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Chapter 1

Introduction

It is generally assumed that during the Big Bang equal amounts of matter and antimatter

were produced, but the amount of matter in the visible Universe is presently much larger

than that of antimatter. Sakharov (1967) argued that one of the three conditions to explain

this discrepancy is that at some point in the history of the Universe CP invariance should

have been violated1. CP is the combined transformation of charge conjugation (C) and a

parity transformation (P). Apparently, as there is more matter than antimatter, CP was (at

least at some point) not a symmetry of Nature.

In 1964 it was discovered by Christenson, Cronin, Fitch, and Turlay that the weak

interaction violates CP invariance. They observed CP-violating decays of neutral kaons.

These experimental results were explained later by Kobayashi and Maskawa (1973). Be-

cause the weak interaction violates CP invariance, CP is also not a symmetry of the Stan-

dard Model. However, the amount of violation from this interaction is not enough to

explain the observed abundance of matter (Dine and Kusenko, 2004).

What about the strong interaction? In the strong interaction there is also a theoretical

possibility of CP violation, which is connected to the existence of topologically nontrivial

solutions to the classical equations of motion of Quantum Chromodynamics (QCD) called

instantons. The Lagrangian of QCD naturally incorporates a term that can lead to the

violation of CP invariance, the θ-term. The amount of CP invariance from this term is

set by the dimensionless parameter θ, known as the vacuum angle of QCD, which has a

periodicity of 2π. The θ-term can be written as a total derivative (cf. next section), and

one would naively expect that this term cannot have physical implications. This reasoning

is indeed true for Quantum Electrodynamics, but because of the existence of instantons,

in QCD the θ-term can influence the physics.

Naturalness arguments would imply a value of θ of approximately 1, but from mea-

surements of the electric dipole moment of the neutron it is known that the amount of

strong CP violation is very small, the present upper bound on θ is 10−10. The reason

for this smallness is currently unknown and is referred to as the strong CP problem. In

1The other conditions of Sakharov are that the interactions that cause the asymmetry violate both charge-

conjugation invariance and baryon number. In addition, these interactions should take place out-of-equilibrium.

1



this thesis we will not address the strong CP problem, but investigate, among others, the

possibility of spontaneous CP violation in the strong interaction.

At θ = 0, the Lagrangian of QCD is invariant under CP. In addition, the Vafa-Witten

theorem states that parity cannot be spontaneously violated at θ = 0 (Vafa and Witten,

1984). For C-even terms their conclusions also hold for CP. This means that spontaneous

CP violation is not possible in the vacuum at θ = 0. However, Kharzeev, Pisarski, and

Tytgat conjectured that it might be possible that parity and CP-violating bubbles can be

created in heavy-ion collisions with nonzero density and temperature. Earlier suggestions

for such states were made by Lee (1973) and also by Morley and Schmidt (1985). Other

work on such CP-odd bubbles, especially on their dynamics, was done by Buckley, Fu-

gleberg, and Zhitnitsky (2000). Such a CP-violating bubble would correspond to a state

with an effective θ. If these states exist, they might also be relevant for the early Universe.

However, they can probably not account for the asymmetry of matter and antimatter as

nonzero θ is a C-even effect. Possible experimental signatures for such bubbles in heavy-

ion collisions were discussed by Voloshin (2004, 2009), Selyuzhenkov (2006, 2009), and

Abelev et al. (2009a,b). Nonzero θ, effective or not, corresponds to explicit CP violation,

except for the cases θ = nπ, with integer n.

A special case for the parameter θ is the value π. Also in this case the Lagrangian is

invariant under CP, but now there is a possibility of a CP-violating ground state, i.e. spon-

taneous CP violation, which was already discovered by Dashen (1971) before the advent

of QCD. The conditions for spontaneous CP violation have been investigated further by

studying the θ-behavior of the strong interaction (see e.g. Witten, 1980; di Vecchia and

Veneziano, 1980; Smilga, 1999; Tytgat, 2000; Akemann, Lenaghan, and Splittorff, 2002;

Creutz, 2004; Metlitski and Zhitnitsky, 2005, 2006; Fujihara, Inagaki, and Kimura, 2007).

These investigations may lead to a better understanding of the topological structure of the

QCD vacuum.

Investigations of the θ-term and instantons are very difficult due to their nonpertur-

bative nature. Even in lattice QCD it is impossible to study the full θ-dependence as

the fermion determinant becomes complex at nonzero θ. Most knowledge about the θ-

dependence of the strong interaction has been obtained using the low-energy effective

theory called chiral perturbation theory. Another possibility is to use model calculations,

which we will do in this work. In Chapter 4, based on Boer and Boomsma (2008), the in-

fluence of θ and instantons on the QCD phase diagram is studied using such a model, the

two-flavor Nambu–Jona-Lasinio (NJL) model, which we will introduce in Chapter 3. In

this work we especially investigate the conditions for spontaneous CP violation. We will

see that the occurrence of spontaneous CP violation depends on the instanton interaction

strength with respect to the quark masses. Another observation is that CP invariance is

restored at high temperature in a second order phase transition.

Mizher and Fraga (2009) investigated the temperature dependence of spontaneous CP

violation at θ = π in the linear sigma model coupled to quarks. They found at high

temperature a first order CP-restoring phase transition, in disagreement with our findings

in the NJL model. In Chapter 5 we will elaborate on the differences between the two

models and discuss how they lead to a different order of the phase transition. A first-order

transition and a crossover have rather different experimental signatures, as usually in a
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Chapter 1. Introduction

first-order transition energy is released (or absorbed), which does not happen in a second

order transition or a crossover. Mizher and Fraga (2009) also observed that the phase

transition becomes stronger if one includes a strong magnetic field. Moreover, also at

θ = 0 the phase structure of quark matter is modified by a strong magnetic field.

The inclusion of a strong magnetic field was inspired by the investigations of

Kharzeev, McLerran, and Warringa (2008), who observed that in non-central heavy-ion

collisions very strong magnetic fields can be produced, of order 1019 G. Furthermore,

they noted that variations of topological charge, which induce variations of net chirality,

in a strong magnetic field give rise to an electrical current. This induced current is known

as the chiral magnetic effect and could perhaps be observed in heavy-ion collisions. In-

stantons are a possible source for these variations of topological charge. The interplay

between instantons and strong magnetic fields will be investigated in Chapter 6.

Apart from heavy-ion collisions, more situations in the Universe exist (or have ex-

isted) where very strong magnetic fields and quark matter plays a role, namely in a spe-

cial class of neutron stars, called magnetars. Possibly also during the electroweak phase

transition in the early Universe huge magnetic fields were produced (Vachaspati, 1991;

Olesen, 1992). Much effort has been put into the study how strong magnetic fields change

the behavior of nuclear matter, for a review see Lattimer and Prakash (2007) and refer-

ences therein. As already noted in the previous paragraph, a magnetic field can affect the

phase structure of a material considerably. This is because the orbital motion of charged

particles is quantized inside a magnetic field, known as Landau quantization. But the

up and down quark have of course different charges, so this quantization is different for

them and this leads to different behavior for the two quarks. However, instanton effects

induce mixing between the quarks, which has an equalizing effect. In Chapter 6 we will

see that the competition between the effects of magnetic fields and instantons gives rise

to interesting phenomena, such as spontaneous isospin violation, and also sets of nearly

degenerate minima with very different amounts of chiral symmetry breaking arise.

A brief outline of this thesis is as follows: we will begin with a short review of in-

stantons and the θ-term. The next chapter is a review of the QCD phase diagram, where

we start with a general discussion of phase diagrams and phase transitions, after which

we discuss the standard phase diagram as a function of temperature and baryon chemi-

cal potential. We also consider non-standard phase diagrams, e.g. as a function of θ or

the quark masses. Furthermore, we briefly discuss how one obtains both theoretical and

experimental information about the QCD phase diagram. In Chapter 3 the NJL model is

introduced. We continue with a detailed study of the θ-dependence of the phase structure

of this model in Chapter 4, which is an extended version of the work published in Boer

and Boomsma (2008). Then we compare the high temperature results of the NJL model

with the linear sigma model coupled to quarks (LSMq) in Chapter 5, based on Boomsma

and Boer (2009). In the two related models a different order of the CP restoring phase

transition is predicted; we discuss how this difference comes about. Finally in Chapter 6

the influence of magnetic field and instantons on quark matter is discussed, based on

Boomsma and Boer (2010). The thesis ends with a summary and conclusions.
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1.1. QCD, instantons and the θ-term

1.1 QCD, instantons and the θ-term

Quantum Chromodynamics (QCD) is the quantum field theory that describes the strong

interaction. In this section only a glance at the theory will be presented, for more infor-

mation see for instance the books of Muta (1998) and Smilga (2001). QCD is an SU(3)

Yang-Mills theory with quarks and gluons as the degrees of freedom. The Lagrangian is

equal to

LQCD =
∑

f

ψ̄ f

(

iD/ − m f

)

ψ f −
1

4
F
µν
a Fa

µν, (1.1)

where

Dµ = ∂µ − igtaAa
µ,

Fa
µν = ∂µAa

ν − ∂νAa
µ − g f abcAb

µAc
ν, (1.2)

the ta’s are the generators of SU(3) in the fundamental representation, normalized as

Tr tatb = δab/2. (1.3)

The gauge fields Aa
µ represent the gluons and the ψ f -field denotes the quark field of flavor

f . The strength of the interactions is set by the coupling constant αs = g2/4π. Finally,

f abc are the structure constants of SU(3).

The Lagrangian of QCD looks simple, but leads to a large variety of remarkable phe-

nomena. Asymptotic freedom is one of the most famous ones, which is the fact that the

coupling constant becomes small at energies higher than approximately 1 GeV. A small

coupling constant means that perturbative methods can be used, i.e., quantities in the the-

ory can be expanded in the coupling constant. Asymptotic freedom was one of the main

reasons to consider QCD as the theory for the strong interaction.

In this thesis the vacuum structure of QCD is studied, this means energies smaller

than 1 GeV, so unfortunately perturbation theory can not be used. For a large part, the

vacuum structure is determined by the symmetries of the theory. Since we are interested

in the low energy structure of QCD, only quarks that are much lighter than 1 GeV have to

be considered, i.e. the up, down and strange quark. In most of this thesis, also the strange

quark is neglected.

The Lagrangian of massless QCD is invariant under the global symmetry group

U(N f )L ⊗ U(N f )R � SU(N f )L ⊗ SU(N f )R ⊗ U(1)V ⊗ U(1)A. (1.4)

This symmetry is assumed to be spontaneously broken by a nonzero 〈ψ̄ψ〉-condensate,

after which SU(N f )V ⊗ U(1)V remains. However, this would imply the existence of N2
f

Goldstone bosons. In the case of two flavors, one can interpret three particles as Goldstone

bosons, the pions, connected to the broken SU(2) symmetry. The pions are not entirely

massless due to the small explicit symmetry breaking from the quark masses. This can

be generalized to three flavors, although the remaining SU(3)V -symmetry is broken con-

siderably, as ms ≫ mu,d. The kaons, together with the η, are then also interpreted as
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Chapter 1. Introduction

Goldstone bosons, which are all connected to the broken SU(3) symmetry. But now there

is a problem, where is the ninth Goldstone boson? The η′ has the right quantum numbers,

but is in reality much heavier than the other bosons and can therefore not be interpreted

as a Goldstone boson. The puzzle of the missing Goldstone boson was named the U(1)A

problem in the 1970’s and was solved by ’t Hooft (1976, 1986).

The solution of ’t Hooft is connected to instantons. The solution starts with the ob-

servation that U(1)A is not really a symmetry of the theory. Whereas the action of the

massless theory is invariant under U(1)A, the measure of the fermion fields is not. Under

the U(1)A transformation

ψ→ eiαγ5ψ, (1.5)

the measure changes as (Fujikawa, 1979)

DψDψ̄→ exp

(−iαg2N f

16π2

∫

d4xFa
µνF̃

µν
a

)

DψDψ̄, (1.6)

where we have introduce the dual field F̃
µν
a =

1
2
ǫµνρσFa

ρσ. Eq. (1.6) leads to the axial

anomaly equation, in the chiral limit given by

∂µ j
µ

5
= −2N f q(x), (1.7)

where j
µ

5
is the singlet axial current,

j
µ

5
=

∑

f

ψ̄ fγ
µγ5ψ f (1.8)

and q(x) is the topological charge density

q(x) =
g2

32π2
Fa
µνF̃

µν
a . (1.9)

If the field Fµν at infinity corresponds to a pure gauge field, the integral of q(x) over

space-time yields integer values. Eq. (1.7) indicates that the singlet axial current is not

conserved on the quantum level, U(1)A is only a symmetry of the classical theory.

The extra term that is created by the transformation in Eq. (1.6) can be written as a

total derivative,
g2N f

16π2
Fa
µνF̃

µν
a = ∂µKµ, (1.10)

where the current Kµ equals

Kµ =
g2N f

8π2
ǫµνρσ

(

Aa
ν∂ρAa

σ +
1

3
g f abcAa

νAb
ρAc

σ

)

. (1.11)

One would naively expect that such a term vanishes when integrated over, which is indeed

true in QED, but not in Yang-Mills theories like QCD. Belavin et al. (1975) pointed out

that Yang-Mills theories allow for topologically nontrivial field configurations that give
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1.2. The θ-dependence of low-energy effective theories

a nonvanishing result for the integral of Eq. (1.6). ’t Hooft (1976, 1986) called these

configurations instantons. For a review of instantons and how they contribute to meson

masses, see for example the texts of Cheng and Li (1984) and Weinberg (1996). The most

important fact at this point is that U(1)A is not a symmetry of the quantum theory, it is

anomalously broken and there is no missing Goldstone boson.

Thus the solution to the U(1)A problem is the existence of instantons, but this leads

to a new problem, the strong CP problem. In an SU(N) gauge theory like QCD the

vacuum is topologically nontrivial. Multiple vacuum states with equal energies exist,

each with a different topological quantum number, the winding number. These different

quantum states cannot be continuously deformed into each other and are separated by

finite energy barriers. Instantons represent tunneling solutions between these vacuum

states, consequently the true vacuum of QCD is a superposition of vacua with different

winding numbers. This true vacuum can be written as

|θ〉 =
∑

n

einθ |n〉 , (1.12)

where |θ〉 is the true vacuum, characterized by the angle θ and |n〉 is a vacuum state with

winding number n. The angle θ is a new parameter in the theory and has to be determined

from experiment. Using naturalness arguments one would expect a value of order 1 as the

parameter is dimensionless.

Standard perturbative QCD is an expansion around the vacuum with winding number

0, it does not include tunneling effects between the different winding number vacua. As a

consequence, effects of nonzero θ can never be seen in perturbation theory.

The effect of nonzero θ can be calculated by incorporating an extra term in the La-

grangian,

Lθ =
θg2

32π2
Fa
µνF̃

µν
a . (1.13)

When θ is not equal to 0 (mod π) this term violates P and CP. Note that this θ-term

can only have physical consequences when all the quarks are massive, more on this in

Sect. 1.5. In Sect. 1.3 we will argue, following the low-energy arguments of Crewther

et al. (1979) and experimental results that θ is very small, smaller than 10−10. The reason

for this is unknown and commonly referred to as the strong CP problem, arguably the

largest unresolved issue in QCD besides confinement.

1.2 The θ-dependence of low-energy effective theories

Effective theories have to be used to study the θ-dependence of QCD due to the nonper-

turbative nature of the θ-term. Using Chiral Perturbation Theory (χPT), the low-energy

effective theory of the pseudo-Goldstone bosons of QCD, a condition for the ground state

can be found, see Sect. 1.3. As previously mentioned, the pseudo-Goldstone bosons of

QCD are the pions, kaons and the η meson. The masses of these particles are due the

explicit symmetry breaking by the quark masses. For an introduction to χPT see for ex-

ample Weinberg (1996). In the construction of χPT the philosophy of Weinberg (1979) is
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Chapter 1. Introduction

followed, the theory contains all possible interactions consistent with the low-energy sym-

metries of the strong interaction and is a combined expansion in the masses and momenta

of the mesons.

To second order in the masses and momenta, the most general Lagrangian for the

pseudo-Goldstone bosons is quite simple, it has the following form

L =
f 2
π

4
Tr

[

∂µU∂µU†
]

+ ΣRe [Tr (MU)] , (1.14)

where U is an SU(N f ) field representing the pseudo-Goldstone bosons, fπ is the pion

decay constant, the constant Σ equals | 〈ψ̄ψ〉 | and the matrix M denotes the quark mass

matrix. In our numerical analyses in this chapter, we employ the parameters used by

Tytgat (2000), mu = 4 MeV, md = 7 MeV, ms = 150 MeV and Σ = (250 MeV)3, which

reproduce the experimental values for the meson masses reasonably well. Furthermore,

the chosen value for the chiral condensate is quite close to the result obtained using QCD

sum rules (Dosch and Narison, 1998) and lattice calculations (Giusti et al., 1999).

Standard χPT does not include the η′ meson, as it is not a pseudo-Goldstone bo-

son. However, the effect of the anomaly disappears in the large-Nc limit, turning the

pseudoscalar singlet η′ into a pseudo-Goldstone boson. If one also expands in 1/Nc, the

η′ can be incorporated in the framework. The effects of the anomaly have to be included in

Eq. (1.14). Witten (1980) and di Vecchia and Veneziano (1980) have shown using large-

Nc arguments that the effects of the anomaly and instantons can be included by promoting

U to become an element of U(N f ), i.e. also take the pseudo-scalar singlet into account,

and adding an extra interaction term

Lanomaly = −
τ

2
(i log det U + θ)2, (1.15)

where τ is the topological susceptibility, defined in terms of the topological charge den-

sity as τ =
∫

d4x 〈q(x)q(0)〉. This interaction term breaks the U(1)A symmetry and con-

sequently gives a mass to the η′ meson, even in the chiral limit. In the chiral limit the

topological susceptibility is directly related to the mass of the η′ meson (Witten, 1979;

Veneziano, 1979)

τ =
f 2
π m2

η′

2N f

. (1.16)

In the large-Nc limit, the topological susceptibility is of order O(1), f 2
π and Σ are of

order O(Nc) and the quark masses are of order O(1). From these large-Nc counting rules

we can conclude that when Nc → ∞, the effects of the anomaly disappear (Lanomaly ≪ L )

and the η′ meson becomes a Goldstone boson.

In the following τ = (200 MeV)4, also used by Tytgat (2000), which leads to a rea-

sonable value for the mass of the η′ meson. The topological susceptibility can also be

calculated on the lattice; for a recent comparison of the various lattice results see Table 1

of Vicari and Panagopoulos (2009). The chosen value is consistent with these values.

Now we are ready to find the ground state of the theory, this means we have to mini-

mize the potential that is contained in the Lagrangian Lchiral = L +Lanomaly, which we
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1.3. The value of θ in Nature

will refer to as the chiral Lagrangian. At θ = 0, the field U that minimizes the potential is

just the unit matrix. But at θ , 0 this is not true anymore. Using U(N f )L ⊗ U(N f )R trans-

formations, the field that minimizes the potential can always be put in diagonal form, but

as a consequence the mass term may be affected, more on this in Sect. 1.5. Let us focus

for now on the three flavor case. The minimum can always be brought to the following

form

〈U〉 =





















eiφu

eiφd

eiφs





















. (1.17)

A CP transformation exchanges U ↔ U†, so whenever one or more of the φi are unequal

to 0 (mod π), the ground state violates CP invariance.

The minimization of the potential boils down to solving the following coupled equa-

tions

mi sin φi =
τ

Σ

















θ −
N f
∑

j=1

φ j

















, (1.18)

with the considered choice of parameters, τ/Σ � 102 MeV. At θ = 0 the solution for

〈U〉 with the lowest energy is always equal to the unit matrix, which means that CP is

conserved, consistent with the Vafa-Witten theorem2. At θ , 0, this is not true anymore.

Due to the explicit CP violation, the ground state is then also CP-violating. At θ = π,

the situation is again different, the Lagrangian is then invariant under CP, but this does

not hold automatically for the ground state. At this value for θ it may be possible that

Eq. (1.18) has a nontrivial solution that minimizes the potential. Such a solution violates

CP invariance, which will be discussed in more detail in the next section, after which we

present the arguments for the claim that θ < 10−10 in Nature. We continue in Sect. 1.4

with the possibility of CP-violating local minima at θ = 0.

1.3 The value of θ in Nature

At θ = π spontaneous CP violation can occur. At this value for θ the action is invariant

under CP. However, this is not always the case for the ground state. Depending on the

value of the quark masses, τ and Σ, there can be a two-fold degenerate CP-violating

ground state. The two ground states are related by a CP transformation. This phenomenon

is named after Dashen (1971), who discovered it before the introduction of QCD. At the

time it was believed that a CP-violating condensate could be the source of the observed

CP violation in experiments (Nuyts, 1971), but was later ruled out because it gives a too

high value for the amplitude η→ ππ (Bég, 1971).

For realistic values of the parameters in Eq. (1.18) and θ = π, the ground state is

CP-conserving, so how can we differentiate between the cases θ = 0 and θ = π without

2In this thesis we make two assumptions regarding the θ-dependence of the strong interaction. Firstly, we

assume that also at θ , 0, there is still confinement and chiral symmetry is also still broken. However, this may

not be the case, see for example Schierholz (1995). Secondly, we assume that at θ = 0 the free energy is smooth,

see Asorey (2004) for a discussion about this property.
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Chapter 1. Introduction

CP violation? Crewther et al. (1979) argued that this can be done by looking at ratios of

meson masses. Their argument goes as follows, they start with the observation that the

case θ = π with positive up-quark mass is equivalent to θ = 0 and a negative up-quark

mass, see Sect. 1.5. In that situation, with |md | > |mu|, the potential is still minimized by

the unit matrix, which means that the condensates all have equal sign. Using 〈U〉 = 11 as

the vacuum, the following ratio of meson masses can be derived at θ = 0:

(

m2
K0 − m2

K+ − m2
π0 + m2

π+

)

/m2
π0 =

md − mu

md + mu

(1.19)

which is always smaller than one. According to Crewther et al. (1979), at θ = π the ratio

equals
(

m2
K0 − m2

K+ − m2
π0 + m2

π+

)

/m2
π0 =

md + mu

md − mu

(1.20)

which is larger than one. If one inserts the physical values of these masses, the ratio equals

approximately 0.3, implying that θ = 0, or at least very close to zero. In Chapter 4 we

will add an argument why in Nature θ ≈ 0, again by looking at meson masses.

We can go further in restricting θ by looking at the electric dipole moment (EDM) of

the neutron. On dimensional grounds, for small θ the neutron EDM should be of order

(Baluni, 1979; Crewther et al., 1979)

dn ≈ |θ|em2
π/m

3
N ≈ 10−16|θ|e cm (1.21)

The experimental upper bound for the neutron EDM is 2.9×10−26e cm (Baker et al., 2006),

leading to an upper limit for θ of order 10−10. A less stringent bound of |θ| . (2−3)×10−7

is obtained by looking at parity violation in nuclear reactions (Kawarabayashi and Ohta,

1981).

1.4 Metastable CP-violating states at θ = 0

Kharzeev, Pisarski, and Tytgat (1998) pointed out that Eq. (1.18) allows for metastable

CP-violating solutions at θ = 0. This possibility arises when τ/Σ is smaller than the light-

est quark mass. Then Eq. (1.18) has nontrivial solutions, where φu,d,s , 0 and therefore

violate CP invariance, effectively they correspond to states with a nonzero θ. Using our

values of the parameters, the local minima arise when τ/Σ < 0.251mu. In Nature τ/Σ is

much larger than the lightest quark mass, so these metastable states do not normally occur.

However, Kharzeev et al. argued that these states might be relevant at high-temperature

in heavy-ion collisions.

The argument of Kharzeev, Pisarski, and Tytgat goes as follows, they considered the

option that τ/Σ is temperature dependent. Using large Nc arguments, it can be argued that

the topological susceptibility τ decreases with increasing temperature. This temperature

dependence can be inferred from the fact that τ ∼ O(1) at zero temperature and τ ∼ e−aNc

at high temperatures (Gross, Pisarski, and Yaffe, 1981). The parameter a = 8π2/g2Nc is

constant in the large-Nc limit, indicating that τ ≈ 0 at high temperatures and large Nc.
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1.5. Chiral transformations and negative quark mass

Furthermore, also Σ decreases when one increases the temperature. It is assumed that

there is only one phase transition at high temperature, which is of second order. The tem-

perature dependence of the parameters is taken to correspond to the mean field behavior,

i.e. Σ ∼ (Td − T )1/2 and τ ∼ (Td − T )2, hence τ/Σ ∼ (Td − T )3/2. Here Td denotes the

temperature of the phase transition. If we now insert the chosen values for the parameters,

we can see that the temperature must be very close to the transition temperature in order

for the local minima to occur. Such metastable states could in principle be seen in heavy-

ion collisions. Kharzeev, Pisarski, and Tytgat (1998) discuss two possible experimental

signatures. First of all, because the metastable state violates parity invariance, parity vio-

lating decays become possible, such as η→ π0π0. Furthermore, it is in principle possible

to observe P- and CP-violating bubbles using pion correlations that are P and CP odd,

but one needs large event samples and the estimated magnitude of the effect is uncertain

(Kharzeev, 2006, and references therein). Another method suggested by Kharzeev is that

a parity odd bubble would lead to charge separation. Voloshin (2004) proposed an observ-

able that would measure this separation. For a discussion of the experimental results, see

Voloshin (2009), Selyuzhenkov (2006, 2009) and Abelev et al. (2009a,b). These results

indicate that CP odd effects may indeed be present in heavy-ion collisions, but alternative

explanations for charge separation may exist. In Chapter 4 we will address the issue of

local minima in the NJL model.

1.5 Chiral transformations and negative quark mass

As discussed in Sect. 1.3, a theory with θ = π can be related to a theory with a negative

quark mass. Since this sometimes leads to confusion concerning the terminology used for

the meson spectrum, we will elaborate on this relation in this section.

We start with the QCD partition function including the θ term:

Z =

∫

DψDψ̄DA ei
∫

d4 x [LQCD+Lθ], (1.22)

where

LQCD = ψ̄ (iD/ − m)ψ − 1

4
F
µν
a Fa

µν,

Lθ =
θg2

32π2
Fa
µνF̃

µν
a . (1.23)

Eq. (1.6) shows that the fermion measure of gauge theories is not invariant under chiral

transformations, which can be used to remove Lθ. Since the mass term is not invariant

under chiral transformations either, a θ dependence then appears in the mass term. One

obtains

Z =

∫

Dψ′Dψ̄′DA ei
∫

d4 xL ′
QCD . (1.24)

Although the physical results one obtains using the transformed expression will be equiva-

lent, one has to be careful when evaluating vacuum expectation values. We define vacuum
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Chapter 1. Introduction

expectation values of an operator O = O(ψ, ψ̄) in terms of the original fields (the one of

the Lagrangian (1.23)) and in terms of the transformed or “primed” fields as follows:

〈O〉θ =
∫

DψDψ̄DA O(ψ, ψ̄) ei
∫

d4 x[LQCD+Lθ],

〈O′〉θ =
∫

Dψ′Dψ̄′DA O′(ψ′, ψ̄′) ei
∫

d4 xL ′
QCD . (1.25)

The condensates 〈O〉θ and 〈O′〉θ differ for θ , 0 and are related by a θ-dependent transfor-

mation. For instance,

〈ψ̄ψ〉θ =
∫

DψDψ̄DA ψ̄ψ ei
∫

d4 x[LQCD+Lθ] ,

∫

Dψ′Dψ̄′DA ψ̄′ψ′ ei
∫

d4 xL ′
QCD = 〈ψ̄′ψ′〉θ .

(1.26)

When discussing a vacuum expectation value like 〈ψ̄ψ〉θ it has to be accompanied by a

statement about which Lagrangian one is using.

In what follows we will select the chiral transformation that only affects the up quark:

uL = e−iθ/2u′L,

uR = eiθ/2u′R. (1.27)

This removes Lθ from the Lagrangian and the up-quark mass term changes according to

ūmuu = ū′
[

mu cos θ + muiγ5 sin θ
]

u′. (1.28)

For θ = π a negative up-quark mass results. In addition,

〈ūu〉θ = 〈ū′u′〉θ cos θ + 〈ū′iγ5u′〉θ sin θ. (1.29)

Later in this thesis, we will use the following notation for the meson condensates:

〈σ〉 = 〈ψ̄λ0ψ〉 , 〈a0〉 = 〈ψ̄λψ〉
〈η〉 = 〈ψ̄λ0iγ5ψ〉 , 〈π〉 = 〈ψ̄λiγ5ψ〉 , (1.30)

where the λa = (λ0,λ) denote the generators of U(2), normalized as Tr λaλb = 2δab.

These condensates transform according to:

〈σ〉 = 1

2
(cos θ + 1) 〈σ′〉 + 1

2
(cos θ − 1) 〈a0′

0 〉 +
1

2
sin θ 〈η′〉 + 1

2
sin θ 〈π0′〉 ,

〈a±0 〉 = cos
θ

2
〈a±′0 〉 + sin

θ

2
〈π±′〉 ,

〈a0
0〉 =

1

2
(cos θ − 1) 〈σ′〉 + 1

2
(cos θ + 1) 〈a0′

0 〉 +
1

2
sin θ 〈η′〉 + 1

2
sin θ 〈π0′〉 ,

〈η〉 = 1

2
(cos θ + 1) 〈η′〉 + 1

2
(cos θ − 1) 〈π0′〉 − 1

2
sin θ 〈σ′〉 − 1

2
sin θ 〈a0′

0 〉 ,

〈π±〉 = cos
θ

2
〈π±′〉 − sin

θ

2
〈a±′0 〉 ,

〈π0〉 = 1

2
(cos θ − 1) 〈η′〉 + 1

2
(cos θ + 1) 〈π0′〉 − 1

2
sin θ 〈σ′〉 − 1

2
sin θ 〈a0′

0 〉 .

(1.31)
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1.6. Summary

Therefore, one has to be careful assigning the names π0 and η to the condensates after

doing a chiral transformation. For example, Fujihara, Inagaki, and Kimura (2007) dis-

cuss a 〈π0〉-condensate using a Lagrangian without θ term, but with negative up or down

quark mass. This corresponds to an 〈η〉-condensate using a Lagrangian with positive

quark masses and a θ-term with θ = π. We emphasize that these transformations are

just a matter of consistently naming mesons and vacuum expectations values, but this is

nevertheless important for the comparison of quantities from different calculations. For

instance, 〈π0〉 , 0, while 〈π±〉 = 0 would suggest SU(2)V -breaking, whereas 〈η〉 , 0

indicates U(1)A-breaking (for the N f = 2-case), an important distinction.

1.6 Summary

In this chapter QCD and its low-energy symmetries were discussed. The QCD vacuum is

topologically nontrivial, characterized by the QCD vacuum angle θ. Due to the existence

of nonperturbative objects called instantons, nonzero θ can have observable effects. When

θ , 0 (mod π), the theory is explicitly CP-violating.

We continued with reviewing the low-energy effective theory of the strong interaction,

chiral perturbation theory (χPT). We discussed how instanton effects can be incorporated

in this theory. This extension of χPT is widely used in the literature to study the θ-

dependence of the QCD vacuum. The case θ = π is special, as it allows for spontaneous

CP violation, known as Dashen’s phenomenon, which we will study in detail using the

NJL model in Chapter 4 and 5. Our investigations will also include finite temperature and

density effects.

We presented the arguments that in Nature θ ≈ 0, which indicates that the ground

state of the strong interaction is to very good approximation CP-conserving. However,

conjectures about metastable CP-violating states at high temperatures have been put for-

ward in connection with heavy-ion collisions. In these states θ is effectively nonzero,

consequences of them may be probed in heavy-ion collisions.

Finally we discussed the relation between a theory with θ = π and positive quark

masses and the case θ = 0 with one of the quark masses negative. Observables are equal

in both cases, but this does not apply to the meson condensates expressed in terms of the

quark fields. This fact is often not explicitly addressed in the literature, but important in

the discussion of symmetry breaking.

We continue our introduction in the next chapter with reviewing what is known about

QCD matter in extreme conditions.
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Chapter 2

The QCD phase diagram

In this chapter the phase diagram of the strong interaction will be discussed. First we

introduce some general aspects of phase diagrams and phase transitions. Then we will

summarize the “standard” phase diagram as function of temperature and baryon chemical

potential, which is a measure of the baryon density, and discuss how one obtains both

experimental and theoretical knowledge about the phase diagram. We continue with what

is known about the phases of QCD as a function of some other parameters, like the number

of flavors, masses, and θ. This chapter puts the rest of the thesis in a larger perspective. It

is based on Braun-Munzinger and Wambach (2009), Meyer-Ortmanns and Reisz (2007),

to which we refer for further details and also to the books of Shuryak (2004), Kapusta and

Gale (2006), Kogut and Stephanov (2004).

2.1 Phase transitions

Usually a phase diagram consists of various different phases as a function of the external

parameters. One can change the phase of the system by changing these external parame-

ters, for example, water becomes ice when cooled under atmospheric pressure. In this

example the change of phase is induced by temperature. Of course, also the other exter-

nal parameters, like the magnetic field and chemical potential can induce such a phase

transition.

Phase transitions are usually connected to changes in the symmetry of the system.

Let us discuss as an example the chiral phase transition in QCD. As we already men-

tioned in Sect. 1.1, in massless QCD, chiral symmetry is broken at low temperatures due

to a nonzero 〈ψ̄ψ〉 condensate. However, at high temperatures it is assumed that chiral

symmetry is restored, the condensate then is zero. Between the two phases there is a dif-

ference in chiral symmetry corresponding to a zero or nonzero value of 〈ψ̄ψ〉 respectively.

We will loosely call such a quantity that is zero in one phase and nonzero in the other an

order parameter, albeit it is in some cases actually a disorder parameter.

Very often it happens that order parameters can only be found in some idealized form
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2.2. Phase diagram as function of µB and T

of the theory, like 〈ψ̄ψ〉 in the case of the chiral phase transition in massless QCD. In the

case of massive QCD, 〈ψ̄ψ〉 never becomes zero and the symmetry does not get fully re-

stored due to explicit symmetry breaking from the quark masses. Usually it is nevertheless

possible to use a quantity like 〈ψ̄ψ〉 as an order parameter since it behaves qualitatively

differently in the two phases. In the case of chiral symmetry breaking one speaks about

the phase with broken chiral symmetry and the phase where chiral symmetry is approx-

imately restored. For convenience, we will refer to the first phase as the chiral-broken

phase and to the second one as the approximate chiral-restored phase.

Phase transitions are characterized by how derivatives of the thermodynamic poten-

tial behave across the phase transition. When one of the first derivatives of the potential

is discontinuous, it is classified as a first order transition. When it is the second or higher

derivative that is discontinuous, it is called a second order phase transition. The transition

is called a crossover when the potential is analytic across the transition. In the case of

the chiral phase transition, the order of the phase transition can be determined by look-

ing at the order parameter itself, since the chiral condensate is the first derivative of the

thermodynamic potential with respect to the quark mass.

The behavior of systems near first order transitions is qualitatively different from sec-

ond order phase transitions and crossovers. A first order transition has latent heat, i.e.,

energy is released or absorbed during the transition. Furthermore, first order transitions

allow for metastable phenomena, such as supercooling and overheating. Since there is a

change of energy across a first order transition it is relatively easy to see in experiments.

Second order transitions are more difficult to see, but at the transition, some correlation

lengths diverge, leading to experimental consequences. In addition, near a second order

phase transition, the system is scale-invariant and the phenomenon of criticality occurs.

A crossover is even harder to find in experimental data, but if it is rapid enough (as a

function of the parameter that is varied, usually the temperature), there is still a chance of

measurable effects.

2.2 Phase diagram as function of µB and T

The question what happens to nuclear matter at high temperature and density was already

raised by Fermi in the 1950s. He inferred the phase diagram shown in Fig. 2.1 using the

knowledge of the constituents of matter at that time, protons, neutrons, and electrons.

In the 1970s it became clear that hadrons are not the basic constituents of matter, but

that they are composed of quarks and gluons. At normal densities and temperatures, these

are confined into hadrons, but Collins and Perry (1975), Cabibbo and Parisi (1975) argued

that at high temperature and density, the hadrons will overlap and the quarks and gluons

can move freely, a phase later called a quark-gluon plasma (QGP) (Shuryak, 1978). The

fact that QCD has asymptotic freedom indicates that at (asymptotically) high temperatures

and densities, the quarks and gluons are almost free. In such a system, the color charge is

screened, just like in a normal plasma there is screening of electric charge. The inferred

phase diagram is shown in Fig. 2.2, there are two phases, a confined and a deconfined one.

Soon after, the possibility of color superconductivity was pointed out by Barrois (1977)
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Chapter 2. The QCD phase diagram

Figure 2.1: Phase diagram of nuclear matter conjectured by Fermi in his handwritten notes on

“Matter under Unusual Conditions”, taken from Bernardini and Bonolis (2004).

and Frautschi (1978), where quark pairs form a condensate, see Fig. 2.3. Other early work

on color superconductivity was done by Bailin and Love (1984), but the whole subject of

color superconductivity lay dormant for almost 20 years. The field was reopened by

Alford, Rajagopal, and Wilczek (1998) and Rapp et al. (1998).

Apart from the deconfinement phase transition, it is also expected that at high tem-

perature and also at high baryon chemical potential, chiral symmetry is restored. Often it

Figure 2.2: The phase diagram as a function of baryon density and temperature conjectured by

Cabibbo and Parisi (1975).
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Figure 2.3: The phase diagram as a function of baryon density and temperature conjectured by

Frautschi (1978), already including color superconductivity, the phase with the qq pairs.

is assumed that the two coincide, but this correlation is not necessarily true. Most lattice

results suggest that the two phase transitions for the light quarks coincide at zero chemical

potential (Cheng et al., 2006, 2008), but there are conflicting results (Aoki et al., 2006,

2009). The problem is that only in the case of infinite quark masses a (dis)order parameter

for the deconfinement phase transition is known, the expectation value of the Polyakov

loop. The deconfinement phase transition is connected to the breaking of the global Z(3)

center symmetry of SU(3) in the deconfined phase corresponding to a nonzero value for

the expectation value of the Polyakov loop (McLerran and Svetitsky, 1981b). For a re-

view of the center symmetry of gauge theories and its relation to confinement, see Weiss

(1993). No deconfinement order parameter is known for realistic quark masses, but usu-

ally the expectation value of the Polyakov loop is still used. The situation is similar to

the restoration of chiral symmetry; 〈ψ̄ψ〉 is only a real order parameter when the current

quark masses are zero. The absence of real order parameters makes the discussion of the

QCD phase transitions difficult, especially in determining whether they coincide or not.

As lattice calculations cannot be performed at large finite chemical potential (i.e.

µB ≥ T ), it is not clear whether the correlation between the two phase transitions con-

tinues at finite chemical potentials. McLerran and Pisarski (2007) have proposed a new

phase, called the quarkyonic phase, using large Nc arguments. This quarkyonic phase is

a confined phase with nonzero baryon number. It is conjectured that inside the quarky-

onic phase the chiral phase transition occurs. Consequently, a chiral symmetric phase that

confines exists and the phase transitions are decoupled. The conjectured phase diagram

is shown in Fig. 2.4. At finite Nc the quarkyonic and chiral phase transition are probably

coupled. The quarkyonic phase has been further investigated using model calculations by,

for example, Fukushima (2008), McLerran, Redlich, and Sasaki (2009), and Abuki et al.

(2008).
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In this thesis we concentrate on the NJL model, which does not exhibit confinement

and hence the deconfinement phase transition does not appear within the model. However,

an extension of the NJL model exists which does incorporate a form of confinement,

the Polyakov-NJL model, introduced by Fukushima (2004) and which is also studied in

connection with the quarkyonic phase.

Let us now briefly discuss what is known about the phase diagram as a function of

temperature and baryon chemical potential. In Fig. 2.5 an example of the modern view of

the QCD phase diagram is displayed, including color superconductivity. The current view

of the phase structure shows a rich structure. However, the form of this diagram is largely

schematic, it is mostly based on theoretical arguments, which we will briefly discuss.

From lattice results it is expected that at zero chemical potential, no phase transition

exists between the hadronic phase and the QGP, it is a crossover. Furthermore, most

model calculations show that at zero temperature and finite chemical potential probably a

first order phase transition should occur. Consequently, a critical point (i.e., a point where

the first order phase transition ends and becomes a crossover) must exist, which could

possibly be seen in heavy-ion collisions. However, the lattice results of de Forcrand and

Philipsen (2007) suggest that the first order transition may not exist, contrary to theoretical

expectations.

At high chemical potential color superconductivity occurs, where the quarks form

Cooper pairs. Various color superconducting phases are possible, they differ in the pair-

ing mechanisms. Using perturbation theory one can derive that at asymptotically high

chemical potentials the color superconducting phase of color flavor locking (CFL) exists.

In this phase the color and flavor of quarks become correlated. At lower chemical poten-

tial one has to rely on model calculations, for instance using the NJL model. For a review

about color superconductivity see for example Alford et al. (2008). In this thesis we will

not concentrate on deconfinement and color superconductivity, but on chiral symmetry

breaking and phases that violate CP invariance.

Figure 2.4: The QCD phase diagram including the quarkyonic phase and without color supercon-

ducting phases (McLerran, Redlich, and Sasaki, 2009).
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Figure 2.5: An example of a modern view of the QCD phase diagram as a function of baryon

chemical potential and temperature (Alford et al., 2008).

2.3 Probes of the QCD phase diagram

The extreme conditions required to study the QCD phase diagram can be found in three

different physical situations, the Big Bang, heavy-ion collisions and neutron stars. The

Big Bang and heavy-ion collisions are described by high temperature and low baryon

chemical potential, for neutron stars it is the other way around. Some heavy-ion collisions

probe the intermediate regime, mainly to investigate the QCD critical point.

2.3.1 The Big Bang

The Universe was created approximately 14 billion years ago in the Big Bang. At first

the Universe was very hot and dense. As the Universe evolved, it rapidly cooled down

and expanded. During its evolution the Universe underwent several phase transitions,

for example, after 10−10 s the electroweak phase transition occurred at a temperature of

approximately 100 GeV ≈ 1015 K. In this phase transition the original SU(2)⊗U(1) sym-

metry of the electroweak theory broke down to the U(1) symmetry of electromagnetism.

After approximately 10−5 s at a temperature of typically 200 MeV the confinement

phase transition occurred. Lattice results indicate that the chiral phase transition occurred

roughly at the same time as the confinement one. Before the transition the quarks and

gluons could be described by a quark-gluon plasma. Afterwards, the phase structure

is how we know it today, i.e., quarks and gluons confined into hadrons. One of the most

important reasons to study the QCD phase diagram is to understand what happened during

this transition.
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2.3.2 Heavy-ion collisions

Experimentally, the phase diagram is studied using heavy-ion collisions. In some sense,

these heavy-ion collisions can be seen as “little bangs” (McLerran, 1981), somewhat

equivalent to the real big-bang. For recent reviews, see Gyulassy and McLerran (2005)

and Braun-Munzinger and Stachel (2007).

The earliest experiments took place at the Alternating Gradient Synchroton (AGS)

in Brookhaven and at the Super Proton Synchotron (SPS) at CERN. After these pre-

liminary experiments, a special accelerator devoted to heavy-ion collisions was built in

Brookhaven, the Relativistic Heavy-Ion collider (RHIC). At this collider gold and cop-

per nuclei are collided with a center-of-mass energy per nucleon pair equal to
√

sNN =

200GeV. In the near future also at the LHC heavy-ion collisions will take place. There

lead ions will be used, with an expected center-of-mass energy of 5.5 TeV per nucleon

pair.

In these experiments the nuclei collide and a “fireball” is created, which cools and

expands until it hadronizes after passing the deconfinement temperature. As the energies

in the experiments are much lower than the big bang, the timescales and baryon chemical

potential are very different. It is expected that for about 10−22 s such a fireball exists, in

which probably a quark-gluon plasma is formed.

The hadrons that emerge after a heavy-ion collision are very well described assuming

that they are created from a thermally and chemically equilibrated state. Furthermore,

the fireball expands hydrodynamically, which is also consistent with an equilibrated state.

So it appears that equilibration takes place in such collisions in a remarkably short time,

consequently temperature and chemical potential are well defined.

That hydrodynamics can be used in order to describe the fireball created in heavy-ion

collision surprised theorists, because it indicates that the system is strongly coupled. It

was generally believed that the system created in a heavy-ion collisions would be more

like a gas, i.e. weakly coupled. Moreover, the calculations show that the created system

behaves like a perfect liquid, without almost any viscosity.

Up to now, most experiments investigate the low baryon chemical potential regime,

which resembles the early Universe. But there are planned experiments to look for the

critical point at the SPS, RHIC and also at the future Facility for Antiproton and Ion

Research (FAIR) at the heavy-ion research center GSI in Darmstadt (see e.g. Braun-

Munzinger and Stachel, 2007).

Finally, we would like to mention that topological effects could be seen in heavy-ion

collisions, which we already briefly discussed in the introduction. An example is that CP-

violating bubbles are created, which behave as regions with an effective nonzero value

for θ. Another example is the Chiral Magnetic Effect, discussed by Kharzeev, McLerran,

and Warringa (2008), which is a combined effect of strong magnetic fields and variations

of topology. In relation to this, Kharzeev, McLerran, and Warringa (2008) noted that in

non-central heavy-ion collisions magnetic fields of magnitude 2 × 1019 G can be created.

These variations of topology could for example be induced by instantons. The combined

effects of instantons and magnetic fields on the phase structure of the NJL model will be

investigated in detail in Chapter 6.
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2.3.3 Neutron stars

The third system where extreme QCD matter is assumed to play a role is in the interior

of neutron stars. Neutron stars are compact stars built mostly from neutrons, in which

the neutron degeneracy pressure counterbalances the gravitational force leading to a hy-

drostatic equilibrium. The densities inside are probably large enough to allow for quark

matter, maybe even for color superconductivity.

A neutron star is the end product of the evolution of a heavy star, which has a mass

roughly between 2 – 8 solar masses. The fusion processes of such a star continues until

an iron-nickel core has formed. Iron is the element which has the lowest nuclear binding

energy, so fusion processes with iron atoms do not create energy. After the iron core

has been formed, the temperature of the star will go down and with it the pressure. At

some point, the pressure will be so low that it is not high enough anymore to counter the

gravitational force and the star collapses until nuclear densities are achieved. During the

collapse, the gravitational potential energy is released, which heats and expels the outer

layers, resulting in a supernova. The core that remains continues cooling, resulting in a

neutron star, or, if the density is even higher, a black hole.

The big question concerning neuron stars is what happens in the interior. Using the

equation-of-state from different models and the Tolman-Oppenheimer-Volkoff relation

(Tolman, 1939; Oppenheimer and Volkoff, 1939), mass-radius relations can be derived.

The models for the equations-of-state that are used vary from ones containing neutrons

and hyperons to ones that also contain quark matter and also hybrid models. Unfortu-

nately it is very difficult to differentiate between the models as they give usually very

similar results for observables in the relevant mass region.

Neutron stars are very dense, the density being comparable to the density that is ob-

tained when the solar mass is squeezed into a sphere with a diameter of about 20 kilometer.

Furthermore, they also spin very rapidly due to the conservation of angular momentum

during the collapse. Finally we note that observations indicate that the magnetic fields of

neutron stars are also very large, up to 1012 − 1013 G (Manchester et al., 2005). A spe-

cial class of neutron stars have magnetic fields that even exceed those values, they have

magnetic fields in the range 1014 − 1015G (Duncan and Thompson, 1992; Thompson and

Duncan, 1993, 1996) and are known as magnetars. In the core even stronger magnetic

fields could occur. These magnetic fields affect the matter inside the star considerably, for

a recent review see Lattimer and Prakash (2007). Some aspects of the effect of magnetic

fields on quark matter will be discussed in Chapter 6.

2.4 Theoretical techniques

There are several ways of attacking the problem of studying the phase diagram of QCD.

The most straightforward one is perturbative QCD, which unfortunately only works at

asymptotically high temperatures and chemical potentials, because only then the coupling

constant of QCD becomes small as typical for a nonabelian gauge theory. Furthermore

perturbative calculations indicate that the system is still not near the ideal gas limit at
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temperatures of order T ∼ 1000Tc, signalling that the system is rather strongly coupled up

to these academically high temperatures (Andersen et al., 2002). Properties of a strongly

coupled liquid could for instance be calculated using the AdS/CFT correspondence, which

we will briefly discuss at the end of this section.

Another method that is in principle very reliable is lattice QCD. Creutz (1980) devel-

oped techniques to simulate QCD on the lattice. McLerran and Svetitsky (1981a,b), Kuti,

Polonyi, and Szlachanyi (1981), and Engels et al. (1981) discussed how to implement

finite temperature QCD on the lattice, for a review see Karsch (2002). But also in lattice

calculations there are problems. The most severe one is that one cannot compute at finite

baryon chemical potentials using the standard probabilistic methods to evaluate the func-

tional integral, since the fermionic determinant becomes complex. Methods are developed

to solve this problem, see for example Allton et al. (2005), but usually only work for a

limited range of chemical potentials. For the same reason, lattice calculations at finite

θ are also not possible. One can simulate however, the dependence on isospin chemi-

cal potentials, first noted by Son and Stephanov (2001), relevant for asymmetric quark

matter that occurs in heavy-ion collisions and neutron stars. In this case the possibility

of pion condensation arises, which we will discuss in some more detail in Chapter 4.

Simulations of finite isospin were performed by Kogut and Sinclair (2002), Kogut and

Sinclair (2004), Nishida (2004), de Forcrand, Stephanov, and Wenger (2007), Detmold

et al. (2008). These results can then be compared with model calculations.

The method adopted in this thesis is to use low energy models for QCD. Different

models can be used to study the phase diagram, all with some advantages and disadvan-

tages. Chiral perturbation theory is the most reliable, as it is really an effective theory

following the arguments of Weinberg (1979). However, the theory is only valid at tem-

peratures lower than approximately 150 MeV (Gerber and Leutwyler, 1989). Therefore

instead we use in this thesis two different models that describe chiral symmetry breaking,

but that can also describe the restoration of chiral symmetry, namely the Nambu-Jona-

Lasinio (NJL) model and the linear sigma model coupled to quarks (LSMq). The LSMq

model is a hybrid model containing both mesons and quarks, the NJL model only contains

quark degrees of freedom. Both of them describe the low energy meson spectrum of QCD

quite well. In Chapters 3 and 5 we will give more elaborate introductions to the models.

As noted in Sect. 2.3.2, the matter created in heavy-ion collisions is a strongly coupled

quark-gluon plasma. A final, quite modern method to investigate how such strongly cou-

pled QCD matter behaves is by using the AdS/CFT correspondence (Maldacena, 1998).

This method uses the conjectured correspondence of a string theory in anti-de Sitter space

and a strongly coupled conformal field theory. Of course, QCD is neither conformal nor

supersymmetric, so the correspondence gives at best hints about what is going on in a

strongly coupled quark-gluon plasma. Currently much effort is put in trying to find the

gravity dual of QCD, for example by Son and Stephanov (2004) and Erlich et al. (2005).

One of the promising predictions of the AdS/CFT correspondence is that the pressure of a

strongly coupled plasma equals 3/4 of the one found in the weak coupling limit (Gubser,

Klebanov, and Tseytlin, 1998). Around a few times the critical temperature this value for

the pressure is approached in lattice calculations, see Panero (2009).
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2.5 Non-standard QCD phase diagrams

Apart from the usual phase diagram as a function of temperature and baryon chemical

potential, it is also very illuminating to study the phase diagram as a function of other

parameters. In this section we will discuss some of the possible diagrams, mainly those

we will later refer to in this thesis. Some of the parameters discussed in this section

are fixed in Nature, but varying their values can give us valuable insights in the phase

structure of the strong interaction. In fact, that is what we do in this thesis. We study the

QCD phase diagram as a function of θ, the strength of the instanton interaction, quark

masses, isospin chemical potential and magnetic fields.

The order of the phase transition at finite temperature is strongly dependent on the

parameters of QCD, for example, the number of active flavors and the values of the quark

masses. For instance, in Fig 2.6 the phase diagram is shown as a function of the up, down,

and strange current quark masses. The up and down current masses are taken degenerate.

The order of the phase transition of the current quark masses was first studied this way

by Brown et al. (1990), later in much more detail by for instance Karsch, Laermann, and

Peikert (2001).

As from most lattice results it is assumed that the chiral phase transition roughly

coincides with the deconfinement one at zero baryon chemical potential, they are not con-
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Figure 2.6: The phase diagram as a function of the quark masses, the up and down quark are taken

degenerate (Peikert, Karsch, and Laermann, 2000).
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Figure 2.7: The phase diagram of three-flavor χPT as a function of the up and down quark mass

(Creutz, 2004). The matrix Σ is the matrix U of Sect. 1.2.

sidered separately in Fig. 2.6. In the chiral limit (mu = md = ms = 0) it is expected that

the chiral phase transition is of first order (Pisarski and Wilczek, 1984). At infinite quark

masses, when the theory only contains gluons, lattice results indicate that the deconfine-

ment transition is first order (Svetitsky and Yaffe, 1982a,b). At zero up and down quark

mass and infinite strange quark mass the chiral phase transition is of second order, as this

phase transition is expected to belong to the O(4) universality class (Pisarski and Wilczek,

1984). If the up and down quark obtain a mass, the transition becomes a crossover. Lattice

results suggest that the real world is in the crossover region of Fig. 2.6.

The phase diagram for negative up and/or down current quark masses with a fixed

(positive) strange quark mass has been studied using chiral perturbation theory by Creutz

(2004), the result is shown in Fig. 2.7. As discussed in Sect. 1.5 the case that one of

the current quark masses is negative corresponds to θ = π. In this diagram a large CP-

violating region was found, Dashen’s phenomenon.

The phase structure as a function of the up and down quark mass was also studied

in the two-flavor case using a chiral Lagrangian by Tytgat (2000). Using his results,

Fig. 2.8 can be obtained. One sees that also in the two flavor case a region of quark

masses exists where the theory violates CP invariance. The shape of this region depends

on the magnitude of the topological susceptibility with respect to the value of the chiral

condensate. Chiral perturbation theory corresponds to the case τ → ∞ which shrinks

the CP-violating region to the line of equal current quark masses. Note that one of the

boundaries of the three-flavor case is missing in the two-flavor case. The phase structure

as function of the up and down quark mass will be discussed in more detail for the two-

flavor NJL model in Chapter 4. In that model also an upper boundary exists, similar to

the three-flavor case discussed by Creutz (2004).
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Figure 2.8: The phase diagram at θ = π as a function of the up and down quark mass using the

two-flavor chiral Lagrangian.

The phase structure as a function of isospin chemical potential (µI = µu − µd) has

been studied to describe matter with unequal amounts of up and down quarks, which

occurs in heavy-ion collisions and quark stars. From studies using chiral perturbation

theory it is known that when the isospin chemical potential becomes larger than the pion

mass, a condensate of charged pions is created (Son and Stephanov, 2001), which was

also confirmed in the NJL model (Barducci et al., 2004; Barducci et al., 2003; He and

Zhuang, 2005; Warringa, Boer, and Andersen, 2005). Metlitski and Zhitnitsky (2006)

also studied the phase diagram as a function of isospin chemical potential, combined with

the θ-dependence of the theory. The masses of the Goldstone bosons become θ-dependent,

but the phase transition still occurs when the isospin chemical potential equals the mass of

the Goldstone bosons. A similar relation will be considered in more detail in Chapter 4,

with different results however.

2.6 Summary

In this chapter the phase structure of the strong interaction was discussed, which turns out

to be very rich. For instance, at high densities and temperatures there exists a phase called

the quark-gluon plasma, a state of matter with deconfined quarks and gluons. Also exotic

phases exist, like color superconductivity at high chemical potential and low temperature.

In the literature, the phase structure has been investigated as a function of other pa-

rameters as well, such as the quark masses, the number of active flavors and the vacuum

angle θ. In that case more possible phases emerge, including CP-violating ones. Some of

these phases are only relevant for theoretical studies, while others can have consequences
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for the structure of neutron stars, the Big Bang and the matter created in heavy-ion colli-

sions.

We discussed four theoretical approaches to study QCD matter, namely perturba-

tive methods, lattice calculations, the conjectured AdS/CFT correspondence and effective

models. Perturbative methods only work at asymptotically high temperatures and chem-

ical potentials. The applicability of lattice calculations is limited to very small chemical

potentials. The AdS/CFT correspondence is expected to give only qualitative results as

QCD is not conformal.

In the rest of this thesis we will use model calculations, which do not give exact results

but do allow us to explore a large region in parameter space qualitatively. We will focus

in particular on the role of instantons on the phase structure. These investigations are

mainly performed in the framework of the NJL model, which we will introduce in the

next chapter.
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Chapter 3

The Nambu–Jona-Lasinio model

In this chapter the Nambu–Jona-Lasinio (NJL) model is introduced. It is mainly based

on the reviews of Klevansky (1992) and Buballa (2005). In Sect. 3.1 the original NJL

model is introduced, a model for interacting nucleons. We continue in Sect. 3.2 with the

reinterpretation of the model as a quark model. Then the vacuum structure of the model

at zero temperature and chemical potential is discussed in Sect. 3.3, including the bound

states of the model, which can be interpreted as the mesons. Furthermore, some low-

energy relations are derived. The chapter ends with Sect. 3.4, in which the values of the

parameters that are used in this thesis are presented.

3.1 Introduction

The NJL model is a model for the strong interaction. It was first considered in 1961, be-

fore the discovery of quarks. In its original form, it was a model for interacting nucleons.

In those days notions of chiral symmetry in the strong interaction were already known,

leading to current algebra and the concept of a (partially) conserved axial vector cur-

rent (PCAC). A model with (approximate) chiral symmetry is described by a Lagrangian

with (almost) massless fermions. Inspired by superconductivity, Nambu and Jona-Lasinio

(1961a,b) introduced their model, with the following Lagrangian

L = ψ̄ (i∂/ − m)ψ +G
{

(ψ̄ψ)2 + (ψ̄iγ5λiψ)2
}

. (3.1)

Here ψ is a SU(2) doublet describing the nucleons. The nucleons interact through a local

four-fermion interaction with coupling constant G. This interaction is chirally symmetric

(i.e., invariant under SU(2)L ⊗ SU(2)R). The λi are the Pauli matrices and m is a small

bare mass for the nucleons.

In the same way as the electrons form Cooper pairs in superconductivity, in the NJL

model the nucleons form pairs with anti-nucleons and condense when G is strong enough.

The condensate 〈ψ̄ψ〉 becomes nonzero, signalling a breakdown of chiral symmetry. Fol-

lowing the Goldstone theorem, three massless pseudoscalar bosons should appear, since
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the pions are much lighter than the nucleons and are pseudoscalars, they were interpreted

as these Goldstone bosons. Results from current algebra could indeed be explained by

this interpretation. Of course, pions are not really massless; the small mass of the pions

comes from the explicit symmetry breaking by a small bare mass of the nucleons in the

Lagrangian. Furthermore, the interaction creates a large self energy for the nucleons, even

when the bare mass is taken to zero, and was seen as the explanation of the large mass of

the nucleons, while being (almost) massless at the Lagrangian level.

3.2 The NJL model as quark model

After the discovery of QCD, the NJL model was reinterpreted as a quark model (Klein-

ert, 1976; Volkov, 1984; Hatsuda and Kunihiro, 1984). The fermion doublet becomes a

doublet containing the up and down quark fields. In the new interpretation, the vacuum is

not described by a nucleon-antinucleon condensate, but by a quark-antiquark condensate.

However, the pions are still interpreted to represent the Goldstone bosons.

When the NJL model is used as a quark model, one has to be careful as some features

of QCD are not contained within the model. First of all, the model does not contain glu-

ons; this is resolved by the assumption that the gluons are “integrated out”, leading to the

four-quark interaction. In principle, this integrating-out would also lead to six and higher

point interactions, but the coupling constants of these interactions are suppressed by Λ−6

and higher, where Λ is an ultraviolet cut-off. Secondly, the model contains four-fermion

interactions, making it non-renormalizable. When viewed as an effective model, non-

renormalizability is not a problem as there is natural a cut-off that limits the applicability.

Lastly, the model does not implement confinement. In this thesis confinement will not

play a role. This is clearly an omission, but many aspects of QCD can be described with-

out considering confinement, especially chiral symmetry breaking and the light meson

masses.

Since its introduction, the model has evolved along several lines. In the 1980s the

model has been extended to also include the strange quark (Ebert and Reinhardt, 1986;

Bernard, Jaffe, and Meissner, 1987; Hatsuda and Kunihiro, 1987). In the 1990s diquark

interactions were incorporated in the NJL model. These interactions lead to color su-

perconductivity; for a recent review see Alford et al. (2008). Color superconductivity is

expected to arise at high baryon chemical potential and low temperatures. In this thesis

we will not consider color superconductivity.

Apart from the form of the interaction used originally by Nambu and Jona-Lasinio,

many more chirally symmetric interactions can be written down, for example, vector and

axial-vector interaction terms. However, not all of these terms are independent, they are

related via Fierz transformations (Klevansky, 1992; Buballa, 2005). Qualitatively, the

vacuum structure of these models with more interaction terms behaves similarly to the

version that only contains scalar and pseudoscalar interaction, therefore for simplicity in

this thesis only the latter two will be taken into account. As a consequence, only scalar

and pseudoscalar mesons will be considered.
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Here the following form of the NJL model will be used

LNJL = ψ̄
(

iγµ∂µ + γ0µ
)

ψ −LM +Lq̄q +Ldet, (3.2)

where the mass term of the Lagrangian is

LM = ψ̄M0ψ, (3.3)

and µ = (µu, µd) denotes the quark chemical potential. We choose an appropriate basis of

quark fields, such that the mass-matrix M0 is diagonal, i.e.,

(

mu 0

0 md

)

. (3.4)

Furthermore,

Lq̄q = G1

[

(ψ̄λaψ)2 + (ψ̄λaiγ5ψ)2
]

, (3.5)

is the chirally symmetric interaction, similar to the one of Eq. (3.1). Actually, this in-

teraction is equal to the attractive part of the q̄q channel of the Fierz transformed color

current-current interaction (Buballa, 2005). Finally,

Ldet =8G2eiθ det
(

ψ̄RψL

)

+ h.c.

=G2 cos θ
[

(ψ̄λ0ψ)2 + (ψ̄λiiγ5ψ)2 − (ψ̄λiψ)2 − (ψ̄λ0iγ5ψ)2
]

− 2G2 sin θ
[

(ψ̄λ0ψ)(ψ̄λ0iγ5ψ) − (ψ̄λiψ)(ψ̄λiiγ5ψ)
]

, (3.6)

is the ’t Hooft determinant interaction which depends on the QCD vacuum angle θ (’t Hooft,

1976, 1986). This term is the effective interaction induced by instantons, it breaks the

U(1)A-symmetry (which is present in Eq. (3.5)).

Often G1 and G2 are taken equal, which at θ = 0 means that the low energy spectrum

consists of σ and π fields only. We will restrict ourselves to the two flavor case, using λa

with a = 0, ..., 3 as generators of U(2).

The symmetry structure of the NJL model is very similar to that of QCD. In the

absence of quark masses and the instanton interaction there is a global SU(3)c × U(2)R ×
U(2)L-symmetry. The instanton interaction breaks it to SU(3)c×SU(2)L×SU(2)R×U(1)B.

For nonzero, but equal quark masses this symmetry is reduced to SU(3)c×SU(2)V×U(1)B.

For unequal quark masses and chemical potentials one is left with SU(3)c×U(1)B×U(1)I ,

where B and I stand respectively for baryon number and isospin.

Because we want to investigate the effects of instantons on the vacuum, we are in-

terested in its dependence on the strength of the determinant interaction, which is the

effective instanton interaction. Frank, Buballa, and Oertel (2003) have investigated the

effects of this interaction at θ = 0, in particular flavor-mixing effects, on the QCD phase

diagram, by choosing the following expressions for G1 and G2 (where our c is their α)

G1 = (1 − c)G0, G2 = cG0. (3.7)

In this way, the strength of the instanton interaction is controlled by the parameter c, while

the value for the quark condensate at θ = 0 (which is determined by the combination
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= +

Figure 3.1: The Schwinger-Dyson equation for the quark propagator in the Hartree approximation.

The bare and dressed propagators are denoted by the thin and bold line respectively.

G1 +G2) is kept fixed. As mentioned, for G1 = G2, or equivalently c = 1
2
, only the σ and

π mesons are present. In order for the model to have a stable ground state, 0 ≤ c ≤ 1
2
, see

Eq. (4.8)

3.3 Constituent quarks, mesons and low-energy theorems

In this section the vacuum properties of the NJL model are discussed; it is largely based

on Buballa (2005). At zero temperature and density, the chiral symmetry that is present

in the Lagrangian of the NJL model (and in QCD) is broken by a 〈ψ̄ψ〉 condensate. Later

in this thesis we will also allow for other pairing patterns, but let us stick for now to this

condensate. The condensate gives a large self-energy to the quarks, usually calculated in

the Hartree approximation. The corresponding self-consistent Schwinger-Dyson equation

is shown in Fig. 3.1. The self-energy is p-independent in this approximation, i.e. it only

shifts the mass of the quarks by a constant,

M = m + 2iG0

∫

d4 p

(2π)4
Tr S (p), (3.8)

where M is usually called the constituent mass as it behaves as an effective mass for the

quarks. For simplicity we have set mu = md = m and c = 0. S (p) is the dressed quark

propagator, equal to S (p) = (p/ − M + iǫ)−1. If G0 is large enough, this equation has a

nontrivial solution, where M , m. This equation is usually referred to as the gap equation,

as it is analogous to the gap equation in superconductivity. Using the expression for 〈ψ̄ψ〉

〈ψ̄ψ〉 = −i

∫

d4 p

(2π)4
Tr S (p) =

M − m

2G0

, (3.9)

it is clear that the appearance of a 〈ψ̄ψ〉 condensate is intimately related to a large value

of the constituent quark mass. The integral contained in Eq. (3.8) is divergent and needs

to be regulated. The model is nonrenormalizable, so the results are scheme dependent.

In this work a noncovariant three-dimensional UV cut-off Λ is employed. As discussed

by Buballa (2005), such a cut-off is relatively simple and preserves the analytical struc-

ture of the integrals. Moreover, Buballa argues that the three-dimensional cut-off has the

least impact on the medium parts of the integrals when performing calculations at finite

temperature and chemical potential, as we will do in Chapter 4.
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Meson properties are calculated within the NJL model by identifying the quark-antiquark

T-matrix with meson exchange. The T matrix is usually calculated in the random-phase

approximation (RPA). Graphically this identification is shown in Fig. 3.2. Here we will

discuss the basic results and defer the details to Appendix A. As an example we discuss

the pions, the other mesons go similarly.

The T-matrix in the pion channel is equal to

Tπi
(q2) =

2G0

1 − 2G0Ππi
(q2)

, (3.10)

where Ππi
is the quark-antiquark polarization in the pion channel, equal to

Ππi
(q2) = i

∫

d4 p

(2π)4
Tr

[

iγ5λiS (p + q)iγ5λiS (p)
]

=
1

2G0

(

1 − m

M

)

−
(

q2 + 4M2
)

I0(q2), (3.11)

where we have used the gap equation. The integral I0(q2) is given by

I0(q2) = −4Nci

∫

d4 p

(2π)4

1
[

(p + q)2 − M2 + iǫ
] [

p2 − M2 + iǫ
] . (3.12)

The T-matrix has a pole when the following relation holds, which can be viewed as the

definition of the pion mass

1 − 2G0Ππi
(q2 = m2

π) = 0. (3.13)

If we write

Tπi
(q2) =

−g2
πqq

q2 − m2
π

, (3.14)

it follows that the coupling gπqq between the quarks and pion is given by

g−2
πqq =

dΠπi

dq2

∣

∣

∣

∣

∣

q2=m2
π

. (3.15)

Combining Eq. (3.13) with Eq. (3.11) and the gap equation leads to the following expres-

sion for the mass of the pion

m2
π =

m

M

1

2G0I0

, (3.16)

= + + + · · ·

Figure 3.2: The T-matrix in the pion channel calculated in the RPA identified as pion exchange.

31



3.4. Choice of parameters

πjJ
5µ
i

Figure 3.3: One-pion-to-vacuum matrix element in the RPA.

where we have made the assumption that I0(q2) is a smooth and slowly varying function

of q2 (Klevansky, 1992), i.e. I0(q2) ≈ I0(0) ≡ I0. Eq. (3.16) shows that the pions are

massless in the chiral limit, as expected for Goldstone bosons. Furthermore, combining

Eqs. (3.15) and (3.11) using the same approximation yields

g−2
πqq = I0, (3.17)

thus the NJL model predicts a value for the coupling constant between quarks and mesons,

an observation that will be of importance in Chapter 5.

Another important quantity related to pion physics is the pion decay constant. It is

calculated from the matrix element 〈0| J5µ

i
|π j〉, depicted graphically in Fig. 3.3 and which

is equal to

fπq
µδi j = gπqq

∫

d4 p

(2π)4
Tr

[

γµγ5

λi

2
S (p + q)iγ5λ jS (p)

]

= gπqqMqµI0(q2)δi j. (3.18)

Again neglecting the q2-dependence of I0(q2), we obtain

gπqq fπ = M, (3.19)

which is the quark level version of the π-nucleon Goldberger-Treiman relation (Gold-

berger and Treiman, 1958). Moreover, combining Eqs. (3.17) and (3.16) with Eq. (3.9)

and expanding the result to first order in m gives the Gell-Mann–Oakes–Renner rela-

tion (Gell-Mann, Oakes, and Renner, 1968)

f 2
π m2

π ≈ −m 〈ψ̄ψ〉 . (3.20)

To conclude this section, the NJL model reproduces the results of current algebra, which

is to be expected, since these results are all consequences of chiral symmetry breaking.

Because the model reproduces the low-energy theorems of current algebra, it can be used

to describe low-energy QCD.

3.4 Choice of parameters

The NJL model employed in this thesis has five free parameters, G0, the cut-off Λ, the

current quark masses mu and md, and the strength of the instanton interaction c. Using
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Figure 3.4: The c-dependence of the meson masses. The masses are calculated in the RPA.

the relations that were derived in the previous section, the first four parameters can be

fitted to the pion decay constant fπ, the pion mass and the quark condensates 〈ūu〉 and

〈d̄d〉. Following Frank, Buballa, and Oertel (2003) we choose for our numerical studies

the following parameters, unless stated otherwise: m = mu = md = 6 MeV in case of

degenerate quark masses, a three-dimensional momentum cut-off Λ = 590 MeV/c and

G0Λ
2 = 2.435. These values corresponds to a pion mass of 140.2 MeV, a pion decay

constant of 92.6 MeV and finally, a quark condensate 〈ūu〉 = 〈d̄d〉 = (−241.5 MeV)3.

These values are in reasonable agreement with experimental determinations.

For the last free parameter of the model, c, it is more difficult to obtain a realistic

value. The parameter sets the amount of breaking of U(1)A, consequently it determines

the masses of the η and a0 mesons. The c-dependence of the masses of the mesons

calculated in the RPA are shown in Fig. 3.4. At c = 0, the U(1)A symmetry is restored

and the mass of η equals the mass of the pions, for the same reason the mass of the sigma

equals the mass of the a0 mesons. When c is increased, the U(1)A symmetry gets broken

and both the masses of η meson and the a0 mesons increase monotonically. When c

approaches 1/2, the masses of those mesons go to infinity, which means that at c = 1/2

the spectrum only consists of σ and the pions, as mentioned in Sect. 3.2.

The problem now is to associate a mass to the η particle. In a pure SU(2) world this

would indeed be the physical η, leading to a value for c of 0.11. However, as discussed

by Frank, Buballa, and Oertel (2003), it is unrealistic to describe the η meson without

strange quarks. Using the SU(3)-version of the NJL model, they obtain a slightly higher

estimate for c, between 0.16 and 0.21. Note that in the physical N f = 3 world, η is not a

flavor singlet. Furthermore, Frank, Buballa, and Oertel argue that as the instanton liquid
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model is so successful in describing vacuum correlators, the instanton interaction is the

dominant one, so one should choose an even higher value for c.

The parameter c is related to the topological susceptibility τ. Using expressions for

the η mass, this relation can be made explicit. In the chiral limit, the relation between the

η mass and τ is given by the Witten–Veneziano relation (Eq. (1.16)), which for N f = 2

yields

τ =
f 2
π m2

η

4
.

Using the procedure discussed in Sect. 3.3, one obtains the following expression for the η

mass in the NJL model,

m2
η =

c

1 − 2c

−2 〈ψ̄ψ〉M

f 2
π

, (3.21)

hence,

τ ≈ −1

2

c

1 − 2c
〈ψ̄ψ〉M. (3.22)

From this expression we can infer that when c → 1
2
, τ → ∞. In this work the value of c

will be left free in order to study the influence of instantons.
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Chapter 4

Spontaneous CP violation in the

strong interaction at θ = π

In this chapter the θ-dependence of the phase structure of the two-flavor NJL model will

be discussed. The full θ-dependence of the vacuum will be studied (briefly), but the main

focus is on the θ = π-case, which allows for spontaneous CP violation. The depen-

dence of the phase structure, and in particular of the CP-violating phase, on the quark

masses, instanton interaction strength, temperature, baryon and isospin chemical poten-

tial is examined in detail. When available a comparison to earlier results from effective

theories is made. From our results we conclude that spontaneous CP violation in the

strong interaction is an inherently low-energy phenomenon. Furthermore, inside the CP-

violating phase, the masses and the mixing of the mesons display some unusual features

as a function of the instanton interaction strength. This chapter is partly based on Boer

and Boomsma (2008).

4.1 Introduction

As discussed in Chapter 1, the possibility of spontaneous CP violation in the strong inter-

action, known as Dashen’s phenomenon, is one of the reasons why the θ-dependence of

this interaction has been studied. Furthermore, metastable states have been proposed to

occur in heavy-ion collisions that violate CP invariance; such states would be described

by an effective nonzero θ. It is very difficult to study finite θ in QCD due to the non-

perturbative nature of the θ-term. Even in lattice QCD, studies are limited to small θ,

because of the problem of how to deal with complex phases. Therefore, the θ-dependence

of the strong interaction and Dashen’s phenomenon have been studied extensively us-

ing low energy effective theories, such as chiral perturbation theory and using the chi-

ral Lagrangian (Witten, 1980; di Vecchia and Veneziano, 1980; Smilga, 1999; Tytgat,

2000; Akemann, Lenaghan, and Splittorff, 2002; Creutz, 2004; Metlitski and Zhitnitsky,

2005, 2006), or by using specific models, such as the NJL model (Fujihara, Inagaki, and
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Kimura, 2007). In a quark model, like the NJL model, the effects of instantons and the

θ-term are incorporated via an effective interaction, the ’t Hooft determinant interaction,

see Sect. 3.2. In Sect. 1.2 it was argued that chiral perturbation theory can be expanded

to include these effects in a similar way via a log determinant interaction (Witten, 1980;

di Vecchia and Veneziano, 1980).

The discussion of chiral perturbation theory together with the log determinant interac-

tion presented in Sect. 1.2 and 1.3 shows that whether or not the strong interaction exhibits

spontaneous CP violation at θ = π depends on the topological susceptibility τ, the chiral

condensate Σ and on the values of the quark masses. We will now discuss this dependence

in some more detail. Two limiting cases were considered in the literature. Witten (1980),

who studied the lowest order (LO) chiral Lagrangian, argued that when τ/Σ is nonzero

but much smaller than the quark masses, the theory always exhibits spontaneous CP vio-

lation at θ = π, independent of the values of the quark masses and number of flavors. The

opposite case (Witten, 1980; di Vecchia and Veneziano, 1980; Tytgat, 2000), i.e. when the

masses of the quarks are much smaller than τ/Σ, leads to different results. In this case it

does depend on the values of the quark masses. In the two-flavor case for τ → ∞ (which

means no η meson is included and thus corresponds to chiral perturbation theory), spon-

taneous CP violation only occurs for degenerate quark masses. For finite τ/Σ ≫ mu,md

spontaneous CP violation also occurs for nondegenerate quark masses in a finite interval

of md/mu around 1, as was shown by Tytgat (2000), see Fig. 2.8. In the three-flavor case,

a region exists in the (mu,md)-plane where the theory spontaneously violates CP invari-

ance (Creutz, 2004), as shown in Fig. 2.7. The asymptotes depend on the value of the

strange quark mass.

When performing calculations with the LO chiral Lagrangian there are only a few

parameters, namely the quark masses, the pion decay constant, the value of the quark

condensate and the strength of the determinant interaction. It is therefore interesting to

study CP violation in a somewhat richer situation, such as chiral perturbation theory be-

yond leading order, which has been studied by Smilga (1999) and corresponds to τ→ ∞.

In this chapter we will make a comprehensive study of the θ-dependence and especially

spontaneous CP violation at θ = π within the framework of the two-flavor NJL model in

the mean-field approximation. We will study the dependence on the effective instanton

interaction strength c, not only in the two limiting cases, but for all possible values. This

c is related to the topological susceptibility τ as given in Eq. (3.22).

We find that there is a critical value of the interaction strength at θ = π above which

spontaneous CP violation occurs and which depends linearly on the quark masses, as

expected from axial anomaly considerations. As will be discussed, the two-flavor NJL

model allows for Dashen’s phenomenon also for nondegenerate quark masses (as is the

case for chiral perturbation theory only at next-to-leading order (Tytgat, 2000)). We find a

region in the (mu,md)-plane very similar to the three-flavor LO chiral perturbation theory

result shown in Fig. 2.7. However, for the two-flavor NJL model the asymptotes are

determined by the strength of the instanton induced interaction, instead of ms.

Next we study the influence of nonzero temperature and baryon and isospin chemi-

cal potential. It has been suggested that in those cases the Vafa-Witten theorem may no

longer apply (see for instance Cohen (2001) for some explicit arguments, but also Ein-
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horn and Wudka (2003) for counterarguments). But even if it does apply, spontaneous CP

violation at finite temperature or baryon chemical potential (through metastable states)

has been considered in the literature (Lee, 1973; Morley and Schmidt, 1985; Kharzeev,

Pisarski, and Tytgat, 1998; Buckley, Fugleberg, and Zhitnitsky, 2000) and possible ex-

perimental signatures in heavy ion collisions have been put forward (Kharzeev and Pis-

arski, 2000; Voloshin, 2004; Kharzeev and Zhitnitsky, 2007; Kharzeev, McLerran, and

Warringa, 2008). This would also be relevant in the early universe, when possibly θ was

nonzero and later relaxed to zero, for example via a Peccei-Quinn-like mechanism (Peccei

and Quinn, 1977b,a; Wilczek, 1978). We therefore wish to check the Vafa-Witten theo-

rem and the possible presence of CP-violating local minima in the NJL model at finite

temperature and density.

Spontaneous CP violation at θ = π within the two-flavor NJL model including tem-

perature dependence has been considered before in Fujihara, Inagaki, and Kimura (2007),

but only for a very limited range of quark masses: |mu±md | < 6 MeV at c = 1
2

and without

chemical potentials.

In Metlitski and Zhitnitsky (2006) the phase diagram as a function of θ and isospin

chemical potential has been investigated within first-order chiral perturbation theory for

two flavors. We will compare this to our results at nonzero isospin chemical potential,

where a modification of the pattern of charged pion condensation is observed at θ = π.

In this chapter the ground state is obtained by minimizing the effective potential, an

approach equivalent to the one discussed in the previous chapter, i.e. solving the gap equa-

tion, which is convenient when discussing the bound states of the model. The effective

potential will be calculated in the mean-field approximation, the minimization is done

numerically.

This chapter is organized as follows, first we discuss the effect of chiral transforma-

tions on the model, which is relevant for the calculation of the effective potential and for

a comparison to earlier results from the literature. We continue with a discussion of the

θ-dependence of the ground state, including temperature effects and nonzero baryon and

isospin chemical potential. Also we discuss the c-dependence of the meson masses and

mixing in the CP-violating phase. We end with conclusions and a further discussion of

the results.

4.2 Chiral transformations in the NJL model

In Sect. 1.5 we discussed the relation between a negative quark mass and QCD with

θ = π. Here we extend this discussion to the NJL model. The NJL model is not a gauge

theory, so the fermion measure is invariant under chiral rotations. But now the Lagrangian

contains two terms that are not invariant under chiral transformations, the mass-term and

the determinant interaction. The latter is θ-dependent. Like for QCD, this θ-dependence

can be absorbed in the up-quark mass using a chiral rotation. So the analysis for the NJL

model is similar to the one for QCD, but instead of a noninvariant measure we have a

noninvariant effective interaction.

The calculation of the ground state of the NJL-model is more conveniently done with
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the θ-dependence in the up-quark mass term, i.e. we use in Eq. (3.2)

L
′

M = ū′Rmue−iθu′L + d̄′Rmdd′L + h.c.,

L
′

det = 8G2 det
(

ψ̄′Rψ
′
L

)

+ h.c., (4.1)

with

uL = e−iθ/2u′L,

uR = eiθ/2u′R. (4.2)

Therefore, below we will calculate the effective potential using the transformed (primed)

fields, but discuss the ground state phase structure solely in terms of the condensates in

terms of the original fields. Only in the latter case the SU(2)V symmetry among the three

pions (and among the a0-mesons) is manifest when we consider degenerate quark masses

for instance.

4.3 Calculation of the ground state

In Chapter 3 the ground state of the NJL model was calculated at zero temperature and

chemical potential, and with equal current masses for the up and down quark. The method

used in that chapter to obtain the ground state was to solve the gap equation, the approach

originally used by Nambu and Jona-Lasinio. In this section an equivalent method will

be presented, namely minimizing the effective potential. This approach generalizes much

easier to other pairing mechanisms than the one when only 〈σ〉 becomes nonzero.

The ground state of a theory is obtained by finding the state that minimizes the free

energy Ω. Very often it is assumed that the ground state does not depend on position,

which corresponds to translational invariance and allows for the introduction of the effec-

tive potentialV
V = T

Ω

V
= −T

ln Z

V
, (4.3)

where V is the volume of space, T is temperature and Z is the grand canonical partition

function. In the case of a ground state that does not depend on position, one has to

minimize the effective potential.

We will calculate the effective potential in the mean-field approximation, which is

equivalent to the Hartree approximation and in this case leading order in the 1/Nc expan-

sion. In order to perform this calculation a Hubbard-Stratonovich transformation will be

performed. First we introduce 8 real auxiliary fields αa and βa in Eq. (3.2) as follows

L
′

NJL → L
′

NJL −
α′2

0
+ β′2

i

4(G1 +G2)
−

α′2
i
+ β′2

0

4(G1 −G2)
. (4.4)

Shifting these auxiliary fields according to

α′0 → α′0 + 2(G1 +G2)ψ̄′λ0ψ
′ α′i → α′i + 2(G1 −G2)ψ̄′λiψ

′

β′0 → β′0 + 2(G1 −G2)ψ̄′λ0iγ5ψ
′ β′i → β′i + 2(G1 +G2)ψ̄′λiiγ5ψ

′ (4.5)
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eliminates the four-quark interactions and the Lagrangian becomes quadratic in the fermion

fields

L
′

NJL = ψ̄
′
(

iγµ∂µ − M′0 − α′aλa − iγ5β
′
aλa

)

ψ′ −
α′2

0
+ β′2

i

4(G1 +G2)
−

α′2
i
+ β′2

0

4(G1 −G2)
. (4.6)

The integration over the quark fields is straightforward to perform. In the mean-field ap-

proximation fluctuations of the auxiliary fields are not taken into account, which means

that in Eq. (4.6) the auxiliary fields are replaced by their vacuum expectation values

(VEVs). From now on, αa and βa will denote the VEVs of the corresponding fields.

These vev’s are directly related to the quark condensates

α′0 = − 2(G1 +G2) 〈σ′〉 , α′ = −2(G1 −G2) 〈a′0〉 ,
β′0 = − 2(G1 −G2) 〈η′〉 , β′ = −2(G1 +G2) 〈π′〉 . (4.7)

All quantities in this section refer to the primed fields, but for notational convenience we

will drop the primes from now on in this section only. Results presented in the subsequent

sections will refer exclusively to the unprimed quantities.

One obtains the following expression for the thermal effective potential V in the

mean-field approximation (see e.g. Warringa, Boer, and Andersen, 2005)

V =
α2

0
+ β2

i

4(G1 +G2)
+

α2
i
+ β2

0

4(G1 −G2)
− T Nc

∑

p0=(2n+1)πT

∫

d3 p

(2π)3
log det K (4.8)

where K is a matrix in flavor and Dirac space,

K = 11f ⊗ (iγ0 p0 + γi pi) − µ ⊗ γ0 −M (4.9)

is the inverse quark propagator, and

M = mu(cos θ λu ⊗ 11d + sin θ λu ⊗ iγ5) + mdλd ⊗ 11d + αaλa ⊗ 11d

+ βaλa ⊗ iγ5, (4.10)

with λu = (λ0 + λ3)/2 and λd = (λ0 − λ3)/2.

The values of the condensates are found by minimizing the effective potential with

respect to these condensates. By exploiting U(1) flavor symmetry one only has to study

the condensates α0, α1, α3, β0, β1, and β3. Warringa, Boer, and Andersen (2005) ignored

the β0 and β3 condensates based on the Vafa-Witten theorem. As we wish to check the

validity of this theorem at finite temperature and density in our model calculation, we do

take these condensates into account.

In order to calculate the effective potential, it is convenient to multiply K with 11f ⊗
γ0 which leaves the determinant invariant and yields a new matrix K̃ with ip0’s on the

diagonal. The determinant of K can be calculated as det K =
∏8

i=1 (λi − ip0), where λi

are the eigenvalues of K̃ with p0 = 0. After performing the sum over the Matsubara

frequencies, we obtain

T
∑

p0=(2n+1)πT

log det K =

8
∑

i=1

[

|λi|
2
+ T log

(

1 + e−|λi |/T
)

]

. (4.11)
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Finally we need to integrate over the three-momenta p up to the ultraviolet cutoff Λ to

determine the effective potential.

MinimizingV implies solving the equations

∂V
∂xi

= 0, (4.12)

where x = {α0, α1, α3, β0, β1, β3}. The derivatives of the effective potential can be calcu-

lated from the expression (Warringa, 2006)

T
∂

∂x j

∑

p0=(2n+1)πT

log det K =
1

2

8
∑

i=1

bi j

(

1 − 2

e|λi |/T + 1

)

sgn (λi) , (4.13)

where bi j =
(

U†∂K̃(p0 = 0)/∂x jU
)

ii
. Here U is a unitary matrix which contains in the i-th

column the normalized eigenvector of K̃ with eigenvalue λi. Again, one has to integrate

over p to obtain the complete derivative. Since this calculation does not use the finite dis-

tance method, the derivatives can be determined very accurately. Also, it is very efficient

as one needs the eigenvalues of K̃ anyway in order to calculate the effective potential.

When a solution to Eq. (4.12) has been found, it has to be checked whether the solution

is indeed a minimum and not a maximum or saddle-point. This is checked by verifying

that the Hessian of the solution only has positive eigenvalues. If more than one minimum

is found, the one with the lowest value is chosen. Also the continuity of the effective

potential is checked.

The speed of the calculation mainly depends on how fast the eigenvalues of K̃ can be

calculated. To speed up the evaluation of the calculation of the eigenvalues, one can make

use of the fact that the determinant of K̃ is invariant under the interchanging of rows and

columns. This can be used to bring K̃ to a block-diagonal form of two 4 × 4-matrices.

This reduces the computing time to determine the eigenvalues with a factor of four as the

time to numerically calculate the eigenvalues scales cubically with the dimension of the

matrix. Another way of improving the speed of the calculation is to choose p to lie along

the z-direction, exploiting the fact that det K̃ does not depend on the direction of p.

As we said in the beginning of this section, the method presented here is equivalent

to solving the gap equation, discussed in Chapter 3 for zero temperature and chemical

potential. In that case we can assume that only α0 becomes nonzero (if we also take

mu = md = m and θ = 0). The absolute values of the λi become all equal to |λi| =
√

p2 + (α0 + m)2. Consequently it is straightforward to evaluate Eq. (4.12), only xi = α0

has to be taken into account

∂V
∂α0

=
α0

2(G1 +G2)
− 4NcN f

∫

d3 p

(2π)3

α0 + m
√

p2 + (α0 + m)2
= 0, (4.14)

which is equivalent to Eq. (3.8) after performing the trace and p0-integration. Note that

α0 + m equals the constituent quark mass.

One final remark we have to make regarding Eq. (4.8) is the fact that in order for the

effective potential to have a minimum at finite values for the condensates, the coupling
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G2 has to satisfy −G1 ≤ G2 ≤ G1, and correspondingly, − 1
2
≤ c ≤ 1

2
. From Eq. (3.6)

we can see that a negative value for G2 corresponds to shifting θ → θ + π, implying that

the minimum of the theory will be at θ = π, in violation of the Vafa-Witten theorem at

zero temperature and density. Therefore, we will restrict to 0 ≤ c ≤ 1
2
. The case c = 1

2
is

special, because then only the σ′ and π′ fields are present in the theory, which means at

θ = 0 the σ and π mesons and at θ = π the η and a0 mesons.

4.4 Convexity of the effective potential

A well known result from statistical physics is that the effective potential is convex. But

if one calculates the effective potential in the mean-field approximation, sometimes local

minima arise and hence a non-convex effective potential is found. In textbooks such as

Peskin and Schroeder (1995) and Weinberg (1996) it is shown how one obtains a convex

effective potential from a nonconvex one. Here we will briefly repeat the argument, which

is a field-theoretical analogue to a Maxwell construction.

Let us discuss for simplicity a scalar field theory with field operator Φ. We assume

that the effective potential as a function of vacuum expectation value of the field φ has

the form of Fig. 4.1, which has a concave region. The expectation values of the minima

are φ1 and φ2. Now consider that for states between the two minima, the state is a linear

combination of the two minimizing states, i.e.

|φ〉 =
√

x |φ1〉 +
√

1 − x |φ2〉 , 0 < x < 1. (4.15)

For the value of the expectation value φ between the two minima we obtain (Peskin and

Schroeder, 1995)

φ = xφ1 + (1 − x)φ2, (4.16)

leading to an effective potential between the two minima of the form

V(φ) = xV(φ1) + (1 − x)V(φ2), (4.17)

as interference terms vanish in the infinite volume limit (Weinberg, 1996). The potential

of Eq. (4.17) has a lower value between the two minima. Weinberg (1996) states that

the effective potential is defined as: V(φ) is the minimum of the expectation value of

the energy density for all states constrained by the condition that the scalar field Φ has

expectation value φ. Using this definition we see that Eq. (4.17) corresponds to the “real”

effective potential, which obtains the form given in Fig. 4.2, indeed a convex function. In

other words, the convexity applies to the equilibrium effective potential.

The solution to the convexity problem that we just presented is a formal one, one of

its consequences is that metastable states are not possible. However, in physical systems

metastable phases do arise. How can these states be described? The important assump-

tion when discussing the formal effective potential is that one assumes that all quantum

fluctuations are taken into account, including ones that are very long-ranged and take a

very long time, like tunneling effects. In real physical situations, like in heavy-ion colli-

sions, not all fluctuations ought to be taken into account as the system has finite size and
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φ1 φ2

V

φ

Figure 4.1: A possible form of the effective potential as a function of the expectation value of the

field φ (Peskin and Schroeder, 1995).

φ1 φ2

V

φ

Figure 4.2: The “convex” potential obtained from Fig. 4.1 by using Eq. (4.17).

exists for a finite amount of time. The “physical” (coarse-grained) effective potential, is

consequently not necessarily convex.

The situation is analogous to the phenomenon of phase separation in thermodynamics,

if the system is in the concave region it is unstable and phase separation will take place. If

the system is in a convex region (but not in the global minimum), the system stays there

for some time until a large fluctuation takes the system to the global minimum. The point

where the curvature of the effective potential flips sign is called a spinodal, it represents

the end-point of stability of a certain phase.

Another indication that local minima have a physical interpretation is that they can

become the global one when changing external parameters like θ, T , µ, etcetera, usually

connected to a first order transition. The latter suggests that the local minima are indeed

metastable states. However, the physics of a metastable state cannot be described by effec-
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Figure 4.3: The (c,m) phase diagram at θ = π.

tive potential considerations alone, as it is inherently a non-stable and non-homogeneous

situation. For example, for the calculation of the lifetime of a metastable state one would

need to perform a calculation using the effective action. We will not do this for the local

minima that we encounter, hence no conclusions about the lifetime of metastable states

will be reached.

4.5 The ground state of the NJL model

This section deals with our results for the ground state of the NJL model. First we dis-

cuss the θ-dependence of the condensates and the effective potential. It turns out that for

nonzero c, two different situations can be distinguished: below a certain critical c value

(ccrit) no spontaneous CP violation takes place at θ = π, whereas for c larger than this

critical value it does take place. The value of this ccrit depends on the values of the quark

masses. In Fig. 4.3 we show the phase diagram at θ = π in the (c,m)-plane for degenerate

quark masses mu = md = m, two phases can be distinguished,

1. 〈σ〉 , 0, the ordinary chiral condensate.

2. 〈σ〉 , 0, 〈η〉 , 0, the CP-violating phase.

The phase transition corresponds to ccrit and is of second order. A linear relation exists

between the quark mass and ccrit (more on this in Sect. 4.7.1). Note that the value of the

〈σ〉 condensate in phase 2 is significantly smaller than its value in phase 1, except close

to the phase transition.
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Figure 4.4: The θ-dependence of the normalized condensates, with c = 0.005 < ccrit.
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4.5.1 The θ-dependence of the vacuum

When the determinant interaction is turned off, there is no θ-dependence. In terms of the

unprimed fields, only the σ condensate is nonzero.

In Fig. 4.4 we show the θ-dependence of the various condensates for the case c =

0.005, which for our choice mu = md = 6 MeV is below ccrit ≈ 0.008. As can be seen, no

spontaneous CP violation occurs, since 〈η〉 = 0 at θ = π. Explicit CP violation for other

values of θ does occur, as expected. In this figure the condensates are normalized with

respect to 〈σ〉 at θ = 0. Both 〈π〉 and 〈a0〉 are zero for all θ and this remains true for c

above ccrit for degenerate quark masses.

Fig. 4.5 shows the case of c = 0.2. Spontaneous CP violation is clearly visible, as

〈η〉 is nonzero at θ = π. As can be seen two degenerate vacua then exist, with opposite

signs for 〈η〉. These two degenerate vacua differ by a CP transformation. This is known

as Dashen’s phenomenon (Dashen, 1971) and is also apparent from the θ-dependence

of the effective potential. In Fig. 4.6 we show the effective potential as a function of θ

normalized to its value at θ = 0, for the two cases c = 0.005 and c = 0.2. In both cases,

the minimum of the effective potential is at θ = 0, in agreement with the Vafa-Witten

theorem. Furthermore, it can be seen that the case with spontaneous CP violation has a

cusp at θ = π, and therefore a left and a right derivative which differ by a sign. Due to

the axial anomaly, the θ-derivative of the effective potential is proportional to 〈η〉. This

explains the occurrence of two values for the η condensate.

45



4.5. The ground state of the NJL model

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  50  100  150  200  250  300  350  400  450

m
d
 (

M
e

V
)

mu (MeV)

1

〈σ〉 , 〈a0

0
〉

1

2

〈σ〉 , 〈a0

0
〉

3

〈σ〉 , 〈a0

0
〉 ,

〈η〉 , 〈π0〉

2

4

〈σ〉 , 〈a0

0
〉 ,

〈η〉 , 〈π0〉
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second order phase transitions and the dotted line a crossover.

4.5.2 Phase structure at θ = π

In this section we concentrate further on the case θ = π. We will start with a discus-

sion of the mass-dependence of the ground state. From Creutz (2004) we know that in

three-flavor chiral perturbation theory a region exists in the (mu,md)-plane where CP is

spontaneously violated, cf. Fig. 2.7. In that case the shape of the CP-violating region de-

pends on the strange quark mass. In the present case it depends on the choice of c. Finally

we note that in the calculation when using the two-flavor chiral Lagrangian the shape of

the region is set by the topological susceptibility τ, cf. Fig. 2.8.

In Fig. 4.7 we show the phase diagram of the NJL model at θ = π with c = 0.4 in the

(mu,md)-plane. Four phases can be distinguished

1. 〈σ〉 < 0, 〈a0
0
〉 < 0

2. 〈σ〉 < 0, 〈a0
0
〉 > 0

3. 〈σ〉 < 0, 〈a0
0
〉 < 0, 〈η〉 , 0, 〈π0〉 , 0

4. 〈σ〉 < 0, 〈a0
0
〉 > 0, 〈η〉 , 0, 〈π0〉 , 0

In phases 3 and 4 two degenerate vacua exist with opposite signs for both 〈η〉 and 〈π0〉. The

phase transitions between the CP-conserving phases 1 and 2 to the CP-violating phases 3

and 4 are second order. The phases 1 and 2 only differ in the sign for the 〈a0
0
〉-condensate,

the same holds for the phases 3 and 4. The phase transition between the phases 3 and 4

is a crossover, as is the case for the phase transition between phase 1 and 2 for large mu
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and md. Exactly at the crossover, 〈a0
0
〉 vanishes and in the CP-violating region the same

applies to 〈π0〉, but not to 〈η〉. The fact that a0
0
-condensation (and π0-condensation in the

CP-violating region) occurs when the masses are not equal simply reflects the explicit

breaking of SU(2)V which occurs for nondegenerate quark masses.

The shape of the CP-violating region is determined by the asymptotes, which are

proportional to c. We conclude that in contrast to two-flavor LO chiral perturbation theory

(the case of ms → ∞ in Creutz (2004), such that the asymptotes are moved to mu = md =

∞), the NJL model does have a spontaneous CP-violating phase for two nondegenerate

quark flavors. This is in accordance with the analysis using the LO chiral Lagrangian of

Tytgat (2000) in the large Nc limit and for finite τ/Σ ≫ mu,md. There is however an

important difference between the NJL model and the results obtained from the two-flavor

LO chiral Lagrangian, in the latter case there is always CP violation when mu and md are

larger than τ/Σ, cf. Fig. 2.8, which is not the case in the NJL model.

4.6 Finite temperature and baryon chemical potential

In this section we turn to the changes in the phase structure at nonzero temperature and

density. Fujihara, Inagaki, and Kimura (2007) states that the CP-violating phase at θ = π

does not exist at high temperatures, i.e. a critical temperature exists above which the CP-

violating condensates are zero. Fujihara, Inagaki, and Kimura only considered the case

c = 1
2

and small mass. Here we generalize their results to other c values. In Fig. 4.8 the

(T, c) phase diagram is shown for degenerate quark masses. The following three phases

arise

1. 〈σ〉 , 0, the ordinary chiral condensate.

2. 〈σ〉 , 0, 〈η〉 , 0, the CP-violating phase.

3. 〈σ〉 ≈ 0, the (almost) chiral symmetry restored phase.

The phase structure at T = 0 can be understood from Fig. 4.7: for degenerate quark

masses the two phases are encountered on its diagonal. The phase transition occurs at that

particular value of mu = md for which c = 0.4 is the critical c. The phase transition be-

tween phases 1 and 2 is of second order for all temperatures. This second order transition

is in disagreement with the analysis of Mizher and Fraga (2009), who studied the same

phase transition in the linear sigma model coupled to quarks. In Chapter 5 we will study

this discrepancy in detail.

For nondegenerate quark masses the phases 1 and 2 would correspond to phases 1 and

3 or 2 and 4 of Fig. 4.7 depending on whether mu is larger or smaller than md, respectively.

In that case two second order phase transitions are present.

Above a certain temperature one observes in Fig. 4.8 an approximate restoration of

chiral symmetry (phase 3). Note that the chiral symmetry is not fully restored due to the

nonzero current quark masses. The phase transition between phases 1 and 3 is a crossover,

like it is at θ = 0. The crossover line is defined by the inflection points ∂2 〈σ〉 /∂T 2 = 0.
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Figure 4.8: The (T, c) phase diagram of the NJL model at θ = π. The dotted line represents a

crossover, which is defined by the inflection points ∂2 〈σ〉 /∂T 2 = 0.

At high temperature also the CP-violating phase disappears. This is consistent with

the fact that at high temperature instanton effects become exponentially suppressed (Gross,

Pisarski, and Yaffe, 1981). The CP-violating phase is after all realized due to the instanton

induced interaction. The maximum value of the critical temperature as function of c is

219 MeV.

The analysis can be extended to nondegenerate quark masses, shown in Figs. 4.9 and

4.10, where the phase diagram is shown as a function of the up and down current quark

masses at temperatures of respectively 120 MeV and 150 MeV. It is mainly the high mass

regime that is affected by a nonzero temperature. As the temperature increases, the region

with broken CP invariance gets smaller and the phase transition that crosses the mu = md

line, referred to as the upper boundary of the CP-violating region, moves to smaller values

of the masses. The amount of CP violation decreases with temperature. It is interesting

to see that it is mainly the upper boundary that is affected by the temperature, as it is

not present in LO chiral perturbation theory with anomaly effects, see Fig. 2.8 and is

consequently not taken into account in the discussions of Kharzeev, Pisarski, and Tytgat

(1998). The other 2 boundaries hardly change with temperature, which may indicate that

τ/Σ (their asymptotic value at T = 0) is only weakly dependent on T , in contrast to the

assumption in Kharzeev, Pisarski, and Tytgat, discussed in Sect. 1.4. Note however that

Kharzeev, Pisarski, and Tytgat considered the three-flavor case.

We have verified that also for nonzero temperature the minimum of the effective poten-

tial is at θ = 0, which means the Vafa-Witten theorem (V(θ = 0) ≤ V(θ , 0)) continues

to hold in the NJL model at nonzero temperature. The same applies to finite baryon and
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Figure 4.9: The (mu,md) phase diagram of the NJL at θ = π with c = 0.4 and T = 120 MeV.
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Figure 4.11: The (µB, c) phase diagram of the NJL model at θ = π.

isospin chemical potential. We also have checked whether there are any local minima in

the effective potential at nonzero temperature and density, but we found none. Our results

indicate that τ/Σ may be T -independent, but θ-dependent. Probably the θ-dependence of

τ/Σ closes the small window around Tc that allows for metastable states, cf. the discus-

sion of Sect. 1.4. The two-flavor NJL model in the mean-field approximation therefore

does not support the suggestion of Kharzeev, Pisarski, and Tytgat (1998).

Now we will briefly consider nonzero baryon chemical potential µB = µu + µd, where

µu,d denote the u, d quark chemical potentials. The (µB, c) phase diagram is displayed in

Fig. 4.11 for a restricted range of µB values. The same phases occur as in the (T, c) phase

diagram, but now the phase transition to the (almost) chiral symmetry restored phase is

of first order, like for θ = 0. Furthermore, the first-order phase transition has a small c

dependence (note the suppressed zero). As always, the phase transition from phase 1 to

phase 2 is of second order.

4.7 Nonzero isospin chemical potential

In quark matter systems equilibrium and neutrality conditions can require that µu , µd.

Son and Stephanov (2001) observed that charged pion condensation can occur for nonzero

isospin chemical potential µI = µu − µd. At θ = 0 this second order phase transition

between the ordinary phase of broken chiral symmetry (〈σ〉 , 0) to the pion condensed

phase (which also breaks chiral symmetry) occurs when µI equals the vacuum pion mass.

In this subsection we address this issue at θ = π.

In Fig. 4.12 we show the phase diagram of the NJL model in the (µI , c)-plane, for
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Figure 4.12: The (µI , c) phase diagram of the NJL model at θ = π.

mu = md = 6 MeV. The solid line indicates a first-order phase transition, the dashed lines

indicate second-order phase transitions. The four phases are characterized as follows

1. 〈σ〉 , 0

2. 〈σ〉 , 0, 〈π±〉 , 0

3. 〈σ〉 , 0, 〈η〉 , 0

4. 〈a±
0
〉 , 0

Phase 4 is a novel phase characteristic of θ = π. This phase also has a small nonzero

〈σ〉-condensate (not indicated), due to the explicit breaking by the quark masses.

For c < ccrit a nonzero 〈π±〉-condensate exists above a certain µI value. Like at θ = 0

the second-order phase transition turns out to be at µI = mπ, where mπ is the vacuum pion

mass. In addition, there is a second phase transition, of first order this time, at larger µI ,

where charged pion condensation makes way for charged a0 condensation. For c > ccrit no

nonzero 〈π±〉-condensate exists, only nonzero 〈a±
0
〉. The phase transition between phases

3 and 4 is of first order. The question arises what determines the value of µI at this phase

transition to charged meson condensation? To answer this question, the meson masses

need to be calculated using the methods presented in Sect. 3.3.

4.7.1 The c-dependence of the meson masses and mixing

As said, at θ = 0 charged pion condensation occurs when µI is larger than or equal to

the vacuum (µI = 0) pion mass. For the NJL model this has been studied extensively in
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4.7. Nonzero isospin chemical potential

Barducci et al. (2004, 2005), He and Zhuang (2005), and Warringa, Boer, and Andersen

(2005). This condition is independent of c. To see what happens in the θ = π case, we

calculate the c-dependence of the meson masses, with µI = 0. The results are shown in

Fig. 4.13. Clearly, at θ = π the situation is quite different from θ = 0, shown in Fig. 3.4.

At c = 0 (no instanton interactions) the η and π masses are equal and also the σ and

a0 masses. This follows from the symmetry of the Lagrangian at c = 0, which has a

U(2)L⊗ U(2)R-symmetry that is spontaneously broken by the chiral condensate (ignoring

the explicit breaking by the quark masses) to U(2)V . This means there are four (pseudo-)

Goldstone bosons, with the same (small) masses: the η and π mesons. The instanton

interactions remove the degeneracy for c , 0.

When c > ccrit, i.e. when 〈η〉 , 0, a complication arises: the mass eigenstates are

not CP or P eigenstates any longer. The occurrence of the η condensate results in mixing

of the σ-particle with its parity partner, the η-particle. Similarly, the pions mix with

their parity partners, the a0’s. The mixing is to be expected because when the ground

state is not CP-conserving, there is no need for the excitations, i.e. the mesons, to be CP

eigenstates or states of definite parity in case of charged mesons.

The mass eigenstates, denoted with a tilde, are defined in the following way

|σ̃〉 = cos θη |σ〉 + sin θη |η〉 ,
|η̃〉 = cos θη |η〉 − sin θη |σ〉 ,
|ã0〉 = cos θπ |a0〉 + sin θπ |π〉 ,
|π̃〉 = cos θπ |π〉 − sin θπ |a0〉 , (4.18)

where θη and θπ are the mixing angles. The states on the r.h.s. are the usual states of

definite parity. In Fig. 4.14 the c-dependence of the mixing is shown.

The calculation of the mixing and the resulting masses is similar to the mixing of η0

and η8 in the three-flavor NJL-model, which was discussed in great detail in Klevansky

(1992) using the random phase approximation (RPA), which we present in Appendix A.

As a side remark we mention that we also calculate the curvature of the effective poten-

tial at the minimum. This should be proportional to the RPA masses, which we check

explicitly in Appendix A.

When c < ccrit no mixing takes place and the tilde fields are equal to their counterparts

without tilde. When c > ccrit mixing occurs. The mixing between η and σ increases

rapidly as c increases, reaching a maximum at c = 0.09, where σ̃ is almost completely η

and vice versa. For larger c the mixing, however, decreases rapidly again, so that when

c = 1
2
, σ̃ (η̃) is again equal to σ (η).

The mixing between a0 and the pions behaves differently; here the mixing angle in-

creases rapidly to become 90◦ at c = 1
2
, i.e. π̃ becomes a0 and vice versa.

Now we return to the behavior of the tilde-meson masses, which also display unusual

features as function of c, see Fig. 4.13. When c < ccrit, the π̃ masses are constant, and

equal to the ordinary pion masses. Furthermore, the η̃ mass decreases with increasing c.

This is peculiar to θ = π, because at θ = 0 the η mass increases with increasing c. The η̃

mass has its lowest, nonzero value at ccrit. This is in contrast to three-flavor lowest order

chiral perturbation theory (Creutz, 2004), where the η mass (in Creutz (2004) actually the

52



Chapter 4. Spontaneous CP violation in the strong interaction at θ = π

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.001  0.01  0.1

M
e

V

c

σ̃
ã0
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4.7. Nonzero isospin chemical potential

π0 mass using the primed theory) vanishes at the phase transition. Finally, also the masses

of the a0’s and σ decrease slightly with increasing c. From the fact that mη ≈ 0 at ccrit,

the current quark mass dependence of ccrit as discussed in Sect. 4.5 can be deduced. The

mass of the η meson (Eq. (3.21)) at θ = π for small c is given by

m2
η ≈

m

M

1

2G0I0

− c

G0I0

, (4.19)

resulting in the following expression for ccrit

ccrit ≈
m

2M
. (4.20)

This confirms the linear dependence on m found in Fig. 4.3, which indeed has a slope

approximately equal to 1/2M ≈ 1/800 MeV, where M is the constituent quark mass at

c = 0.

When c > ccrit the c-dependence of the masses changes dramatically. The π̃ mass

now decreases monotonically with increasing c, whereas the ã0 and σ̃ mass both increase

monotonically to infinity towards c = 1
2
. The latter can be understood, because when

c = 1
2
, G1 equals G2, which as mentioned means for θ = π that there are no π and σ

mesons in the spectrum.

Another striking feature is that the η̃ mass rises until it almost reaches the σ̃ mass,

after which it remains approximately constant. The behavior of the σ̃ mass is opposite,

first it is almost constant and when it becomes almost equal to the mη̃ mass it increases to

infinity. The masses of σ̃ and η̃ cannot cross when there are interactions that mix the two

states, which is similar to level repulsion in quantum mechanics. The point where both

masses are almost equal corresponds to a mass that is twice the constituent quark mass.

This forms the threshold to decay into two quarks, which makes one of the two mesons

unstable when c > ccrit.

Fig. 4.13 strengthens the conclusion that Nature is not described by θ = π. From Bég

(1971) we know that no CP-violating condensate is present in the vacuum, so if θ would

be equal to π, c has to be smaller than ccrit. But when c < ccrit and θ = π, the mass of

the η meson is always smaller than the mass of the pions and the decay of η into pions is

prohibited, as opposed to the case θ = 0. This decay is observed in Nature, meaning that

the physical η mass is much larger than the pion mass, hence we can conclude that the

NJL model also indicates that θ ≈ 0 in Nature, a conclusion already reached by Baluni

(1979), Crewther et al. (1979), and Kawarabayashi and Ohta (1981) by looking at the

electric dipole moment of the neutron, see Sect. 1.2.

Now we turn again to the original question concerning the charged meson condensa-

tion phase transition. From the calculation of the masses of the tilde-mesons, we infer that

the condition for charged meson condensation at θ = π is µI ≥ mπ̃(c). For c < ccrit, the

phase transition takes place when µI equals mπ̃ = mπ, as it does at θ = 0. For c > ccrit it

takes place at the mass of π̃, which is now a mixed state of π and a0. At c = 1
2

this means

at the mass of the a0. The latter observation is in agreement with a result of Metlitski and

Zhitnitsky (2006), where the (µI , θ) phase diagram of degenerate two-flavor chiral pertur-

bation theory is investigated to lowest order at effectively c = 1
2

(due to the absence of the
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Chapter 4. Spontaneous CP violation in the strong interaction at θ = π

η meson). There it is observed that charged pion condensation occurs when µI is equal

to the θ-dependent pion mass mπ(θ). In Metlitski and Zhitnitsky (2006) all θ-dependence

resides in the mass matrix, with both quarks having a θ-dependent mass. Hence, their

θ-dependent pion field corresponds to what we call π′, which at θ = π is the a0 field in

the original, unprimed theory, leading to an agreement with our finding.

The second phase transition for c < ccrit from the charged pion condensed phase to

the charged a0 condensed phase does not correspond to µI being equal to a meson mass

calculated at µI = 0. Although we have not found a condition in terms of the calculated

masses, µI at this first-order phase transition follows a line that is the smooth continuation

of the π̃ mass in the region c > ccrit to infinity at c = 0. A calculation of the meson masses

at nonzero µI , such as performed by He and Zhuang (2005) for the θ = 0-case, might

resolve this open issue.

4.8 Conclusion and discussion

The θ-dependence of the ground state of the two-flavor NJL model is investigated in the

mean-field approximation. The main focus is on the case θ = π, when spontaneous CP

violation is possible. The θ-dependence of the theory is found to strongly depend on the

strength of the ’t Hooft determinant interaction. When the strength of this interaction,

which is governed by the parameter c, is small or zero, no spontaneous CP violation takes

place at θ = π. The low-energy physics is then almost the same as at θ = 0, except that

the η mass is smaller than the pion mass at θ = π. At larger c however, spontaneous CP

violation does take place at θ = π. So the phenomenon of spontaneous CP violation is

governed by the ’t Hooft determinant interaction, which describes the effect of instantons

in the effective theory. The question whether c is sufficiently large for CP violation to

occur at θ = π depends on the quark masses. In other words, spontaneous CP violation

requires instantons, but its actual realization depends on the size of their contribution w.r.t.

the quark masses. This is also expected to be the case in QCD, where it can be phrased in

terms of the low-energy theorem identity
∑

q 2imq 〈q̄γ5q〉 = −N f 〈g2Fa
µνF̃

µν
a 〉 /8π2 (cf. e.g.

Metlitski and Zhitnitsky (2005)), which relates 〈η〉 to the first derivative of the effective

potential w.r.t. θ. Depending on mq the coupling constant g needs to be sufficiently large

for spontaneous CP violation to take place. Or in other words, the energy needs to be

sufficiently low. The latter observation is in agreement with the disappearance of the CP

violation at temperatures above a certain critical temperature or density. Therefore, we

conclude that spontaneous CP violation in the strong interaction is an inherently low-

energy phenomenon.

We have checked that the Vafa-Witten theorem holds in the NJL model also at finite

temperature and density and found that no local minima arise, indicating the absence of

metastable CP-violating states in the NJL model. We have confirmed several previous re-

sults that were obtained in two-flavor chiral perturbation theory. We found (in accordance

with the results of Tytgat (2000)) that two-flavor lowest-order chiral perturbation theory

(i.e. τ → ∞) is in general not rich enough to yield results that one might expect to hold

in QCD too. It leads for instance to the conclusion that only for mu = md spontaneous
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CP violation occurs, without a critical strength of the instanton induced interaction. In

contrast, the phase diagram of the two-flavor NJL model is very similar to that of three-

flavor chiral perturbation theory (Creutz, 2004), where spontaneous CP violation arises

for specific ranges of quark masses.

We also found that the presence of a nonzero η-condensate has a strong effect on the

c-dependence of the meson masses and gives rise to mixing among the states of definite

parity, as expected when CP invariance is not a symmetry anymore. As a result, the pions

mix with their parity partners, the a0’s, and the η meson mixes with its parity partner,

the σ meson. Unlike the mixing discussed as a function of θ, (i.e. the “primed” fields of

Eq. (1.31)), which is just a matter of consistently naming the states in order to be able to

compare to results obtained with negative quark masses and which does not affect physical

results, the mixing as function of c does change the physics. For instance, the condition

for charged pion condensation at nonzero isospin chemical potential becomes modified.

At θ = π for c < ccrit, a second-order phase transition takes place when µI equals mπ, just

as at θ = 0 found by Son and Stephanov. However, we find that for c > ccrit it becomes

a first-order phase transition to a novel phase of charged a0 condensation that takes place

at the mass of π̃, which is a mixed state of π and a0. At c = 1
2

it is entirely a0. Charged

a0 condensation also arises for c < ccrit and µI > mπ, but it appears there is no condition

in terms of vacuum meson masses for this second phase transition.

We expect the presented two-flavor NJL model results to remain valid when going

beyond the mean-field approximation, but this remains to be studied. The three flavor case

would also be interesting to study, as in that case in the chiral limit the high temperature

chiral phase transition is of first order, see Sect. 2.5. This is connected to the U(1)A-

anomaly, see Sano, Fujii, and Ohtani (2009) for a related study in a chiral random matrix

model. Finally, it would be very useful if the results could in the future be compared to

lattice QCD results on the low-energy physics at θ = π.
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Chapter 5

The high temperature

CP-restoring phase transition at

θ = π

In the previous chapter the phase structure of the 2-flavor NJL model at θ = π was dis-

cussed, in particular the conditions for spontaneous CP violation, known as Dashen’s

phenomenon were considered. It was found that this CP violation disappears as a second

order phase transition as a function of temperature. In this chapter we will study the tem-

perature dependence of Dashen’s phenomenon in detail in comparison to another model,

the linear sigma model coupled to quarks (LSMq), which has been studied by Mizher and

Fraga (2009). Despite being very similar to the NJL model, it predicts a first order phase

transition. In this chapter, we will see that the origin of the difference is a nonanalytic

vacuum term present in the NJL model, but usually not included in the LSMq model.

This chapter is largely based on Boomsma and Boer (2009).

5.1 Introduction

Both the NJL model and the linear sigma model coupled to quarks are models that aim

to describe the low-energy phenomenology QCD, especially chiral symmetry breaking.

Furthermore, in both models the effects of instantons are included through an additional

interaction, the ’t Hooft determinant interaction (’t Hooft, 1976, 1986). Both models

exhibit Dashen’s phenomenon, which turns out to be temperature dependent. This is to

be expected, because at high temperature the effects of instantons, which are needed for

the CP violation, are exponentially suppressed (Gross, Pisarski, and Yaffe, 1981). In both

models the spontaneous CP violation at θ = π disappears at a critical temperature between

100 and 200 MeV. However, the order of the phase transition differs, in the NJL model the

transition is of second order, whereas in the LSMq model it is first order. This difference
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5.2. The NJL model

is important, because a first order transition allows for metastable phases, in contrast to a

second order transition.

Although the NJL and LSMq model are not the same, they are closely related. Eguchi

(1976) has shown that one can derive a linear sigma model from the NJL model, a pro-

cedure known as bosonization (discussed in Sect. 5.4). However, the effects of quarks

are treated differently in the two models, which was already discussed by Scavenius et al.

(2001) at θ = 0. In the case of the LSMq model the effects of the quarks are usually only

taken into account for nonzero temperatures, whereas in the NJL model their effects are

necessarily incorporated also at zero temperature. Scavenius et al. (2001) found that the

order of the chiral symmetry restoring phase transition at θ = 0 was the same in both

models, but the critical temperatures differ. While the qualitative aspects of the phase

transition are similar at θ = 0, this is not the case for the high temperature CP-restoring

phase transition at θ = π as we will discuss in detail. We should mention here that the

situation at θ = 0 depends on the amount of explicit chiral symmetry breaking. Schaefer

and Wambach (2007) observed that when the pion mass is reduced in order to study the

chiral limit, neglecting the effects of the quarks at zero temperature can affect the order of

the high temperature phase transition at θ = 0 too.

Although there is a CP-restoring phase transition at high chemical potential also, in

this chapter we will restrict ourselves to the temperature dependence of this phase transi-

tion at θ = π, because there the differences between the two models are most pronounced.

The chapter is organized as follows. First, the effective potentials of both models are

analyzed analytically, which will allow the determination of the order of the phase tran-

sitions using standard Landau-Ginzburg type of arguments. A comparison to numerical

results obtained earlier corroborates these conclusions. Subsequently, we will discuss the

bosonization procedure of Eguchi, which relates the NJL model to a linear sigma model

and allows us to further pinpoint the origin of the similarities and differences with the

LSMq model. We end with some brief comments about chiral perturbation theory and

QCD.

5.2 The NJL model

As discussed in Chapter 4, to calculate the ground state of the theory, the effective po-

tential has to be minimized. In the following we will only consider the case of unbroken

isospin symmetry, such that only nonzero 〈ψ̄ψ〉 and/or 〈ψ̄iγ5ψ〉 can arise. At θ = 0 only

〈ψ̄ψ〉 becomes nonzero. A nonzero 〈ψ̄iγ5ψ〉 signals that CP invariance is broken, i.e., it

serves as an order parameter for the CP-violating phase.

To obtain the effective potential in the mean-field approximation we start with Eq. (3.2)

and “linearize” the interaction terms in the presence of the 〈ψ̄ψ〉 and 〈ψ̄iγ5ψ〉 condensates

(this is equivalent to the procedure with a Hubbard-Stratonovich transformation used in
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Chapter 5. The high temperature CP-restoring phase transition at θ = π

Chapter 4)

(ψ̄ψ)2 ≃ 2 〈ψ̄ψ〉 ψ̄ψ − 〈ψ̄ψ〉2 ,
(ψ̄iγ5ψ)2 ≃ 2 〈ψ̄iγ5ψ〉 ψ̄iγ5ψ − 〈ψ̄iγ5ψ〉2 ,

(ψ̄ψ)(ψ̄iγ5ψ) ≃ 〈ψ̄ψ〉 ψ̄iγ5ψ + 〈ψ̄iγ5ψ〉 ψ̄ψ − 〈ψ̄ψ〉 〈ψ̄iγ5ψ〉 , (5.1)

leading to

L
vac

NJL = ψ̄
(

iγµ∂µ −M
)

ψ −
(G1 −G2 cos θ)α2

0

4(G2
1
−G2

2
)
−

(G1 +G2 cos θ)β2
0

4(G2
1
−G2

2
)
− (G2 sin θ)α0β0

2(G2
1
−G2

2
)
,

(5.2)

where M = (m + α0) + β0iγ5 and

α0 = −2(G1 +G2 cos θ) 〈ψ̄ψ〉 + 2G2 sin θ 〈ψ̄iγ5ψ〉 ,
β0 = −2(G1 −G2 cos θ) 〈ψ̄iγ5ψ〉 + 2G2 sin θ 〈ψ̄ψ〉 . (5.3)

Note that we have kept the θ-dependence in the determinant interaction term. This La-

grangian is quadratic in the quark fields, so the integration can be performed. After going

to imaginary time the thermal effective potential in the mean-field approximation is ob-

tained (Warringa, Boer, and Andersen, 2005)

Vvac
NJL =

α2
0
(G1 −G2 cos θ)

4(G2
1
−G2

2
)
+
β2

0
(G1 +G2 cos θ)

4(G2
1
−G2

2
)
+

G2α0β0 sin θ

2(G2
1
−G2

2
)
+Vq, (5.4)

with

Vq = −T Nc

∑

p0=(2n+1)πT

∫

d3 p

(2π)3
log det K, (5.5)

and where K is the inverse quark propagator,

K = (iγ0 p0 + γi pi) −M . (5.6)

In order to calculate the effective potential, it is convenient to multiply K with γ0, like

we did in Chapter 4. This multiplication does not change the determinant, but gives a

new matrix K̃ with ip0’s on the diagonal. It follows that det K =
∏8

i=1 (λi − ip0), where

λi are the eigenvalues of K̃ with p0 = 0. Because of the symmetries of the inverse

propagator, half of the eigenvalues are equal to Ep =
√

p2 + M2 and the other half to

Ep = −
√

p2 + M2, with M2 = (m + α0)2 + β2
0
. After the summation over the Matsubara

frequencies, we obtain

Vq = −8Nc

∫

d3 p

(2π)3

[

Ep

2
+ T log

(

1 + e−Ep/T
)

]

. (5.7)

At T = 0 this integral can be performed analytically. A conventional non-covariant three-

dimensional UV cut-off is used to regularize the integral and yields:

VT=0
q = νq|M|

M3 log

(

Λ

M
+

√

1 + Λ
2

M2

)

− Λ
(

M2 + 2Λ2
)

√

1 + Λ
2

M2

32π2
, (5.8)

where the degeneracy factor νq = 24.
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Figure 5.1: The temperature dependence of the condensates in the NJL and linear sigma model.

5.2.1 The CP-restoring phase transition

In this section the high-T CP-restoring phase transition at θ = π is investigated in detail.

As was shown in Chapter 4 the phenomenon of spontaneous CP violation is governed

by the strength c of the ’t Hooft determinant interaction. It will be assumed that c is

0.2, which following the arguments of Frank, Buballa, and Oertel (2003) is considered

realistic. But in fact, the critical temperature is to very good approximation c-independent

for c above ∼ 0.05, as can be seen from the (T, c) phase diagram given in Chapter 4.

We will start with a numerical minimization as a function of the temperature, the

results of which, together with those for the LSMq model, are shown in Fig. 5.1. One

observes that the critical temperature of the NJL model is significantly larger than the one

of the linear sigma model, in agreement with the results of Scavenius et al. (2001) for the

chiral phase transition at θ = 0. Furthermore, the order of the phase transition is clearly

different, contrary to the results of Scavenius et al. (2001) for θ = 0.

Next we will derive an analytic expression for the effective potential for the NJL

model. Two important observations which can be made from the numerical study will be

helpful. First, we note that α0 is very small and constant as long as β0 is nonzero, which

allows us to approximate M2 ≈ β2
0
. Furthermore, β0 and hence M can be considered

much smaller than πT andΛ, allowing expansions. These observations simplify our study

considerably.

The phase transition occurs for M much smaller than Λ, so Eq. (5.8) can be expanded

in M/Λ at T = 0:

VT=0
q = νq

















−M4 log M2

64π2
+

M4 log
(

4Λ2
)

64π2
− M4

128π2
− Λ

2M2

16π2
− Λ

4

16π2
+ · · ·

















. (5.9)
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Chapter 5. The high temperature CP-restoring phase transition at θ = π

For the phase transition, the non-analytic term M4 log M2 turns out to be very important.

We will see that it is exactly the absence of this term at finite temperatures in the NJL

model that causes the differences between the two models.

Usually the temperature-dependent part of the potential has to be evaluated numeri-

cally, however when M < πT the integral can be expanded in M/T . As can be inferred

from Fig. 5.1 it is exactly this regime which is relevant for the phase transition. Note

that the temperature-dependent part of the potential is UV finite, which means that for

this part the cut-off can be taken to infinity. In Chapter 4 this was not done, leading to

a slightly larger critical temperature. Performing the expansion, we obtain (Kapusta and

Gale, 2006)

VT
q = −νq

∫

d3 p

(2π)3
T log

(

1 + e−Ep/T
)

= νq

[

− 7π2T 4

720
+

M2T 2

48

+
M4

32π2

(

γE −
3

4
+

1

2
log

M2

T 2
− log π

)

+ · · ·
]

. (5.10)

From this expansion one can see that also the temperature dependence contains a loga-

rithmic term, that will precisely cancel the one of Eq. (5.9) when added together.

Using that M2 ≈ β2
0
, we end up with the effective potential

Vvac
NJL(T ) = ANJL(T ) + BNJL(T )β2

0 +CNJL(T )β4
0, (5.11)

where

ANJL(T ) = −

(

7π4T 4 + 45Λ4
)

νq

720π2
, (5.12)

BNJL(T ) =

(

π2T 2 − 3Λ2
)

νq

48π2
+

1

4G0

, (5.13)

CNJL(T ) =

(

log
(

4Λ2
)

− log T 2
)

νq

64π2
+

(−1 + γE − log π)νq

32π2
. (5.14)

One observes that the log M2-term at zero temperature is cancelled by the log M2-term in

the temperature-dependent part of the potential. Hence, as long as β0 < πT,Λ the potential

contains no logarithms and is fully analytic. We note that the potential of Eq. (5.11) is the

same as the one in the chiral limit at θ = 0, with β0 replaced by α0.

The phase transition occurs when BNJL(T ) changes sign. As the potential is symmetric

and quartic in the order parameter, we conclude (following Landau-Ginzburg arguments)

that the phase transition is of second order, which the numerical analysis corroborates.

The critical temperature is equal to

T NJL
c =

√

3νqG0Λ
2 − 12π2

G0π2νq

= 185 MeV. (5.15)

As long as T < 2Λ
π

exp(−1+γE) = 246 MeV, CNJL is positive, indicating that higher order

terms in β0 are not needed in the analysis.
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5.3. The LSMq model

5.3 The LSMq model

The linear sigma model coupled to quarks, like the NJL model, is an effective low-energy

model for QCD (Pisarski, 1996; Scavenius et al., 2001; Paech, Stoecker, and Dumitru,

2003; Schaefer and Wambach, 2007) similar in form to the Gell-Mann-Lévy model (Gell-

Mann and Lévy, 1960). It is a hybrid model that includes both meson and constituent

quark degrees of freedom, the latter only at nonzero temperature however. As was the

case in the NJL model, the effects of instantons are included via the ’t Hooft determinant

interaction (’t Hooft, 1976, 1986). In this chapter the analysis of Mizher and Fraga (2009)

is followed.

We will start with the T = 0 case, when only mesons are considered. The Lagrangian,

which contains all Lorentz invariant terms allowed by symmetry and renormalizability

has the following form, using a slightly different notation than Mizher and Fraga (2009)

LLS =
1

2
Tr(∂µφ

†∂µφ) +
µ2

2
Tr(φ†φ) − λ1

4
[Tr(φ†φ)]2 − λ2

4
Tr[(φ†φ)2]

+
κ

2
[eiθ det(φ) + e−iθ det(φ†)] +

1

2
Tr[

H
√

2
(φ + φ†)] , (5.16)

where φ is the chiral field, defined as

φ =
1
√

2
(σ + iη) +

1
√

2
(a0 + iπ) · λ . (5.17)

The Lagrangian incorporates both spontaneous and explicit breaking of chiral symmetry,

the latter through the term proportional to H. To study this symmetry breaking, we can

concentrate on the potential corresponding to Eq. (5.16), expressed in the meson fields

VT=0
LS = −

µ2

2
(σ2 + π2 + η2 + a2

0)

− κ
2

cos θ (σ2 + π2 − η2 − a2
0)

+ κ sin θ (ση − π · a0) − Hσ

+
1

4
(λ1 +

λ2

2
)(σ2 + η2 + π2 + a2

0)2

+
2λ2

4
(σa0 + ηπ + π × a0)2 . (5.18)

The spontaneous symmetry breaking manifests itself through nonzero σ and η conden-

sates and are obtained by minimizing the potential. We allow for these condensates by

shifting the fields

σ→ σ0 + s, η→ η0 + h, (5.19)

where σ0 and η0 are the values that minimize the potential and s and h are the fluctua-

tions. These σ0 and η0 are proportional to the condensates α0 and β0 of the NJL model,

respectively.
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Chapter 5. The high temperature CP-restoring phase transition at θ = π

The potential can now be split in two parts, a vacuum part and one that depends on

the fluctuations, i.e.,

VT=0
LS = V

vac,T=0
LS

+Vfluc
LS . (5.20)

First we concentrate on the vacuum part, which is given by the following expression:

Vvac,T=0
LS

=
λ

4
(σ2

0− v2
θ)

2−Hσ0+
λ

4
(η2

0−u2
θ)

2+ κ sin θ σ0η0 +
λ

2
σ2

0η
2
0−

λ

4
(v4
θ +u4

θ), (5.21)

where we have defined the combination of couplings λ ≡ λ1 + λ2/2, and follow the

notation of Mizher and Fraga (2009):

v2
θ ≡

µ2 + κ cos θ

λ
; u2

θ ≡ v2
θ −

2κ

λ
cos θ . (5.22)

This part of the potential determines the phase structure and has to be compared with the

NJL expression (5.9). The main difference is that this potential is fully analytic and does

not contain any logarithmic terms.

The part of the potential that depends on the fluctuations is used to determine the

parameters µ2, κ, H, λ1 and λ2 in Eq. (5.16). They are obtained by fitting the masses

contained in Vfluc
LS

and the pion decay constant at θ = 0 such that the model reproduces

the low-energy phenomenology of QCD. At θ = 0Vfluc
LS

has the following form

Vfluc
LS =

1

2

[

m2
π
π2 + m2

σs2 + m2
ηη

2 + m2
a0

a2
0

]

+

(

λ1 +
1

2
λ2

)

σ0s
(

s2 + π2 + η2
)

+

(

λ1 +
3

2
λ2

)

σ0sa2
0 + λ2σ0ηπ · a0 +

(

1

4
λ1 +

1

8
λ2

)

(

s2 + π2 + η2 + a2
0

)2

+
1

2
λ2

[

(sa0 + ηπ)2 + (π × a0)2
]

. (5.23)

The masses depend on the parameters of the model as follows:

m2
π
= −µ2 − κ + 1

2
(2λ1 + λ2)σ2

0,

m2
σ = −µ2 − κ + 3

2
(2λ1 + λ2)σ2

0,

m2
a0
= −µ2 + κ + (λ1 +

3

2
λ2)σ2

0,

m2
η = −µ2 + κ + (λ1 +

1

2
λ2)σ2

0. (5.24)

The mass values used are: mπ = 138 MeV, mσ = 600 MeV, ma0
= 980 MeV, and

mη = 574 MeV.

At nonzero θ, η0 becomes nonzero, which alters the mass relations. Furthermore,

cross terms like ση become nonzero, signalling that the mass eigenstates are no longer

CP eigenstates, as discussed for the NJL model in Chapter 4. As a consequence, the σ-

field mixes with the η-field and the π-field mixes with the a0-field. We will not give these

expressions explicitly here.
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5.3. The LSMq model

5.3.1 Spontaneous CP violation at θ = π

Similarly to the NJL model and chiral perturbation theory, for a range of values of the

parameters the linear sigma model violates CP invariance at θ = π. In this section we will

discuss this violation in the same way as we have done in the NJL model, i.e. varying the

instanton interaction, but keeping the masses of the pions and σ meson fixed. In the case

of the linear sigma model, this means that the combination µ2
0
= µ2 + κ is kept fixed. It

turns out that a critical value of κ exists, below which there is no spontaneous CP violation

at θ = π. For values of κ larger that the critical value, the model exhibits spontaneous CP

violation at θ = π. The critical value of κ will be denoted as κcrit.

In order to find the ground state, VT=0
LS

has to be minimized, which at θ = π boils

down to solving the following two equations

∂VT=0
LS

∂σ0

= σ0

(

λ
(

η2
0 + σ

2
0

)

+ 2κ − µ2
0

)

− H = 0,

∂VT=0
LS

∂η0

= η0

(

λ
(

η2
0 + σ

2
0

)

− µ2
0

)

= 0. (5.25)

When κ is small, the following values of the condensates minimize the potential

σ0 =
Y2 − X

3λY
,

η0 = 0, (5.26)

where we have introduced

X = 6κλ − 3λµ2
0,

Y =
3

√

1

2

√

729H2λ4 + 4X3 +
27

2
Hλ2. (5.27)

This solution corresponds to a CP-conserving ground state. When κ is large, the minimum

corresponds to the following values of the condensates

σ0 =
H

2κ
,

η0 =

√

4µ2
0
κ2 − H2λ

2κ
√
λ

. (5.28)

In case η0 , 0, this solution violates CP invariance. When this solution obtains a real

value for η0, i.e. κ ≥ κcrit = H
√
λ/(2µ0), it becomes the global minimum. The value of κ

chosen in this chapter is higher than κcrit, consequently the model spontaneously violates

CP invariance at θ = π. The CP restoring phase transition is second order as function of

κ. Next we will look at the order as function of T .

64



Chapter 5. The high temperature CP-restoring phase transition at θ = π

5.3.2 Nonzero temperature

In the LSMq model the quarks start to contribute at nonzero temperatures. In fact, it is

assumed that all the temperature dependence comes from the quarks. Scavenius et al.

(2001) argued that this approach is more justified for studying high T phenomena than

considering only thermal fluctuations of the meson fields, because at high T constituent

quarks become light and mesonic excitations heavy. For the study of the chiral phase

transition at θ = 0 this approach yields results that are qualitatively similar to those of the

NJL model.

The part of the LSMq Lagrangian that depends on the quark fields is:

Lq = ψ̄
[

i∂/ − g (σ + iγ5η + a0 · λ + iγ5π · λ)
]

ψ. (5.29)

The quark thermal fluctuations are incorporated in the effective potential for the mesonic

sector, by means of integrating out the quarks to one loop (Mizher and Fraga, 2009). The

resulting quark contribution to the potential is given by

VT
q = −νq

∫

d3 p

(2π)3
T log

(

1 + e−Ep/T
)

. (5.30)

This expression is equal to the temperature dependent part of the NJL model Eq. (5.10),

with again Ep =
√

p2 + M2 and the constituent quark mass M depends on the vacuum

expectation values of the meson fields in the following way: M = g

√

(

σ2
0
+ η2

0

)

, where g

is the Yukawa coupling between the quarks and the mesons. A reasonable value for the

constituent quark mass at θ = 0 fixes this coupling constant. In Mizher and Fraga (2009)

(and here) g = 3.3 is used, which leads to a cross-over for the chiral phase transition as a

function of temperature at θ = 0 and to a constituent quark mass of approximately 1/3 of

the nucleon mass.

5.3.3 The phase transition

With all parameters fixed, we can study the CP-restoring phase transition at θ = π in the

LSMq model. This was studied in detail, along with other values for θ, by Mizher and

Fraga (2009). There also the effect of a magnetic field was discussed, which we will not

take into account in this chapter.

We are now going to follow the same procedure as for the NJL model to study the

details of the phase transition. Again, we start the discussion with numerical results of the

minimization of the effective potential, this time the results of Mizher and Fraga (2009),

shown in Fig. 5.1. From this figure, two simplifying assumptions can be inferred. First,

as was the case for the NJL model, in the neighborhood of the phase transition M < πT ,

allowing Eq. (5.30) to be expanded in M/T as in Eq. (5.10). Secondly, σ0 is much smaller

than η0 which means that we can neglect the σ0-dependence. This assumption leads to

a small error near η0 ≈ 0, but as we checked explicitly this is not important since the

structure of the extrema of the potential is not altered.
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Summing the contributions at zero and nonzero temperature gives the following form

for the effective potential

Vvac
LS (T ) = ALS(T ) + BLS(T )η2

0 +CLS(T )η4
0 + DLSη

4
0 log η2

0, (5.31)

where

ALS(T ) = − 7

720
π2T 4νq, (5.32)

BLS(T ) =
1

48

(

g2T 2νq − 24(µ2 + κ)
)

, (5.33)

CLS(T ) =
1

32

















νq

(

log
(

g

πT

)

+ γE − 3
4

)

g4

π2
+ 8λ

















, (5.34)

DLS =
g4νq

64π2
. (5.35)

The form of this potential is clearly different from the one of the NJL model Eq. (5.11),

the difference being the uncanceled logarithmic term. This term proportional to DLS will

always cause the phase transition to be of first order. As observed for the NJL model, also

in this case the potential is exactly the same as the chiral limit at θ = 0, with η0 replaced

by σ0. Beyond the chiral limit the explicit symmetry breaking term ∼ Hσ0 (which has

no analogue at θ = π) will change the first order transition into a cross-over, unless the

Yukawa coupling g is increased sufficiently (Paech, Stoecker, and Dumitru, 2003; Schae-

fer and Wambach, 2007). We conclude that the absence of explicit CP violation through a

linear term in η0 at θ = π lies at the heart of the difference between the observations made

here and those by Scavenius et al. (2001).

Like in the NJL model, it is the sign flip of BLS that modifies the structure of the min-

ima. But instead of a phase transition, now a meta-stable state develops at η0 = 0. When

BLS(T ) becomes larger than 2DLS exp(− 3
2
− CLS(T )

DLS
) the original minimum disappears. Be-

tween the two spinodals the minimum jumps, signalling a first order transition.

When the parameters of Mizher and Fraga (2009) are used, we obtain the following

values for the spinodals: 118 MeV and 129 MeV. To find the exact point of the phase

transition, the potential has to be minimized numerically, giving a critical temperature of

126.4 MeV. As already noted, this is significantly lower than T NJL
c , but the specific values

depend on the parameter choices made. As should be clear from the previous discussion,

choosing different parameters would not affect the conclusion about the different orders of

the phase transition, at least as long as M < πT,Λ and κ > −µ2 (equivalently, m2
σ > 3m2

π

at T = 0).

5.4 Relation between the models

As mentioned, the LSMq model is a hybrid model for mesons, which are coupled to

quarks at nonzero temperature, and the NJL model is a quark model, where the bosonic

states of quark-antiquark fields are interpreted as mesons. Eguchi (1976) has shown how
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to derive from the Lagrangian of the NJL model a Lagrangian for the mesonic excitations

for G2 = 0. This bosonization procedure is reviewed in Klevansky (1992). Here the

corresponding meson Lagrangian will be derived for G2 , 0, which was also studied by

Dmitrasinovic (1996) in the chiral limit.

The situation will be reviewed for θ = 0, when only the ψ̄ψ receives a vacuum ex-

pectation. The case θ = π is very similar, then also 〈ψ̄iγ5ψ〉 becomes nonzero, which

approximately doubles the number of terms one has to incorporate. However, the struc-

ture one obtains remains the same. We start with the Lagrangian given in Eq. (3.2). The

generating functional is given by the standard expression

Z[ξ̄, ξ] =
1

N

∫

DψDψ̄ exp

(

i

∫

d4x
[

LNJL(ψ̄, ψ) + ψ̄ξ + ξ̄ψ
]

)

, (5.36)

where ξ̄ and ξ are the antifermion and fermion sources and N is a normalization factor

which will be suppressed from now on. Next we introduce auxiliary fields σ, η, π and a0

and a new Lagrangian L ′ such that the effective potential can be written as

Z[ξ̄, ξ] =

∫

DψDψ̄DσDηDπDa0 exp

(

i

∫

d4x
[

L
′

NJL(ψ̄, ψ) + ψ̄ξ + ξ̄ψ
]

)

, (5.37)

with

L
′

NJL = ψ̄
[

i∂/ − m − g (σ + iγ5η + a0 · λ + iγ5π · λ)
]

ψ

− 1

2
δµ2

1

(

σ2 + π2
)

− 1

2
δµ2

2

(

η2 + a2
0

)

, (5.38)

and

δµ2
1 =

g2

2(G1 +G2)
, δµ2

2 =
g2

2(G1 −G2)
. (5.39)

Here g is again the Yukawa coupling between the quarks and mesons, which in the case

of the NJL model can be evaluated and indicates that the NJL model is in this respect less

general than the LSMq model. The following value is obtained

g−2 = −4Nci

∫

d4 p

(2π)4

1

(p2 − M2)2
, (5.40)

which requires some regularization.

Integrating out the quarks gives the following generating functional

Z[ξ̄, ξ] =

∫

DσDηDπDa0 exp

(

iSNJL

+ i

∫

d4x ξ̄
1

i∂/ − m − g (s + iγ5η + a0 · λ + iγ5π · λ)
ξ

)

(5.41)
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where the action SNJL is given by

SNJL =

∫

d4x

[

−1

2
δµ2

1

(

σ2 + π2
)

− 1

2
δµ2

2

(

η2 + a2
0

)

]

− iTr log
[

i∂/ − m − g (σ + iγ5η + a0 · λ + iγ5π · λ)
]

. (5.42)

Assuming that only the σ-field receives a vacuum expectation value σ0, i.e., σ = σ0 + s,

the action can be split into a vacuum part and a part that depends on the fluctuations,

which are the mesons s, η,π,a0:

SNJL = Svac
NJL + Sfluc

NJL, (5.43)

with

Svac
NJL =

∫

d4x

[

−1

2
δµ2

1σ
2
0

]

− iTr log [i∂/ − M] ,

Sfluc
NJL =

∫

d4x

[

−1

2
δµ2

1

(

s2 + 2σ0s + π2
)

− 1

2
δµ2

2

(

η2 + a2
0

)

]

− iTr log

[

1 − 1

i∂/ − M
g (s + iγ5η + a0 · λ + iγ5π · λ)

]

, (5.44)

and the constituent quark mass M = m + gσ0. In order to obtain a local action for the

meson fields, the nonlocal fermionic determinant in Sfluc
NJL

is rewritten using a derivative

expansion:

−iTr log

[

1 − 1

i∂/ − M
g (s + iγ5η + a0 · λ + iγ5π · λ)

]

=

∞
∑

n=1

U(n), (5.45)

where

U(n) =
1

n
Tr

(

1

i∂/ − M
g (s + iγ5η + a0 · λ + iγ5π · λ)

)n

. (5.46)

From power counting we note that U(n) with n ≥ 5 are convergent and the rest is divergent.

Only the divergent parts of the U(n) with n = 1, 2, 3, 4 will be taken into account. As

an example, we will present the calculation of the scalar contribution to U(2), following

Klevansky (1992).

We start with the expression for the scalar contribution to U(2), which is shown dia-

grammatically in Fig. 5.2 and is equal to

U(2)
s = g2 i

2
Tr

∫

d4 p

(2π)4
〈p| 1

i∂/ − M
s

1

∂/ − M
s |p〉

= 2ig2N f Nc

∫

d4 p

(2π)4

d4 p′

(2π)4
d4x d4y

× ei(p−p′)·(x−y) p′ · p + M2

(p2 − M2)(p′2 − M2)
s(x)s(y). (5.47)
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ss

Figure 5.2: The scalar contribution to U (2), the double dashed lines denote the s-field.

Now we Taylor expand the field s(y)

s(y) = s(x) + (y − x)µ∂µs(x) +
1

2
(y − x)µ(y − x)ν∂µ∂νs(x) + · · · , (5.48)

and insert this expansion in Eq. (5.47)

U(2)
s = U(2)

s

∣

∣

∣

s2 + U(2)
s

∣

∣

∣

s∂µ s
+ U(2)

s

∣

∣

∣

s∂µ∂ν s
+ · · · . (5.49)

The first term is given by

U(2)
s

∣

∣

∣

s2 = 2ig2N f Nc

∫

d4 p

(2π)4

d4 p′

(2π)4
d4x d4y

× ei(p−p′)·(x−y) p′ · p + M2

(p2 − M2)(p′2 − M2)
s(x)2

= 2ig2NcN f

∫

d4 p

(2π)4
d4x

p2 + M2

p2 − M2
s(x)2

= (g2I2 − 2M2g2I0)

∫

d4x s(x)2, (5.50)

where we have put N f = 2 and introduced the following two (divergent) integrals

I0 = −4Nci

∫

d4 p

(2π)4

1

(p2 − M2)2
,

I2 = 4Nci

∫

d4 p

(2π)4

1

p2 − M2
, (5.51)

which will be regularized using the three-dimensional UV cut-off. Note that I0 = g−2.

The second term is linear in the derivative and vanishes. The last divergent term is the

third one, which is given by

U(2)
s

∣

∣

∣

s∂µ∂ν s
= ig2N f Nc

∫

d4 p

(2π)4

d4 p′

(2π)4
d4x d4y

× ei(p−p′)·(x−y) p′ · p + M2

(p2 − M2)(p′2 − M2)
s(x)(y − x)µ(y − x)ν∂µ∂νs(x)

= ig2N f Nc

∫

d4 p

(2π)4

d4 p′

(2π)4
d4x d4z

× ei(p−p′)·z p′ · p + M2

(p2 − M2)(p′2 − M2)
s(x)zµzν∂µ∂νs(x), (5.52)
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where z = x − y. Using zµei(p−p′)·z = i ∂
∂p′µ

ei(p−p′)·z ≡ i∂
µ

p′e
i(p−p′)·z and performing the

integration over z gives

U(2)
s

∣

∣

∣

s∂µ∂ν s
= ig2N f Nc

∫

d4 p

(2π)4

d4 p′

(2π)4
d4x

× s(x)∂µ∂νs(x)
p′ · p + M2

(p2 − M2)(p′2 − M2)
∂
µ

p′∂
ν
p′δ(p − p′), (5.53)

which after the p′-integration can be brought to the following form, only taking the diver-

gent term into account

U(2)
s

∣

∣

∣

s∂µ∂ν s
= ig2NcN f

∫

d4 p

(2π)4
d4x s(x)∂µ∂νs(x)

gµν

(p2 − M2)2

=
1

2
g2I0

∫

d4x ∂µs(x)∂µs(x). (5.54)

The other divergent U(n)-terms can be evaluated in the same way. The following

Lagrangian is obtained after the summation of these U(n), which integrated over space-

time, yields Sfluc
NJL

:

L
fluc

NJL =
1

2

[

(∂µs)2 + (∂µη)2 + (∂µa
2
0)2 + (∂µπ)2

]

− 1

2

[

m2
π
π2 + m2

σs2 + m2
ηη

2 + m2
a0

a2
0

]

− g3s
(

s2 + π2 + η2 + 3a2
0

)

− 2g3ηπ · a0 −
1

2
g4

(

s2 + π2 + η2 + a2
0

)2

− 2g4

[

(sa0 + ηπ)2 + (π × a0)2
]

. (5.55)

The masses and coupling constants have the following values

m2
π
=

1

2G0I0

− 2
I2

I0

=
m

M

1

2G0I0

,

m2
σ = m2

π
+ 4M2,

m2
η =

1

2(1 − 2c)G0I0

− 2
I2

I0

,

m2
a0
= m2

η + 4M2,

g3 =
2M

I
1/2

0

= 2Mg
1/2

4
,

g4 =
1

I0

,

g =
1

I
1/2

0

, (5.56)

The resulting masses (when the integrals are regularized using a three-dimensional UV

cut-off) are equal to the ones obtained using the random phase approximation used in
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Chapter 4 (where the dependence on the external momentum of the generalized I0 defined

in, for example, Klevansky (1992) has been neglected). The Lagrangian (5.55) without

the a0 and η-fields was also given in Ebert and Volkov (1983). In the chiral limit the

results agree with those of Dmitrasinovic (1996).

Eq. (5.55) is equal to the fluctuation part of the linear sigma model Lagrangian (5.16)

using the following parameters

λ1 = 0,

λ2 = 4/I0,

µ2 = 2M2 − c

2(1 − 2c)G0I0

,

κ =
c

2(1 − 2c)G0I0

,

H =
m

2G0I
1/2

0

. (5.57)

Although the bosonization of the NJL model yields λ1 = 0, this is of no consequence for

the order of the phase transition, as the effective potential at zero temperature is a quartic

polynomial irrespective of whether λ1 = 0 or not. It does however, affect the masses of the

mesons. If λ1 = 0, the following relation holds: m2
σ − m2

π
= m2

a0
− m2

η = 4M2, a property

of the NJL model already noted in Dmitrasinovic (1996). Clearly, the bosonized NJL

model does not yield the most general linear sigma model. However, it gives additional

contributions to the vacuum that usually are not taken into account in the linear sigma

model coupled to quarks (Scavenius et al., 2001; Mizher and Fraga, 2009). Schaefer and

Wambach (2007) noted that upon inclusion of fluctuations using a renormalization group

flow equation, the transition becomes second order. This boils down to including quark

loop effects at zero temperature too and is consistent with our findings.

To conclude, the mesonic part of this bosonized NJL Lagrangian is equal to the

mesonic part of the LSMq model. So the mesons are treated in same way in the two

models, but the vacuum contributions are treated differently.

It is straightforward to bosonize the NJL model for θ , 0 when also 〈ψ̄iγ5ψ〉 can

become nonzero, leading to cross terms that mix the σ-field with the η-field and a0-

field with the π-field, but we do not give the expressions here as they do not lead to any

additional insights.

5.5 The phase transition in chiral perturbation theory

In this chapter we compared the NJL model with the linear sigma model coupled to

quarks. It would be very useful to also compare our results with chiral perturbation

theory, which is the most general low-energy effective theory of the strong interaction.

Gasser and Leutwyler (1987a,b) and Gerber and Leutwyler (1989) have shown how to

incorporate finite temperature in chiral perturbation theory. For instance, they show how

the chiral condensate decreases as a function of temperature. Unfortunately, their ap-

proach is a low-temperature one, which means that the difference between the condensate
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at nonzero and zero temperature is treated as small. This approximation breaks down in

the vicinity of the critical point (Gasser and Leutwyler, 1987a). Moreover, in the vicinity

of the critical point massive states, such as kaons, the η meson and vector mesons, start

to become relevant (Gerber and Leutwyler, 1989), also a signal of the breakdown of the

approximation. Finally, the value of the condensate at zero temperature (both at θ = 0

and θ = π), which is set by the parameter fπ, needs to be fixed. No minimization takes

place to obtain fπ, hence chiral perturbation theory does not contain information about

the structure of the minima of the effective potential as a function of fπ.

From these considerations we can conclude that is not possible to use the chiral Lan-

grangian to study the order of the CP restoring phase transition at θ = π.

5.6 Conclusions

In this chapter the high-T CP-restoring phase transition at θ = π was discussed for two

different models which aim to describe the low-energy QCD phenomenology, the NJL

model and the linear sigma model coupled to quarks. Although the models are related,

the philosophy of how the mesons are treated is quite different in both models. In the

NJL model they are bosonic states of quark-antiquarks, whereas in the LSMq model they

are the fundamental degrees of freedom, interacting with quarks at nonzero temperature.

Using the bosonization procedure of Eguchi, one can show that a bosonized NJL model

gives a linear sigma model, in which mesons are treated in the same way as in the LSMq

model. However, the vacuum contributions arising from the quark degrees of freedom are

different. The LSMq model was motivated for high temperatures, when constituent quarks

are light and mesons are heavy. Therefore, it is assumed that quarks only play a role at

nonzero temperature and do not affect the vacuum contributions at zero temperature. On

the other hand, in the NJL model contributions by the quarks are necessarily taken into

account also at zero temperature. The temperature dependent contributions to the effective

potential are equal in these two models, coming exclusively from the quarks. In the end,

the effective potentials of the models only differ in their zero temperature contributions.

Nevertheless, this directly affects the nature of the phase transition at high temperature at

θ = π.

The temperature dependence of the ground states of the two models was investigated

using a Landau-Ginzburg analysis. The difference between the models is that the po-

tential as a function of the order parameter of the LSMq model contains a non-analytic

logarithmic term, whereas the potential of the NJL model is a quartic polynomial near the

phase transition. It is this logarithm that makes the difference, because it affects the order

of the phase transition. The logarithm comes from the contribution of the quarks at zero

temperature, but neglecting these contributions will affect the high temperature results

qualitatively at θ = π. A similar effect occurs for the chiral symmetry restoration phase

transition at θ = 0 close to the chiral limit, i.e. for sufficiently small explicit symmetry

breaking. The absence of explicit CP violation is therefore an important aspect of the

physics at θ = π.

Since neither model is directly derived from QCD, it is not straightforward to draw
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a conclusion about the order of the phase transition expected in QCD. However, as we

explained, chiral perturbation theory cannot be used either. If the NJL model is viewed as

a model for the microscopic theory underlying the low energy mesonic theory, it would

not seem justified to neglect the logarithmic term at zero temperature.
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Chapter 6

The combined influence of strong

magnetic fields and instantons

Both in heavy-ion collisions and in magnetars very strong magnetic fields are generated,

which has its influence on the phases of matter involved. In this chapter we investigate the

effect of strong magnetic fields (B ∼ 5m2
π/e = 1.7×1019G) on the chiral symmetry restor-

ing phase transition at θ = 0 using the Nambu-Jona-Lasinio model. It is observed that the

pattern of phase transitions depends on the relative magnitude of the magnetic field and

the instanton interaction strength. We study two specific regimes in the phase diagram,

high chemical potential and zero temperature and vice versa, which are of relevance for

neutron stars and heavy-ion collisions respectively. In order to shed light on the behavior

of the phase transitions we study the dependence of the minima of the effective potential

on the occupation of Landau levels. We observe a near-degeneracy of multiple minima

with different Landau occupation numbers, of which some become the global minimum

upon changing the magnetic field or the chemical potential. These minima differ con-

siderably in the amount of chiral symmetry breaking and in some cases also of isospin

breaking. Throughout this chapter we consider θ = 0. This chapter is largely based on

Boomsma and Boer (2010).

6.1 Introduction

Recently it has been noted that very strong magnetic fields can be produced in heavy-

ion collisions (Selyuzhenkov, 2006; Kharzeev, 2006; Kharzeev, McLerran, and Warringa,

2008). Estimates are that at RHIC magnetic fields are created of magnitude 5m2
π/e = 1.7×

1019 G and at LHC of 6m2
π/e = 2 × 1019 G, and there are even higher estimates (Skokov,

Illarionov, and Toneev, 2009). Also, certain neutron stars called magnetars exhibit strong

magnetic fields, between 1014 − 1015 G (Duncan and Thompson, 1992; Thompson and

Duncan, 1993, 1996). These fields occur at the surface, probably in the much denser

interior even higher fields are present. Using the virial theorem it can be derived that the
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maximal strength is 1018 − 1019 G (Lai and Shapiro, 1991). If one assumes that the star is

bound by the strong interaction instead of by gravitation, this limit can be even higher.

As discussed in Chapter 2, both in neutron stars and in heavy-ion collisions it is ex-

pected that quark matter plays a role. Therefore it is interesting to study how this form

of matter behaves in a strong magnetic field. Two different regions in the QCD phase

diagram are of relevance here. Heavy-ion collisions probe the low chemical potential and

high temperature regime, for neutron stars it is the other way around. In this chapter the

effect of very strong magnetic fields will be investigated in both regimes.

Much work has been done on how an external magnetic field changes nuclear matter,

for a review see Lattimer and Prakash (2007). The behavior of ordinary quark matter

has been studied using the Nambu-Jona-Lasinio (NJL) model, see for example Klevan-

sky (1992), Gusynin, Miransky, and Shovkovy (1994, 1995a,c, 1996), Ebert et al. (2000),

Ebert and Klimenko (2003), Klimenko and Zhukovsky (2008), Inagaki, Kimura, and Mu-

rata (2004), and Menezes et al. (2009a) and recently also in the linear sigma model cou-

pled to quarks (Fraga and Mizher, 2008). Most studies investigate the one and two-flavor

cases, but recently also the three-flavor case has been investigated (Osipov et al., 2007;

Menezes et al., 2009b). At high quark chemical potential, it is believed that the ground

state is a color superconducting phase. The effects of an external magnetic field on such

a phase are discussed by Ferrer, de la Incera, and Manuel (2005, 2006), Ferrer and de la

Incera (2006, 2007a,b), Noronha and Shovkovy (2007), and Fukushima and Warringa

(2008). Here color superconductivity will not be considered.

In this chapter we study the chiral symmetry restoring phase transition, which is

strongly influenced by an external magnetic field. From studies in the NJL model it is

known that a magnetic field enhances the chiral symmetry breaking (Klevansky, 1992),

which is related to the phenomenon of magnetic catalysis of chiral symmetry breaking,

introduced by Klimenko (1992a,b, 1991), further studied for the NJL model by Gusynin,

Miransky, and Shovkovy (1994, 1995a,c, 1996), Ebert et al. (2000), Ebert and Klimenko

(2003), Klimenko and Zhukovsky (2008) and for QED by e.g. Gusynin, Miransky, and

Shovkovy (1995b), Lee, Leung, and Ng (1998, 1997), and Ferrer and de la Incera (2009,

2010), where also the generation of an anomalous magnetic moment was pointed out

(Ferrer and de la Incera, 2009, 2010). This enhancement can be understood as follows.

The B-field anti-aligns the helicities of the quarks and antiquarks, which are then more

strongly bound by the NJL-interaction (Klevansky, 1992). The phenomenon of magnetic

catalysis of chiral symmetry breaking leads to interesting behavior, since it allows for

phases with broken chiral symmetry and nonzero nuclear density for a range of chemi-

cal potentials and magnetic fields (Ebert et al., 2000; Ebert and Klimenko, 2003;Inagaki,

Kimura, and Murata, 2004). In such a phase nonperiodic magnetic oscillations occur,

which means that the constituent quark masses are strongly dependent on the magnetic

field, and consequently also other thermodynamic parameters, analogous to the de Haas-

van Alphen effect.

In all studies of the influence of magnetic fields on chiral symmetry breaking up to

now, the effects of instantons have not been studied explicitly, i.e. as a function of in-

stanton interaction strength. Magnetic fields and instantons can lead to combined ef-

fects. Kharzeev, McLerran, and Warringa (2008) have shown that variations in topologi-
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cal charge, which induce variations of net chirality, in a strong magnetic field gives rise to

an electrical current. This effect is known as the chiral magnetic effect and could perhaps

be observed in heavy-ion collisions (Abelev et al., 2009a,b). Variations of topological

charge can for instance be created by instantons.

Here a related study will be performed. We will investigate the combined effect of

instantons and a strong magnetic field on quark matter using the NJL model. In this

model instantons induce an extra interaction, the ’t Hooft determinant interaction, which

leads to a mixing between the different quark flavors. Following the analysis of Chapter 3,

the strength of the instanton interaction is set by the dimensionless parameter c. For c = 0

there is no contribution and there is no mixing. Because of the difference in charge of the

quarks, the phase transitions are decoupled. The other extreme case is c = 1/2, which

is actually the most studied case. The quarks are then fully mixed, the constituent quark

masses are equal and the phase transitions will always coincide. Ebert et al. (2000) studied

this case in the chiral limit. It is observed that for a range of typical values of the coupling

constant, phases with broken chiral symmetry and nonzero nuclear density arise.

In general there is a competition between the magnetic field, which tends to differ-

entiate the constituent quark masses for different flavors, and the instanton interaction

which favors equal constituent quark masses. In this chapter this competition is studied.

Apart from studying the ground state as a function of the magnetic field and the chemical

potential for various characteristic values of c, we also look at the local minima of the ef-

fective potential and the corresponding occupation of Landau levels. It is found that in the

neighborhood of the chiral phase transition the phase diagram develops metastable phases,

differing in the number of filled Landau levels. Some of these local minima become the

global one upon increasing the magnetic field or chemical potential, but not all of them

do. These phases can have rather different values for the constituent quark masses, in

other words, display significantly different amounts of chiral symmetry breaking. Unlike

in the case of c = 1/2 which is isospin symmetric, in these phases the values of the two

constituent quark masses can be very distinct, which corresponds to large isospin viola-

tion. Furthermore, we find that for a realistic choice of parameters, appearance of phases

of broken chiral symmetry and nonzero nuclear density requires not too large instanton

interaction strength, i.e. c<∼ 0.1.

As mentioned, we also investigate the role of nonzero temperature at zero chemical

potential, which is of relevance for heavy-ion collisions. Without magnetic field the chiral

symmetry restoring phase transition at finite temperature is a crossover. In the linear sigma

model coupled to quarks it has been observed that the magnetic field turns it into a first

order transition (Fraga and Mizher, 2008). We will see that this is not the case for the NJL

model, similar to the CP restoring phase transition at θ = π, discussed in the previous

chapter.

This chapter is organized as follows. First we derive the effective potential of the

NJL model in the mean-field approximation in a magnetic background. Then we discuss

the phase diagram as a function of chemical potential, concentrating on the phase with

nonzero nuclear density and chiral symmetry breaking. We continue with discussing the

temperature dependence and end with conclusions.
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6.2 Effective potential of the NJL model with a magnetic

field

In this section we discuss how a constant external magnetic field can be incorporated in

the NJL model. We choose the external magnetic field along the z-direction and use the

potential Aµ = Bx1δµ2. In the following we will assume that B > 0. The Lagrangian then

becomes equal to

L
B

NJL = ψ̄
(

iγµ∂µ − q fλ f Bγ2x1 − m − µγ0

)

ψ +Lq̄q +Ldet, (6.1)

where Lq̄q and Ldet are the four-quark interactions, as given in Chapter 3. q f denotes

the charge of quark flavor f . Degenerate current quark masses are used, mu = md = m.

Finally, µ denotes the quark chemical potential, which we take equal for both quarks.

In order to obtain the ground state of the model, the effective potential has to be min-

imized. We will again use the mean-field approximation. Furthermore, we will assume

that only the charge-neutral condensates 〈ψ̄λ0ψ〉 and 〈ψ̄λ3ψ〉 can become nonzero. To

obtain the effective potential in the mean-field approximation, we use the procedure used

in Chapter 5, we “linearize” the interaction terms in the presence of the condensates, this

time the 〈ψ̄λ0ψ〉 and 〈ψ̄λ3ψ〉 condensates, as follows

(ψ̄λaψ)2 ≃ 2 〈ψ̄λaψ〉 ψ̄λaψ − 〈ψ̄λaψ〉2 , (6.2)

leading to

L
B

NJL = ψ̄
(

iγµ∂µ − q fλ f Bγ2x1 −M − µγ0

)

ψ − (M0 − m)2

4G0

−
M2

3

4(1 − 2c)G0

, (6.3)

where M = M0λ0 + M3λ3 and

M0 = m − 2G0 〈ψ̄λ0ψ〉 = m + α0,

M3 = −2(1 − 2c)G0 〈ψ̄λ3ψ〉 = α3. (6.4)

The Lagrangian is now quadratic in the quark fields, so we can perform the fermion

integration. This is a little more complicated than in the previous chapters, due to the

external magnetic field. The external magnetic field causes quantization of the momenta

in the plane perpendicular to the magnetic field, known as Landau quantization (Landau

and Lifshitz, 1977). This quantization changes the dispersion relation of the quarks into

p2
0n = p2

3 + M2
f + (2n + 1 − σ)|q f |B, (6.5)

where n is the quantum number labelling the discrete orbits and σ the spin of the quark.

M f is the constituent quark mass of flavor f , related to M0 and M3 by Mu = M0 +M3 and

Md = M0 − M3.

The asymptotic quark states are different when a constant magnetic field is present (see

e.g. Ritus, 1972, 1978; Leung et al., 1996; Ferrer and de la Incera, 1998). In Appendix B
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we show how the fermion integration is performed using these new asymptotic states. The

result is

V = (M0 − m)2

4G0

+
M2

3

4(1 − 2c)G0

+

d
∑

f=u

log Det
(

iγµ∂µ − q f Bγ2x1 − M f − µγ0

)

= V0 +V1(B) +V2(B, µ,T ), (6.6)

where Det denotes a functional determinant and

V0 =
(M0 − m)2

4G0

+
M2

3

4(1 − 2c)G0

− Nc

8π2

d
∑

f=u

|M f |
(

M3
f ln

















Λ

M f

+

√

1 +
Λ2

M2
f

















− Λ
(

M2
f + 2Λ2

)

√

1 +
Λ2

M2
f

)

,

V1(B) = − Nc

2π2

d
∑

f=u

(|q f |B)2















ζ′(−1, x f ) −
1

2
(x2

f − x f ) ln x f +
x2

f

4















,

V2(B, µ,T ) = −Nc

2π

∑

k, f

(2 − δk0)|q f |B
∫

dp3

2π

{

T ln
[

1 + e−[Ep,k(T )+µ]/T
]

+ T ln
[

1 + e−[Ep,k(T )−µ]/T
] }

, (6.7)

where we have defined x f =
M2

f

2|q f |B and ζ′(−1, x f ) =
dζ(z,x f )

dz
|z=−1 with ζ(z, x f ) the Hurwitz

zeta function. We have neglected x f -independent terms inV1(B) (including a UV diver-

gent one). Furthermore, Ep,k =

√

p2
3
+ M2

f
+ 2k|q f |B and k denotes the Landau levels,

which have degeneracy (2 − δk0).

The expression ζ′(−1, x f ) in V1(B) can be written in a more convenient form by dif-

ferentiating and integrating the function with respect to x f :

ζ′(−1, x f ) = ζ
′(−1, 0) +

x2
f

2
−

x f

2
−

x f

2
log(2π) + ψ(−2)(x f ), (6.8)

where ψ(m)(x f ) is the m-th polygamma function. The term ζ′(−1, 0) is independent of x f

and will therefore not be taken into account. The remaining expression is amenable to

numerical evaluation.
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At zero temperature,V2 can be simplified to

V2(B, µ, 0) = −Nc

2π

∑

k, f

(2 − δk0)

∫

dp3

2π
θ(µ − Ep,k)

[

µ − Ep,k

]

=

d
∑

f=u

k f ,max
∑

k=0

(2 − δk0) θ
(

µ − s f (k, B)
) |q f |BNc

4π2

×























µ

√

µ2 − s2
f
(k, B) − s2

f (k, B) ln

























µ +
√

µ2 − s2
f
(k, B)

s f (k, B)















































, (6.9)

where s f (k, B) =
√

M2
f
+ 2|q f |Bk and k f ,max is the upper Landau level, defined as

k f ,max =





















µ2 − M2
f

2|q f |B





















, (6.10)

where the brackets indicate the floor of the enclosed quantity.

We will now use these expressions in a numerical study of the minima of the effective

potential, performed along the lines discussed in Chapter 4.

6.3 Results

We start with considering the case of µ = 0,T = 0, and c = 0. Fig. 6.1 shows the results

for this unmixed case. The magnetic field enhances Mu and Md, which are proportional

to 〈ūu〉 and 〈d̄d〉, respectively, consequently the chiral symmetry breaking is enhanced

(Klevansky, 1992). Because of the charge difference of the quarks, the B-dependence of

the constituent quark masses is not equal. Nonzero c will cause mixing and will bring the

masses closer to each other. As discussed, at c = 1/2 the constituent quark masses are

exactly equal.

6.3.1 Nonzero chemical potential

In this section we turn to the phase structure near the phase transition at nonzero chemical

potential and zero temperature. From Klein, Toublan, and Verbaarschot (2003), Toublan

and Kogut (2003), and Barducci et al. (2003, 2004) it is known that when the isospin

chemical potential is nonzero, it is possible to have two phase transitions at low tempera-

ture and high baryon chemical potential. Here we study a similar case, instead of nonzero

isospin chemical potential, we allow for nonzero magnetic field. Then we will see that

also here the possibility of separate phase transitions for the two quarks arises. We will

take equal chemical potentials for the quarks, but the magnetic field acts effectively like a

nonzero isospin chemical potential due to the difference in charge of the quarks. Instan-

tons cause mixing between the quarks; if the mixing is strong enough, the two separate
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Chapter 6. The combined influence of strong magnetic fields and instantons

phase transitions merge into one. This was extensively investigated by Klein, Toublan,

and Verbaarschot (2003) for the nonzero isospin chemical potential case.

From Ebert et al. (2000), Ebert and Klimenko (2003), and Inagaki, Kimura, and Mu-

rata (2004), where the NJL model in the chiral limit was studied, it is known that Landau

quantization induces a more complex phase structure. Apart from the usual phase of bro-

ken chiral symmetry with zero nuclear density, there is also the possibility of such a phase

with nonzero nuclear density. Here we perform a more detailed study of this case, which

is a characteristic phenomenon at nonzero chemical potential and sufficiently strong mag-

netic fields, (cf. Eq. (6.11) below).

The c = 0 case

When the determinant interaction is turned off, the up and down quarks are decoupled.

This leads to the possibility of separate phase transitions for the quarks. In Figs. 6.2

and 6.3 we show the constituent quark mass of the up and down quarks respectively as

a function of quark chemical potential and magnetic field. As expected, the two quarks

have decoupled behavior.

Let us first discuss the behavior of the up quark. At low chemical potential we have the

“standard” chiral symmetry breaking NJL ground state with empty Landau levels (LL).

Following the nomenclature of Ebert et al. (2000) and Ebert and Klimenko (2003) where

the c = 1/2 case was studied in the chiral limit, this is called phase B. Note that this phase

always has zero nuclear density. At high chemical potential chiral symmetry is restored,

up to the explicit breaking. In this approximately symmetric phase magnetic oscillations
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Figure 6.1: The dependence of the constituent quark masses Mu and Md on the magnetic field B.
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Figure 6.3: Same as Fig. 6.2, now for the down quark.
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can be seen in the constituent quark masses, which are caused by Landau quantization.

These oscillating phases are denoted by Ai, where i gives the number of filled LL. As

these phases have occupied LL, they have nonzero nuclear density. The nuclear density

of level k is given by (Menezes et al., 2009a)

ρ f ,k(B, µ) = (2 − δk0)θ(µ − s f (k, B))
|q f |BNc

6π2

√

µ2 − s2
f
(k, B). (6.11)

In the chiral limit the constituent quark masses vanish in the Ai phases.

The oscillations are similar to the de Haas-van Alphen effect, which in QED and in

the two-flavor NJL model for c = 1/2 in the chiral limit lead to second order transitions

between the Ai phases (Ebert et al., 2000). However, with our choice of parameters the

transitions are weakly first order. In the chiral limit they become second order, like for

c = 1/2, as can for instance be seen in the nuclear density. For completeness, we mention

that in the color superconducting case of Noronha and Shovkovy (2007) and Fukushima

and Warringa (2008) the oscillations in the gap parameter are seen to be continuous, but

second order transitions can occur when neutrality conditions are imposed.

For B larger than 4.5m2
π/e an interesting intermediate phase arises, where the up-quark

jumps as a function of µ first to a phase with a still rather large constituent mass and then

to phase A1. This intermediate phase is called C0 in the language of Ebert et al. (2000)

and Ebert and Klimenko (2003) and corresponds to a phase of broken chiral symmetry

having nonzero nuclear density and a filled zeroth LL. So the essential difference between

this phase and A0 is the breaking of chiral symmetry. For smaller values of the coupling

constant G0 also the phases Ck with k > 0 (which are similar to C0 but with more oc-

cupied LL) occur. The transitions between the Ck are first order, furthermore, they are

nonperiodic in the sense that the difference between the transitions is B-dependent as

the constituent mass strongly depends on B (Ebert et al., 2000). If we are in this phase

C0 and increase the magnetic field, the constituent quark mass decreases, eventually be-

coming almost zero, this can be interpreted as a crossover to A0. In the chiral limit the

crossover becomes a second order transition. Finally, we would like to note that already at

B = 4m2
π/e the phase C0 exists as a metastable phase (we will discuss this in more detail

later).

The qualitative behavior of the down quark is very similar, as the quarks only differ

in charge, consequently Fig. 6.3 can be directly obtained from Fig. 6.2 by multiplying

B by 2, for ease of comparison we show both figures. If one compares the two figures,

one can immediately see that there are large regions where the constituent quark masses

are considerably different. This is equivalent to a large nonzero 〈ψ̄λ3ψ〉 condensate, i.e.,

spontaneous isospin breaking. This will influence the behavior of the mesons accordingly,

for example the masses.

Eventually, if one keeps increasing the magnetic field, the phase transitions of the

quarks will take place at (almost) the same chemical potential and there will be no spon-

taneous isospin breaking.

83



6.3. Results

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 360  365  370  375  380  385  390

M
 (

M
e
V

)

µ (MeV)

c = 0

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 360  365  370  375  380  385  390

M
 (

M
e
V

)

µ (MeV)

c = 0

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 360  365  370  375  380  385  390

M
 (

M
e
V

)

µ (MeV)

c = 0.03

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 360  365  370  375  380  385  390

M
 (

M
e
V

)

µ (MeV)

c = 0.03

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 360  365  370  375  380  385  390

M
 (

M
e
V

)

µ (MeV)

c = 0.1

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 360  365  370  375  380  385  390

M
 (

M
e
V

)

µ (MeV)

c = 0.1

Figure 6.4: The dependence of the constituent quark masses on the quark chemical potential for

B = 5m2
π/e and various c values. Solid lines denote the up quarks, the dashed lines the down quark.

The c , 0 case

In this section the consequences of the instanton interaction is studied, i.e., the parameter

c is varied. Increasing c will cause mixing between the constituent quarks, which tends

to bring the constituent quark masses together. Around the phase transition there is a

competition between the effect of the magnetic field and the instanton interaction.

The competition is illustrated in Fig. 6.4, where the constituent quark masses are

plotted as a function of the quark chemical potential for three characteristic values of c,

c = 0, 0.03, and 0.1 with B = 5m2
π/e. The qualitative behavior for different values of the

magnetic field is similar. One can see that when c , 0, the phase transitions are indeed

coupled. Furthermore, one observes that the two phase transitions merge into one when c

is increased and that the phase C0 disappears. Qualitatively the behavior is similar to the

case of nonzero isospin chemical potential studied by Klein, Toublan, and Verbaarschot

(2003), but in that case the phase C0 does not exist.

When the coupling constant G0 is lowered, it is possible to have Ck phases at c = 1/2,

as in Ebert et al. (2000). Compared to the chiral limit studied there, the region of the

phase diagram with Ck phases increases for m , 0.

More insight into the phase structure and phase transitions is obtained by looking at

the behavior of local minima of the effective potential. Near the phase transition at these

(strong) magnetic fields, metastable phases arise. These phases differ in the number of

filled LL. Let us take as an example the c = 1/2 case, which is the easiest one to discuss,

as the effective potential is then only a function of Mu = Md = M. In Fig. 6.5 we show

the effective potential as a function of M with µ = 378 MeV and B = 5m2
π/e. At these

values four minima can be seen, the global minimum is the phase in which the chiral

symmetry breaking is largest, i.e. minimum 4. When µ is increased, minimum 1 will take

over, which is A1 for the up quark and A2 for the down quark. The other two local minima

never become the global one for our choice of G0, but as they are almost degenerate with

the other minima (also for other values of c), they are nevertheless important. These

local minima correspond to Ck phases and can become the global minimum when G0 is
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Chapter 6. The combined influence of strong magnetic fields and instantons

lowered.

The various local minima have very different constituent quark masses, hence the

amount of chiral symmetry breaking is also very different. Usually differences in the

amount of symmetry breaking lead to distinct energies. However, the local minima start

to appear near the “usual” phase transition, when the energy of the phase where chiral

symmetry is broken is almost equal to the energy of the phase that exhibits chiral sym-

metry, therefore it may not be surprising that also the other phases will not much differ in

energy despite their differences in symmetry breaking.

Similar results hold for c , 1/2; also then metastable phases exist with different

fillings of LL. In Figs. 6.6 and 6.7 we show contourplots of the effective potential at

c = 0.03 and c = 0.1 respectively. At small c (c . 0.08) the metastable phases differ in

the values of Mu and Md considerably, they again represent rather large broken isospin.

In these cases some of the Ck phases can become the global minimum, as we have seen

before. The number of such states depends on the choice of the other parameters. At

larger c, the situation start to resemble the case c = 1
2
, i.e., the minima move to the

diagonal and finally the effective potential depicted in Fig. 6.5 is obtained.

Whenever the system is going through the phase transition, it could be trapped in one

of those metastable phases for some time and consequences from the changing meson

masses can arise, for example, enhancing or suppressing certain decays.
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Figure 6.6: The effective potential as function of the constituent quark masses at B = 5m2
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µ = 378 MeV and c = 0.1.
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6.3.2 Nonzero temperature

In this section the temperature dependence of the ground state is investigated at zero

chemical potential, but with a magnetic field. As the instanton interaction does not influ-

ence the temperature dependence much, we only consider c = 1/2 for simplicity. Fraga

and Mizher (2008) found in the linear sigma model coupled to quarks, that the usual

crossover becomes a first order transition at very high magnetic fields. However, we find

that this is not the case in the NJL model.

In Fraga and Mizher (2008) only the lowest Landau level was taken into account.

Here more Landau levels are included, so the effect of the higher Landau levels can be

investigated in the NJL model. Since the levels with large k are exponentially suppressed,

the summation can be truncated in Eq. (6.7), we will denote the largest k with ktrunc. The

value of ktrunc depends on the temperature, constituent quark mass, chemical potential and

magnetic field considered. If M and T are increased or if B is decreased, ktrunc has to be

increased.

In Fig. 6.8 we show the temperature dependence of the constituent quark mass at

B = 15m2
π/e for four different values of ktrunc. The 13 levels case is chosen such that the

error is less than 1 percent at M = 450 MeV,T = 450 MeV. From the figure it can be

inferred that taking more Landau levels into account, makes the crossover sharper. Also,

there is a significant difference between including the zeroth and first Landau level. It is

clear that including more Landau levels, influences the details of the transition. However,

the qualitative aspects of the phase transition are not changed.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 50  100  150  200  250  300  350

M
 (

M
e
V

)

T (MeV)

13 LL
0 LL
1 LL
2 LL

Figure 6.8: The temperature dependence of the constituent quark mass for strong magnetic field

(B = 15m2
π/e) and various ktrunc values.

87



6.3. Results

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 50  100  150  200  250  300  350

M
 (

M
e
V

)

T (MeV)

5 mπ
2
 / e, 23 LL

10 mπ
2
 / e, 16 LL

15 mπ
2
 / e, 13 LL

20 mπ
2
 / e, 11 LL

Figure 6.9: The temperature dependence of the constituent quark mass for various strong magnetic

fields. We also indicate ktrunc.

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 50  100  150  200  250  300  350

M
 (

M
e
V

)

T (MeV)

5 mπ
2
 / e, 23 LL

10 mπ
2
 / e, 16 LL

15 mπ
2
 / e, 13 LL

Figure 6.10: Same as Fig. 6.9, now in the chiral limit.

88



Chapter 6. The combined influence of strong magnetic fields and instantons

In Fig. 6.9 the temperature dependence of the constituent quark mass for different

values of the external magnetic field is shown. The phase transition remains a crossover,

in contrast to the results in the linear sigma model coupled to quarks. This difference

is important, as a first order phase transition allows for meta-stable states, whereas a

crossover does not. The situation is similar to the one discussed in the previous chapter,

where the CP-restoring phase transition at θ = π and B = 0 was studied. In that chapter

it was found that the way quarks are incorporated at zero temperature makes a difference

between the models, which is likely also the reason for the discrepancy found here.

In Fig. 6.10 the results in the chiral limit are shown, where the transition remains a

second order phase transition, like it is the case at zero magnetic field and confirms the

results of Inagaki, Kimura, and Murata (2004) who calculated the phase diagram in a

strong magnetic field in the chiral limit using the Fock-Schwinger proper time method.

Note that the critical temperature increases slightly with increasing magnetic field.

6.4 Conclusions

The effect of a strong magnetic field on quark matter has been investigated in the NJL

model in two regimes, zero temperature and finite chemical potential and vice versa. The

first regime is of relevance for (the interior of) magnetars and the second for heavy-ion

collisions.

At very high magnetic fields, when M ≈ 2|q|B ≈ µ, the phase structure shows a variety

of phases and phase transitions due to Landau quantization. In the phase with approxi-

mate chiral symmetry (the Ai-phases), the constituent quark masses show discontinuous

oscillations as a function of B, similar to the de Haas-van Alphen effect. Moreover, as

a function of chemical potential, more first order phase transitions occur, corresponding

to Landau levels filling up successively. Due to the difference in charge, this pattern is

different for the two quark flavors. When there is no mixing in the absence of the instan-

ton interaction, the two patterns are not coupled. This generally leads to rather different

constituent quark masses, or equivalently, spontaneous isospin breaking 〈ψ̄λ3ψ〉 , 0. This

affects the mesons inside the medium, for example their masses. It was found that for a

realistic choice of parameters in the NJL model such a phase of broken chiral and isospin

symmetry arises around B = 4.5m2
π/e, but it is already present as a metastable phase for

lower magnetic fields.

When the instanton interaction is included, a competition occurs between the strength

c of this interaction and the magnetic field. This reduces the region in the phase diagram

with large 〈ψ̄λ3ψ〉. For c sufficiently large it disappears entirely, leaving only one phase

transition. However, around this transition the phase structure is still rather complex

regarding metastable phases, which are characterized by different fillings of Landau levels

and which differ only slightly in energy, but much in the amount of chiral symmetry

breaking. For lower values of c some of these near-degenerate minima can also differ

considerably in the amount of isospin breaking.

Finally the role of temperature was studied at zero chemical potential. In Fraga and

Mizher (2008) it was found in the linear sigma model coupled to quarks that a strong
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magnetic field changes the usual crossover as a function of temperature into a first order

transition. In the NJL model it was found that the crossover remains a crossover. Also it

was found that including higher Landau levels in the calculation of the effective potential

changes the details of the crossover, it becomes sharper, although the qualitative aspects

of the transition are not changed. The difference between the two models is important, as

the first order transition allows for metastable phases, while a crossover does not. Prob-

ably the difference between the models comes from the treatment of the quarks at zero

temperature, as discussed in Chapter 5.
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Chapter 7

Summary

There are strong indications that in heavy-ion collisions a new phase of matter is created,

quark matter, which is a state of matter with deconfined quarks. Besides being created in

heavy-ion collisions, it is also believed to have existed in early universe. Today it might

exist in the interior of very dense neutron stars. In this thesis we have studied how quark

matter is influenced by instantons. These nonperturbative effects are closely related to the

QCD vacuum angle θ. Because of the existence of instantons observables can become θ-

dependent. In Nature θ appears to be very close zero, an additional argument for this was

presented in Chapter 4 of this thesis. In heavy-ion collisions θ may effectively become

nonzero, at least that conclusion is drawn from an effective low-energy theory of the

strong interaction. When θ is different from 0 (mod π), the theory is not invariant under

CP.

As effects of nonzero θ and instantons cannot be seen in perturbation theory and

nonzero θ is also currently impossible to simulate on the lattice, effective theories and

models have to be used. The most obvious one would be chiral perturbation theory, but

unfortunately it is only valid at very low energies and for the ground state, not for the

metastable states with effectively nonzero θ. Therefore, the investigations presented in

this work were done using model calculations, the Nambu–Jona-Lasinio (NJL) model

and the linear sigma model coupled to quarks. ’t Hooft has shown that instantons induce

an extra interaction in effective models, the ’t Hooft determinant interaction. We studied

the effects of this interaction on the phase structure of two-flavor quark matter. We stud-

ied, among others, the role that instantons play on phases of the strong interaction that

spontaneously violate CP invariance.

We started the thesis with a short introduction to QCD, instantons and the conse-

quences of a nonzero θ-angle in Chapter 1. Using chiral perturbation theory and experi-

mental results we presented the arguments that θ < 10−10 in Nature. Furthermore, it was

argued that for a certain range of parameters, metastable phases may become possible.

These phases could be relevant in heavy-ion collisions and maybe for the early universe.

We continued our introduction with Chapter 2, where several facets of the QCD phase

diagram were discussed. We first presented a short discussion about phase transitions
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and a review about the best-known phase diagram of QCD, the µB − T -phase diagram.

Then we introduced the three physical systems where quark matter is thought to play a

role, the early universe, heavy-ion collisions and dense neutron stars. Also we presented

several ways of obtaining theoretical knowledge about the QCD phase diagram. Finally,

we discussed some non-standard phase diagrams, the QCD phase diagram as a function

of the current quark masses, the isospin chemical potential, and θ.

In Chapter 3 the NJL model was introduced, which is a quark model with four-quark

interactions that is a good description of low-energy QCD. We started with some historical

background. Then we discussed the vacuum structure, which induces a large effective

mass of the quarks, usually referred to as the constituent quark mass. Also we introduced

the bound states of the model, which can be interpreted as mesons. Finally some low-

energy relations were derived that can be used to fit the parameters of the model to data.

In Chapter 4 we presented a detailed study of the chiral symmetry breaking aspects

of the phase diagram of the two-flavor NJL model at θ = π. We concentrated on the

effects of instantons and the violation of CP invariance. This chapter is in essence an

extension of Chapter 2. We started the chapter with discussing the full θ-dependence

at zero temperature and chemical potential, and later we investigated the case θ = π

in more detail. The latter case is special, as it allows for the spontaneous breaking of

CP invariance. The occurrence of this spontaneous breaking depends, among others, on

the strength of the determinant interaction. If this strength reaches a critical value, which

depends on the values of the current quark masses, spontaneous breaking of CP invariance

occurs.

When the phase diagram is considered as a function of the up and down current quark

mass at θ = π and a large enough value for the determinant interaction strength, a region

in the diagram exists that spontaneously breaks CP invariance. In the NJL model both a

lower and an upper boundary are found, in contrast to Tytgat (2000), who studied two-

flavor chiral perturbation theory and only found a lower boundary. If the temperature

is increased, the region becomes smaller and eventually disappears. This behavior may

indicate that the suggestions for metastable states with an effective nonzero θ may not

hold in QCD. It remains to be seen if these conclusions persist beyond the mean-field

approximation and for the three flavor case.

Apart from the current quark mass dependence, also the dependence on temperature,

baryon chemical potential and isospin chemical potential were considered. We presented

phase diagrams as a function of either one of these three variables on one axis together

with the strength of the instanton interaction on the other. It was found that when baryon

chemical potential and temperature is increased, the CP violation disappears as a second

order phase transition. This disappearance indicates that the violation of CP invariance is

inherently a low energy phenomenon.

Also the mesons are affected by a nonzero CP-violating condensate. The mass eigen-

states of the mesons are no longer CP and parity eigenstates. The condensate induces

mixing between the mesons, the pions mix with the a0-mesons and the σ meson mixes

with the η-meson.

In the phase diagram as a function of isospin chemical potential and strength of the de-

terminant interaction at θ = π, a novel phase with a nonzero a±
0
-condensate appears. Fur-
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Chapter 7. Summary

thermore, the usual condition for a charged pion condensate is altered when the strength

of the instanton interaction is larger than its critical value.

As we said previously, the phase that violates CP invariance in the NJL model disap-

pears as a second order transition as a function of temperature. This is in disagreement

with the findings of Mizher and Fraga (2009), who calculated, among others, this transi-

tion in a related model, the linear sigma model coupled to quarks (LSMq). In the latter

model a first order transition is found. In Chapter 5 we discussed the similarities and

differences between the two models. It was shown how one obtains a linear sigma model

when the NJL model is bosonized. The important difference between the two models is

the way quarks are included in the model. In the case of the NJL model, the quarks are

necessarily taken into account at all temperatures, as it is a quark model. However, in the

case of the linear sigma model coupled to quarks, quarks are only taken into account at

nonzero temperatures.

The analysis presented in Chapter 5 shows, using Landau-Ginzburg arguments, that

the quarks at zero temperature introduce a logarithmic term, which is not included in the

LSMq model. A similar logarithmic term is obtained from quarks at high temperatures,

which exactly cancels the zero-temperature term. This cancellation takes place in the NJL

model, but not in the LSMq model. We showed that it is exactly this term that causes the

qualitative differences between the two models.

In Chapter 6 the competition between the instanton interaction and a strong magnetic

field was studied at θ = 0. This study could be relevant for describing non-central heavy-

ion collisions and the interior of neutron stars. Charged particles in strong magnetic fields

are subject to Landau quantization, the effect that the momentum perpendicular to the

magnetic field becomes quantized. This quantization can affect the phase structure of the

matter involved considerably.

Firstly, because the quarks do not have the same charge, they behave differently in

a magnetic field. As a function of baryon chemical potential it becomes possible that

the two quarks have rather different constituent quark masses, a form of spontaneous

isospin violation. Such violation can for instance affect the masses and decay rates of

the mesons. The magnetic field effect is opposed by the instanton interaction, which

favors equal behavior for the quarks: the constituent masses of the quarks and their phase

transitions become coupled. However, when the strength of the instanton interaction is

not too large, it is still possible to have a relatively large difference in constituent mass for

the two quarks. This possibility disappears as the strength of the interaction is increased.

In addition the phase structure includes metastable states for a range of chemical po-

tentials and magnetic fields. These states differ in the number of filled Landau levels

and the amount of chiral symmetry breaking, which will affect the mesons accordingly.

Furthermore, they are almost degenerate with the ground state and can therefore not be

discarded.

Finally, we showed how a strong magnetic field affects the high-temperature phase

transition, relevant for heavy-ion collisions. In the linear sigma model coupled to quarks

it has been found that a strong magnetic field turns the crossover at zero magnetic field

into a (weak) first order transition. In the NJL model we found that the transition remains

a crossover. This different is important, as a first order transition and a crossover have
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very distinct experimental signatures, as in the case of a first order transition latent heat is

absorbed or released, which does not happen in a crossover.

From the investigations reported in this thesis it is clear that instantons can play an im-

portant role in determining low-energy phenomena of the strong interaction and can affect

the properties of quark matter. Hence, more detailed studies beyond the ones presented

here would be valuable. The work we presented was performed using two-flavor effective

models. It would be very interesting to extend our work by including the strange quark.

In the chiral limit at θ = 0, the order of the high-temperature phase transition is then dif-

ferent (Pisarski and Wilczek, 1984). It would be interesting to see whether this also holds

for the CP restoring phase transition. Also, it would be interesting to see what happens

beyond the mean-field approximation and when color superconductivity is included.

Another continuation of this work would be to calculate the equation-of-state and

obtain mass-radius relations for stars obeying these relations, like for example Menezes

et al. (2009a,b). From the mass-radius relation we would then see how the instantons and

magnetic fields affect quark matter in compact stars.
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Appendix A

Random-phase approximation

In this appendix the meson masses are calculated in the random-phase approximation

(RPA), the first part of this appendix is mainly based on Klevansky (1992). First the

case without a CP-violating condensate is considered, then we generalize the analysis by

also including the CP-violating condensate 〈ψ̄iγ5ψ〉. The appendix ends with a discussion

of the relation between the curvature at the minimum of the effective potential and the

masses calculated in the RPA.

We start by discussing the quark-meson interaction. In case of the pions, we have the

following interaction Lagrangian

Lπqq = igπqqψ̄γ5λiπiψ, (A.1)

where ψ is the quark field, λi are the generators of SU(2) and πi is the pion-field. This

interaction can be used to calculate the scattering of two quarks, for example the process

(ud)→ (u′d′), shown in Fig. A.1, has the amplitude

[d̄′iγ5λ1u][ig2
πqq]

1

k2 − m2
π

[ū′iγ5λ1d], (A.2)

From the amputated diagram one thus obtains an effective interaction

(iγ5λ1)
−ig2

πqq

k2 − m2
π

(iγ5λ1). (A.3)

Figure A.1: The scattering of two quarks by the exchange of a pion.
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iγ5iγ5 iγ5 iγ5

Figure A.2: Lowest order contribution to the quark-antiquark polarization in the pseudoscalar chan-

nel.

for the exchange of a π1. In the same way effective interactions can be derived for the

exchange of the other mesons.

Also in the NJL model an effective interaction for the exchange of a meson can be

obtained. The interaction parts of the interaction Lagrangian are responsible for exciting

meson modes, for example, the term (ψ̄iγ5λiψ)2 is responsible for exciting the isovector

pseudoscalar JPC = 0−+ mode which will be identified as the pion. The effective inter-

action resulting from the exchange of a π-meson can be expressed to leading order in Nc

as an infinite sum of terms in the RPA. Only the direct term, shown in Fig. A.2, is taken

into account, which is the dominant term in the 1/Nc-expansion. If we call the exchange

diagram for the πi iUπ, we have

iUπi
(k2) = (iγ5λi)

[

2i(G1 +G2) + 2i(G1 +G2)

(

1

i
Ππi

(k2)

)

2i(G1 +G2)

+ 2i(G1 +G2)

(

1

i
Ππi

(k2)

)

2i(G1 +G2)

(

1

i
Ππi

(k2)

)

2i(G1 +G2) + · · ·
]

(iγ5λi)

= (iγ5λi)

[

2i(G1 +G2)

1 − 2(G1 +G2)Ππi
(k2)

]

(iγ5λi), (A.4)

The exchange diagrams of the other channels have the same structure, only the (iγ5λi)-

terms have to be replaced with the appropriate ones for the different channels. Further-

more, for the η and a0-channels G2 → −G2.

The quark-antiquark polarization Ππi
is given by the diagram of Fig. A.2, which is

equal to the expression

Ππi
= i

∫

d4 p

(2π)4
Tr (iγ5λi) S (p) (iγ5λi) S (p + q), (A.5)

where S (p) is the dressed quark propagator,

S (p) =
p/ + M

p2 − M2
, (A.6)

and M the constituent quark mass, related to the condensate α0 and the bare quark mass

m by M = m + α0. Note that degenerate current quark masses are used.

Comparing the results of Eq. (A.3) and Eq. (A.4) leads to the observation that the

following equation has to be solved to obtain the mass of the pion

1 − 2(G1 +G2)Ππi
(k2) = 0 (A.7)
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Appendix A. Random-phase approximation

The result with G2 = 0 was first derived by Nambu and Jona-Lasinio (1961a,b). The

coupling constant can be related to the residue at the pole of Eq. (A.4) as explained in

Chapter 4. Expanding Eq. (A.4) around its pole at k2 = m2
π we find

iUπi
(k2) ≃ (iγ5)λi

−i
(

∂Ππi
/∂k2

)−1
∣

∣

∣

∣

∣

k2=mπ

k2 − m2
π

(iγ5)λi, (A.8)

from which the value of the coupling constant can be deduced

g2
πqq =

(

∂Ππi
/∂k2

)−1
∣

∣

∣

∣

∣

k2=m2
π

. (A.9)

A.1 Calculation of the quark-antiquark polarizations

As an example we will perform the calculation of the pion masses in some detail. Like

in Chapter 4 it will be assumed that only the α0-condensate is nonzero, which is the case

when the quark masses are degenerate and when there is no CP violation. Performing the

trace in Eq. (A.5) gives

Ππi
(q2) = iNcN f

∫

d4 p

(2π)4
2
[ 1

p2 − M2
+

1

(p + q)2 − M2

− q2

[

p2 − M2
] [

(p + q)2 − M
]

]

, (A.10)

for the quark-antiquark polarization. It will be convenient to introduce the following

integrals

I0(q2) = −4iNc

∫

d4 p

(2π)4

1
[

p2 − M2
] [

(p + q)2 − M2
] ,

I2 = 4iNc

∫

d4 p

(2π)4

1

p2 − M2

=
M − m

4MNc(G1 +G2)
, (A.11)

where in the last step the gap equation has been used. Using these integrals, the polariza-

tion obtains the following form

Ππi
(q2) = N f

[

I2 +
1

2
q2I0(q2)

]

. (A.12)

Inserting this expression in Eq. (A.7) and solving for the mass gives

m2
π =

m

M

1

2(G1 +G2)I0

. (A.13)
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A.2. The masses of the mesons with a CP-violating condensate

The polarization in the η channel is equal to the one of the pions. For the σ and a0

channels the polarization yields

Πσ = Πa0
= N f

[

I2 +
1

2

(

q2 + 4M2
)

I0(q2)

]

. (A.14)

Using these polarizations, expressions for the meson masses can be derived.

A.2 The masses of the mesons with a CP-violating con-

densate

At θ = π the expressions for the masses change. Apart from the usual α0-condensate, also

β0 can become nonzero. A nonzero β0-condensate causes the parity partners to mix with

each other, i.e., the pions mix with the a0’s and the η with σ. The details of the mixing

will be discussed in this section.

The mixing occurs because when β0 , 0, the model is not invariant under CP anymore,

consequently there is no reason for the mass eigenstates of the mesons to conserve CP

invariance.

When the condensate β0 becomes nonzero, the dressed quark propagator changes ac-

cording to

S (p) =
p/ + M − M5γ5

p2 − M2 − M2
5

, (A.15)

where M5 = β0. This change of the quark propagator complicates the summation of the

bubble diagrams, because it allows a coupling of the iγ5
i j

iγ5
kl

-type interaction to the δi jδkl-

type interaction, using the structure given in Fig. A.3. We will concentrate on the mixing

between σ and η for notational convenience. The calculation of the mixing between the

pions and the a0 proceeds similarly with the vertices iγ5
i j

and δi j replaced with γ5λi and

λi.

The calculation of the massed of the mixed particles and their mixing angles is anal-

ogous to the calculation of the mixing between η and η′ in the SU(3)-form of the NJL

model. The latter mixing is discussed in detail by Klevansky (1992), which we will fol-

low in order to describe the mixing between the CP and parity eigenstates of the mesons.

iγ5iγ5 11 11

Figure A.3: A δi jδkl-interaction coupled to a iγ5
i j

iγ5
kl

-interaction, this interaction violates CP invari-

ance and is only possible when M5 , 0.
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Appendix A. Random-phase approximation

= +

+iγ5iγ5iγ5 iγ5 iγ5 iγ5

iγ5iγ5 +iγ5 iγ5 iγ5 iγ5iγ5 iγ5

iγ5 iγ5iγ5 iγ5 11 11 + · · ·

Figure A.4: Effective η − η interaction in the random-phase approximation, with a CP-violating

condensate. Only the direct term is considered.

A.2.1 The mass of σ and η

The effective interaction in the η-channel becomes the sum in Fig. A.4. Of course, a

similar summation holds for the σ-particle. But Fig. A.3 also allows for an effective

interaction in form of Fig. A.5. The existence of the β0 condensate allows an interaction

between the σ channel and the η channel, inducing mixing between particles.

In order to perform the summation, it is convenient to introduce the following notation

c11(q2) = NcN f

∫

d4 p

(2π)4
Tr S (p)S (p + q)(G1 +G2 cos π)

= 4NcN f

[

I2 +
1

2

(

q2 − 4M2
5

)

I0(q2)

]

(G1 +G2 cos π),

c15(q2) = NcN f

∫

d4 p

(2π)4
Tr S (p)iγ5S (p + q)(G1 −G2 cos π)

= −8NcN f I0(q2)(G1 −G2 cos π),

c51(q2) = NcN f

∫

d4 p

(2π)4
Tr iγ5S (p)S (p + q)(G1 +G2 cos π)

= −8NcN f I0(q2)(G1 +G2 cos π),

iγ5 11

Figure A.5: Effective η − σ interaction allowed due to the existence of a β0-condensate.
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A.2. The masses of the mesons with a CP-violating condensate

c55(q2) = NcN f

∫

d4 p

(2π)4
Tr iγ5S (p)iγ5S (p + q)(G1 −G2 cos π)

= 4NcN f

[

I2 +
1

2

(

q2 − 4M2
)

I0(q2)

]

(G1 −G2 cos π), (A.16)

where have used generalized versions of the integrals I0(q2) and I2,

I0(q2) = −4iNc

∫

d4 p

(2π)4

1
[

p2 − M2 − M2
5

] [

(p + q)2 − M2 − M2
5

] ,

I2 = 4iNc

∫

d4 p

(2π)4

1

p2 − M2 − M2
5

. (A.17)

From now on, we will not write the q2 dependence of the c’s explicitly. Also, to avoid

confusion, we keep all the factors cos π explicit. The sum of diagrams expressed in the

c’s yields

U55(q2) = (iγ5)2(G1 +G2 cos π)
[

1 + 2c55 + 2c552c55 + 2c512c15 + 2c552c552c55

+ 2c552c512c15 + 2c512c112c15 + 2c512c152c55 + · · ·
]

iγ5. (A.18)

Clearly, a ci j is always followed by c jk, with i, j, k ∈ {1, 5}. If we now introduce the

matrices

Γ11 =

(

1 0

0 0

)

,

Γ15 =

(

0 1

0 0

)

,

Γ51 =

(

0 0

1 0

)

,

Γ55 =

(

0 0

0 1

)

, (A.19)

which satisfy

Γi jΓkl = Γil when j = k,

Γi jΓkl = 0 when j , k, (A.20)

and if we furthermore introduce

Σ = Γ11c11 + Γ15c15 + Γ51c51 + Γ55c55, (A.21)

then the sum can be written as

U55(q2) = (iγ5)2(G1 −G2 cos π)Tr [Γ55 + Γ552Σ + Γ552Σ2Σ

+ Γ552Σ2Σ2Σ + · · · ](iγ5), (A.22)
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Appendix A. Random-phase approximation

which equals

U55(q2) = (iγ5)2(G1 +G2 cos π)Tr















Γ55















∞
∑

n=0

[2Σ]n





























(iγ5)

= (iγ5)2(G1 +G2 cos π)Tr
[

Γ55 (11 − 2Σ)−1
]

(iγ5). (A.23)

If we now calculate the inverse of Σ we end up with

U55(q2) = (iγ5)(G1 +G2 cos π)
2 − 4c11

1 − 2c11 − 4c51c15 − 2c55 + 4c11c55

(iγ5). (A.24)

In the same way we can calculate the effective interactions U11(q2), U15(q2), and U51(q2).

They are given by

U11(q2) = 2(G1 −G2 cos π)Tr
[

Γ11 (11 − 2Σ)−1
]

= (G1 −G2 cos π)
2 − 4c11

1 − 2c11 − 4c51c15 − 2c55 + 4c11c55

,

U15(q2) = 2(G1 −G2 cos π)Tr
[

Γ51 (11 − 2Σ)−1
]

(iγ5)

= (G1 +G2 cos π)
4c15

1 − 2c11 − 4c51c15 − 2c55 + 4c11c55

,

U51(q2) = (iγ5)2(G1 +G2 cos π)Tr
[

Γ51 (11 − 2Σ)−1
]

= (G1 +G2 cos π)
4c51

1 − 2c11 − 4c51c15 − 2c55 + 4c11c55

. (A.25)

To again simplify notation we introduce an effective interaction U(q2) in the following

way

U(q2) =

(

U11(q2) U15(q2)

U51(q2) U55(q2)

)

=
1

D(q2)

(

A(q2)11 ⊗ 11 B(q2)11 ⊗ (iγ5),

B(q2)(iγ5) ⊗ 11 C(q2)(iγ5) ⊗ (iγ5)

)

, (A.26)

where

A(q2) = 2(G1 +G2 cos π)(1 − 2c55),

B(q2) = 2(G1 +G2 cos π)2c15

= 2(G1 −G2 cos π)2c51,

C(q2) = 2(G1 −G2 cos π)(1 − 2c11),

D(q2) = (1 − 2c11)(1 − 2c55) − 4c15c51. (A.27)

The effective interaction has two poles, each can be associated with the meson masses.

When only the chiral condensate is nonzero, the mass eigenstates are also CP eigenstates
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A.2. The masses of the mesons with a CP-violating condensate

and parity eigenstates in the case of the charged mesons, but now that changes. As we

have seen, the parity partners mix and we can define mass-eigenstates, denoted with a

tilde, as follows

|σ̃〉 = cos θη |σ〉 + sin θη |η〉 ,
|η̃〉 = cos θη |η〉 − sin θη |σ〉 ,
|ã0〉 = cos θπ |a0〉 + sin θπ |π〉 ,
|π̃〉 = cos θπ |π〉 − sin θπ |a0〉 , (A.28)

where θη and θπ are the mixing angles. The states on the r.h.s. are the usual states of

definite parity.

We calculate the masses as follows. First we expand U(q2) around the lowest pole.

When the CP-violating condensate in zero, this would give the η mass, so we will denote

these particles with η̃. The higher mass pole corresponds to the σ meson when we only

have the chiral condensate, so we will call these particles the σ̃. Explicitly,

U(q2) ≃ C

(d/dq2) log D

∣

∣

∣

∣

∣

q2→m2
η̃

1

q2 − m2
η̃

[

(iγ5) ⊗ (iγ5) + aη̃(iγ5) ⊗ 11 + aη̃11 ⊗ (iγ5) +
A

C
11 ⊗ 11

]

, (A.29)

where

aη̃(q
2) =

U15(q2)

U55(q2)

∣

∣

∣

∣

∣

q2→m2
η̃

=
B(q2)

C(q2)

∣

∣

∣

∣

∣

q2→m2
η̃

. (A.30)

Furthermore, A(q2)C(q2) − B2(q2) = 4(G2
1
−G2

2
cos2 π)D(q2), which means that at a root

of D(q2) the relation A(q2)C(q2) = B2(q2) holds. Therefore,

U11(q2)

U55(q2)
=

A(q2)

C(q2)
=

B2(q2)

C2(q2)
= a2

η̃(q
2). (A.31)

which makes it possible to factor U(q2) in the following way

U(q2) =
g2
η̃qq

q2 − m2
η̃

(

cos θη(iγ5) + sin θη11
)

⊗
(

cos θη(iγ5) + sin θη11
)

, (A.32)

where

g2
η̃qq

1 + a2
η̃

=
U55

(d/dq2) log D

∣

∣

∣

∣

∣

q2→m2
η̃

,

tan θη = aη̃. (A.33)

Similar relations hold for the pions and a0 mesons. The results obtained in this appendix

are used in the calculation of the c dependence of the mesons masses and their mixing

angles, which are shown in Fig. 4.13 and 4.14 of Chapter 4.
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Appendix A. Random-phase approximation

A.3 The curvature of the effective potential

The masses calculated in the random-phase approximation are related, but in general not

equal to the curvature of the effective potential at the minimum. In this section we make

this relation explicit. First of all, in this section we will for ease of notation only dis-

cuss the CP-conserving case at zero temperature and chemical potentials, with degenerate

current quark masses. This analysis can be extended straightforwardly.

The main problem when calculating the curvature of the effective potential is the

log det K-term in Eq. (4.8), let us therefore focus on this term

∂2

∂x2
i

log det K, (A.34)

where

K = λ0 ⊗ (iγ0 p0 + γi pi) −M ,

M = mλ0 ⊗ 11d + αaλa ⊗ 11d + βλa ⊗ iγ5, (A.35)

and xi = {α0, α1, α2, α3, β0, β1, β2, β3}. We can now proceed with calculating the curvature

∂2

∂x2
i

log det K =
∂

∂xi

1

det K

∂ det K

∂xi

= − 1

(det K)2

(

∂ det K

∂xi

)2

+
1

det K

∂2 det K

∂x2
i

= Tr













K−1 ∂
2K

∂x2
i













− Tr















(

K−1 ∂K

∂xi

)2














= −Tr















(

K−1 ∂K

∂xi

)2














, (A.36)

as K is linear in xi. We are interested in the curvature at the minimum, assuming that then

only α0 , 0 the matrices K and K−1 reduce to

Kmin = λ0 ⊗
[

(iγ0 p0 + γi pi) − (m + α0)
]

,

K−1
min = −

λ0 ⊗
[

(iγ0 p0 + γi pi) − (m + α0)
]

p2
0
+ p2 + (m + α0)2

. (A.37)

Using all these expressions, we obtain the following results for the curvatures

∂2

∂α2
a

log det K

∣

∣

∣

∣

∣

∣

min

= −
8
[

(α2
0
+ m)2 − p2

0
− p2

]

(α0 + m)2 + p2
0
+ p2

,

∂2

∂β2
a

log det K

∣

∣

∣

∣

∣

∣

min

=
8

(α0 + m)2 + p2
0
+ p2

.
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A.3. The curvature of the effective potential

Integrating over p0 (as we work at T = 0) yields

∫

dp0

2π

∂2

∂α2
a

log det K =
4p2

√

(α0 + m)2 + p2
,

∫

dp0

2π

∂2

∂β2
a

log det K =
4

√

(α0 + m)2 + p2
. (A.38)

Putting everything together we obtain the following final results for the curvature of the

effective potential at the minimum

∂2V
∂α0

=
1

G1 +G2

− 4Nc

∫

d3 p

(2π)3

p2

√

(α0 + m)2 + p2
= I0m2

σ,

∂2V
∂αi

=
1

G1 −G2

− 4Nc

∫

d3 p

(2π)3

p2

√

(α0 + m)2 + p2
= I0m2

a0
,

∂2V
∂β0

=
1

G1 −G2

− 4Nc

∫

d3 p

(2π)3

1
√

(α0 + m)2 + p2
= I0m2

η,

∂2V
∂βi

=
1

G1 +G2

− 4Nc

∫

d3 p

(2π)3

1
√

(α0 + m)2 + p2
= I0m2

π. (A.39)

To conclude, the curvature of the effective potential with respect to the different fields

gives up to a factor I0 the masses of the corresponding mesons.
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Appendix B

The magnetic field dependence of

the effective potential

In this appendix the magnetic field dependent effective potential in the mean-field ap-

proximation is derived using the method developed by Ritus (1972, 1978). This method

of implementing the magnetic field has been applied to the magnetic catalysis of chiral

symmetry by Leung, Ng, and Ackley (1996), Lee, Leung, and Ng (1997), Ferrer and de la

Incera (1998, 2000), Elizalde, Ferrer, and de la Incera (2003) and Ayala et al. (2006).

Furthermore, Ferrer, de la Incera, and Manuel (2005, 2006) have used this method in

order to describe the effects of strong magnetic fields on color superconductivity. The

effective potential derived in this way is equal to the one of Ebert et al. (2000), Ebert

and Klimenko (2003), and Klimenko and Zhukovsky (2008) using the Fock-Schwinger

proper time method. The present discussion is based on Leung, Ng, and Ackley (1996)

and Ferrer, de la Incera, and Manuel (2006).

When a constant magnetic field is present, the asymptotic states of the quarks are

given by (see e.g. Ritus, 1972, 1978; Leung, Ng, and Ackley, 1996; Ferrer and de la

Incera, 1998)

ψp(x) = Epσ(x)ωσχ, (B.1)

which are eigenvectors of the operator (iγµ∂µ + q fλ f Bγ2x1)2 with eigenvalues −p2. The

ωσχ are bispinors which are eigenvectors of the spin operator iγ1γ2 and γ5 with eigenval-

ues σ and χ. Note that we are working in the chiral representation. The eigenfunctions

Epσ(x) equal

Epσ(x) = N(k)eip0 x0+p2 x2 p3 x3

Dk(ρ) (B.2)

with Dk(ρ) the parabolic cylinder functions with argument ρ =
√

2|q f B|x1 − p2/q f B. The

integer k equals

k = k(n, σ) ≡ n +
q f Bσ

2|q f B| −
1

2
. (B.3)
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Finally N(k) = (4π|q f B|)1/4/
√

k! denotes a normalization factor. The functions Dk(ρ)

satisfy the following orthogonality property

∫ ∞

−∞
dρDk′ (ρ)Dk(ρ) =

√
2πk!δkk′ . (B.4)

As discussed by Ritus (1972, 1978), these eigenfunctions Epσ(x) can be used for the trans-

formation to momentum space. It will be convenient to introduce the following matrices

Ep(x) =
∑

σ

Epσ(x)∆(σ), (B.5)

with ∆(σ) = diag(δσ1, δσ−1, δσ1, δσ−1) the spin projector. The matrices Ep(x) satisfy the

following completeness relation

∞
∑

k=0

∫

dp0dp2dp3

(2π)4
Ep(x)Ēp(y) = δ(4)(x − y), (B.6)

and are orthogonal

∫

d4xĒp′ (x)Ep(x) = (2π)4δnn′δ(p0 − p′0)δ(p2 − p′2)δ(p3 − p′3). (B.7)

These orthogonal matrices Ep(x) are the transformation matrices to momentum space

when an external constant magnetic field is present, similar to the usual eip·x at zero field,

i.e. (Ferrer, de la Incera, and Manuel, 2006)

ψ(x) =

∞
∑

k=0

∫

dp0dp2dp3

(2π)4
Ep(x)ψ(p). (B.8)

Furthermore, the Ep(x) obey the following important property

(−iγµ∂µ − q fλ f Bγ2x1)Ep(x) = Ep(x)γµ p̄µ (B.9)

with p̄µ = (p0, 0,−sgn(q f B)
√

2|q f B|n, p3).

Using these Ep(x) and their properties cited above, one can show, using a similar

analysis as in Sect. 4.3, that the effective potential becomes equal to

V = (M0 − m)2

4G0

+
M2

3

4(1 − 2c)G0

+

d
∑

f=u

log Det
(

iγµ∂µ − q f Bγ2x1 − M f − µγ0

)

=
(M0 − m)2

4G0

+
M2

3

4(1 − 2c)G0

− Nc

2π

∑

σ,n, f

|q f |B
∫

dp3

2π

{

Ep, f (B)

+ T ln
[

1 + e−[Ep, f (B)+µ]/T
]

+ T ln
[

1 + e−[Ep, f (B)−µ]/T
]

}

, (B.10)

106



Appendix B. The magnetic field dependence of the effective potential

where Ep, f (B) =
√

p2
3
+ (2n + 1 − σ)|q f |B + M2

f
and Det denotes a functional determi-

nant. This expression for the effective potential has been obtained using different meth-

ods by Ebert et al. (2000), Ebert and Klimenko (2003), Klimenko and Zhukovsky (2008),

Menezes et al. (2009a,b).

Following the analysis of Menezes et al. (2009a), Eq. (B.10) can be split in three

pieces, a part that is independent of external parameters, a part that only depends on

the magnetic field and a part that depends on the magnetic field, chemical potential and

temperature. First we split Eq. (B.10) according to

V = (M0 − m)2

4G0

+
M2

3

4(1 − 2c)G0

+VT=0
q (B) +V2(B, µ,T ), (B.11)

where

VT=0
q = −Nc

2π

∑

σ,n, f

|q f |B
∫

dp3

2π
Ep, f (B),

V2(B, µ,T ) = −Nc

2π

∑

σ,n, f

|q f |B
∫

dp3

2π

{

T ln
[

1 + e−[Ep, f (B)+µ]/T
]

+ T ln
[

1 + e−[Ep, f (B)−µ]/T
] }

, (B.12)

and start with evaluatingVT=0
q . The summation over n and σ can be rearranged as

VT=0
q = −Nc

π

d
∑

f=u

∞
∑

k=0

|q f |B
∫

dp3

2π

[

Ep,k(B) −
Ep,0(B)

2

]

. (B.13)

where Ep,k(B) =
√

p2
3
+ M2

f
+ 2k|q f |B and k denotes the Landau levels.

The integrals are now performed using dimensional regularisation

∫

dd p

(2π)d

1
(

p2 + M2
)n =

4π

d/2

Γ(n − d
2
)

Γ(n)

(

1

M2

)n− d
2

, (B.14)

yielding, with d = 1 − ǫ and x f = M2
f
/(2|q f |B)

VT=0
q = −2Nc

π

d
∑

f=u

(

|q f |B
)2 1

(4π)
1
2
− ǫ

2

Γ(−1 + ǫ
2
)

Γ( 1
2
)















∞
∑

k=0

(

1

x + k

)−1+ ǫ
2

− 1

2

(

1

x

)−1+ ǫ
2















. (B.15)

Using the definition of the Hurwitz zeta function we obtain

VT=0
q =

Nc

2π2

d
∑

f=u

(

|q f |B
)2

(4π)
ǫ
2 Γ

(

−1 +
ǫ

2

)

[

ζ

(

−1 +
ǫ

2
, x

)

− 1

2
x−1+ ǫ

2

]

. (B.16)
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Expanding around ǫ = 0 and neglecting x f -independent terms (including a UV-divergent

one) yields

VT=0
q =

Nc

2π2

d
∑

f=u

(

|q f |B
)2















x2

ǫ
+

x2
f

2
(1 − γE) −

x f

2
ln x f − ζ′(−1, x)















, (B.17)

which is still UV-divergent. This divergence can be removed by adding and subtracting

the 1-loop contribution when no magnetic field is present,

VT=0
q (B = 0) = −2Nc

d
∑

f=u

∫

d3 p

(2π)3

√

p2 + M f . (B.18)

The subtracted term is calculated using dimensional regularization, after we change vari-

ables according to p2 → p2/(2|q f |B) and M2
f
→ x f = M2

f
/(2|q f |B) we obtain

−VT=0
q (B = 0) = − Nc

2π2

d
∑

f=u

(|q f |B)2















x2
f

ǫ
+

x2
f

2
(1 − γE) −

x2
f

2
ln x f +

x2
f

4















. (B.19)

The added term is calculated using the conventional three-momentum UV cut-off used in

this thesis. Rearranging terms gives

VT=0
q = −2Nc

d
∑

f=u

∫

d3 p

(2π)3

√

p2 + M2
f
+V1(B), (B.20)

where

V1(B) = − Nc

2π2

d
∑

f=u

(|q f |B)2















ζ′(−1, x f ) −
1

2
(x2

f − x f ) ln x f +
x2

f

4















. (B.21)

Putting all terms together gives the following final expression for the effective potential

V = V0 +V1(B) +V2(B, µ,T ), (B.22)

with

V0 =
(M0 − m)2

4G0

+
M2

3

4(1 − 2c)G0

− 2Nc

d
∑

f=u

∫

d3 p

(2π)3

√

p2 + M2
f
. (B.23)

The termV0 is divergent and needs to be regularized. Here a conventional three-momentum

UV cut-off is used, yielding the expression

V0 =
(M0 − m)2

4G0

+
M2

3

4(1 − 2c)G0

− Nc

8π2

d
∑

f=u

|M f |
(

M3
f ln

















Λ

M f

+

√

1 +
Λ2

M2
f

















− Λ
(

M2
f + 2Λ2

)

√

1 +
Λ2

M2
f

)

. (B.24)
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As discussed previously, the summation over σ and n inV2(B, µ,T ) can be rewritten as

V2(B, µ,T ) = −Nc

2π

∑

k, f

(2 − δk0)|q f |B
∫

dp3

2π

{

T ln
[

1 + e−[Ep,k(T )+µ]/T
]

+ T ln
[

1 + e−[Ep,k(T )−µ]/T
] }

, (B.25)

The effective potential is evaluated further in Chapter 6.
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Samenvatting

Uit het dagelijks leven weten we dat materialen in verschillende fases kunnen voorkomen.

Water komt bijvoorbeeld voor als vloeibaar water, waterdamp en ijs. Behalve deze beken-

de drie zijn er nog meer fases mogelijk; zo zijn er minstens 15 verschillende soorten ijs,

allemaal met een andere kristalstructuur. Externe parameters, zoals druk en temperatuur,

bepalen de toestand waarin het water zich bevindt. Bij andere materialen kunnen ook

andere parameters een rol spelen, zoals bijvoorbeeld de sterkte van een magneetveld bij

een magnetisch materiaal.

In dit proefschrift, getiteld “Effecten van instantoninteracties op de fases van quark-

materie”, wordt materie onderzocht bij extreme dichtheden, ongeveer een triljoen (1 met

18 nullen) kilogram per kubieke meter, en extreme temperaturen, rond de twee biljoen (2

met 12 nullen) graden Celsius. Deze extreme omstandigheden komen (of kwamen) voor

in de oerknal, hoog-energetische botsingen van zware ionen en in de kern van neutronen-

sterren. Om te begrijpen wat er gebeurt met materie in deze gevallen zullen we eerst in de

volgende paragraaf kort bespreken hoe men tegenwoordig denkt dat materie opgebouwd

is.

Bouwstenen van de natuur

Alle materie rondom ons heen is opgebouwd uit atomen, die weer bestaan uit positief ge-

laden atoomkernen en negatief geladen elektronen. Een elektron is een elementair deeltje.

Dit betekent dat het niet meer opgedeeld kan worden. Atoomkernen zijn wel opgebouwd

uit andere deeltjes, namelijk protonen en neutronen. Protonen zijn positief geladen, neu-

tronen hebben geen lading. Protonen en neutronen zijn geen elementaire deeltjes, zij

bestaan weer uit quarks. In totaal zijn er zes “smaken” quarks, maar in de materie om ons

heen komen maar twee smaken voor: up en down. Het proton bestaat uit twee up-quarks

en een down-quark, bij het neutron is het omgekeerd. Een up-quark heeft een lading van

+2/3e en het down-quark heeft een lading van −1/3e, waarbij e de lading is van het elek-

tron. Voor zover bekend hebben quarks geen interne structuur, het zijn dus elementaire

deeltjes. Onder normale omstandigheden komen quarks in de natuur niet vrij voor. Ze

kunnen alleen voorkomen als gebonden toestanden, zoals in protonen en neutronen.

Behalve deze “gewone” materie, bestaat er ook materie die je in het dagelijkse leven

nooit tegenkomt. Materie bestaande uit de andere smaken quarks is een voorbeeld, maar
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er bestaan nog meer soorten elementaire deeltjes. In de twintigste eeuw is er een model

ontwikkeld dat al deze deeltjes en hun onderlinge krachten beschrijft; het Standaard Mo-

del. Dit model beschrijft drie van de vier fundamentele krachten: de zwakke kernkracht,

de sterke kernkracht en de elektromagnetische kracht. Hoe ook de zwaartekracht opge-

nomen kan worden is nog steeds onbekend. Dit proefschrift beperkt zich tot de sterke

kernkracht, de kracht die de quarks in protonen en neutronen bij elkaar houdt.

Maar de natuur zit nog complexer in elkaar. Er bestaan namelijk ook antideeltjes.

Dit zijn deeltjes met dezelfde massa als hun corresponderende deeltje, maar met een te-

gengestelde lading. Het antideeltje van het elektron is bijvoorbeeld het positief geladen

positron. Het antideeltje van het up-quark is het anti-up-quark enzovoorts. In de na-

tuur komen ook gebonden toestanden van een quark met een antiquark voor, zogenaamde

mesonen. De gebonden toestanden van drie quarks, zoals protonen en neutronen, heten

baryonen.

De theorie die de sterke kernkracht beschrijft is de quantumchromodynamica (QCD).

De theorie bevat twee typen deeltjes: quarks en gluonen. De quarks zijn hierboven al

besproken, de gluonen zijn de krachtoverbrengende deeltjes van de theorie. Op hoge

energieën kunnen allerlei verschijnselen binnen QCD beschreven worden door middel

van storingstheorie, waarbij grootheden worden geëxpandeerd in de koppelingsconstante1

van de theorie. Om technische redenen werkt bij (relatief) lage energieën deze methode

niet meer. Daarom worden in dit proefschrift effectieve theorieën en modellen voor QCD

gebruikt.

Symmetrieën

Als alle deeltjes in antideeltjes zouden worden omgezet en vice versa, zouden de ster-

ke kernkracht en de elektromagnetische kracht daar niets van merken. De hypothetische

transformatie van alle deeltjes in hun corresponderende antideeltjes wordt ladingsconju-

gatie (afgekort C) genoemd. Daarom wordt gezegd dat de sterke kernkracht en de elek-

tromagnetische kracht invariant of symmetrisch zijn onder C. De zwakke kernkracht is

niet invariant onder C en gedraagt dus anders in de “normale” wereld dan in de getrans-

formeerde wereld.

Afgezien van de hierboven besproken ladingsconjugatie zijn er nog andere transfor-

maties belangrijk voor elementaire deeltjes, zoals bijvoorbeeld de pariteitstransformatie

(afgekort P). In het geval van P wordt alles in de theorie gespiegeld; van een rechtshandig

assenstelsel wordt overgegaan naar een linkshandig assenstelsel. Wederom zijn de sterke

en elektromagnetische kracht invariant onder P en de zwakke kracht niet. De transforma-

tie die van belang is voor dit proefschrift is de combinatie van C en P, kortweg CP. Net als

C en P afzonderlijk is alleen de zwakke kracht niet invariant onder CP.

Het is echter onbegrepen waarom de sterke kernkracht invariant is onder CP. In prin-

cipe is het voor deze kracht wel mogelijk om CP-invariantie te schenden. De theorie bevat

een CP-schendende parameter θ, de vacuümhoek van QCD. Dankzij het bestaan van ob-

1De koppelingsconstante geeft de sterkte van de interactie aan.
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jecten binnen QCD genaamd instantonen2 worden meetbare grootheden afhankelijk van

de hoek θ. Als θ ongelijk is aan 0 (mod π) schendt de theorie CP-invariantie. Experimen-

ten geven aan dat θ kleiner is dan 10−10. Dit theoretisch onbegrepen feit wordt het sterke

CP-probleem genoemd. Het is echter interessant om θ effecten te bestuderen, aangezien

er theoretische aanwijzingen zijn dat CP misschien geschonden wordt in QCD onder hoge

temperaturen in botsingen van zware ionen. Zulke schendingen van CP zijn te beschrijven

door aan te nemen dat θ effectief een waarde krijgt ongelijk aan 0.

Effecten van eindige θ en instantonen kunnen niet waargenomen worden in storings-

theorie, zodat ze moeilijk theoretisch te onderzoeken zijn. Ook computersimulaties met

eindige θ zijn op dit moment niet mogelijk, maar de effecten kunnen wel in effectieve the-

orieën en modellen onderzocht worden. Vooral chirale storingstheorie is in de literatuur

veel gebruikt. Helaas kan chirale storingstheorie alleen bij hele lage energieën gebruikt

worden. In dit proefschrift worden daarom modelberekeningen gebruikt, met name het

Nambu–Jona-Lasinio-model (NJL-model). In zulke modellen worden de effecten van in-

stantonen nagebootst door een extra interactie, de ’t Hooft determinantinteractie.

Materie onder extreme omstandigheden

Zoals hierboven al besproken komen quarks in normale materie altijd per twee of drie

voor. Dit verandert echter bij extreem hoge temperaturen en dichtheden. De protonen

en neutronen beginnen dan als het ware te overlappen. In die situatie kunnen de quarks

relatief vrij bewegen. Daarom wordt deze materie quarkmaterie genoemd.

Vlak na de oerknal waren de temperatuur en de dichtheid van het universum zo hoog

dat de quarks zich nog vrij konden bewegen en dus bestond het universum uit quarkma-

terie. Na ongeveer 10 microsecondes vond er een faseovergang plaats naar de huidige

toestand van materie, zonder vrije quarks. De situatie van de oerknal wordt experimen-

teel onderzocht door middel van botsingen van zware ionen. Bij deze experimenten wordt

de oerknal als het ware gesimuleerd door zware ionen, zoals goud, koper en lood, te ver-

snellen tot bijna de lichtsnelheid en dan op elkaar te laten botsen. Er zijn zeer sterke

aanwijzingen dat in zulke botsingen quarkmaterie wordt geproduceerd. Dergelijke experi-

menten worden tegenwoordig uitgevoerd in de Relativistic Heavy Ion Collider (RHIC) in

Brookhaven en in de toekomst in de Large Hadron Collider (LHC) van CERN in Genève.

Ten slotte is in neutronensterren de dichtheid van de kern zo hoog dat er waarschijnlijk

quarkmaterie voorkomt.

In het geval van botsingen van zware ionen en neutronensterren kunnen ook nog

enorm sterke magneetvelden worden gecreëerd, zodat het ook van belang is te begrijpen

hoe quarkmaterie zich gedraagt in reusachtig sterke magneetvelden.

2Het QCD-vacuüm is topologisch niet-triviaal. QCD heeft namelijk oneindig veel vacua, elk gekarakteri-

seerd door een windingsgetal. Instantonen zijn objecten die tunnelen tussen deze vacua. Het “echte” QCD-

vacuüm is een superpositie van al deze windingsgetal-vacua en kan worden gekarakteriseerd met behulp van de

hoek θ. Voor een meer gedetailleerde discussie zie paragraaf 1.1.
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Overzicht en resultaten van dit proefschrift

Het proefschrift begint met een motivatie en een algemene inleiding op QCD, instantonen

en de hoek θ. Daarna volgt een korte inleiding op chirale storingstheorie (χPT), de effec-

tieve theorie voor QCD bij lage energieën. Ook wordt besproken hoe instantoneffecten

kunnen worden meegenomen in χPT. Deze uitbreiding is in de literatuur veel gebruikt om

te bestuderen wat er gebeurt bij eindige θ, zo kan gebruikmakend van χPT en experimen-

tele resultaten afgeleid worden dat θ ≈ 0. Ten slotte wordt de mogelijkheid besproken dat

in botsingen van zware ionen toestanden worden gecreëerd die CP-invariantie schenden.

Zulke toestanden kunnen worden beschreven met een effectieve θ ongelijk aan 0 en zijn

de aanleiding om de effecten van eindige θ te onderzoeken.

De introductie gaat verder in hoofdstuk 2, waarin de verschillende fases van de sterke

kernkracht worden besproken. Allereerst worden een aantal algemene aspecten van fase-

diagrammen en de drie mogelijke typen faseovergangen besproken: eerste-orde, tweede-

orde en gladde overgangen. Bij een eerste-orde-overgang komt warmte vrij of wordt er

warmte geabsorbeerd tijdens de overgang, waardoor hij experimenteel relatief makkelijk

waar te nemen is. Bovendien divergeren een aantal thermodynamische grootheden op het

punt van de overgang. In het geval van een tweede-orde-overgang is er geen sprake van

het absorberen of vrijkomen van warmte, maar nog steeds divergeren bepaalde thermo-

dynamische grootheden. Bij gladde overgangen treden helemaal geen divergenties op,

waardoor ze relatief moeilijk experimenteel te bepalen zijn.

Na deze korte inleiding op faseovergangen wordt het fasediagram van de sterke in-

teractie als functie van temperatuur en baryon-chemische potentiaal (een maat voor de

baryondichtheid) besproken. Bij hoge dichtheden en temperaturen is de fase een quark-

gluonplasma, maar er zijn nog meer exotische fases mogelijk, zoals bijvoorbeeld kleursu-

pergeleiding bij lage temperaturen en hoge baryon-chemische potentiaal.

In dit hoofdstuk worden ook de drie fysische systemen waarbij quarkmaterie een rol

speelt geı̈ntroduceerd: de oerknal, botsingen van zware ionen en de kern van neutronen-

sterren. Vervolgens worden een aantal theoretische methodes besproken die men gebruikt

om het fasediagram te bestuderen. Tot slot worden een aantal minder bekende fasedia-

grammen besproken, zoals het fasediagram als functie van de quarkmassa’s en de isospin-

chemische potentiaal (een maat voor het verschil in up- en down-quarkdichtheid), waarbij

ook weer nieuwe fases voorkomen. Sommige van deze diagrammen zijn alleen van be-

lang voor theoretische studies, terwijl andere ook relevant zijn voor het begrip van de drie

hierboven genoemde systemen. Een voorbeeld is het gedrag als functie van de isospin-

chemische potentiaal, waarbij de mogelijkheid van pioncondensatie ontstaat. In de rest

van dit proefschrift worden waar mogelijk de resultaten met deze diagrammen vergeleken.

In hoofdstuk 3 wordt het model dat het meest in dit proefschrift gebruikt wordt geı̈ntro-

duceerd, het NJL-model. Het NJL-model bevat enkel quarks. Dit proefschrift beperkt

zich tot de twee quarksmaken met de kleinste massa, het up- en het down-quark. Effecten

van de gluonen worden meegenomen door middel van effectieve vierpuntsinteracties. Dit

geldt ook voor de effecten van instantonen, die leiden tot de hierboven genoemde ’t Hooft

determinantinteractie. De sterkte van deze interactie kan ruw geschat worden, maar is

niet precies bekend. De fysische gevolgen hangen wel sterk van deze interactiesterkte af.

114



Samenvatting

Na een korte bespreking van de historische ontwikkeling van het NJL-model wordt de

vacuümstructuur van het model besproken. Deze structuur zorgt voor een grote effectieve

massa van de quarks in vacuüm. Verder worden de gebonden toestanden van het model

behandeld, die te interpreteren zijn als mesonen. Het hoofdstuk eindigt met een discussie

van een aantal lage-energie relaties, die kunnen worden gebruikt om de parameters van

het model vast te leggen.

Hoofdstuk 4 bevat een gedetailleerde studie over het spontaan schenden van CP-

invariantie binnen het NJL-model op θ = π. Dit hoofdstuk is te zien als een uitbreiding

op hoofdstuk 2. Eerst wordt de volledige θ-afhankelijkheid van het vacuüm bekeken. In

het bijzondere geval θ = π is spontane schending van CP-invariantie mogelijk, maar deze

mogelijkheid is afhankelijk van de sterkte van de instantoninteractie. Uit de gepresenteer-

de analyse kan geconcludeerd worden dat als deze sterkte groter wordt dan een kritische

waarde, het model CP-invariantie schendt. Verder blijkt dat de kritische sterkte afhangt

van de waardes van de quarkmassa’s. Ook blijken mesonen zich kwalitatief anders te ge-

dragen als CP-schending optreedt. Dit levert een extra argument op waarmee aangetoond

kan worden dat θ in de natuur gelijk is aan 0 en niet aan π.

Vervolgens wordt het fasediagram bestudeerd als functie van de quarkmassa’s, waarbij

de sterkte van de instantoninteractie constant wordt gehouden. Er wordt een gebied van

quarkmassa’s gevonden waarin spontane schending van CP-invariantie optreedt. In het

onderzochte NJL-model wordt zowel een onder- als bovengrens gevonden. In tegenstel-

ling tot twee-smaken-χPT, onderzocht door Tytgat (2000), waarin alleen een ondergrens

is gevonden. De NJL-analyse toont aan dat bij hogere temperatuur het gebied met spon-

tane CP-schending kleiner wordt, totdat het uiteindelijk helemaal verdwijnt. Dit betekent

dat de metastabiele CP-schendende toestanden op hoge temperatuur, gesuggereerd door

Kharzeev, Pisarski, and Tytgat (1998), misschien niet voorkomen in de natuur.

Behalve de massa-afhankelijkheid wordt ook de temperatuurafhankelijkheid en de

afhankelijkheid van de baryon-chemische potentiaal van de spontane CP-schending on-

derzocht. In paragraaf 4.6 worden fasediagrammen gepresenteerd als functie van deze

parameters op één as en de sterkte van de instantoninteractie op de andere. Het blijkt dat

de spontane CP-schending verdwijnt in de vorm van een twee-orde-overgang als de tem-

peratuur of baryon-chemische potentiaal groter worden dan een kritische waarde. Hieruit

kan de conclusie getrokken worden dat de spontane CP-schending een laag-energetisch

verschijnsel is.

Het hoofdstuk wordt afgesloten met het bestuderen van het fasediagram als functie van

de isospin-chemische potentiaal en de sterkte van de instantoninteractie. In dit diagram

blijkt een nieuwe fase voor te komen met a±
0
-condensatie.

Zoals hierboven al gezegd, is de CP-herstellende faseovergang in het NJL-model

tweede-orde. Dit in tegenstelling tot de resultaten van Mizher and Fraga (2009), die het

vergelijkbare lineaire sigma-model gekoppeld aan quarks (LSMq) hebben onderzocht.

Zij hebben een eerste-orde-faseovergang gevonden. Hoofdstuk 5 gaat over de overeen-

komsten en de verschillen van deze twee modellen. Gebruikmakend van de methode

van Eguchi (1976) wordt aangetoond dat als het NJL-model “gebosoniseerd” wordt, een

lineair sigma-model wordt verkregen.

Het belangrijkste verschil tussen de twee modellen is de behandeling van quarks. In
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het NJL-model worden quarks altijd meegenomen, het is immers een quarkmodel. In het

LSMq-model worden de quarks alleen meegenomen bij eindige temperatuur. De analyse

van hoofdstuk 5 laat zien dat de quarks voor een logaritmische term zorgen op T = 0, die

niet meegenomen wordt in het LSMq-model. Een vergelijkbare logaritmische term komt

van de temperatuursafhankelijkheid van de quarks. Deze valt weg tegen de term op T = 0.

Het blijkt dat het precies deze term is die het verschil tussen de twee modellen bepaalt.

Als het NJL-model wordt gezien als onderliggende theorie voor het lineaire sigma-model

gekoppeld aan quarks, is er geen goede reden om deze term te verwaarlozen.

In het afsluitende hoofdstuk 6 wordt de gecombineerde invloed van magneetvelden en

de instantoninteractie bij θ = 0 onderzocht. Deze studie is relevant voor het beschrijven

van botsingen van zware ionen en kernen van neutronensterren, waar zeer grote magneet-

velden kunnen optreden.

Sterke magneetvelden kunnen een grote invloed hebben op de structuur van quarkma-

terie. Als namelijk een geladen deeltje, zoals een quark, zich in een heel sterk magneet-

veld bevindt, raakt de impuls loodrecht op het magneetveld gequantiseerd. Dit wordt

Landau-quantisatie genoemd. De twee quarks hebben echter verschillende ladingen,

waardoor hun gedrag in een magneetveld verschilt. Uit de gepresenteerde resultaten blijkt

dat hierdoor op hoge baryon-chemische potentiaal de mogelijkheid ontstaat dat de quarks

sterk verschillende effectieve massa’s hebben. Dit verschil beı̈nvloedt de massa’s en ver-

valtijden van mesonen.

Het effect van de instantoninteractie is tegengesteld aan het effect van het magneet-

veld. De instantoninteractie zorgt ervoor dat de effectieve massa’s aan elkaar gekoppeld

raken, wat leidt tot gelijk gedrag voor de quarks. Bij een kleine waarde voor de sterkte

van deze interactie is er nog steeds een fase aanwezig waarbij de massa’s flink verschillen,

die verdwijnt bij verhoging van de sterkte. Bovendien blijkt dat binnen een gebied van

baryon-chemische potentialen en magneetvelden metastabiele fases mogelijk zijn. Deze

fases verschillen in het aantal gevulde Landau niveaus en de mate van symmetriebre-

king. Aangezien de energieën van deze toestanden bijna gelijk zijn aan de energie van de

grondtoestand, kunnen ze niet verwaarloosd worden en zijn dus fysisch relevant.

Ten slotte wordt onderzocht hoe een sterk magneetveld de faseovergang op hoge tem-

peratuur beı̈nvloedt. Dit is relevant in de studie van botsingen van zware ionen. In LSMq

wordt een zwakke eerste-orde-overgang gevonden (Fraga and Mizher, 2008). In het NJL-

model wordt een gladde overgang gevonden. De oorzaak van dit verschil is waarschijnlijk

dezelfde als die besproken is in hoofdstuk 5.

De studies gepresenteerd in dit proefschrift maken duidelijk dat instantonen een grote

rol kunnen spelen bij verschijnselen van de sterke interactie bij lage energieën, waarbij

ze de eigenschappen van quarkmaterie kwalitatief kunnen beı̈nvloeden. Om deze rede-

nen is het nuttig om meer gedetailleerde studies dan die in dit werk beschreven staan uit

te voeren. Allereerst zou het nuttig zijn om een methode te vinden om de instantonin-

teractiesterkte te bepalen. Verder is in dit werk alleen het geval van twee quarksmaken

onderzocht, het zou interessant zijn om te kijken wat er gebeurt als een derde quark, het

strange-quark, wordt toegevoegd. In de limiet dat alle quarks massaloos zijn, is er na-

melijk een kwalitatief verschil tussen twee of drie quarksmaken (Pisarski and Wilczek,

1984); er is sprake van een tweede- respectievelijk eerste-orde-overgang. Het zou inte-
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ressant zijn om te onderzoeken of dit ook geldt voor de faseovergang die CP-invariantie

herstelt. Ook zouden meer fases bestudeerd kunnen worden, zoals kleursupergeleiden-

de fases en er zou gekeken kunnen worden in hoeverre onze resultaten van de gebruikte

benaderingen afhangen. Een andere richting van vervolgonderzoek is uitzoeken of de

resultaten van dit proefschrift waarneembare gevolgen zouden kunnen hebben voor de

structuur van neutronensterren.
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