly smaller than its value in phase 1, except close
to the phase transition.
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Figure 4.5: The #-dependence of the normalized condensates, with ¢ = 0.2 > ¢yt
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Figure 4.6: The 6-dependence of the normalized effective potential at ¢ = 0.005 and ¢ = 0.2.

4.5.1 The 0-dependence of the vacuum

When the determinant interaction is turned off, there is no #-dependence. In terms of the
unprimed fields, only the o condensate is nonzero.

In Fig. 4.4 we show the 6-dependence of the various condensates for the case ¢ =
0.005, which for our choice m, = my = 6 MeV is below ¢ =~ 0.008. As can be seen, no
spontaneous CP violation occurs, since () = 0 at § = . Explicit CP violation for other
values of 6 does occur, as expected. In this figure the condensates are normalized with
respect to (o) at # = 0. Both () and {a() are zero for all 8 and this remains true for ¢
above c.j; for degenerate quark masses.

Fig. 4.5 shows the case of ¢ = 0.2. Spontaneous CP violation is clearly visible, as
(n) is nonzero at 8 = . As can be seen two degenerate vacua then exist, with opposite
signs for (). These two degenerate vacua differ by a CP transformation. This is known
as Dashen’s phenomenon (Dashen, 1971) and is also apparent from the #-dependence
of the effective potential. In Fig. 4.6 we show the effective potential as a function of 6
normalized to its value at @ = 0, for the two cases ¢ = 0.005 and ¢ = 0.2. In both cases,
the minimum of the effective potential is at & = 0, in agreement with the Vafa-Witten
theorem. Furthermore, it can be seen that the case with spontaneous CP violation has a
cusp at 6 = m, and therefore a left and a right derivative which differ by a sign. Due to
the axial anomaly, the #-derivative of the effective potential is proportional to (n). This
explains the occurrence of two values for the i condensate.
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Figure 4.7: The (m,, m,) phase diagram of the NJL at 0 = 7 with ¢ = 0.4. The dashed lines denote
second order phase transitions and the dotted line a crossover.

4.5.2 Phase structureatd = r

In this section we concentrate further on the case 8 = 7. We will start with a discus-
sion of the mass-dependence of the ground state. From Creutz (2004) we know that in
three-flavor chiral perturbation theory a region exists in the (m,, m;)-plane where CP is
spontaneously violated, cf. Fig. 2.7. In that case the shape of the CP-violating region de-
pends on the strange quark mass. In the present case it depends on the choice of ¢. Finally
we note that in the calculation when using the two-flavor chiral Lagrangian the shape of

the region is set by the topological susceptibility 7, cf. Fig. 2.8.
In Fig. 4.7 we show the phase diagram of the NJL model at 8 = & with ¢ = 0.4 in the

(my, mg)-plane. Four phases can be distinguished
1. (o) <O, (ag) <0
2. (o) <O, (ag) >0
3. (o) < 0,ad) < 0,(m) # 0,(n%) # 0
4. (o) <O, (ag) >0,(m) #0,(x%)y #0

In phases 3 and 4 two degenerate vacua exist with opposite signs for both () and (7). The
phase transitions between the CP-conserving phases 1 and 2 to the CP-violating phases 3
and 4 are second order. The phases 1 and 2 only differ in the sign for the (a8>-condensate,
the same holds for the phases 3 and 4. The phase transition between the phases 3 and 4
is a crossover, as is the case for the phase transition between phase 1 and 2 for large m,,
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Chapter 4. Spontaneous CP violation in the strong interaction at 0 = 1

and my. Exactly at the crossover, (ag) vanishes and in the CP-violating region the same
applies to ("), but not to (n). The fact that ag-condensation (and n°-condensation in the
CP-violating region) occurs when the masses are not equal simply reflects the explicit
breaking of SU(2)y which occurs for nondegenerate quark masses.

The shape of the CP-violating region is determined by the asymptotes, which are
proportional to c. We conclude that in contrast to two-flavor LO chiral perturbation theory
(the case of m; — oo in Creutz (2004), such that the asymptotes are moved to m,, = m, =
o0), the NJL model does have a spontaneous CP-violating phase for two nondegenerate
quark flavors. This is in accordance with the analysis using the LO chiral Lagrangian of
Tytgat (2000) in the large N, limit and for finite 7/~ > m,,m,. There is however an
important difference between the NJL model and the results obtained from the two-flavor
LO chiral Lagrangian, in the latter case there is always CP violation when m,, and m, are
larger than 7/, cf. Fig. 2.8, which is not the case in the NJL model.

4.6 Finite temperature and baryon chemical potential

In this section we turn to the changes in the phase structure at nonzero temperature and
density. Fujihara, Inagaki, and Kimura (2007) states that the CP-violating phase at 6 = «
does not exist at high temperatures, i.e. a critical temperature exists above which the CP-
violating condensates are zero. Fujihara, Inagaki, and Kimura only considered the case
c= % and small mass. Here we generalize their results to other ¢ values. In Fig. 4.8 the
(T, ¢) phase diagram is shown for degenerate quark masses. The following three phases
arise

1. (o) # 0, the ordinary chiral condensate.
2. (o) # 0,(n) # 0, the CP-violating phase.
3. (o) = 0, the (almost) chiral symmetry restored phase.

The phase structure at 7 = 0 can be understood from Fig. 4.7: for degenerate quark
masses the two phases are encountered on its diagonal. The phase transition occurs at that
particular value of m, = my, for which ¢ = 0.4 is the critical c. The phase transition be-
tween phases 1 and 2 is of second order for all temperatures. This second order transition
is in disagreement with the analysis of Mizher and Fraga (2009), who studied the same
phase transition in the linear sigma model coupled to quarks. In Chapter 5 we will study
this discrepancy in detail.

For nondegenerate quark masses the phases 1 and 2 would correspond to phases 1 and
3 or 2 and 4 of Fig. 4.7 depending on whether m,, is larger or smaller than m,, respectively.
In that case two second order phase transitions are present.

Above a certain temperature one observes in Fig. 4.8 an approximate restoration of
chiral symmetry (phase 3). Note that the chiral symmetry is not fully restored due to the
nonzero current quark masses. The phase transition between phases 1 and 3 is a crossover,
like it is at @ = 0. The crossover line is defined by the inflection points 62 (o) /0T? = 0.
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Figure 4.8: The (7, ¢) phase diagram of the NJL model at & = n. The dotted line represents a
crossover, which is defined by the inflection points 6> (o) /0T> = 0.

At high temperature also the CP-violating phase disappears. This is consistent with
the fact that at high temperature instanton effects become exponentially suppressed (Gross,
Pisarski, and Yaffe, 1981). The CP-violating phase is after all realized due to the instanton
induced interaction. The maximum value of the critical temperature as function of c¢ is
219 MeV.

The analysis can be extended to nondegenerate quark masses, shown in Figs. 4.9 and
4.10, where the phase diagram is shown as a function of the up and down current quark
masses at temperatures of respectively 120 MeV and 150 MeV. It is mainly the high mass
regime that is affected by a nonzero temperature. As the temperature increases, the region
with broken CP invariance gets smaller and the phase transition that crosses the m, = my
line, referred to as the upper boundary of the CP-violating region, moves to smaller values

of the masses. The amount of CP violation decreases with temperature. It is interesting
to see that it is mainly the upper boundary that is affected by the temperature, as it is
not present in LO chiral perturbation theory with anomaly effects, see Fig. 2.8 and is
consequently not taken into account in the discussions of Kharzeev, Pisarski, and Tytgat
(1998). The other 2 boundaries hardly change with temperature, which may indicate that
7/Z (their asymptotic value at T = 0) is only weakly dependent on 7', in contrast to the

assumption in Kharzeev, Pisarski, and Tytgat, discussed in Sect. 1.4. Note however that
Kharzeev, Pisarski, and Tytgat considered the three-flavor case.

We have verified that also for nonzero temperature the minimum of the effective poten-
tial is at & = 0, which means the Vafa-Witten theorem (V(6 = 0) < V(0 # 0)) continues
to hold in the NJL model at nonzero temperature. The same applies to finite baryon and

48



Chapter 4. Spontaneous CP violation in the strong interaction at 0 = 1

450 ——
J \
400 I’ \\ 2 h
'l 4 \\ o
350 ! \ 1
o), <a80>\\
300 | S (m0) N 1]
I SN
— 1 ... \\\
> 250t / RN
= / (o), (ad)y, T~~~
= ) 0 / s \Qg/ <
e 200 (70 (). (x) -
150 b / //’_,— |
FA -
o -
100 S0 1 .
St (@), {at)
50 |7 1
Rod
& 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450
m, (MeV)

Figure 4.9: The (m,, m,) phase diagram of the NJL at § = 7 with ¢ = 0.4 and 7 = 120 MeV.
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Figure 4.10: Same as Fig. 4.9, now for T = 150 MeV.
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Figure 4.11: The (ug, ¢) phase diagram of the NJL model at 6 = 7.

isospin chemical potential. We also have checked whether there are any local minima in
the effective potential at nonzero temperature and density, but we found none. Our results
indicate that 7/X may be T-independent, but -dependent. Probably the #-dependence of
7/Z closes the small window around T that allows for metastable states, cf. the discus-
sion of Sect. 1.4. The two-flavor NJL model in the mean-field approximation therefore
does not support the suggestion of Kharzeev, Pisarski, and Tytgat (1998).

Now we will briefly consider nonzero baryon chemical potential ug = ,, + pg, where
My denote the u, d quark chemical potentials. The (up, ¢) phase diagram is displayed in
Fig. 4.11 for a restricted range of up values. The same phases occur as in the (7, ¢) phase
diagram, but now the phase transition to the (almost) chiral symmetry restored phase is
of first order, like for # = 0. Furthermore, the first-order phase transition has a small ¢
dependence (note the suppressed zero). As always, the phase transition from phase 1 to
phase 2 is of second order.

4.7 Nonzero isospin chemical potential

In quark matter systems equilibrium and neutrality conditions can require that (, # ug.
Son and Stephanov (2001) observed that charged pion condensation can occur for nonzero
isospin chemical potential 4y = u, — pg. At 6 = 0 this second order phase transition
between the ordinary phase of broken chiral symmetry ((o) # 0) to the pion condensed
phase (which also breaks chiral symmetry) occurs when g, equals the vacuum pion mass.
In this subsection we address this issue at 6 = 7.

In Fig. 4.12 we show the phase diagram of the NJL model in the (u;, ¢)-plane, for
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Figure 4.12: The (1, ¢) phase diagram of the NJL model at 6 = 7.

m, = my = 6 MeV. The solid line indicates a first-order phase transition, the dashed lines
indicate second-order phase transitions. The four phases are characterized as follows

1. (0)#0
2. (o) #0, (%) £ 0
3. (o) #0, () £ 0
4. (at)#0

Phase 4 is a novel phase characteristic of § = x. This phase also has a small nonzero
(o)-condensate (not indicated), due to the explicit breaking by the quark masses.

For ¢ < ¢ a nonzero {x*)-condensate exists above a certain y; value. Like at § = 0
the second-order phase transition turns out to be at y; = m,, where m;, is the vacuum pion
mass. In addition, there is a second phase transition, of first order this time, at larger y;,
where charged pion condensation makes way for charged a( condensation. For ¢ > ¢t no
nonzero {n*)-condensate exists, only nonzero (aat). The phase transition between phases
3 and 4 is of first order. The question arises what determines the value of y; at this phase
transition to charged meson condensation? To answer this question, the meson masses
need to be calculated using the methods presented in Sect. 3.3.

4.7.1 The c-dependence of the meson masses and mixing

As said, at 6 = 0 charged pion condensation occurs when y; is larger than or equal to
the vacuum (u; = 0) pion mass. For the NJL model this has been studied extensively in
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4.7. Nonzero isospin chemical potential

Barducci et al. (2004, 2005), He and Zhuang (2005), and Warringa, Boer, and Andersen
(2005). This condition is independent of c. To see what happens in the 8 = x case, we
calculate the c-dependence of the meson masses, with ¢; = 0. The results are shown in
Fig. 4.13. Clearly, at 6 = « the situation is quite different from 6 = 0, shown in Fig. 3.4.

At ¢ = 0 (no instanton interactions) the n7 and 7 masses are equal and also the o and
ao masses. This follows from the symmetry of the Lagrangian at ¢ = 0, which has a
U(2).® U(2)g-symmetry that is spontaneously broken by the chiral condensate (ignoring
the explicit breaking by the quark masses) to U(2)y. This means there are four (pseudo-)
Goldstone bosons, with the same (small) masses: the  and 7 mesons. The instanton
interactions remove the degeneracy for ¢ # 0.

When ¢ > cgit, 1.6. when () # 0, a complication arises: the mass eigenstates are
not CP or P eigenstates any longer. The occurrence of the i condensate results in mixing
of the o-particle with its parity partner, the n-particle. Similarly, the pions mix with
their parity partners, the ag’s. The mixing is to be expected because when the ground
state is not CP-conserving, there is no need for the excitations, i.e. the mesons, to be CP
eigenstates or states of definite parity in case of charged mesons.

The mass eigenstates, denoted with a tilde, are defined in the following way

|6) = cos @, |o) +sinb, ),

i) = cos 6, |n) —sinb, o),
|@o) = cos b lag) + sinb |7),

|7y = cos O |TT) — sin b |ag), (4.18)

where 6, and 6, are the mixing angles. The states on the r.h.s. are the usual states of
definite parity. In Fig. 4.14 the c-dependence of the mixing is shown.

The calculation of the mixing and the resulting masses is similar to the mixing of 7
and ng in the three-flavor NJL-model, which was discussed in great detail in Klevansky
(1992) using the random phase approximation (RPA), which we present in Appendix A.
As a side remark we mention that we also calculate the curvature of the effective poten-
tial at the minimum. This should be proportional to the RPA masses, which we check
explicitly in Appendix A.

When ¢ < cqj no mixing takes place and the tilde fields are equal to their counterparts
without tilde. When ¢ > ¢ mixing occurs. The mixing between 1 and o increases
rapidly as ¢ increases, reaching a maximum at ¢ = 0.09, where & is almost completely n
and vice versa. For larger ¢ the mixing, however, decreases rapidly again, so that when
c= %, G (77) is again equal to o (n).

The mixing between a( and the pions behaves differently; here the mixing angle in-
creases rapidly to become 90° at ¢ = %, i.e.  becomes ag and vice versa.

Now we return to the behavior of the tilde-meson masses, which also display unusual
features as function of ¢, see Fig. 4.13. When ¢ < cj;, the 7 masses are constant, and
equal to the ordinary pion masses. Furthermore, the 77 mass decreases with increasing c.
This is peculiar to 8 = 7, because at § = 0 the 7 mass increases with increasing c¢. The 7
mass has its lowest, nonzero value at c.;;. This is in contrast to three-flavor lowest order
chiral perturbation theory (Creutz, 2004), where the 7 mass (in Creutz (2004) actually the
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Figure 4.13: The c-dependence of the meson masses at # = m. The masses are calculated in the
RPA.
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Figure 4.14: The c-dependence of the mixing-angle of the mesons at § = &. The mixing is calculated
in the RPA.
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4.7. Nonzero isospin chemical potential

7 mass using the primed theory) vanishes at the phase transition. Finally, also the masses

of the ay’s and o decrease slightly with increasing c¢. From the fact that m,, ~ 0 at ¢,
the current quark mass dependence of ¢ as discussed in Sect. 4.5 can be deduced. The
mass of the 7 meson (Eq. (3.21)) at 6 = & for small ¢ is given by

.m __c 419
" M 2Gol, ~ Golo (4.19)

resulting in the following expression for ¢

m

crit ¥ 537 4.20
Cerit M ( )

This confirms the linear dependence on m found in Fig. 4.3, which indeed has a slope
approximately equal to 1/2M ~ 1/800 MeV, where M is the constituent quark mass at
c=0.

When ¢ > ¢ the c-dependence of the masses changes dramatically. The # mass
now decreases monotonically with increasing ¢, whereas the ay and & mass both increase
monotonically to infinity towards ¢ = % The latter can be understood, because when
c = %, G, equals G, which as mentioned means for § = x that there are no 7 and o
mesons in the spectrum.

Another striking feature is that the 77 mass rises until it almost reaches the & mass,
after which it remains approximately constant. The behavior of the & mass is opposite,
first it is almost constant and when it becomes almost equal to the m; mass it increases to
infinity. The masses of ¢ and 7 cannot cross when there are interactions that mix the two
states, which is similar to level repulsion in quantum mechanics. The point where both
masses are almost equal corresponds to a mass that is twice the constituent quark mass.
This forms the threshold to decay into two quarks, which makes one of the two mesons
unstable when ¢ > c;.

Fig. 4.13 strengthens the conclusion that Nature is not described by 6 = 7. From Bég
(1971) we know that no CP-violating condensate is present in the vacuum, so if § would
be equal to m, ¢ has to be smaller than c.;. But when ¢ < ¢ and 8 = «, the mass of
the n meson is always smaller than the mass of the pions and the decay of 7 into pions is
prohibited, as opposed to the case # = 0. This decay is observed in Nature, meaning that
the physical 7 mass is much larger than the pion mass, hence we can conclude that the
NJL model also indicates that # = 0 in Nature, a conclusion already reached by Baluni
(1979), Crewther et al. (1979), and Kawarabayashi and Ohta (1981) by looking at the
electric dipole moment of the neutron, see Sect. 1.2.

Now we turn again to the original question concerning the charged meson condensa-
tion phase transition. From the calculation of the masses of the tilde-mesons, we infer that
the condition for charged meson condensation at 8 = & is u; > myz(c). For ¢ < cui, the
phase transition takes place when p; equals mz = m,, as it does at 8 = 0. For ¢ > ¢ it
takes place at the mass of 7, which is now a mixed state of 7r and ay. Atc = % this means
at the mass of the ay. The latter observation is in agreement with a result of Metlitski and
Zhitnitsky (2006), where the (u;, ) phase diagram of degenerate two-flavor chiral pertur-
bation theory is investigated to lowest order at effectively ¢ = % (due to the absence of the
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Chapter 4. Spontaneous CP violation in the strong interaction at 0 = 1

n meson). There it is observed that charged pion condensation occurs when g is equal
to the #-dependent pion mass m,(6). In Metlitski and Zhitnitsky (2006) all §-dependence
resides in the mass matrix, with both quarks having a 6-dependent mass. Hence, their
#-dependent pion field corresponds to what we call n’, which at 8 = « is the a field in
the original, unprimed theory, leading to an agreement with our finding.

The second phase transition for ¢ < ¢ from the charged pion condensed phase to
the charged a( condensed phase does not correspond to y; being equal to a meson mass
calculated at u; = 0. Although we have not found a condition in terms of the calculated
masses, y; at this first-order phase transition follows a line that is the smooth continuation
of the 7 mass in the region ¢ > ¢ to infinity at ¢ = 0. A calculation of the meson masses
at nonzero uy, such as performed by He and Zhuang (2005) for the 8 = 0-case, might
resolve this open issue.

4.8 Conclusion and discussion

The 6-dependence of the ground state of the two-flavor NJL model is investigated in the
mean-field approximation. The main focus is on the case 6§ = &, when spontaneous CP
violation is possible. The #-dependence of the theory is found to strongly depend on the
strength of the ’t Hooft determinant interaction. When the strength of this interaction,
which is governed by the parameter c, is small or zero, no spontaneous CP violation takes
place at § = m. The low-energy physics is then almost the same as at 8 = 0, except that
the 77 mass is smaller than the pion mass at 6 = . At larger ¢ however, spontaneous CP
violation does take place at 6 = 7. So the phenomenon of spontaneous CP violation is
governed by the ’t Hooft determinant interaction, which describes the effect of instantons
in the effective theory. The question whether c is sufficiently large for CP violation to
occur at = 7 depends on the quark masses. In other words, spontaneous CP violation
requires instantons, but its actual realization depends on the size of their contribution w.r.t.
the quark masses. This is also expected to be the case in QCD, where it can be phrased in
terms of the low-energy theorem identity Y, 2im, (gysq) = =Ny (g*F, Fi") /87* (cf. e.g.
Metlitski and Zhitnitsky (2005)), which relates (1) to the first derivative of the effective
potential w.r.t. §. Depending on m, the coupling constant g needs to be sufficiently large
for spontaneous CP violation to take place. Or in other words, the energy needs to be
sufficiently low. The latter observation is in agreement with the disappearance of the CP
violation at temperatures above a certain critical temperature or density. Therefore, we
conclude that spontaneous CP violation in the strong interaction is an inherently low-
energy phenomenon.

We have checked that the Vafa-Witten theorem holds in the NJL model also at finite
temperature and density and found that no local minima arise, indicating the absence of
metastable CP-violating states in the NJL model. We have confirmed several previous re-
sults that were obtained in two-flavor chiral perturbation theory. We found (in accordance
with the results of Tytgat (2000)) that two-flavor lowest-order chiral perturbation theory
(i.e. T — o) is in general not rich enough to yield results that one might expect to hold
in QCD too. It leads for instance to the conclusion that only for m, = m,; spontaneous
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CP violation occurs, without a critical strength of the instanton induced interaction. In
contrast, the phase diagram of the two-flavor NJL model is very similar to that of three-
flavor chiral perturbation theory (Creutz, 2004), where spontaneous CP violation arises
for specific ranges of quark masses.

We also found that the presence of a nonzero n-condensate has a strong effect on the
c-dependence of the meson masses and gives rise to mixing among the states of definite
parity, as expected when CP invariance is not a symmetry anymore. As a result, the pions
mix with their parity partners, the a¢’s, and the 7 meson mixes with its parity partner,
the o meson. Unlike the mixing discussed as a function of 6, (i.e. the “primed” fields of
Eq. (1.31)), which is just a matter of consistently naming the states in order to be able to
compare to results obtained with negative quark masses and which does not affect physical
results, the mixing as function of ¢ does change the physics. For instance, the condition
for charged pion condensation at nonzero isospin chemical potential becomes modified.
At 8 =« for ¢ < cgi, a second-order phase transition takes place when y; equals m,, just
as at § = 0 found by Son and Stephanov. However, we find that for ¢ > ¢ it becomes
a first-order phase transition to a novel phase of charged a, condensation that takes place
at the mass of 7, which is a mixed state of 7 and ay. At c = % it is entirely ag. Charged
a( condensation also arises for ¢ < ¢t and p; > m,, but it appears there is no condition
in terms of vacuum meson masses for this second phase transition.

We expect the presented two-flavor NJL. model results to remain valid when going
beyond the mean-field approximation, but this remains to be studied. The three flavor case
would also be interesting to study, as in that case in the chiral limit the high temperature
chiral phase transition is of first order, see Sect. 2.5. This is connected to the U(1)4-
anomaly, see Sano, Fujii, and Ohtani (2009) for a related study in a chiral random matrix
model. Finally, it would be very useful if the results could in the future be compared to
lattice QCD results on the low-energy physics at 6 = 7.
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Chapter 5

The high temperature
CP-restoring phase transition at
0=mn

In the previous chapter the phase structure of the 2-flavor NJL model at 6 = 7 was dis-
cussed, in particular the conditions for spontaneous CP violation, known as Dashen’s
phenomenon were considered. It was found that this CP violation disappears as a second
order phase transition as a function of temperature. In this chapter we will study the tem-
perature dependence of Dashen’s phenomenon in detail in comparison to another model,
the linear sigma model coupled to quarks (LSMg), which has been studied by Mizher and
Fraga (2009). Despite being very similar to the NJL. model, it predicts a first order phase
transition. In this chapter, we will see that the origin of the difference is a nonanalytic
vacuum term present in the NJL model, but usually not included in the LSMg model.
This chapter is largely based on Boomsma and Boer (2009).

5.1 Introduction

Both the NJL model and the linear sigma model coupled to quarks are models that aim
to describe the low-energy phenomenology QCD, especially chiral symmetry breaking.
Furthermore, in both models the effects of instantons are included through an additional
interaction, the 't Hooft determinant interaction ('t Hooft, 1976, 1986). Both models
exhibit Dashen’s phenomenon, which turns out to be temperature dependent. This is to
be expected, because at high temperature the effects of instantons, which are needed for
the CP violation, are exponentially suppressed (Gross, Pisarski, and Yaffe, 1981). In both
models the spontaneous CP violation at 6 = 7 disappears at a critical temperature between
100 and 200 MeV. However, the order of the phase transition differs, in the NJL. model the
transition is of second order, whereas in the LSMg model it is first order. This difference
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5.2. The NJL model

is important, because a first order transition allows for metastable phases, in contrast to a
second order transition.

Although the NJL and LSMg model are not the same, they are closely related. Eguchi
(1976) has shown that one can derive a linear sigma model from the NJL. model, a pro-
cedure known as bosonization (discussed in Sect. 5.4). However, the effects of quarks
are treated differently in the two models, which was already discussed by Scavenius et al.
(2001) at 8 = 0. In the case of the LSMg model the effects of the quarks are usually only
taken into account for nonzero temperatures, whereas in the NJL model their effects are
necessarily incorporated also at zero temperature. Scavenius et al. (2001) found that the
order of the chiral symmetry restoring phase transition at # = 0 was the same in both
models, but the critical temperatures differ. While the qualitative aspects of the phase
transition are similar at § = 0, this is not the case for the high temperature CP-restoring
phase transition at 8 = & as we will discuss in detail. We should mention here that the
situation at # = 0 depends on the amount of explicit chiral symmetry breaking. Schaefer
and Wambach (2007) observed that when the pion mass is reduced in order to study the
chiral limit, neglecting the effects of the quarks at zero temperature can affect the order of
the high temperature phase transition at 8 = 0 too.

Although there is a CP-restoring phase transition at high chemical potential also, in
this chapter we will restrict ourselves to the temperature dependence of this phase transi-
tion at § = 7, because there the differences between the two models are most pronounced.
The chapter is organized as follows. First, the effective potentials of both models are
analyzed analytically, which will allow the determination of the order of the phase tran-
sitions using standard Landau-Ginzburg type of arguments. A comparison to numerical
results obtained earlier corroborates these conclusions. Subsequently, we will discuss the
bosonization procedure of Eguchi, which relates the NJL. model to a linear sigma model
and allows us to further pinpoint the origin of the similarities and differences with the
LSMg model. We end with some brief comments about chiral perturbation theory and
QCD.

5.2 The NJL model

As discussed in Chapter 4, to calculate the ground state of the theory, the effective po-
tential has to be minimized. In the following we will only consider the case of unbroken
isospin symmetry, such that only nonzero () and/or {J/iysi) can arise. At 6 = 0 only
() becomes nonzero. A nonzero (Yiysys) signals that CP invariance is broken, i.e., it
serves as an order parameter for the CP-violating phase.

To obtain the effective potential in the mean-field approximation we start with Eq. (3.2)
and “linearize” the interaction terms in the presence of the (Jay) and (¥iysy) condensates
(this is equivalent to the procedure with a Hubbard-Stratonovich transformation used in
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Chapter 4)
W) = 20w d — ()’
Wiysw)® = 2 (Piysy) Giysw — (Fiysw),
W) WBiyswr) = () Giys + Diysw) b — Q) (Fiys) . (5.1)
leading to

(G =Gycos O)a} _ (Gi+Gycos 0)B; _ (GasinB)agBo
4(G% - G%) 4(G% - G%) Z(G% - G%) ’
5.2)

L = 0 (0, — M)y

where .# = (m + ag) + Boiys and
@y = —2(G1 + G, cos 9) <lplﬁ> +2G, sin0(tﬁiy5lﬁ) ,
ﬁo = —2(G1 — Gy cosb) (l/_ll’)/51[1> + 2G2 sin 9((;(#) . (53)

Note that we have kept the 6-dependence in the determinant interaction term. This La-
grangian is quadratic in the quark fields, so the integration can be performed. After going
to imaginary time the thermal effective potential in the mean-field approximation is ob-
tained (Warringa, Boer, and Andersen, 2005)

e @(G1—=Gycos)  BI(Gi+Gycosh)  GragBysinf
NIL = 7 o + 7 2 2o
NG -GD) NG -G | 2AGC-G)

+V,, (5.4)

with

dp
Vy=-TN, > f Gy 102 det K. (5.5)

po=2n+1)nT
and where K is the inverse quark propagator,

K = (iyopo +vipi) — A . (5.6)

In order to calculate the effective potential, it is convenient to multiply K with vy, like
we did in Chapter 4. This multiplication does not change the determinant, but gives a
new matrix K with ipo’s on the diagonal. It follows that det K = H?:l (4; — ipo), where
A; are the eigenvalues of K with py = 0. Because of the symmetries of the inverse
propagator, half of the eigenvalues are equal to E, = +/p? + M? and the other half to
Ep = —/p? + M?, with M? = (m + a)* + 3. After the summation over the Matsubara
frequencies, we obtain

dBP Ep —E,/T
V, = —8ch(2n)3 [7 +Tlog(1+e /7). (5.7)

At T = 0 this integral can be performed analytically. A conventional non-covariant three-
dimensional UV cut-off is used to regularize the integral and yields:

Mog (% + 1+ 42 )= A (M2 +207) 1+ 42

3272

VI=0 =y, M|

q , (5.8)

where the degeneracy factor v, = 24.
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Figure 5.1: The temperature dependence of the condensates in the NJL and linear sigma model.

5.2.1 The CP-restoring phase transition

In this section the high-T CP-restoring phase transition at 8 =  is investigated in detail.
As was shown in Chapter 4 the phenomenon of spontaneous CP violation is governed
by the strength ¢ of the 't Hooft determinant interaction. It will be assumed that c is
0.2, which following the arguments of Frank, Buballa, and Oertel (2003) is considered
realistic. But in fact, the critical temperature is to very good approximation c-independent
for ¢ above ~ 0.05, as can be seen from the (7, ¢) phase diagram given in Chapter 4.

We will start with a numerical minimization as a function of the temperature, the
results of which, together with those for the LSMg model, are shown in Fig. 5.1. One
observes that the critical temperature of the NJL model is significantly larger than the one
of the linear sigma model, in agreement with the results of Scavenius et al. (2001) for the
chiral phase transition at 8 = 0. Furthermore, the order of the phase transition is clearly
different, contrary to the results of Scavenius et al. (2001) for 6 = 0.

Next we will derive an analytic expression for the effective potential for the NJL
model. Two important observations which can be made from the numerical study will be
helpful. First, we note that @ is very small and constant as long as 3y is nonzero, which
allows us to approximate M? ~ ﬂ%. Furthermore, Sy and hence M can be considered
much smaller than n7 and A, allowing expansions. These observations simplify our study
considerably.

The phase transition occurs for M much smaller than A, so Eq. (5.8) can be expanded
in M/AatT =0:

=0 MilogM? M*log(4A2) a4 A2pp2 A4
g V|~

6ar T e 12 162 1o |0 O
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For the phase transition, the non-analytic term M*log M? turns out to be very important.
We will see that it is exactly the absence of this term at finite temperatures in the NJL
model that causes the differences between the two models.

Usually the temperature-dependent part of the potential has to be evaluated numeri-
cally, however when M < nT the integral can be expanded in M/T. As can be inferred
from Fig. 5.1 it is exactly this regime which is relevant for the phase transition. Note
that the temperature-dependent part of the potential is UV finite, which means that for
this part the cut-off can be taken to infinity. In Chapter 4 this was not done, leading to
a slightly larger critical temperature. Performing the expansion, we obtain (Kapusta and
Gale, 2006)

dp T4 MPT?
T _ _ I -E,/TY\ _ _ s -
Vy = qu(zn)3T1°g<1+e ' )_V‘f[ 720 48

m* 301, M
yE——+—logF—log7r + e

From this expansion one can see that also the temperature dependence contains a loga-
rithmic term, that will precisely cancel the one of Eq. (5.9) when added together.
Using that M? ~ ,8%, we end up with the effective potential

VYE(T) = A(T) + By (T)B5 + Cran (T)B5, (5.11)
where

(77474 + 45A%) v,

AnyL(T) = — A2
(1) T30m2 , (5.12)
(7T2T2 - 3A2) V4 1 s
B (T)= ———F"—— + — .
NL(T) 182 + Gy’ (5.13)
(log (4A%) = 10g %) vy (=1 + yg — log )y,
Cnu(T) = E 5.14
(1) P + oA (5.14)

One observes that the log M?-term at zero temperature is cancelled by the log M?-term in
the temperature-dependent part of the potential. Hence, as long as 8y < nT, A the potential
contains no logarithms and is fully analytic. We note that the potential of Eq. (5.11) is the
same as the one in the chiral limit at 6 = 0, with S, replaced by «y.

The phase transition occurs when Byjr.(T) changes sign. As the potential is symmetric
and quartic in the order parameter, we conclude (following Landau-Ginzburg arguments)
that the phase transition is of second order, which the numerical analysis corroborates.
The critical temperature is equal to

3v,GoA? — 1272
N _ [P0 T IS es e (5.15)
¢ Gor?v,

AslongasT < % exp(—1+yg) = 246 MeV, CyyL is positive, indicating that higher order
terms in 3y are not needed in the analysis.
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5.3 The LSMg model

The linear sigma model coupled to quarks, like the NJL model, is an effective low-energy
model for QCD (Pisarski, 1996; Scavenius et al., 2001; Paech, Stoecker, and Dumitru,
2003; Schaefer and Wambach, 2007) similar in form to the Gell-Mann-Lévy model (Gell-
Mann and Lévy, 1960). It is a hybrid model that includes both meson and constituent
quark degrees of freedom, the latter only at nonzero temperature however. As was the
case in the NJL model, the effects of instantons are included via the ’t Hooft determinant
interaction ("t Hooft, 1976, 1986). In this chapter the analysis of Mizher and Fraga (2009)
is followed.

We will start with the 7 = 0 case, when only mesons are considered. The Lagrangian,
which contains all Lorentz invariant terms allowed by symmetry and renormalizability
has the following form, using a slightly different notation than Mizher and Fraga (2009)

1

7. lT f Iy G A i A2 T )2
Ls =5 1(0,0'0"¢) + ETT@ ) — —[Tr(¢'P)]” - ZTT[(¢ é)7]

4
K. i -0 + 1 i +
+ 2[6 det(¢p) + e det(¢')] + 2Tr[ \/E(gb +¢")], (5.16)
where ¢ is the chiral field, defined as
¢ = %(O’+i7])+%(ao+iﬂ')')\. (5.17)

The Lagrangian incorporates both spontaneous and explicit breaking of chiral symmetry,
the latter through the term proportional to H. To study this symmetry breaking, we can
concentrate on the potential corresponding to Eq. (5.16), expressed in the meson fields

2
(VEEO = _%(0_2 i+t + a%)
- gcoséi(a2 + —772 —aé)
+k sinf (on—m-ag) — Ho
1 A
+ Z(/ll + 72)(0-2 +7 + 7+ ad)?
21
+ Tz(crao + w4 X ag)’ (5.18)

The spontaneous symmetry breaking manifests itself through nonzero o~ and 1 conden-
sates and are obtained by minimizing the potential. We allow for these condensates by
shifting the fields

oo op+s, n—on+h, (5.19)

where o and 7 are the values that minimize the potential and s and / are the fluctua-
tions. These oy and 7, are proportional to the condensates a( and 3y of the NJL. model,
respectively.
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The potential can now be split in two parts, a vacuum part and one that depends on
the fluctuations, i.e.,
T=0 _ vac,T=0 fl
Vis =V + VS (5.20)

First we concentrate on the vacuum part, which is given by the following expression:

_ A A A A
PYyer=0 = Z(ag —v2? —Hoo+ ng —u2)? +k sin@ ogno + Eagng - Z(v;} +up), (5.21)
where we have defined the combination of couplings 4 = A; + A,/2, and follow the
notation of Mizher and Fraga (2009):

L 6 2
2 ‘% : ugzvg—fcose. (5.22)

This part of the potential determines the phase structure and has to be compared with the
NIJL expression (5.9). The main difference is that this potential is fully analytic and does
not contain any logarithmic terms.

The part of the potential that depends on the fluctuations is used to determine the
parameters u2, x, H, A; and A, in Eq. (5.16). They are obtained by fitting the masses
contained in "Vﬁgc and the pion decay constant at § = 0 such that the model reproduces
the low-energy phenomenology of QCD. At =0 ‘Vﬁg‘: has the following form

V

1 1
‘VE‘S“ = 3 [m.z,rﬂ'2 + m(zrs2 + min2 + minaé] + (/11 + 5/12) (J'Os(s2 +7+ 772)

3 1 1 2
+ (/ll + 5/12) Uosa(z) + Loonm - ap + (Z/ll + g/lz) (s2 +7+ 772 + a(z))

+ %/lz [(sao + 7771')2 + (X ao)z] . (5.23)

The masses depend on the parameters of the model as follows:

1
m2 = -’ —k+ 5(241 + )o?,

™

3
m> = -’ — K+ 5(241 + )og,

o

3
m’ = —,112 +Kk+ (A + 5/12)0'3,

ao

1
my =~ + Kk + (A + z/lz)o-g. (5.24)

The mass values used are: m, = 138§MeV, m, = 600MeV, mq, = 980MeV, and
m, = 574 MeV.

At nonzero 6, no becomes nonzero, which alters the mass relations. Furthermore,
cross terms like o become nonzero, signalling that the mass eigenstates are no longer
CP eigenstates, as discussed for the NJL model in Chapter 4. As a consequence, the o-
field mixes with the n-field and the 7r-field mixes with the ay-field. We will not give these
expressions explicitly here.
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5.3. The LSMq model

5.3.1 Spontaneous CP violation at 0 =

Similarly to the NJL model and chiral perturbation theory, for a range of values of the
parameters the linear sigma model violates CP invariance at 8 = 7. In this section we will
discuss this violation in the same way as we have done in the NJL model, i.e. varying the
instanton interaction, but keeping the masses of the pions and o meson fixed. In the case
of the linear sigma model, this means that the combination u% = 1 + k is kept fixed. It
turns out that a critical value of « exists, below which there is no spontaneous CP violation
at @ = n. For values of « larger that the critical value, the model exhibits spontaneous CP
violation at @ = . The critical value of x will be denoted as k.

In order to find the ground state, (Vfgo has to be minimized, which at § = 7 boils
down to solving the following two equations

T=0
6(8‘;]-_5 = o'o(/l(né + 0'(2)) + 2/(—#(2)) —H=0,
VIS
677L0S = o (/l (’73 + 0’3) - ﬂg) =0. (5.25)

When « is small, the following values of the condensates minimize the potential

YZ-X
op= ——,
T 3y
no =0, (5.26)
where we have introduced
X = 6xkd - 343,

31 27
Y= \/E VT29H? 2% + 4X3 + 7H/12. (5.27)

This solution corresponds to a CP-conserving ground state. When « is large, the minimum
corresponds to the following values of the condensates

o = H
0= 50
\JAud? — H?A
o= ° (5.28)
2k VA

In case iy # 0, this solution violates CP invariance. When this solution obtains a real
value for 19, i.e. kK > Kerit = H Va/ (2uo), it becomes the global minimum. The value of «
chosen in this chapter is higher than ., consequently the model spontaneously violates
CP invariance at § = m. The CP restoring phase transition is second order as function of
k. Next we will look at the order as function of 7.
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Chapter 5. The high temperature CP-restoring phase transition at 0 = «

5.3.2 Nonzero temperature

In the LSMg model the quarks start to contribute at nonzero temperatures. In fact, it is
assumed that all the temperature dependence comes from the quarks. Scavenius et al.
(2001) argued that this approach is more justified for studying high 7" phenomena than
considering only thermal fluctuations of the meson fields, because at high T constituent
quarks become light and mesonic excitations heavy. For the study of the chiral phase
transition at 6 = 0 this approach yields results that are qualitatively similar to those of the
NJL model.
The part of the LSMq Lagrangian that depends on the quark fields is:

Ly =y lip—g (o +iysn+ag- XA+ iysm-N)|y. (5.29)

The quark thermal fluctuations are incorporated in the effective potential for the mesonic
sector, by means of integrating out the quarks to one loop (Mizher and Fraga, 2009). The
resulting quark contribution to the potential is given by

T d3P —E,/T
V] =—vquTlog(l+e o). (5.30)

This expression is equal to the temperature dependent part of the NJL model Eq. (5.10),
with again E, = +/p? + M? and the constituent quark mass M depends on the vacuum

expectation values of the meson fields in the following way: M = g (0'3 + r]%), where g
is the Yukawa coupling between the quarks and the mesons. A reasonable value for the
constituent quark mass at § = 0 fixes this coupling constant. In Mizher and Fraga (2009)
(and here) g = 3.3 is used, which leads to a cross-over for the chiral phase transition as a
function of temperature at & = 0 and to a constituent quark mass of approximately 1/3 of
the nucleon mass.

5.3.3 The phase transition

With all parameters fixed, we can study the CP-restoring phase transition at 6 = x in the
LSMg model. This was studied in detail, along with other values for 6, by Mizher and
Fraga (2009). There also the effect of a magnetic field was discussed, which we will not
take into account in this chapter.

We are now going to follow the same procedure as for the NJL model to study the
details of the phase transition. Again, we start the discussion with numerical results of the
minimization of the effective potential, this time the results of Mizher and Fraga (2009),
shown in Fig. 5.1. From this figure, two simplifying assumptions can be inferred. First,
as was the case for the NJL model, in the neighborhood of the phase transition M < nT,
allowing Eq. (5.30) to be expanded in M/T as in Eq. (5.10). Secondly, o is much smaller
than 79 which means that we can neglect the op-dependence. This assumption leads to
a small error near 9 = 0, but as we checked explicitly this is not important since the
structure of the extrema of the potential is not altered.
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5.4. Relation between the models

Summing the contributions at zero and nonzero temperature gives the following form
for the effective potential

VYS(T) = Ars(T) + Bus(Tng + Cus(T)ng + Drsng log g, (5.31)
where
ALs(T) = -anT‘*v (5.32)
S 720 v ‘
1
Bus(T) = 3¢ (&°T%vy = 24(% + 1)), (5.33)
1 (vq(log(Z)+ve-3)g*
Cis(T) = — al (”T) i) +81], (5.34)
32 2
4
8 Vg
D= >-2% 5.35
Ls = o (5.35)

The form of this potential is clearly different from the one of the NJL model Eq. (5.11),
the difference being the uncanceled logarithmic term. This term proportional to Dy g will
always cause the phase transition to be of first order. As observed for the NJL model, also
in this case the potential is exactly the same as the chiral limit at § = 0, with n replaced
by 0. Beyond the chiral limit the explicit symmetry breaking term ~ Ho (which has
no analogue at 8 = m) will change the first order transition into a cross-over, unless the
Yukawa coupling g is increased sufficiently (Paech, Stoecker, and Dumitru, 2003; Schae-
fer and Wambach, 2007). We conclude that the absence of explicit CP violation through a
linear term in 79 at € = 7 lies at the heart of the difference between the observations made
here and those by Scavenius et al. (2001).

Like in the NJL model, it is the sign flip of By g that modifies the structure of the min-
ima. But instead of a phase transition, now a meta-stable state develops at 170 = 0. When
By s(T) becomes larger than 2Dy g exp(—% - CLDS—L(ST)) the original minimum disappears. Be-
tween the two spinodals the minimum jumps, signalling a first order transition.

When the parameters of Mizher and Fraga (2009) are used, we obtain the following
values for the spinodals: 118 MeV and 129 MeV. To find the exact point of the phase
transition, the potential has to be minimized numerically, giving a critical temperature of
126.4 MeV. As already noted, this is significantly lower than 7ML, but the specific values
depend on the parameter choices made. As should be clear from the previous discussion,
choosing different parameters would not affect the conclusion about the different orders of
the phase transition, at least as long as M < 7T, A and k > —u? (equivalently, m> > 3m2
at T = 0).

5.4 Relation between the models
As mentioned, the LSMg model is a hybrid model for mesons, which are coupled to

quarks at nonzero temperature, and the NJL model is a quark model, where the bosonic
states of quark-antiquark fields are interpreted as mesons. Eguchi (1976) has shown how

66



Chapter 5. The high temperature CP-restoring phase transition at 0 = «

to derive from the Lagrangian of the NJL model a Lagrangian for the mesonic excitations
for G, = 0. This bosonization procedure is reviewed in Klevansky (1992). Here the
corresponding meson Lagrangian will be derived for G, # 0, which was also studied by
Dmitrasinovic (1996) in the chiral limit.

The situation will be reviewed for # = 0, when only the ¢ receives a vacuum ex-
pectation. The case 6§ = x is very similar, then also {(iysy) becomes nonzero, which
approximately doubles the number of terms one has to incorporate. However, the struc-
ture one obtains remains the same. We start with the Lagrangian given in Eq. (3.2). The
generating functional is given by the standard expression

_ 1 _ _ _ _
zee -y [ wwexp(i | d4x[$NJL<w,w>+w§+§w]), (5.36)

where & and ¢ are the antifermion and fermion sources and N is a normalization factor
which will be suppressed from now on. Next we introduce auxiliary fields o, n, 7 and ag
and a new Lagrangian .#” such that the effective potential can be written as

ZIE.¢) = f DYDIDr DyD7Dag exp (z‘ f d*x | L 0, w>+¢z§+«§w]), (5.37)
with

Lo =ylid—m—-g(o+iysn+ao- A+iysm- Ny

- %5;& (o7 +m?) - %5;@ (7’ +ag), (5.38)

and
2 2

_ g 12 = g

2Gi1+Gy)’ 7 2Gi -Gy
Here g is again the Yukawa coupling between the quarks and mesons, which in the case
of the NJL model can be evaluated and indicates that the NJL. model is in this respect less
general than the LSMg model. The following value is obtained

ol (5.39)

d* 1
g% = —4N,i P

cl W (1)2——M2)2 , (540)

which requires some regularization.
Integrating out the quarks gives the following generating functional

ZIE €] = f DoDnDrDay exp (iSNJL

_ 1
. 4
Hfd xfiﬁ—m—g(S+iVsn+ao'>\+i757r->\)§) 64D
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where the action Sy is given by

Sni. = fd4x [—%5#% (0'2 + 71'2) - %5/1% (772 + a%)

—iTrloglid—m—g(o +iysn+ag- A+iysw-N)]. (5.42)

Assuming that only the o-field receives a vacuum expectation value o, i.e., 0 = 0 + s,
the action can be split into a vacuum part and a part that depends on the fluctuations,
which are the mesons s, 7, 7, ag:

SniL = S+ Sh (5.43)
with

1
S;fszfd“ [—56;1,00] iTr log [ip — M],

1 1
Sﬁ;}i = fd“x [—56;1% (s2 + 2005 + 7r2) - Eé,u% (n2 + a%)

1
—iTr log|1 — - g(s+iysn+ag- A+iysm-N)|, (5.44)
ip—M

and the constituent quark mass M = m + go. In order to obtain a local action for the
meson fields, the nonlocal fermionic determinant in S is rewritten using a derivative

NJL
expansmn.
—iTr log |1 — ! g(s+iysn+ag- A+ iysw-N)| = Z um, (5.45)
ig—-M -
where ;
1 1
U™ = —Tr | - g(s+iysn+ag-X+iysm-N)| . (5.46)
n ip—M

From power counting we note that U with n > 5 are convergent and the rest is divergent.
Only the divergent parts of the U M with n = 1,2,3,4 will be taken into account. As
an example, we will present the calculation of the scalar contribution to U®, following
Klevansky (1992).

We start with the expression for the scalar contribution to U @ which is shown dia-
grammatically in Fig. 5.2 and is equal to

. 4
@ -2k d’p ! !
Ui=¢ Trf(z ARy VAr Ry VAL
d4p d4
= 2ig’N;N, fxd?
e L
o p+M?
x =Py pp+ s(x)s(y). (5.47)

(P> = M*)(p? - M?)
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Chapter 5. The high temperature CP-restoring phase transition at 0 = «

Figure 5.2: The scalar contribution to U’ @, the double dashed lines denote the s-field.

Now we Taylor expand the field s(y)

1
SO) = 5() + (v = 0 0u8(0) + 5O = 2 = 0 Fuys(0) + -, (5.48)
and insert this expansion in Eq. (5.47)

0P = 0P+ 2, + U9 (549

50,0y o
The first term is given by
d4p d4p/
U®?|, = 2ig’N/N, f —_d*xd*
s |s2 18Ny (27.[)4 (271.)4 xay
pp+M

(P? = M2)(p™ = M?)
2

d*p M
YY) 4 2
=2ig NCfo 20 d*x PEyYe s(x)

x ! P=P)(x=y) s(x)2

= (g*1, - 2M?g* 1) f d*x s(x)%, (5.50)

where we have put Ny = 2 and introduced the following two (divergent) integrals

d 1
Iy=-4Ni | =2 ——
2m)* (p* — M?)?

(dp 1
12 = 4Nclf(27)4m, (551)

which will be regularized using the three-dimensional UV cut-off. Note that I, = g~2.
The second term is linear in the derivative and vanishes. The last divergent term is the
third one, which is given by

d‘p d*p’ dhedt

U =ig’N/N, | —— d
s 159,0,s 181Ny Q2n)* 2m)* Y
i (x—y "op+ M? v
x £ P=P) () T —pM;;(p’z Byye) s = XY (y = x)"0,0ys(x)
d*p d*p’
) 4 4
= ig’NsN, ——d'xd
18 Ny n)* 2n)* raz
o ' p+ M2
xe-pri___ PP s(x)2 8,0, 5(x), (5.52)

(P> = M*)(p? — M?)
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where z = x — y. Using /P77 = i%ei(f""")'z = i, ?7""% and performing the
u
integration over z gives

d4p d4p/
U® = ig’N;N, f ——d*
s Isa,a,s = 18 VS 2n)? 2n)f X

poptM ,
,0%,0(p —p'), 5.53
(P2 — M2)(p2 — M) P r (p=p) (5-33)

X 5(x)0,,0,5(x)

which after the p’-integration can be brought to the following form, only taking the diver-
gent term into account

d4p g
v = ig*N.N f d*x 5(x)0,0,5(x) —>———
R e N T
1
= 58l f d*x 8,508 s(x). (5.54)

The other divergent U™-terms can be evaluated in the same way. The following
Lagrangian is obtained after the summation of these U, which integrated over space-

time, yields i :

1 1
LA = 3 [(3ys)2 +(0,m)* + (0,a3)* + (6,471')2] -3 [mf,ﬂ-2 +myss +my + mioaﬁ]

1 2
- g3s(s2 i+ + 3ag) —2g3nm - ag — §g4 (sz +l 4+ a%)
— 284 |(sag + ) + (7 x ag)?]. (5.55)
The masses and coupling constants have the following values

2 1 12 m 1
m._= ———42—=——,
T 2Goly Iy M 2Gyly
m2 = mki +4M?,
1 I
2 2
S Y-
=20 = 200Goly o
mio = m,27 + 4M2,
2M

_ _ 1/2
8= I 2Mg,'”",
0
1
g4 1_7
0
§= (5.56)

0

The resulting masses (when the integrals are regularized using a three-dimensional UV
cut-off) are equal to the ones obtained using the random phase approximation used in
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Chapter 5. The high temperature CP-restoring phase transition at 0 = «

Chapter 4 (where the dependence on the external momentum of the generalized /) defined
in, for example, Klevansky (1992) has been neglected). The Lagrangian (5.55) without
the a( and n-fields was also given in Ebert and Volkov (1983). In the chiral limit the
results agree with those of Dmitrasinovic (1996).

Eq. (5.55) is equal to the fluctuation part of the linear sigma model Lagrangian (5.16)
using the following parameters

A1 =0,
Ay = 4/,
'uZ = 2M2 — ;’
2(1 = 26)Goly
c
K= —————,
2(1 = 26)Golo
m
= — (5.57)
2Gol,)?

Although the bosonization of the NJL model yields A; = 0, this is of no consequence for
the order of the phase transition, as the effective potential at zero temperature is a quartic
polynomial irrespective of whether 4, = 0 or not. It does however, affect the masses of the
mesons. If 4; = 0, the following relation holds: m2 — m% = mia - m% = 4M?, a property
of the NJL model already noted in Dmitrasinovic (1996). Clearly, the bosonized NJL
model does not yield the most general linear sigma model. However, it gives additional
contributions to the vacuum that usually are not taken into account in the linear sigma
model coupled to quarks (Scavenius et al., 2001; Mizher and Fraga, 2009). Schaefer and
Wambach (2007) noted that upon inclusion of fluctuations using a renormalization group
flow equation, the transition becomes second order. This boils down to including quark
loop effects at zero temperature too and is consistent with our findings.

To conclude, the mesonic part of this bosonized NJL Lagrangian is equal to the
mesonic part of the LSMg model. So the mesons are treated in same way in the two
models, but the vacuum contributions are treated differently.

It is straightforward to bosonize the NJL model for § # 0 when also (Jiysy) can
become nonzero, leading to cross terms that mix the o-field with the n-field and ay-
field with the m-field, but we do not give the expressions here as they do not lead to any
additional insights.

5.5 The phase transition in chiral perturbation theory

In this chapter we compared the NJL model with the linear sigma model coupled to
quarks. It would be very useful to also compare our results with chiral perturbation
theory, which is the most general low-energy effective theory of the strong interaction.
Gasser and Leutwyler (1987a,b) and Gerber and Leutwyler (1989) have shown how to
incorporate finite temperature in chiral perturbation theory. For instance, they show how
the chiral condensate decreases as a function of temperature. Unfortunately, their ap-
proach is a low-temperature one, which means that the difference between the condensate
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at nonzero and zero temperature is treated as small. This approximation breaks down in
the vicinity of the critical point (Gasser and Leutwyler, 1987a). Moreover, in the vicinity
of the critical point massive states, such as kaons, the  meson and vector mesons, start
to become relevant (Gerber and Leutwyler, 1989), also a signal of the breakdown of the
approximation. Finally, the value of the condensate at zero temperature (both at § = 0
and 6 = m), which is set by the parameter f;, needs to be fixed. No minimization takes
place to obtain f;, hence chiral perturbation theory does not contain information about
the structure of the minima of the effective potential as a function of f;.

From these considerations we can conclude that is not possible to use the chiral Lan-
grangian to study the order of the CP restoring phase transition at 6 = .

5.6 Conclusions

In this chapter the high-7" CP-restoring phase transition at # = 7w was discussed for two
different models which aim to describe the low-energy QCD phenomenology, the NJL
model and the linear sigma model coupled to quarks. Although the models are related,
the philosophy of how the mesons are treated is quite different in both models. In the
NIJL model they are bosonic states of quark-antiquarks, whereas in the LSMg model they
are the fundamental degrees of freedom, interacting with quarks at nonzero temperature.
Using the bosonization procedure of Eguchi, one can show that a bosonized NJL model
gives a linear sigma model, in which mesons are treated in the same way as in the LSMg
model. However, the vacuum contributions arising from the quark degrees of freedom are
different. The LSMg model was motivated for high temperatures, when constituent quarks
are light and mesons are heavy. Therefore, it is assumed that quarks only play a role at
nonzero temperature and do not affect the vacuum contributions at zero temperature. On
the other hand, in the NJL model contributions by the quarks are necessarily taken into
account also at zero temperature. The temperature dependent contributions to the effective
potential are equal in these two models, coming exclusively from the quarks. In the end,
the effective potentials of the models only differ in their zero temperature contributions.
Nevertheless, this directly affects the nature of the phase transition at high temperature at
0=nm.

The temperature dependence of the ground states of the two models was investigated
using a Landau-Ginzburg analysis. The difference between the models is that the po-
tential as a function of the order parameter of the LSMg model contains a non-analytic
logarithmic term, whereas the potential of the NJL model is a quartic polynomial near the
phase transition. It is this logarithm that makes the difference, because it affects the order
of the phase transition. The logarithm comes from the contribution of the quarks at zero
temperature, but neglecting these contributions will affect the high temperature results
qualitatively at & = 7. A similar effect occurs for the chiral symmetry restoration phase
transition at # = 0 close to the chiral limit, i.e. for sufficiently small explicit symmetry
breaking. The absence of explicit CP violation is therefore an important aspect of the
physics at 8 = 7.

Since neither model is directly derived from QCD, it is not straightforward to draw
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Chapter 5. The high temperature CP-restoring phase transition at 0 = «

a conclusion about the order of the phase transition expected in QCD. However, as we
explained, chiral perturbation theory cannot be used either. If the NJL model is viewed as
a model for the microscopic theory underlying the low energy mesonic theory, it would
not seem justified to neglect the logarithmic term at zero temperature.
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Chapter 6

The combined influence of strong
magnetic fields and instantons

Both in heavy-ion collisions and in magnetars very strong magnetic fields are generated,
which has its influence on the phases of matter involved. In this chapter we investigate the
effect of strong magnetic fields (B ~ 5m2/e = 1.7x 10'°G) on the chiral symmetry restor-
ing phase transition at # = 0 using the Nambu-Jona-Lasinio model. It is observed that the
pattern of phase transitions depends on the relative magnitude of the magnetic field and
the instanton interaction strength. We study two specific regimes in the phase diagram,
high chemical potential and zero temperature and vice versa, which are of relevance for
neutron stars and heavy-ion collisions respectively. In order to shed light on the behavior
of the phase transitions we study the dependence of the minima of the effective potential
on the occupation of Landau levels. We observe a near-degeneracy of multiple minima
with different Landau occupation numbers, of which some become the global minimum
upon changing the magnetic field or the chemical potential. These minima differ con-
siderably in the amount of chiral symmetry breaking and in some cases also of isospin
breaking. Throughout this chapter we consider # = 0. This chapter is largely based on
Boomsma and Boer (2010).

6.1 Introduction

Recently it has been noted that very strong magnetic fields can be produced in heavy-
ion collisions (Selyuzhenkov, 2006; Kharzeev, 2006; Kharzeev, McLerran, and Warringa,
2008). Estimates are that at RHIC magnetic fields are created of magnitude 5m2/e = 1.7x
10" G and at LHC of 6m2/e = 2 x 10" G, and there are even higher estimates (Skokov,
Illarionov, and Toneev, 2009). Also, certain neutron stars called magnetars exhibit strong
magnetic fields, between 10 - 105G (Duncan and Thompson, 1992; Thompson and
Duncan, 1993, 1996). These fields occur at the surface, probably in the much denser
interior even higher fields are present. Using the virial theorem it can be derived that the
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maximal strength is 10'® — 10'° G (Lai and Shapiro, 1991). If one assumes that the star is
bound by the strong interaction instead of by gravitation, this limit can be even higher.

As discussed in Chapter 2, both in neutron stars and in heavy-ion collisions it is ex-
pected that quark matter plays a role. Therefore it is interesting to study how this form
of matter behaves in a strong magnetic field. Two different regions in the QCD phase
diagram are of relevance here. Heavy-ion collisions probe the low chemical potential and
high temperature regime, for neutron stars it is the other way around. In this chapter the
effect of very strong magnetic fields will be investigated in both regimes.

Much work has been done on how an external magnetic field changes nuclear matter,
for a review see Lattimer and Prakash (2007). The behavior of ordinary quark matter
has been studied using the Nambu-Jona-Lasinio (NJL) model, see for example Klevan-
sky (1992), Gusynin, Miransky, and Shovkovy (1994, 1995a,c, 1996), Ebert et al. (2000),
Ebert and Klimenko (2003), Klimenko and Zhukovsky (2008), Inagaki, Kimura, and Mu-
rata (2004), and Menezes et al. (2009a) and recently also in the linear sigma model cou-
pled to quarks (Fraga and Mizher, 2008). Most studies investigate the one and two-flavor
cases, but recently also the three-flavor case has been investigated (Osipov et al., 2007;
Menezes et al., 2009b). At high quark chemical potential, it is believed that the ground
state is a color superconducting phase. The effects of an external magnetic field on such
a phase are discussed by Ferrer, de la Incera, and Manuel (2005, 2006), Ferrer and de la
Incera (2006, 2007a,b), Noronha and Shovkovy (2007), and Fukushima and Warringa
(2008). Here color superconductivity will not be considered.

In this chapter we study the chiral symmetry restoring phase transition, which is
strongly influenced by an external magnetic field. From studies in the NJL model it is
known that a magnetic field enhances the chiral symmetry breaking (Klevansky, 1992),
which is related to the phenomenon of magnetic catalysis of chiral symmetry breaking,
introduced by Klimenko (1992a,b, 1991), further studied for the NJL model by Gusynin,
Miransky, and Shovkovy (1994, 1995a,c, 1996), Ebert et al. (2000), Ebert and Klimenko
(2003), Klimenko and Zhukovsky (2008) and for QED by e.g. Gusynin, Miransky, and
Shovkovy (1995b), Lee, Leung, and Ng (1998, 1997), and Ferrer and de la Incera (2009,
2010), where also the generation of an anomalous magnetic moment was pointed out
(Ferrer and de la Incera, 2009, 2010). This enhancement can be understood as follows.
The B-field anti-aligns the helicities of the quarks and antiquarks, which are then more
strongly bound by the NJL-interaction (Klevansky, 1992). The phenomenon of magnetic
catalysis of chiral symmetry breaking leads to interesting behavior, since it allows for
phases with broken chiral symmetry and nonzero nuclear density for a range of chemi-
cal potentials and magnetic fields (Ebert et al., 2000; Ebert and Klimenko, 2003;Inagaki,
Kimura, and Murata, 2004). In such a phase nonperiodic magnetic oscillations occur,
which means that the constituent quark masses are strongly dependent on the magnetic
field, and consequently also other thermodynamic parameters, analogous to the de Haas-
van Alphen effect.

In all studies of the influence of magnetic fields on chiral symmetry breaking up to
now, the effects of instantons have not been studied explicitly, i.e. as a function of in-
stanton interaction strength. Magnetic fields and instantons can lead to combined ef-
fects. Kharzeev, McLerran, and Warringa (2008) have shown that variations in topologi-
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cal charge, which induce variations of net chirality, in a strong magnetic field gives rise to
an electrical current. This effect is known as the chiral magnetic effect and could perhaps
be observed in heavy-ion collisions (Abelev et al., 2009a,b). Variations of topological
charge can for instance be created by instantons.

Here a related study will be performed. We will investigate the combined effect of
instantons and a strong magnetic field on quark matter using the NJL model. In this
model instantons induce an extra interaction, the 't Hooft determinant interaction, which
leads to a mixing between the different quark flavors. Following the analysis of Chapter 3,
the strength of the instanton interaction is set by the dimensionless parameter ¢. For ¢ = 0
there is no contribution and there is no mixing. Because of the difference in charge of the
quarks, the phase transitions are decoupled. The other extreme case is ¢ = 1/2, which
is actually the most studied case. The quarks are then fully mixed, the constituent quark
masses are equal and the phase transitions will always coincide. Ebert et al. (2000) studied
this case in the chiral limit. It is observed that for a range of typical values of the coupling
constant, phases with broken chiral symmetry and nonzero nuclear density arise.

In general there is a competition between the magnetic field, which tends to differ-
entiate the constituent quark masses for different flavors, and the instanton interaction
which favors equal constituent quark masses. In this chapter this competition is studied.
Apart from studying the ground state as a function of the magnetic field and the chemical
potential for various characteristic values of ¢, we also look at the local minima of the ef-
fective potential and the corresponding occupation of Landau levels. It is found that in the
neighborhood of the chiral phase transition the phase diagram develops metastable phases,
differing in the number of filled Landau levels. Some of these local minima become the
global one upon increasing the magnetic field or chemical potential, but not all of them
do. These phases can have rather different values for the constituent quark masses, in
other words, display significantly different amounts of chiral symmetry breaking. Unlike
in the case of ¢ = 1/2 which is isospin symmetric, in these phases the values of the two
constituent quark masses can be very distinct, which corresponds to large isospin viola-
tion. Furthermore, we find that for a realistic choice of parameters, appearance of phases
of broken chiral symmetry and nonzero nuclear density requires not too large instanton
interaction strength, i.e. ¢ <0.1.

As mentioned, we also investigate the role of nonzero temperature at zero chemical
potential, which is of relevance for heavy-ion collisions. Without magnetic field the chiral
symmetry restoring phase transition at finite temperature is a crossover. In the linear sigma
model coupled to quarks it has been observed that the magnetic field turns it into a first
order transition (Fraga and Mizher, 2008). We will see that this is not the case for the NJL
model, similar to the CP restoring phase transition at § = x, discussed in the previous
chapter.

This chapter is organized as follows. First we derive the effective potential of the
NJL model in the mean-field approximation in a magnetic background. Then we discuss
the phase diagram as a function of chemical potential, concentrating on the phase with
nonzero nuclear density and chiral symmetry breaking. We continue with discussing the
temperature dependence and end with conclusions.
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6.2. Effective potential of the NJL model with a magnetic field

6.2 Effective potential of the NJL model with a magnetic
field

In this section we discuss how a constant external magnetic field can be incorporated in
the NJL model. We choose the external magnetic field along the z-direction and use the
potential A, = Bx10,. In the following we will assume that B > 0. The Lagrangian then
becomes equal to

L =0 ("0 — qrArBY x1 = m = pyo) ¥ + L + Laes ©6.1)

where %, and %y are the four-quark interactions, as given in Chapter 3. ¢; denotes
the charge of quark flavor f. Degenerate current quark masses are used, m, = my; = m.
Finally, ¢« denotes the quark chemical potential, which we take equal for both quarks.

In order to obtain the ground state of the model, the effective potential has to be min-
imized. We will again use the mean-field approximation. Furthermore, we will assume
that only the charge-neutral condensates (¢Ag¢) and {(A31) can become nonzero. To
obtain the effective potential in the mean-field approximation, we use the procedure used
in Chapter 5, we “linearize” the interaction terms in the presence of the condensates, this
time the (Y Agy) and (¢A3¢) condensates, as follows

WA = 2 Aahy FA — P Aa) (6.2)
leading to
Lo = 070y — a4 BY x1 = M — pryo) ¥ - (MZ;O'")Z I iwi)Go, (6.3)
where # = MyAy + M35 and
My =m = 2Gy PAdo¥) = m + ay,
Ms = =2(1 = 20)Go (JA30) = as. (6.4)

The Lagrangian is now quadratic in the quark fields, so we can perform the fermion
integration. This is a little more complicated than in the previous chapters, due to the
external magnetic field. The external magnetic field causes quantization of the momenta
in the plane perpendicular to the magnetic field, known as Landau quantization (Landau
and Lifshitz, 1977). This quantization changes the dispersion relation of the quarks into

Phy = Pi+ M} +Q2n+1-0)lgylB, 6.5)

where 7 is the quantum number labelling the discrete orbits and o the spin of the quark.
M  is the constituent quark mass of flavor f, related to Mo and M3 by M,, = My + M3 and
My = My — M;.

The asymptotic quark states are different when a constant magnetic field is present (see
e.g. Ritus, 1972, 1978; Leung et al., 1996; Ferrer and de la Incera, 1998). In Appendix B
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Chapter 6. The combined influence of strong magnetic fields and instantons
we show how the fermion integration is performed using these new asymptotic states. The
result is

(Mo - m)? M;
T 4G, 4(1 = 2¢)Gy

d
% + Z log Det (iy'“aﬂ - quyle - My - ,uyo)
f=u
=Vo+Vi(B) + Va(B,u,T), (6.6)

where Det denotes a functional determinant and

(Mo — m)? M2 N, & [ A A2
Vo = + -— MM In| — + [l + —
0 4G, 41-20)Gy 8m2 ;' s\ My My M?

A2
—A(M§+2A2) 1+ —)
J M2
7
’ 1 2 x.?
{(=1xg) = S = xphnxg + .

N d
ViB) = -5 5 ) (asIB
f=u

N, d i}
VaB,u, T) = =5~ Z(z — 6r0)lqs|B f %{Tln |1+ e LEneDml/T]
T oF JT

+ Tn 1+ En@l/T] ), 6.7)
where we have defined x; = % and (-1, x5) = d«;’zx") l.=—1 with {(z, xy) the Hurwitz

zeta function. We have neglected x¢-independent terms in V(B) (including a UV diver-

gent one). Furthermore, E,; = \/ p% + Mj% + 2klgs|B and k denotes the Landau levels,

which have degeneracy (2 — dxo).
The expression {’(=1, x¢) in V(B) can be written in a more convenient form by dif-
ferentiating and integrating the function with respect to x;:

2
X X X

(=1,xp) = {'(-1,0) + 7f - Ef - Tf log(2m) + ¥ 2 (x/), (6.8)

where ¢/ (x/) is the m-th polygamma function. The term ¢’(—1, 0) is independent of x;

and will therefore not be taken into account. The remaining expression is amenable to

numerical evaluation.
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At zero temperature, V, can be simplified to

_ NL‘ dP%
Va(B.,0) = -5° szja ~ ko) f 001 = Epi) 1= Ep]
d kf,max
lgf|BN.
- (2= 610)6 (1 = (k. B)) =
T
f=u k=0
, o+ Ju* = 53k, B)
X 2~ s2(k,B) - s7(k, B)1 , 6.9
K = 50 B) = 5k B) | —— 6.9)
where s(k, B) = Mj% + 2|g7|Bk and kf,max is the upper Landau level, defined as
1= Mj
max — | A 1 | (610)
: 2ly1B

where the brackets indicate the floor of the enclosed quantity.
We will now use these expressions in a numerical study of the minima of the effective
potential, performed along the lines discussed in Chapter 4.

6.3 Results

We start with considering the case of ¢ = 0,7 = 0, and ¢ = 0. Fig. 6.1 shows the results
for this unmixed case. The magnetic field enhances M, and M,, which are proportional
to (iu) and (dd), respectively, consequently the chiral symmetry breaking is enhanced
(Klevansky, 1992). Because of the charge difference of the quarks, the B-dependence of
the constituent quark masses is not equal. Nonzero ¢ will cause mixing and will bring the
masses closer to each other. As discussed, at ¢ = 1/2 the constituent quark masses are
exactly equal.

6.3.1 Nonzero chemical potential

In this section we turn to the phase structure near the phase transition at nonzero chemical
potential and zero temperature. From Klein, Toublan, and Verbaarschot (2003), Toublan
and Kogut (2003), and Barducci et al. (2003, 2004) it is known that when the isospin
chemical potential is nonzero, it is possible to have two phase transitions at low tempera-
ture and high baryon chemical potential. Here we study a similar case, instead of nonzero
isospin chemical potential, we allow for nonzero magnetic field. Then we will see that
also here the possibility of separate phase transitions for the two quarks arises. We will
take equal chemical potentials for the quarks, but the magnetic field acts effectively like a
nonzero isospin chemical potential due to the difference in charge of the quarks. Instan-
tons cause mixing between the quarks; if the mixing is strong enough, the two separate
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Chapter 6. The combined influence of strong magnetic fields and instantons

phase transitions merge into one. This was extensively investigated by Klein, Toublan,
and Verbaarschot (2003) for the nonzero isospin chemical potential case.

From Ebert et al. (2000), Ebert and Klimenko (2003), and Inagaki, Kimura, and Mu-
rata (2004), where the NJL model in the chiral limit was studied, it is known that Landau
quantization induces a more complex phase structure. Apart from the usual phase of bro-
ken chiral symmetry with zero nuclear density, there is also the possibility of such a phase
with nonzero nuclear density. Here we perform a more detailed study of this case, which
is a characteristic phenomenon at nonzero chemical potential and sufficiently strong mag-
netic fields, (cf. Eq. (6.11) below).

The ¢ = 0 case

When the determinant interaction is turned off, the up and down quarks are decoupled.
This leads to the possibility of separate phase transitions for the quarks. In Figs. 6.2
and 6.3 we show the constituent quark mass of the up and down quarks respectively as
a function of quark chemical potential and magnetic field. As expected, the two quarks
have decoupled behavior.

Let us first discuss the behavior of the up quark. At low chemical potential we have the
“standard” chiral symmetry breaking NJL ground state with empty Landau levels (LL).
Following the nomenclature of Ebert et al. (2000) and Ebert and Klimenko (2003) where
the ¢ = 1/2 case was studied in the chiral limit, this is called phase B. Note that this phase
always has zero nuclear density. At high chemical potential chiral symmetry is restored,
up to the explicit breaking. In this approximately symmetric phase magnetic oscillations
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Figure 6.1: The dependence of the constituent quark masses M, and M, on the magnetic field B.
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Chapter 6. The combined influence of strong magnetic fields and instantons

can be seen in the constituent quark masses, which are caused by Landau quantization.
These oscillating phases are denoted by A;, where i gives the number of filled LL. As
these phases have occupied LL, they have nonzero nuclear density. The nuclear density
of level k is given by (Menezes et al., 2009a)

BN,
Pra(B.) = (2 = 810)0(u — s7(k, B)) 'q’;ﬂ 2 = (k. B). (6.11)

In the chiral limit the constituent quark masses vanish in the A; phases.

The oscillations are similar to the de Haas-van Alphen effect, which in QED and in
the two-flavor NJL model for ¢ = 1/2 in the chiral limit lead to second order transitions
between the A; phases (Ebert et al., 2000). However, with our choice of parameters the
transitions are weakly first order. In the chiral limit they become second order, like for
¢ = 1/2, as can for instance be seen in the nuclear density. For completeness, we mention
that in the color superconducting case of Noronha and Shovkovy (2007) and Fukushima
and Warringa (2008) the oscillations in the gap parameter are seen to be continuous, but
second order transitions can occur when neutrality conditions are imposed.

For B larger than 4.5m2 /e an interesting intermediate phase arises, where the up-quark
jumps as a function of y first to a phase with a still rather large constituent mass and then
to phase A;. This intermediate phase is called Cy in the language of Ebert et al. (2000)
and Ebert and Klimenko (2003) and corresponds to a phase of broken chiral symmetry
having nonzero nuclear density and a filled zeroth LL. So the essential difference between
this phase and Ay is the breaking of chiral symmetry. For smaller values of the coupling
constant G also the phases Cy with k > 0 (which are similar to Cy but with more oc-
cupied LL) occur. The transitions between the Cj are first order, furthermore, they are
nonperiodic in the sense that the difference between the transitions is B-dependent as
the constituent mass strongly depends on B (Ebert et al., 2000). If we are in this phase
Cy and increase the magnetic field, the constituent quark mass decreases, eventually be-
coming almost zero, this can be interpreted as a crossover to Ap. In the chiral limit the
crossover becomes a second order transition. Finally, we would like to note that already at
B = 4m,2r /e the phase Cy exists as a metastable phase (we will discuss this in more detail
later).

The qualitative behavior of the down quark is very similar, as the quarks only differ
in charge, consequently Fig. 6.3 can be directly obtained from Fig. 6.2 by multiplying
B by 2, for ease of comparison we show both figures. If one compares the two figures,
one can immediately see that there are large regions where the constituent quark masses
are considerably different. This is equivalent to a large nonzero (/A31/) condensate, i.e.,
spontaneous isospin breaking. This will influence the behavior of the mesons accordingly,
for example the masses.

Eventually, if one keeps increasing the magnetic field, the phase transitions of the
quarks will take place at (almost) the same chemical potential and there will be no spon-
taneous isospin breaking.
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Figure 6.4: The dependence of the constituent quark masses on the quark chemical potential for
B = 5m2 /e and various ¢ values. Solid lines denote the up quarks, the dashed lines the down quark.

The ¢ # 0 case

In this section the consequences of the instanton interaction is studied, i.e., the parameter
c is varied. Increasing ¢ will cause mixing between the constituent quarks, which tends
to bring the constituent quark masses together. Around the phase transition there is a
competition between the effect of the magnetic field and the instanton interaction.

The competition is illustrated in Fig. 6.4, where the constituent quark masses are
plotted as a function of the quark chemical potential for three characteristic values of c,
¢ =0,0.03, and 0.1 with B = 5m,2r /e. The qualitative behavior for different values of the
magnetic field is similar. One can see that when ¢ # 0, the phase transitions are indeed
coupled. Furthermore, one observes that the two phase transitions merge into one when ¢
is increased and that the phase Cy disappears. Qualitatively the behavior is similar to the
case of nonzero isospin chemical potential studied by Klein, Toublan, and Verbaarschot
(2003), but in that case the phase Cy does not exist.

When the coupling constant G is lowered, it is possible to have Cj phases at ¢ = 1/2,
as in Ebert et al. (2000). Compared to the chiral limit studied there, the region of the
phase diagram with C; phases increases for m # 0.

More insight into the phase structure and phase transitions is obtained by looking at
the behavior of local minima of the effective potential. Near the phase transition at these
(strong) magnetic fields, metastable phases arise. These phases differ in the number of
filled LL. Let us take as an example the ¢ = 1/2 case, which is the easiest one to discuss,
as the effective potential is then only a function of M,, = M; = M. In Fig. 6.5 we show
the effective potential as a function of M with u = 378 MeV and B = 5m?/e. At these
values four minima can be seen, the global minimum is the phase in which the chiral
symmetry breaking is largest, i.e. minimum 4. When y is increased, minimum 1 will take
over, which is A; for the up quark and A, for the down quark. The other two local minima
never become the global one for our choice of Gy, but as they are almost degenerate with
the other minima (also for other values of c¢), they are nevertheless important. These
local minima correspond to Cy phases and can become the global minimum when Gy, is
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lowered.

The various local minima have very different constituent quark masses, hence the
amount of chiral symmetry breaking is also very different. Usually differences in the
amount of symmetry breaking lead to distinct energies. However, the local minima start
to appear near the “usual” phase transition, when the energy of the phase where chiral
symmetry is broken is almost equal to the energy of the phase that exhibits chiral sym-
metry, therefore it may not be surprising that also the other phases will not much differ in
energy despite their differences in symmetry breaking.

Similar results hold for ¢ # 1/2; also then metastable phases exist with different
fillings of LL. In Figs. 6.6 and 6.7 we show contourplots of the effective potential at
¢ = 0.03 and ¢ = 0.1 respectively. At small ¢ (¢ < 0.08) the metastable phases differ in
the values of M, and M, considerably, they again represent rather large broken isospin.
In these cases some of the C; phases can become the global minimum, as we have seen
before. The number of such states depends on the choice of the other parameters. At
larger c, the situation start to resemble the case ¢ = %, i.e., the minima move to the
diagonal and finally the effective potential depicted in Fig. 6.5 is obtained.

Whenever the system is going through the phase transition, it could be trapped in one
of those metastable phases for some time and consequences from the changing meson
masses can arise, for example, enhancing or suppressing certain decays.
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Figure 6.5: The normalized effective potential at the values B = 5m2 /e, u = 378 MeV and ¢ = 1/2.
There are four minima. The numbers below the minima denote the LL occupied for each quark.
Note that the minima are almost degenerate.
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Figure 6.6: The effective potential as function of the constituent quark masses at B = 5m?/e,
1 =378MeV and ¢ = 0.03.
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Figure 6.7: The effective potential as function of the constituent quark masses at B = 5m?/e,
p=378MeV and ¢ = 0.1.
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6.3.2 Nonzero temperature

In this section the temperature dependence of the ground state is investigated at zero
chemical potential, but with a magnetic field. As the instanton interaction does not influ-
ence the temperature dependence much, we only consider ¢ = 1/2 for simplicity. Fraga
and Mizher (2008) found in the linear sigma model coupled to quarks, that the usual
crossover becomes a first order transition at very high magnetic fields. However, we find
that this is not the case in the NJL model.

In Fraga and Mizher (2008) only the lowest Landau level was taken into account.
Here more Landau levels are included, so the effect of the higher Landau levels can be
investigated in the NJL model. Since the levels with large k are exponentially suppressed,
the summation can be truncated in Eq. (6.7), we will denote the largest k with kyync. The
value of kiyne depends on the temperature, constituent quark mass, chemical potential and
magnetic field considered. If M and T are increased or if B is decreased, kyunc has to be
increased.

In Fig. 6.8 we show the temperature dependence of the constituent quark mass at
B = 15m,2r /e for four different values of kyune. The 13 levels case is chosen such that the
error is less than 1 percent at M = 450 MeV,T = 450MeV. From the figure it can be
inferred that taking more Landau levels into account, makes the crossover sharper. Also,
there is a significant difference between including the zeroth and first Landau level. It is
clear that including more Landau levels, influences the details of the transition. However,
the qualitative aspects of the phase transition are not changed.
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Figure 6.8: The temperature dependence of the constituent quark mass for strong magnetic field
(B = 15m2/e) and various ki, values.
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Figure 6.10: Same as Fig. 6.9, now in the chiral limit.
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In Fig. 6.9 the temperature dependence of the constituent quark mass for different
values of the external magnetic field is shown. The phase transition remains a crossover,
in contrast to the results in the linear sigma model coupled to quarks. This difference
is important, as a first order phase transition allows for meta-stable states, whereas a
crossover does not. The situation is similar to the one discussed in the previous chapter,
where the CP-restoring phase transition at § = 7 and B = 0 was studied. In that chapter
it was found that the way quarks are incorporated at zero temperature makes a difference
between the models, which is likely also the reason for the discrepancy found here.

In Fig. 6.10 the results in the chiral limit are shown, where the transition remains a
second order phase transition, like it is the case at zero magnetic field and confirms the
results of Inagaki, Kimura, and Murata (2004) who calculated the phase diagram in a
strong magnetic field in the chiral limit using the Fock-Schwinger proper time method.
Note that the critical temperature increases slightly with increasing magnetic field.

6.4 Conclusions

The effect of a strong magnetic field on quark matter has been investigated in the NJL.
model in two regimes, zero temperature and finite chemical potential and vice versa. The
first regime is of relevance for (the interior of) magnetars and the second for heavy-ion
collisions.

At very high magnetic fields, when M = 2|q|B ~ u, the phase structure shows a variety
of phases and phase transitions due to Landau quantization. In the phase with approxi-
mate chiral symmetry (the A;-phases), the constituent quark masses show discontinuous
oscillations as a function of B, similar to the de Haas-van Alphen effect. Moreover, as
a function of chemical potential, more first order phase transitions occur, corresponding
to Landau levels filling up successively. Due to the difference in charge, this pattern is
different for the two quark flavors. When there is no mixing in the absence of the instan-
ton interaction, the two patterns are not coupled. This generally leads to rather different
constituent quark masses, or equivalently, spontaneous isospin breaking (3¢ # 0. This
affects the mesons inside the medium, for example their masses. It was found that for a
realistic choice of parameters in the NJL model such a phase of broken chiral and isospin
symmetry arises around B = 4.5m? /e, but it is already present as a metastable phase for
lower magnetic fields.

When the instanton interaction is included, a competition occurs between the strength
c of this interaction and the magnetic field. This reduces the region in the phase diagram
with large (JA3y). For c sufficiently large it disappears entirely, leaving only one phase
transition. However, around this transition the phase structure is still rather complex
regarding metastable phases, which are characterized by different fillings of Landau levels
and which differ only slightly in energy, but much in the amount of chiral symmetry
breaking. For lower values of ¢ some of these near-degenerate minima can also differ
considerably in the amount of isospin breaking.

Finally the role of temperature was studied at zero chemical potential. In Fraga and
Mizher (2008) it was found in the linear sigma model coupled to quarks that a strong
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magnetic field changes the usual crossover as a function of temperature into a first order
transition. In the NJL model it was found that the crossover remains a crossover. Also it
was found that including higher Landau levels in the calculation of the effective potential
changes the details of the crossover, it becomes sharper, although the qualitative aspects
of the transition are not changed. The difference between the two models is important, as
the first order transition allows for metastable phases, while a crossover does not. Prob-
ably the difference between the models comes from the treatment of the quarks at zero
temperature, as discussed in Chapter 5.
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Chapter 7

Summary

There are strong indications that in heavy-ion collisions a new phase of matter is created,
quark matter, which is a state of matter with deconfined quarks. Besides being created in
heavy-ion collisions, it is also believed to have existed in early universe. Today it might
exist in the interior of very dense neutron stars. In this thesis we have studied how quark
matter is influenced by instantons. These nonperturbative effects are closely related to the
QCD vacuum angle 6. Because of the existence of instantons observables can become 6-
dependent. In Nature 6 appears to be very close zero, an additional argument for this was
presented in Chapter 4 of this thesis. In heavy-ion collisions 6 may effectively become
nonzero, at least that conclusion is drawn from an effective low-energy theory of the
strong interaction. When 6 is different from 0 (mod ), the theory is not invariant under
CP.

As effects of nonzero 6 and instantons cannot be seen in perturbation theory and
nonzero 6 is also currently impossible to simulate on the lattice, effective theories and
models have to be used. The most obvious one would be chiral perturbation theory, but
unfortunately it is only valid at very low energies and for the ground state, not for the
metastable states with effectively nonzero 6. Therefore, the investigations presented in
this work were done using model calculations, the Nambu—Jona-Lasinio (NJL) model
and the linear sigma model coupled to quarks. 't Hooft has shown that instantons induce
an extra interaction in effective models, the ’t Hooft determinant interaction. We studied
the effects of this interaction on the phase structure of two-flavor quark matter. We stud-
ied, among others, the role that instantons play on phases of the strong interaction that
spontaneously violate CP invariance.

We started the thesis with a short introduction to QCD, instantons and the conse-
quences of a nonzero #-angle in Chapter 1. Using chiral perturbation theory and experi-
mental results we presented the arguments that & < 107'” in Nature. Furthermore, it was
argued that for a certain range of parameters, metastable phases may become possible.
These phases could be relevant in heavy-ion collisions and maybe for the early universe.

We continued our introduction with Chapter 2, where several facets of the QCD phase
diagram were discussed. We first presented a short discussion about phase transitions
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and a review about the best-known phase diagram of QCD, the yp — T-phase diagram.
Then we introduced the three physical systems where quark matter is thought to play a
role, the early universe, heavy-ion collisions and dense neutron stars. Also we presented
several ways of obtaining theoretical knowledge about the QCD phase diagram. Finally,
we discussed some non-standard phase diagrams, the QCD phase diagram as a function
of the current quark masses, the isospin chemical potential, and 6.

In Chapter 3 the NJL model was introduced, which is a quark model with four-quark
interactions that is a good description of low-energy QCD. We started with some historical
background. Then we discussed the vacuum structure, which induces a large effective
mass of the quarks, usually referred to as the constituent quark mass. Also we introduced
the bound states of the model, which can be interpreted as mesons. Finally some low-
energy relations were derived that can be used to fit the parameters of the model to data.

In Chapter 4 we presented a detailed study of the chiral symmetry breaking aspects
of the phase diagram of the two-flavor NJL model at & = 7. We concentrated on the
effects of instantons and the violation of CP invariance. This chapter is in essence an
extension of Chapter 2. We started the chapter with discussing the full 8-dependence
at zero temperature and chemical potential, and later we investigated the case 8 = &
in more detail. The latter case is special, as it allows for the spontaneous breaking of
CP invariance. The occurrence of this spontaneous breaking depends, among others, on
the strength of the determinant interaction. If this strength reaches a critical value, which
depends on the values of the current quark masses, spontaneous breaking of CP invariance
occurs.

When the phase diagram is considered as a function of the up and down current quark
mass at =  and a large enough value for the determinant interaction strength, a region
in the diagram exists that spontaneously breaks CP invariance. In the NJL model both a
lower and an upper boundary are found, in contrast to Tytgat (2000), who studied two-
flavor chiral perturbation theory and only found a lower boundary. If the temperature
is increased, the region becomes smaller and eventually disappears. This behavior may
indicate that the suggestions for metastable states with an effective nonzero # may not
hold in QCD. It remains to be seen if these conclusions persist beyond the mean-field
approximation and for the three flavor case.

Apart from the current quark mass dependence, also the dependence on temperature,
baryon chemical potential and isospin chemical potential were considered. We presented
phase diagrams as a function of either one of these three variables on one axis together
with the strength of the instanton interaction on the other. It was found that when baryon
chemical potential and temperature is increased, the CP violation disappears as a second
order phase transition. This disappearance indicates that the violation of CP invariance is
inherently a low energy phenomenon.

Also the mesons are affected by a nonzero CP-violating condensate. The mass eigen-
states of the mesons are no longer CP and parity eigenstates. The condensate induces
mixing between the mesons, the pions mix with the ap-mesons and the o~ meson mixes
with the n-meson.

In the phase diagram as a function of isospin chemical potential and strength of the de-
terminant interaction at 6 = 7, a novel phase with a nonzero a;-condensate appears. Fur-
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Chapter 7. Summary

thermore, the usual condition for a charged pion condensate is altered when the strength
of the instanton interaction is larger than its critical value.

As we said previously, the phase that violates CP invariance in the NJL model disap-
pears as a second order transition as a function of temperature. This is in disagreement
with the findings of Mizher and Fraga (2009), who calculated, among others, this transi-
tion in a related model, the linear sigma model coupled to quarks (LSMg). In the latter
model a first order transition is found. In Chapter 5 we discussed the similarities and
differences between the two models. It was shown how one obtains a linear sigma model
when the NJL model is bosonized. The important difference between the two models is
the way quarks are included in the model. In the case of the NJL model, the quarks are
necessarily taken into account at all temperatures, as it is a quark model. However, in the
case of the linear sigma model coupled to quarks, quarks are only taken into account at
nonzero temperatures.

The analysis presented in Chapter 5 shows, using Landau-Ginzburg arguments, that
the quarks at zero temperature introduce a logarithmic term, which is not included in the
LSMg model. A similar logarithmic term is obtained from quarks at high temperatures,
which exactly cancels the zero-temperature term. This cancellation takes place in the NJL
model, but not in the LSMg model. We showed that it is exactly this term that causes the
qualitative differences between the two models.

In Chapter 6 the competition between the instanton interaction and a strong magnetic
field was studied at 8 = 0. This study could be relevant for describing non-central heavy-
ion collisions and the interior of neutron stars. Charged particles in strong magnetic fields
are subject to Landau quantization, the effect that the momentum perpendicular to the
magnetic field becomes quantized. This quantization can affect the phase structure of the
matter involved considerably.

Firstly, because the quarks do not have the same charge, they behave differently in
a magnetic field. As a function of baryon chemical potential it becomes possible that
the two quarks have rather different constituent quark masses, a form of spontaneous
isospin violation. Such violation can for instance affect the masses and decay rates of
the mesons. The magnetic field effect is opposed by the instanton interaction, which
favors equal behavior for the quarks: the constituent masses of the quarks and their phase
transitions become coupled. However, when the strength of the instanton interaction is
not too large, it is still possible to have a relatively large difference in constituent mass for
the two quarks. This possibility disappears as the strength of the interaction is increased.

In addition the phase structure includes metastable states for a range of chemical po-
tentials and magnetic fields. These states differ in the number of filled Landau levels
and the amount of chiral symmetry breaking, which will affect the mesons accordingly.
Furthermore, they are almost degenerate with the ground state and can therefore not be
discarded.

Finally, we showed how a strong magnetic field affects the high-temperature phase
transition, relevant for heavy-ion collisions. In the linear sigma model coupled to quarks
it has been found that a strong magnetic field turns the crossover at zero magnetic field
into a (weak) first order transition. In the NJL model we found that the transition remains
a crossover. This different is important, as a first order transition and a crossover have
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very distinct experimental signatures, as in the case of a first order transition latent heat is
absorbed or released, which does not happen in a crossover.

From the investigations reported in this thesis it is clear that instantons can play an im-
portant role in determining low-energy phenomena of the strong interaction and can affect
the properties of quark matter. Hence, more detailed studies beyond the ones presented
here would be valuable. The work we presented was performed using two-flavor effective
models. It would be very interesting to extend our work by including the strange quark.
In the chiral limit at 8 = 0, the order of the high-temperature phase transition is then dif-
ferent (Pisarski and Wilczek, 1984). It would be interesting to see whether this also holds
for the CP restoring phase transition. Also, it would be interesting to see what happens
beyond the mean-field approximation and when color superconductivity is included.

Another continuation of this work would be to calculate the equation-of-state and
obtain mass-radius relations for stars obeying these relations, like for example Menezes
et al. (2009a,b). From the mass-radius relation we would then see how the instantons and
magnetic fields affect quark matter in compact stars.
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Appendix A

Random-phase approximation

In this appendix the meson masses are calculated in the random-phase approximation
(RPA), the first part of this appendix is mainly based on Klevansky (1992). First the
case without a CP-violating condensate is considered, then we generalize the analysis by
also including the CP-violating condensate {(iysy). The appendix ends with a discussion
of the relation between the curvature at the minimum of the effective potential and the
masses calculated in the RPA.

We start by discussing the quark-meson interaction. In case of the pions, we have the
following interaction Lagrangian

Lrgq = 18rggWysimih, (A1)

where ¢ is the quark field, A; are the generators of SU(2) and x; is the pion-field. This
interaction can be used to calculate the scattering of two quarks, for example the process
(ud) — (u’d"), shown in Fig. A.1, has the amplitude

[d'iysiulligryg) @ iyshd], (A2)

From the amputated diagram one thus obtains an effective interaction
. _igzzrqq .
(ysdi) iz 7 (s ). (A.3)
—m2

Figure A.1: The scattering of two quarks by the exchange of a pion.
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Figure A.2: Lowest order contribution to the quark-antiquark polarization in the pseudoscalar chan-
nel.

for the exchange of a ;. In the same way effective interactions can be derived for the
exchange of the other mesons.

Also in the NJL model an effective interaction for the exchange of a meson can be
obtained. The interaction parts of the interaction Lagrangian are responsible for exciting
meson modes, for example, the term (giysA;¥)? is responsible for exciting the isovector
pseudoscalar J¥¢ = 0~* mode which will be identified as the pion. The effective inter-
action resulting from the exchange of a m-meson can be expressed to leading order in N,
as an infinite sum of terms in the RPA. Only the direct term, shown in Fig. A.2, is taken
into account, which is the dominant term in the 1/N.-expansion. If we call the exchange
diagram for the 7; iU,, we have

iUn (k) = (iysA)[2i(G1 + Ga) + 2i(G + Go) (%Hm(kz)) 2iG) +Gy)

+2i(G) + Go) (%Hm(#)) Gy +Go) (%Hm(k%) %G1 +Go) + -+ [(iys)

2i(G + Gy)
1 - 2(Gy + G)IL,(k?)

= (iysA) [ } (fysd), (A4)
The exchange diagrams of the other channels have the same structure, only the (iysA4;)-
terms have to be replaced with the appropriate ones for the different channels. Further-
more, for the 77 and ay-channels G, — —G».

The quark-antiquark polarization Il,, is given by the diagram of Fig. A.2, which is
equal to the expression

([ d . .
My, =i f (275))4 Tr (iys4) S (p) (iys4) S (p + ), (A.5)
where S (p) is the dressed quark propagator,
p+M
S(p) = m, (A.6)

and M the constituent quark mass, related to the condensate @ and the bare quark mass
mby M = m + ap. Note that degenerate current quark masses are used.

Comparing the results of Eq. (A.3) and Eq. (A.4) leads to the observation that the
following equation has to be solved to obtain the mass of the pion

1 -2(Gy + Gy, (K*) =0 (A7)
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Appendix A. Random-phase approximation

The result with G, = 0 was first derived by Nambu and Jona-Lasinio (1961a,b). The
coupling constant can be related to the residue at the pole of Eq. (A.4) as explained in
Chapter 4. Expanding Eq. (A.4) around its pole at k> = m? we find

~i(om /o)

kK2=my

iUx (K = (iys)A; (iys)A;, (A8)

2 — m2

e

from which the value of the coupling constant can be deduced

4y = (011, /08) (A9)

22
k*>=my

A.1 Calculation of the quark-antiquark polarizations

As an example we will perform the calculation of the pion masses in some detail. Like
in Chapter 4 it will be assumed that only the @y-condensate is nonzero, which is the case
when the quark masses are degenerate and when there is no CP violation. Performing the
trace in Eq. (A.5) gives

. d*p ! !
Iy,(q%) = iNNy f @ni P prar-
2
q
P -M](p+ 9 - M]]’ 10

for the quark-antiquark polarization. It will be convenient to introduce the following
integrals

1
2N 4
hig) = 4’N”f @n) [~ MP][(p + @) — ME]’

I, = 4iN,
2= f(2n>4p Ve

4MNC(G1 +Gy)’

(A.11)

where in the last step the gap equation has been used. Using these integrals, the polariza-
tion obtains the following form

I, (¢*) = Ny

1
L+ §q210(q2)] ) (A.12)

Inserting this expression in Eq. (A.7) and solving for the mass gives

1
m =

m
—. A.13
T MZ(Gl +G2)10 ( )
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A.2. The masses of the mesons with a CP-violating condensate

The polarization in the 1 channel is equal to the one of the pions. For the o and ag
channels the polarization yields

M, =g, = Ny

1
L+ (4*+ 4M2)Io(q2)} : (A.14)

Using these polarizations, expressions for the meson masses can be derived.

A.2 The masses of the mesons with a CP-violating con-
densate

At 6 = & the expressions for the masses change. Apart from the usual @y-condensate, also
o can become nonzero. A nonzero 3p-condensate causes the parity partners to mix with
each other, i.e., the pions mix with the ay’s and the n with o~. The details of the mixing
will be discussed in this section.

The mixing occurs because when 5y # 0, the model is not invariant under CP anymore,
consequently there is no reason for the mass eigenstates of the mesons to conserve CP
invariance.

When the condensate 5y becomes nonzero, the dressed quark propagator changes ac-
cording to
P+ M- Msys

S(p) = , A.15
® = e (A.15)

where Ms = Sy. This change of the quark propagator complicates the summation of the
bubble diagrams, because it allows a coupling of the iyfjiyil-type interaction to the 6;;0-
type interaction, using the structure given in Fig. A.3. We will concentrate on the mixing
between o and 7 for notational convenience. The calculation of the mixing between the
pions and the ag proceeds similarly with the vertices iyfj and ¢;; replaced with ysA; and
A;.

The calculation of the massed of the mixed particles and their mixing angles is anal-
ogous to the calculation of the mixing between 1 and 7" in the SU(3)-form of the NJL
model. The latter mixing is discussed in detail by Klevansky (1992), which we will fol-
low in order to describe the mixing between the CP and parity eigenstates of the mesons.

Figure A.3: A §;;0-interaction coupled to a iyfjiy,f,—interaction, this interaction violates CP invari-
ance and is only possible when M5 # 0.
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Appendix A. Random-phase approximation

A.2.1 The mass of o and

Figure A.4: Effective n — n interaction in the random-phase approximation, with a CP-violating
condensate. Only the direct term is considered.

The effective interaction in the n-channel becomes the sum in Fig. A.4. Of course, a
similar summation holds for the o-particle. But Fig. A.3 also allows for an effective
interaction in form of Fig. A.5. The existence of the 5y condensate allows an interaction
between the o channel and the 7 channel, inducing mixing between particles.

In order to perform the summation, it is convenient to introduce the following notation

d4
ente) =y [ SETES (S (p+ )Gy + G cos)

1
= 4NNy L+ 5 (q* - 4Mm3) Io(qz)} (G1 + G cos ),

d* .
cis(q*) = NNy f #TrS(p)%S(p + @) (G1 — Gy cosm)
= —8N.N;Io(¢*)(G1 — G, cos ),
2 dp .
¢s51(q™) = NNy WTI iysS(p)S(p + ¢)(G1 + Gy cos )

= —8N.NsIy(¢*)(G; + Gy cos ),

Figure A.5: Effective 7 — o interaction allowed due to the existence of a 8y-condensate.
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A.2. The masses of the mesons with a CP-violating condensate

d . .
ess(q?) = NNy f #Tr iysS (p)iysS (p + ¢)(G1 — Gy cos )

1
= 4NNy L+ 5 (4% = 4M?) Io(*) | (G - Gy cos ), (A.16)

where have used generalized versions of the integrals I(¢®) and I,

Io(¢%) = —4iN, f d'p !
0 = = C 9
Qmy* [p2 - M? - Mg] [(p +q)? - M? - Mg]
. d4p 1
I, = 4iN, f Gy I (A.17)

From now on, we will not write the ¢> dependence of the ¢’s explicitly. Also, to avoid
confusion, we keep all the factors cos 7 explicit. The sum of diagrams expressed in the
c’s yields

U55(q2) = (175)2(G| + G2 COS ﬂ)[l + 2655 + 2C552C55 + 2C5]2€15 + 2C552C552C55
+ 2C552€5126‘15 + 2C512€112C15 + 26‘5126‘152055 + - ]l’)/5 (AIS)

Clearly, a ¢;; is always followed by cj, with i, j,k € {1,5}. If we now introduce the
matrices

1 0
rll - ( O 0 )’
0 1
I'is —( 0 0 ),
0 0
[s —( 1 0 ),
0 0
Iss —( 0 1 ), (A.19)
which satisfy
l"ijl"kl = 1",-1 when ] = k,
Iiilu=0 when j # k, (A.20)
and if we furthermore introduce
X =Tyic +Tise1s5 + siesp + Issess, (A.21)

then the sum can be written as

Uss(q®) = (iys)2(Gy — G5 cos 1)Tr [['ss + ['s52X + 552323
+ 55252525 + -+ I(iys),  (A.22)
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Appendix A. Random-phase approximation

which equals

Uss(q”) = (iy5)2(G1 + G cos m)Tr | Tss [Z [22]"] (i75)
n=0
= (iy5)2(G1 + Gy cos m)Tr [Tss (1 = 25)™" | (iys). (A.23)
If we now calculate the inverse of X we end up with
. 2 —4c )
Uss(q®) = (iys)(G1 + Gy cos ) - (iys).  (A24)

1- 26‘11 —46‘51C15 - 2C55 +4C”C55

In the same way we can calculate the effective interactions U;;(¢%), Uis(¢?), and Us;(¢?).
They are given by

Uni(g*) = 2(Gy — Gy cos m)Tr [Ty (1 = 28) 7|

2 —4C11
1- 2C11 — 4C51C15 — 26‘55 + 46116‘55 ’
Uis(g®) = 2(G1 = Gy cos mTr Ty (1 = 25)' | (iys)

= (G — Gycosm)

4
= (G + G, cos ) cis

1- 2611 — 4C516‘15 - 2C55 + 4C11C55 ’
Usi(g®) = (iy5)2(G + Gy cos m)Tr [T's; (1 - 25)™'|

4C51

= (G + G cos ) (A.25)

1- 2C11 - 46‘51C15 — 26‘55 + 4011C55 '

To again simplify notation we introduce an effective interaction U(g?) in the following
way

Usi(¢>) Uss(g*)

_ 1 ( APAIe1 B ® (iys), ) (A26)
D(g®) \ B(gHiys)® 1 C(g*)(iys) ® (iys) | '

U =( Un(g>) Uis(¢®) )

where

A(g") = 2G + Gy cos m)(1 = 2css),
B(¢?) = 2(G| + G, cos m)2c)s
= 2(G1 — Gy cosm)2csy,
C(¢*) = 2(Gy — Gy cosn)(1 = 2¢q1),
D(g®) = (1 = 2c11)(1 = 2cs5) — 4eisesi. (A.27)

The effective interaction has two poles, each can be associated with the meson masses.
When only the chiral condensate is nonzero, the mass eigenstates are also CP eigenstates
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A.2. The masses of the mesons with a CP-violating condensate

and parity eigenstates in the case of the charged mesons, but now that changes. As we
have seen, the parity partners mix and we can define mass-eigenstates, denoted with a
tilde, as follows

|6) = cos b, |o) +sinb, ),

i) = cos 8, ) — sin 6, o),
|@p) = cosOx |ag) + sinb |7),

|7t) = cos O, |7t) — sin O |ag), (A.28)

where 6, and 6, are the mixing angles. The states on the r.h.s. are the usual states of
definite parity.

We calculate the masses as follows. First we expand U(g?) around the lowest pole.
When the CP-violating condensate in zero, this would give the 7 mass, so we will denote
these particles with 7. The higher mass pole corresponds to the o meson when we only
have the chiral condensate, so we will call these particles the &. Explicitly,

U(qz)=(d/dzc i 21 5
q*)log Dlg—m: q* — m
(iys) ® (iys) + az(iys) ® I + az1 ® (iys) + %ﬂ 1], (A.29)
where 2 Uis(@®) B(q")
ag(q”) = Uss@) o = ) q24>m,27. (A.30)

Furthermore, A(¢*)C(¢*) — B*(¢*) = 4(G} — G cos® m)D(¢*), which means that at a root
of D(¢?) the relation A(¢?)C(¢?) = B%(¢*) holds. Therefore,

Un(@ AP  B@)  , »
= = = a: . A31
U@~ C@) ~ O~ ) (A3

which makes it possible to factor U(g?) in the following way

2

g~
U(g’) = 5 (cos 6,(iys) + sin 6, 1) @ (cos 6, (iys) + sin 6,1, (A32)
q —my
where
2

Shaq_ _ Uss
L+a;  (d/dg*)logDlgm’
tan 6, = aj. (A.33)

Similar relations hold for the pions and ay mesons. The results obtained in this appendix
are used in the calculation of the ¢ dependence of the mesons masses and their mixing
angles, which are shown in Fig. 4.13 and 4.14 of Chapter 4.
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Appendix A. Random-phase approximation

A.3 The curvature of the effective potential

The masses calculated in the random-phase approximation are related, but in general not
equal to the curvature of the effective potential at the minimum. In this section we make
this relation explicit. First of all, in this section we will for ease of notation only dis-
cuss the CP-conserving case at zero temperature and chemical potentials, with degenerate
current quark masses. This analysis can be extended straightforwardly.

The main problem when calculating the curvature of the effective potential is the
log det K-term in Eq. (4.8), let us therefore focus on this term

62
@ logdet K, (A.34)

L

where

K = 0 ® (iyopo + vipi) — A,
M =mAy @ Iy + ayd, ® g + A, Q iys, (A.35)

and x; = {ag, a1, @2, @3, Bo, B1,62,53}. We can now proceed with calculating the curvature

& loa det K — d 1 ddetK
dx? g "~ OxjdetK dx;
1 (ddetK 2+ 1 Pdetk
T (detK)?\ Ox detK 0x?
2 K 2
=Tr K’la— - Tr K’la—
(9xl.2 ox;
oK\
=-Tr (K—l—) , (A.36)
6x,-

as K is linear in x;. We are interested in the curvature at the minimum, assuming that then
only e # 0 the matrices K and K~! reduce to

Kmin = A0 ® [(iyopo +vipi) = (m + o),
K-l = _ Ao ®[(iyopo + yipi) — (m + ap)]
. RAP+mta?

(A.37)

Using all these expressions, we obtain the following results for the curvatures

2

2
oaz
2

0
@ log det K

8 [(aé +m)? — p% - p2]
(ap + m)? +p3 + p?
B 8
(ap + m)? +p(2)+p2'

logdet K

min

min
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A.3. The curvature of the effective potential

Integrating over pg (as we work at T = 0) yields

d 4p?
f Po 9 2lc)gdetK—#,
2m da V(@ + m)? + p?
dpy & 4
f P02 jogdet K =~ (A38)
2r 9B V(g + m)? + p?

Putting everything together we obtain the following final results for the curvature of the
effective potential at the minimum

F e % 1 dp p’ s
. T A~ ~ = IOmD-,
oay G + Gz (2m)3 ‘,(QO +m)? + p>
2 3 2
aai Gl - Gz (27T)3 "(QO + m)2 + p2 0
lig 1 d&p 1
—(V = 4 = Iomi,
aBo G -Gy (2r)3 V(@ + m? + p?
0? 1 dp 1
V__ 1y = Iomi2. (A.39)

0B: G, +G, 1P Jlag +m2 + p2

To conclude, the curvature of the effective potential with respect to the different fields
gives up to a factor I, the masses of the corresponding mesons.
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Appendix B

The magnetic field dependence of
the effective potential

In this appendix the magnetic field dependent effective potential in the mean-field ap-
proximation is derived using the method developed by Ritus (1972, 1978). This method
of implementing the magnetic field has been applied to the magnetic catalysis of chiral
symmetry by Leung, Ng, and Ackley (1996), Lee, Leung, and Ng (1997), Ferrer and de la
Incera (1998, 2000), Elizalde, Ferrer, and de la Incera (2003) and Ayala et al. (2006).
Furthermore, Ferrer, de la Incera, and Manuel (2005, 2006) have used this method in
order to describe the effects of strong magnetic fields on color superconductivity. The
effective potential derived in this way is equal to the one of Ebert et al. (2000), Ebert
and Klimenko (2003), and Klimenko and Zhukovsky (2008) using the Fock-Schwinger
proper time method. The present discussion is based on Leung, Ng, and Ackley (1996)
and Ferrer, de la Incera, and Manuel (2006).

When a constant magnetic field is present, the asymptotic states of the quarks are
given by (see e.g. Ritus, 1972, 1978; Leung, Ng, and Ackley, 1996; Ferrer and de la
Incera, 1998)

Yp(x) = Epe(X)Wgys (B.1)

which are eigenvectors of the operator (iy*d, + g;A;By*x))* with eigenvalues —p?. The
W,y are bispinors which are eigenvectors of the spin operator iy'y* and y° with eigenval-
ues o and y. Note that we are working in the chiral representation. The eigenfunctions
E,-(x) equal

Epo(x) = (e 4725035 py (p) (B.2)

with Dy (p) the parabolic cylinder functions with argument p = /2|gsB|x; — p2/qsB. The

integer k equals

Bo 1
s - (B.3)

k=k(n,o)=n+ -
2grBl 2
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Finally N(k) = (4rlq;Bl)"/*/ Vk! denotes a normalization factor. The functions Dy(p)
satisfy the following orthogonality property

f ) dpDy (p)Di(p) = V271k!5e . (B.4)

00

As discussed by Ritus (1972, 1978), these eigenfunctions E,(x) can be used for the trans-
formation to momentum space. It will be convenient to introduce the following matrices

Ep(0) = )" Epe()A@), (B.5)

with A(o) = diag(d,1,0,-1,041,0,-1) the spin projector. The matrices E,(x) satisfy the
following completeness relation

dpodp.d =
Z f p(zzp; BB E, () = 69 - y), (B.6)
k=0
and are orthogonal
f d*XE,y (DE,(x) = (2m)*6,w6(po = PG)O(p2 = P5)5(p3 = Ph). (B.7)

These orthogonal matrices E,(x) are the transformation matrices to momentum space
when an external constant magnetic field is present, similar to the usual eiP* at zero field,
i.e. (Ferrer, de la Incera, and Manuel, 2006)

dpodpod
Yix )—Z f o B0 p). (B.8)

Furthermore, the E,(x) obey the following important property
(=iy"8, — qrArBY*x)Ep(x) = Ep(x)7" b, (B.9)
with p = (po, 0, —sgn(qrB) 2lqsBln, p3).

Using these E,(x) and their properties cited above, one can show, using a similar
analysis as in Sect. 4.3, that the effective potential becomes equal to

(Mo — m)y? M;

- log Det (iyd, — ;B M
V=G +4(l—2c)G +Z og Det (iy"d, — q;By*x1 — My — pyy)

_ (My—m)?
S +4(1_20)G0 me {,,f(m

+ T |1+ e s ®lT| 4 T in 1 4 7 [En@l/T] } (B.10)
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Appendix B. The magnetic field dependence of the effective potential

where E, ¢(B) = \/ p% +@2n+1-0)lgsB+ M? and Det denotes a functional determi-

nant. This expression for the effective potential has been obtained using different meth-
ods by Ebert et al. (2000), Ebert and Klimenko (2003), Klimenko and Zhukovsky (2008),
Menezes et al. (2009a,b).

Following the analysis of Menezes et al. (2009a), Eq. (B.10) can be split in three
pieces, a part that is independent of external parameters, a part that only depends on
the magnetic field and a part that depends on the magnetic field, chemical potential and
temperature. First we split Eq. (B.10) according to

_ (Mo —m)? M

+
4G, 4(1 - 20)Gy

% +VI=(B) + Vo(B, 1, T), (B.11)

where
— N, dp3
T=0 c
=—-— B | —E, /B
VI o ”§nf|qf| f > Ens(B).
_ N Z dps —[Ep s (By+u]/T
(VZ(B,H, T) = _Z (TnflqﬂBfE{T In [1 +e Lon ]

+TIn|1+ e*[Enf<B>*ﬂ]/T] L (B.12)

and start with evaluating (VZ:O. The summation over n and o can be rearranged as

d oo

—0 _ N dp3 E,o(B)

7=0 _ Ve dps _Ey,

Vo = p ;;quw f o [E,,,k(B) — | (B.13)

where E,(B) = \/ p% + Mj% + 2klqs|B and k denotes the Landau levels.

The integrals are now performed using dimensional regularisation

a 1 ar Tn—%) (1"
P Gl 2)(—) , (B.14)

Qo (P + M2 d2 Tn) \M2

yielding, withd = 1 — e and x; = M]%/(ZqulB)

YT Z(|qf|3) ) rd) ka >3 . (B.15)

1_¢
f=u (4m)22 k=0

Using the definition of the Hurwitz zeta function we obtain

d

Yr=o - 2% > (laslB)* @i (-1+5)

1
g(-] + g,x)— Ex_”z}. (B.16)
f=u
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Expanding around € = 0 and neglecting x/-independent terms (including a UV-divergent
one) yields

d 2 2
3 N. 20 X X ,
Vi = 5 2 (las18) z+7f(1‘”“)‘?fl“f_“_l’x)}’ o
f=u

[\°]

which is still UV-divergent. This divergence can be removed by adding and subtracting
the 1-loop contribution when no magnetic field is present,

_ 4o
VI=(B = 0) = -2N, Z f (2;53 P2+ M. (B.18)
f=u

The subtracted term is calculated using dimensional regularization, after we change vari-
ables according to p* — p?/(2lgs|B) and MJ% - xp = M]%/(2|qf|B) we obtain

xz. xz. xz x2~

f f f f

-+ —=—(1- — —Inxr+ —|. B.1
E+2( YE) 2nxf+4} (B.19)

d
_ N.
~Vy(B=0)= -5 > dlas1By?
f=u

The added term is calculated using the conventional three-momentum UV cut-off used in

this thesis. Rearranging terms gives
d d3p
T=0 _ _ 2 2
Vg~ = 2N, fE_uf(zﬂ)3 P2+ M2+ Vi(B), (B.20)

where

x2

1
C(-1,xp) - 5(xf, —xp)Inx; + Tf . (B.21)

N d
ViB) = ~55 D (laslB
f=u

Putting all terms together gives the following final expression for the effective potential

V=Vo+Vi(B)+V2B,u,T), (B.22)
with
(Mo — m)? M3 d f d’p
= — 2N, 2+ M-, B.23
Vo= =46 T a1 -200, ; Qny VPO (B.23)

The term V), is divergent and needs to be regularized. Here a conventional three-momentum
UV cut-off is used, yielding the expression

d
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Appendix B. The magnetic field dependence of the effective potential

As discussed previously, the summation over o and n in V,(B, u, T) can be rewritten as

N, d _
VaB.p. T) = =55 > (2= Sio)lay 1B f ST In[1 4+ e T DlT]
k.f

+ TIn |1+ En@=T] ) (B.25)

The effective potential is evaluated further in Chapter 6.
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Uit het dagelijks leven weten we dat materialen in verschillende fases kunnen voorkomen.
Water komt bijvoorbeeld voor als vloeibaar water, waterdamp en ijs. Behalve deze beken-
de drie zijn er nog meer fases mogelijk; zo zijn er minstens 15 verschillende soorten ijs,
allemaal met een andere kristalstructuur. Externe parameters, zoals druk en temperatuur,
bepalen de toestand waarin het water zich bevindt. Bij andere materialen kunnen ook
andere parameters een rol spelen, zoals bijvoorbeeld de sterkte van een magneetveld bij
een magnetisch materiaal.

In dit proefschrift, getiteld “Effecten van instantoninteracties op de fases van quark-
materie”, wordt materie onderzocht bij extreme dichtheden, ongeveer een triljoen (1 met
18 nullen) kilogram per kubieke meter, en extreme temperaturen, rond de twee biljoen (2
met 12 nullen) graden Celsius. Deze extreme omstandigheden komen (of kwamen) voor
in de oerknal, hoog-energetische botsingen van zware ionen en in de kern van neutronen-
sterren. Om te begrijpen wat er gebeurt met materie in deze gevallen zullen we eerst in de
volgende paragraaf kort bespreken hoe men tegenwoordig denkt dat materie opgebouwd
is.

Bouwstenen van de natuur

Alle materie rondom ons heen is opgebouwd uit atomen, die weer bestaan uit positief ge-
laden atoomkernen en negatief geladen elektronen. Een elektron is een elementair deeltje.
Dit betekent dat het niet meer opgedeeld kan worden. Atoomkernen zijn wel opgebouwd
uit andere deeltjes, namelijk protonen en neutronen. Protonen zijn positief geladen, neu-
tronen hebben geen lading. Protonen en neutronen zijn geen elementaire deeltjes, zij
bestaan weer uit quarks. In totaal zijn er zes “smaken” quarks, maar in de materie om ons
heen komen maar twee smaken voor: up en down. Het proton bestaat uit twee up-quarks
en een down-quark, bij het neutron is het omgekeerd. Een up-quark heeft een lading van
+2/3e en het down-quark heeft een lading van —1/3e, waarbij e de lading is van het elek-
tron. Voor zover bekend hebben quarks geen interne structuur, het zijn dus elementaire
deeltjes. Onder normale omstandigheden komen quarks in de natuur niet vrij voor. Ze
kunnen alleen voorkomen als gebonden toestanden, zoals in protonen en neutronen.
Behalve deze “gewone” materie, bestaat er ook materie die je in het dagelijkse leven
nooit tegenkomt. Materie bestaande uit de andere smaken quarks is een voorbeeld, maar
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er bestaan nog meer soorten elementaire deeltjes. In de twintigste eeuw is er een model
ontwikkeld dat al deze deeltjes en hun onderlinge krachten beschrijft; het Standaard Mo-
del. Dit model beschrijft drie van de vier fundamentele krachten: de zwakke kernkracht,
de sterke kernkracht en de elektromagnetische kracht. Hoe ook de zwaartekracht opge-
nomen kan worden is nog steeds onbekend. Dit proefschrift beperkt zich tot de sterke
kernkracht, de kracht die de quarks in protonen en neutronen bij elkaar houdt.

Maar de natuur zit nog complexer in elkaar. Er bestaan namelijk ook antideeltjes.
Dit zijn deeltjes met dezelfde massa als hun corresponderende deeltje, maar met een te-
gengestelde lading. Het antideeltje van het elektron is bijvoorbeeld het positief geladen
positron. Het antideeltje van het up-quark is het anti-up-quark enzovoorts. In de na-
tuur komen ook gebonden toestanden van een quark met een antiquark voor, zogenaamde
mesonen. De gebonden toestanden van drie quarks, zoals protonen en neutronen, heten
baryonen.

De theorie die de sterke kernkracht beschrijft is de quantumchromodynamica (QCD).
De theorie bevat twee typen deeltjes: quarks en gluonen. De quarks zijn hierboven al
besproken, de gluonen zijn de krachtoverbrengende deeltjes van de theorie. Op hoge
energieén kunnen allerlei verschijnselen binnen QCD beschreven worden door middel
van storingstheorie, waarbij grootheden worden geéxpandeerd in de koppelingsconstante'
van de theorie. Om technische redenen werkt bij (relatief) lage energieén deze methode
niet meer. Daarom worden in dit proefschrift effectieve theorieén en modellen voor QCD
gebruikt.

Symmetrieén

Als alle deeltjes in antideeltjes zouden worden omgezet en vice versa, zouden de ster-
ke kernkracht en de elektromagnetische kracht daar niets van merken. De hypothetische
transformatie van alle deeltjes in hun corresponderende antideeltjes wordt ladingsconju-
gatie (afgekort C) genoemd. Daarom wordt gezegd dat de sterke kernkracht en de elek-
tromagnetische kracht invariant of symmetrisch zijn onder C. De zwakke kernkracht is
niet invariant onder C en gedraagt dus anders in de “normale” wereld dan in de getrans-
formeerde wereld.

Afgezien van de hierboven besproken ladingsconjugatie zijn er nog andere transfor-
maties belangrijk voor elementaire deeltjes, zoals bijvoorbeeld de pariteitstransformatie
(afgekort P). In het geval van P wordt alles in de theorie gespiegeld; van een rechtshandig
assenstelsel wordt overgegaan naar een linkshandig assenstelsel. Wederom zijn de sterke
en elektromagnetische kracht invariant onder P en de zwakke kracht niet. De transforma-
tie die van belang is voor dit proefschrift is de combinatie van C en P, kortweg CP. Net als
C en P afzonderlijk is alleen de zwakke kracht niet invariant onder CP.

Het is echter onbegrepen waarom de sterke kernkracht invariant is onder CP. In prin-
cipe is het voor deze kracht wel mogelijk om CP-invariantie te schenden. De theorie bevat
een CP-schendende parameter 6, de vacuiimhoek van QCD. Dankzij het bestaan van ob-

De koppelingsconstante geeft de sterkte van de interactie aan.
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jecten binnen QCD genaamd instantonen® worden meetbare grootheden afhankelijk van
de hoek 6. Als 6 ongelijk is aan 0 (mod ) schendt de theorie CP-invariantie. Experimen-
ten geven aan dat @ kleiner is dan 1070, Dit theoretisch onbegrepen feit wordt het sterke
CP-probleem genoemd. Het is echter interessant om 6 effecten te bestuderen, aangezien
er theoretische aanwijzingen zijn dat CP misschien geschonden wordt in QCD onder hoge
temperaturen in botsingen van zware ionen. Zulke schendingen van CP zijn te beschrijven
door aan te nemen dat 6 effectief een waarde krijgt ongelijk aan 0.

Effecten van eindige 6 en instantonen kunnen niet waargenomen worden in storings-
theorie, zodat ze moeilijk theoretisch te onderzoeken zijn. Ook computersimulaties met
eindige 6 zijn op dit moment niet mogelijk, maar de effecten kunnen wel in effectieve the-
orieén en modellen onderzocht worden. Vooral chirale storingstheorie is in de literatuur
veel gebruikt. Helaas kan chirale storingstheorie alleen bij hele lage energieén gebruikt
worden. In dit proefschrift worden daarom modelberekeningen gebruikt, met name het
Nambu-Jona-Lasinio-model (NJL-model). In zulke modellen worden de effecten van in-
stantonen nagebootst door een extra interactie, de 't Hooft determinantinteractie.

Materie onder extreme omstandigheden

Zoals hierboven al besproken komen quarks in normale materie altijd per twee of drie
voor. Dit verandert echter bij extreem hoge temperaturen en dichtheden. De protonen
en neutronen beginnen dan als het ware te overlappen. In die situatie kunnen de quarks
relatief vrij bewegen. Daarom wordt deze materie quarkmaterie genoemd.

Vlak na de oerknal waren de temperatuur en de dichtheid van het universum zo hoog
dat de quarks zich nog vrij konden bewegen en dus bestond het universum uit quarkma-
terie. Na ongeveer 10 microsecondes vond er een faseovergang plaats naar de huidige
toestand van materie, zonder vrije quarks. De situatie van de oerknal wordt experimen-
teel onderzocht door middel van botsingen van zware ionen. Bij deze experimenten wordt
de oerknal als het ware gesimuleerd door zware ionen, zoals goud, koper en lood, te ver-
snellen tot bijna de lichtsnelheid en dan op elkaar te laten botsen. Er zijn zeer sterke
aanwijzingen dat in zulke botsingen quarkmaterie wordt geproduceerd. Dergelijke experi-
menten worden tegenwoordig uitgevoerd in de Relativistic Heavy Ion Collider (RHIC) in
Brookhaven en in de toekomst in de Large Hadron Collider (LHC) van CERN in Geneve.
Ten slotte is in neutronensterren de dichtheid van de kern zo hoog dat er waarschijnlijk
quarkmaterie voorkomt.

In het geval van botsingen van zware ionen en neutronensterren kunnen ook nog
enorm sterke magneetvelden worden gecreéerd, zodat het ook van belang is te begrijpen
hoe quarkmaterie zich gedraagt in reusachtig sterke magneetvelden.

2Het QCD-vacuiim is topologisch niet-triviaal. QCD heeft namelijk oneindig veel vacua, elk gekarakteri-
seerd door een windingsgetal. Instantonen zijn objecten die tunnelen tussen deze vacua. Het “echte” QCD-
vacuiim is een superpositie van al deze windingsgetal-vacua en kan worden gekarakteriseerd met behulp van de
hoek 6. Voor een meer gedetailleerde discussie zie paragraaf 1.1.
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Overzicht en resultaten van dit proefschrift

Het proefschrift begint met een motivatie en een algemene inleiding op QCD, instantonen
en de hoek #. Daarna volgt een korte inleiding op chirale storingstheorie (yPT), de effec-
tieve theorie voor QCD bij lage energieén. Ook wordt besproken hoe instantoneffecten
kunnen worden meegenomen in yPT. Deze uitbreiding is in de literatuur veel gebruikt om
te bestuderen wat er gebeurt bij eindige 6, zo kan gebruikmakend van yPT en experimen-
tele resultaten afgeleid worden dat 6 = 0. Ten slotte wordt de mogelijkheid besproken dat
in botsingen van zware ionen toestanden worden gecreéerd die CP-invariantie schenden.
Zulke toestanden kunnen worden beschreven met een effectieve 6 ongelijk aan O en zijn
de aanleiding om de effecten van eindige 6 te onderzoeken.

De introductie gaat verder in hoofdstuk 2, waarin de verschillende fases van de sterke
kernkracht worden besproken. Allereerst worden een aantal algemene aspecten van fase-
diagrammen en de drie mogelijke typen faseovergangen besproken: eerste-orde, tweede-
orde en gladde overgangen. Bij een eerste-orde-overgang komt warmte vrij of wordt er
warmte geabsorbeerd tijdens de overgang, waardoor hij experimenteel relatief makkelijk
waar te nemen is. Bovendien divergeren een aantal thermodynamische grootheden op het
punt van de overgang. In het geval van een tweede-orde-overgang is er geen sprake van
het absorberen of vrijkomen van warmte, maar nog steeds divergeren bepaalde thermo-
dynamische grootheden. Bij gladde overgangen treden helemaal geen divergenties op,
waardoor ze relatief moeilijk experimenteel te bepalen zijn.

Na deze korte inleiding op faseovergangen wordt het fasediagram van de sterke in-
teractie als functie van temperatuur en baryon-chemische potentiaal (een maat voor de
baryondichtheid) besproken. Bij hoge dichtheden en temperaturen is de fase een quark-
gluonplasma, maar er zijn nog meer exotische fases mogelijk, zoals bijvoorbeeld kleursu-
pergeleiding bij lage temperaturen en hoge baryon-chemische potentiaal.

In dit hoofdstuk worden ook de drie fysische systemen waarbij quarkmaterie een rol
speelt geintroduceerd: de oerknal, botsingen van zware ionen en de kern van neutronen-
sterren. Vervolgens worden een aantal theoretische methodes besproken die men gebruikt
om het fasediagram te bestuderen. Tot slot worden een aantal minder bekende fasedia-
grammen besproken, zoals het fasediagram als functie van de quarkmassa’s en de isospin-
chemische potentiaal (een maat voor het verschil in up- en down-quarkdichtheid), waarbij
ook weer nieuwe fases voorkomen. Sommige van deze diagrammen zijn alleen van be-
lang voor theoretische studies, terwijl andere ook relevant zijn voor het begrip van de drie
hierboven genoemde systemen. Een voorbeeld is het gedrag als functie van de isospin-
chemische potentiaal, waarbij de mogelijkheid van pioncondensatie ontstaat. In de rest
van dit proefschrift worden waar mogelijk de resultaten met deze diagrammen vergeleken.

In hoofdstuk 3 wordt het model dat het meest in dit proefschrift gebruikt wordt geintro-
duceerd, het NJL-model. Het NJL-model bevat enkel quarks. Dit proefschrift beperkt
zich tot de twee quarksmaken met de kleinste massa, het up- en het down-quark. Effecten
van de gluonen worden meegenomen door middel van effectieve vierpuntsinteracties. Dit
geldt ook voor de effecten van instantonen, die leiden tot de hierboven genoemde ’t Hooft
determinantinteractie. De sterkte van deze interactie kan ruw geschat worden, maar is
niet precies bekend. De fysische gevolgen hangen wel sterk van deze interactiesterkte af.
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Na een korte bespreking van de historische ontwikkeling van het NJL-model wordt de
vacuilimstructuur van het model besproken. Deze structuur zorgt voor een grote effectieve
massa van de quarks in vacuiim. Verder worden de gebonden toestanden van het model
behandeld, die te interpreteren zijn als mesonen. Het hoofdstuk eindigt met een discussie
van een aantal lage-energie relaties, die kunnen worden gebruikt om de parameters van
het model vast te leggen.

Hoofdstuk 4 bevat een gedetailleerde studie over het spontaan schenden van CP-
invariantie binnen het NJL-model op 8 = n. Dit hoofdstuk is te zien als een uitbreiding
op hoofdstuk 2. Eerst wordt de volledige 6-athankelijkheid van het vacuiim bekeken. In
het bijzondere geval 6 = r is spontane schending van CP-invariantie mogelijk, maar deze
mogelijkheid is afhankelijk van de sterkte van de instantoninteractie. Uit de gepresenteer-
de analyse kan geconcludeerd worden dat als deze sterkte groter wordt dan een kritische
waarde, het model CP-invariantie schendt. Verder blijkt dat de kritische sterkte afhangt
van de waardes van de quarkmassa’s. Ook blijken mesonen zich kwalitatief anders te ge-
dragen als CP-schending optreedt. Dit levert een extra argument op waarmee aangetoond
kan worden dat 6 in de natuur gelijk is aan O en niet aan 7.

Vervolgens wordt het fasediagram bestudeerd als functie van de quarkmassa’s, waarbij
de sterkte van de instantoninteractie constant wordt gehouden. Er wordt een gebied van
quarkmassa’s gevonden waarin spontane schending van CP-invariantie optreedt. In het
onderzochte NJL-model wordt zowel een onder- als bovengrens gevonden. In tegenstel-
ling tot twee-smaken-yPT, onderzocht door Tytgat (2000), waarin alleen een ondergrens
is gevonden. De NJL-analyse toont aan dat bij hogere temperatuur het gebied met spon-
tane CP-schending kleiner wordt, totdat het uiteindelijk helemaal verdwijnt. Dit betekent
dat de metastabiele CP-schendende toestanden op hoge temperatuur, gesuggereerd door
Kharzeev, Pisarski, and Tytgat (1998), misschien niet voorkomen in de natuur.

Behalve de massa-afhankelijkheid wordt ook de temperatuurathankelijkheid en de
afhankelijkheid van de baryon-chemische potentiaal van de spontane CP-schending on-
derzocht. In paragraaf 4.6 worden fasediagrammen gepresenteerd als functie van deze
parameters op één as en de sterkte van de instantoninteractie op de andere. Het blijkt dat
de spontane CP-schending verdwijnt in de vorm van een twee-orde-overgang als de tem-
peratuur of baryon-chemische potentiaal groter worden dan een kritische waarde. Hieruit
kan de conclusie getrokken worden dat de spontane CP-schending een laag-energetisch
verschijnsel is.

Het hoofdstuk wordt afgesloten met het bestuderen van het fasediagram als functie van
de isospin-chemische potentiaal en de sterkte van de instantoninteractie. In dit diagram
blijkt een nieuwe fase voor te komen met a-condensatie.

Zoals hierboven al gezegd, is de CP-herstellende faseovergang in het NJL-model
tweede-orde. Dit in tegenstelling tot de resultaten van Mizher and Fraga (2009), die het
vergelijkbare lineaire sigma-model gekoppeld aan quarks (LSMg) hebben onderzocht.
Zij hebben een eerste-orde-faseovergang gevonden. Hoofdstuk 5 gaat over de overeen-
komsten en de verschillen van deze twee modellen. Gebruikmakend van de methode
van Eguchi (1976) wordt aangetoond dat als het NJL-model “gebosoniseerd” wordt, een
lineair sigma-model wordt verkregen.

Het belangrijkste verschil tussen de twee modellen is de behandeling van quarks. In
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het NJL-model worden quarks altijd meegenomen, het is immers een quarkmodel. In het
LSMg-model worden de quarks alleen meegenomen bij eindige temperatuur. De analyse
van hoofdstuk 5 laat zien dat de quarks voor een logaritmische term zorgen op 7' = 0, die
niet meegenomen wordt in het LSMg-model. Een vergelijkbare logaritmische term komt
van de temperatuursafthankelijkheid van de quarks. Deze valt weg tegen de termop 7' = 0.
Het blijkt dat het precies deze term is die het verschil tussen de twee modellen bepaalt.
Als het NJL-model wordt gezien als onderliggende theorie voor het lineaire sigma-model
gekoppeld aan quarks, is er geen goede reden om deze term te verwaarlozen.

In het afsluitende hoofdstuk 6 wordt de gecombineerde invloed van magneetvelden en
de instantoninteractie bij # = 0 onderzocht. Deze studie is relevant voor het beschrijven
van botsingen van zware ionen en kernen van neutronensterren, waar zeer grote magneet-
velden kunnen optreden.

Sterke magneetvelden kunnen een grote invloed hebben op de structuur van quarkma-
terie. Als namelijk een geladen deeltje, zoals een quark, zich in een heel sterk magneet-
veld bevindt, raakt de impuls loodrecht op het magneetveld gequantiseerd. Dit wordt
Landau-quantisatie genoemd. De twee quarks hebben echter verschillende ladingen,
waardoor hun gedrag in een magneetveld verschilt. Uit de gepresenteerde resultaten blijkt
dat hierdoor op hoge baryon-chemische potentiaal de mogelijkheid ontstaat dat de quarks
sterk verschillende effectieve massa’s hebben. Dit verschil beinvloedt de massa’s en ver-
valtijden van mesonen.

Het effect van de instantoninteractie is tegengesteld aan het effect van het magneet-
veld. De instantoninteractie zorgt ervoor dat de effectieve massa’s aan elkaar gekoppeld
raken, wat leidt tot gelijk gedrag voor de quarks. Bij een kleine waarde voor de sterkte
van deze interactie is er nog steeds een fase aanwezig waarbij de massa’s flink verschillen,
die verdwijnt bij verhoging van de sterkte. Bovendien blijkt dat binnen een gebied van
baryon-chemische potentialen en magneetvelden metastabiele fases mogelijk zijn. Deze
fases verschillen in het aantal gevulde Landau niveaus en de mate van symmetriebre-
king. Aangezien de energieén van deze toestanden bijna gelijk zijn aan de energie van de
grondtoestand, kunnen ze niet verwaarloosd worden en zijn dus fysisch relevant.

Ten slotte wordt onderzocht hoe een sterk magneetveld de faseovergang op hoge tem-
peratuur beinvloedt. Dit is relevant in de studie van botsingen van zware ionen. In LSMg
wordt een zwakke eerste-orde-overgang gevonden (Fraga and Mizher, 2008). In het NJL-
model wordt een gladde overgang gevonden. De oorzaak van dit verschil is waarschijnlijk
dezelfde als die besproken is in hoofdstuk 5.

De studies gepresenteerd in dit proefschrift maken duidelijk dat instantonen een grote
rol kunnen spelen bij verschijnselen van de sterke interactie bij lage energieén, waarbij
ze de eigenschappen van quarkmaterie kwalitatief kunnen beinvloeden. Om deze rede-
nen is het nuttig om meer gedetailleerde studies dan die in dit werk beschreven staan uit
te voeren. Allereerst zou het nuttig zijn om een methode te vinden om de instantonin-
teractiesterkte te bepalen. Verder is in dit werk alleen het geval van twee quarksmaken
onderzocht, het zou interessant zijn om te kijken wat er gebeurt als een derde quark, het
strange-quark, wordt toegevoegd. In de limiet dat alle quarks massaloos zijn, is er na-
melijk een kwalitatief verschil tussen twee of drie quarksmaken (Pisarski and Wilczek,
1984); er is sprake van een tweede- respectievelijk eerste-orde-overgang. Het zou inte-
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ressant zijn om te onderzoeken of dit ook geldt voor de faseovergang die CP-invariantie
herstelt. Ook zouden meer fases bestudeerd kunnen worden, zoals kleursupergeleiden-
de fases en er zou gekeken kunnen worden in hoeverre onze resultaten van de gebruikte
benaderingen afhangen. Een andere richting van vervolgonderzoek is uitzoeken of de
resultaten van dit proefschrift waarneembare gevolgen zouden kunnen hebben voor de
structuur van neutronensterren.
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