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Abstract. Kontsevich constructed a map from suitable cocycles in the graph complex
to infinitesimal deformations of Poisson bi-vector fields. Under the deformations, the
bi-vector fields remain Poisson. We ask, are these deformations trivial, meaning, do they
amount to a change of coordinates along a vector field? We examine this question for
the tetrahedron, the smallest nontrivial suitable graph cocycle in the Kontsevich graph
complex, and for the class of Nambu–Poisson brackets on Rd.

Within Kontsevich’s graph calculus, we use dimension-specific micro-graphs, in which
each vertex represents an ingredient of the Nambu–Poisson bracket. For the tetrahedron,
Kontsevich knew that the deformation is trivial for d = 2 (1996). In 2020, Buring and
the third author found that the deformation is trivial for d = 3. Building on these
discoveries, we now establish that the deformation is trivial for d = 4.

1 Introduction
Take an arbitrary Poisson geometry: energy is transformed into motion by a Poisson bracket. We ask:
is this model isolated, or part of a larger family? To examine this, we deform the Poisson bracket. If the
deformation simply amounts to a change of coordinates of the model, then the system is isolated with
respect to that deformation. If the deformation causes a nontrivial change of the Poisson bracket, then
we say that the system is one in a larger family of systems. The incoming energy has stayed the same,
but the outgoing motion has changed, see Chapter 13 on Deformation Quantization in [1].

Kontsevich constructed a map from ‘good graphs’ γ in the Kontsevich graph complex, a differential
graded Lie algebra of non-directed graphs, to bi-vector field flows Ṗ = Qγ

d(P ), which express the defor-

mation of the Poisson bi-vector field P on Rd by γ, see [2]. The graphs γ are cocycles, meaning that for
the differential d = [•–•, ·] in the Kontsevich graph complex, we have

d(γ) = [•–•, γ] = 0.

The associated bi-vector field flow Ṗ = Qγ
d(P ) is a Poisson cocycle for the differential ∂P = JP, ·K, meaning

∂P
(
Qγ

d(P )
)
= JP,Qγ

d(P )K = 0.

We enquire if Qγ
d(P ) is a coboundary, which would mean there exists some trivialising vector field X⃗γ

d (P )

such that Qγ
d(P ) = JP, X⃗γ

d (P )K, which implies that the deformation Ṗ = Qγ
d(P ) is trivial; the coordinates

change along the vector field X⃗γ
d (P ). We specifically deform the class of Nambu–Poisson brackets by the
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simplest nontrivial graph in the Kontsevich graph complex, the tetrahedron γ3. In this paper, we present

the solution X⃗γ3

d=4(P (ϱ,a)) found in dimension d = 4 for Nambu–Poisson brackets P (ϱ,a).
The authors recommend the following reading order of proceedings, by names of first authors: Kise-

lev [3], Jagoe Brown (this paper), and finally, Schipper [4].
This paper is structured in the following way. In section 2, we introduce the preliminaries necessary

to approach the problem, then formulate it. In section 3, we examine the solution to the problem in
dimensions two, three, and finally, dimension four, while presenting a series of simplifications which were
crucial to obtain the new solution in dimension four. In section 4, we discuss the up-down behaviour of
the problem from one dimension to another, and finally conclude.

2 Preliminaries
2.1 Basic concept
The theory behind this problem is due to Kontsevich, and is applicable to any class of Poisson bracket
on an affine manifold, in any dimension. Recall that we can express any Poisson bracket in terms of a
bi-vector field, in the following way:

{f, g} = P (f, g).

Deforming a Poisson bi-vector field P by a suitable graph cocycle γ in the Kontsevich graph complex is
expressed as

Ṗ = Qγ(P ),

where Qγ(P ) is an infinitesimal symmetry built of as many copies of P as there are vertices in γ, see [6].
The setting of the problem is Rd, with Cartesian coordinates given by Rd ∋ x = (x1, x2, ..., xd). We

deform the class of Nambu–Poisson brackets by the tetrahedron γ3.

Definition 1 (Nambu–Poisson bracket). The generalised Nambu-determinant Poisson bracket in dimen-
sion d for two smooth functions f, g ∈ C∞(Rd) is given as

{f, g}d(x) = ϱ(x) · det


fx1

gx1
a1x1

a2x1
. . . ad−2

x1

fx2 gx2 a1x2
a2x2

. . . ad−2
x2

...
...

...
...

...
fxd

gxd
a1xd

a2xd
. . . ad−2

xd

 (x),

where a1, ..., ad−2 ∈ C∞(Rd) are Casimirs, which Poisson-commute with any function. The function ϱ is
the inverse density, or the coefficient of a d-vector field.

Definition 2 (The tetrahedron γ3). The tetrahedron γ3 is the smallest nontrivial suitable graph cocycle
of the Kontsevich graph complex, a differential graded Lie algebra of non-directed graphs. By γ3 being a
cocycle, we mean that it satisfies d(γ3) = 0, where d = [•–•, ·] is the differential in the Kontsevich graph
complex. The graph γ3 is constructed on 4 vertices and 6 edges.

Definition 3 (The γ3-flow). The γ3-flow Qγ3(P ) is a bi-vector field built with four copies of P . It is an
infinitesimal symmetry of the Jacobi identity for P , and corresponds to the deformation of P by γ3. It
is obtained from γ3 via the orientation morphism described in [6]; the formula is given in [7].

Problem formulation. To inspect whether the γ3-flow is Poisson-trivial, we investigate if Qγ3

d (P ) is a

2-coboundary. This is equivalent to establishing the existence of a trivialising vector field X⃗γ3

d (P ) such
that

Ṗ = Qγ3

d (P ) = JP, X⃗γ3

d (P )K, (1)

where d is the dimension and J·, ·K is the Schouten bracket1. We wish to solve equation (1) in d = 4.

We used software package gcaops2 (Graph Complex Action On Poisson Structures) for SageMath
by Buring. With it, we input graph encodings, from which we obtained Formality graphs and then their
formulas. We created a linear algebraic system and solved it for coefficients in the linear combination

of graphs that encode X⃗γ3

d (P ). We used the High Performance Computing cluster at the University of
Groningen, Hábrók. All code which gave results in this paper can be found as additional material in [4,5].

1The Schouten bracket J·, ·K is a unique extension of the commutator [·, ·] on the space of vector fields to the
space of polyvector fields. By definition, the Schouten bracket coincides with the Lie bracket when evaluated on 1-
vectors. When evaluated on p-vector X, q-vector Y and r-vector Z, the Schouten bracket satisfies the equations
JX,Y K = −(−1)(p−1)(q−1)JY,XK and JX,Y ∧ ZK = JX,Y K ∧ Z + (−1)q(p−1)Y ∧ JX,ZK, see [8].

2https://github.com/rburing/gcaops
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2.2 Notation
We solve equation (1) on the level of formulas, using Kontsevich’s graph calculus to write them. For this,
we introduce the graph language created by Kontsevich, commonly used in deformation quantisation. Its
main convenience is that formulas change with the dimension, but pictures of graphs do not change. We
specifically use this graph language for graphs built of wedges

L←−• R−→, which are Poisson bi-vector fields.
The directed edges are derivations which act on the content of vertices. To write the graph encodings up
to and including dimension four, we use the following convention:

• 0 represents the sink,

• 1, 2, 3 represent Levi–Civita symbols,

• 4, 5, 6 represent Casimirs a1,

• 7, 8, 9 represent Casimirs a2.

We denote by ϕ the map of Formality graphs to their formulas obtained by Kontsevich’s graph language.

Example 1. Let us take the following graphs Γ1 and Γ2.

The encoding of Γ1 is (0,1 ; 1,3 ; 1,2). The encoding of Γ2 is (0,2 ; 1,3 ; 1,2).

The graph Γ1 is: r
rr

?

�
@
@@R

�
��	

?

AA
i
1

23

0

i1
i2

j1

j2

k1

k2

The graph Γ2 is: r
rr

?

�
@

@@R

�
��	

?
I

1

23

0

i1
i2

j1

j2

k1

k2

Let the dimension be two. The inert sums of the formulas for the graphs are as follows.

ϕ(Γ1) =

d=2∑
i1,i2,
j1,j2,

k1,k2=1

εi1i2 · εj1j2 · εk1k2 · ∂i2j1k1(ϱ) · ∂k2(ϱ) · ∂j2(ϱ) · ∂i1( )

ϕ(Γ2) =

d=2∑
i1,i2,
j1,j2,

k1,k2=1

εi1i2 · εj1j2 · εk1k2 · ∂k1j1(ϱ) · ∂i2k2
(ϱ) · ∂j2(ϱ) · ∂i1( )

The sums are constructed by taking the product of the content of vertices, which contain ϱ. The arrows
act on vertices as derivations3. The Levi–Civita symbol encodes the determinant in the Nambu–Poisson
bracket, see Definition 1.

Definition 4 (The sunflower graph). A linear combination of the above Kontsevich graphs (graphs built
of wedges

L←−• R−→, see [3, 4, 6]) can be expressed as the sunflower graph

sunflower = p pp
?

�
R	

?
�
�

�
�I= 1 · Γ1 + 2 · Γ2.

The outer circle means that the outgoing arrow acts on the three vertices via the Leibniz rule. When
the arrow acts on the upper two vertices, we obtain two isomorphic graphs, hence the coefficient 2 in the
linear combination.

3 Vector fields trivialising the γ3-flow in 2D, 3D, and now, in 4D
3.1 The trivialising vector field for γ3-flow in 2D expressed by Kontsevich graphs
In 2D, any Poisson bracket is a Nambu–Poisson bracket because it is given by

{f, g}d=2(x, y) = ϱ(x, y) · det
(
fx gx
fy gy

)
(x, y), that is, {f, g}d=2(x, y) =

d=2∑
i,j=1

εij · ϱ · ∂i(f) · ∂j(g),

for some ϱ, where i, j are indices, εij is the Levi–Civita symbol, and the Cartesian coordinates are
expressed as x1 = x, x2 = y.

3We denote ∂i to mean the partial derivative with respect to xi, represented by the arrow i; ∂ij is the partial derivative
with respect to xi and xj , so ∂ij = ∂i∂j .
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Proposition 1 (Cf. [2], [8]). There exists a trivialising vector field in 2D for the γ3-flow. It is given by
the sunflower graph

X⃗γ3

d=2(P ) = ϕ(sunflower).

The sunflower gives a formula in 2D to solve equation (1), namely Ṗ = Qγ3

d=2(P ) = JP, X⃗γ3

d=2(P )K. The
affine space of solutions on graphs is of dimension 1; that is, the trivialising vector field X⃗γ3

d=2(P ) is unique
up to 1-dimensional shifts, themselves encoded by Kontsevich graphs. A full descriptions of these shifts
using graphs can be found in [4].

Remark 1. This solution, the sunflower, when extended to higher dimensions d > 2, is not a solution.

3.2 The trivialising vector field for γ3-flow in 3D expressed by Nambu micro-graphs
In 3D, with Cartesian coordinates expressed as x1 = x, x2 = y, x3 = z, the Nambu–Poisson bracket is
given by

{f, g}d=3(x, y, z) = ϱ(x, y, z) · det

fx gx a1x
fy gy a1y
fz gz a1z

 (x, y, z),

that is,

{f, g}d=3(x, y, z) =

d=3∑
i,j,k=1

εijk · ϱ · ∂i(f) · ∂j(g) · ∂k(a1),

for some ϱ, where i, j, k are indices and εijk is the Levi–Civita symbol which encodes the determinant.

Definition 5 (Nambu micro-graph). Nambu micro-graphs are built using the Nambu–Poisson bracket
P (ϱ,a) as subgraphs with ordered and directed edges. The vertex of the source of each P (ϱ,a) in
dimension d contains εi1...idϱ, with d-many outgoing edges. The first two edges act on the arguments of
that bi-vector field subgraph, and the last d− 2 edges go to the Casimirs a1, ..., ad−2.

Example 2. Replacing the wedges of the sunflower graph with Nambu building blocks of any dimension
gives an example of a Nambu micro-graph.

Non-example 3. The encoding (0,1 ; 1,3,5 ; 2) is not a Nambu micro-graph. This can immediately be
seen by the fact that the vertices do not have the same number of outgoing arrows.

Instead of searching for a trivialising vector field X⃗γ3

d=3(ϱ,a) over all 1-vector micro-graphs built of 3
Levi–Civita symbols and 3 Casimirs a1, we restrict our scope.

Simplification 1. Search for solutions X⃗γ3

d=3(P (ϱ,a)) over the formulas given by Nambu micro-graphs.

Definition 6 (d-descendants). The d-descendants of a given (d′ = 2)-dimensional Kontsevich graph is
the set of Nambu micro-graphs obtained in the following way. Take a (d′ = 2)-dimensional Kontsevich
graph. To each vertex, add (d− 2)-many Casimirs by (d− 2)-many outgoing edges. Extend the original
incoming arrows to work via the Leibniz rule over the newly added Casimirs 4.

Example 4. We give the encodings of the 3D-descendants of the 2D sunflower. Recall that the sink is
denoted by 0, and the Levi–Civita symbols by 1, 2, 3. In 3D, we have the three Casimirs a1 denoted by
4, 5, 6. Then,

sunflower = p pp
?

�
R	

?
�
�

�
�I= 1 · Γ1 + 2 · Γ2 = 1 · (0,1 ; 1,3 ; 1,2) + 2 · (0,2 ; 1,3 ; 1,2)

gives

3D-descendants =
∑

i1,i2∈{1,4}
j∈{3,6}
k∈{2,5}

(0,1,4 ; i1,j,5 ; i2,k,6) +
∑

i1,i2∈{1,4}
j∈{3,6}

k1,k2∈{2,5}

(0,k1,4 ; i1,j,5 ; i2,k2,6).

4The case of d′ > 2 is more delicate. This example gives all 4D-descendants from a given 3D Nambu micro-
graph. We take the 3D Nambu micro-graph given by (0,1,4 ; 1,3,5 ; 1,2,6). Its 4D-descendants are given by∑

i1,i2∈{1,4,7},j∈{3,6,9},k∈{2,5,8}(0,1,4,7 ; i1,j,5,8 ; i2,k,6,9). It is left to the reader to produce the generalised definition of

d-descendants from d′-dimension.
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Lemma 2. There are 41 distinct micro-graphs in the 3D expansion of the 2D sunflower, their encodings
are below. The first 10 come from Γ1, the next 31 come from Γ2. In bold are those whose Formality
graphs Γ give formulas equal to zero ϕ(Γ) = 0. A graph is zero when it has a symmetry under which it
is skew.

1. (0,1,4 ; 1,3,5 ; 1,2,6)

2. (0,1,4 ; 4,3,5 ; 4,2,6)

3. (0,1,4 ; 1,6,5 ; 1,5,6)

4. (0,1,4 ; 4,6,5 ; 4,5,6)

5. (0,1,4 ; 1,3,5 ; 4,2,6)

6. (0,1,4 ; 1,6,5 ; 1,2,6)

7. (0,1,4 ; 1,6,5 ; 4,2,6)

8. (0,1,4 ; 4,6,5 ; 1,2,6)

9. (0,1,4 ; 4,6,5 ; 4,2,6)

10. (0,1,4 ; 1,6,5 ; 4,5,6) ↑ Γ1

11. (0,2,4 ; 1,3,5 ; 1,2,6) ↓ Γ2

12. (0,2,4 ; 4,3,5 ; 1,2,6)

13. (0,2,4 ; 1,3,5 ; 4,2,6)

14. (0,2,4 ; 4,3,5 ; 4,2,6)

15. (0,2,4 ; 1,6,5 ; 1,2,6)

16. (0,2,4 ; 4,6,5 ; 1,2,6)

17. (0,2,4 ; 1,6,5 ; 4,2,6)

18. (0,2,4 ; 4,6,5 ; 4,2,6)

19. (0,5,4 ; 1,3,5 ; 1,2,6)

20. (0,5,4 ; 4,3,5 ; 1,2,6)

21. (0,5,4 ; 1,3,5 ; 4,2,6)

22. (0,5,4 ; 4,3,5 ; 4,2,6)

23. (0,5,4 ; 1,6,5 ; 1,2,6)

24. (0,5,4 ; 4,6,5 ; 1,2,6)

25. (0,5,4 ; 1,6,5 ; 4,2,6)

26. (0,5,4 ; 4,6,5 ; 4,2,6)

27. (0,2,4 ; 1,3,5 ; 1,5,6)

28. (0,2,4 ; 4,3,5 ; 1,5,6)

29. (0,2,4 ; 1,3,5 ; 4,5,6)

30. (0,2,4 ; 4,3,5 ; 4,5,6)

31. (0,2,4 ; 1,6,5 ; 1,5,6)

32. (0,2,4 ; 4,6,5 ; 1,5,6)

33. (0,2,4 ; 1,6,5 ; 4,5,6)

34. (0,2,4 ; 4,6,5 ; 4,5,6)

35. (0,5,4 ; 1,3,5 ; 1,5,6)

36. (0,5,4 ; 4,3,5 ; 1,5,6)

37. (0,5,4 ; 1,3,5 ; 4,5,6)

38. (0,5,4 ; 4,3,5 ; 4,5,6) zero

39. (0,5,4 ; 1,6,5 ; 1,5,6)

40. (0,5,4 ; 4,6,5 ; 1,5,6)

41. (0,5,4 ; 4,6,5 ; 4,5,6) zero

Our next simplification is a lucky guess, in contrast with simplification 1.

Simplification 2. Search for the trivialising vector field X⃗γ3

d=3(P ) over 41 3D-descendants of the 2D
sunflower, from the above Lemma.

Corollary 3. Simplifications 1 and 2 make the problem smaller:

366
#1,#2−−−−→ 41,

while still allowing us to reach a solution. Here, 366 is the number of all 1-vector micro-graphs built of
3 Levi–Civita symbols and 3 Casimirs a1; 41 is the number of 3D-descendants of the 2D sunflower.

Proposition 4. There exists a trivialising vector field X⃗γ3

d=3(P ) = ϕ(Xγ3

d=3) in 3D. It is given over 10
3D-descendants of the 2D sunflower:

Xγ3

d=3 = 8 · (0, 1, 4; 1, 3, 5; 1, 2, 6) + 24 · (0, 1, 4; 1, 6, 5; 4, 2, 6) + 8 · (0, 1, 4; 4, 3, 5; 4, 2, 6)
+ 24 · (0, 1, 4; 4, 6, 5; 4, 2, 6) + 12 · (0, 1, 4; 4, 6, 5; 4, 5, 6) + 16 · (0, 2, 4; 1, 3, 5; 1, 2, 6)
+ 16 · (0, 2, 4; 1, 3, 5; 1, 5, 6) + 12 · (0, 2, 4; 1, 6, 5; 1, 5, 6) + 16 · (0, 2, 4; 4, 3, 5; 1, 5, 6) + 24 · (0, 5, 4; 1, 3, 5; 1, 2, 6).

This is a linear combination of Nambu micro-graphs which gives a formula in 3D to solve equation (1),

namely Ṗ = Qγ3

d=3(P ) = JP, X⃗γ3

d=3(P )K. The affine space of solutions on graphs is of dimension 3; that is,

the trivialising vector field X⃗γ3

d=3(P ) is unique up to a 3-dimensional space of Poisson 1-cocycles X with
JP,XK = 0, where X is encoded by Nambu micro-graphs. A full description of these shifts using graphs
can be found in [4].

We verified that the deformation of P by γ3 is trivial in 3D: it amounts to a change of coordinates.
The space of 3D-descendants from the 2D sunflower is sufficient to find a solution in 3D. We now ask:

Can we find a 4D solution over the space of 4D-descendants from the 3D
trivialising vector field? (Answer: no! But from the 2D sunflower: yes!)

3.3 New result: the trivialising vector field for γ3-flow in 4D
In 4D, with Cartesian coordinates expressed as x1 = x, x2 = y, x3 = z, x4 = w, the Nambu–Poisson
bracket is given by

{f, g}d=4(x, y, z, w) = ϱ(x, y, z, w) · det

fx gx a1x a2x
fy gy a1y a2y
fz gz a1z a2z
fw gw a1w a2w

 (x, y, z, w),
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that is,

{f, g}d=4(x, y, z, w) =

d=4∑
i,j,k,ℓ=1

εijkℓ · ϱ · ∂i(f) · ∂j(g) · ∂k(a1) · ∂ℓ(a2),

for some ϱ, where i, j, k, ℓ are indices and εijkℓ is the Levi–Civita symbol which encodes the determinant.
To tackle the full problem was non-viable, see Appendix 1 in [9] for details. The main issue is that the

size of the problem increases with the dimension: ϕ(Qγ3

d (P )) is 1 line in 2D, 2 pages in 3D, 3GB in 4D.
We begin to apply the simplifications that we have introduced so far.

• Simplification 1: only look over graphs built with the 4D Nambu building blocks P (ϱ, a1, a2). The
vertex of the source of the building blocks contains εijkℓϱ.

• Simplification 2: only look over 4D-descendants of the 2D sunflower. These are 324 graphs, which
give 123 linearly independent formulas; their encodings can be found in the Appendix in [5].

� There are two Casimirs a1, a2, yielding an extra property to take into account.

Lemma 5. The Nambu–Poisson bracket P (ϱ, a1, a2) is skew-symmetric under the swap a1 ⇄ a2:

P (ϱ, a1, a2) = −P (ϱ, a2, a1).

The γ3-flow Qγ3

d=4(P ) is built of four copies of P , therefore Qγ3

d=4(P ) is symmetric under a1 ⇄ a2; by
swapping a1 and a2, we accumulate four minus signs:

Qγ3

d=4

(
P (ϱ, a2, a1)⊗ P (ϱ, a2, a1)⊗ P (ϱ, a2, a1)⊗ P (ϱ, a2, a1)

)
= (−)4Qγ3

d=4

(
P (ϱ, a1, a2)⊗ P (ϱ, a1, a2)⊗ P (ϱ, a1, a2)⊗ P (ϱ, a1, a2)

)
= Qγ3

d=4

(
P (ϱ, a1, a2)⊗ P (ϱ, a1, a2)⊗ P (ϱ, a1, a2)⊗ P (ϱ, a1, a2)

)
.

Therefore, to find a vector field X⃗γ3

d=4(P ) such that

Ṗ = Qγ3

d=4(P ) = JP, X⃗γ3

d=4(P )K,

we need to find X⃗γ3

d=4(P ) which is skew-symmetric under a1 ⇄ a2. This can be seen by the fact that

X⃗γ3

d=4(P ) is built of three copies of P , so accumulates three minus signs when swapping a1 and a2,
therefore gives (−)3 = −, therefore is skew-symmetric under a1 ⇄ a2.

To take this into account, we use the 324 4D-descendants of the 2D sunflower obtained by simplifi-
cations 1 and 2, identify the 123 ones with linearly independent formulas, and skew-symmetrise them.
That is, for each 4D-descendant Γ of the 2D sunflower we construct a skew pair:

skew pair = 1
2

(
ϕ
(
Γ(a1, a2)

)
− ϕ

(
Γ(a2, a1)

))
.

To construct skew pairs, we take the formula of the graph Γ with ordering of edges to Casimirs a1, a2

with a1 ≺ a2, and subtract the formula of the graph Γ with ordering a2 ≺ a1. We divide by 2 to preserve
the coefficients. By construction, each skew pair is purely obtained at the level of formulas5.

Lemma 6. There are 64 linearly independent skew pairs, see Appendix in [5].

Simplification 3. Search over these 64 skew pairs for a trivialising vector field X⃗γ3

d=4(P ).

Corollary 7. The three simplifications 1, 2, and 3 reduced the size of our problem 300 times:

19 957
#1,#2−−−−→ 324

#3−−→ 64.

Here, 19 957 is the number of all 1-vector micro-graphs built of 4 Levi–Civita symbols, 4 Casimirs a1 and
4 Casimirs a2; 324 is the number of 4D-descendants of the 2D sunflower; 64 is the number of skew pairs
obtained from the 123 linearly independent formulas of the 324 4D-descendants.

Proposition 8. There exists a trivialising vector field X⃗γ3

d=4(P ) = ϕ(Xγ3

d=4) in 4D. Searching over the 64
skew pairs on the High Performing Computing cluster Hábrók took 10 hours. It is given over 27 skew
pairs of 1-vector Nambu micro-graphs:

5See https://github.com/rburing.



ISQS28
Journal of Physics: Conference Series 2912 (2024) 012042

IOP Publishing
doi:10.1088/1742-6596/2912/1/012042

7

X
γ3
d=4

= −8 ·
(
(0,1,4,7 ; 1,3,5,8 ; 1,2,6,9) - (0,1,7,4 ; 1,3,8,5 ; 1,2,9,6)

)

+ −48 ·
(
(0,1,4,7 ; 1,6,5,8 ; 4,2,6,9) - (0,1,7,4 ; 1,9,8,5 ; 7,2,9,6)

)

+ −16 ·
(
(0,1,4,7 ; 4,3,5,8 ; 4,2,6,9) - (0,1,7,4 ; 7,3,8,5 ; 7,2,9,6)

)

+ −48 ·
(
(0,1,4,7 ; 4,6,5,8 ; 4,2,6,9) - (0,1,7,4 ; 7,9,8,5 ; 7,2,9,6)

)

+ −48 ·
(
(0,1,4,7 ; 4,9,5,8 ; 4,2,6,9) - (0,1,7,4 ; 7,6,8,5 ; 7,2,9,6)

)

+ −16 ·
(
(0,1,4,7 ; 4,3,5,8 ; 7,2,6,9) - (0,1,7,4 ; 7,3,8,5 ; 4,2,9,6)

)

+ −48 ·
(
(0,1,4,7 ; 4,6,5,8 ; 7,2,6,9) - (0,1,7,4 ; 7,9,8,5 ; 4,2,9,6)

)

+ 12 ·
(
(0,1,4,7 ; 1,6,5,8 ; 1,5,6,9) - (0,1,7,4 ; 1,9,8,5 ; 1,8,9,6)

)

+ −24 ·
(
(0,1,4,7 ; 4,6,5,8 ; 4,5,6,9) - (0,1,7,4 ; 7,9,8,5 ; 7,8,9,6)

)

+ 24 ·
(
(0,1,4,7 ; 4,9,5,8 ; 7,5,6,9) - (0,1,7,4 ; 7,6,8,5 ; 4,8,9,6)

)

+ −24 ·
(
(0,1,4,7 ; 7,6,5,8 ; 7,5,6,9) - (0,1,7,4 ; 4,9,8,5 ; 4,8,9,6)

)

+ −16 ·
(
(0,2,4,7 ; 1,3,5,8 ; 1,2,6,9) - (0,2,7,4 ; 1,3,8,5 ; 1,2,9,6)

)

+ −32 ·
(
(0,2,4,7 ; 1,3,5,8 ; 1,5,6,9) - (0,2,7,4 ; 1,3,8,5 ; 1,8,9,6)

)

+ −12 ·
(
(0,2,4,7 ; 1,6,5,8 ; 1,5,6,9) - (0,2,7,4 ; 1,9,8,5 ; 1,8,9,6)

)

+ 48 ·
(
(0,2,4,7 ; 1,9,5,8 ; 4,5,6,9) - (0,2,7,4 ; 1,6,8,5 ; 7,8,9,6)

)

+ −48 ·
(
(0,2,4,7 ; 1,9,5,8 ; 7,5,6,9) - (0,2,7,4 ; 1,6,8,5 ; 4,8,9,6)

)

+ −32 ·
(
(0,2,4,7 ; 4,3,5,8 ; 1,5,6,9) - (0,2,7,4 ; 7,3,8,5 ; 1,8,9,6)

)

+ −32 ·
(
(0,2,4,7 ; 7,3,5,8 ; 1,5,6,9) - (0,2,7,4 ; 4,3,8,5 ; 1,8,9,6)

)

+ −48 ·
(
(0,5,4,7 ; 1,3,5,8 ; 1,2,6,9) - (0,8,7,4 ; 1,3,8,5 ; 1,2,9,6)

)

+ −48 ·
(
(0,5,4,7 ; 1,9,5,8 ; 1,2,6,9) - (0,8,7,4 ; 1,6,8,5 ; 1,2,9,6)

)

+ −96 ·
(
(0,5,4,7 ; 1,9,5,8 ; 4,2,6,9) - (0,8,7,4 ; 1,6,8,5 ; 7,2,9,6)

)

+ −48 ·
(
(0,5,4,7 ; 4,9,5,8 ; 4,2,6,9) - (0,8,7,4 ; 7,6,8,5 ; 7,2,9,6)

)

+ −48 ·
(
(0,5,4,7 ; 7,9,5,8 ; 4,2,6,9) - (0,8,7,4 ; 4,6,8,5 ; 7,2,9,6)

)

+ −48 ·
(
(0,5,4,7 ; 7,9,5,8 ; 7,2,6,9) - (0,8,7,4 ; 4,6,8,5 ; 4,2,9,6)

)

+ 24 ·
(
(0,5,4,7 ; 1,6,5,8 ; 1,5,6,9) - (0,8,7,4 ; 1,9,8,5 ; 1,8,9,6)

)

+ 48 ·
(
(0,5,4,7 ; 4,6,5,8 ; 7,5,6,9) - (0,8,7,4 ; 7,9,8,5 ; 4,8,9,6)

)

+ 48 ·
(
(0,5,4,7 ; 4,9,5,8 ; 7,5,6,9) - (0,8,7,4 ; 7,6,8,5 ; 4,8,9,6)

)
.

This is a linear combination of skew pairs which gives a formula in 4D to solve equation (1), namely

Ṗ = Qγ3

d=4(P ) = JP, X⃗γ3

d=4(P )K. The affine space of solutions on graphs is of dimension 7; that is, the

trivialising vector field X⃗γ3

d=4(P ) is unique up to a 7-dimensional space of Poisson 1-cocycles X with
JP,XK = 0, where X is encoded by Nambu micro-graphs. A full description of these shifts using graphs
can be found in [4].

As far as we understand, nothing could have predicted this result. Without this series of simplifications
(see Corollary 7), approaching the problem in dimension 4 was impossible in [9] two years ago.

4 Discussion
We summarise in which sense the graphs used in problems 2D, 3D, and 4D were different. In 2D,
we found a solution over Kontsevich graphs; in 3D over Nambu micro-graphs; in 4D over skew pairs,
obtained by skew-symmetrising formulas of Nambu micro-graphs. The problem has been solved at the
level of formulas; the graphs provide a roadmap to find the few ones which have given solutions so far.
Each dimension has presented a peculiarity related to properties of the class of Nambu–Poisson brackets.
In 3D, we encoded the first instance where the Nambu–Poisson bracket is degenerate (of rank ≤ 2),
that is, different than the maximal-rank Poisson bracket. In 4D, we skew-symmetrised the formulas of
micro-graphs to account for solutions’ anti-symmetry with respect to two Casimirs. Overall, we notice an
interplay between expansions of graphs between dimensions, and the ‘goodness’ of their formulas. The
behaviour of solutions in dimension d to dimensions d− 1 and d+ 1 exhibits two curious properties.

Claim 9. We can project a 4D solution down to a 3D solution by setting the last Casimir equal to the
last coordinate: a2 = w. Similarly, we can project a 3D solution down to a 2D solution by setting the
Casimir equal to the last coordinate: a1 = z. Formulas project down to previously found formulas:

ϕ
(
X⃗γ3

d=4(P )
) a2=w−−−−→ ϕ

(
X⃗γ3

d=3(P )
) a1=z−−−→ ϕ

(
X⃗γ3

d=2(P )
)
.

Claim 10. There exist solutions in 3D and 4D over the descendants of a 2D solution, the sunflower.
But descendants of known solutions in 3D do not give solutions in 4D.

Comment. This would have been practical for reducing computing time. We have 41 3D graphs obtained
from expanding the sunflower, and solutions in 3D over 10 such graphs. Moving up to a higher dimension,
it would be ideal to search over descendants of a 3D solution, but we observe this is not possible.

Open problem 1. What is the formula of the trivialising vector field X⃗γ3

d (P ) in dimensions d ≥ 5, if it
exists at all?
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Open problem 2. In which dimensions are deformations of Nambu–Poisson brackets by other ‘good
graphs’ in the Kontsevich graph complex, such as γ5, γ7, [γ3, γ5], (non)trivial?

The order of the problem also increases with the choice of ‘good graph’, for instance computing with
γ5 in dimension 3 is more costly than computing with γ3 in dimension 4, see [3, 10].

5 Conclusion
We observed that in dimension 4, the Kontsevich γ3-flow is trivial for the class of Nambu–Poisson brackets.
In other words, the deformation of the class of Nambu–Poisson brackets by γ3 in 4D amounts to a

change of coordinates along a vector field X⃗γ3

d=4(P ). So far, in dimensions 2, 3 and 4, we have that the
Nambu–Poisson system is isolated in that it withstands the deforming action of the Kontsevich graph γ3.
Achieving this result was only possible by using the series of simplifications introduced here.
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