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Kurzzusammenfassung

Es ist eine natiirliche Annahme, dass die energiereichsten beobachteten Teilchen (> 10'® eV), die
ultra-hochenergetische Kosmische Strahlung (UHECRs), moglicherweise in Verbindung mit den
leuchtkriftigsten zeitlich beschrinkten Ereignissen (> 10°? erg s~!), sogenannten Gammablitzen
(GRBs), stehen. Als Folge der Wechselwirkungen zwischen den extrem beschleunigten, in Magnet-
feldern gefangenen Protonen und Ionen und den Photonfeldern im Inneren der Gammablitze wer-
den sowohl Neutronen als auch UHE Neutrinos erwartet. Erstere kénnen die Quelle verlassen und
zerfallen zu Protonen via (-Zerfall, welche zur Erde propagieren und dort als UHECR, detektiert
werden konnen, wihrend Letztere, wenn detektiert, den eindeutigen Beweis fiir die Beschleunigung
von Hadronen in besagten Quellen erbringen wiirden.

Vor Kurzem haben km?3-groBe Neutrinoteleskope, wie IceCube, endlich die benétigte Sensitivitét
erreicht, um die Neutrinovorhersagen fiir einige existierende GRB-Modelle zu testen. In diesem
Zusammenhang préasentieren wir hier ein Uberarbeitetes, selbstkonsistentes Modell der gemein-
samen Produktion von UHE Protonen und Neutrinos in GRBs. Dieses enthélt eine hochmoderne,
verbesserte numerische Kalkulation des Neutrinoflusses (NeuCosmA), ein verallgemeinertes Emis-
sionsmodell fiir UHECR, welches darauf beruht, dass einige Protonen direkt aus den Magnetfeldern
innerhalb der Quelle entkommen kénnen ohne wechselzuwirken, und bezieht die Energieverluste der
Protonen auf ihrem Weg zur Erde mit ein. Wir nutzen unsere Voraussagen, um einen genaueren
Blick auf die Verbindung zwischen Kosmischer Strahlung und Neutrinos zu werfen, und stellen
fest, dass aktuelle UHECR, Beobachtungen mittels gigantischen Luftschauerdetektoren zusammen
mit den oberen Schranken auf den Neutrinofluss von GRBs bereits ausreichen, um Widerspriiche
zu einigen Emissions- und Propagationsmodellen aufzuzeigen, und deuten uns in die Richtung
einiger Voraussetzungen, die von GRBs erfiillt sein miissen, sollten diese die Quellen der UHECRs
sein. Des Weiteren verfeinern wir unsere Analyse, indem wir ein dynamisches Explosionsmodell
studieren, mittels welcher wir herausfinden, dass unterschiedliche Teilchen von bestimmten Phasen
des expandieren GRBs stammen, welche durch unterschiedliche Bedingungen charakterisiert sind.
Zum Schluss betrachten wir die Méglichkeit von "neuer Physik”, den Zerfall von UHE Neutrinos
im Neutrinofluss von GRBs. Im Groflen und Ganzen zeigen unsere Ergebnisse, dass selbstkon-
sistente Modelle mittlerweile ein integraler Bestandteil fiir den Fortschritt dieses Feldes geworden
sind, wenn man berticksichtigt, dass der Gesamtzusammenhang des UHE Universums erst sichtbar
wird, wenn man den Himmel in unterschiedlichen Kanalen betrachtet, genauer gesagt gleichzeitig
in Gammastrahlung, in Kosmischer Strahlung und in Neutrinos.
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Abstract

It is natural to consider the possibility that the most energetic particles detected (> 10'8 eV),
ultra-high-energy cosmic rays (UHECRs), are originated at the most luminous transient events
observed (> 10%2 erg s=!), gamma-ray bursts (GRBs). As a result of the interaction of highly-
accelerated, magnetically-confined protons and ions with the photon field inside the burst, both
neutrons and UHE neutrinos are expected to be created: the former escape the source and S-decay
into protons which propagate to Earth, where they are detected as UHECRs, while the latter, if
detected, would constitute the smoking gun of hadronic acceleration in the sources.

Recently, km-scale neutrino telescopes such as IceCube have finally reached the sensitivities re-
quired to probe the neutrino predictions of some of the existing GRB models. On that account, we
present here a revised, self-consistent model of joint UHE proton and neutrino production at GRBs
that includes a state-of-the-art, improved numerical calculation of the neutrino flux (NeuCosmA);
that uses a generalised UHECR, emission model where some of the protons in the sources are able
to "leak out” of their magnetic confinement before having interacted; and that takes into account
the energy losses of the protons during their propagation to Earth. We use our predictions to take
a close look at the cosmic ray-neutrino connection and find that the current UHECR observations
by giant air shower detectors, together with the upper bounds on the flux of neutrinos from GRBs,
are already sufficient to put tension on several possibilities of particle emission and propagation,
and to point us towards some requirements that should be fulfilled by GRBs if they are to be the
sources of the UHECRs. We further refine our analysis by studying a dynamical burst model,
where we find that the different particle species originate at distinct stages of the expanding GRB,
each under particular conditions. Finally, we consider a possibility of new physics: the effect of
neutrino decay in the flux of UHE neutrinos from GRBs. On the whole, our results demonstrate
that self-consistent models of particle production are now integral to the advancement of the field,
given that the full picture of the UHE Universe will only emerge as a result of looking at the
multi-messenger sky, ¢.e., at gamma-rays, cosmic rays, and neutrinos simultaneously.
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Life is to be lived, not controlled;

and humanity is won by continuing to play
in face of certain defeat.

Invisible Man, by Ralph Ellison

A little flesh, a little breath,
and a Reason to rule all — that is myself.
Meditations, by Marcus Aurelius






Chapter 1

Introduction: gamma-ray bursts and
the UHE messengers

1.1 Motivation: the big (multi-messenger) picture

Since the 1960s, intense bursts of gamma-ray radiation have been detected; these gamma-ray
bursts (GRBs) are the most luminous transient events in the observed Universe. Fifty years of
study have revealed that they are distributed isotropically, that they are extragalactic objects
(GRBs with redshifts of up to ~ 8.2 have been observed, corresponding to ~ 4 Gpc, the size of
the observable Universe), and that they come in, at least, two populations, depending on whether
they last for a short or a long time. Gamma-ray luminosities of GRBs are of the order of 10°?
erg s~', a magnitude that should be compared to the 1033 erg s=! emitted by the Sun, 10*! erg
s~! by a supernova, and 10% erg s~! by a whole galaxy. Concentrated in burst episodes that last
from less than one second to a few hundreds of seconds, it is easy to see that GRBs are able to
outshine a galaxy while they last. Lacking direct observation of the mechanism driving the source,
however, we can only hypothesise how the gamma- ray emission is generated. There are two
competing possibilities: theories of leptonic origin of the emission postulate that the gamma-rays
are the synchrotron radiation of highly-accelerated electrons, while the hadronic origin theories
postulate that there is a sizable amount of baryons (protons and ions) in the source, which get
accelerated to very high energies due to the presence of intense magnetic fields at the source, and
show synchrotron radiation and interaction products are responsible for the observed gamma-rays.

In parallel, since 1962 we have been detecting cosmic rays —charged particles from outside the
terrestrial atmosphere— of the highest energies, > 10'® eV. These ultra-high-energy cosmic rays
(UHECRSs) are the most energetic particles observed so far. One of the most energetic cosmic
rays was detected by the Fly’s Eye Experiment, in Utah, in 1991 [I]: the event, baptised as the
“oh-my-God particle”, had an energy of ~ 3-10?° eV, or about 50 J, which is approximately 40
million times higher than a 7 TeV proton in the LHC. To put this in context, this is equivalent to
the energy carried by a baseball (142 g) traveling at 94 km h~! or by a football (410 g) traveling
at 55 km h~!, but concentrated in a volume of radius of roughly 1 fm = 107!5 m. At this energy,
the deviation of the particle’s speed relative to the speed of light is about 5 parts in 10%4. Thus,
UHECRs are extremely energetic particles, and they are so rare that only a few dozen have been
detected in the fifty years following their discovery.

It is only natural to wonder whether the most energetic particles seen -UHECRs— could be gen-
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erated in the most luminous events — GRBs. Under the assumption of a hadronic origin of the
gamma-ray emission, there would be a highly energetic population of protons and nuclei in the
source. Let us take protons for concreteness, which will actually be our working assumption
throughout the bulk of this thesis. Because of the intense magnetic fields, they would remain
trapped inside the sources. Due to the high photon densities expected to exist in the source —
GRBs are, after all, extremely luminous in gamma-rays—, it is expected that proton-photon (py)
interactions occur often. In these, neutrons would be produced, e.g., via the creation and decay
of the A1 (1232) resonance: py — A™ (1232), followed by the A™ (1232) decay into either 7t n
or 7. The neutrons are no longer magnetically confined within the source: they escape from it,
and f—decay into protons, which propagate over cosmological baselines from the high redshift of
the source to the local Universe, to be detected at Earth as UHECRs. The 7° decays into two
gamma-ray photons, which contribute to the electromagnetic emission of the GRB.

What is the distinct signature of this hadronic acceleration scenario? The smoking gun is provided
by the UHE neutrinos created in the decay of the charged pions: 7" — utv, — vuveety,.
Therefore, within the hadronic acceleration scenario, there should be a flux of UHE neutrinos
accompanying the UHECR and gamma-ray fluxes from GRBs. While this prediction has been
known for several decades, no evidence of these neutrinos had been seen so far, on account of
the insufficient size of the Cerenkov detectors used to search for the neutrinos. The situation
has recently changed, when in 2012, the IceCube neutrino telescope, a 1 km3-scale detector that
uses the pure Antarctic ice as target for the UHE neutrinos, attained enough sensitivity to finally
reach the level of the neutrino flux predictions of an analytical, basic version of the neutron-escape
model outlined above [2]: IceCube failed to detect any neutrinos in coincidence with more than two
hundred observed GRBs, and the predicted added flux from all of them exceeded the corresponding
upper bound [3]. This version of the model was hence discarded. However, more refined, numerical
recalculations yield predictions that still lie one order of magnitude below the upper bound; see,
e.g., Refs. [4, [5].

Furthermore, in 2013, IceCube reported the first detection of UHE neutrinos, with energies in the
range 30 TeV to 2 PeV, and a highly probable astrophysical origin [6] 7, [§]. This is a milestone, since
the detection of the long-sought UHE astrophysical neutrinos marks the beginning of the neutrino
astronomy era and the first strong hint of the validity of the hadronic acceleration scenarios as
their origin. Hence, we now know that the UHE neutrinos exist, but we have not yet identified
their origin.

The work contained in this thesis constitutes a step in that direction. We present refinements
of the UHECR-neutrino connection in GRBs, in the form of a source model where protons are
able to leak out of their magnetic confinement and the neutrino emission is altered, the use of
UHECR observations and neutrino upper bounds to constrain the parameter space of this joint
production model, and a dynamical burst model, where we discard the assumption that all of the
different particles species in the source are emitted under identical conditions. We also explore the
possibility of testing a particular form of new physics, neutrino decay, in the GRB neutrino flux.

The present era of larger and more sensitive gamma-ray, cosmic-ray, and neutrino detectors, has
granted us, first, high-statistics catalogues of GRBs, second, a more precise and extended deter-
mination of the UHECR flux over several energy decades, and, third, the knowledge that UHE
neutrinos do exist. In this context, and in light of the latest bounds on GRB neutrinos by IceCube,
it has become necessary to go beyond the initial predictions, an aim which, we believe, our work
helps to achieve.
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1.2 Historical perspectives

1.2.1 Gamma-ray bursts

In 1963, the Partial Nuclear Test Ban Treaty was signed by the Soviet Union, the United King-
dom, and the United States of America, to prevent test detonations of nuclear weapons in the
atmosphere, outer space, and underwater. In order to enforce the treaty, the U.S.A. developed
and launched a series of six pairs of satellites named Vela, which carried X-ray, gamma-ray, and
neutron detectors. While the first four pairs of satellites, Vela 1 through 4, lacked the spatial res-
olution capabilities to pinpoint the source of the emission, the fifth iteration had it. While intense
gamma-ray emission from a nuclear explosion was expected to last 1079 s or less, longer-lasting
bursts of gamma-ray, of order 10 s or more, were unexpectedly detected. The first burst was de-
tected, by inspecting archival data, by Vela 3 and 4, on July 2nd, 1967, at 14:19 UTC. By 1973, the
satellites had detected sixteen of these events [9], in the energy range 0.2—1.5 MeV, with durations
shorter than ~ 1 s to 30 s, and fluences between ~ 107° erg cm™2 to ~ 2-107% erg cm™2. The
directional capabilities of Vela 5a and 5b allowed to eliminate the Earth and solar flares as sources.
In addition, no supernova was reported in coincidence with the detections. Furthermore, already
at this low level of statistics, the bursts seemed to be distributed isotropically on the sky, thus
hinting at a possible cosmic origin. The publication of these first results in 1973 by Klebesadel,
Strong, and Olson in Ref. [9] marks the beginning of the study of gamma-ray bursts (GRBs).

Already in the discovery paper, it was claimed that “significant time structure within bursts was
observed” [9]. Indeed, the light curves of GRBs (i.e., photon count vs. time) exhibit small-scale
structure (see Fig. , of the order of 1 ms or shorter, that suggests that whatever process
is responsible for the gamma-ray emission, it has to take place with a maximum length scale
of (1 ms) -¢/(1+ z) at the source, assuming it is located at a redshift z. This observation has
been incorporated in the so-called fireball model, the current paradigm of how the GRB emission
occurs; see section Fig. shows a few sample GRB light curves recorded by the BATSE
detector [10]. A large variation in curve shape is evident, a fact that has made building a single
underlying model of GRBs a challenging task. However, the small-scale structure, in the form of
“noise-like” peaks, is clearly visible in all of the light curves, which hints at a common underlying
emission mechanism.

Interest in GRBs and their nature grew. Starting from 1978, the 1st Inter-Planetary Network of
satellites, which included the Vela satellites, was used to determine the position of GRBs with
an accuracy of a few minutes of arc [12]. From 1991 to 2000, the Burst and Transient Source
Explorer (BATSE) instrument onboard the Compton Gamma Ray Observatory detected 2704
bursts of different luminosity. BATSE provided strong confirmation of the isotropic distribution
of GRBs [13] by calculating dipole and quadrupole moments of the GRB arrival directions and
showing that the bursts are not concentrated around the Galactic plane, which would have been
the most likely scenario had the bursts originated inside the Milky Way; see Fig.

Additionally, BATSE revealed that GRBs can be classified in two populations [I5], depending on
the duration of the gamma-ray emission: short-duration bursts, which last up to 2 s and account
for about 30% of the bursts detected, and long-duration bursts, which last beyond 2 s, up to
tens or, rarely, hundreds of seconds; see Fig. The gamma-ray spectrum of the short-duration
bursts is typically harder than that of the long-duration bursts. Currently, it is believed that
short-duration bursts occur as a result of the merger of a binary neutron star, or of a binary star
and black hole [I6]. On account of the higher statistics (70% of the total bursts), long-duration
bursts haven been more widely studied: they have been observed to occur in association with
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Figure 1.1: A few sample GRB light curves recorded by the BATSE detector. Taken from Ref. [I0].

core-collapse supernovae [I7]. A possibly third population of GRBs, lasting for more than 10000 s,
was discovered in 2009 (see, e.g., Refs. [I8,[19]): while only few of them have been so far observed,
it is believed that they might result from the collapse of a blue supergiant star.

After BATSE, a host of satellite missions were flown, notably: BeppoSAX (1996-2003), the first
X-ray instrument capable of simultaneously observing in three energy decades (0.1 to 300 keV),
which played a key role in confirming the extragalactic nature of GRBs in 1997 [20]; the Konus-
WIND (1994-) gamma-ray instrument onboard the WIND satellite, sensitive in the range 10 keV
to 10 MeV [21]; the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL, 2002-),
capable of observing GRBs in the gamma-ray, X-ray, and visible wavelengths simultaneously (15
keV to 10 MeV) [22]; the Swift Gamma-Ray Burst Mission (2004-), or Swift, which observed for the
first time the afterglow of short-duration GRBs [23]; and the Fermi Gamma-ray Space Telescope
(2008-), or Fermi, which carries two onboard instruments for GRB studies, the Gamma-ray Burst
Monitor (GBM), sensitive in the range 150 keV-30 MeV, and the Large Area Telescope (LAT),
sensitive in the range 30 MeV-300 GeV [24]. As of February of 2014, FermiGBM had detected
1310 bursts, while LAT had detected 73. In April of 2013, Fermi detected GRB130427A [25] (also
seen by Swift [26] and Konus-WIND [27]), a nearby (z = 0.34) burst with the highest energy
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Figure 1.3: Distribution of the duration of the GRBs in the BATSE 4B catalogue. Taken from Ref. [14].

output seen (~ 3-10° erg s~!), including the detection of the most energetic photon so far, with

94 GeV [28].

Swift and Fermi continue to monitor the sky for GRBs. New missions, like the upcoming joint
Chinese-French satellite SVOM [29], seem to guarantee a steady rise of the size of GRB samples
in the coming years, and with it, a better chance of testing theoretical predictions.
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Figure 1.4: Average values of the results obtained by Hess during his 1912 balloon flights. Data plotted from
Ref. [32].

1.2.2 Cosmic rays

After the discovery of of X-rays in 1895 by Wilhelm Roéntgen and of radioactivity in 1896 by Henri
Becquerel, followed by the work of Ernest Rutherford, Paul Villard —who discovered gamma-rays
in 1900-, and Pierre and Marie Curie, it was widely believed that all of the environmental ionising
radiation had as a source the radioactive elements in the Earth’s crust and atmosphere. However,
early experiments cast doubt over this belief: in 1909, Theodor Wulf used an electrometer to
show the ionisation rate at the top of the Eiffel Tower was higher than at its base [30], while in
1911, Domenico Pacini performed measurements at different locations, including at mountains of
different heights and at 3 m deep under the sea (which resulted in a 20% reduction of the ionisation
rate), and reached the conclusion that at least part of the ionising radiation had to have an origin
other than the radioactivity of the Earth [31].

In order to settle the issue, in 1912 Victor Hess performed seven high-altitude balloon flights, up
to 5.3 km, and used three electrometers to measure the ionisation rate at different altitudes. He
found that it initially decreased, up to a height of about 1 km, and then increased by a factor of up
to ~ 3.5 compared to the value at ground level [32]; see Fig. Thus, Hess observed that, in fact,
close to the ground the ionisation rate did seem to depend on the ground radioactivity, since the
rate initially went down with altitude. However, a new source of ionising radiation seemed to set
in at altitudes above 1 km. By performing a flight during a near-total eclipse, Hess ruled out the
Sun as the source of the rising radiation. Later balloon flights performed by Werner Kolhorster in
1913 and 1914 up to an altitude of 9 km confirmed these observations. Hess therefore concluded
that the most likely explanation was that powerful radiation from beyond the atmosphere was
responsible for the ionisation, a discovery for which he was awarded the Nobel Prize for Physics
in 1936.

The term “cosmic rays” was coined by Robert Millikan in 1920, who believed that they were
mainly energetic photons. Later, however, in 1927, J. Clay found that the intensity of cosmic
rays varies with latitude (from Java to Genova and later from Java to Amsterdam), an indication
that they were being deflected by the Earth’s magnetic field, and so they had to be charged
particles [33, B4]. Bruno Rossi in 1930 predicted that a difference in the cosmic rays intensities
coming from the east and the west, depending on their charge [35]. The confirmation of this effect
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by three experiments, and further work carried out between 1930 and 1945, proved that cosmic
rays were mostly positively charged, i.e., that they were mainly protons. Later on, Homi Bhabha
and Walther Heitler would go on to develop a theory of how the secondary particles produced by
the interaction of a cosmic ray electron with the atoms in the atmosphere cascade down to the
ground [36], a theory that has been extended to include other types of primary cosmic rays and
which serves as the basis of the modern understanding of atmospheric particle showers initiated
by cosmic rays, also known as air showers.

Up to cosmic ray energies of ~ 104 eV, direct detection of the cosmic rays remains feasible.
However, the abundance of cosmic rays with higher energies drops rapidly —as a power law in
the energy, as we will see— and so direct detection of the primary becomes impractical, due to
limited detector sizes and exposure times. At these energies, indirect observation of cosmic rays
becomes the main detection method: instead of detecting the primary cosmic ray, experiments
focus on detecting the shower of secondary particles that is produced in the many interactions
of the primary and its secondaries as they travel downwards in the atmosphere. Bruno Rossi
was one of the first to experimentally study air showers, in 1934 [37]: he realised that, since
groups of different particles seen at ground level were detected simultaneously, they must have
been generated by a common interaction due to a primary cosmic ray in the atmosphere. In order
to detect these showers, an array of detectors was spread over a large area to sample the particle
densities at different locations and to use the reconstructed energy and multiplicities at each of
them to infer the energy of the primary cosmic ray. However, it is Pierre Auger who is credited for
the discovery, in 1939, of extensive air showers, ¢.e., showers of secondary particles extending over
an area of several km?, and initiated by particularly energetic primary cosmic rays [38]. Auger
estimated that the energy of the primary cosmic ray of an extensive air shower had to be larger
than 10'° eV.

The next step in cosmic ray history is especially relevant for our work: the Volcano Ranch ex-
periment, led by John Linsley in New Mexico, consisted of nineteen plastic scintillator surface
detectors that covered an area of 9 km?. Plastic scintillators have the property of luminescence:
when excited by the ionising radiation of the impinging particles, they will radiate visible light,
which is then amplified by photomultipliers and detected. On February 22, 1962, the experiment
detected the first ultra-high-energy cosmic ray (UHECR), a single cosmic ray with energy above
10%° eV [39]. Later observations confirmed that these are extremely rare events: at these energies,
the flux of cosmic rays that reach the ground is only ~ 1 particle per km? per century. Hence,
it is unfeasible to detect them except by indirect means, and the larger the area covered by the
detectors, the higher the chance of collecting the secondaries of these most energetic of cosmic
rays. The use of plastic scintillators popularised, and several other extensive air shower detectors
made use of them, notably, the Haverah Park experiment in England [40], Yakutsk in Russia [41],
the Sydney University Giant Airshower Recorder (SUGAR) in Australia [42], and the Akeno Giant
Air Shower Array (AGASA) in Japan, the latter with about 100 km? [43].

A different cosmic ray detection method consists in seeing the Cerenkov light generated by the
particles of the air showers at ground level. For this, just as for the scintillator detectors, arrays
of water tanks fitted with photomultipliers are spread to cover a large area. When an energetic
particle of the air shower enters the tank, it will travel faster than the speed of light in the water,
and hence emit a Cerenkov light front that is recorded and used to reconstruct the energy of the
particle. Yet another method consists in detecting the fluorescence light generated during the
longitudinal development of the air shower in the atmosphere: the high-energy photons from the
air shower excite No molecules in the atmosphere, which emit a lower-energy, ultraviolet photon
when they de-excite. This fluorescence light can be observed, on Moonless nights, at distances
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Figure 1.5: All-particle cosmic-ray spectrum from a variety of experiments. Taken from Ref. [54].

of up to 20 km from the shower core by photomultipliers located at the focus of a concentrating
mirror.

Currently, the largest cosmic-ray detection experiment is the Pierre Auger Observatory (PAO),
in Malargue Argentina. It is the first hybrid detector of its kind, employing 1600 water tanks
as surface Cerenkov detectors, covering an area of 3000 km?, and four air fluorescence detectors.
The PAO has now accumulated enough data to be able to probe the absolute highest tail of
the UHECR spectrum and to confirm the existence of a suppression of the flux at ~ 5-10!9
eV [44], which likely corresponds to the cut-off predicted by Greisen, Zatsepin, and Kuzmin (GZK)
in 1966 due to the interactions of the UHECRs with the photons from the cosmic microwave
background [45] 146] (see section [3.2.4)). The existence of the GZK cut-off was afterward confirmed
by the Telescope Array [47], another hybrid detector (see below), and the Fly’s Eye experiment [4§],
an air fluorescence detector. In addition, the PAO has also published correlation results between
the arrival directions UHECRs and the positions of known, close-by (< 75 Mpc) active galactic
nuclei [49], albeit only at a low significance level, and on the apparent change of composition of
the UHECRs from protons to nuclei at higher energies [50} [51]. The latter is inferred mainly by
studying the lateral development of the showers via its fluorescence emissions: showers initiated
by protons tend to contain fewer particles than those initiated by nuclei of the same energy, and
the maximum number of secondary particles for proton primaries is reached at a later stage in the
shower development than for nuclei primaries, i.e., deeper in the atmosphere.

Another kind of hybrid extensive air shower detector is the Telescope Array (TA), which uses
plastic scintillator surface detectors and fluorescence detectors, and covers an area of 762 km?,
making it smaller than PAO. In contrast to it, TA has not found evidence of a heavier UHECR
composition at higher energies [52]. In fact, the issue of the possible change towards heavier
composition with energy is controversial and ongoing; for a recent review, see Ref. [53].

After 102 years of study, we now know that the cosmic ray ray spectrum spans twelve orders of
magnitude and that it follows a power-law behaviour, with several features marking important
physical transitions. Fig. shows a compilation of data from all the main cosmic ray detection
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experiments, extracted from Ref. [54]. Two suppressed regions are evident: the first one, at
~ 10%% GeV, is due to the energy losses from electron-positron pair creation via the process
pycMB — peTe”, on photons of the cosmic microwave background and is known as the pair-
production dip; the second suppression is the GZK cut-off mentioned above, starting at ~ 5- 10!
GeV. The position of the GZK cut-off is determined by the energy threshold of the photohadronic
interaction processes pycmp — nt/pr’, which can be calculated, from the kinematics, to be
~ 5-10"" GeV. The mean free path associated to this interaction is around 50 Mpc, i.e., it is
very unlikely that that a proton with an energy higher than 5- 10! GeV reaches the Earth from a
distance larger than 50 Mpc. Hence, this distance is also known as the GZK horizon: all of the
most extreme UHECRs are expected to generated in source within this horizon.

The power-law behaviour shown in Fig. is broken at three points, where it changes the value of
the spectral index: at the knee, ~ 109° GeV, where it changes from E~27 to E~3!; at the second
knee, ~ 1057 GeV, where it changes to E~32; and at the ankle, ~ 10°° GeV, where it becomes
harder again, E~27. Each kink in the power law corresponds to a transition. The knee might
correspond to the point at which Galactic cosmic rays, believed to be created by supernovae, reach
energies high enough that their gyroradius —proportional to the energy— has grown beyond the
containment size of the Galaxy and, therefore, they escape, thus depleting the population of more
energetic Galactic cosmic rays. Protons seem to dominate the spectrum down to ~ 10'® GeV,
and the second knee might mark the energy above which the low-energy component of Galactic
heavy nuclei becomes negligible, although it might also signal the transition from Galactic to
extragalactic cosmic rays [55]. Finally, the ankle is widely thought to mark the transition from
Galactic to more energetic extragalactic cosmic rays. Throughout the twelve orders of magnitude,
the cosmic ray spectrum varies greatly: at 100 GeV, the flux is ~ 1 particle m~2 s~!; at the knee,
it has fallen to ~ 1 particle m=2 yr~'; at the ankle, ~ 1 particle km? yr~!; and at GZK cut-off,
as we mentioned earlier, it is very low, ~ 1 particle km~2 century~!. Finally, notice that while
the normalisation of the spectrum is different for different experiments in Fig. they can all
be made to coincide by a shift of the energy scale, within the energy uncertainty of each distinct
experiment, with the goal of making them all coincide at the pair-production dip.

Thus, we see that, while a century after the discovery of cosmic rays, and fifty years after the
discovery of UHECRs, we know much more about them, their origin and their composition still
elude us. Thanks to large-area detectors of the current generation, however, we are finally able to
start giving meaningful answers to these questions.

1.2.3 Ultra-high-energy neutrinos

Neutrinos were postulated in 1930 by Wolfgang Pauli as a last resort to ensure the conservation
of energy, momentum, and spin in 8 decay: they were to be electrically neutral, light fermions
(particles with spin 1/2) that were emitted together with the proton and the electron, i.e., n —
pev,. Their existence remained as hypothetical until 1956, when Clyde Cowan, Frederick Reines,
F. B. Harrison, H. W. Kruse, and A. D. McGuire reported their discovery via inverse 5 decay [57]:
in the process 7.p — ne™, the positron will quickly annihilate with a neighbouring electron, and
the two resulting gamma-rays are detectable, while the neutron can be captured by a nucleus
and emit another gamma-ray. The coincidence of both emissions constitutes a signature of a
neutrino interaction. Later, the other two flavours of (active) neutrinosE], the muon-neutrino and

'Motivated by several expermental anomalies, e.g., in short-baseline neutrino oscillation experiments, it is possible
that a different type of neutrinos exists: sterile neutrinos, which do not interact with the other particles of the
Standard Model, but whose existence might be inferred by their mixing with the active neutrinos [58] [59].
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Figure 1.6: Astrophysical and cosmic neutrino spectra. Taken from Ref. [56].

tau-neutrino, were discovered, respectively, in 1962, by Leon M. Lederman, Melvin Schwartz and
Jack Steinberger [60], and by the DONUT Collaboration, in 2000 [61].

Since then, neutrinos have been detected in a wide range of energies and from a variety of sources,
both natural, like the cosmic ray interactions in the atmosphere (2 100 GeV) [62], the Sun (0.1—18
MeV) [63], supernovae (< 60 MeV) [64], and geoneutrinos from the decay of radioactive elements
in the Earth’s interior (< 4 MeV) [65]; and manmade, including neutrinos from accelerators (< 10
GeV) [66] and nuclear reactors (< 10 MeV) [67].

The fact that neutrinos are subject only to weak interactions, via either W or Z bosons, makes
them notoriously difficult to detect. Point in case: the typical weak cross section of 10742 cm?
results in an extraordinaryly long mean free path of neutrinos of more than one light year of lead.
Hence, neutrino detector must be either very dense or very large; ideally, they should be both.
One of the most widely used detection method is through the observation of Cerenkov radiation,
in much the same way as for cosmic rays (see previous section). Cerenkov experiments typically
consis large tanks of ultra-pure water, or of water doped with specific dopants, and instrumented
with photomultipliers. To reduce the background of cosmic rays, which might be mistakenly
reconstructed as neutrinos, the detectors are placed deep underground, typically a kilometer or
more below a mountain. The Super-Kamiokande detector, for instance —the descendent of the
Kamiokande-II detector—is located 1 km below the Mozumi Mine in Kamioka, Japan, and consists
in a tank that holds fifty thousand tons of water, the inner walls lined up with photomultipliers.
The observation of a neutrino in a Cerenkov detector is akin to the observation of a cosmic ray in
surface detectors that we mentioned in the previous section: in the rare occasions when a neutrino
impinges on a nucleon of the water and creates a fast, charged lepton (either an electron or a muon,
since tau-neutrinos are rare), the latter, moving at a speed higher than the speed of light in water
will create a Cerenkov light front that will leave a ring-like imprint on the wall of photomultipliers.

Up until 2013, the only extraterrestrial neutrinos that had been observed were neutrinos (v, ) from
the Sun, with a flux of ~ 7-10'° neutrinos cm™2 s~!, and a handful of neutrinos attributed to the
supernova SN1987A, detected by the Kamiokande II (11 anti-neutrinos detected), the IrvineMichi-
ganBrookhaven (IMB) detector (8 anti-neutrinos), and the Baksan detector (5 antineutrinos), all
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of them Cerenkov detectors. In 2013, the IceCube neutrino experiment reported the detection
—with more than 5o statistical significane— of the first UHE neutrinos, very likely of astrophysical
and even extragalactic origin, with energies between 30 TeV and 2 PeV [6] [7, [§]. IceCube is also
a Cerenkov detector. However, it differs from other such detectors in two ways: first, instead of
water, it uses pure, Antarctic ice as target and, second, when it was completed, in late 2010, it
became the largest neutrino Cerenkov detector, with an instrumented volume of 1 km?. Digital
optical modules (DOMs) containing photomultipliers are arranged in strings of sixty units, and
buried in ice at depths from 1450 m to 2450 m; see Fig. [I.7] Within the main instrumental array,
strings are separated by 125 m, while DOMSs on a string have a separation of 17 m between them.
A section of the ice located in the center of the array, dubbed DeepCore, has been more densely
instrumented, in order to achieve a lower neutrino energy threshold for detection (~ 100 GeV).
As seen in Fig. IceCube was built on a predecessing array, the Antarctic Muon And Neutrino
Detector Array (AMANDA), which served as a proof of principle for the technique from 1996 to
2009.

There are two main event topologies in IceCube associated to neutrinos: cascades and muon tracks.
Cascades can be created by the neutral-current interaction of any flavour of neutrinos (v, N —
v, N'), which generates a hadronic cascade, or by the charged-current interaction of electron-
neutrinos (v, N — eN'), which generates an electromagnetic cascade, i.e., one with more electron
and photon content. In both cases, cascades are seen as localised and sometimes approximately
spherical regions of light emission. Since all of the event is likely to be contained within the
detector, the uncertainty in the energy reconstruction is low (~ 15% above 10 TeV [68]), but,
due to the approximately point-like shape (on the length scale of the strings and the DOMs),
their uncertainty in the reconstruction of their arrival direction is high, ranging from 10° to 40°.
On the other hand, muon tracks are created as a result of the charged-current interaction of a
muon-neutrino (v, N — uN'): the highly energetic muon exits the region of the interaction vertex
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and, while propagating, leaves a path of photons that can be used to reconstruct its direction with
high accuracy (< 1°). In this case, due to the large muon mean free path in ice, it is common
for only part of the muon track to be contained within the detector, which is why the uncertainty
in the energy reconstruction of the muon is high, and depends on what fraction of the track
is contained [68]. Furthermore, it is expected that tau-neutrinos with energies around PeV can
sometimes be identified via two distinct event topologies [69]: a “double bang”, where both the
hadronic shower at the v, N interaction vertex where a tau lepton is created and the vertex where
it decays again into a v; are contained within the detector, and a “lollipop”, when only the latter
is.

In 2013 and 2014, IceCube reported the detection of UHE neutrinos in data collected in the period
2010-2012: 37 events in the range 30 TeV-2 PeV [§], 8 of which are muon tracks, 28 are cascades,
and 1 is likely to be a background muon eventﬂ Even with these low numbers, it appears that the
signal is isotropic, that it does not show any time clustering, nor is it coincident with the occurrence
of GRBs. The signal is consistent with a flux of 107® GeV cm™2 s~ sr~! per flavour. Given the
proximity of this value to the original prediction by Waxman and Bahcall [70] for the magnitude of
a cosmic flux of neutrinos, it can be interpreted as a mild hint of its potential extragalactic origin.
On the other hand, no events have so far been detected above 2 PeV. Whether this is a limitation
of the detector size, exposure time, or the search algorithms, or whether this is a physical cut-off,
is still an open question. With the current level of statistics, the neutrino spectrum can be fitted
either by a E~2 power law with an exponential cut-off at 2 PeV, or with a steeper power law,
closer to E~23, without a cut-off.

Clearly, the era of neutrino astronomy has begun and we need only wait for the accumulation of
more data in order to start probing the theoretical predictions rigurously.

1.3 The UHE multi-messenger picture within the GRB fireball
model

Cosmic ray observations tell us that particles with energies higher than 10'? eV hit the Earth,
which are expected to be of extragalactic origin. The search for the sources of these ultra-high
energy cosmic rays (UHECRS) is therefore one of the main objectives in high-energy astrophysics.
It can be either performed directly, by cosmic ray observations, or indirectly, by looking for the
neutrinos accompanying the cosmic ray emission. So far, no evidence for a correlation between
specific UHECR sources and cosmic ray measurements has been found.

One class of potential UHECR sources are gamma-ray burst (GRB) fireballs (see Refs. [71} [72] for
reviews), where the cosmic rays are expected to be accelerated to the highest energies by collisions
with the interstellar medium [73], or by internal collisions inside the ejected material [74} [75]. The
general fireball model describes a GRB as a catastrophic release of energy, during which matter
of the order of a solar rest mass is ejected from a compact object. These ejecta are then first
accelerated to ultra-relativistic speeds, and are then assumed to coast at constant velocity while
expanding into interstellar space. It is assumed that the bursts can also lose energy via radiation
at higher radii during the expansion of the fireball. The expansion ends when the ejecta hit the
interstellar medium and are decelerated. The observations in several energy bands have shown that
GRBs have several distinct phases of emission, with the prompt emission phase being the most

2This is suspected, since the signal within the detector was correlated with a signal at IceCube’s own surface
Cerenkov detector, IceTop, which is used as a veto to eliminate atmospheric muon events.
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energetic one. During this phase, the burst is mainly visible in gamma-rays, and the emission is
assumed to originate from the coasting phase of the fireball. The high variability and non-thermal
properties of the observed gamma-ray spectra give rise to the notion that the prompt emission
might be due to the collision of internal shells, leading to Fermi shock acceleration of the charged
particles such as electrons or protons (internal shock model). While recent observations point
towards a heavier composition at the highest energies [50], we focus on protons as candidates for
the UHECRS in this study, for which plausible models for the particle acceleration and emission
from GRBs exist. Especially the idea of indirect escape of protons, via neutrons, from the shells
has been a very popular extension of the internal shock model in the literature. However, there
are also several other alternative models for GRB emission which describe certain aspects of the
observed emission well, such as magnetic reconnection models |76, [77, [78] or photospheric emission
models [79, [0, 8T, 82} [83] [84, [85].

Because of the high photon densities, it is expected that the protons accelerated in the colliding
shocks dissipate energy into pion production. In the standard picture, this can be described by
the A(1232)-resonance

n+nt of all cases

p+'y—>A+—>{ (1.1)

wliny Wl

p+ 7 of all cases

A substantial neutrino flux then originates from 7% decays via the decay chain

t = /ﬁ—l-z/u,

pt = et + v+, (1.2)
where v, : v, : v, are produced in the ratio 1:2: 0. On the other hand, the neutrons decay via
n—p+te +, (1.3)

typically outside the source, which leads to a cosmic ray (proton) flux even if the protons themselves
are magnetically confined (“neutron model”), as discussed in, e.g., [86]. Highly energetic gamma-
rays originating from the 7° decays are injected into the electromagnetic cascade, which leads to
constraints from the Fermi-LAT diffuse GRB measurement; see, e.g., [87] or [88].

The neutrino flux has been predicted for the standard internal shock model in [89], assuming that
GRBs are the sources of the UHECRs. If one assumes that the observed gamma-ray spectrum rep-
resents the photon density within the source in the prompt phase, one can calculate the expected
neutrino fluence from the observed gamma-ray fluence; corresponding analytical methods have
been developed in [2], [90], and [9I]. Recently, the IceCube collaboration has however strongly
constrained the neutrino flux from GRBs, see [3, 92], with the conclusion that these simple ap-
proaches are already severely constrained. Nonetheless, it is known that additional photomeson
production processes somewhat harden the neutrino spectra, and that the cooling of the secon-
daries and flavor mixing change the spectral shape and flavor composition, see [93], [94], [95], [96],
and [97]. In addition, the predicted normalization is significantly reduced if spectral effects on the
pion production efficiency, the energy dependence of the mean free path of the protons, and the
impact of the secondary cooling on the energy budget are taken into account, see [4], [98], and [5].
If one extrapolates a quasi-diffuse flux from a few GRBs, the low statistics of the stacking sample
will lead to a systematical error [99]. Given the astrophysical and systematical uncertainties of
the model in [89], the current neutrino observations just start to enter the predicted neutrino flux
range, and the full-scale IceCube experiment should find neutrinos after ten years of operation if
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the baryonic loading of the jets is as high as anticipated in [4]. Note, however, that if the prompt
emission comes from larger radii, no neutrinos may be found, see [5]. Additionally, there have
been recent efforts to calculate the neutrino emission from GRBs in the dissipative photospheric
models [84], as well as efforts for model-independent calculations [7§].

As far as the direct connection between neutrinos and cosmic rays is concerned, Eq. suggests
roughly one muon neutrino per cosmic ray after flavor mixing, which changes the v, : v, : v; from
1:2:0t01:1:1. This hypothesis has been tested in [I00] and [92], with the conclusion that
GRBs cannot be the sole source of the UHECR protons. In a more general framework, the authors
of [I01] conclude that the protons resulting from photopion processes are not sufficient to explain
the cosmic-ray measurements. Therefore, we discuss the validity of the assumptions going into the
“one neutrino per cosmic ray” paradigm, henceforth called “the standard case”:

1. The protons are magnetically confined, and cosmic rays can only escape as neutrons.

2. The protons interact only once, at most, and the produced neutrons can escape from the
source (source optically thin to neutron escape).

If one of these assumptions is violated, the consequences are obvious: protons “leaking” are not
accompanied by neutrino production. On the other hand, multiple interactions will enhance the
neutrino flux compared to the standard picture, while only neutrons from the boundaries can
escape. In this study, we will explore these two regimes in addition to the standard picture, and we
will demonstrate that, for high proton acceleration efficiencies, which are required to describe the
observed UHECR spectrum, the standard case only occupies a very small region of the parameter
space.

1.4 Implementation of the GRB fireball model

We use a simplified description of the relativistically expanding fireball, based on [102], to illustrate
our main points. Primed quantities refer to the shock rest frame (SRF), and unprimed quantities
to the observer’s or source (cosmologically co-moving) frame, which we clearly indicate. GRB
observations exhibit a strong time variability over a scale t, (defined in the observer’s frame),
which can be related to a basic length scale rg = ct, /(1 + z) in the source frame. We assume that
the central engine of the GRB emits shells of thickness Ar ~ ¢-t,/(1+2) = ro in the source frame,
since causality implies that variations of the timescale ¢, can only propagate over a distance scale
Ar. The time evolution of the fireball can be divided into different zones. In the first zone, the
shell gets accelerated, powered by the energy transfer from the thermal photons to the baryons in
the shell. The Lorentz factor of the shell grows with the radius until a maximum value I is reached,
which is, in principle, given by I' = Fiy/(Mc?), where M is the total mass of baryons and Eos,
the total energy of the fireball. This transition is complete at a radius r = I'rg. Here the second
zone is considered to start: since the shell is accelerated to its maximal velocity, it coasts with
constant I', while the expansion of the width of the shell itself is still negligible. However, when the
shell reaches the radius r ~ I'? ry, the growth of the shell width can no longer be neglected, since
§Ar ~ r/T? ~ ry. We will come back to this later when we discuss the effects of an expanding
shell. For now, we assume that the shell width in the SRF is roughly given by

ty
1+ 2z

Ar' ~Te¢

(1.4)
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Figure 1.8: Diagram of a static gamma-ray burst.

at the indicated radius. At roughly the same radii,

t
Re ~2T%ry =2T%c —— 1.5
c ro T35 (1.5)
the collisions of the different shells start, based on the assumed fluctuations of the shells Lorentz
factors of the order of AT'/T" ~ 1. External collisions with the interstellar medium can also lead
to efficient proton acceleration, which we do not consider since the typical photon densities are
orders of magnitude lower than in the internal collision zone.

We focus on the description of the prompt phase, which is associated with the collisions of the
shells. Since a relativistically expanding fireball may undergo different phases in its expansion,
with varying parameters, we describe the physics of one collision, following [99], [4], and [103] and
consistent with [89] and [2]. If one assumes that the collisions occur at the same radius r¢, as it
is implied in all of the state-of-the-art neutrino analyses [3],[92], the total fluences can be obtained
by summing over N ~ Ty /t, such collisions, where Ty is the time during which 90% of the total
energy is observed. Our shell-dependent approach has the advantage that the conventional results
can be easily retrieved, and that in addition the relation to collision radius-dependent models can
be established. Fig. illustrates a fundamental assumption of our calculation: that all of the
collisions are identical and occur at the same radius Rc. This averaged picture of the burst is
already useful to make predictions of the UHECR and neutrino fluxes; however, later, in chapter
we will move beyond this static burst approximation and consider instead a dynamical burst
in which collisions occur at different raddi and under different conditions of particle densities.

For the photohadronic interactions, the secondary (such as pion) injection Q'(E’) (in units of
GeV~tecm™3s71) can be computed from the proper photon N/ (&') and proton N)(E,) densities
(SRF, in units of GeV~'cm™?) as

o0 o0

dE'
Q'(E) = / E}’ N, (E,) / cde’ N (") R(x,y) . (1.6)
E’ P 0

Here, x = E'/E,, is the fraction of energy going into the secondary particles, y = (E,¢’)/ mypc?, and
R(z,y) is a “response function”. If many interaction types are considered, this response function
can be quite complicated. Nevertheless, if it is known from particle physics, Eq. can be used
to compute the secondary injection for arbitrary proton and photon spectra; see [96]. Note that
the secondary injection depends on the product normalization of the proton density NI’)(EZ’)) and
the target photon density N,’y(a’ ). Once the proper proton and photon densities (including the
spectral shapes) are known, as well as the magnetic field B’, the secondary meson and neutron
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production is just a straightforward particle physics consequence. We use the method from [96],
based on the physics of SOPHIA [104], for the computation of the photohadronic interactions. For
the secondary meson decays (including the helicity dependence of the muon decays), see, e.g., [95].
The magnetic field effects and flavor mixing are included as in [99] and [4]. Below, we will describe
how to determine the relevant input Nj(Ej,), N/ (¢'), and B’ from the observables.

In Eq. (1.6), two types of spectra are present: the injection/ejection spectrum @’ and the steady
spectrum N’. For a specific particle species, these are related to each other by a kinetic equation
describing energy losses and escape. If the energy losses can be neglected, they are, for one species
of particles, related by

N'(E') = Q(E) . (L.7)

where t._. is the escape time. For example, the observed gamma-ray spectrum can be obtained

€esc
from Q/w whereas the spectrum relevant for the photohadronic interactions in Eq. (1.6) is ny.
Typically, one establishes a relationship between observed gamma-ray fluence and target photon
density by implying that the gamma-rays escape over t.., = tﬁiyn ~ Ar’/c, which means that
Eq. (1.7) can be used. However, if the optical thickness to pair production or other processes is of
order unity, this assumption does not apply, and the observed spectrum is not representative for

the density in the source anymore.

For N/ (&'), a broken power law is normally assumed, parameterized as

— O
( g ) v ~ <& <é

Eiy,break vy,min — v,break
NI (') ! Py 1.8
’Y( ) (E,W ireak) Egvbreak S 6/ < gg/:max ( )
0 else
with 8/7 break = O(keV) the break energy of the photon spectrum in the SRF. Typical values for the
spectral indices are o, ~ 1 and 3, ~ 2. The minimal and the maximal photon energies are chosen
tobeel i, =02eVandel =300 ; ., inour calculations, if the highest energetic photons

can escape (see below). These values are far enough away from the break energy to have no visible
effect on the predicted neutrino spectra [95, 9], though they can somewhat affect the neutron
escape spectra; see Sec. [2.3] for a more detailed discussion. In addition, the energy partition is
hardly affected by the maximal photon energy for a spectral index 3, 2 2, since the energy in
photons then depends only logarithmically on the maximal photon energy, at most. Note that
high-energy photons will not be able to escape above the pair production threshold. In this case,

we choose 5’%max consistent with the pair production thresholdﬂ

In case of the internal collisions, it is generally assumed that Fermi shock acceleration leads to a
non-thermal particle spectrum of the form

NJEL) o (1) - exp (— (52 )) (19)

p,max

with the spectral index «;, = 2. For the exponential cutoff, we choose k£ ~ 2 unless noted otherwise.
The maximal proton energy E;,max can be obtained by comparing the acceleration timescale to
the dominant loss timescale

th o (Bl o) = min [tgyn,t’ (Ep max)» tpy (B )] - (1.10)

p,max syn \"~'p,max p,max

3 We use Eq. (6) from [89] to estimate that, applicable for the e~ 2-spectra (above the break), assuming that the
photon spectrum extends to infinitely high energies. This is only a rough estimate, since gamma-rays may interact
by additional processes. The impact on €/, .« is, however, typically small.



1.4 Implementation of the GRB fireball model 17

Here we assume that the acceleration time (in Gaussian cgs units) is given by

E/
nceB'’

ace(E) = (1.11)

acc

with the elementary charge e ~ 4.803 - 1071° Fr and 7 the acceleration efficiency (7 is defined here
so that large values mean efficient acceleration). It is generally assumed that the dominant loss
mechanism is either the adiabatic loss due to the expansion of the shell or the synchrotron loss
of the protons due to the magnetic fields present in the shells. We do not consider the adiabatic
loss timescale explicitly, since we assume that it is of the same order as the dynamical timescale
dyn(E’ ). The synchrotron loss time is given by
mi
téyn( ) = 4ce%1 B2E

with the particle mass m being in erg, using the relation lerg = 624.15GeV. Moreover, the
photohadronic timescale t;w is numerically computed from the interaction rate as given in [96].

(1.12)

Let us now derive N, (&) and N, (E,) from the observables. Frequently used observables are the
(bolometrically corrected) gamma-ray fluence of a detected GRB, Spo (in units of ergem—2),
or the radiative flux F, (in units of GeVem=2s7!). Here we focus on a momentary picture of
the fireball, described by (a possibly bolometrically corrected) F,, which leads to the isotropic
equivalent energy per shell (or collision)

47 d?
ED ~ (1+L)F te

where d, is the luminosity distance. One has EI’SSh E5M /T in the SRF, and Ly iso = Eh . (14-2) /t,,.

1S0 1SO
Assuming energy equipartition between photons and electrons, the photons carry a fraction e,

(1.13)

(fraction of energy in electrons) of the total energy Elso tots and
Els}é tot — _1 Elss}é (114)

In order to compute the photon and proton densities in the SRF, it turns out to be useful to

define an “isotropic Volume” Vi, = 4m R2 Ar" o I'®, where the latter relationship can be easily

read off from Eqs. and (| . Here Vlgo can be interpreted as the volume of the interaction
region assuming 1sotr0plc emission by the sourceﬁ If the characteristics of all collisions are alike,

Sbol == Fy Tyo.
Now one can determine the normalization of the photon density in Eq. (1.8)) and the proton density

in Eq. (1.9) from

/ ! / / EISh / ! / / E/Sh

/5 N, (e")de" = %, /E N,(E,) dE;, = TV o (1.15)
iso € 1so

Here f. is the ratio between energy in electrons and protons (f;! is the baryonic loading). As-

suming that the magnetic field carries a fraction eg of El’;l}, one has in addition

Elsh Elsh
Up=L.Z0 o p— 877 Ziso (1.16)
€e V;so Vlso

4Since both the energy and the volume of the source need to be, in principle, corrected by a beaming factor, this
beaming factor cancels in the computation of the energy densities.
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After photohadronic interactions and weak decays, one obtains the injection spectrum of secondary

neutrinos or neutrons )’, which is to be translated into the observable neutrino or neutron fluence
FI (in units of GeV~! em™2) per shell:

Fh—¢, v 2L ) =
v iso 47Td% @ 1+2

(1.17)

In chapter [3] however, we discuss the impact on UHECR observations including pair production
and photohadronic losses during the UHECR proton propagation. Additionally, we assume that
neutrinos are subject to flavor mixing using the mixing angles 615 = 0.587, 613 = 0.156, 623 = 0.670,
and dcp = 1.08 7, taken from [I05] for the normal (mass) hierarchy, unless noted otherwise. For
reference, later on, in chapters [2] and [4] it will be also illustrative to show the cosmic ray proton
fluence if all protons were allowed to escape over t&yn, which represents the maximal possible

“leakage” from the source. This fluence can be obtained from Eq. (1.17) using @, = N/t .

There are three important features of our approach. First of all, we relate everything to the prompt
phase, which is implied by using the flux during that phase in Eq. . The proper densities in
Eq. describe the (steady) proton and photon densities in that phase. We do not specify the
origin of the target photons, such as synchrotron emission of co-accelerated electrons or inverse
Compton scattering. Second, we consider emitted neutrino and cosmic ray fluences instead of
fluxes, which implies that we do not need to resolve the time-dependence of the emissions. For
instance, the cosmic ray protons emitted with a different escape mechanism may not be emitted
at the same time as the gamma-rays. And, third, we compute the fluences per shell, which may
seem a bit peculiar, but has the advantage that our approach can describe dynamical changes of
the fireball parameters over time, such as collisions at different radii. If all collisions are alike, as
it is often assumed, one can easily obtain the result by summing over N ~ Ty, /t, such collisions.



Chapter 2

A two-component model of UHECR
emission

It is common for predictions of the UHECRs and UHE neutrino signals from GRBs to be made
using a so-called “neutron model”, where protons are magnetically confined inside the source,
where they create neutrons and neutrinos via py interactions; the neutrons are able to escape
the source and [-decay into protons outside the source. The lack of observation by IceCube of
neutrinos in correlation with GRBs has recently put tension on the validity of the neutron model [3].
Motivated by these results, and following a trend towards building more realistic models of UHECR
and neutrino emission, in this chapter, we discuss “direct escape” as a second UHECR escape
mechanism: high-energy protons are no longer perfectly confined within the source, but those that
lie close to the outer edges of the matter shells can directly escape from them, without undergoing
photohadronic interactions, and, hence, without producing neutrinos. While this contribution may
be generically expected to be small, we will demonstrate that it is an energy-dependent fraction
of protons which can directly escape, and that the direct escape can dominate over the escape of
neutrons produced in photohadronic interactions in regions of the parameter space.

2.1 Neutron and direct proton escape from an expanding shell

If the particles are isotropically distributed inside an expanding matter shell, then the fraction of
directly escaping particles is proportional to the escape volume, which is defined as the thin shell
of thickness Ainfp from within which particles can escape without interacting. The mean free path

)\;nfp will be defined in Eq. 1' The fraction of escaping particles fes. after a collision can then
be estimated from the ratio between escape volume and isotropic volume as
2 2
foo = Ve L ATOTH 0 AT Ny Xy 2.1)
R V) 4 r? Ar’ A '

iso

Here it is taken into account that there are in fact two escape regions in each shell (inner and
outer edge), and that only half of the particles along the mean free path propagate in the outwards
direction. The fluence of directly escaping protons can then be computed from Eq. (1.17)) using

/ !/ / /
/_Np_ _Np.mfp_ Ny, 99
Qp - t/ fesc - t/ A / - t/ 9 ( * )
dyn dyn r eff,dir
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Figure 2.1: Two-component UHECR, emission from an internal collision. Figure taken from Ref. [106].

with an effective direct escape timescale tq 4, = g, A7"/A ¢ A schematic illustration of the

two-component model is shown in Fig. we will see that direct proton escape dominates when
the shell is optically thin to neutron escape, i.e., 7, < 1, whereas for optically thick sources the
protons remain magnetically trapped in the bulk of the shell.

The mean free paths for protons and neutrons, respectively, are given by

Mpmtp(E) = min [Ar', Ry (E"), ety (E')] ,
nmip(E) = min [Ar',ct;W(E')] . (2.3)
The first term, Ar’, ensures that fese < 1. The photohadronic interaction length Ct;wv calculated

by NeuCosmA after Ref. [96], will become relevant especially when the proton and photon densities
are high enough. Protons are confined inside the source by magnetic fields, and the Larmor radius

is defined as - o .
10° G
/P . p .
Ry = = 33.3cm (GeV) < i > .

(2.4)

Under conditions of low particle densities, effectively everything within a distance R’ of the edges
will eventually escape from the shells, which we call “direct escape”ﬂ Within this region, the
particles can escape without being scattered at all, and without having lost energy. Now, R} is
proportional to Ej,, and R} = ct,.. for n = 1 (see Eq. ) Therefore, it is easy to see that
all protons will directly escape at the highest energy if n = 1 and the maximal proton energy is
limited by the dynamical timescale, where ct,.. = Ar/. This is the region where direct escape
of UHECR dominates. For lower acceleration efficiencies, or synchrotron- or photohadronic-loss
limited maximal proton energies, the direct escape component will be smaller, and the question of
what kind of escape dominates will be more complicated. Like for protons, to obtain the fluence
of directly escaping neutrons, we multiply the neutron injection @), by fesc from Eq. . By
computing neutrino and proton fluences (instead of fluxes), we do not need to identify when the

particles actually escape, we just compute the fraction of escaping particles fesc. This means that

Note that the results in this section can be only interpreted as rough estimates, and there may be additional
escape components compared to the ones discussed here, e.g., diffusion may play a role. We discuss the possible
impact of diffusion in appendix A of Ref. [I06], where we demonstrate that it does not affect our qualitative
conclusions. However, we also point out that a dedicated treatment of diffusion requires a model-dependent solution
of the transport equations, which goes beyond the scope of this study, whereas direct escape can be regarded as a
guaranteed contribution to the cosmic ray injection.
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Figure 2.2: Particle fluences per shell (upper row) and inverse timescales of different processes
(in SRF, lower row) as a function of E in the observer’s frame. The figure shows two different
parameter values for L. s, in the different columns, where the other burst parameters are fixed to
I'=300,t, =001ls,n=1,€e/ep =1, fe =01, o, =1, 5y = 2, Efy,b = 1keV, and z = 2. Both
examples are for the optically thin (to neutron escape) case, where the optical thickness 7,
is given in the panels. For the cosmic rays, only adiabatic energy losses are taken into account for
the propagation. See main text for details. Figure taken from Ref. [106].

we can evaluate Eq. (2.1) in the collision phase using r ~ R with the corresponding proton
density.

We define the optical thickness to neutron escape as

t/—l
—
Tn = -1 (2.5)
dyn | By, max
at the maximal proton energy. Thus, if 7, 2 1, neutrons at the maximal proton energy will rather

interact than escape, and will therefore be confined. Since t;;l increases with energy (see, e.g.,
Fig. lower panels), this optical thickness is typically at its maximum at the maximal proton
energy. That is, it applies to the UHECR part of the emission, whereas neutrons at lower energies
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may escape more easily. Of course, not only the neutrons will interact rather than leave the region,
but also the protons; hence, 7, is also a measure of the optical thickness to proton escape in the
source.

Two examples of optically-thin, direct escape-dominated bursts can be found in the different
columns of Fig. for the parameter sets given in the plot; the two columns differ in the isotropic
luminosity: 10%° erg s~ (left) and 10! erg s=! (right). The upper row shows the particle flu-
ences, where “initial p” stands for the case if all protons were able to escape over the dynamical
timescale, “CR from n” represents the cosmic rays through neutron escape from photohadronic in-
teractions, “direct escaping p” for direct proton escape, and v, + v, for the muon-neutrino fluence
including flavor mixingﬂ In the lower panels, the acceleration timescale and the considered energy
loss/escape timescales are shown, where the direct escape effective timescale is defined in Eq. .
It can be read off from these panels that in both cases the dynamical timescale limits the maximal
proton energy. In the upper left panel, the direct escape clearly dominates. Since the acceleration
efficiency n = 1, practically all protons escape at the highest energy, which is where the dynamical
timescale, acceleration timescale, and direct escape timescale meet. However, in that case hardly
any neutrinos are produced due to the low photohadronic interaction rate. The upper right panel
represents the typical case for the optically thin (to neutron escape) source, where both substan-
tial neutrino and neutron fluxes are produced. The additional component from direct escape still
dominates at the highest energies, while for energies below 10°° GeV, the neutron flux dominates
the cosmic ray production. This can be also read off from the corresponding timescales in the
lower panel. Note that direct escape strongly depends on the acceleration efficiency: if n < 1,
the Larmor radius will be much smaller than A7’ at the maximal proton energy, and the direct
component becomes suppressed.

In contrast, we show two examples for the optically thick case in the columns of Fig. [2.3] In both
cases (see lower panels), the photohadronic interaction rate exceeds the dynamical escape rate by
a factor of 7,, at the highest energies. It also limits the maximal proton energy in both cases.
The neutron production is therefore very efficient; see upper panels. However, only the neutrons
from the edges can escape, which implies that the dashed curves (corresponding to the escape of
all protons over the dynamical timescale) cannot be exceeded, and a level of about 50% of the
dashed curves is reached (since the baryon system contains about 50% protons and neutrons each
in the optically thick limit). In contrast, the neutrinos from interactions everywhere within the
shell can escape, which means that the neutrino fluence becomes relatively enhanced, and the
“one neutrino per cosmic ray” paradigm does not hold anymore. This can be especially seen in
the upper right panel. Note however that the neutrino fluence is typically lower than the cosmic
ray fluence, because the neutrons obtain a higher fraction of energy in the interaction. In none of
the discussed cases the direct escape of protons substantially contributes, which is characteristic
for the optically thick regime.

Our approach has several limitations. First, one may argue that the protons and neutrons trapped
by photohadronic interactions may escape later in a relativistically expanding fireball. Indeed, since
the photon density drops as the burst expands, the injection of neutrons ceases and the confinement
by photohadronic interactions will come to an end at a certain radius (the “neutronsphere”), and
all remaining neutrons may escape. In this direction, in chapter [5| we will study a dynamical burst
model, in which the individual matter shells expand and collide at different radii, where different

2Note that for the sake of comparability, the CR spectra shown here are “at the observer” assuming that the
CRs receive the same boost and losses as the neutrinos. In particular, the spectra here are without any losses during
propagation apart from the adiabatic losses due to the cosmic expansion. In chapter [3] we will introduce propagation
effects.
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Figure 2.3: Particle fluences per shell (upper row) and inverse timescales of different processes
(in SRF, lower row) as a function of E in the observer’s frame. The figure shows two different
parameter values for L. s, in the different columns, where the other burst parameters are fixed to
the same values as in Fig. Both examples are for the optically thick (to neutron escape)
case, where the optical thickness 7, is given in the panels. See main text for details. Figure taken
from Ref. [106].

particle densities exist: we will find that, whereas neutron escape dominates at lower radii, due to a
higher rate of photohadronic interactions, direct proton escape dominates at larger radii. Another
limitation is that the energy partition fractions may be different than the ones assumed in the
optically thick regime. We also do not consider the effects of muon re-acceleration [107, 108 109,
110], or interactions of pions and kaons [I11], which have however much smaller interaction rates
than the protons.

There are several subtleties in the optically thick case, which are best illustrated with the pion
production efficiency f relevant for neutrino production. As we show in detail analytically in
appendix B of Ref. [106], these lead to an underestimation of the neutrino production in the
optically thick case if the current IceCube method for the computation of fr from Ref. [91] is used,
which is the foundation for all state-of-the-art GRB stacking analyses, as in Ref. [92]. In fact, it
turns out that the original formula for f; from Ref. [2] also applies to the optically thick case if
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the energy partition is defined with respect to the particle densities within the source, even though
it was not derived for that limit. Current state-of-the-art numerical predictions, such as Ref. [4],
take this into account automatically.

2.2 Parameter space study of the cosmic ray-neutrino connection

Depending on the values of the GRB parameters (luminosity, redshift, Lorentz factor of the matter
shells, etc.), the UHECR emission can fall in one of three regimes:

Optically thin to neutron escape regime. This is the usual scenario discussed in the litera-
ture: the cosmic rays are produced as neutrons and can escape the source (“neutron model”).
Additional escape components are negligible, and the “one (muon-) neutrino per cosmic ray”
paradigm applies.

Direct escape regime. Here the cosmic rays from direct escape dominate at least at the highest
energy. Since the neutron production by photohadronic processes is sub-dominant, the one-
neutrino-per-cosmic-ray relation does not hold, and more cosmic rays than neutrinos will be
produced.

Optically thick to neutron escape regime. Here the protons and neutrons interact multiple
times, and only protons and neutrons on the outer edges of the shells can (directly) escape.
The neutrinos, however, can escape from everywhere within the shell, which leads to more
neutrinos per cosmic ray than in the optically thin case.

In the optically thin to neutron escape regime, one (muon-) neutrino per cosmic ray will be
produced; in case the direct escape regime, the UHECR escape will not be necessarily accompanied
by neutrino production; and in the optically thick regime, the neutrino production will be enhanced
compared to the optically thin regime, since the neutrinos can escape from everywhere within the
shell.

In this section, we perform a scan of the GRB parameter space and identify the regions that
correspond to the different emission regimes. We distinguish the dominant effect by using figures
such as Fig. and Fig. if the fluence maximum in the spectrum comes from directly escaping
protons, we assign the direct escape category, otherwise the optically thin regime. The optically
thin and thick cases are distinguished by the optical thickness 7,,, as defined in Eq. , being
smaller or larger than one, respectively. It turns out that either of these three categories can be
uniquely assigned (neglecting minor overlap).

We show a (numerical) parameter space scan in Fig. where we always plot L, s, on the
horizontal axis. Let us focus on moderate acceleration efficiencies n = 0.1 first (lower row), which
clearly exhibit all three regimes. The optically thin case, in light yellow (light gray), can be found
close to the often-used standard parameter values. In this case, the direct escape contribution
cannot reach the same level as shown in Fig. since the maximal achievable proton energy
is lower, and therefore the Larmor radius at the maximal energy cannot reach the shell width.
Therefore, the escape of neutrons produced in photohadronic interactions dominates. On the other
hand, in the light red (gray) regions, 7,, > 1, which means that the neutrino production is enhanced.
In the blue (darker) regions, the direct escape component exceeds the neutron escape at the highest
energies. For efficient acceleration, n = 1, see upper row. Here the optically thin to neutron escape
region almost vanishes, which is due to an enhancement of the direct escape. Remember that for
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Figure 2.4: Parameter space scan of the GRB parameters for classification of regimes. The upper
row corresponds to the acceleration efficiency n = 1, the lower row to n = 0.1. For the standard
parameter values, see caption of Fig. Dashed curves mark the limit between optically thin
and thick regimes. The thick dashed curve represents the analytical result if the photohadronic
interaction rate based on Eq. (3) of [89] is used. In the dark-shaded regions “LAT invisible”,
gamma-rays above 30 MeV cannot leave the source anymore due to pair production. That is,
sources left of these regions are in principle visible in the full Fermi-GBM range and may be even
observable in LAT, whereas sources within these regions will not exhibit emission into the LAT

range. The dots correspond to the parameter sets chosen in Fig. 2.2 and Fig. Figure taken
from Ref. [106].

n = 1, all protons can directly escape at the highest energy if the maximal energy is limited by
the dynamical timescale. To summarise, for efficient proton acceleration, the standard case (one
neutrino per cosmic ray) only applies in a very small region of the parameter space, and either
fewer or more neutrinos per cosmic ray are produced, depending on the parameters.

In order to better understand the relation to earlier works, consider the A-resonance parame-
terization proposed by [89] (see Eq. (3), increased by a factor of two because we consider the
photohadronic interaction rate, not the pion production rate). We show in Fig. the separator
between optically thin and thick regimes as thick dashed curves for this cross section. Obviously,
in all cases the optically thin region reappears and gets enlarged. One reason is that the full nu-
merical computation includes high-energy processes, such as multi-pion production, which enhance
the interaction rate at high energies by a factor of a few, and which is not included in the shown

A-resonance approximation. As a result, photohadronic processes become more important in the
numerical result.
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Let us now relate the parameter space to Fermi-LAT observations. We hence show in Fig. [2.4
the “LAT invisible” regions, where gamma-rays above 30 MeV cannot leave the source anymore
because they exceed the pair production threshold. That is, sources to the left of these regions
should be visible in the full Fermi-GBM range and may be even observable in LAT, while sources in
the “LAT invisible” regions will not exhibit emission into the LAT range. One can clearly see that
the parameter set corresponding to the rightmost dot, associated to the right column of Fig. 2.3]
cannot be seen in LAT. In addition, even though the optical thicknesses 7, (for neutrons) and 7,
(for photons) are roughly proportional, they still have slightly different parameter dependenciesé
Note that, in practice, the LAT emission lasts longer (see, e.g., [I12]), which means that it may
come from larger emission radii. That is, in a realistic time-dependent model, the fireball may
follow a trajectory in the considered parameter space, and may actually visit more than one regime
during the burst duration. We defer such an exploration to chapter

Since Fig. 2.4 only shows sections through the parameter space, it is instructive to at least have ap-
proximate analytical expressions for the different regimes. The interface between the direct escape
and optically thin regions can be obtained from the maximal proton energy: if it is dominated by
the dynamical timescale, direct escape will dominate at the highest energies since all protons can
escape (for n = 1); if it is dominated by synchrotron losses, neutron escape will take over. Taking
into account 7, one can estimate that

Ldi?ect g 3.6- 1051 erg S—l . 77% . ( I ) 3

v,iso
te \3 [14+2\" -1
v z €B
. ) = 9.
(0.0ls) ( 3 > (e€> (26)

limits the direct escape dominated region. The interface between the optically thin and thick
regimes (analytical thick dashed curves) can be obtained from 7, ~ 1 in Eq. (2.5)), using the
analytical expression for t;;Yl from [89]. The optically thick regime is then estimated as

5
opt. thick 52 1 I ty
Lo 2 1.1-10” ergs™ " - <102.5> : <0.0ls>

e/ 14+2\""
~,break z
. . ) 2.7
( 1keV > ( 3 > 27)
These formulas allow to estimate how a specific burst can be classified for arbitrary parameters.
There are, however, some limitations. First of all, Eq. (2.7) underestimates the photohadronic

interactions, as discussed above. And, second, some of the (numerical) parameter dependencies in
Eq. (2.6) cannot be reproduced within these assumptions.

Wl

In order to describe the UHECR spectrum, it is a necessary condition that high enough proton
energies can be obtained in the co-moving (source) frame. We show in Fig. the maximal proton
energy logo(Ep max/GeV) (contours) in the co-moving frame as a function of the GRB parameters,
similar to Fig. The upper row is shown for an acceleration efficiency n = 1; the lower row,
for n = 0.1. One can clearly see the symmetry around the transition curve between the optically

3This is mainly due to one important difference in the calculations, namely which frame is considered to be
relevant. The maximal proton/neutron energy is calculated in the SRF during our calculation, however the calcu-
lation of 7, is done for an observed photon energy. Hence there is a difference in redshift z and Lorentz factor I'.
Moreover, the break energy is important for the calculation of the (energy) densities, but it is not relevant for the
optical thickness of the observed gamma-rays, as this calculation refers to photons far above the break.
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SB | GRB080916C | GRB090902B | GRB091024
y 1 0.91 0.61 1.01
B 2 2.08 3.80 2.17
€ break [MeV] | 1.556 0.167 0.613 0.081
r 10%5 1090 1000 195
ty [3] 0.0045 0.1 0.053 0.032
Too [s] 30 66 22 196
z 2 4.35 1.822 1.09
Fy lergem™2] | 1-107° 1.6-1074 3.3-1074 5.1-107°
Lo iso [erg s™1 | 10°2 4.9-1053 3.6-10% 1.7-105!

Table 2.1: Properties of four bursts discussed in section see [97] for SB (“Standard Burst”,
similar to [89, [113]), [114] and [115] for GRB080916C, [114] and [116] for GRB090902B, and [114]
and [117] for GRB091024. The luminosity is calculated with L jso = 47rd% - Sbol/Too, with Sy the
fluence in the (bolometrically adjusted) energy range 1keV — 10 MeV. Adopted from [I1§]. Table
taken from Ref. [106].

thin (or direct escape dominated) and optically thick cases, where the proton energy is limited
by photohadronic losses in the latter case. The highest proton energies can be obtained along
this transition curves, but the overall dependence of the maximal proton energy on the model
parameters is relatively weak. The main impact comes from the acceleration efficiency (compare
upper with lower row): for n = 1, about an order of magnitude higher proton energies can be
achieved than for n = 0.1.

2.3 Application to specific GRBs

So far, we have discussed the dependence of the cosmic ray escape on the theoretical parameters,
such as L ;5. However, actually the gamma-ray flux or fluence are the observables, and L s, is
just a function of these observables. In addition, for many bursts, the other necessary ingredients,
such as redshift and time variability, have been measured. We therefore study in this section the
different cosmic ray escape mechanisms for specific bursts; see table In this case, we use
the bolometric fluence as observable, and assume that it is obtained from N = Tyo/t, identical
collisions, in consistency with the approaches used in Refs. [3, 02], and Ref. [4].

The standard burst “SB” has been inspired to produce a spectrum similar to Refs. [89, 113].
The other three bursts have been actually observed, and their properties can be taken from the
literature (see table caption). GRB080916C is one of the brightest bursts ever seen, although
at a large redshift, and one of the best studied FermiLAT bursts. The gamma-ray spectrum of
GRB090902B has a very steep photon spectral cutoff and a smaller redshift, although I" is very
high as well. GRB091024 can be regarded as a typical example representative of many Fermi-GBM
bursts [114], except for the long duration. Note that the neutrino spectra from these GRBs have
been also discussed in Refs. [103] 119].

We show in Fig. the expected cosmic ray and neutrino fluences for the GRBs listed in table
(thick curves). In each panel, we also give the optical thickness to neutron escape and photon
escape (for 30 MeV gamma-rays). Note that we use an acceleration efficiency n = 0.1 for these
simulations; a higher acceleration efficiency would pronounce the direct escape component. The
burst SB is a typical example for an optically thin burst with a substantial amount of neutrino
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Figure 2.5: The expected cosmic ray and neutrino fluences for the GRBs listed in table The
maximal proton energy and the optical thickness are given/marked in the different panels. The
thick curves correspond to the photon fluence and energy range given in the caption of table
whereas the shadings represent a bolometric correction beyond this range; see main text. In each
panel, we also give the optical thickness to neutron and photon escape (the latter for 30 MeV
gamma-rays). Note that we use an acceleration efficiency n = 0.1 for these simulations. Figure
taken from Ref. [106].

production. The contribution of the direct escape component depends on the proton acceleration
efficiency, and in this case it is suppressed. Therefore, the relation one-neutrino-per-cosmic-ray
holds. On the other hand, the two high-I" Fermi-LAT bursts GRB080916C and GRB090902B
exhibit a clear direct escape domination, which is a feature of the large I'; see Fig. [2.4] (second row,
second column). It is clear that GRBs will be only observed in LAT if they are to the left of the
dark-shaded regions in Fig. An even larger value of the photon energy, such as 100 MeV, will
extend these regions further to the left, which means that the LAT-associated parameter space
region tends to overlap the direct escape regime. Therefore, LAT-observed GRBs tend to directly
emit UHECR protons at the highest energies, at least in the LAT emission phase. The situation is
different for GRB091024 in the lower right panel of Fig. which is on the edge of the optically
thick regime. For this burst, again cosmic rays from escaped neutrons dominate, and the neutrino
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production follows the standard assumption.

In order to illustrate the effect of the minimal and maximal photon energies in Eq. , we
illustrate the impact of a “bolometric correction”lﬂ as shaded areas in Fig. This bolometric
correction takes into account that the gamma-ray fluence has only been observed in a certain energy
range, whereas it cannot be excluded that lower and higher energy photons are present in the source
as well, either because they are outside the detection energy range, or because they cannot escape
from the sourceﬁ The proton density is then calculated from energy partition using the extended
energy range according to Eq. . The bolometric correction increases it in all cases due
to photons not accounted for in the observation, and therefore the normalisation of the spectra
increases, including that of the “initial protons”. In none of the cases, the neutrino spectrum is very
much affected by this bolometric correction, apart from the normalisation changeﬁ The extension
of the photon energy range hardly affects the neutrino spectral shape, but the extension of the
spectrum to higher energies has a significant effect on the neutron spectra at low energies. In the
lower right panel, the bolometric correction even leads to a lower maximal proton energy, which is
because photohadronic energy losses take over to limit the maximal proton energy. Additionally,
we checked that the gamma-rays from 7°-decays produced by the three observed bursts are below
the LAT bounds or observations for these bursts.

In summary, Ferm#LAT observed GRBs seem to a have a strong direct escape component of cosmic
rays, at least during the observed emission phase, whereas the direct escape contribution of typical
GBM bursts depends on the proton acceleration efficiency. Therefore, conclusions on the cosmic
ray-neutrino connection will depend on the actual burst sample including the specific parameters
of the fireballs, and the time evolution of the fireball properties, which we did not discuss in this
chapter; see chapter [5| for such a treatment. A possible bolometric correction beyond the observed
energy ranges of the gamma-rays typically has a small effect, as long as 3, 2 2.

While here we have focused on the UHECR proton and neutrino emission from a single source
using our two-component model, in chapter [f] we will concentrate on the emission, within this same
model, from a population of GRBs that evolves with redshift. For the UHECR flux predictions at
Earth, we will use the proton propagation method introduced in chapter [3, which will also generate
a cosmogenic neutrino flux from the py interactions on the cosmological photon backgrounds.

9

For efficient proton acceleration, we have demonstrated that the standard case of optically thin
sources and one neutrino per cosmic ray only applies to a very narrow region of the parameter
space at the highest energies, since either direct escape dominates, or the optical thickness to
neutron escape is large. For less efficient proton acceleration, a significant region where optically
thin emission is possible has been found, which is around the often assumed standard parameter
values. However, we have illustrated that the maximal proton energies are in that case not sufficient
to describe the observed UHECR, spectrum for typical burst parameters. Therefore, it appears
that the standard, optically thin case is in tension with the assumption that GRBs are the sources

4Not to be confused with the bolometric correction factor frol, related instead to UHECRs.

5 For this correction, we fix the gamma-ray spectrum in the observed energy range from the observed fluence,
and then linearly extrapolate the spectrum (on a double log plot) to the range between 0.2eV (SRF) and 100 MeV
(observer’s frame). This extended range is motivated by the fact that high energy protons then always find sufficiently
many low energy photons as interaction partners, and low energy protons find enough high energy photons. The
100 MeV are chosen in the observer’s frame since they correspond to a typical Fermi-LAT energy.

5This correction depends mostly on the upper spectral index of the photon spectrum. It is ¢’~2 in the upper left
panel, which leads to a logarithmic dependence on the maximal proton energy, and steeper in the other cases, which
leads to a (stronger) power law suppression.
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Figure 2.6: Maximal proton energy log(Ep max/GeV) (contours) in the source (cosmologically
co-moving) frame as a function of the GRB parameters. The upper row is for n = 1; the lower
row, for n = 0.1. Same regions and parameters as in Fig. Figure taken from Ref. [106].

of the UHECRS, and specific conclusions can be only drawn on a burst-by-burst basis.

The region in which the optical thickness to neutron escape is large has been found to be larger
than previous calculations suggest, because high-energy processes have been included in the pho-
tohadronic interaction rate. In this case, the neutrinos can escape from everywhere within the
shell, whereas the neutrons (and protons) are trapped over the photohadronic interaction length
scale and can only (directly) escape from the edges. The neutrino production can therefore be sig-
nificantly enhanced. Furthermore, we have explicitly demonstrated that the formula used for the
pion production efficiency in the IceCube treatment in [91, [92] in fact underestimates the neutrino
production in the optically thick case, and that the original formula in [2] applies instead (which
was originally developed for the optically thin case). This has consequences for individual GRBs,
and is, in fact, already taken into account in the prediction by [4].

Finally, we note that the three different encountered regimes may even be present in one source,
especially if collisions occur at very different radii, a possibility that we have explored via a
dynamical GRB model in chapter Therefore, the one neutrino per cosmic ray assumption is,
in fact, not as general as one may believe. Note that some of our conclusions can be transferred
to other classes of sources, such as active galactic nuclei, and to heavier nuclei accelerated in the
sources. In all those cases, a substantial fraction of particles may directly leak from the sources at
the highest energies, and there can be regions where the source is optically thick to baryon escape.



Chapter 3

UHECR propagation

We wish to calculate the propagation of cosmic rays (CRs) from their origin, at a cosmological
source with redshift z, to Earth, taking into account the effects of energy losses en route, due to the
adiabatic cosmological expansion and to the interaction with the protons of the cosmic microwave
background (CMB) and the cosmic infrared background (CIB). For a selection of literature on
the subject, see Refs. [45, 46, 120, 121, 122}, 123] 124], 125, 126]. We will assume that CRs are
composed solely of protons.

3.1 Introduction

The interactions that we will consider between protons and background photons are eTe™ pair
production, i.e., p+~v — p+e™ + e, and photohadronic processes described, in a first approx-
imation, by the resonant process p +v — AT (1232) — n + 7+ (though the NeuCosmA code
that has been used implements a larger number of photohadronic processes; see section .
An accompanying “guaranteed” flux of cosmogenic neutrinos is predicted from the decays of the
secondary neutrons and pions [127, 128]: n — p+ e~ + 7. and 7° — ptv, — DeTve +v,. See
Refs. [127, 128, [87), 129, 130, 131, 132].

The propagation is performed through solving the Boltzmann transport equation for the comoving
number density of protons (GeV~! Mpc™3),

Y,,(E,z):a?’(z)np(E,z):np(E,z)/(1+z)3 ) (31)

with n, the real number density and a (z) = (1 + z)~! the scale factor. The transport equation is
(see, e.g., Eq. (17) in Ref. [100]):

Y, = 0 (HEY,) + 0 (beto-Yp) + Op (bpyYp) + Lk (3.2)

with E the proton energy in the source frame (see, e.g., Ref. [I22]). In the r.h.s. of Eq. (3.2), the
first term accounts for continuous energy losses due to the adiabatic cosmological expansion, with
H the Hubble parameter. The second and third terms, respectively, account for continuous energy
losses due to ete™ pair production and photopion (py) production on the photon backgrounds,
with the corresponding energy-loss rates b+.- and by, where b = dE/dt (GeV s7!). The fourth
term describes the CR injection rate per comoving volume. The proper density n, (E,z) at any
redshift is obtained by solving for Y}, (E, z) and multiplying it by (1 + z)3. The diffuse proton flux
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Jp at Earth (GeV™! cm™2 s7! sr71) is obtained from the local density through

Jy (Bo) = =y (E.0) . (33)

Table shows the units that we have used for the parameters in our numerical implementation.

In principle, an extra term of the form Zj [ dEj~vj—pY; could be added to Eq. to account
for particle generation j — p. However, in our code we have treated protons and neutrons as the
same species (pneutrons); see sections and Under this assumption, no new nucleons are
produced en route to Earth, and we have not included such a particle-creation term for protons
due to neutron decay.

Writing Y =Y, Eq. (3.2)) can be recast as an equation in redshift by using
dz=—dt(1+2)H(2) , (3.4)

1.€.,

—0,Y (E, z) {0 [H (2) EY (E, 2)] + 0 [bete- (E,2)Y (E, 2)]

_
(14+2)H (2)
+ O [bpy (E,2)Y (E,2)] + Lcr (E, 2)} . (3.5)

We have written original computer code to numerically solve Eq. (3.5)).

Note that the implementation of a solution for Eq. that we present here is strictly valid only
for energies above ~ 109 GeV. Below this energy, diffusion effects due to the magnetic fields become
important. At the other end, above a critical energy E, (z) (=~ 4-10' GeV at z = 0), the neutron
interaction time, or loss time, is shorter than its decay time, so that it loses energy before decaying
into high-energy neutrinos; see Fig. 5 in Ref. [124]. In sections and we explain that we
have accounted for this by appending a cut-off ~ e~ E?/EZ(2) 4o the neutron injection spectrum.

In appendix [A] we explicitly list the assumptions, inputs, and limitations of out UHECR propaga-
tion treatment and we describe its numerical implementation.

3.2 The CR transport equation in detail

In this section we describe each of the terms in the r.h.s. of Eq. (3.5). We also present the redshift
scaling of the photon backgrounds and the associated energy loss rates due to interactions of the
protons with them.

3.2.1 Cosmological expansion

The Hubble parameter is given by

H (2) = HopJ Qo (14 2)* +Q (3.6)

with the local value Hy = 70.5 km s=! Mpc~—! = 2.28475-107!8 57!, and the energy densities of
matter and cosmological constant given by €2, = 0.27 and Q, = 0.73, respectively [133].
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Parameter | Description Units
Y, comoving number density of protons GeV~—! Mpc—3
np real number density of protons GeV~! Mpc—3
Ny real number density of photons (CMB or CIB) GeV~! cm™3
NciB number of IR /optical photons per proper volume | cm™3
Jp diffuse proton flux at Earth GeVlem 2 57! sr!
Ju diffuse cosmogenic neutrino flux at Earth GeVlem™2 s tgr!
E proton energy in the source frame GeV
H Hubble parameter s~1
b energy loss rate GeV 57!
Lcr comoving proton injection rate GeV~! Mpc=3 57!
Lci comoving IR /optical photon injection rate GeV~! Mpc=3 57!
Qcr proton injection rate at the source GeV~! Mpc=3 s7!
QciB IR /optical photon injection rate at the source GeV~! Mpc™3 57!
Hcer redshift source evolution of CR sources adimensional
Hcis redshift source evolution of CIB sources adimensional
Weas local e.m. cascade energy density GeV cm ™3

Table 3.1: Main parameters of the CR propagation and cosmogenic neutrino formalism and their
units.

3.2.2 Energy loss rate due to py interactions

In general, the interaction rate (probability of interaction per unit time per particle) between
protons and a background photon field 7, (GeV~! cm™3), at proton energy E, is calculated as in
Eq. (3) of Ref. [96] (see also Refs. [122| [123]):

1 +1
Cpyop (B, 2) = 3 / 1 dc(;/de (1 — Bcp) ny (6,2, ¢p) a;‘;t_m,b (er) (3.7)

where p’ can be either a proton or a neutron, € is the photon energy, and cy = cosf, with 6 the
angle between the proton and photon momenta. The total cross section U;?,Lpfb (cm?) considers
interactions of the type p+~ — p’ + b, with the daughter particles (b), typically 7+, 7=, 7°, or K;
er = Ee/my, (1 — cg) is the photon energy in the rest frame of the parent nucleon in the limit 8 ~ 1.

Based on Ref. [96], we consider the following processes, which are incorporated in NeuCosmAﬂ

e A-resonance:

at232) [ p+7° , 1/3 of all cases
P+ { n+7t, 2/3 of all cases (3:8)
e Higher resonances:
AN ’ / ’
p+y—A+7, AN =p+n7 (3.9)
A’N / /
p+y——p+tp, poT+T (3.10)

e Direct production: the ¢-channels of Eqgs. (3.8)) and (3.9) (since the photon can couple to
the charged pion)

!'Note that, with our choice of units for n,, and o5, the rate I',_,,, is output in cm™"; multiplication by c gives

it the appropriate units, s™*.
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e Multi-pion production: processes where two or more pions are produced, as implemented
in SOPHIA

Under the assumption of an isotropic photon field, the integral over ¢y in Eq. (3.7) can be trans-
formed into an integral over ¢,, yielding [96]

1m2 [o° N~ (€, 2) 2Ee/mp

Lo (B.2) = 58 / amed / desera, s (6r) (3.11)
7o €th

with €1, = 150 MeV the threshold photon energy, below which the cross sections are zero.

As explained in appendix B of Ref. [96], in py interactions, cooling processes are those in which the
primary loses energy in the interaction, such as p + v — p 4+ 7°, while escape processes are those
in which the primary disappears, such as p++v — n+7t (which will contribute to the cosmogenic
neutrino flux). To each, there is associated an interaction time:

_ 1dE 1
tcolol (‘E) = _E dt = - E Py (‘E) ’ (312)
1 dn
—1 /4
- P 3.13
esc n, dt ( )

Recall that, in our calculation, we assume that all neutrons have already decayed into protons and
have been re-injected, so we consider only the cooling of the protons. NeuCosmA calculates the
cooling time through (Eq. (B1) in Ref. [96])

toot (By2) = > T4, (B, 2) K", (3.14)

where the sum is over all interactions that conserve the primary p and K'FE is the loss of energy
per interaction, with the “inelasticity” K" a constant for each channel, calculated in Ref. [96].

For a given photon background (CMB, CIB), NeuCosmA compute the cooling time, tc_olol, in

units of s~'. The cooling rate that appears in Eq. (3.5), byy = dE/dt, can then be calculated as
b (E.2) = ~ Bl

cool

(E,z) (3.15)

directly in units of GeV s™!, as needed.

3.2.3 Energy loss rate due to ete™ pair production

The energy loss rate b,+,.- due to ete™ pair production in the interaction A +~v — A+e™ + e~
between very energetic nuclei with charge Z (for which the Lorentz factor v > 1 and § = v/c is
taken to be 1) and an isotropic photon background n., (¢,2) (GeV~! ecm™3), is calculated following
Egs. (13) and (14) of Ref. [120]:

00 2
bete— (E,z) = % = —ar%ZQ (mec2)2c/2 dgn., (57721;0 ,z> gbg(f) ) (3.16)

where a ~ 1/137 is the fine-structure constant, ro = 2.817940-10~!3 c¢m is the classical electron
radius, and

¢ k-1
¢(g):/2 dk/l dE_A(k,E.) | (3.17)

2In the routine ncoComputeCoolEscRate.
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Constant | Value
cl 0.8048
s 0.1459
3 1.137-1073
4 —3.879-1076
do —170 + 84102 — 161022 + & (10 — 41n2) + 8¢ (3) ~ —86.07
d 88 —40In2 + 81n’2 — 37% ~ 50.96
do —20+8In2 ~ —14.45
ds 5
fi 2.910
fo 78.35
f3 1837

Table 3.2: Constants used in the calculation of the ¢ (§) function, according to Eq. (3.19). Values
taken from Ref. [134].

with & the photon energy in units of m.c?, E_ the energy of the secondary positron, and k =
€/ (mec?) the photon energy (in the nucleus rest frame) in units of the electron mass. The adi-
mensional function A (k, E_) is defined in Eq. (8) of Ref. [120]. The exact value of the function
¢ (€), calculated through Eq. (3.17)), is plotted in Fig. 2 of Ref. [120]. Since we are assuming that
cosmic rays have a purely proton composition, we set Z = 1; and, given that the proton energy
FE= 'ymp02, we can rewrite the energy loss rate as

o0 Mmec? mp02
bev o (B.2) = —ar (mec®)c [ den, (5( o )’Z> T 6w

In the same reference, an approximate expression (Eq. (16)) in the extreme relativistic regime
(&> 1) is given for ¢ (£). However, an improved approximate expression is given in Ref. [I34], for
the whole rangeﬂ of &:

m (€-2)°
— - E<25
121+ c(€—2)
¢ (&) = 5 1Z,C , (3.19)
gZiZOdiln § €>25
1 —Zle fi&™ LT

with the constants ¢;, d;, and f; given in Table The relative error in the lower branch is
reported to be less than 1.3-1073, while in the higher branch it is less than 1.5-1073. Fig.
compares the two different approximations of ¢ (£), from Refs. [120] and [134], with its exact
value, i.e., Eq. . Since the exact computation and the improved approximate computation
by Chodorowski et al. which we have presented here (Eq. ) are almost indistinguishable, we
have adopted the latter in the code.

3Note that, in the notation of Ref. [I34], £ is called » instead.
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Figure 3.1: Comparison between calculations of the ¢ (£) function: approximation by Chodor-
owski et al. [134], Eq. (3.19) in this work; relativistic approximation by Blumenthal [120]; and
exact solution, Eq. (3.17) in this work (taken from Fig. 2 in Ref. [120]).

3.2.4 Scaling of the cosmological photon backgrounds
Interactions with the CMB photons

The CMB photon spectrum is assumed to be isotropic, as in Ref. [96], so that n,, (e, z, ¢p) = ny (€, 2),
and the photon number density (GeV~! ecm™3) is given by

CMB 11 €2
n P (6,2 =0) = = (he)® T T =1 ° (3.20)
where the present-day CMB temperature T' = 2.725 K (i.e., kT ~ 0.23 meV). Since the CMB
does not receive injection from sources, its transport equation consists of only the adiabatic term,
YVCMB = 0, (H6Y,YCM]Z%, so that YVCMB (6,2) = a®(2) ngMB (e,2z). From this, the CMB spectrum
scales with redshift a

nSMB (e,2) = (14 2)°nSMB(e/ (14 2),2=0) . (3.21)
The energy loss rates on the CMB due to photohadronic interactions and pair production, b%\/[B
and bgﬁg‘, are calculated, respectively, from Egs. (]3.15[) and q3.18D, with n, = nSMB.

Interactions with the CIB photons

The CIB spectrum at redshift z, nSIB (¢,2) (GeV~! cm™3), is made up of contributions from higher

redshifts and so is obtained by integrating the comoving injection spectrum ESIB (€,2) (GeV~1
Mpc—3 s71) from 2 upwardsE| (see appendix C in Ref. [122] or Egs. (8)—(9) in Ref. [135]), i.e.,

CIB
Zrae L CIB (6 (1 + z/) z')
CIB _ 2 el ’
n’y (6(1+Z)7Z)_(1+Z) /Z z F[(Z/) b

“Appendix A in Ref. [122] claims that the scaling goes as ~ (1 + 2)3; however, see subsection in this work for
a justification of why the ~ (1 + 2)2 scaling follows from the transport equation. For a more intuitive justification,
consider the individual scalings of the number density of particles (cm™3), N/V o (14 z)® and of the energy,
E o« 1+ z. Therefore, the photon spectrum n., = dN/dV/dE scales as ~ (1 + z)°.

®However, the definitions in Refs. [[22] and [I35] have extra factors of (1 + z) compared to ours; it is not absolutely
clear at this point what is the correct definition of nng (e, ), but we have used Eq. in our calculations.

(3.22)
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Figure 3.2: Local (z = 0) CMB and CIB spectra. The CIB1 model is taken from Ref. [135] and
the CIB2 model, from Ref. [I36]. Compare to Fig. A.6 in Ref. [87].

where e is the photon energy (in the comoving frame) and z$1E > 6 is fixed.

Ref. [135] calculated the CIB photon spectrum up to z = 2. Appendix C of Ref. [122] parametrised
the comoving injection spectrum as

Lcig (€,2) o« Hers (2) Lais (€,0) (3.23)

obtained by scaling the local injection rate Lcip (€,0) by the adimensional function Hcrg which
describes the redshift evolution of the sources (see subsection [3.2.5). Denoting by Ncip (z) the
number of IR photons per proper volume at redshift z, the bolometric evolution is found to follow

Nas (2) 3 [0 dZHems () ) (H () (1+2'))

1+ : 3.24
Ncig (0) =(1+2) fo dz'Hcis (7)) (H (') (1 + 2')) ( )
With this, the CIB spectrum can be approximated as
1 N
nS™B (¢, 2) ~ Ners (2), o (o) (11 2,0 . (3.25)

14+ 2z Ncig (0) 7

Hence, the redshift evolution of the CIB spectrum depends on the redshift evolution of the sources
that contribute to it, via the factor Ncig (2) /Ncis (0), which is calculated by our code from
Eq. -, for a specified model of source redshift evolution, Hcop. The energy loss rates on

the CIB due to photohadronic interactions and pair production, bCIB and bgB_, are calculated,
respectively, from Egs. q3 15[) and (]3 18D with n, = nslB

There are different competing parametrisations of the local CIB spectrum, nSIB (e,0). So far, we
have used the ones by Franceschini et al. [135] (which we have labeled CIB1) and by Stecker et
al. [136] (CIB2). Fig. shows the local spectrum for these two models, compared to the local

CMB spectrum.

The comoving injection rate of IR photons can be further complicated by writing it instead as

Lcig (6,2) = He (2) Qars (€, 2) (3.26)

where Qcis (€, 2) is now the injection spectrum of photons (GeV~! cm™3 s7!) at a source with

redshift z. This may correspond, for instance, to a situation where different star populations
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Figure 3.3: Left: Interaction length L = —cE/b for the adiabatic losses, and for photohadronic
+ pair-production losses on the CIB only and on the CMB+CIB. Right: Interaction length taking
into account, independently, pair production on the CMB and on the CIB, and photohadronic
interactions on the CMB and on the CIB. In both panels, the CIB1 local spectrum (see subsection
and SFR evolution of the CIB sources were assumed. Compare to Fig. 3 in Ref. [129], Fig. 1
in Ref. [I37], and Fig. 7 in Ref. [126].

contribute to the CIB at different redshifts, each one with a different injection spectrum. Evidently,
this injection rate should match the local rate Lcp (€, 0) and its observed evolution, which is known
up to z ~ 2 [135]. Using Eq. (3.26]), the ratio Nci (2) /Ncig (0) becomes energy-dependent,
namely,

3 J7 dz"Hes () Qo (e (1+2),2) / (H (') (1 +2'))
Jo© dz"Hes (2) Qe (e (L+27),2) / (H () (1+2))

Ncig (€, 2)

Now (0) )

(3.27)

This ratio can be plugged into the approximate expression, Eq. (3.25]), as before; alternatively, the
exact CIB spectrum at any redshift can be calculated from its definition using Eq. (3.22])).

Scaling of the energy loss rate

The total interaction rate which enters Eq. (3.5)), either due to photohadronic or pair production
interactions, receives contributions from interactions on the CMB and CIB, i.e.,

VY (E, 2) = b°MB (B, 2) + b'B(E, 2) . (3.28)

Following appendix A of Ref. [122], due the adiabatic redshift scaling of the CMB spectrum,
Eq. (3.21)), the associated energy loss rate scales as

VYMB(E 2) = (1+2)20°MB (1 +2)E,0) . (3.29)
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This scaling is exact for the loss rate on the CMB spectrum. By defaultﬂ the code calculates
b%MB (E,0) and bMB (E,0) during initialisation, and uses Eq. (3.29) to scale it to different red-
shifts, instead of computing them, at each redshift, from their definitions, Eqgs. (3.15)) and (3.18)).
The result is a sizable gain in computing speedﬂ

As seen in the previous subsection, however, the redshift scaling of the CIB is not merely adiabatic,
but more complicated, and therefore so is the scaling of the corresponding energy loss rate, bB,
The code has been written to allow for any arbitrary redshift evolution of the CIB spectrum, Hcig,
to be used.

The interaction length can be calculated from the energy loss rate as L = —cE/b. Fig. shows
the attenuation length corresponding to adiabatic losses only (in this case, bagiabatic = —CcH (2)),
and the interaction lengths due to photohadronic plus pair-production losses on the CIB and
on the CMB+CIB. The local parametrisation CIB1 and the SFR source evolution of the CIB
sources have been assumed. Note that, at low energies, the interaction length is dominated by the
interactions with the CIB (though adiabatic losses dominate at lower redshifts): since IR photons
are more energetic that microwave photons, lower proton energies are needed to achieve equal
energy loss rates. At around E ~ 108° GeV, the CMB interactions start to become dominant,
and the interaction length decreases due to the total energy loss rate b = pCMB 4 pCIB hecoming
larger. Note also that, since the photon densities grow with redshift, the interaction lengths are
shorter for z = 6 than for z = 0. For comparison, the neutron decay length has been included in
Fig.[3:3] i.e.,

L, (E)=cr=c(E/my)19, (3.30)

with m, = 940 MeV the neutron mass and 795 = 885.7 s its lifetime in the rest frame.

We have said already that (by default in our code) b]%MB and becfg]? are calculated from their
definitions only once, at z = 0, and afterward rescaled to any z; hence, calculating these loss rates

at arbitrary z entails little computational cost. For the CIB, however, the scaling might not be so
computationally cheap, especially if Eq. (3.27)) is used.

One can take advantage of the fact that, even when interactions on the CIB are dominating (at
E < 10%° GeV), the corresponding interaction length is ~ 4 Gpc or larger, to speed up the
numerical evaluation of the CR propagation by calculating the energy loss rates on the CIB at
more spaced redshift intervals than for the CMB. We have done so in our code; see subsection
[A-43] for implementation details.

3.2.5 CR injection rate
Like for the CIB (see Eq. (3.26)), we can write the CR injection rate in Eq. (3.2)) asﬁ

Lcr (E,z) =Hcer (2) Qer (B, 2) (3.31)

where Qcr is the injection spectrum at the source (GeV~! Mpc™3 s™!) and H is an adimensional
function of z that accounts for the redshift evolution of the cosmological sources. It is defined [138)]

5Setting NCO_CRPROP_CMB_SCALING = 1.

"With the CMB scaling, protons can be propagated from z = 6 to z = 0 in ~ 120 s; without scaling, the same
computation takes ~ 40 minutes. These execution times were obtained on an Intel Core i7-2600 CPU running at
3.40 GHz, with 8 GB of RAM.

8In general, the injected CR spectrum can depend on both energy and redshift, where the latter could be used
to calculate the spectrum normalisation.
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Figure 3.4: Star formation rate Hsrr, Eq. (3.32)), and GRB redshift evolution Hgrp, Eq. (3.33).

as the comoving number of density of CR sources, pcr (z) (Mpc™ yr~1), normalised to the local
rate, i.e, H (2) = pcr (2) /pcr (0).

For instance, the star formation rate (SFR) is assumed to follow [139, [140]

(1+z)> , 2 <1,

Herr(2) =48 Ni(1+2)7%% | 1<z<4 | (3.32)
NNy (14273 | 2>4

with Ny = 237 and Ny = 5%2. As shown in Refs. [T40, 141, [138], the comoving GRB rate
(Mpc=3 yr~!) is obtained by multiplying the star formation density psrr (Mg Mpc™ yr~!) by a
correction factor € (2) = g (1 4+ 2)* (g in units of M) to account for the observation that the
GRB population appears to be higher in the past than what the SFR yields. The normalised GRB
comoving rate is therefore

HGRB (z) = (1 + Z)a HsFR (Z) , (3.33)

with, typically, « = 1.2 (we have assumed this value to produce Fig. and the plots in section
. Fig. shows Hspr and Hgrp as functions of redshift.

Note that CR injection occurs from 2z, only down to zpom, the redshift below which the universe
becomes inhomogeneous. It should be approximately zpom = 0.02, corresponding to ~ 77 Mpc.

3.2.6 Solving the transport equation under adiabatic expansion only

If we consider solely adiabatic losses due to cosmological expansion, then only the first term in the
r.h.s. of Eq. (3.5)) survives, i.e.,

1
z

0-Y (B,2) = ———0p[EY (E.2)] . (3.34)

Setting a generic boundary condition Y (E, zmax) = f (E, Zmax) allows us to write down the solution
as

1+ Zmax 1+ Zmax
Y (FE = FE, zmax | - .35
(B, = Fr 2 (2 ) (3.39)
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Figure 3.5: Comoving proton density at z = 0 and z = 6 in the simplified scenario where the

only losses are due to the adiabatic cosmological expansion, Eq. (3.36)), with 7 the spectral index
of the proton spectrum at z = zpax = 6 (see text for details).

(Since neutrinos can be assumed not to interact with the photon backgrounds, when calculating
the contribution to the total neutrino flux at Earth coming from neutrinos created at a redshift z,
Eq. (3.35) is used, with the replacements zyax — 2z and z — zpin = 0.)

Using the particular choice f (F, zmax) = A (Zmax) E Ve E/Bmax with A (Zmax) the normalisation
of the comoving density at z = zyax, this becomes
1+ zmax 1+ 2max E )

1=y
Y(E,Z):( 1+2 > A(Zmax)E’yeXp(_ 1+2 E
max

Fig. shows the redshift evolution of Y (E, z) in this simplified scenario, for different choices of
the spectral index .

We can also use Eq. (3.35)) to justify the scaling of the CMB density (GeV~! em™3), Eq. (3.21)).
Setting Y — Y., 2 = 0, and zmax — 2, Eq. (3.35]) becomes

Y, (6,0)=(14+2)Y, ((1+2)e2) . (3.37)

(3.36)

This can be rewritten to find the spectrum at redshift z in terms of the local spectrum, i.e.,
Y, (6,2) = (1+2)7'Y, (¢/ (1+2),0) . (3.38)

The proper spectrum, n., can be obtained from the comoving spectrum through Y, = n,/ (1 + z)3,
which, after replacing in the last equation, yields

ne(6,2) = (14 2)2ms (¢/ (14 2),0) (3.39)
for the CMB scaling, as was shown in Eq. (3.35]).

3.2.7 Cosmogenic neutrinos

Cosmogenic neutrinos may come from two different sources: the decay of pions, muons, and
kaonsﬂ and the decay of neutrons. One needs the actual (not comoving) proton and photon

9In NeuCosmA, only KT production from protons is included. In the coupled pneutron system, K~ should
be produced from neutrons with a comparable rate, by isospin symmetry arguments, see also Ref. [I42]. This is
automatically included if ParticleIn = NCO_PROTON is used for the KT production.
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Figure 3.6: Left: Proton/neutron interaction length at different redshifts, from z = 0 (top solid
curve) to z = 6 (bottom solid curve), in steps of 6z = 1. The neutron decay length, Eq. (3.30), is
shown as a dotted line. Right: Critical energy E. (z) above which neutrons interact before decaying;
it is obtained by intersecting the proton/neutron interaction length and the neutron decay length,
as shown in the left panel. Compare to Fig. 5 in Ref. [124] for z = 0, where E, (0) ~ 4- 10 GeV.

densities (GeV~'ecm™3) to compute the interactions, i.e., especially the proton density has to
be computed from the comoving one. The output is the secondary injection (GeV_1 em 3571,
which one may want to translate back into a comoving one (to let it evolve just like Y'). Another
complication is the time-dependence: in order to obtain the comoving number density, one has
to integrate over time. In practice, one will add the injection to the total result by multiplying
with the redshift stepsize Az (At = At/Az-Az). Note that the final result cannot depend on the
number of integration (Az) steps.

Here one simplification may be that we do not need the steady state if we assume that the magnetic
fields and adiabatic expansion are small compared to the decay rate. In this case, we can treat
them as the neutron decays (see below) and just let them decay. Watch the difference between
an injection (per time frame) and steady spectrum (needed for the decays), which are related
by the decay rate — see neutrons in the above files for how that works. Finally, we obtain the
(unoscillated) neutrino injection spectra per energy, volume, and time, as usual. These ought to
be translated into the flux at the Earth by the usual flavor mixing and the same transformation
as the cosmic ray protons, i.e.,

Ty, (Eo) = inya (E,0) . (3.40)

For the neutrinos from neutron decays, we assume that only protons interact, and neutrons decay
before they interact. This is a good assumption for energies below a certain critical energy E.,
which is obtained by intersecting the neutron/proton interaction lengtw—_gl, at a redshift z, with the

neutron decay length, Eq. (3.30). The left panel of Fig. shows curves of the neutron/proton
interaction length for redshifts z = 0 up to z = 6 (solid lines) and the neutron decay length (dotted

%Obtained from the ncoComputeInteractionRate routine in NeuCosmA.
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line). The critical energy FE. (z), determined at the intersections for different z, is shown in the
right panel of Fig. If protons are injected at significantly higher energieﬂ we have an actually
mixed proton-neutron system (approaching roughly 50:50 very quickly) because neutrons interact
before they decay. In this case, neutrons are only produced in 50% of all interactions, and these
neutrons do not contribute to the neutrino flux.

NeuCosmA computes neutron injectior@ lets all neutrons below E. decay into neutrinos directly
in the usual way, and ignores all neutrons above E.. This is done by introducing an exponential
cutoff o e=E*/EZ(2) after the neutron injection, ¢.e., by multiplying the neutron injection spectrum
by this factor. Note that the critical energy at any redshift is determined by the intersection of
the neutron interaction length (on the CIB and CMB) and the neutron decay length. Of course,
one cannot include a possible pile-up effect that way (the neutrons may cool by photohadronics
to below E., where they pile up), but such pile-ups only happen for soft enough spectra. Note
that in most cases there will be no effect of this cutoff since the sources really need to inject at
extremely high energies for it to be noticeable (the high-F tail may be somewhat reduced).

3.2.8 Energy density of electromagnetic cascades

In addition to neutrinos, cosmic ray interactions with the photon backgrounds produce photons,

through the decay of the secondary neutral pions, i.e., 7° — v, and electrons and positrons,

through the decay of the secondary 7*. Electromagnetic cascades are then driven by pair produc-
tion, vy, — ete™, and inverse Compton scattering, e*~, — e*v, on the background photons
[87, [143].

Following Ref. [87], we calculate the electromagnetic cascade energy density (GeV cm™3) at z = 0

as
Cab E
Weas = /dt/ Z ny (E,z) , (3.41)

with the continuous energy loss rate of protons into the e.m. cascade given by
5
beas (F,2) = be+o— (E, z) + gbm (E,z) . (3.42)

The factor 5/8 accounts for the fact that five out of the eight decay products of the charged pions
are electrons and photons. From this definition, it is evident that wc,s receives contributions from
all redshifts; this becomes clearer if we rewrite the integral in ¢ as an integral in z, using |dt/dz|

from Eq. (3.4), namely
Z1 dt bcab E cas E
Wcas—/ Z’/dE(Z)np E Z / dZ /dE Z) Y (E, Z,) s (343)
0

dz (1+ 2 1+2/)* H (/)
where we have replaced the real proton spectrum n, (E, z) by the comoving spectrum Y, (E, z) =
(14 2)%n, (B, 2).

Ref. [143] found that the Fermi-LAT bound data [I44] impose an upper bound on the e.m. cascade
energy density of

Weas < 5.8-10716 GeV ecm™ . (3.44)

"Since, according to the right plot of Fig. E.(z) 2 10'%! GeV, we could have instead used a redshift-

independent suppression o< eiEz/Ez(O), with E. (0) = 4- 10*! GeV, and the calculated neutrino flux at Earth would
have been the same.

2With the routine ncoComputeSecondarySpectrum, using ParticleIn = NCO_PROTON and ParticleOut =
NCO_NEUTRON
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This bound was found by propagating the secondary electrons, positrons, and photons in the
CMB and CIBIEL calculating the resulting photon flux at Earth, Jeas (Eq. (3) in Ref. [I43]), and,
with this, the e.m. cascade energy density, weas = (47/¢) [ dEEJes (E). (Note that, like in our
code, the normalisation of the primary proton injection spectrum was indirectly set by fitting the
proton flux at Earth to the HiRes data.) The maximum allowed photon flux was determined by
requiring that the J.,s curve just touches the lower end of the error bars of the Fermi-LAT data
(see Fig. 1 in Ref. [143]), which imposes the upper bound on the e.m. cascade energy density,
Eq. . Of course, to every set of values of the CR propagation parameters (e.g., proton
spectral index, CR source evolution, etc.) will correspond a photon flux with a different spectral
shape. However, Ref. [143] proved that the shape of J.,s is universal, i.e., it is approximately the
same for a large choice of parameter values; the main effect of choosing a set of values is to fix the
flux normalisation. Therefore, it makes sense to use the integrated flux, i.e., the energy density
Weas, Which is a computationally more efficient method, compared to tracking the evolution of the
e.m. cascade, of taking into account the Fermi-LAT bounds.

Finally, while the Fermi-LAT data spans the approximate energy range 1 GeV - 100 GeV, note that
the energy integration in Eq. covers the much larger and higher range of proton energies,
typically 107 GeV - 10" GeV. However, the e* and 7 generated at these much higher energies
eventually cascade down to the Fermi#LAT range, which makes the application of the bound in

Eq. (3.44) valid.

3.3 Selected results

The plots in this section have been produced using zpom = 1073 (see subsection , which
corresponds to ~ 39 Mpc. The appropriate value, however, should be 2oy = 0.02, corresponding
to ~ 77 Mpc. Since the plots presented here already match those found in the references, we can
safely say that the fluxes would not be greatly affected by this change in zpom-

3.3.1 The UHE proton flux at Earth

For test purposes (see subsection [A.2)), we have assumed a proton injection spectrum of the form
Qcr (E) o« BV B/ Epmax (3.45)

with v and E), nax free parameters. For Figs. the normalisation of Qcr was determined
by matching —by visual inspection onlyiEl» the calculated flux at Earth, J, (Ep) in Eq. (3.3), to
the flux observed by HiRes [44]. The same normalisation was used to produce the plots of the

cosmogenic neutrino flux in Figs.

As explained in Ref. [121], the first bump in the proton flux, at ~ 10%® GeV in Fig. is due to
the pile-up of higher-energy protons that have lost energy through pair-production on the CMB.
This can be inferred from the right panel of Fig. at low energies, the shortest interaction
length is due to pair production on the CMB (though adiabatic losses dominate at low redshifts).
As a result of this pile-up, a dip is formed after the bump, while, to the left of the bump, adiabatic
losses dominate. At higher energies, the same behaviour is repeated due to the photohadronic

13The CIB spectrum was assumed to follow that of Ref. [145).

14The fits of the UHECR protons in the present chapter are not rigorous and should not be taken at face value; the
have been chosen in order to facilitate the comparison between different parameter choices. In chapter [4 however,
we have performed numerical fits to the experimental data; see appendix El for details.
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interactions on the CMB, with a bump appearing at ~ 10'%7 GeV, and a cut-off afterwards (with
a much steeper slope, since |byy| > |be+.-| at these energies). The model in which the appearance
of said bumps and dips are due only to the proton interactions with the photon backgrounds is
known as the dip model.

Fig. shows the effect of varying the maximum proton energy E, max: the higher it is, the larger
the enhancement of the high energy peak around 10'%% GeV, since there will be more protons at
the tail of the distribution. On the other hand, we see in Fig. the effect of varying the spectral
index of the proton injection spectrum: for low values of v, it is possible to closely fit only the
high-energy peak in the experimental data. This corresponds to a transition model, where only
the highest-energy part of the data, above the pair-production dip, is attributed to extragalactic
contributions. A higher value of -, notably, 2.5 allows the fit to cover also the dip; hence, spectral
indices close to this value correspond to dip models.

Fig. compares the UHECR proton flux under two possibilities for the source redshift evolution:
SFR (Eq. vs. GRB (Eq. . Towards the high-energy end of the spectrum, the curve
corresponding to the GRB evolution lies below the one for SFR evolution, while the opposite is
true towards the low-energy end. This is because the normalised comoving GRB rate is enhanced
at high redshifts compared to the SFR rate: due to the energy losses during propagation, however,
the contributions of these high-redshift sources, however, will not show up in the high-energy tail
of the final local flux, but they will rather pile up towards the low-energy end of the flux.

So far, our results have been generated under the assumption that the local CIB photon spectrum
follows the model by [I35] et al. (CIB1 in our convention). Fig. shows the resulting flux for
different choices of the local CIB spectrum, including its absence. Clearly, including the CIB losses
in the propagation of the UHECR protons depletes the high-energy peak of the spectrum, while
leaving the pair-production dip and lower energies unmodified. This is because the py interactions
on the CIB are mainly photohadronic, not pair-producing — otherwise they would contribute to
the pair-production dip. Furthermore, it becomes evident that the choice of local CIB model
(Franceschini et al. [135] or Stecker et al. (2005) [136]) does not affect the local UHECR flux; it
will, however, affect the cosmogenic neutrino flux.

3.3.2 Modification factor

The modification factor, n, was introduced in Ref. [I2I] as the ratio of modified to unmodified
spectrum, 7.e.,

Y (E, z; with adiabatic, pair-production, and photohadronic losses)

n(E, z) = (3.46)

Y (E, z; with adiabatic losses only)

(Note, however, that, in Ref. [121], only the modification factor at z = 0 was calculated.) Since
protons are injected by sources from zy,x down to zpom, the modification factor depends on
the redshift evolution of the number density of sources. Fig. shows the modification factor
assuming a spectral index v = 2 and no source evolution (Hcr = Hcs = 1); it matches, for
z = 0, the results in Ref. [125]. This should be compared to Fig. where SFR evolution has
been assumed instead. Clearly, including the photohadronic interactions depletes the flux at high
energies.

Note that the low-energy bump due to pair production on the CMB appears early in the evolu-
tion and is visible down to z ~ 4. However, adiabatic losses subsequently make the bump less
pronounced at lower redshifts. These losses are also responsible for making the dip shallower with
redshift.
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Figure 3.13: Modification factor, Eq. (3.46)), assuming v = 2 and SFR source evolution.

At z = 0, the dip in the modification factor calculated under the assumption of SFR evolution
(Fig. is deeper than the corresponding one under the no-evolution assumption (Fig. [3.13]).
From Fig. [3.4] we know that the maximum difference between Hgpr and a uniform source density
of H = 1 occurs around z < 1, which, according to the right panel of Fig. is precisely the redshift
region in which, for large energies (E > 108® GeV), losses through photohadronic interactions on
the CMB dominate over adiabatic losses by more than two orders of magnitude. In other words, in
the SFR evolution case, more protons are injected just at the right redshift where they are prone
to lose more energy through photohadronic interactions than adiabatically. Therefore, the dip in
the modification factor becomes deeper.

3.3.3 The cosmogenic neutrino flux at Earth

The cosmogenic neutrino flux at Earth, J, (Ep) in Eq. (3.40), is calculated as explained in sub-
section [3.2.7} see also section [3.I] Note that due to the high energies and very long baselines, the
flavour-transition probability is no longer oscillatory, but averaged-out.

To generate Figs. we used the best-fit values of the mixing parameters from Ref. [105],

assuming a normal mass hierarchy:
sin? (012) = 0.307 ,  sin? (f13) = 0.0245 ,  sin?(fx3) = 0.398 , Jdcp =0.897 .  (3.47)

The IceCube 2010-2012 sensitivity curve shown in the plots was extracted from Ref. [146]. Fig.
shows the different contributions that make up the all-flavour cosmogenic neutrino flux: the 7,
coming from the -decay of the neutrons that escape the source, and the neutrinos+antineutrinos
generated in the photohadronic interactions of the protons and the cosmological photon back-
grounds. The peak at E, =~ 1058 GeV is due to interactions on the CIB, while the peak at ~ 10°
GeV is due to interactions on the CMB. Since neutrinos in photohadronic interactions carry a
fraction 1/20 of the energy of the parent proton, neutrinos at the peak were created by protons of
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energies 20 - 105% GeV a2 1.3 - 108 GeV (for interactions on the CIB) and 20 - 10° GeV = 2-10!° GeV
(for interactions on the CMB).

The left and right panels of Fig. show, respectively, the effect on the cosmogenic neutrino flux
of varying the maximum proton energy and the spectral index of the injected proton spectrum,
for the same values that we explored in Figs. and As expected, higher values of E, ax
result in enhanced fluxes at high energies, due to the higher abundance of high energy protons
that can interact with the CMB. Note also that larger values of the spectral index ~ will deplete
the high-energy neutrino peak that comes from CMB interactions, but will increase the relative
contribution of the lower-energy peak that comes from CIB interactions.

Furthermore, the left panel of Fig. shows the cosmogenic neutrino flux under the two assump-
tions of source evolution: SFR and GRB. In comparison to the effect that the source evolution
has on the UHECR flux, which is rather mild at high energies (see Fig. , the effect on the
cosmogenic neutrinos is markedly stronger: this is because, while for the UHECR protons the en-
hancement of the number of sources at high redshifts is counteracted by the energy losses during
the longer propagation, for the cosmogenic neutrinos no energy losses apart from the adiabatic one
exist, and so neutrinos from all redshifts effectively contribute to the local flux. The right panel
of Fig. shows, on the other hand, the effect of the choice of the local CIB photon spectrum;
since the CIB2 spectrum is slightly higher than the CIB1 spectrum (see Fig. , the low-energy
peak of the cosmogenic neutrino flux is correspondingly higher under the CIB2 model.

It is interesting to study how different redshift ranges contribute to the total cosmogenic neutrino
flux: Fig.[3.I7shows that while most of the flux comes from 0.5 < z < 1.5, contributions from even
the highest redshifts are not at all negligible, with the band 2.5 < z < 4.0 only approximately a
factor of five lower. We are also able to calculate the flux per flavour, for neutrinos and antineutri-
nos, as shown in the left panel of Fig.[3.18] Due to flavour transitions, we expect an approximately
equal flux of neutrinos+antineutrinos of each flavour, and we find that the curves are consistent
with this expectation. The central panel shows the ratio of neutrinos to antineutrinos for the
different flavours, where we see that there are markedly more v, than 7., with the ratio varying
between 2 and 3, while for muon- and tau-flavour the ratio oscillates around 1.1. Around 10* GeV
the ratio drops to almost zero, since at this energy the only contribution comes from the S-decay
of neutrons into exclusively 7. Finally, the right panel of Fig. shows the ratio of each flavour
to the total number of neutrinos, antineutrinos, and their sum. As expected, starting from ~ 10%°
GeV, i.e., once most of the neutrinos come from photohadronic interactions and not from neutron
decay, the ratios lie around 0.3, in agreement with the left panel of the figure.

3.4 The effect of the CIB on cosmogenic neutrinos

Our motivation here is to find ways to enhance the peak in the predicted cosmogenic neutrino flux
at B, ~ 107 GeV, which is due to photohadronic interactions of UHE protons with the CIB. In
order to achieve this, we have explored the effects of adding an extra component to the CIB photon
spectrum, properly tuned in order for its effect to be to increase the number of photohadronic
interactions on the CIB at higher redshiftﬂ

15The results in sectionwere obtained by using a value of the Hubble constant of Hy = 74.3 km s~ Mpc™! =
2.4095- 10718 571 [147)
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3.4.1 Adding an extra component to the CIB photon spectrum

Our aim is to explore possible enhancements of the peak at

EO

~ 10581 GeV in the local (z = 0)

cosmogenic neutrino flux that is due to interactions with the CIB. The most straightforward way
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to achieve this is to add a suitably-chosen extra component to the CIB photon spectrum, so that
the total spectrum is computed as

nSIB (67 Z) = nS,Ib%se (67 Z) + n'CyJ,Ie]?ctra (67 Z) ) (3'48)

where nS}bBase is the base spectrum, given by one of the available models in the literature (e.g.,

Stecker et al. [136], 148], Franceschini et al. [I35], Inoue et al. [149], etc.), and ng’le]itra is the extra
component.

The size of this extra component will be limited by three different pieces of observational data:

The UHECR observations. Cosmogenic neutrinos are created in the interactions of UHE pro-
tons —injected by cosmological sources— with the cosmological photon backgrounds. The
proton spectrum that is assumed to be injected by the sources and that is propagated down
to Earth, while taking into account energy losses, must be able to fit the observed local
UHECR spectrum (e.g., as measured by HiRes), and to yield values of the local energy
injection rate in CRs that are in agreement with the one derived from the observations
(~5-10*" erg Mpc=3 yr=1).

The UHE neutrino bounds. After the addition of the CIB extra component, the resulting
cosmogenic neutrino flux must still lie below the UHE neutrino bound from IceCube [146].

The model uncertainties on the CIB at low redshifts. Different models of the CIB give dif-
ferent (though mostly compatible) results for the local photon spectrum and its uncertainty,
both of which are better estimated at lower redshifts. Hence, as an additional requirement
of our analysis, we demand that the addition of the extra component to the CIB spectrum
does not exceed the base model uncertainty at low redshifts. At higher redshifts, where the
predictions of the spectrum and the uncertainty estimates are much less well-known, the size
of the extra component may be larger.
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An extra component ng’le]?(tra that satisfies these three requirements could therefore potentially

enhance the cosmogenic neutrino flux at ES peak without disrupting the UHECR, and low-z CIB
predictions, and respecting the UHE neutrino upper bound.

We will assume that the extra component has a Gaussian shape. In order for it to enhance the
cosmogenic neutrino flux in as much as possible, we will see that it is sufficient to make its central
value satisfy the A-resonance energy condition at every value of redshift. In the CM frame, the
neutrino energy E, ~ 0.05E,. On the other hand, the threshold for the A-resonance to occur is
give by Fpe ~ 0.2 GeV?. Since neutrinos only lose energy adiabatically, their energy at production
is simply a factor (1 + z) higher than their energy at detection, i.e., £, = (1 + z) EY. Therefore,

E,=(1+2)EY~0.05E, , (3.49)
and, with this, the threshold condition can be rewritten as

02GeV? _0.2GeV?  0.01
B LR (142 B

GeV. (3.50)

Therefore, from this relation, we find that if we wish to enhance the local neutrino peak at EB peak ~
1068125 GeV, then the extra component of the CIB spectrum must be centered at

1.54 eV
CIB ( )% ]

epeak 1 Tz (351)

We then set, at every redshift, the central height and standard deviation of the Gaussian extra
component of the CIB spectrum to be proportional to the value of the base spectrum evaluated

at egelfk (z). The extra component can thus be written as

(c— et ()"

CIB —z* CIB CIB
NS evira (€,2) = "% [mn%base (epeak (2) ,z)] exp |— = 51 (3.52)
2 (ngepeak (z))
with k1 and ko free proportionality constants of the model. The damping factor e*~*" ensures

that, below z*, the extra component is small, so that it does not exceed the uncertainty bands of
the CIB spectrum at low redshifts (typically, 2 < z* < 3), where they are better modeled. See,
e.g., Fig. which shows the uncertainty bands for the Stecker et al. (2012) model [14§].

At this point we should mention that the shape of the CIB extra component, Eq. (3.52), is purely
phenomenological: by definition, the CIB spectrum nS'™ (¢, 2) is obtained from integrating in z

the photon injection spectrum [,gIB (e,2) (see Eq. (3.22)); hence, adding an extra component

S,Ie]?(tm (€,2) to the CIB spectrum implies adding an extra component ‘CS,Ie]?(tra

function, i.e.,

n to the injection

CIB _ prCIB CIB
L7 (6,2) =L (e,2)+ L (e,2) . (3.53)

v,base v,extra

Due to the added difficulty in finding a form of Egg(tra that yields ng}e]itra in Eq. , we have
first concerned ourselves with adding the extra component directly on the CIB spectrum, while
leaving for section the issue of what is the corresponding extra injection component. For
the redshift evolution of the base CIB spectrum, we have used Eq. (see also appendix C of
Ref. [122]), nng (e,2) — nﬁlbgse (e,z). To produce the results in the present section, we have
assumed that the base CIB model is given by the local Stecker (2005) et al. calculation [136] and

that Hcip (2) is the SFR evolution.
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Figure 3.19: Three different models of the CIB at low redshifts. The shaded band shows the
68% uncertainty on the Stecker et al. (2012) model [14§].

Fig. shows the evolution of the CIB spectrum with redshift. We include a rough estimate of
the uncertainty of the base model as a blue shaded band covering from half to twice the value of the
base spectrum (black solid line) at each energy value, approximately reproducing the uncertainty
of the Stecker et al. (2012) model shown in Fig. The base spectrum should be compared to
the three enhanced CIB models (Eq. (3.48))) that we have included: two conservative models with
(K1,k2,2*) = (2,1,2) (red dashed lines) and (2,1,3) (blue dotted), and an extreme model with
(6,1,2) (magenta dot-dashed). Note that, for the latter, the uncertainty band is exceeded already
az=2.

As the next step, we have calculated the cosmogenic neutrino flux, using each of the different
CIB spectra from Fig. In order to do this, we have assumed a distribution of extragalactic
UHECR pure-proton sources that follow the GRB rate, Eq. , and an injection spectrum of
Qcr x E7 exp (—FE/Ep max) for each source, with a fixed maximum proton energy of E, nax =
1015 GeV for the present analysis. As before, we have normalised our generated UHECR proton
flux to the HiRes experimental data, which fixes also the cosmogenic neutrino flux normalisation.

Fig. left panel, shows the calculated local cosmogenic neutrino flux for a proton injection
spectral index of o, = 2, and using for the CIB spectrum the base model and the enhanced
models depicted in Fig. It is evident that, even when using the extreme CIB enhanced
model with (k1, k2, 2*) = (6, 1,2), the enhancement is not nearly high enough to bring the peak at
Eﬂpeak ~ 10981 GeV close to the IceCube sensitivity. The situation is better for a spectral index of
ap = 2.5, shown in the right panel of Fig. In this case, when using the extreme CIB enhanced
model, the peak at EY 1« Teaches the same level as the highest-energy peak at ~ 10° GeV which

v,peal
is due to interactions with the CMB, and lies considerably closer to the IceCube sensitivity.

However, since the CIB spectrum slightly exceeds the uncertainty of the CIB models already at
z = 2, it will probably be a better choice to use a Gaussian extra component with k1 &~ 5 instead
(see Eq. ) Nevertheless, it is clear that the phenomenological form of the extra component
in the CIB spectrum that we have adopted, ngyle}itra, is able to achieve what we sought: it enhances

the peak in the cosmogenic neutrino flux at EB peak ~ 10681 GeV.
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Figure 3.21: Cosmogenic neutrino flux assuming a proton injection spectral index of oy, = 2.0
(left panel) and o, = 2.5 (right panel). The base CIB spectrum at z = 0 has been assumed to
be the one by Stecker et al. (2005) [148], and the density of the CIB sources follows the SRF
evolution (see Eq. (3.22))). The same three enhanced CIB spectra (see Egs. (3.48) and (3.52)) used
in Fig. [3.20] are included.

3.4.2 A simple model of the CIB injection function

In this section, we propose a simple model of the CIB injection function which reproduces existing
models in the literature, with the aim that it could later be used as a basis to explore how to add
the required extra component LS8, introduced in section m

v,extra

We have modeled the logarithm of the injection function as the addition of two Gaussians with
(initially) free parameters that are allowed to evolve with redshifﬂ

oo £C1B (4 2) — N (2) ox _(:U—m(z))2 Np (2) ox _($_Mh(z))2
L) = () p[ 207 (2 ] Vara () p[ 27 2] ] 320

with = loge. We have parametrised the redshift dependence as follows:

o1 (2) =010 (1 +2)" (3.55)
on (2) = ono (L4 2)™ (3.56)
p (2) = puo (1 + 2)P (3.57)
fh (2) = pino (1 + 2)7 (3.58)
Ni(z) =N (1+2) (3.59)
Np (2) = Npo (1 + 2)° (3.60)

There are twelve free parameters in this model: oy9, opo, o, tros Nios Nro, , m, p, q, 7, and s.
The motivation behind using a two-Gaussian model of the CIB injection function is that, by fitting

'%1n the current implementation, the factors v/2moy (z) and v/27wop (2) appear in the normalisation. However,
these are unnecessary and may be removed as a refinement.
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Figure 3.22: CIB spectrum at different redshifts. Data from the model by Franceschini et al. [135]
is shown as red circles. The blue line is the best-fit CIB spectrum calculated under the assumption
of a two-Gaussian injection spectrum, whose parameters were fit to the data. At z = 0, the
experimental data points and (very small) error bars are shown. See the text for details.

its parameter values to observations of the local (z = 0) CIB spectrum or to existing models of the
CIB spectrum at z > 0, one could gain insight as to what the redshift behaviour of the injection
function should be in order to maximise the cosmogenic neutrino flux, in particular, as we said,
what the extra component Eg}e])s(tra should be.

The directly measurable quantity is the local CIB spectrum, nng (e,0). The injection function
EgIB is not an experimentally accessible quantity. The CIB spectrum at z > 0 can be inferred
through the use of the luminosity functions of sources which are expected to contribute to the CIB.
This has been done by several groups and using different source samples and luminosity functions;
in the present note, we have adopted the CIB spectrum constructed by Franceschini et al. [135],

which extends up to z = 2.

To find the values of the free parameters of our model, we have constructed a simple x? function

2
X (Ul07 Oh0,s K10y HhO, NlOv NhO) n,m,p,q,r, S)
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Figure 3.23: CIB injection function composed of two Gaussian functions whose parameters have
been found by fitting the associated CIB spectrum (see Eq. (3.22))) to the model by Franceschini
et al. [135].

2

(3.61)

ngIB-data (iU, Z)

CIB .
_ ZZ ny (UlﬂaUhOaMlO?,uhDaNl07Nh07n>m7paq7’r787xvz) -
. = ngIB (o-l()aJhO)MlOle‘LO)Nl()vNhO)namapa Q7T73;$)Z)

with n x, z) the data points from the particular model selected, and scanned the twelve-
dimensional parameter space in order to find a minimumlﬂ of x2. We can choose either to fit to
the observed CIB spectrum at z = 0 only, or to fit to the inferred CIB spectra in all of the range
0 < z < z* (2 = 2 in the Franceschini et al. model). In the present note we have followed the
latter option as an initial step, in order to try to reproduce what is a widely accepted model of
the CIB spectrum.

Fig. shows the result of such minimisation procedurﬂ the red dots are the data from Tables
1 and 2 of Ref. [I35] (covering the range 0 < z < 2 in steps of 0.2), while the blue line is the
best fit to the data assuming the two-Gaussian injection function, Eq. (3.54). We show also the

CIB-data (
Y

170One should be aware that there might be degeneracies among the parameters, and several minima of comparable
magnitude.
18The Python library pyminuit was used.
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Figure 3.24: Effect on the CIB spectrum at z = 0 of varying one parameter of the two-Gaussian
model at a time (bf = best-fit).

calculated spectrum at z > 2, where there are no more data points calculated within the model by
Franceschini et al.. At z = 0, we have included the experimental points and error bars shown in
Fig. 1 from Ref. [135]. Fig. shows the underlying CIB injection function, where the evolution
of the two Gaussians is clearer.

In order to understand how each parameter affects the CIB spectrum, we have varied them one
at a time, while keeping the remaining ones at their best-fit values. Figs. and show the
effect of such a parameter-by-parameter variation on the CIB spectrum and injection function at
z = 0, respectively.

Fig. compares three different treatments of the CIB spectrum based on the model by Frances-
chini et al. [135]:

e CIB spectrum tabulated from the tables in Ref. [I35] (red dashed lines)

e CIB spectrum at z = 0 fixed to the Franceschini et al. model, and scaled to z > 0 following
the approximation in Eq. (3.22)). For this plot, we have assumed that the sources follow the
star formation rate.
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Figure 3.25:
two-Gaussian

Effect on the CIB injection function at z = 0 of varying one parameter of the
model at a time (bf = best-fit).

e CIB spectrum calculated in the two-Gaussian model introduced in the present note (blue
dotted lines)

One can see from Fig. that the low-energy slope of the CIB spectrum calculated with the two-
Gaussian model is much steeper than that of the redshift-scaled spectrum. However, this occurs at
energies in which the CIB is already subdominant with respect to the CMB, and therefore it will

not affect the

cosmogenic neutrino flux. It is also evident that the high-energy peak of the CIB

spectrum in the two-Gaussian model is not sufficiently pronounced (compared to the tabulated
CIB), a problem that could be solved by improving the quality of the fit.

The left and right panels of Fig. show, respectively, the cosmogenic neutrino flux, integrated
up to Zmax = 2 and zmax = 6, comparing the results obtained with the different parametrisations of
the CIB that were used in Fig. Note that, with the current best-fit values of the parameters,
the two-Gaussian model yields a lower cosmogenic neutrino flux. This could presumably be solved,
again, by improving the quality of the fit.
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Figure 3.26: Comparison between different treatments of the CIB based on the model by Frances-
chini et al. [135], at z =0 and z = 2. See text for details.
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Figure 3.27: Cosmogenic neutrino+antineutrino flux at Earth (summed over all flavours) cal-
culated assuming different treatments of the CIB. The flux receives contributions of neutrinos
produced up to zmax = 2 (left panel) or zyax = 6 (right panel). The dip model with a proton-only
composition for the UHECRSs has been assumed, with proton spectral index of v = 2.5. Cosmic

ray sources (which may be AGNs, GRBs, etc.) are assumed to follow the same redshift evolution
as the star formation rate.



Chapter 4

Constraining joint UHECR-neutrino
production in GRBs

In this chapter we combine the two-component UHECR, and neutrino source model from chapter
with the UHECR propagation scheme from chapter by normalising the obtained UHECR
proton flux to the current UHECR observations by the HiRes, Telescope Array, and Pierre Auger
experiments, we obtain also a prediction for the prompt GRB neutrino flux and the cosmogenic
neutrino flux at Earth. A comparison of the neutrino fluxes thus calculated against the upper
bounds obtained by IceCube allows to strongly constrain the regions of parameter space in which
GRBs could be the main source of both UHECRs and UHE neutrinos.

4.1 Introduction

Though several transition models have been proposed to explain the UHECR spectrum (see, e.g.,
Refs. [150, 151), 152, 153] and Ref. [I54] for a recent review), we will focus here on only two: the
ankle model, which assumes the transition between a Galactic or extragalactic component below
the ankle (~ 40 EeV) and an extragalactic component above it; and the dip model, which assumes
that a single extragalactic component extends to lower energies (~ 1 EeV) and generates the pair-
production dip seen in the UHECR spectrum via interactions with the CMB. For the ankle model,
the required injection spectrum index is a; ~ 2.5, whereas for the dip model a steeper spectrum
is necessary, with o, ~ 2.5 — 2.7. Such a steep spectrum can be taken as an ad hoc assumption,
but can also be generated from a distribution of the maximal proton energies [155].

Proposed connections between the three UHE messengers —gamma-rays, UHECRs, and neutrinos—
have led to diverse approaches to the prediction of the neutrino flux which have been explored in
the literature, notably:

e estimating the neutrino flux from the measured local UHECR, energy injection rate, by
requiring that GRBs are also the sources of the UHECRs [89];

e normalising the neutrino flux of a source to its observed gamma-ray signal [2, Q0] 91]; or

e assuming that UHECRs and neutrinos are produced in the same processes, usually when
only neutrons are able to leave the source (“neutron model” in chapter [2|) [86] [100].

Let us briefly describe the connections between pairs of messengers:
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Gamma-ray—neutrino connection. Recently, the IceCube Collaboration published upper bounds
on the flux of UHE neutrinos from a catalogue of observed GRBs using the 40-string con-
figuration of the detector and assuming an analytical neutron model for the production of
neutrinos, whose prediction exceeded the upper bound [3]. However, revised numerical pre-
dictions [l O8] [5] (see also the earlier model in Ref. [94]) yield a neutrino flux that is one
order of magnitude lower than the analytical prediction, thus relaxing the tension. The
normalisation of the quasi-diffuse flux in these models is directly proportional to the bary-
onic loading, whose value is chosen somewhat arbitrarily to be 10, whereas the number of
observable (long) bursts per year is chosen to be 667 in Refs. [91], 92].

Cosmic ray—neutrino connection. While the connection is very stringent in the neutron model
[T00] (i.e., each UHECR observed should be accompanied by one neutrino of each flavour),
the connection is more loose in our two-component model (see Ref. [I06] and chapter [2)),
since at the highest energies protons are able to escape from the source without producing
neutrinos. The neutron model, however, predicts neutrino fluxes that are substantially above
the current bounds, which motivates a reassessment of either the baryonic loading or the pion
production efficiency, which, as we will show, have been underestimated. In addition, the
original computation [89] relies on the pion production efficiency, which implies that some of
the corrections found in Refs. [4, 98] apply, and on the energy injected into cosmic rays, which
has to be re-evaluated in view of more recent results from experiments such as HiRes [44],
the Telescope Array [156] and the Pierre Auger Observatory [157, [51].

Gamma-ray—-UHECR connection. This has been heavily debated (see, e.g., Refs. [I58], [159])
and depends on several fudge factors, which we will introduce later. Clearly, the neutrino
and UHECR fluxes predicted from the gamma-ray observations will depend on common
factors, such as the baryonic loading, which, as we will show, should include a bolometric
correction [160, [158].

In order to clarify these issues, we have adopted a self-consistent approach that consists in nor-
malising the predicted cosmic ray flux to the experimental observations, as a result of which one
can derive a value for the baryonic loading that is in turn used to normalise the neutrino flux. We
will see that such an approach does not only allow us to constrain the parameter space of common
models —by comparison of the predicted neutrino fluxes to the IceCube bounds—, but also to obtain
information on the cosmic energy budget as a spin-off.

4.2 Cosmic energy budget and observables for GRBs

In this section, we review the multi-messenger picture among gamma-rays, neutrinos, and cosmic
rays in a model-independent, analytical way; the detailed derivations can be found in appendix

The gamma-ray energy output from GRBs can be characterised by a number of observables,
namely, the isotropic equivalent energy FE, ;s, per GRB; the number of observable GRBs per year
N, which, from observations is ~ 1000 bursts per year; and the redshift distribution of the GRB
We use the redshift distribution by Kistler et al. [138], in which GRBs follow the star formation

'For the sake of simplicity and technical feasibility, we do not consider a luminosity distribution here. As detailed
in Ref. [I3§], it is possible to assume a threshold luminosity which is visible in the whole chosen redshift range.
Hence, it is possible to calculate an average luminosity per burst which represents the distributed result well. Our
results in this paper need to be interpreted as such appropriately averaged bursts. We have included this potential
development as part of the outlook in chapter
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Figure 4.1: Result for the multi-messenger connection (illustration). Here “CR” refers to UHECRs in the
energy range between 10'° GeV and 10'? GeV. The different labels refer to the number of observable GRBs per
year (N ), the isotropic equivalent energy in gamma-rays (E+,iso), the cosmic evolution factor (f. > 1), the baryonic
loading (f, ' > 10), the instrument threshold correction (finresh ~ 0.2 — 0.5), the fraction of baryonic energy going
into cosmic ray production (fcr), the fraction of baryonic energy going into pion production (fr), and a bolometric
correction factor (fpol < 1). Figure taken from Ref. [161].

rate, Eq. (3.32), modified by an evolution factor (1 + z)* which, for o > 0, implies an increase in
the number of high-redshift (z > 2) sources.

A distinction must be made between the number of observable GRBs per year, N, and the total
number of bursts in the observable Universe per year, Ntot. The latter includes bursts whose
gamma-ray emission is too faint to be detected, but that nevertheless contribute to the neutrino
flux. Therefore, to estimate the quasi-diffuse neutrino flux (as in, e.g., Refs. [91, 92]), one must
use Ntot, not N. Thus, we define a threshold correction factor

N
eh = <1, 4.1
fth esh Ntot ( )

whose value will depend on detector characteristics. For a simulation following Refs. [I38, [162],
we have found fippesn ~ 0.3 — 0.5; see appendix Bl From a recent study that uses Swift data [163],
we can estimate finresn =~ 1000/4568 ~ 0.22, which is close. Hence, we will use fipresn = 0.3 in the
following as a default value.

Another relevant quantity for the normalisation of the fluxes is the local GRB rateE] [Gpc™3
yr1] [165, 166, 167, 168, 169, 170, 162, 163] ficrp|,_,, defined as

1 N [yr—]
Gpcdyr 968

nGrB|,_y Sinresn I (4.2)

2Here we use the local GRB rate ?LGRB’Z:O related to observations, while the actual GRB rate ngrg is higher

due to correcting for the beaming factor of the GRBs; figrs = nGrB/ (focam). See appendix [B| for a more detailed
discussion.
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B [10T9,1077]
narB|,_y | For
SFR model a f- | [Gpc3yr™1] | [10°erg] | References
Hopkins & Beacom (2006) | 1.2 | 25.15 0.13 11.0 | [139, 135
0.0 | 5.65 0.58 2.5 [139]
Wanderman & Piran (2010) | 0.0 | 7.70 0.43 3.4 [162]
Madau & Porciani (2000) [164]
SF1 0.0 9.89 0.35 4.3
SF2 0.0 | 14.42 0.23 6.3
SF3 0.0 | 14.36 0.23 6.2

Table 4.1: Cosmic evolution factor f., local GRB rate (without beaming correction), and required energy per
GRB in UHECRs for different SFR histories and source evolution factors a (the star formation rate is corrected by a
factor of (14 2)®). The results for f, are obtained using Eq. 7 with the integration running from z = 0 to z = 6.
The local GRB rate is obtained from Eq. and the cosmic ray energy per bursts in the range 10'° to 10'2 GeV
is obtained from Eq. 7 both by assuming N = 1000 y]rf1 and finresh = 0.3. Table taken from Ref. [161].

A cosmic evolution factor f, connects the local (z = 0) quantity, ?LGRBL:O, to N, which
accounts for the whole GRB sample and implicitly incorporates the redshift evolutionﬂ In other
words, the cosmic evolution factor describes how representative the local GRB rate is for the whole
sample: the stronger the evolution of the GRB rate in redshift (larger «) is, the larger the values of
this correction factor. Table shows typical values of f,, which range from 5 to 25, for different

SFR models and values of the evolution factor «, as well as the corresponding values of ﬁGRB‘
1

. z=0’
obtained by assuming N = 1000 yr~" and finresn = 0.3. From the table, it is evident that stronger
source redshift evolution implies smaller local GRB rates.

If GRBs are to be the sources of UHECRS, we can estimate the required energy output per GRB
by deriving the local energy injection rate in the range 101°-10'2 GeV that is required to reproduce
the observations. The calculation by Waxman [I71], based on the UHECR data available at that

time, which were sparse above 8109 eV (see Ref. [I72] for an update using Auger data), yielded

.[1019,1012 _ _ . . e . .. c .
eéR ] = 4.5-10* erg Mpc 3 yr~!, with little sensitivity to variations of the spectral injection

index in the range 1.8 < o, < 2.8. Using the data from several experiments recently compiled by
Gaisser, Stanev, and Tilav [54], we obtain 1.5-10* erg Mpc =3 yr~!, which is compatible with the
original result. The required energy per GRB is then (see appendix

[l1070,1012] _ 053 é[clgo’lom] 968 yr~! f f (4.3)
= erg - . . « fthresh * = - .
CR & 1044 erg Mpc =3 yr—1 N thresh 2
10 12
Table includes the required energies per GRB to reach égg{ A0 5. 108 erg Mpc =3 yr—1,

which lie in the range 10%® — 10°* erg. Strong source evolution requires larger injected energy per
burst, on account of the few local bursts.

A key point regarding the baryonic loading f, ! is that it relates the total energy in protons in
the entire energy range to the kinetic energy in electrons, which we assume to be in equipartition
with the energy in gamma-rays. While we maintain this definition of f;! in our treatment, we
stress that, for the connection between gamma-ray and UHECR observations, only the CR energy
range between 10'° and 10'2 GeV is relevant. Therefore, the baryonic loading is modified by a

3Note that our definition of f. in Eq. of appendix is different from ¢z in Waxman and Bahcall [I13], and
includes the description of the ACDM cosmology.
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bolometric correction factor fi, < 1 defined as the ratio of energy in protons between 10'°

and 10'2 GeV to the energy in the total energy range considered; see the definition, Eq. , in
appendix |Bl For a power-law injection spectrum without cutoff and the full proton energy rang
we find fi,o between about 0.2 (for a;, = 2.0) and 1.6-10~* (for a;, = 2.5). Larger values are
obtained for larger minimal proton energies, and somewhat smaller values for a (model-dependent)
maximal proton energy significantly below 10'2 GeV.

An alternative way to estimate the required energy per burst in the UHECR range is through the
connection to the energy output by the burst as gamma-rays, i.e.,

10 1012
Egl?{ 1077 - fCRj;Ol E’y,iso 5 (44)
e

where fcr is the fraction of baryonic energy going into cosmic ray production, analogous
to the fraction fr of baryonic energy going into pion production (pion production efficiency)
as defined in Refs. [89] 2]. Note that f is the total energy that goes into neutral plus charged pions,
and not the average energy lost to pions in a single interaction. The value of f; depends on what
is the cosmic ray emission mechanism: if they escape as neutrons, then typically fcr ~ 2 fr ~ 0.4
and fr ~ 0.2, since neutrons on average receive four times as much energy as the pions while twice
the number of pions than of neutrons is produced in p7y interactions; whereas if they mainly leak
out as protons, then typically fr < 1 and fcr > fr.

Assuming F, j5o ™ 10%3 erg, Hopkins & Beacom SFR without source evolution (conservative case,
a = 0), and fihresh = 0.3, we can see from Eq. that in order to match the required energy
injection per GRB that a value of fcr - fool- fo + =~ 2.5 is required. If neutron escape dominates
(fcr =~ 0.4), the baryonic loading obtained is f,;! ~ 30 for a proton spectral index of ap = 2.0
(where fho1 ~ 0.2), and even larger values for f; ! if a source evolution is included. Here the
difference between the usual baryonic loading f. ! and the UHE baryonic loading fi,o1 fo ' which
enters in Eq. becomes relevant [160, [158]: it is not sufficient to have a large enough baryonic
loading in total, one needs a large enough baryonic loading at the UHE. Therefore, if the baryonic
loading is (implicitly) defined for the whole energy range (see Eq. (B.15))), as in most neutrino
calculations, it has to be significantly larger than 10 to describe the UHECR observations. This
is also the reason why the predicted neutrino fluxes in Ref. [100] are relatively high: the implied
baryonic loading x pion production efficiency, which is not explicitly considered therein, is very
high.

Fig. shows that f, is an overall scaling factor, needed to infer the local GRB rate from the
observed N. Moreover, if gamma-ray observations are used as the basis to predict the UHECR
and neutrino injection, then the baryonic loading and the threshold correction affect UHECRs and
neutrinos in the same way, whereas if the UHECR flux is instead used to normalise the neutrino
flux [100], these factors drop out from the calculation. Furthermore, it is clear that some of
the scaling factors are dependent on the model and its input parameters (fr, fcr, En,iso> fbol),
whereas the remaining relevant parameter combination scaling the neutrino and cosmic ray fluxes
is N- ot fti}esh. Assuming the value N ~ 1000yr—! from observations and fipresn ~ 0.3, the
UHECR observations can be directly used to deduce the baryonic loading. In the following, we
will fix these values and measure f.! for the sake of simplicity and readability. However, note
that f. ! is to be interpreted as the product of these quantities in the following, i.e., a higher
instrument threshold correction or a larger number of observed bursts per year will reduce the

4Technically, the full energy range is defined in the SRF in our calculations, the comparison of the energies,
however, needs to be done in the source frame. Hence, the limits need to be boosted to the source frame for the
actual calculation, leading to a range from I'-1GeV (from the proton rest mass) to I'- 10'° GeV.
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required baryonic loading. The actual baryonic loading can be derived then from the values of f; !
given in our figures as

-1 _ IOOOyr_l . fthresh )

-1
e,actual N 0.3 fe (45)

for different choices of N or finresh- The baryonic loading in the UHE range can be obtained as
fvol fo 1, where fio depends on the spectral proton index and on the minimal and maximal proton
energies.

4.3 Combined production and propagation model

Our GRB two-component UHECR, emission model has been introduced in chapter [2; the pho-
tohadronic interactions, and the production of neutrinos, make use of NeuCosmA [99]. For the
cosmic ray propagation, we use the deterministic Boltzmann equation solver presented in de-
tail in chapter For the mixing parameters we have used the best-fit values from the global
analysis in Ref. [105], under the assumption of a normal mass hierarchy: sin? @15 = 3.07-1071,
sin? 013 = 2.41-1072, sin® f3 = 3.86- 107!, and dcp = 1.08 - 7.

For the sake of simplicity, we assume that all sources are alike in the cosmologically comoving
frame, i.e., the source frame. By this choice, we imply that the cosmic ray injection factorises
into a redshift- and an energy-dependent part. If, for instance, the observables were fixed in the
observer’s frame, the maximal proton energy would depend on redshift and subtle spectral features
would appear: for a fixed luminosity, high-redshift bursts would have a lower variability timescale
(in the source frame) due to the redshift correction, and, consequently, the particle densities would
be higher, photohadronic interactions would become more frequent, and this would introduce an
artificial pull on the maximal proton energy. If, on the other hand, a luminosity distribution
function were used, only few bursts would contribute to the maximal proton energies, which
again would introduce spectral features and subtleties in the interpretation. For the “standard”
GRB parameters, we use, unless noted otherwise, oy = 1, 8, = 2, €, = 1keV (in the SRF),
I' = 300, Too = 10s, t, = 10~?s, and a luminosity Lis, = 10°?erg sj‘/. These parameters are
given in the source frame in order to guarantee similar properties in that frame, which means
that Liso ~ Ey jiso /Too. We use an acceleration efficiency n = 1.0, unless noted otherwise. The
normalisation of the photon spectrum and the calculation of the maximum proton energy follows
the procedure outlined in section but in contrast here we keep the baryonic loading as a free
parameter and only fix it later by fitting the UHECR observations.

The cosmic ray injection function is given by Eq. (B.17) in appendix [B| (for details, see Eq. (B.12)),
built up from the individual source spectrum. The sources are assumed to be distributed following

the chosen SFR, corrected by an evolution factor (1 4 z)®, down to very small redshifts. In order
to test the statistical significance of a model, we fit our UHECR flux prediction to the Telescope
Array data [156] (see appendix [C] for details). For a comparison to data from the Pierre Auger
and HiRes experiments, see appendix E of Ref. [161]. The best-fit normalisation and energy
calibration translate into the baryonic loading f.! of the model — assuming that N ~ 1000 yr~—!
and finresh = 0.3, as discussed in section

4.3.1 Ankle model for cosmic ray transition

We focus first on the ankle model; to describe the extragalactic component we restrict our anal-
ysis to the range from 10'° to 10'2 GeV, which coincides with the analytical considerations in
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Figure 4.2: Best-fit cosmic ray (left panel) and neutrino (right panel) fluxes as a function of energy for a;, = 2,
the Hopkins & Beacom star formation rate [139], and no cosmic evolution correction (o = 0). In the left panel,
the observed UHECR data from the Telescope Array [156] is depicted as black circles together with our cosmic ray
flux predictions (red curves). Additionally, the fit range is gray-shaded, and the x?/d.o.f. and obtained f. ! are
given. In the right panel, the prompt (PeV) and cosmogenic (EeV) muon neutrino fluxes are given, together with
the current bounds (see appendix [C). The solid curves (neutron dominated (#1)) correspond to our standard burst
parameters with I' = 300 (see main text) and the neutron model; the dashed curves (leakage dominated (#2)) use

a higher I = 800, leading to direct proton escape dominating at the highest energies. Figure taken from Ref. [161].

section Fig. shows the fits to TA data for two extreme UHECR models: one dominated
by neutron escape (#1) and another one dominated by direct proton escape (#2), in both cases
assuming a proton injection spectrum with oy, = 2, the Hopkins & Beacom star formation rate,
and no cosmic evolution correction (a = 0). The fitted UHECR fluxes are shown in the left panel,
while the GRB prompt and cosmogenic neutrino fluxes are shown in the right panel. The fit to
the UHECR data yields baryonic loading values between 45 and 70, consistent with our analytical
estimates from the previous section. The normalisation of the neutrino fluxes follows from that of
the UHECRs. Clearly, the cosmogenic neutrino flux is barely affected by the choice of model; this
is because only the total number of protons emitted from the source, regardless of the emission
mechanism, is important for cosmogenic neutrinos. In contrast, the prompt neutrino prediction
strongly depends on the UHECR escape mechanism: while the neutron model (#1) is basically
ruled out, in consistency with Ref. [100], the direct escape model (#2) flux is significantly below
the current bounds (with a poorer x2/d.o.f., though).

In Fig. We show the single-collision source spectra for the two models (sans propagation effects),
with the different components (initial injection, cosmic rays from neutrons, cosmic rays from direct
proton escape, and neutrinos) presented separately. The two emission models are obtained from
our underlying two-component emission model (see Ref. [I06] and chapter [2)) for two different
choices of parameter set values: the model reduces to the conventional neutron escape model



70 4. Constraining joint UHECR-neutrino production in GRBs

_2 —2
10 5 neutron dominated (#1) I'=300 3 10 . leakage dominated (#2) I'=800 3
107} — _initial p z 10 2
10-4 | == CR fromn S 1074 3
=== dlirect escaping p 3 T
o 10 — VitV = & s =
§ 10 =~ § 10 -
> 7 P —7
& 10 8 (3 10 i
100 100
$ $
w 100 W 10°°
10—10 10—10
10_11 10—11
0—12 | 10—12 !
10* 10° 106 107 108 10° 10'° 10% 10%2 10* 10° 10° 107 108 10° 10'° 10 10%2
E [GeV] E [GeV]

Figure 4.3: Expected spectra from a single collision for our standard GRB parameters and I" = 300 (left
panel) and I' = 800 (right panel), respectively (z = 2). The spectra are shown in the observer’s frame, including
only adiabatic losses due to the cosmic expansion, as in Ref. [106]. Depicted are the input proton spectrum (in
case all protons would just escape; thin dashed curve), the CR from neutron escape (thick blue/black curve), the
contribution of directly escaping protons to the CR flux (thick green/gray curve), and the muon neutrino flux (after

flavor mixing; thin orange/light gray curve). Figure taken from Ref. [161].

for high enough pion production efficiencies (left panel), whereas the direct escape component
dominates if the pion production efficiency is low (right panel), i.e., different models are obtained
for different sets of parametersﬁ The direct escape component is harder than the neutron escape
component, which is why the corresponding UHECR, flux in Fig. left panel, dashed curve,
becomes harder as well. Therefore, while larger «, can produce a better fit of the shape (the
x?%/d.o.f. is significantly smaller), they do so at the expense of a larger f. ! (see Eq. , where
fool 1s smaller then). Furthermore, a diffusive escape component could look closer to the neutron
model, especially if Kolmogorov-like diffusion is assumed. Thus, we anticipate that both options
are, in principle, possible.

If the strong evolution case (o = 1.2) with more high-redshift bursts is used instead, the UHECR
fit is equally good, with somewhat larger predicted cosmogenic neutrino fluxes and a more clearly
excluded prompt neutrino flux in the neutron model (#1). However, the required baryonic loading
is larger, around 200, due to the larger value of f,; see, e.g., Eq. . Hence, SFR turns out to
be the most conservative assumption to obtain the baryonic loading, i.e., it will yield the lowest
values of f, 1.

®Note that the neutron component is slightly harder than the input proton spectrum as a result of the high-energy
(multi-7) processes.
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Figure 4.4: Best-fit cosmic ray (left panel) and neutrino (right panel) fluxes as a function of energy for a;,, = 2.5,
the Hopkins & Beacom star formation rate [139], and no cosmic evolution correction (o = 0). In the left panel,
the observed UHECR data from the Telescope Array [I56] is depicted as black circles together with our cosmic ray
flux predictions (red curves). Additionally, the fit range is gray-shaded, and the x?/d.o.f. and obtained fo! are
given. In the right panel, the prompt (PeV) and cosmogenic (EeV) muon neutrino fluxes are given, together with
the current bounds (see appendix [C]). The solid curves (neutron dominated (#3)) correspond to our standard burst
parameters with I' = 300 (see main text) and the neutron model; the dashed curves (leakage dominated (#4)) use
a higher I' = 600 and lower Lis, = 10°%-® ergs™', leading to direct proton escape dominating at the highest energies.
Figure taken from Ref. [161].

4.3.2 Dip model for cosmic ray transition

To study the dip model, we use a larger energy range in our fits, between 10° and 10'? GeV, which
covers the pair-production dip, but still lies above the energy at which diffusion effects on the
intergalactic magnetic fields might affect the spectral shape [173] [55] [174].

Fig. focuses again on two extreme models: a neutron-escape dominated case (#3) and a direct
escape-dominated case (#4), both generated with o, = 2.5. Fig. shows the corresponding
single-collision spectra, to be compared to Fig. Contrasting the neutrino results with the
ankle model, the difference between the two emission cases is more marked, with the neutron
model clearly excluded and the direct escape model located significantly below the current bounds
(right panel of Fig. . To understand this behaviour, consider the peak of the prompt neutrino
spectrum at, say, 10 PeV; these neutrinos were created by protons with energies a factor of 20
higher, i.e., 200 PeV. At this energy, as seen in the left panels of Figs. and the dip model
fits the UHECR data more closely than the ankle model, which implies that the cosmic ray flux
is higher for the dip model than for the ankle model, and so, as a result, the same occurs for the
prompt neutrino flux, which overshoots the upper bound. In the direct escape case this can be
avoided, since protons manage to escape without producing neutrinos; however, the spectral fit is
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Figure 4.5: 300,
Liso = 10°%ergs™ (left panel) and T' = 600, Liso = 10°°® ergs™" (right panel), respectively (a, = 2.5, z = 2).

Expected spectra from a single collision for our standard GRB parameters and I' =

The spectra are shown in the observer’s frame, including only adiabatic losses due to the cosmic expansion, as in
Ref. [106]. Depicted are the input proton spectrum (in case all protons would just escape; thin dashed curve), the
CR from neutron escape (thick blue/black curve), the contribution of directly escaping protons to the CR flux (thick
green/gray curve), and the muon neutrino flux (after flavor mixing; thin orange/light gray curve). Figure taken
from Ref. [I61].

not as good as for the neutron escape case due to the harder spectrumﬁ .

The required baryonic loadings in the dip model are of the order of f;! ~ 103, several orders of
magnitude larger than for the ankle model. The difference comes from the bolometric correction
factor fio1, which is smaller the steeper the spectrum is. Of course, f,o1 depends on the minimal
proton energy as well, especially for o, > 2, but it is nevertheless clear that the conventional
assumptions for the baryonic loading of GRBs are challenged in that model. Note that the UHECR
baryonic loading fie fo ' ~ 10, as for the ankle model.

Though here we do not explore in detail potential mechanisms to generate the spectral injection
indices oy, ~ 2.5 — 2.7, required for the dip model from the normally anticipated injection indices
for Fermi shock acceleration oy, ~ 2.0 — 2.2, it is interesting to mention two possibilities. First,
the turbulences in Fermi shock acceleration, which reduce the effectiveness of the acceleration and
changes the expected spectral index to oy, > 2.3 [I175]. Second, it has been proposed for AGNs to
use a distribution function on the maximal proton energy in combination with an injection index
ap >~ 2 to generate this steep spectrum [I55]; a similar distribution could be induced for GRBs
through an appropriate luminosity function.

Based on these observations, we conclude that the combined production-propagation GRB internal

50ne could change the spectral index to improve the fit here, but at the expense of the baryonic loading. Changing
the spectral index from a, = 2.5 to a;, = 2.7 decreases the bolometric correction fro1 by a factor of 30, which leads
to an increase of the needed baryonic loading fo ' by the same factor.
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Figure 4.6: Different assumptions for additional escape components (in a single collision), together with neutrino
and neutron escape spectra. Figure corresponds to the example in the right panel of Fig. Figure taken from
Ref. [161].

shock model is challenged in the context of the dip cosmic ray transition model, because a) very
high baryonic loadings are required, and b) the prompt neutrino flux easily overshoots the neutrino
flux bound in the neutron model case. We therefore focus on the ankle model in the following.

4.4 Statistical analysis of the cosmic ray ankle model

We saw in the previous section that the ankle model is capable of explaining the UHECR obser-
vations while keeping in agreement with the current UHE neutrino upper bounds. Hence, we will
now focus on the ankle model only and find in what parts of the parameter space this statement
holds, and how it is affected by the escape model.

4.4.1 Impact of cosmic ray escape model

Using our two-component escape model, we consider three different possible escape regimes, il-
lustrated for one set of parameters in the single-collision spectra in Fig. (see Ref. [106] and
chapter [2| for details):

Neutron model. The cosmic rays escape as neutrons and the protons are magnetically confined.
This is the assumption frequently used in the literature. In Fig. [4.6] it corresponds to the
thick dark/blue curve.

Direct escape. All protons from the edges of the shells will escape over a width of R’ .

Diffusive escape. A less conservative estimate for the escape of the protons is that a fraction
N /Ad' can escape, where N =, /D"ty is the diffusion length over the dynamical timescale
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tayn, and D' is the (spatial) diffusion coefficient. For Bohm diffusion, D’ « R} o E'; for
Kolmogorov diffusion, D’ o (E’ )1/ 3. and the fraction of escaping particles is proportional to
the square root of that. Note that, since diffusion length and shell width scale differently,

the treatment here is only a rough approximation. For details, see appendix A of Ref. [106].

We have performed a scan of the parameter space: at each point in parameter space, we have
assessed whether or not the UHECR observations and the neutrino upper bounds are satisfied.
Our main results are presented as scans in the Lis, — I' plane in Fig. together with Fig.
which shows cosmic ray, prompt neutrino, and cosmogenic neutrino spectra for selected points
from Fig. [4.7] The different rows in Fig. [£.7] correspond to the three different assumptions for the
UHECR escape discussed above; the different columns, to two different acceleration efficiencies
(n = 1.0 on the left, n = 0.1 on the right). The different emission regimes (optically thick/thin
to neutron escape, direct escape) that we identified in the parameter scans of chapter [2| (Fig. [2.4
central column) appear here in Fig. Notably, the red dashed line in Fig. separates the
region dominated by neutron escape (below) from the one dominated by direct proton escape
(above). The different rows in Fig. correspond to different panels in Fig. as indicated.

The methodology that we have used to scan the parameter space is the following: at each point
in parameter space, we compute the neutrino and cosmic rays coming from a population of GRBs
distributed in redshift, all of them alike in the cosmologically comoving frame. The parameter
values at each parameter space point will determine what is the dominant emission mechanism.
Cosmic rays are propagated from the sources down to the local Universe using the method presented
in chapter |3 which takes into account energy losses due to interactions with the cosmological
photon backgrounds and the production of cosmogenic neutrinos. The predicted local UHECR
flux obtained in such a manner is then fitted to Telescope Array surface detector data [156] between
10'% and 10'2 GeV, using a x? function (see appendix . This determines its normalisation and
also the energy recalibration necessary to fit the data, within the systematic uncertainty of the
experiment.

In Fig. [£.7] the best-fit point in each panel is shown as a diamond, with the best-fit parameters
given in the upper left corners. The filled coloured regions represent the 90% (red), 95% (yellow),
and 99% C.L. (blue) regions around the best fit. The baryonic loading can be deduced from
the normalisation, and we show the values of logy, fo! as (black) contour lines in Fig. The
normalisation of the UHECR also fixes that of the neutrinos; thus, we are able to compare the
neutrino flux predictions to the current upper bounds from IceCube. Fig. shows the excluded
regions where the prompt neutrinos exceed the GRB stacking bound [92] as filled gray areas: light
gray for the currently available data and dark gray for 15 yr of full detector exposure. Similarly,
the excluded region due to 15 yr of cosmogenic neutrino dataﬂ exceeding the IceCube cosmogenic
upper bound is shown as green filled areas (the current exposure is too small for cosmogenic
neutrinos to be presently capable of excluding any part of the parameter space shown). Note that
the GRB source model determines the pion production efficiency and the shapes of the prompt
neutrino and ejected cosmic ray spectra, while the cosmic ray propagation model determines the
shape of the cosmogenic neutrino spectrum and observed cosmic ray spectrum.

Fig. [£.7] top row, demonstrates that the neutron model provides an excellent fit to UHECR data,
for reasonable parameter values, if only cosmic rays —and not also neutrinos— are considered. For
instance, the best fit for n = 1 (left panel) is at T’ ~ 302 and Lis, ~ 10°3 ergs~!, and corresponds
to f. ! ~ 10, while the best fit for 7 = 0.1 (right panel) is at a higher T, as a consequence of the
less effective particle acceleration, which is also responsible for the slight worsening of the quality

"Calculating using the effective area from Ref. [7]; see appendix
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Figure 4.7: Filled contours: allowed regions (red/darkest gray: 90% C.L., yellow/light gray: 95% C.L.,
blue/darker gray: 99% C.L.) as a function of Lis, and I for the fit to cosmic ray data from the Telescope Array [156],
in the energy range 10'° — 10'> GeV. In the left (right) column, = 1.0(0.1). Rows correspond to different UHECR
escape models: neutron escape (top), direct proton escape (middle), and Bohm-diffusive escape (bottom). The
red-dashed curve separates the “direct escape dominated” region (above curve) and the “neutron model” region.
The dark and light gray shading, respectively, mark the IceCube-excluded region from the GRB analysis using the
current and expected exclusion after 15 years; and the green shading, the expected exclusion from the cosmogenic
neutrino analysis after 15 years (in the top left panel, contained within the prompt neutrino exclusion). The iso-
baryonic loading contours (numbers are log;,f. ') are shown also. Here ay, = 2.0, t, = 0.01 s (in the source frame),

and SFR evolution of the sources by Hopkins & Beacom (o = 0) have been chosen. Figure taken from Ref. [I61].
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Figure 4.8: Cosmic ray, prompt neutrino, and cosmogenic neutrino spectra (in columns) from GRBs in the range
z = 0 to 6, for selected points in the parameter space plane I' vs. Liso, corresponding to the markers in Fig. [£.7] The
different rows correspond to the upper left, middle left, lower left, and lower right panels in Fig. [£.7] The fit range
is gray-shaded. Figure taken from Ref. [161].
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of the fit, represented by the x? per degree of freedom, x?/d.o.f. For a more detailed discussion of
the dependence on 1 and its impact on the conclusions, see appendix D of Ref. [I61].

Up to this point, due to the plausible ranges of the best-fit parameter values, the neutron model
for cosmic ray escape was widely regarded as a good description of UHECR, production in GRBs.
However, Refs. [100] 02] rejected this hypothesis by relating the cosmic ray and neutrino spectra,
and comparing the latter to the current neutrino bounds, as we have also done here. Indeed,
we show in the top row of Fig. [£.7 corresponding to the neutron model, that the gray shading
depicting the region excluded by the absence of GRB neutrinos with the current IceCube exposure
spans all of the parameter space. Hence, the neutron model is excluded everywhere. Compared
to earlier references, we have the source model prediction for the baryonic loading as well, which
increases tremendously above the red (dashed) curve. The reason is that the pion production
efficiency drops there, and in fact it turns out that above this curve other escape mechanisms
become important, whereas below this curve neutron escape dominates in all of our models.

Note that we allow for arbitrarily high baryonic loadings here derived from the normalization, and
the required baryonic loadings for this model have to be extremely high in the upper left corner. In
practice, depending on the minimal proton energy at injection, it can be estimated that baryonic
loadings > 10* could mean that pp self-interactions among the protons become important, an effect
which we do not consider. In addition, gamma-rays from 70 decays produced by py interactions
or proton synchrotron radiation could violate the Fermi bound [143], if they can escapeﬁ

Several sample spectra corresponding to selected points from the upper left panel in Fig. [£.7] are
shown in the first row of Fig. [4.8] marked by the diamond (best-fit) and dots. Good fits are obtained
for the best-fit point and point B, bad fits for point A (requires an upscaling of the energy) and C
(too high proton energy, leading to a strong spectral peak). However, one can clearly see that all
prompt neutrino fluxes overshoot the current bounds. At point C, the cosmogenic neutrino flux

will eventually become larger because of the larger EI’JymaX.

Allowing for direct (middle row of Fig. or diffusive escape (lower row of Fig. of protons at
the highest energies changes the results completely. Below the red dashed curve all models are still
similar, since neutron escape dominates in this region. Above that curve, however, where either
direct or diffuse escape dominates, there are two important differences: the required baryonic
loadings are significantly smaller, and the neutrino spectra does not anymore exceed the upper
bounds, since the pion production efficiency is lower. In fact, for n = 1.0 (left panels), the
cosmogenic neutrinos are able to probe parts of the parameter space that the prompt neutrinos
are unable to probe; this is because the former do not care about what the cosmic ray escape
mechanism is. From these plots (taking into account intermediate values of 7, as discussed in
appendix D of Ref. [I61]), it is clear that

1. There are parts of the parameter space with moderate I' 2 400 and baryonic loadings 10 <
£t < 100 which are still allowed (at present) if cosmic rays can efficiently escape by diffusion
(see lower right panel), which however can be tested by future IceCube data.

2. There are parts of the parameter space with either extremely large I' or extremely large f.!
which are inaccessible by future IceCube bounds; see also appendix D in Ref. [161] for more
details. These parts will have to be probed elsewhere; for example, the branch in the middle
left panel will disappear if the energy calibration of the cosmic ray measurements can be
improved (see appendix D in Ref. [161]).

8For a more detailed discussion on the impact of the gamma-ray bounds for efficient pion production, see Ref. [100].
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Figure 4.9: Same as Fig. @ middle panels (direct escape), as a function of Liso and ¢, for a fixed I" = 300.
The left (right) panel corresponds to an acceleration efficiency of n = 1.0 (0.1). The horizontal dotted lines mark
the standard value of t, = 1072 s. Figure taken from Ref. [I61].

Therefore, if cosmic rays can escape by mechanisms other than neutron production, it is clear
that the current neutrino bounds are not yet strong enough to disqualify GRBs as the sources
of UHECRS in the internal shock model. However, if IceCube fails to find high-energy neutrinos
from GRBs after ~ 15 yr, it will be very difficult to maintain this hypothesis.

We also show the spectra for several points in Fig. Comparing the middle two rows (direct
escape versus diffusion), it is clear that the cosmic ray spectra for direct escape are harder, and
therefore provide worse fits. While the cosmic ray spectra in the second row (direct escape)
appear to be similar for points A and B, the fit for point B is still much worse because the energy
recalibration is penalised. In all cases, the best-fit prompt neutrino fluxes overshoot the current
bound for the prompt neutrino flux. For n = 1.0 (upper three rows), the maximal proton energy
for point C is high, and therefore the cosmogenic neutrino flux is high, too. Comparing the lower
two rows (n = 1.0 and n = 0.1 for diffusive escape), one can easily see that lower acceleration
efficiencies help for the shape, but too low proton energies (points A and B) are penalized because
of the energy calibration error.

So far, we have fixed several of the parameters and have shown the dependence as a function of
Ligso and I'. In Fig. we instead fix I and vary t,. While the result looks qualitatively different,
it does not reveal any new allowed regions. This is expected, since the pion production efficiency
roughly scales o< Ligo/ (I £y €]) [89, 2], with € chosen to be the photon break energy in the SRF,
and the neutron model and prompt neutrino production follow the pion production efficiency.
That is, there is a degeneracy among Lis,, I'4, t,, and 6’7, which means that the relevant features
will be visible in any of the relevant parameter combinations. The other regions follow, more or
less, the maximal proton energy; see Fig. 2.5
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Figure 4.10: Same as Fig. @ middle panels (direct escape), but assuming GRB evolution of the sources.
Figure taken from Ref. [161].

4.4.2 Effect of cosmological source evolution

Our results so far have been obtained under the assumption of SFR evolution of the sources. We
now show in Fig. [4.10] the fits as in Fig. [£.7] middle panels (direct escape), but for GRB evolution of
the sources (SFR times (1+2)%? [138]). A comparison to Fig. @reveals two important differences:
first, the required baryonic loading is higher everywhere, as a consequence of the higher evolution
factor f, in Eq. ; and, second, the cosmogenic neutrino bound has a much larger impact than
in the SFR case, since a strong evolution entails a higher cosmogenic neutrino flux.

A different possibility is that the GRB rate deviates from the SFR locally, i.e., that it exhibits
either a fluctuation upwards or downwards. The GRB observations would be left mostly unchanged
because they are dominated by larger redshifts z ~ 1. In contrast, the UHECR spectrum, and the
associated baryonic loading predictions, would be affected, since the mean free path of UHECRs
is only about 1Gpe (2 ~ 0.25) at 10!° GeV, and 100 Mpc (z >~ 0.024) at 10! GeV; see Fig. in
chapter [3

We illustrate a local deviation (below redshift 0.25) in Fig. here the unchanged version of
the dimensionless distribution of sources in redshift H(z) is defined in Eq. (see appendix.
We have estimated the local deviation from statistics: distributing 1000 bursts over redshift, only
about six will be in the range z < O.25ﬂ The 1o relative (Gaussian) error is therefore roughly
1/v/6 ~ 0.41, and the 30 range can be estimated as —1 < AH < +1.2.

The effect of two such local deviations, AH = —1 and AH = 1.2, is illustrated in Fig. for

90ne can also estimate this from the local GRB rate of ~ 1 Gpc™2yr~!, since z ~ 0.25 corresponds to a mean

free path of the protons of R ~ 1 Gpc at 10'° GeV. The average GRB rate between z = 0 and z = 0.25 is roughly
1.5 (see Fig. [4.11), which leads to 4TR?/3-1.5-1Gpc 2 yr ~ 6yr~.
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Figure 4.11: Left: Unmodified SFR evolution with redshift (black, solid line), and SFR with a local upwards
(blue, dotted line) and downwards fluctuation (red, dashed line). Right: Magnification for low redshifts. Figure
taken from Ref. [I61].
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Figure 4.12: The effect of ensemble fluctuations on the CR (left column) and neutrino spectra (right column),
for model #1 in Fig. The original results obtained in the absence of fluctuations are included as thin lines for

comparison. Figure taken from Ref. [I61].

model #1 of Fig. A local upward fluctuation of the GRB rate clearly reduces the required
baryonic loading, and, at the same time, the prompt and cosmogenic neutrino fluxes. The reduction
of f-! is a consequence of the lower normalisation needed to fit the UHECR observations: since
more GRBs are local, a higher proportion of UHECR protons experience little energy losses and
therefore are already enough to fit the UHE region. Therefore, a local upward fluctuation of the
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Figure 4.13: Same as Fig. @ middle left panel (direct escape with n = 1.0), but assuming a local upward
(left panel) and downward (right panel) fluctuation of the SFR of AH = 1.2 and —1.0, respectively. Note that, in
the right panel, the left border of the exclusion region from cosmogenic neutrinos (in green) coincides with the left
border of the 99% C.L. allowed region (in blue). Figure taken from Ref. [I61].

GRB rate may be a plausible explanation for the non-observation of neutrinos from GRBs, while
allowing for reasonable values of f;!. However, the goodness of fit is slightly reduced, because the
local enhancement relatively increases the high-energy part of the cosmic ray spectrum. A local
downward fluctuation of the GRB rate causes the opposite effect: a better fit, at the expense of
higher neutrino fluxes and baryonic loadings.

The results of a parameter scan for the same two values of the local fluctuation AH are presented
in Fig. assuming a direct escape-dominated scenario. As expected, the upward fluctuation
(left panel) is capable of reducing the required values of baryonic loadings enough to make the
cosmogenic neutrino exclusion (after 15 years of exposure) disappear, at the expense of the spectral
shape change, which makes the left fit branch vanish. The corresponding downward fluctuation
increases the cosmogenic neutrino flux, which means that the future cosmogenic bound can even
partially exclude the left branch of the fit.

4.5 Limitations of the analysis

We have shown that it is possible to use current UHECR observations and neutrino upper bounds
to assess in what regions of parameter space a joint UHECR, and neutrino emission model from
GRBs is still viable. In accordance with Refs. [I00} 2], we have found that a scenario where only
neutrons can escape is ruled out by current bounds on the GRB neutrino flux from IceCube. Using
our two-component emission model (chapter [2)) it becomes clear that, by allowing protons to either
directly escape or diffuse out of the sources at the highest energies, the UHECR data can still be
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closely fitted, while also conforming to the neutrino bounds. As a result of our parameter scan, we
are in addition able to deduce a value for the baryonic loading at every point in parameter space,
instead of having to use an external ad hoc value for it. Under the constraints of the neutrino
bounds, the baryonic loadings thus found can be very high (> 10%).

One limitation of our present analysis is that the GRB model that we have adopted assumes
that the proton, neutrino, and photon emissions all originate in internal collisionless shocks that
occur at a single representative, average radius Rc = 2I'ct, from the central emitter, i.e., the
calculations are performed within the “static burst” approximation (see chapter . In chapter
we will study a dynamical burst, where the internal collisions occur at different radii, and the
emission of the different particle species peak at different values of R¢. In this model, most of the
neutrino emission will come from the innermost collisions, where photohadronic interactions are
more common on account of the higher proton and photon densities, whereas, the gamma-rays and
heavier nuclei with the highest energies [176] [160] may come from large collision radii, as shown
in chapter |5| and appendix

A second limitation of our analysis is that UHECRs are assumed to be exclusively protons (in-
cluded as a potential development in chapter . Including heavier nuclei in the UHECRs may
allow for higher CR energies, as nuclei can be accelerated more efficiently due to their larger
electrical charges. However, under the static burst approximation, the nuclei can escape without
being photodisintegrated only for parameter sets for which the photon densities are low enough;
see Refs. [I76], [160]. In fact, the disintegration and pion production efficiencies are proportional
to each other [I77], which means that the UHECR nuclei escape without disintegration in our
direct/diffusive escape regimes, and that we anticipate that our results do not qualitatively change
there. For higher photon densities, however, photodisintegration can become efficient (see ap-
pendix |[F|) and the neutrino and neutron production will be reduced, which has to be compensated
by higher baryonic loadings.



Chapter 5

A dynamical GRB evolution model

In the literature on gamma-ray bursts (GRBs), it is typical to simplify the calculations of the
prompt radiation phase by considering a “static burst”, where the gamma-ray, cosmic-ray, and
neutrino fluxes are generated by Ty /t, ~ 100— 1000 identical internal shocks, all of them occurring
at the same, fixed collision radius, with identical parameters (see Fig. . In a more realistic
scenario, however, the collisions will occur at different radii, as the fireball expands. We have
studied study the collision radius dependence of the cosmic ray and neutrino production.

We work in the framework of the internal shock model for GRB fireballs. As before, we assume
that the target photon spectrum is a broken power law, as motivated by gamma-ray observations,
and we do not discuss the origin of that spectrum. For the cosmic ray and neutrino production, we
follow Ref. [106], so that the UHECR proton emission is made up of two components: one coming
from neutron escape and another one coming from the direct proton escape from the source (see
chapter . We allow matter shells to propagate and collisions to occur at different radii, and we
follow the time profile of the collisions (see Sec. [5.1). This is what we refer to as “evolution of the
fireball”.

5.1 Fireball evolution and collision model

5.1.1 General description and fireball parameters

A central engine or emitter (e.g., a collapsing massive star) is assumed to emit collimated jets of
beamed, highly-accelerated matter carrying a considerable baryonic loading. As before, we con-
sider the isotropically-equivalent scenario, where the matter ejecta are radially-expanding spherical
shells. The burst simulation described here covers only the “coasting phase” of the GRB, at the
start of which it is assumed that the shells have been already accelerated to their maximum
speeds, which the shells maintain during their one-dimensional propagation. The earlier accelera-
tion phase and the later deceleration phase —when the shells run into the surrounding interstellar
environment— are not part of the simulation.

We consider contributions from collision at various radii. Collisions among shells are numerically
calculated using a simplified one-dimensional model [I78] 179]. The model assumes an initial
number Ngy, of shells, each labeled by an index k, where inner shells are labeled by larger numbers.
By running numerical simulations of the propagation and collision of the expanding shells, one can
calculate the final number of pairwise collisions between them, Ncgy.
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At any time during the simulation, the k-th shell is characterised by the following four basic
parameters:

ri: the shell radius, as measured from the emitter

l;.: the shell width

I'k: bulk Lorentz factor of the shell, assumed to be highly relativistic (I'y > 1). It remains
constant during the propagation of the shelﬂ (it will change only when a collision occurs, as
we will see later).

my: total mass of particles in the shell, which also remains constant, except during collisions

For convenience, we also keep track of the following shell parameters, which can be derived from
the previous ones:

® Visox: volume of the isotropically-equivalent spherical shell. We assume that, during propa-
gation, the shell width is kept constant (it will change only when a collision occurs); hence,

the volume is given by
Visoks = 41l . (5.1)

° Eisl‘r’h . bulk kinetic energy of the shell, given by

Efffhk = Tpmpc? . (5.2)

e pi: mass density of the shell, calculated as
Pk = mk/vviso,k . (53)

Table [5.1] lists these and other simulation parameters, with their respective units. Unless other-
wise noted, all quantities are expressed in the source reference frame; quantities expressed in the
observer’s frame will be indicated as such. As before, primed quantities are expressed in the shock
rest frame (SRF). For convenience, we have included in appendix |§| the burst evolution algorithms
that were implemented, following Refs. [178], [179].

5.1.2 Fireball initialisation

Before starting the simulation, the fireball is initialised; see Fig. for an illustration. This consists
of creating Ny, shells, each one described by the initial tuple (740, k0, k.0, 1151% 0); see table

In order to do this, the emitter is characterised by two timescales: an “uptime”, 6t, during whic

it emits one spherical matter shell, followed by a “downtime”, At, where the emitter is inactive.
These two timescales determine the initial shell width, [ = ¢dt, which we assume to be common for
all shells (i.e., Ix],_, = 1), and the initial separation between consecutive shells is d = cAt, common
for all pairs of neighbouring shell pairs. Thus, each of the initial Ny, shells is located at position
k0 = TNy, + (Nsh — k) (I + d), where ry,, is the distance from the innermost shell to the emitter,
which is an input parameter of the simulationﬂ At initialisation time, therefore, we assume that

1Once the shell reaches the external shock region, of course, it will decelerate; however, as we said before, we will
not consider this stage of the fireball evolution.
Results will not depend on rx,, much, unless its value is too large; see table
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Parameter [ Description [ Type [ Units [ Notes
Fireball initialisation
Ngh initial number of shells input -
ot uptime of the emitter, or input s
duration of emission of one shell
At downtime of the emitter, or input s
initial time separation between shells
TN, distance from the innermost input km set to rn,, = 10% km by default
shell to the emitter
Tdec deceleration radius, where external input km set 0 Tgec = 5.5+ 101 km by default
shocks start
Ar fluctuation factor of the input -
I'y o distribution
El‘;‘]’jo initial bulk kinetic energy input erg initial shells are assumed
of the shells to have a common Ellfl(r),k = ES.O’0
redshift of the emitter input — used to calculate tqops, Eq.
l initial shell width internal km set to | = cdt
common for all initial shells
d initial separation internal km set proportional to [, i.e., d o< 1
between consecutive shells common for all initial shells
Tk,0 initial radius of the k-th shell, internal km Tk,0 = Ny, + (Nsp — k) (1 4+ d)
measured from the emitter
Tko initial Lorentz factor of internal — sampled from a
the k-th shell log-normal distribution
mg o initial mass of the k-th shell internal GeV mg.o = Ell(sl(r). o/ (1";“002)
Fireball evolution
t time in the source frame internal s
Tk radius of the shell, internal km initially set to r o;
measured from the emitter grows as ry = 1,0 + cBit
g width of the shell internal km initially set to [;
changes only in collisions
Tk bulk Lorentz factor of the shell internal - initially set to I'g o;
changes only in collisions
mg mass of the shell internal GeV initially set to my o;
changes only in collisions
B bulk speed of the shell internal - Br =1/1— F;Q
Viso,k volume of the shell internal km3 Viso,k = 4mr2ly,
E;(SI?A,IC bulk kinetic energy of the shell internal erg initially set to Eisi?],o;
changes only in collisions
Pk mass density of the shell internal | GeV km™3 | pr = myg/Viso .k
Shell collisions
My(s) mass of the rapid (slow) shell internal GeV
(s bulk Lorentz factor of the internal -
rapid (slow) colliding shell
Lis(rs) bulk Lorentz factor of the internal - See Eq.

forward (reverse) shock

Bis(rs) bulk speed of the internal - Brsirs) =4/1— F;:(rs)

forward (reverse) shock

Bm bulk speed of the internal - Bm =V 1-— 2
merged shell
Pm mass density of the merged shell internal | GeV km—3 | See Eq.
teoll time at which the collision occurs, internal S
in the source frame
Neoll total number of collisions output -
that occurred in the burst
tobs time at which the collision occurs, output S See Eq.
in the observer’s frame
Eésocl’l internal energy liberated output erg See Eq.
in the collision
T bulk Lorentz factor of the output — See Eq.
merged shell
Im width of the merged shell output km See Eq.
Re radius at which the collision occurs output km
Ote time at which the reverse shock output s Ote = lm/ [c(Br — Brs)]

crosses the rapid shell

Table 5.1: Main parameters of the fireball evolution simulation and their units. All of them are
expressed in the source frame, except for ., which is in the observer’s frame.
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Figure 5.1: Diagram depicting the initial state of the simulated burst.

the emitter has already output Ny, pulses (spherical shells) of duration d¢, at a frequency 1/At.
Note that our simplified treatment assumes that the shells do not widen during propagation, so
that [, remains constant for each of them, except, as we will see, when shells collide. However,
because the bulk Lorentz factors are different, the separations between them will change over time.

An estimate of the values of [ and d can be obtained by comparison with observations [I80]: from
the measured GRB light curves, we expect that roughly | =~ ct, and d ~ ct, (e.g., [I78,[I81]), where
t, is the GRB variability time, 7.e., the characteristic duration of the peaks in the light curve, and
tq —~where ¢ stands for “quiescent”- is the characteristic time between consecutive peaks. Note
that d should be comparable to [ in the internal shock model, and the simulations in Ref. [I78] set
d = [, while Ref. [181] sets d = 5l, based on the fact that the observed time separation between
peaks and the total duration of the burst are much longer than the variability time. However,
we stress that the variability timescale of the burst, t,, is not an input parameter of the fireball
simulation, but a result of it. Only the uptime of the emitter, dt, i.e., the duration of the ejection
of one shell by the emitter, is an input. One finds that for certain choices of the burst simulation
parameters, the estimated value of the variability time (¢,), which is obtained from the light curve
built after running the simulation, is close to dt (see section . We therefore set dt to a value
close to the desired variability time.

We assume the initial values of the bulk Lorentz factor of the shells, I';, ¢, to be randomly sampled
from a log-normal distribution defined by the characteristic Lorentz factor I'g and the amplitude
of the fluctuations Ar as follows:

Fk70 —1 B
In (1_‘0_1> == AI“ZE y (54)

where z follows a Gaussian distribution,

67w2/2

P(z)dx = dz . 5.5
(@ = (5.5)
When Ap < 1, the mean value becomes (I') =~ I'y and the variance becomes AI' ~ Arl'y. When
Ar > 1, both the mean value and variance are largely affected by fluctuations. Too large values
of Ar result in too many collisions occurring close to the central emitter. Values of Ap = 1 are
required in order to achieve high efficiencies in the conversion of kinetic to radiated energy [182].
See Fig. for an illustration of the probability density function (pdf) of the initial Lorentz

factors, for different values of Ar.

Finally, we have to decide on how to assign the masses m; to the initial shells. There are two
typical assumptions: one is the equal-mass assumption, i.e., my o = m for all k; the other is the
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Figure 5.2: Probability density functions (pdf) of the initial value of the Lorentz factors, for a central value of
I' = 300 and three different choices of the spread: Ar = 0.1 (blue), 1 (purple), and 2 (brown).

equal-energy assumption, i.e., mgo = Ef;% o/ (FkyocQ), with Ellfl?lo the initial bulk kinetic energy
common to all shells. We have adopted the latter assumption since it appears that it could be
better to explain observationslﬂ [180].

5.1.3 Fireball evolution

The spherical shells are assumed to expand radially with highly relativistic speed. Fig. shows
an illustration of the burst expansion and an internal collision. We consider the simplified case in
which the shell width [ = [ remains constant during propagatiorﬁ The width will only change
when shells collide; we will see that the merged shell that results from a two-shell collision is
squeezed. At any time during the propagation, the shell volume, assuming isotropic emission, can
be calculated as

Visoke = 41l . (5.6)

The mass of a shell is also assumed to remain constant during propagation (again, except when
collisions occur). Therefore, its mass density

Pk = mk/viso,k: (57)

decreases like ~ 72 as the fireball expands. Given that we are simulating the coasting phase of
the fireball only, the shell speeds, or, equivalently, their Lorentz factors, are unchanged during
propagation (except in collisions). Hence, since both the mass and Lorentz factor of the shell
remain unchanged, its kinetic energy,

By = Trmic® (5.8)

3Also, even in simulations that use the equal-energy assumption, dedicated analyses of the time-evolution of the
internal energy of individual shells show that the dissipated energy varies even at the same collision radius, since it
cannot be expressed only by the kinetic energy of shells [183].

“Depending on the internal energy, the shell spreading is important especially after collisions. Recent dedicated
simulations take into account this effect, but it is neglected in the simplest versions, like the one we have adopted [181].
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Figure 5.3: Diagram depicting the time evolution of the simulated burst.

remains constant as well.

Now, the general relation between the total free, or internal, energy of a gas, E};g_tot, and its
volume is
. (1 o
Bl ior 0 Vg 72071 (5.9)

where v is the adiabatic index. For a relativistic gas, 7 = 4/3, and so we expect the available
internal energy of the fireball to evolve as

Bl o o2 (5.10)

int-

as it expands. We will see later (Fig. that this scaling is clearly visible in the results of our
simulations; it is not put in by hand, but is rather a direct consequence of the growth of the volume
as o 2. Note the distinction between a shell’s bulk kinetic energy, Ell(sl?lk, and its internal energy,
Ellrsl‘t’Sh - while the former is related to the shell speed as measured in the source rest frame, the
latter measures the kinetic energy of the particles moving randomly inside the shell, as measured
in the shock rest frame. We will see later that when two shells collide and a new merged shell
is created, part of the kinetic energy of the colliding shells is converted into the internal energy
of the new one; this will be promptly radiated away in the form of energetic particles (photons,
protons, neutrons, neutrinos).

As a result of the expansion, occasionally a rapid shell catches up with a slower one and they
collide, leading to internal shocks. In the source frame, among Ng, shells, one can calculate the
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Figure 5.4: Diagram depicting the collision of two shells.

collision time for all pairs of neighbouring shells by

di k1

c(Br+1 — Br)

where dj, 41 = T — k41 — lg+1 is the separation between shells £ and k£ + 1. The time until the
next collision is the minimum of the collision times, i.e.,

Atg g1 = (5.11)

Atnext = min[Athﬁ_l] . (512)

Then, one can increase the simulation time to ¢t — t + Atpext, and the collision radius is corre-
spondingly determined, i.e., Rc = 71/, with &k’ the index of the innermost shell of the colliding
pair. The emission of light associated to this collision will be detected by a distant observer at

time?]
tobs = <D(Z)C_RC + t) (1+z2), (5.13)

with D (z) the light-travel, or lookback, distance to the emitter with redshift z.

At this point, having determined the time of the next collision, all of the shells in the fireball are
propagated to their new positions ry — 1 + ¢SpAtnext- If one of the shells reaches the radius at
which the external shock starts becoming important, i.e., where the fireball starts decelerating,
this shell is removed from the simulation. Following Ref. [73], we have assumed rge. = 5.5+ 101!
km for the deceleration radius (see, e.g., Eq. (15) in Ref. [72]).

We still have to decide the fate of the two colliding shells. Our treatment contemplates that when
two shells collide they merge into a new one: the kinetic energy of the initial two shells is used partly
as bulk kinetic energy for the new shell and partly as its internal energy; see Fig. We assume
that the new shell immediately cools by prompt emission of particles, i.e., that its internal energy
is immediately radiated away by gamma-rays, cosmic rays, and neutrinosﬂ However, more detailed
treatments (including, e.g., reflections) are also possible (e.g., Ref. [182]). While the details on
how two shells collide depend on the modeling of hydrodynamical properties ( see, e.g., Ref. [184]),
we can use the simple collision model in the relativistic limit introduced in Ref. [I78] to calculate
the internal energy dissipated by a collision.

®Note however that the term D (2) /c is just an offset: it will be discarded when, in the output of the simulation,
the first emission is set to start at tops = 0.

SRealistically, some internal energy should still remain in the shell, and it is recovered into the kinetic energy via
adiabatic expansion, where the Lorentz factor is increased. Also, treating this is related to the efficiency problem,
pulse structure, and so on (e.g., [182]).
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In the collision of a slow (s) and a rapid (r) shell, the internal energy of the resulting merged shell
is equal to the difference in bulk kinetic energy before and after the collision, i.e.,

ci:?)?l = (Fr - Fm)mrcz + (Fs - Fm)WLsC2 . (5.14)

Considering momentum and energy conservation, its Lorentz factor is found to be

I'm, +Tsmg
I, ~ , 5.15
" \/mr/rr +ms/rs ( )

when I',.,I'y > 1. The merged shell is assumed to cool down instantly by prompt emission of its
internal energy.

The width of the merged shell (m) is determined by [178], [181]

st - Bm Bm - /Srs
st - Bk * lk+1 Bk—&-l - ﬁrs ’ (516)

lmﬁlk

where Bfye) = /1 — ;2

Fo(rs) is the speed of the forward (reverse) shock, whose Lorentz factor is

1+ 2I‘m/1“8(7,)
r =Ty - 1
fs(rs) 2+ Fm/rs(r) (5 7)

Since the collision occurs at r = R¢, the volume of the new shell is

given by

Visomm = 4T RE 1, . (5.18)

The density is different between the shocked faster shell and shocked slower shell. For simplicity,
we assume that the merged shell achieves the average density

l +1
o k+1Pk+1 kPk ’ (5'19)

lm

and thus its mass is
Mm = Viso—mpm . (520)

Therefore, the kinetic energy of the new shell is

B = Donminc? . (5.21)
After the collision, the (k + 1)-th shell is eliminated from the simulation, and the new merged shell
replaces the former k-th shell, which is then propagated alongside the rest of the remaining shells
in the fireball.

Having defined what occurs in an individual two-shell collision, we can track how all of the shells
undergo subsequent collisions and dissipate their kinetic energy. The simulation, consisting of
shell propagation and collision, continues until either a single shell is left, or all shells are ordered
outwards with increasing Lorentz factor, so that no further collisions are possible. The output will
be in terms of the collisions (not of the initial shells):

iso

1 - (tobs,laRC,lalm,laFm,b coll,l)

2 (tobs,Zv RC,Z) lm,Za Fm,27 (I:Z?LQ)
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Figure 5.5: Resulting correlations for a single simulation with the following parameters: Ng, = 10000, T’y = 300,
Ar =0.2,6t=0.01s,d=1, 2=2, and Effiﬁ,o = 10°? erg. The number of collisions was Neoy = 7694. In yellow, we
indicate collisions in which the resulting merged shell was created by two shells that had not collided before; as the

number of times that the colliding shells have merged increases, the colour of the collision tends to red.

NCOH : (tObSaNcoH’ RC:NCOII’ lmvNcoll’ vaNcolU E(i)f)?l,Ncon) (522)
for Neon collisions. Here, tohs i is the start time, in the observer’s frame, of the emission from the
k-th collision, 7ok is the radius at which the collision happens, I, is the width of the merged
shell, I';, 1 is its Lorentz factor, and EZ), . is its internal energy. Note that we have to set the

minimum of ¢, to be the origin of the observer’s time before we can depict light curves [178] [179]

(see section [5.3). After doing this, the final form of the simulation output is given, with the
collision numbering set by tops1 = 0 < tops2 < ..o < tobs, Nooy -

5.2 A few results and correlations

Fig. shows correlations between the collision parameters R¢o, teon, I'm, and }jﬁl To obtain
these results, a simulation was run with an unusually high number of initial shells (Ng, = 10000)
so that the correlations can be more clearly appreciated. During the fireball evolution, we have

also kept track of the age of each shell, measured as the cumulative number of collisions that have
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led to the creation of the shell (at initialisation, the age of all shells is set to zero). The redder
the point in Fig. the “older” the corresponding merged shell, i.e., the more times it has been
involved in collisions.

From Fig. 5.5k, we see that early in the fireball evolution collisions necessarily occur at low radii,
since the fireball is still small in size. As the fireball evolves, its expansion allows collisions to occur
at increasingly larger radii. There is a sharp cut-off at logyyrdec =~ 11.74, where shells are removed
from the simulation (see section . A tendency for late collisions to occur at larger radii is
clearly visible: it is simply the result of the fireball expansion. As indicated by the colour code,
late collisions occur predominantly among “old” shells, i.e., shells that are the result of numerous
collisions.

Fig. [5.5b shows that the first collisions are the ones where the merged shells have the lowest
Lorentz factors. This can be easily explained by recalling that the first collisions occur between
those neighbouring shells traveling at speeds that are disparate enough for the faster shell to be
able to quickly catch up to the slower one, i.e., where I', is considerably larger than I';. For
these first merged shells, then, Eq. yields Ty, ~ /I'Tsm,/ms. Since the shells involved
in these first collisions have not collided before, their masses still have their initial values, i.e.,
My (s) = Ellfl(r)lo/ (Fr(s)c2), so that '), ~ I'y, which is why the first few collisions in Fig. are
so below the characteristic Lorentz factor. Later in the fireball evolution, collisions between pairs
of shells with more similar Lorentz factors become possible. As a result, the central value in the
distribution of I',,, matches the fireball’s characteristic Lorentz factor I'g (300 ~ 102 in the plot
shown), and the spread in '), grows to reflect the underlying spread in the distribution of Lorentz
factors with which the fireball was initialised. Towards the end of the fireball simulation, the
spread is reduced as a result of the many collisions —note that many late collisions are among old
shells— among shells moving at increasingly similar speeds (in other words, due to the repeated
application of Eq. with increasingly similar values of I', and T'y).

The evolution with collision radius (or, equivalently, time) of the internal energy dissipated in
collisions, Efj)‘ﬁ, is shown in Fig. [5.5c. We see that the first few collisions are all very energetic,
with Eéf;ﬁ > 10°! erg. This is to be expected because, as we have seen, these collisions occur
among shell pairs with I'. as higher than I'g as possible, and they create shells with Lorentz
factors I'y,, >~ I, so that, according to Eq. , the internal energy liberated in them is Eéfﬁl ~
Bl (1 -T4/T;). For Ar < 1, the shell population has a mean value of the Lorentz factor
(T) = Iy, and a variance AT' = Apl'y (see subsection . In such a case, we can estimate the
Lorentz factors of the first colliding shells to be T', ;) =~ (I') = AT' = (1 4 Ar) I'g, with which the
ratio I's /T, ~ (1 — Ar) / (1 + Ar) (this is strictly valid only for the collisions that occur early to
about half way through the fireball evolution). For Fig. , Ar = 0.2 was used, which entails
I's/T, = 0.67; hence, the first collisions are expected to liberate EéSOCﬁ ~ 0.67-E1ifi‘r’1’0 ~ 10°1® erg,
which roughly agrees with what Fig. [5.5c shows.

As the fireball evolves and collisions between shells moving at similar speeds become possible
(i.e., T, = T'y), the spread in E(lifﬁ grows and the liberated energy may be lower, as shown when
replacing I, ~ I, ~ T’ in Eq. . The trend towards lower energies agrees with the dilution
of total available internal energy Eiifft’_tot o r~2/3 expected from just the expansion of the fireball
(see section and Fig. . Finally, late in the fireball evolution, when only a few very massive
shells remain, the spread in £, is again reduced and most collisions are very energetic, on account
of the large masses compensating the small differences I',.(5) — I'y, in Eq. . Fig. [5.5d clearly
shows that collisions among the oldest shells —those with up to 70 previous mergings, for the
simulation shown — occur in the outskirts of the fireball, which is to be expected, since, in order

for the shells to have been involved in a large number of previous collisions, they must have had
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Figure 5.6: Distributions of number of collisions with collision radius, collision time, times merged (“age”), and

internal energy of the merged shells. The histograms were produced using the same simulation data as in Fig. [5.5

traversed most of the fireball.

As a complement to Fig. and in agreement with it, Fig. depicts the binned distribution of
number of collisions in terms of collision radius, collision time, number of previous collisions ( “times
merged”, or “age”), and internal energy liberated in the collisions for the same test parameter set
asin Fig.[5.5] Fig. clearly shows that the vast majority of collisions occurs at Ro > 1015 km.
There are only few collisions at low radii. This is explained by Fig.[5.24b: except in the uncommon
cases in which two neighbouring shells have, at initialisation time, sufficiently different Lorentz
factors (with the outer shell being slower) to quickly catch up and merge, it is necessary for some
time to pass in order for the first pair of neighbouring shells with similar Lorentz factors to collide.
We see this gradual increase in the number of collisions as the fireball evolves, with most collisions
occurring after t.on approx10® s. If a higher value of the Lorentz factor fluctuation Ar is used, one
expects a faster rise in the number of collisions, since it will be more likely for neighbouring shells
to have disparate Lorentz factors. Furthermore, Fig. shows that most collisions take place
among young shells; the number of collisions among old shells that have merged ten or more times
is about two orders of magnitude lower than first-time collisions. Finally, Fig. [5.24d shows that
most collisions liberate an internal energy of E(‘fgﬁ ~ 10°03 erg, about two orders of magnitude
below the initial bulk kinetic energy of the shells Ef{sl‘r’lo = 10°2 erg.

Fig. shows the time evolution of a few macroscopic parameters of the fireball: average shell
mass (m)/(mop) (quantities with a zero subscript or superscript denote values at initialisation time),

root mean square of the Lorentz factor I'iys /T, o, and total available internal energy of the fireball
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Figure 5.7: Evolution of the average shell mass (m)/(mo), the Lorentz factor rms (root mean square value)
Trms /T, and the total internal energy of the shells, E=o ./ ff;';’_tot’o. The time ¢ is in the source frame. Solid
lines are the numerical results from a simulation run with the parameter values Ng, = 3000, I'o = 300, Ar = 0.2,
0t =0.001s,d =1, z=2, and E'ffi‘r’,’o = 1052 erg, while dashed lines are the power laws predicted analytically in
Ref. [185] (compare to Fig. 1 therein).
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Figure 5.8: Left: average number of collisions (Neon) for fireballs with Ngn = 50, 100, and 150 initial shells,
and varying fluctuation of the Lorentz factor, Ar. The rest of the parameters are fixed at the same values as
in Fig. The average number of collisions was obtained by running 100 fireball simulations for each value of
Ar. Right: average fraction of remaining shells, (Nsh — (Neon)) /Nsh, as a function of Ngn. The top and bottom
curves correspond to a fixed value of Ar = 0.01 and Ar = 0.2, respectively. The coloured bands represent the 1o

uncertainty, coming from running 100 simulations at each value of Ngn to obtain (Ncon).

B0 ot/ B or0- The latter is calculated using Eq. (6) in Ref. [I85]:

E.iirsl(t)-tot ~ 2 1ﬂ%ms (5 23)
B0 - 2cm )

int-tot,0
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Figure 5.9: A fast-rise-exponential-decay pulse associated to the collision of two shells.

with M the total mass of the fireball and I'cy the Lorentz factor of its center of mass. Solid
lines in Fig. are numerical results obtained from running the simulation, while dashed lines are
the analytical power-law predictions from Ref. [I85]. We see that the fit of the numerical results
to these predictions is good; deviations occur at late times, owing to the fact that the remaining
number of shells drops and the power-law predictions are no longer applicable.

The left plot of Fig. shows that the average number of collisions (obtained from running many
simulations, see the figure caption), (N ), for a fireball with fixed number Ny, of initial shells
grows with the value of the fluctuation of the Lorentz factor, Ar. This can be explained as follows:
if Ar is low, then all of the shells in the fireball have approximately the same Lorentz factor, which
means that only a few of them will catch up with another shell and collide before reaching the
deceleration radius r4e. and being removed from the simulation. As Ar grows, the chance of early
collisions increases, since the shells have more disparate speeds and are more likely to bump into
each other. For Ar 2 0.1, a limiting value of (N.oy) is reached which is close to the number of

initial shells, e.g., (Neon) = 97.5 for Ng, = 100. This means that, for high Ap, the halting condition
of having a single shell left in the simulation will be satisfied in a larger number of runs.

The related right plot of Fig. shows how the average fraction of remaining shells in a fireball,
i.e., the number of shells that are left when the simulation stops, varies with Ny, for a fixed value
of Ar. The top and bottom curves correspond to fireballs with fluctuation parameters Ar = 0.01
and Ar = 0.2, respectively. To understand the behaviour of the curves, it is useful to write the
average number of collisions as (Negon) >~ Ngyn — N;, with N, the number of remaining shells at
halting time, dependent on Arp, so that the average fraction of remaining shells can be written
as (Nsh — (Neont)) /Nsh =~ N;./Ng. From the left plot, we saw that for Ap = 0.2, we obtained
N, < Ny, regardless of the value of Ng; therefore, in this case, N,/Ng, ~ 1/Ng, as shown by
the lower curve in the right plot. In comparison, for lower values of Ar, the remaining number of
shells N, is a sizable fraction of Ng,; for Ar = 0.01, in fact, N, grows faster than linearly with
Ngp, so that the remaining fraction of shells N, /Ng, grows with Ng,. In conclusion, we see
that, in order for the fireball to be efficient (in the sense of colliding as many shells
as possible), a fluctuation value of Ar 2 0.1 is required.
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5.3 Light curves and burst duration

In each internal collision, part of the initial bulk kinetic energy of the colliding shells is radi-
ated away as particles. To each collision we can therefore assign a gamma-ray pulse. Following
Ref. [I78], we parametrise the time dependence of the observed luminosity pulse (at Earth, i.e.,
in the observer’s frame) coming from the k-th collision as

0 ; tobs <0
1
S S < .
L%k (tobs) _ h |:1 (1+ct/Rc,k)2:| ) 0< tobs < Trise , (5‘24)
1 1
_ >t
[1+(t—5te,k)C/RC,k]2 (1+Ct/RC,k)2 } ) tobs > trise

with

_ lm,k

the emission timescale of the collision, i.e., the time at which the reverse shock crosses the rapid
shell. Eq. (5.24) describes a peaked profile, with a fast rise and exponential decay (“FRED”); see
Fig. for an illustration. The “rise time”,

Ote i
2
205 &

trise =

(1+2), (5.26)

is the time elapsed since the start of the emission until the peak luminosity Lf;e]j e Loy i (tiise) is

reached, measured in the observer’s frame (for an illustration, see Fig. 1 in Ref. [178]). The peak

value of the luminosity is determined by

E'iysgsh,k R E'iysgsh,lc ZFZ@,k
142 tise (14 2)° Otep

(5.27)

where E;Sosh’k is the energy emitted as photons in the k-th collision (see section [5.3.1). Note that

the time ¢ in the source frame is related to ¢, through

T2 tobs
= mkos 5.28
1+z2 ( )

The “light curve” for a particular burst is thus computed by adding up all the individual luminosity
peaks of the N, collisions, i.e.,

L’Y (tobs) (5.29)

|
~
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o
—~
~
o
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12}
N

k=1

Fig. shows results for four simulated bursts; each column corresponds to a different burst (see
the caption for the parameter values). From top to bottom, the rows show: temporal distribution
(tobs) of internal energy liberated in collisions (EXJ), of the rise time of the luminosity peaks
(trise), of peak luminosity (Lse; k), and light curve of the simulated burst. For this plot, we have
unrealistically assumed that all of the liberated energy of the collision is emitted as photons, i.e.,
Eiso — Eiso
~y—sh,k coll,k*

Experimentally, for a detected GRB, the burst duration Ty is defined as the time window during
which 90% of the total photon count from a burst is detected, a conventional definition introduced
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Figure 5.10: Results for four simulated bursts with the parameters Ng, = 1000, T'g = 300, Ar = 0.2, 6t = 0.01
s, d=1,z=2, and Elif;‘;ﬁo = 10°2 erg; each column corresponds to a different burst. Rows from top to bottom
depict the temporal distribution (fobs is time in the observer’s frame) of internal energy liberated in collisions (E%%),
of the rise time of the luminosity peaks (trise), of peak luminosity (Lgeak), and light curve of the simulated burst.
To produce this plot, we have unrealistically assumed that all of the liberated energy of the collision is emitted as
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Figure 5.11: Distribution of rise time for the collisions of the four bursts shown in Fig. The fit to a Gaussian
distribution (thick black line), its mean value, and the standard deviation are shown for each. The variability time
is estimated as t, = #ise (Eq. (5.30)), and the burst duration, as T' = trise Ncon (Eq. (5.31])). See the main text for
details.

by the BATSE experiment, which defined Ty as the time between which 5% and 95% of the photon
count was detected [I86]. In our simulated bursts, we do not count individual photons, so we need
to fashion an alternative measure of burst duration that resembles the experimental, “real” Tyy as
closely as possible.
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In Fig. We show the frequency distribution of ¢ise values (in logarithmic scale) for the collisions
of the same four simulated bursts from Fig. As a result of fitting to each a Gaussian
distribution (thick black curve), we have found the central value i for each simulated burst, and
its standard deviationﬂ We can use the central value as an estimate of the variability time of our
simulated bursts, i.e.,

ty = Erise . (530)
From here, we can estimate the burst duration as
T = triseNeoll - (5.31)

For the bursts shown in Fig. we obtain a value of ¢, 1 = 0.06 s and of T" between 52 s and 60 s.
By comparison to the corresponding light curves (bottom row of Fig. , we see that it is precisely
at tops = 1 when the quick succession of luminosity peaks characteristic of a GRB light curve
ceases, and a final exponential fall sets in, with only a few final low-energy collisions. Therefore,
Eq. seems initially to be a good estimator for the burst duration (see, however, Fig.
and the associated comments). Furthermore, notice that the estimated values of ¢,, and T lie close
to the “standard assumptions” for these bursts, &4 = (1 + 2) (I +d) /c = 20t (1 4 2z) = 0.06 and
T = Neontstd ~ 55 — 56 s.

In Fig. we show light curves for different values of the Lorentz factor fluctuation Ar. Two
features are salient: first, that the normalisation of the light curve grows with Ar and, second, that
the estimated burst duration, 7', decreases with Ar (except for Ap = 5, where our predictions break
down). Both observations are in agreement with what was detailed in the previous section (see
Fig. and the corresponding text): in bursts with low Ar, all the shells have similar speeds, and
a long time is needed for neighbouring shells to catch up to each other and collide, i.e., T is larger
and collisions occur only after shells have lost a sizable fraction of their available internal energy
during propagation (recall that the total internal energy of the burst falls as r=2/ 3). Conversely, in
bursts with higher Ar, shell speeds are more disparate, collisions occur early, while the shells still
have high internal energy, and so T is smaller. Notice, however, that when Ar < 0.1 or Ap 2 0.5,
the calculated value of T" no longer corresponds to the end of the multi-peaked emission phase
of the light curve; e.g., for Ar = 0.5, we see that this phase lasts until ¢, &~ 60 s, while the
estimated T' ~ 112 s. The disparity worsens for Ar > 1. This reflects the fact that, as Ar rises,
the distribution of rise times t,isc of the burst’s collisions widens, i.e., the standard deviation of the
estimated tise grows. Since T is estimated using only the mean value t,;50 (Eq. ), it therefore
becomes less representative of the true burst duration as Ar grows.

We have found, however, that the estimator T' defined in Eq. accurately estimates the
duration of our simulated bursts only for low values of Ar, close to 0.2. For higher values of Ar, it
grossly underestimates the burst duration. We have therefore introduced an alternative duration
estimator, Tyg, defined as the time that elapses between the times t5 an tg5 at which, respectively,
5% and 95% of the total radiated gamma-ray energy has been emitted, i.e.,

Too = to5 — t5 (5.32)

"Notice that the errors in frise are asymmetric because the Gaussian is fit to the distribution of ¢}, on a logarithmic
scale. A symmetric error could be obtained by fitting the Gaussian instead to the distribution on a linear scale.
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17 E tos E
/ Ly (tobs) dtops = 0.05-2—4 / Loy (tobs) dtops = 0.95—2—24 (5.33)
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Here, the total radiated energy in photons is calculated as

coll

EX o = Z EX gk (5.34)

and Elso shk = EeEcoll ;. is the energy emitted as photons in the k-th collision, with €. the fraction
of the total energy made up of photons. The variability timescale can then be simply computed
as

ty = Too/Neon - (5.35)

We have tested that the values of Tyy and ¢, thus calculated for several simulated bursts closely
match the values obtained from the “standard relations” of the internal shock model (Egs. ([5.40))
and (5.41))), and accurately approximate the duration of the light curves by visual inspection.

Fig. shows light curves for different values of the ratio between the initial width (I) and
separation (d) of the shells. In this case, the duration of the multi-peaked emission phase grows
with d/I, since, as the initial separation grows, shells need to travel longer before they collide. For
the largest ratios (d/l = 5,10), a drop in the normalisation of the light curve is evident: shells
have lost a large part of their internal energy by the time they collide.

Finally, for completeness, Fig. shows light curves for six different values of the emitter uptime,
o0t = 0.001,0.005,0.01,0.1,1, and 10 s. As expected, the burst duration, and its estimation by
means of Ty, grow with dt, since we have set the initial separation between shells to be d o [ =
cdt. This occurs because in our simulations we have fixed the initial number of shells to a set
value, which limits the maximum possible number of collisions. By removing this fixed constraint,
however, for a given value of dt, we could of course find a value of Ny, that will yield a desired
burst duration.

5.3.1 Normalising the photon spectrum

As a result of the simulation, we know the distribution of gamma-ray energy Elsosh e~ eeEisgka
of the burst, where E‘SOSh ;. is the energy radiated as gamma-rays by the k-th colhslonﬂ One
possibility is to assume energy equipartition between electrons and photons, magnetic field, and
protons, i.e., €. = eg = €, = 1/3, with €., €p, and ¢, respectively, the fraction of liberated energy
carried by electrons, the magnetic field, and protons. We have instead used ¢, = ¢g = 1/12 and

8For the numerical computation of 5 and te5, we have actually used the following:

ElSOS Elb() o
ks = argmin, [( 17+h]> —0.05 1_“ , ts =tobsks
j=1
ElSOS EISO o
kos = argmin, [( L“) 0.95 ”ﬁﬂ . tos = tobs.kgs -
j=1

9Note that when producing the sample light curves in Figs. [5.10 [5.12] [5.13] and [5.14] we have unrealistically
assumed €. = 1, so that all of the emitted energy is in photons. For our main results, however, we have used
€e = €p = 1/12, ¢, = 5/6, as explained in the main text.
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Figure 5.12: Simulated light curves for different values of the fluctuation of the Lorentz factor, Ar. The
following values for the remaining fireball parameters were used: Ng, = 1000, I'o = 300, 6t = 0.01s,d =1, z = 2,
and Eff;‘fl,o = 10°? erg. For this plot, we have unrealistically assumed that all of the liberated energy of the collision
is emitted as photons, i.e., iffsh,k = éﬁf{lk The values of ¢, and T were calculated using Egs. and ,
and not the correct ones, Eqgs. and (5.35)), and are included here only for illustration.

€p = 5/6, since this yields the standard value of the baryonic loading, 1/f. = ¢,/¢. = 10.
Then, the normalisation of the Eisosh ;. distribution is determined by

y—
Ncoll

iso — rniso _ iso
E E’yfsh,k = Ly _tot = €elltot > (5.36)
k=1

where the total (isotropic) energy in gamma-rays, E,iysﬁtot, is an experimentally accessible quantity
and the total liberated energy of the burst, E%¢, is calculated from the individual liberated energies
of each collision in our simulated burst. The cosmic-ray energy is also introduced by go_ sh N

(1/ ) BN g 1
Following Ref. [I81], we can assume that the distribution of photons in the shock rest frame (SRF)
is given by a broken power law function, i.e.,

—ay
' 1y / ’
/ (6,) — dn’Y — (E g%break) s € < €5 break (5.37)
My T de! 7 N, - / / ’ ’
<8 /Ev,break> , €2 E'y,break

where C’; is a normalisation constant to be determined for each collision. The input required for
the calculation following Ref. [106] is éfﬁl i Ueollks Re i, etc. For instance, Eq. (15) in Ref. [106]
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Figure 5.13: Simulated light curves for different values of the ratio between the initial width (I) and separation
(d) of the shells. For the rest of the parameters, the same values as in Fig. were used, with fixed Ar = 0.2.
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Figure 5.14: Simulated light curves for different values of the emitter uptime, dt. For the rest of the parameters,
the same values as in Fig. were used, with fixed Ar = 0.2.

changes into (primed quantities are in the shock rest frame)

€ E/iso € E/iso 1 E/iso
/AN r e coll,k ;7 / A collLk v—sh,k
/5 nl (¢')de’ = S <ok /Ep () dB) = Pt = (5.38)
iso,k iso,k € iso,k
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where VI, is given by

Vitows = ARG 1l o = ATRE 1o ol e - (5.39)

iso,k

This normalisation procedure is carried out separately for each collision, using its particular pa-
rameter values. Using the formalism in Ref. [106], one can then easily calculate the neutrino or
neutron fluence (or the injection into the interstellar medium) per collision and time.

The spectral indices o and 3 remain fixed at, e.g., o, = 1 and 5, = 2.2. The minimum and
maximum energies are set to €/ ,;, = 0.2eV and &7 ., = 1PeV, respectively, in accordance with
[181]. However, pair production, through the processes vy — eTe™ and ey — eete™, will damp
the photon spectrum and drive down the maximum energy (see appendix . The break energym

. / _
is set at € break = 1 keV.

5.4 Detailed study of a simulated burst

In this section, we will focus on one simulated bursts and study the gamma-ray, UHECR, and
neutrino emission coming from it. Table shows the run parameters and results for our selected
model including, for the latter, the number of collisions, burst duration (Eq. ), variability time
(Eq. ), total radiated energy in photons, Efysftot, and total radiated energy in all particles,
E%¢. The gamma-ray energy Eiysfsh’k radiated in each collision was calculated by assuming the
energy fractions e, = eg = 1/12, ¢, = 5/6, which yield a baryonic loading of 1/f. = €,/ec = 10
(see section |5.3.1)). For the calculation of the UHECR and neutrino spectra, we have assumed an
acceleration efficiency of n = 1.

The table also shows the expected values of some of the burst parameters that are predicted by
the standard relations of the internal shock model, namely["]

gl d:l(l—kz) (5.40)
799 = Net)™ (5.41)
st = (1) (5.42)
R = 2(r§,§d>2ftji (5.43)
RS = ER /Nean - (5.44)

We have kept track of the different parameters of the burst during its evolution and we show them
here, in Fig.[5.15] with respect to time in the observer’s frame; in Fig. with respect to collision
radius; and in Fig. [5.17] as the distributions. For illustration purposes, in Fig. here we show
the light curve, taking into account superphotospheric collisions only, i.e., those from which the
gamma-rays are able to escape (see below).

Once the simulation has been run, we can calculate the UHECR and neutrino spectra for each
collision, using its own particular set of parameters, and assuming the two-component emission

1Tt is uncertain how gfy,break changes with Rc, since the scaling expected in the internal shock model has a

problem [184]. Probably, we could introduce the temporal behavior phenomenologically by a power law.

1 An alternative definition of ¢5%¢ is 5% = §¢ (1 + 2), which, for | = d = ¢dt, would reduce the values of 5% and
t5* by a factor of 2, worsening the agreement with our numerical estimations. We keep the definition as is, so that
our numerical results agree nicely with what we have defined as “standard relations”.
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Parameter ‘ Value
Fireball initialisation
Ngy 1000
ot [s] 0.01
Ar 1.0
logyg (Efo/erg) | 5159
Iy 300
/i 1
Simulation results
Ncoll 990
Tgo [S] 58.85
ty [s] 5.94-1072
logyg (E'iysgtot/ erg) 53
logg (B9 Jerg) 54.08
Standard expectation
log ;o (RZ /km) 9.21
logyq (E°5" ferg) | 50.00
rstd 368.6
st [s] 6.00-1072
5% [s] 59.40

Table 5.2: Parameters and simulation results for our chosen simulated burst. We have fixed
l = cbt, ry,, =103 km, z = 2, rgec = 5.5- 10! km, €. = ep = 1/12, and ¢, = 5/6. The total initial
kinetic energy of the burst is Ell{slfl o NVsh = 105459 erg.
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Figure 5.15: Evolution with tops, the time in the observer’s frame, of the parameters of our simulated burst.

model from chapter Fig. shows the neutrino fluence (left panel), the maximum proton
energy (central panel), and the maximum photon energy (right panel) for each collision of our
model. Three different types of collisions are distinguished: depending on the dominant UHECR
component, collisions can be dominated by neutron escape (red filled circles) or by direct proton
escape (blue empty circles). In our model, 48 collisions are neutron escape-dominated, and 861
are direct proton escape-dominated. Additionally, we distinguish subphotospheric collisions (black
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Figure 5.17: Distribution of the different GRB parameters of our simulated burst.
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Figure 5.18: Simulated light curve from (superphotospheric) collision of shells in our simulated
burst (model G’). A redshift of z = 2 was assumed to produce this light curve.

squares).

In these, the Thomson optical depth for ey scattering is larger than unity and, as

a consequence, photons are not able to escape the newly formed shell after the collision. The
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Figure 5.19: From left to right: muon-neutrino fluence (in the observer’s frame), maximal proton
energy (in the source frame), and maximally allowed gamma-ray energy (in the source frame,
where 7y, (Ey max) = 1) as a function of the collision radius. Each dot represents one collision: red
filled dots represent collisions where cosmic rays protons escape as neutrons, blue empty circles
represent collisions where cosmic ray leakage dominates over the neutron model, and black boxes
denote subphotospheric collisions or collisions where this picture cannot be maintained (i.e., where
the Thomson optical depth is large). In the right panel, the energy ranges which can be reached
by the Fermi-GBM, Fermi-LAT, and Cerenkov Telescope Array (CTA) instruments are illustrated
as colored bands. Collisions in which photons are able to escape with energies above 10° GeV are
marked as upward-pointing arrows.
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Figure 5.20: Evolution of the photohadronic (py) optical depth for the different collisions, as a
function of collision radius R¢.

Thomson optical depth for the k-th merged shell is calculated as

Tk = 0T jlm o » (5.45)

with o7 ~ 6.65-1072% cm? the Thomson cross section and n/ , the electron density (cm™2). We
have estimated the latter by assuming that the shell is, on the whole, electrically neutral, so that
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Figure 5.21: Left: Collisions arranged in the n, vs. I’ plane. Within the region coloured gray,
the Thomson optical depth is larger than 1 and, accordingly, the collisions within it are marked as
subphotospheric. Right: Collisions arranged in the Eﬁ;i"sh plane, showing that, at the photosphere,
merged shells have magnetic fields of around 10° G.

electron and proton densities are roughly equal, i.e., n, ~ n;,. From this, and from the expression

for the mass of the shell, my, = myn, Vil . 1 +menc Vi,

Vieo—m k> We can write the electron density as
b

, my 1 my 1

n, ~ ~— (5.46)

- / /
mp + me Vvisofm,k iso—m,k

The photosphere is defined as the radius at which the Thomson optical depth is one. In our chosen
model, 80 out of the 990 collisions are subphotospheric, that is, they have 7, > 1 and photons
scatter within the shell rather than escape out of it. Clearly, they occur at low collision radii,
since it is here where the shell masses are higher and the shell volumes are smaller. Our neutrino
calculations break down below the photosphere; therefore, when we later calculate the neutrino
spectra from our simulated burst, we will consider only subphotospheric collisions.

The left panel of Fig. clearly shows that most of the neutrino signal comes from low radii,
where usually the energy liberated in the collision is higher (see the Eéfﬁl vs. R scatter plot in
Fig. and where the proton and photon densities are larger, which leads to the occurrence
of many neutrino-producing photohadronic interactions, within the neutron escape regime. The
densities decrease with collision radius, and the collisions eventually reach the direct proton escape
regime. This is precisely what is shown in Fig. where it is clear that the optical depth to
photohadronic interactions, 7,, falls with collision radii, and where the transition from neutron
escape-dominated collisions to direct proton escape-dominated collisions at 7,, = 1 can be appre-
ciated. For comparison, the value of 7,, = 0.1 used in the standard calculations has been included
(dashed line). Fig. reveals that all of the neutron escape-dominated collisions have higher
values of 7,,, with eighteen of them having 7,, > 5. The highest optical depth for a superphoto-
spheric collision is close to 50, and it turns out that this will be the single most dominant collision
for neutrino production.

The behaviour of Ej max in the central panel of Fig. m shows that it initially grows, up to
Rc ~ 10%5 km, and then decreases. The kink coincides with the transition from neutron escape
to direct proton escape. Below Ro ~ 10%° km, most of the collisions are limited by synchrotron
losses, while adiabatic losses limit the collisions at larger radii. It is possible to derive this change
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Figure 5.22: Evolution in R¢ of the magnetic field (left), synchrotron critical energy of pions
(center), and of muons (right). The dashed lines mark the standard values commonly employed
within the static burst approximation: B’ = 10° G, E, . ~ 10° GeV, and E, . ~ 6-10* GeV.

in behavior from analytical considerations. The magnetic field in a merged shell can be written as
(similar to Eq. (16) in Ref. [106])

Fiso /E/igjh
B = |8p L o=sh VTR (5.47)

" €e ! Rc

iso—m

With this, we can approximate the timescales associated to the acceleration and energy loss pro-
cesses as [106]

E! E' Rc
thee (E) P o —2 (5.48)
B’ is
neel = [,
Im? R2
/ ! o C
foyn (Ep) N dcet B2 E), > B, E;is,osh (5.49)
t'y = U'/c= const. (5.50)

In the neutron escape regime, synchrotron losses are the dominant ones, so we can estimate that
the maximum proton energy associated to individual shell collisions varies with collision radius as

thee (Bpmax) = toyn (B max) = Ep max X Ré/z (E;ii)sh)il/zl (neutron escape regime) . (5.51)

On the other hand, in the direct proton escape regime, adiabatic losses are dominant, and so

thee (Epmax) = tha = B max < RG' (E%,) 1/2 (direct proton escape regime) . (5.52)
These overall trends for the two regimes can indeed be observed in the central panel of Fig.[5.19
The actual behavior is slightly complicated as the figure shows the maximum proton energy in the
source frame and therefore also includes a dependence on T',.
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Figure 5.23: Energy histograms of neutrinos (left), gamma-rays (center), and cosmic rays (right),
including both superphotospheric collisions only (shaded areas) and all collisions.

It is interesting also to look at the range of magnetic field values present in the collisions. These
are shown for each collision, in the plane E;if’sh vs. I', in the right panel of Fig. where we see
that B’ approximately spans the range 10> — 10® G, with the subphotospheric collisions having
fields in excess of 106 G. Additionally, the left panel of Fig. shows its evolution with collision
radius: the ~ 1/R¢ scaling of B’ from Eq. is evident. Notice that, while most collisions
have values below the standard assumption of 10° G, a few have values above it, up to ~ 108 G,
though superphotospheric collisions reach only up to 10° G. The central and right panels show
the critical synchrotron energy for pions, Eéﬂr, and for muons, Eé u» and we see that, for collisions
with B’ ~ 10% G, these energies lie above the standard values by about one order of magnitude.
This, as we will see later, makes the peak of neutrino spectrum lie at an energy that is roughly
one order of magnitude below the position calculated within the static fireball approximation.

The right panel of Fig. shows the evolution of the maximum gamma-ray energy with collision
radius. Photon escape from a particular collision radius is limited by electron-positron pair pro-
duction due to photon-photon interactions. For a particular collision resulting in a merged shell
of width l,,, one can calculate the optical depth to photon escape as 7y, = Iy /Ly, where I, is
the photon-photon interaction length; see appendix [E] for details. Using the information on the
normalised particle densities, it can be computed (numerically) using Eq. . The maximum
photon energy E. max in Fig. is the energy (in the source frame) at which 7,, =1, i.e., it is
the maximum energy that an escaping photon can have at this particular collision radius. Note
that these values are not the maximal photon energies obtained from synchrotron radiation or in-
verse Compton scattering, but the maximal energy value at which photons can escape before pair
creation suppresses them. The sensitivity bands for three different gamma-ray experiments are
included: Fermi-GBM (1keV — 10 MeV), Fermi-LAT (100 MeV — 100 GeV), and CTA (100 GeV-
— 1PeV). We can see that emission from the different regimes would be detected by different
instruments: while Fermi-GBM is sensitive to the gamma-ray signal coming from the optically
thick to neutron escape regime (i.e., low radii), Fermi-LAT, and especially CTA, are sensitive to
the signal coming mainly from the direct proton escape regime (i.e., large radii), with LAT also
somewhat sensitive to the neutron escape regime. Collisions in which the gamma-ray emission is
not limited by pair production to energies below 10° GeV are shown as upward-pointing arrows.
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Figure 5.24: Energy dissipated in (prompt) gamma-rays, neutrinos, and CR protons (UHECRs
from 10'° to 10'2 GeV) beyond the photosphere, binned in the collision radius. Each bin shows
the fraction of the total (superphotospheric) energy for neutrinos, cosmic rays, and gamma-rays.
Neutron escape dominates the cosmic ray emission below R ~ 108® km, while proton escape
dominates above this radius. The photosphere is marked by a gray band that spans the range
Rc ~ 1077 — 10® km and we assume that the interstellar medium starts at 5.5- 10 km.

In Fig. we have binned, in R¢, the energy emitted as neutrinos, gamma-rays, and UHECR
protons for our chosen model. The histogram contours show the distributions for all collisions,
while the shaded histograms show the distributions for superphotospheric collisions only, which
account for about 92% of the total number of collisions. Our earlier observation becomes more
clear here: neutrino emission comes mainly from the inner radii, gamma-ray emission comes from
the outer radii, and UHECR emission comes from intermediate radii, with neutron escape peaking
at lower radii than direct proton escape. The comparison between the different emission regimes
is easier in Fig. here, we show instead the binned energy distribution normalised to the total
emitted energy for each particle species, exclusively for superphotospheric collisions. Neutrino
emission is dominated by collisions that occur below the standard collision radius Rsctd ~ 10”2 km.
From Fig. we know that in these collisions the magnetic field ranges from 10° G to 10° G, with
most of the collisions occurring in the neutron escape regime, due to the high proton and photon
densities in the source, and, from Fig. we know that these collisions reach photohadronic
optical depths higher than 7,, = 10. Therefore, even though the superphotospheric neutron
escape-dominated collisions are few (48 out of the total of 910 superphotospheric collisions), they
account for most of the neutrino emission of the whole burst and, in fact, the emission is dominated
by the ten collisions with 7,, > 10.

This becomes evident in Fig. [5.25] where we show the quasi-diffuse flux of neutrinos, assuming that
all of the 667 long-duration bursts that are observed per year behave just as our chosen model. The
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Figure 5.25: Neutrino spectra from individual (dominant) collisions (thin red curves), total
spectrum (thick orange curve), and reference spectrum computed from averaged burst parameters
in the conventional approach (dashed blue curve). The spectra are estimates of the diffuse flux
obtained from the individual burst (or collision) results by assuming 667 long bursts per year
over the whole sky. The diffuse GRB flux limit from the IC40+459 analysis [92] is shown as a
thin black curve. Moreover, the recently detected flux of high energy neutrinos is at the level of
1078 GeVem =257t sr~! [§] which corresponds to the upper edge of the shown plot.

total flux (thick orange curve) is made up only of superphotospheric collisions; the contributions
from the ten most prominent collisions —from the point of view neutrino-production— are included
as thin lines. We also include the flux obtained in the static fireball approximation, as a dashed
curve. This prediction was obtained using the standard parameters from table for Neon = 990
identical collisions There are two important observations to point out:

e The flux from the evolving burst model is at a slightly higher level than the standard flux.
This is in spite of the fact that the neutrino emission from the evolving burst is dominated
by only around ten collisions, whereas the standard flux is made up of almost a thousand
collisions. We already came across the reason earlier: these ten collisions have photohadronic
optical depths that are much higher —two orders of magnitude— than the standard value of
0.1.

e The flux from the evolving burst model peaks at ~ 102 GeV, whereas the standard flux
peaks at ~ 107 GeV. The reason is that in the evolving burst the dominant neutrino-
producing collisions occur at radii smaller than the standard value of ~ 10?2 km. We have
seen (Fig. that here the synchrotron critical energies of pions and muons are roughly
one order of magnitude lower than their standard values. As a consequence, the kink in the
neutrino flux that signals the onset of synchrotron losses, and which is responsible for the
position of the flux peak, occurs roughly one order of magnitude below the 107 GeV peak of
the standard flux.
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Our results, most clearly Fig. have shown that different particle species come from very
distinct collision radii ranges of the expanding burst. Naturally, usually the parameters used
in making the UHECR, and neutrino predictions, such as the collision radius, are inferred from
gamma-ray observations of the burst. Our results show that these parameters might not be
good descriptors of the UHECR and neutrinos, whose emissions are generated at smaller radii.
Therefore, many of the UHECR, and neutrino predictions found in the literature might be more
model-dependent than previously believed, since they would apply to the particular burst scenarios
where all of the particle species come from collisions at the same radii.
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Chapter 6

UHE astrophysical neutrino decay

Within the Standard Model, neutrinos are stable; all of our results in the previous chapters have
been obtained using this implicit assumption. The possibility remains, however, that neutrinos
are unstable particles, but with lifetimes long enough that we have not been able to observe the
effects of their decay in the neutrino detection experiments that have so far been carried out. In
this chapter we will explore the possibility of neutrino decay in UHE astrophysical neutrinos, first
by re-deducing the relevant redshift-dependent expressions, and then by predicting possible signal
modifications due to decay in the GRB neutrino flux.

6.1 Introduction

The absence of decay signatures allows to set bounds on the lifetimes of the different neutrino
mass eigenstates. The most stringent phenomenological bound comes from the observation of
V. from supernova 1987A [I87, [I88] by the Kamiokande II, IMB, and Baksan detectors. Given
the uncertainty on the supernova neutrino flux (~ 50%) and the neutrino mixing parameters,
it may applyE] to the mass eigenstate v; or to vo. For the sake of simplicity, and since ~ 91%
of the v, content is accounted for by v, we assume that the bound applies to vq: 71/my 2
10° s/eVE] The (model-independent) bounds on the other mass eigenstates are less stringent:
bounds on 4 lifetime are imposed by solar neutrino data, yielding 7o/mso > 10™* s/eV for decays
into invisible daughters [189, T90, 191] and 72/mo > 1072 s/eV for decay modes with secondary
v, appearance [192, 193]. Furthermore, v3 is constrained from the analysis of atmospheric and
long-baseline neutrino data, 73/mg = 10719 s/eV [194].

More stringent bounds can be derived when specific decay models are assumed (see, e.g., Refs. [195]
196, 197, 198, 199}, 200, 201, 202], 203, 204] 205]). In this study, we do not consider specific decay
models, but focus on the phenomenology of neutrino decay, given the bounds on the lifetimes
above. Especially neutrino telescopes [206, 207, 208, 209] are sensitive to neutrinos with an average
energy and traveled distance many orders of magnitude larger than present accelerator, reactor,
atmospheric, and solar neutrino experiments, and may be an interesting approach to probe neutrino
decay.

In our treatment, the lifetime of the mass eigenstate v; and its antiparticle ; are assumed to be equal.

2Neutrino lifetime is usually described by Ii;l = 75,0/mi, where 7; o is the rest frame lifetime of the mass eigenstate
v;. The origin of the mass dependence is the fact that decays scale as exp[—t/(7:,07)] = exp[—(Lm;)/(ETi0)], i.e.,
the rest frame lifetime 7;,0 is boosted by v = E/m; into the observer’s frame, and L (baseline source-detector) and
E (neutrino energy) are quantities related to source and experiment.
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We distinguish between decays into products invisible to the detector, such as sterile neutrinos,
unparticle states, Majorons, or active neutrinos strongly degraded in energy, and decays into visible
states, i.e., active neutrino flavours. Besides, the decays can be complete, i.e., all unstable mass
eigenstates have decayed (see, e.g., Ref. [210]), or incomplete, i.e., the particular signature of decay
will be visible in the spectrum. A complete classification of complete (visible or invisible) decay
scenarios has been performed in Ref. [211], while incomplete invisible decay has, for instance, been
studied for active galactic nuclei (AGNs) in Ref. [212] 213]. The description of incomplete visible
decays is, in general, more complicated [214] 215], partially because it requires the consideration
of branching ratios, which is why we focus on incomplete invisible decay in this study.

In the literature on the subject, it is often assumed that decays are always complete if the sources
lie far enough away, which, in turn, allows for the test of very long neutrino lifetimes, of the order

of
s o rE e LDMpd
[e\/} ~ mleV] 10 E[TeV]"

On account of this, astrophysical neutrino sources lying at high redshifts are potentially well suited
to test the neutrino lifetime, and may potentially lead to bounds stronger than the one from SN
1987A. In this work we have focused on GRBs as sources, with observed redshifts as high as
z ~ 6 — 8. This leads to potentially strong constraints via Eq. . There is subtlety which,
however, we will address here and which will turn out to be important: the connection between
distance L and redshift z depends, for z 2 0.1 (or L 2 360 Mpc), on the cosmological distance
measure that is used; see Refs. [216] 217] for a discussion in the context of neutrino oscillations,
and Refs. [218, 219] in the context of pseudo-Dirac neutrinos. For the neutrino flux, especially
redshifts z ~ 1 will dominate [99], which is a consequence of the convolution of the star formation
rate (including some redshift evolution function) and the contribution to the total flux scaling as
1/d?%, where dy, is the luminosity distance. This value is already significantly beyond the indicated
z ~ 0.1, which means that cosmological effects have to be taken into account.

(6.1)

As in previous chapters, we here use the NeuCosmA software to generate the neutrino spectra
from GRBS@ in particular, we will use the improved nominal prediction for the quasi-diffuse
flux from Ref. [4], calculated with the IC-40 bursts [3]. Note that model-specific [4] and more
generic [5] astrophysical uncertainties may imply even lower neutrino flux predictions. Neutrino
decay provides an alternative explanation for the continued lack of detection of neutrinos from
GRBs: they may have decayed, at least partially, during their propagation between source and
detector. We will investigate the impact of this hypothesis on the predicted fluxes.

Recently, the IceCube neutrino telescope detected three cascade events at PeV energies [7] [§].
Assuming that these have an extragalactic origin, it is interesting to ask why there are no ac-
companying muon tracks at PeV energies. One possibility is simply that this is a consequence of
the IceCube search strategy: since cascades can be generated by neutral-current interactions of
any neutrino flavour and by charged-current interactions of v, while muon tracks can be gener-
ated only by charged-current interactions of v, then it is only natural that more cascades than
muon tracks are seen. We will show here that neutrino decay can also provide an answer to that
question, in line with the current constraints on neutrino lifetime; for alternative explanations,
see Refs. [220] 221]. We will demonstrate that muon tracks may be strongly suppressed in the
presence of neutrino decay compared to (especially electromagnetic) cascades, and that cascade
measurements are much more powerful to find astrophysical neutrinos in this case. Though we will
use GRBs as an example, our conclusions can be applied to AGNs and to cosmogenic neutrinos
as well.

3Within the static burst approximation, not the dynamical burst from chapter
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Figure 6.1: Light-travel distance as a function of redshift in a ACDM cosmology (solid black line). For compar-

ison, we have also included the luminosity distance (dashed curve). Figure taken from Ref. [I19].

6.2 Decay framework for cosmological neutrinos

Decay of the neutrino mass eigenstate v; can be described by the usual differential equation

dN;
dt

where the decay rate (inverse lifetime) \; is given by

m; 1 Kq
A= ——=—, 6.3
' noE  FE (63)
with 7; 0, the rest frame lifetime, boosted by 7; = E/m; into the observer’s frame, k; = m;/7; 0,
and E the neutrino energy. Since neither 7;¢ nor the observed lifetime 7; = ~;7; 0 are directly
observable, and since we do not know the absolute neutrino masses, we typically refer to the
combination k; ' = 7;0/m; [seV!] as the lifetime of the neutrino mass eigenstate v;.

For ultra-relativistic neutrinos, the time ¢ ~ L. If the source has a redshift z, the distance must
be expressed in terms of it, L(z). The relationship between distance and redshift depends on the
choice of cosmological distance measure [222]; for neutrino decay, the relevant quantity is the time
traveled in Eq. , which is to be associated with the light-travel or look-back distance. In other
words, the clock which triggers neutrino decay is directly related to the distance the neutrino has
traveled since its production. By definition,

with Ly = ¢/Hp ~ 3.89 Gpc the Hubble length [223], h (2) = H (z) /Ho, H (z) the Hubble factor,
Eq. (3.6), and Hp the Hubble constant. As before, we assume a flat ACDM cosmology, with
Q, = 0.27 and Qp = 0.73 [133], unless explicitly noted otherwise.

Fig. compares the light-travel distance L(z) to the luminosity distance: it is limited by the
Hubble length Ly, the horizon beyond which ultra-relativistic particles cannot be seen. Hence,
the maximum distance relevant for the test of decay is limited. Clearly, Fig. shows that
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the extended notion that larger distances can probe longer lifetimes only holds for z < 0.1 (or
L < 360 Mpc), where the cosmological distance measures are very similar, whereas for z 2 1, the
light-travel distance is limited. For “typical” neutrino peak energies higher than about 10? TeV for
GRBs and AGNs, one can estimate that the maximal testable lifetimes are about £~ ~ 10*seV~!
from Eq. . Therefore, the bound on the lifetime of 14 from SN 1987A cannot be exceeded by
UHE astrophysical neutrinos; instead, future Galactic supernova neutrinos should be better suited
for this.

Neutrino decay modifies the flavour transition probability to
N;(FEop, z
Paﬁ(E(% Z|Uoﬂ| ’Uﬁz|2 A' 0 Z|Um| |Uﬁz (E(),Z), (6'5)

where Ej is the observed energy, N;(Fjy, z) is the number of neutrinos left after traveling a distance
L(z), N(Ep) is the initial number of neutrinos, and D;(Ep,z) = N;(Ey,z)/Ni(Ey) < 1 is the
corresponding damping factor [224], i.e., the solution of Eq. . For the mixing angles, we use
the best-fit values (for normal hierarchy) from Ref. [225], i.e., sin? §12 = 0.307, sin® o3 = 0.398,
sin? @13 = 0.0245, and the CP-violating phase § = 0.89-7. As before, the flavour composition
at the source is computed in a self-consistent way using NeuCosmA and including the cooling
of the secondary pions, muons, and kaons, and the helicity-dependent muon decays; see, e.g.,
Refs. [95], 111, 226] 103].

The usual way in which the decay equation, Eq. , is solved assumes that )\; is independent of
redshift to find the well-known solution
Ni(t) = Ni(t = 0) e Nt = N e Nt (6.6)
In terms of redshift and using Eq. , we can rewrite this asﬁ
Ni(z) = Ny e k@) (6.7)

where N;(z) is the number of remaining neutrinos afterﬂ traveling a distance L(z). We must also
take into account the effect of the adiabatic cosmological expansion on the neutrino energy: if
E(z) is the energy in the production epoch and Ej is the observed energy, then E(z) = (1 + z) Ep.
With this, the decay rate in Eq. acquires a redshift dependence, and, using that in Eq. ,
we can write the damping factor needed for Eq. as

D;(FEy, z) = exp (—g; (fizi)) (6.8)

with the definition of L(z) from Eq. (6.4). In order to isolate the redshift-dependent part of the
evolution, we define the dimensionless function

Z1 (2) = exp (LHL((lzl—z)> , (6.9)

such that Eq. can be re-written as

rilg

Di(Eo,2) = [21(2)] Bo . (6.10)

Here the exponent depends on x; and Ej only, whereas the base depends on redshift only.

4We use natural units, i.e., i =c= 1.
®Note that here the redshift is measured relative to the origin z, whereas in cosmology z = 0 (and quantities
marked with “0”) refer to the current epoch.
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Figure 6.2: Comparison of the simplified (Z;) and proper (Z2) redshift dependencies. For z < 0.1 the approaches
are identical. The gray-shaded region illustrates the typical redshift range populated by GRBs. Figure taken from
Ref. [119].

We show the functional dependence of Z(z) in Fig. m For large z, Z; — 1, which means that
the neutrinos from high redshifts are stable, and the notion of complete decays does not exist.
From Eq. , they are even stable independent of the value of Ej, which is counter-intuitive,
since more energetic neutrinos should live longer than less energetic ones. The problem with this
approach is that introducing the energy dependence E(z) after the solution of Eq. fails to
take into account that the neutrinos lose energy continuously, which changes the solution of the
differential equation. That is, the energy assigned to the neutrinos is chosen to be the one at the
production epoch, which is on average too high, and the neutrinos are hence too long-lived. While
one would naively expect that this effect is small, we have encountered a severe contradiction here.

The proper solution of the decay equation, Eq. (6.2)), is, of course, to re-write it in terms of redshift
using the redshift-dependent connection between energies at production and detection epochs:
Enz) _ i 0L NG (Eos) o1
dz Eydz 1+=z
Note that in the following, we choose z = 0 as the present epoch, i.e., we integrate from z to 0.
Therefore, from the definition of light-travel distance Eq. (6.4]), we have

dL Ly
—_— = 6.12
dz (1+2)h(2) (6.12)
The solution is
KLy /Z dz' > _rLyg
D;(Ey,z) =exp | — =29 (2 Eo 6.13
(B0.2) = oxp (-2 | e e 210 (6.13)

where we have isolated the z-dependent part througkﬁ

_ z dz/
I (2) = /0 T (6.14)

Zy(2) = e (6.15)

SNote that the function I2(z) was already encountered in the context of oscillations, and corresponds to Eq. (6)
in Ref. [216].
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The function 23 (z) is also shown in Fig. m It is now monotonously increasing with redshift, and
larger than unity. This means that for large decay rates k; > Ey/Lpy, one finds D;(Ey,z) — 0
(complete decays) for z > 0, as expected in a self-consistent framework. In addition, since the
maximal distance is limited by the Hubble distance, the base Z, in Eq. is asymptotically
limited. This has interesting implications for the notion of complete decays, which one can read
off from Eq. : the condition for complete decays is kLp/Ey > 1, or, equivalently,

4-10°

Ey |[TeV| <« ————.
0 [TeV] k1s eV_l]

(6.16)

First of all, this confirms our earlier estimates that energies considerably lower than 1 TeV are
needed to test lifetimes comparable to the SN 1987A bounds. Second, it is a condition on energy,
which is independent of distance (or redshift). Therefore, over cosmological distances (for z 2 1),
“complete decays” is an energy-dependent concept, and has nothing to do with distance.

A useful analytical approximation for Z, is
Z9(2) ~a+be (6.17)

withlﬂ a~17l,b~1—-a=—0.71, and ¢ ~ 1.27. Hence, the asymptotic value is Z2 — a for
z — oo. It depends on cosmology, as it is illustrated in Fig. for different values of €2,,, and Qp:
the higher the cosmological constant contribution (for a flat universe), the more efficient neutrino
decays will be for large redshifts.

6.3 Decay of neutrinos from GRBs

We now apply the decay framework developed above to GRBs; note, however, that our results can
be equally applied to AGNs or other objects. We choose four benchmark bursts, for which the
parameters are given in table The standard burst “SB” is a burst for which most parameters,
such as «, 8, z, and Livso, are frequently used in the literature. In addition, three different recent
GRBs detected by the Fermi satellite have been chosen as examples: GRB 080916C, GRB 090902B,
and GRB 091024. GRB 080916C has been selected, because it is one of the brightest bursts ever
seen, although at a large redshift, and one of the best studied Fermi-LAT bursts. The gamma-ray
spectrum of GRB 090902B has a relatively steep cutoff. GRB 091024 can be regarded as a typical
example representative for many Fermi-GBM bursts [114], except for the long duration. Note that
the middle two bursts have an exceptionally large I" 2 1000, whereas I ~ 200 for the last burst.

We use the same GRB parameters that we used in chapter [2 in table and the NeuCosmA
software [4] (see Ref. [99] for details) to predict the neutrino fluxes, assuming that the baryonic
loading f; ! = 10, energy equipartition between electrons and magnetic field energy (e, = eg) (as
in Refs. [91], 3, 92]), and an acceleration efficiency of n = 0.1.

We first assume that all of the mass eigenstates have the same lifetimes: Fig. shows the
predicted muon-neutrino ﬂuxﬁ as a function of neutrino energy for the four benchmark bursts in
table for this model. Thick curves correspond to the proper decay solution, and thin curves
to the simplified approach. Note that this model serves only to illustrate the effects of neutrino
decay, but is otherwise unrealistic since the lifetimes are chosen such that the SN 1987A bound
for one of the mass eigenstates must be violated.

"Actually, a and b are not independent, since Z2(z = 0) = 1 must be satisfied. This implies that b = 1 — a.
8Here the neutrino flux is just the neutrino fluence divided by Too.
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Figure 6.3: Predicted muon-neutrino flux as a function of neutrino energy for the four benchmark bursts in
table (panels). The different curves in each panel correspond to no decay (stable neutrinos) and three different
lifetimes, as given in the legend. Thick curves correspond to the proper solution of the decay equation, and thin
curves to the simplified approach, for comparison. Here we (hypothetically) assume that all mass eigenstates have

the same lifetime, as indicated in the legend. Figure taken from Ref. [I19].

We can use Eq. to estimate at what energies the decays will be complete. For instance, in
the upper left panel, the flux is suppressed below 4000 TeV for x~! = 102seV~!. This condition is
the more accurate, the higher the redshift of the burst is. For instance, for GRB 091024 (z ~ 1.1),
the suppression is somewhat weaker (shifted to smaller energies) because the base Z; in Fig. 6.2
has not yet reached its saturation value. Obviously the suppression in the proper decay treatment
is stronger, which is expected since Z5 > Z; for large redshifts. The difference between the curves
also increases with redshift, and can be quite significant for large redshifts (¢f., GRB 080916C).

One can show that, in the presence of decay, and provided x~! is sufficiently large, the main
contribution does not come from z ~ 1 anymore, but from very low z (peaking at z = 0): for an
energy Ey ~ 10% GeV, this occurs if £~1 < 400seV~!. This is expected, since the neutrinos from
the low-redshift bursts will not have decayed yet. If, on the other hand, k= > 400seV~!, the
bursts from z ~ 1 will dominate, as for stable neutrinos.

Finally, comparing the lifetimes used for Fig. with the SN 1987A bound, one can easily see
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Figure 6.4: Predicted neutrino flux as a function of neutrino energy for the benchmark burst SB in table
The different panels correspond to different lifetimes, as given in the panels. The different curves correspond to
different flavours (after flavour mixing), as given in the legend. Thin dashed curves shown the stable case (upper
left panel) for reference. As decay model, vy is assumed to be stable, whereas v» and v3 decay with the indicated
lifetime, i.e., all of the panels are consistent with the SN 1987A bound. Figure taken from Ref. [I19].

that no strong decay suppression can be obtained if this bound is applied to all mass eigen-
states. Therefore, the neutrino lifetimes of the different mass eigenstates have to be different for
a phenomenologically allowed scenario, where the most plausible case, satisfying the SN 1987A
constraint, might be that v; is stable. In fact, this is for the discussed GRB fluxes equivalent to
saturating the SN 1987A bound on v;. Therefore, we only discuss this case in the following, and
we only use the proper solution of the decay equation. We assume that 15 and v3 decay with the
same lifetime, for the sake of simplicity, with lifetimes satisfying the v (and, consequently, v3)
bound. The mass eigenstate vo is about an equal mixture among ve, v,, and v,, whereas v3 is a
mixture between v, and v, with a small contribution of v,. The decay of v, will affect the electron
flavour somewhat, which however can be absorbed in the uncertainties of current supernova flux
predictions. The decay of 3 will be hardly observable in the electron flavour.

We show the electron-, muon-, and tau-neutrino fluxes for this model in Fig. for the standard
burst SB and for different values of the lifetime (panels). In the stable case (upper left panel), at
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Figure 6.5: Predicted flavour ratio R (muon tracks to cascades) as a function of neutrino energy for the first two
benchmark bursts in table (panels). The different curves in each panel correspond to no decay (stable neutrinos)
and three different lifetimes, as given in the legend. As decay model, v; is assumed to be stable, whereas vo and
v3 decay with the indicated lifetime, i.e., all of the lifetimes are consistent with the SN 1987A bound. Figure taken
from Ref. [119].

the peak, where the flavour composition v, : v, : v, is approximately 1 : 2 : 0 at the source, flavour
equilibration at the detector is roughly achieved. Even for larger energies, the fluxes of all flavours
are roughly comparable on a logarithmic scale — we will discuss the flavour ratio below. In the
most extreme decay case (lower right panel), both v» and v3 decay with a lifetime corresponding
to the current vy bound: the electron-neutrino flux survives (because v, is stable), whereas the
muon- and tau-neutrino fluxes are suppressed. As a consequence, while electromagnetic cascades
are observable at roughly the same level as in the stable case, muon tracks are suppressed by about
one order of magnitude and neutral-current cascades are reduced to ~ 1/3 of the stable caseﬂ It is
therefore clear that this scenario can easily explain why only cascades have been recently observed
at PeV energies, and will be dominating with increasing statistics, in spite of the effective areas
comparable between muon tracks and cascades [6]. The PeV energies are exactly at the peak
expected from the standard burst (SB), which means that the events may come from the diffuse
GRB flux.

We show in Fig. the flavour ratio R = ¢,/ (¢e + ¢-) (muon tracks to cascades) as a function
of neutrino energy for two different bursts (panels) and different lifetimes (curves); for instances
where R has been used, see, e.g., Ref. [210] [95 205, 211, 227, 228]. One can easily see the
characteristic transition from a pion beam source (initial flavour composition ve:v,:v- of 1:2:0,
yielding R ~ 0.52) to a muon damped source (initial flavour composition of 0 : 1 : 0, yielding
R =~ 0.67) at higher energies, which comes from the energy losses of the muons in the magnetic

9Hadronic cascades are also strongly suppressed. The contributions of the leptonic tau decay channel into leptons
can be neglected as well, since they are doubly suppressed by tau-neutrino flux and the tau branching ratios.
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Figure 6.6: Prediction of the quasi-diffuse muon (left panel) and electron (right panel) neutrino flux from
the bursts used in the IceCube stacking analysis. The different curves in each panel correspond to no decay (stable
neutrinos) and three different lifetimes, as given in the legend, which are applied to each burst in the stacking sample
individually. As decay model, 11 is assumed to be stable, whereas v2 and vs decay with the indicated lifetime, i.e.,
all of the lifetimes are consistent with their current bounds. The limit from IC-40+59 is shown [92], as well as an
extrapolated one for IC-86 (ten years, AL5%¢ ~ 3.A41540: see, e.g., Ref. [230]). For the prediction, the 117 bursts
in the IC-40 sample have been used [3], the “no decay” corresponds to the nominal prediction in Fig. 3 of Ref. [4].
Figure taken from Ref. [119].

field. It depends, apart from particle physics parameters, on the value of B’, the magnitude of the
magnetic field in the shock rest frame; see Ref. [103] for a review. The different panels show two
different cases for this transition.

It is easy to show that if only one mass eigenstate is stable, an asymptotic value of the ratio
R is reached for complete decays which does not depend on the initial flavour composition (see,
e.g., Refs. [229, 211]). This asymptotic value R ~ 0.14 is marked in Fig. and it is always
reached for low enough energies in the presence of decay. The low value simply reflects that muon
tracks are strongly suppressed compared to the cascades. The transition towards this asymptotic
curve depends on the lifetime, of course. The presence of different flavour ratios may be useful to
distinguish different decay scenarios; see Refs. [211], [228].

Finally, we see the effect of decay, with only 11 stable, in a realistic sample of GRBs, as it has been
actually used in a stacking analysis. We show in Fig. the prediction for the quasi-diffuse muon-
(left panel) and electron-neutrino (right panel) fluxes from the 117 bursts in the IC-40 stacking
sample as curves labeled “no decay”. The left curve corresponds to the nominal prediction in
Fig. 3 of Ref. [4], updated with the current values of the mixing angles. It uses exactly the same
bursts and parameters as the original IceCube analysis, but the numerical (updated) method for
the flux prediction from Ref. [4]. Note that the quasi-diffuse flux normalisation hardly depends on
the burst sample used, but only the shape (cf., dashed curves in Fig. 1 of Ref. [92]). This means
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that the shape will be affected by the actual bursts in the sample, whereas the normalisation
will remain approximately constant — modulo statistical fluctuations from the quasi-diffuse flux
extrapolation; see Refs. [231) [99]. We also show in Fig. [6.6] left panel, the current stacking limit
for muon tracks, as well as an extrapolation for the full-scale experiment. While the current limit
does not yet exceed our nominal prediction, the full scale experiment will finally exceed it for
the chosen standard values of the astrophysical parameters. Note that in the original IceCube
analysis, z = 2 has been assigned to a burst if the redshift has not been measured, while the pion
production efficiency has been computed (for long bursts) with Lfyso =102 ergs~!. Since we stick
to these rules, most bursts will have a redshift z > 1, and cosmological effects will be important
for decay.

In Fig.[6.6] we also show the flux predictions for different neutrino lifetimes. In the extreme cases,
k<1 seV~! the muon-neutrino predicted flux is suppressed to below the expected limit from
IC-86 over ten years. However, in these cases, a substantial electron-neutrino flux is expected;
see right panel. It can be read off from the figure, that GRB neutrinos should be detected with
the full scale experiment in cascades if the effective area for cascades is at least 25% of the one
for muon tracks at 1 PeVE Regardless, for the relevant search time window, we only expect 0.07
electromagnetic cascade events for the nominal (“no decay”) prediction from GRBs; therefore, the
three observed events might in this case come from a strong statistical fluctuation, or a significant
deviation of astrophysical parameters from their assumed mean values.

In any case, we have shown that one should keep in mind that no reliable information on astro-
physical neutrino sources, such as GRBs, can be obtained from muon tracks only. In particular,
it is not clear the absence of GRB neutrinos so far is due to their decay, or because the baryonic
loading in GRBs is smaller than anticipated (which would make it difficult for GRBs to be the
joint sources of UHECRSs and neutrinos; see chapter . More statistics are needed from the Ice-
Cube experiment in order to be able to tell, first, whether the suppression of muon tracks at PeV
energies is a physical one and, second, in case it is, whether the spectral distortion is consistent
with neutrino decay.

10Unfortunately, there are no GRB cascade analyses available up to this point, which means that reliable limits
in the right panel of Fig. cannot be shown.
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Chapter 7

Summary and conclusions

In this thesis we have argued for the possibility that hadronic acceleration occurs in gamma-ray
bursts (GRBs), as a result of which they might be the sources of ultra-high energy cosmic rays
(UHECRs) and neutrinos. We have worked under the assumption that the UHECRs are composed
exclusively of protons, which are shock-accelerated to energies of ~ 102 GeV in the sources. Due to
the high photon densities in GRBs, photohadronic (p7y) interactions are expected to dominate over
proton-proton (pp) interactions [232]. Neutrinos are expected to be produced in the photohadronic
interactions, e.g., through the creation of resonances such as the A (1232) resonance (see Eq. (1.1)),
which decays into pions and muons that in turn decay into neutrinos (see Eq. ) The energies
of these neutrinos are expected to be about 1/20-th of the energies of the protons that produced
them; since the GRB neutrino spectra typically peaks at PeV energies, this means that 20 PeV
protons are responsible for these neutrinos.

As explained in chapter 1, we have focused on the production of UHECRs and neutrinos during
the internal shock phase of long-duration GRBs (i.e., those that last more than 2 s), where the
plasma blobs —or, equivalently, spherical matter shells (see sections and f that have been
ejected by the central emitter coast at constant speeds and collide with one another. In each
collision, the participating shells merge into a new one, and part of their kinetic energy is radiated
away as the new shell cools down, in the form of protons, neutrons, neutrinos, and gamma-rays.

For our neutrino predictions, we have used the state-of-the-art software NeuCosmA [96] 99, 4],
which numerically computes the GRB neutrino spectra from photohadronic interactions, via many
production channels, including higher resonances such as K, multi-pion processes, and 7~ pro-
duction. It also takes into account the cooling of the secondary pions and muons before their
decay into neutrinos, and calculates the maximum energy that the protons can reach by com-
paring their acceleration timescale to the dynamical, synchrotron, and photohadronic timescales
(see Eq. (1.10)). Recently, the IceCube collaboration claimed that the non-observation of neutri-
nos from a sample of 217 GRBs ruled out GRBs as sources of UHE neutrinos [92]: the expected
neutrino flux from each source was normalised to its observed gamma-ray signal. These results,
however, made use of an analytical prediction of the neutrino spectrum [2], under the assumption
that only neutrons are able to escape the source and that they decay into UHECR protons out-
side the source (the “neutron model”). A re-analysis of the same GRB sample using instead the
numerical predictions of NeuCosmA revealed that even within the pure neutron model the flux
predictions lie about one order of magnitude safely below the current upper bounds from IceCube
[96]. Furthermore, the ANTARES collaboration has used the NeuCosmA predictions to optimise
their search for neutrinos from GRBs, and has put limits to the neutrino flux [233].
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In chapter [2|we have explicitly studied the possibility that GRBs are the sources of UHE neutrinos
and UHECRs. In order to do this, we have built a source model [106] where UHECRs are emitted
as either neutrons, which escape the source and quickly -decay into protons, or, at higher energies,
directly as protons, which leak out of the source. The latter can occur via diffusion of the protons
out of the source, or, more simply, by their Larmor radius growing beyond the width of the matter
shell in which the proton is contained. The relative importance of each of the two components —the
neutron escape and the direct proton escape— is determined by the source’s optical thickness to
neutron escape (see section: when it is below one, neutron escape will be dominant; otherwise,
direct proton escape from the edges of the matter shells will dominate.

High proton acceleration efficiencies (n ~ 1 in Eq. ) are required to be able to explain
the observed UHECR spectrum. Within our two-component model, we have found that a high
efficiency entails that UHECRs must leave the source not only via neutron escape, but also via
direct proton leakage [106]. In addition, our two-component UHECR emission model weakens the
relation between UHECR and neutrino production. Whereas, in a model of where only neutrons
escape, each escaping neutron entails neutrino production via the photohadronic processes that
generated the neutron in the first place (i.e., py — AT (1232) — n7aY), in a model where direct
proton escape is also possible, these protons are able to leave the source without having produced
neutrinos inside of it. Thus, the one-to-one correspondence between neutrino and UHECR, emission
is broken [106].

In order to make predictions on the observed UHECR spectrum from this two-component model,
we have written original computer code that propagates the protons from the production epoch
(up to a redshift z = 6) to the detection (z = 0) epoch, at Earth. The details of such treatment
are shown in chapter At each redshift step, a population of GRBs injects protons, and these
are numerically propagated to smaller redshifts while taking into account the relevant energy-loss
processes: adiabatic cosmological expansion, pair-creation, and photohadronic interactions with
the photons of the cosmological backgrounds (see section ; the latter result in the additional
production of cosmogenic neutrinos, whose spectrum peaks at ~ EeV energies.

In chapter [4] we have fitted the generated UHECR spectrum to the observations performed by the
extensive air shower experiments HiRes, the Telescope Array, and the Pierre Auger Observatory.
Doing this also normalises the predicted GRB neutrino spectrum and the cosmogenic neutrino
spectrum, thus allowing us to compare them with the current IceCube upper bounds. Hence, while
in some regions of the GRB parameter space we might be able to fit the UHECR observations,
the same regions might turn out to be inviable because the corresponding neutrino expectations
exceed the upper bounds [161].

Under the hypothesis that GRBs are the sources of both UHECRs and neutrinos, if we fit the
UHECR flux prediction from our two-component emission model to the observed UHECR spec-
trum by extensive air shower experiments, we find that, while the regions of GRB parameter space
that correspond to an emission dominated by neutron escape are able to closely fit the UHECR
observations, the associated prompt neutrino fluxes already exceed the current bounds on the neu-
trino flux set by IceCube. These regions correspond to high gamma-ray luminosity and moderate
Lorentz factors (< 500). The regions with higher Lorentz factors (500 — 1000) remain currently
unconstrained; within these, direct proton escape is the dominant component of UHECR. emission.
However, after 15 yr of exposure, the non-observation of neutrinos from GRBs and of cosmogenic
neutrinos by IceCube would also rule out most of the remaining parameter space [161]. As a result
of fitting our UHECR predictions to the observed spectrum, we are able to find the best-fit value
of the baryonic loading —the ratio of energy in UHECRs to electrons— at each point of the GRB
parameter space, rather than having to use an externally fixed value for this quantity (usually,
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10). We have found, however, that the region of parameter space corresponding to the neutron
escape model is discarded because the associated neutrino predictions exceed the current IceCube
upper bounds, in accordance to the results of Ref. [I00]. These regions correspond to low values of
the baryonic loading: thus, the remaining parameter space is associated to values of the baryonic
loading of 1000 or higher. However, notice that these numbers are for the baryonic loading in all
of the range 106 — 102 GeV, while, for neutrino production, only the UHE range of 10 — 102
GeV is relevant. Within this reduced energy range, the baryonic loading is not as high.

Up to this point, our neutrino predictions have been made within a simplified scenario which is
common in the literature: that of the “static burst”, described in sections and Within
it, the gamma-ray, UHECR, and neutrino predictions from a GRB are made by assuming that
all of the internal collisions among matter shells are identical, i.e., they all take place at the
same collision radii and under the same conditions of particle density, Lorentz factors, and other
parameters that determine the particle output from the collision. In chapter [5| we have moved
beyond the static burst approximation and considered a simulated burst by tracking the individual
propagation of matter shells, each with its own speed and mass, and we have built up the UHECR,
neutrino, and gamma-ray signals as the sum of the spectra coming from the individual collisions
among the shell, each occurring under different conditions [234].

The study of the dynamical fireball model revealed that, within the internal collision phase of the
GRB evolution, UHECRs, neutrinos, and gamma-rays are emitted at different stages of the fire-
ball expansion [234], i.e., they are created by internal collisions of the matter shells that occur at
different radii. As the burst expands, the particle densities fall (as ~ 772): as a consequence, the
source becomes increasingly transparent to neutron escape. Therefore, neutrino production occurs
mainly at the innermost radii, where proton and photon densities are highest and photohadronic
interactions are more common; UHECR emission occurs at intermediate radii, with neutron es-
cape peaking before direct proton escape; and gamma-ray emission comes from late in the GRB
evolution, that is, from the outermost radii, where the Thomson (e7y) optical depth is low enough
for photons to escape the source. Neutrino and UHECR predictions from GRBs are naturally
based on the properties of the internal collisions derived from gamma-ray observations. However,
we have seen that the different particle species are generated at markedly different radii; therefore
the standard estimators of neutrino and UHECR, emission might be more model-dependent than
previously thought. We have seen that most of the neutrino emission comes from the innermost
radii. In these collisions, the particle densities have higher values than the ones assumed in the
static burst approximation, which is why these innermost collisions, while few, are already enough
to account for most of the total neutrino signal. Since the magnetic field in these collisions is
higher than the standard value (> 10° G), synchrotron losses of the secondary pions and muons
are more intense, and they shift the peak of the neutrino spectrum to lower energies than in the
static burst prediction.

Finally, as an additional exploration in the direction of new physics effects, in chapter [6] we
have explored the possibility of neutrino decay into invisible products, in the context of UHE
neutrinos, first by working out the correct redshift-dependence of the flux damping due decay
and then by introducing the damping into the NeuCosmA numerical predictions. Since neutrinos
from extragalactic sources —such as GRBs and active galactic nuclei— traverse distances that might
already be close to the Hubble horizon of ~ 3.8 Gpc, they become potentially powerful probes of
the beyond-the-Standard-Model hypothesis that neutrinos are unstable and decay [I19]: the long
propagation distances allow for the possibility the neutrinos flux is depleted due to decay even if
they are extremely long-lived.

A correct treatment of the redshift dependence of the decay of UHE astrophysical neutrinos shows
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that, contrary to popular assumptions in the literature, unstable neutrinos that come from distant
sources have not necessarily reached complete decay by the time they reach Earth [119], i.e., not
all of the neutrinos have decayed. We have shown that, even for neutrinos that come from the most
distant source and that traverse the Hubble length, complete decay is rather an energy-dependent

condition (see Eq. (6.16))).

Under the assumption that the mass eigenstate v is stable —inferred from the detection of v,
from SN1987A—, we have shown that the instability of the mass eigenstates 15 and v3 induces a
depletion of the v, and v, fluxes from GRBs that can reach one order of magnitude, depending
on the value of the lifetime assumed, whereas the v, flux —which is made up mostly of v1— is only
slightly affected. While it is still premature to tell, such a mechanism could lead to the observed
cut-off in the UHE neutrino flux at 2 PeV observed by IceCube [7, [6, [8]. More importantly, this
observation further reinforces the importance of studying the flavour composition of the UHE
neutrino signals.

We have thus seen that refinements over the simplest joint models of UHECR and neutrino pro-
duction, which have begun to be challenged by experimental data, lead to valuable insights, be
it by means of comparison with the UHECR observations and the neutrino upper bounds, or by
finding a different neutrino prediction as a result of modeling the internal collisions in the GRB in
a more realistic manner. Further developments, such as the ones outlined in chapter [8] are likely
to reward the astroparticle community with even greater knowledge of the UHE multi-messenger
picture of the Universe in the years to come.



Chapter 8

Outlook

UHE astroparticle physics is a rapidly-developing field which, thanks to the existence of the current
and planned detectors, will likely continue to see important progress in the following years. As the
statistical sample of UHECRs and neutrinos, and of astrophysical sources such as GRBs and AGNs,
grows, our ability to discern between the competing theories of particle creation and emission will
improve. As a result, it is only to be expected that many of the current theoretical models will
be discarded under the growing body of experimental data. It is therefore natural to plan ahead
and consider a few improvements to the various developments presented in this thesis that would
perhaps make them more complete and also more competitive.

Regarding the UHECR and neutrino emission model (chapter [2)):

e Consider the acceleration of nuclei up to iron in the source. For this, the destruction of the
nuclei via photodisintegration on the source photon field must be taken into account; see
appendix [F| for some initial considerations. Repeated occurrence of photodisintegration will
yield progressively lighter nuclei, down to free protons. A complete treatment of nuclei in
the source should consider the chain of nuclide creation, the energy losses and energy gains
of each of each them.

e Implement neutrino production in the presence of UHECR nuclei. Neutrino emission will be
suppressed if UHECRs have a sizable component of heavy nuclei, since each of the N nucleons
of an UHECR nucleus of energy E will have an energy F/N available to produce neutrinos
through photohadronic interactions, versus an UHECR proton with the same energy F.

Regarding the UHECR propagation (chapter (3)):

e Include the radio photon background (see, e.g., Ref. [235] and Fig. A.6 in Ref. [87]); currently
photohadronic interactions during the UHECR proton propagation occur only on the CMB

and CIB (see section [3.2.4)).

e Implement more models of the local CIB (see, e.g., Fig. 7 in Ref. [236]) into the propagation
code. Currently, two of the most popular models, by Franceschini et al. [135] and by Stecker
et al. [136], are implemented (see section [3.2.4)).

e Include the propagation of nuclei (see, e.g., Ref. [123]) in the same manner as for protons,
implementing the A~ interactions in a way similar as how the py interactions are calculated
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in NeuCosmA, i.e., using fast, simple parametrisations of the cross sections and energy loss
rates

e Include the effects of deflection on intergalactic magnetic fields, which would affect the CR
flux at energies below ~ 107 GeV. The incorporation of magnetic deflections is necessary
if one wishes to perform small- and large-scale anisotropy studies with potential sources of
UHECRSs or neutrinos. See section for a few more details on deflection by Galactic and
extragalactic magnetic fields.

e Keep track of the gamma-ray flux coming from the decay of 7° created in p~ interactions.
This amounts to implementing a Boltzmann equation for the gamma-ray flux, in the same
way that one was implemented for the propagation of the UHECR protons. We currently
only keep track of the integrated energy dumped into electrons and photons, but do not
follow the evolution of the gamma-ray spectrum (see section .

e In section [3.4.2) we explored the effect of adding an extra, high-redshift component to the CIB
injection function, in order to enhance the cosmogenic neutrino peak due to p7y interactions
on the CIB. While the results show that it is possible to obtain such an enhancement, they
would benefit from a more careful fitting procedure to the existing CIB models and further
exploration.

Regarding the constraints on the joint UHECR and neutrino production in GRBs
(chapter {4)):

e So far, our results have been produced under the assumption that all of the GRBs have

a representative, typical gamma-ray luminosity of 10°% erg s~'. GRBs, however, have a
measured distribution in luminosity (see, e.g., [I38]). A more realistic, though more complex,
analysis of the bounds on the joint production model would consider both a redshift and a

luminosity distribution of GRBs
Regarding the dynamical GRB model (chapter [5)):

e GRB light curves come in many different shapes, which is part of the reason why it is difficult
to come up with a single theoretical model to generate all of the different behaviours. It would
be interesting to be able to generate different light curve shapes, thereby allowing our model
to make predictions of the neutrino and UHECR emission for particular observed GRBs.

e Some light curves exhibit an intermittent behaviour: periods of activity separated by periods
of quiescence. One possible explanation is that the engine works also only intermittently,
perhaps with matter falling into it at intervals. This could be modeled in our simulation by
turning the central emitter engine on and off periodically.

e Currently, in our simulations all matter shells are initialised with the same bulk kinetic
energy, Fy5° . However, we could explore a scenario where the initial kinetic energies follow

a different distribution, e.g., a Gaussian distribution

e Experiments usually output GRB light curves in different energy bands (e.g., FermiGBM
and Fermi-LAT), while, so far, we have only generated bolometric light curves in a broad
range covering the MeV range. It could prove useful for comparison to real measurements
to come up with a way to generate synthetic light curves in different energy bands.
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e Up to now, we have assumed that the photon break energy in the source photon spectrum,
5/7,break’ as well as the minimal and maximal photon energies in the SRF, are fixed. We could
explore the variation of 5’%break in different collisions by assuming that the peak photon energy
is generated by synchrotron emission, which depends on the magnetic field B’, which in turn
falls with collision radius.

o We might consider the growth with time of the deceleration radius, r4ec, where the interstellar
medium starts. Also, we could calculate the effective rq.. for each shell, given its kinetic
energy and Lorentz factor, and assuming a value for the density of the surrounding medium.

Regarding UHE neutrino decay (chapter [6]):

e Use the UHE events recently detected by IceCube to deduce bounds on the neutrino lifetime.

e Explore the effect of other types of new physics —decoherence, Lorentz invariance violation,
etc.— in the GRB UHE neutrino flux, including. Unlike decay, some of these effects may
manifest more strongly at higher energies, UHE astrophysical neutrinos might constitute the
only way to probe them.

This is, of course, a non-exhaustive list of potential further developments, but it is already enough
to convey the richness of the research avenues that we have started to explore.
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Appendix A

Description and numerical
implementation of the UHECR
propagation

In this appendix we show the underlying assumptions and details about the numerical implemen-
tation of the UHECR propagation scheme introduced in chapter

Al

Assumptions

Our main assumptions in modeling UHECR propagation are:

CRs are made up solely of protons: lately, observations by the Pierre Auger Observatory
have hinted that the composition of the most energetic CRs contains predominantly heavy
nuclei, instead of protons [50]. However, it is not clear what mechanism would be able to
accelerate heavy nuclei to the highest energies, while not also accelerating the protons to
the same energies. In addition, the destruction of heavy nuclei by photodisintegration in
nucleus-photon interactions in the source remains an unresolved problem. As a result, the
heavier-composition result is still debatable and therefore in this work we have considered
an exclusively proton composition of the CRs.

Neutrons and protons are treated as the same species: in sources that are optically
thin to neutron escape (see section chapter , the protons that make up the CR flux are
originated in the decay of escaped neutrons from the sources. Below a critical neutron energy
E.(z), the neutron decay time is shorter than its interaction time. Therefore, we treat
neutrons and protons as the same species (pneutrons), and append a cut-off o eE?/E2(2) 1o
the neutron injection spectrum (see section .

Cooling and escape rates of protons and neutrons, as well as the injection of secondaries
(pions, etc.) are given in appendix B of Ref. [90]; see Eq. (B4) therein. If protons and
neutrons are treated as the same species, the pneutrons can only cool (neutron-to-proton
conversion does not change the number of pneutrons)E] In our code, the pneutron system

1We have added a new species to NeuCosmA, to be used in the routine ncoComputeCoolEscRate: ParticleIn =
NCO_PROTON_NEUTRON and ParticleQut = NCO_PROTON_NEUTRON will give the correct cooling rate and a zero escape
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does not care about what happens to the neutrons: if they decay before they interact, they
will make protons with about the same energy, whereas if they interact before they decay,
they will just be included in the energy loss rate.

e There are no diffusion effects due to magnetic fields: below ~ 10° GeV, diffusion
due to the deflection of CRs on intergalactic magnetic fields kicks in. Unlike other publicly-
available software for UHECR propagation?} such as CRPropa [239] and SimProp [240], our
code does not consider interactions with the magnetic field, and so should not be used to
propagate the CRs to energies far below 107 GeV (107 GeV is probably the lowest energy that
is sensible to use). Magnetic diffusion induces angular deviations in the trajectory of CRs,
which makes difficult the correlation between detected CRs and potential sources. Angular
deviations due the regular component of the Galactic magnetic field of magnitude 2 uG are
expected to be as low as 3° — 5°, for a proton of 60 EeV [241]; deviations on the turbulent
component of the Galactic magnetic field are smaller, ~ 0.5°. Available information on the
extragalactic magnetic field is much scarcer than for the Galactic one, but it is expected to
be more intense close to the centers of galaxy clusters and inside filaments (< 10uB) than
in the void (1 — 10 nG, or as low as fG). The angular deviations depend on the particular
trajectory followed by the UHECRs, and their estimates range from < 0.1° [242] to = 10°
for a 60 EeV proton [243].

A.2 Inputs

With the objective of making the CR propagation code as flexible as possible, we have considered
the following functions and parameters as inputs:

e Local (z = 0) CIB spectrum: there are competing parametrisations of the local CIB
spectrum (GeV~! cm™3), nSIB (e,0); see section Currently, there are two alernatives
implemented in the code: CIB1, by Franceschini et al. [I35], and CIB2, by Stecker et al. [136].
Additional parametrisations can be added to the code with ease.

¢ Redshift evolution of the CIB sources: the redshift evolution of the CIB spectrum nng
depends on the redshift evolution of the sources of IR photons, Hcrg (2) in Eq. (3.22). Cur-
rently, the code allows to compute the CR propagation with no source evolution (NCO_CRPROP
_SOURCEDIST.CIB = 0), SFR evolution (NCO_CRPROP_SOURCEDIST_CIB = 1), GRB evolution
(NCO_CRPROP_SOURCEDIST_CIB = 2), or a more general evolution of the form (1 + z)” Hgpg (2)
(NCO_CRPROP_SOURCEDIST_CIB = 3). In the latter case, the value of the parameter (3 is stored
in NCO_CRPROP_COSMEVOL_CIB. Note that the code is flexible enough to easily implement other
forms of Horg.

e Redshift evolution of the CR sources: Hcg (2) in Eq. (3.31)). The same options as for
the CIB evolution apply, but NCO_CRPROP_SOURCEDIST_CR and NCO_CRPROP_SOURCEDIST_CR
are set instead.

rate. Note that this species should not work for any other function, where ParticleIn = NCO_PROTON is to be used
in that case, and no neutrino-antineutrino distinction is to be made. Therefore, we are not sensitive to the Glashow
resonance. That is, the code simply adds the finally obtained neutrino and antineutrino fluxes, since their distinction
is unphysical in this case.

2There is other public software, such as GALPROP [237] and DRACGON [238], designed to propagate lower-energy
CRs in the magnetic field of the Galaxy, within the diffusive regime.
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e Proton injection spectrum: Qcg (F,z) in Eq. , with units GeV~! Mpc™3 s71.
One can either use a universal power-law spectrum with a simple exponential cut-off, i.e.,
Qcr (E,z) ~ E~Ye E/Epmax implemented as the function CRInjectionSpectrumUniversal,
or couple the source model from section [2| here.

e Maximum proton energy, F, max: this energy determines the intensity of the damping
of the CR injection spectrum at high energies. The CR and cosmogenic neutrino fluxes at
Earth depend strongly on the value of FEj, nax. In the source model of section [2] it is is
determined interally by a competition between energy-gain and energy-loss processes.

e Redshift at which the universe becomes homogenenous, zpom: by default, it should
be set t0 zhom = 21072, corresponding to ~ 77 Mpc. CR injection occurs down to this
redshift; from zponm, to 2 = 0, only adiabatic energy losses are considered in their propagation.

e Maximum redshift of contributing sources, z.x: currently set to zp.x = 6. It deter-
mines the initial condition Y (E, zmax) = 0; the CR flux is propagated, and the cosmogenic
neutrino flux receives contributions, from zpax down to z = 0.

A.3 Limitations

Our code, of course, has limitations. Some of the assumptions in section could be seen as
limitations. However, more technical limitations of our code are:

e Cut-off of the CR injection spectrum: when using a universal CR power-law injection
. _ —E2/E2 .
spectrum, too sharp an exponential cut-off, e.g., Qcr (E) o« E7 Ve pmax - occasionally
yields values for the proton spectra that are below the available numerical precision, thus
inducing the program to crash.

e No composition studies possible: since we have assumed an all-proton CR flux (see
section [A.1)), we are not able to perform UHECR composition studies.

A.4 Numerical implementation

The UHECR propagation algorithm is implemented as C code. Its goal is to solve the kinetic
equation, Eq. (3.5)), and obtain the UHECR proton flux at Earth.

A.4.1 Discretised transport equation

We will denote Y; (F) =Y (FE, z;). Since we are interested in the redshift evolution of the proton
density, we calculate, at each value of z;, the entire energy spectrum Y; (E) between Eyin and Epyax.
It is useful to rewrite the derivates w.r.t. energy in Eq. (3.5) as derivates w.r.t. x = log;y F, by
using Jp = (logge/E) 0. To solve Eq. numericallyi we write it in terms of finite differences
in the redshift direction, namely,

Yipr(z) =Yi(z) _ 1 {10g10 e
E

[0 (H (2:) EY; (x))

—Az (14 2z) H (z)

3Unlike most of the publicly available codes (e.g., CRProp, SimProp, GALPROP), our code does not use Monte
Carlo methods to compute the propagation of CRs.
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+ 0z (e (,2)Y; (2))
+ 0y (bpy (2, 2) Y; (2))]
+Lor (z, %)} - (A-1)

From this, we find an expression for the spectrum at the next redshift step, Y;+1 (). Notice that,
since the CR spectrum is calculated from zp,ax > 0 down to z = 0, the redshift step (—Az) must
be negative.

At each redshift z;, the spectrum Y; () is calculated at n, different values of z, regularly spaced
between xmin and xmax. At each of the n, sampled values of x, the functions from the r.h.s. of

Eq. (A.J),
H (2) EY; (IL’) ) bete— (.T, Zi) Yi (CE) ) bp’Y (.I, Zi) Yi (:L’) ) (A2)

are evaluated at x — dx and x + dx, with dz a small displacementﬂ These evaluations are used to
approximate the derivatives at x by

f(x+dx)— f(x—ox)
20x ’

Oy f =~ (A.3)
with f each of the functions in Eq. (A.2]). The value of Y; at any x can be obtained from the n,
sampled points by linear interpolation.

The proton spectrum is evolved form zy,,x down to the local epoch, at z = 0. Recall, however, that
the injection term, LcRg, is switched on only down to zpgm, below which the universe is no longer
homogeneous (see subsections and . The initial condition Y (E, zmax) = 0 is translated
into Yp (z) = 0, and the spectrum is evolved down to z = 0, where the comoving spectrum, Y,,_ (z),
is automatically equal to the proper local spectrum, n, (x,0). The proton flux at Earth is then

calculated using Eq. (3.3)).

The following are the main discretisation parameters in the numerical implementation of the solver:

e Az: the step in the redshift direction, so that the total number of values of redshift at
which the CR spectrum is evaluated is n, = 1 + (zmax — 0) /Az. We have found that
Az = 5-107° reproduces the known features of the CR spectrum (bump, dip, etc.) and
matches the published results accurately. The corresponding number of values of z sampled
is n, = 1.2-106.

e n,: number of z values at which the spectrum Y; (z) is calculated at each redshift. For the
linear interpolation of the spectrum in the whole energy range, a low value is sufficient; we
have found that n, = 60 reproduces published results accurately.

® Tmin, Tmax: (log of) minimum and maximum proton energies considered; at each redshift
value, the proton spectrum between these energies is calculated at n, regularly-spaced values.
Typically, zpmin = 7 or 7.5 and xpax = 12.

e 0x: small displacement with which the numerical derivative, Eq. (A.3)), is calculated. We use
Sz = 10710, but it is to be expected that higher values also work.

4One should avoid using 6z = (Tmax — Tmin) / (nz — 1) in order for the spectrum Y41 not to have discontinuity
problems in the next step of the solver, when it is evaluated at the same n, values as in the previous step.
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A.4.2 Electromagnetic cascade energy density

The e.m. cascade energy density, weas, receives contributions from all redshifts, as expressed by
Eq. (3.43)). In the implementation of our code, we have integrated instead in x = log (F) at each
redshift step, and approximated we,s as

bcas (377 Zn)
Weas = derln(10) F———————Y,, ()| Az . A4
cas ;[/ ( ) (1+Zn)H(Zn) n() ( )
Note that weas thus calculated is returned in units of GeV Mpc™2; it needs to be multiplied by
~ 3.4-107™ to convert it to GeV cm™3. Since, in the current version of the code, the proton
injection spectrum has not been normalised beforehand, one still needs to multiply weas by the

normalisation (fixed, e.g., by fitting the proton flux at Earth to the HiRes data).

A.4.3 Tricks for speed-up

NeuCosmA already calculates the photohadronic interactions efficiently through its parametrisa-
tion of SOPHIA results as fast functions. There are, however, a few extra tricks that we have
implemented to speed up the execution of the CR propagation code:

e Protons and neutrons are treated as the same species: as explained in sections
and By doing this, the code does not to follow the decay of neutrons (although the
decay products are taken into account).

e Adiabatic scaling of the energy loss rates on the CMB: by default (setting NCO_CRPROP

_CMB_SCALING = 1), the pair-production and photohadronic energy loss rates on the CMB,
® and bl%MB, are calculated once at z = 0, when the code is initialised, and thereafter
scaled to different redshifts with the use of Eq. . This reduces the time needed to
propagate the CR spectrum and calculate the cosmogenic neutrino flux from ~ 40 minutes
(if the energy loss rate is calculated from definition at each redshift) to ~ 120 s.

e CIB interactions are not calculated at each step: since the interaction length on
the CIB is much larger than the interaction length on the CMB (see Fig. , we do not
calculate the CIB energy loss rate at every redshift step, but rather only every CIBSTEPS
redshift steps. We have found that setting CIBSTEPS =~ 0.025/Az correctly reproduces the
desired features of the fluxes and matches published results. The plots in section have
been produced using CIBSTEPS = 500 (i.e., Az = 5-107).

e Cosmogenic neutrino spectrum is not calculated at each step: it suffices to calculate
the cosmogenic neutrino spectrum only every NEUTRINOSTEPS = 0.05/Az steps. The plots
in section have been produced using NEUTRINOSTEPS = 1000 (i.e., Az = 5-1079).
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Appendix B

The UHECR energy budget from
GRBs

Here we show the detailed derivations leading to the conclusions in section (4.2

B.0.4 Observation of prompt gamma-rays, and local GRB rate

For the description of the redshift distribution, we follow Ref. [I38]. The comoving GRB rate
[Mpc ™3 yr~1 is given by
nGrB = €(2) - p«(2) , (B.1)

where

E£(z) = Eo(1 + 2)° (B.2)

describes the evolution of the fraction of stars resulting in GRBs, o ~ 1.2, and p.(z) is the
(comoving) star formation density [Mg Mpc =3 yr~!]. The observed redshift distribution of GRBs
dN/dz [yr~!] can be written as [138]

AN ngr dV/dz

4NV _ g E(z) pu(z) dV/dz
dz <fbeam> l+=z

<fbeam> 1+2z

= F(z)

7 (B.3)

where the last factor is the comoving volume correction][l] Note that here the beaming factor is
needed to correct for the invisible GRBs beamed into different directions (0 < {fpeam) * < 1) and
F(z) accounts for the ability to observe the GRB, such as the detector threshold (0 < F(z) < 1).
In the main text, we use iGrB = 7GRB/ (foeam) for the sake of simplicity, which is lower than the
actual GRB rate by the beaming factor.

It is useful to define the adimensional redshift evolution H(z) of the GRBs by normalizing the
comoving GRB rate to the local rate leading to

NGRB ps(2)
H(z) = = = (14 2)%= , B.5
()= Gomt = (14 £ (B.5)
IThis correction is defined as
%:mmﬁdi (2), with h(z)=\/0m(1+2)°+Qx and do (z):DH/O hd(;). (B.4)

Here Dy = 4.255 Gpc, Qm = 0.27, Qp = 0.73, taken from Ref. [133].
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such that H(z = 0) = 1. In addition, we distinguish the total number of bursts per year in
the observable universe N, and the number of observable bursts per year N, where,

from Eq. (B.3),

. o0 .
dN dNioy . dN . dN 1
g—F() P N—/ddz Nmt_/sz(z)dZ' (B.6)
0 0
As a consequence, one can compute Nio; from N if the threshold function of the instrument is
known. We define the ratio fihresn = N /Ntot as the fraction of observable bursts because of
the instrument threshold. For instance, using a power-law luminosity distribution proposed by
Wanderman & Piran [162] with the redshift distribution from Kistler et al. [138], we obtain a
ratio finresn = 0.5 for a threshold of 1.75- 107 % erg s~ 'em ™2 if we assume that bursts can only have
a luminosity in the range 10°° to 10°*ergs™!, as implied in Ref. [162]. This result is of course
dependent on the chosen distributions and cutoffs, e.g., when we extend the distribution to lower
luminosities, say, 10%? ergs™!, the ratio goes down to 0.3, which is the value that we have adopted
in this study. In any case, one should keep in mind that there is a factor of two to three difference
between Ntot and N.

It is now useful to relate the total redshift distribution of GRBs to Eq. (B.3) by using Eq. (B.5))

and Eq. as

dNiot _ MGRB|.—g (s )dV/dz
dz <fbearn> 1 +z

where ﬁGRB’Zzo = NGRB|,—o /(foeam) is the often-quoted “local GRB rate”, which is of the order

, (B.7)

of one burst per Gpc® and year; see, e.g., Ref. [162]. It is reduced with respect to the actual GRB
rate ngrB|,_y, which includes the GRBs beamed in different directions which are not directly
observable, by the beaming factor. We can now derive Nyt as

n(}RB|Z S /,H dV/dz L GRBL—o DY - f, (B.8)
beam

NtOt <fbea >

where we have defined

/ H(z) D2 g (B.9)

i 4D3 l—l—z

This cosmic evolution factor describes how representatlve the local GRB rate is for the whole
distribution, and it therefore depends on the SFR and GRB evolution. We then can derive the
local GRB rate as a function of the observable N as
iGrBl_g _ N 1 1 Nl
<fbeam> Jthresh 47 Df’qu Gp(33 yr 968

which contains Eq. 1} Note that the value 968 comes from the volume term 47 D3, ~ 968 Gpc?.
Typical values for f, can be read off for different star formation and evolution models in Table

fthresh f 1 (BlO)

B.0.5 Cosmic ray injection and observation

The cosmic-ray injection rate Lcr(E,2) [GeV~r Mpc=3s7!] can be extrapolated from a single-
source isotropic emission spectrum dNFR /dE in the source frame [GeV~!] as
NG 1

ECR(Ev Z) = dE <fbeam>

‘ngrp(z) - (B.11)
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In order to see the origin of the beaming factor, consider one GRB which ejects cosmic rays at a
rate per volume Qpg(E) [GeV~tem™3s7!] in the shock rest frame. Then Eq. (B.11) changes to

L (B) -V T 1
L E _ *CR ( iso 790 | . ' B.12
CR( ) Z) T <fbeam> TlGRB(Z) ( )
N~—— comovingGRBrate

dNicsﬁ/dEsourceframe beamingcorr.

Here the first term corresponds to the total spectrum [GeV 1] released from the single GRB over
the duration Tg, and the next-to-last factor multiplies that times the number of GRBs per Mpc?
and year. The actual source volume is expressed by the “isotropic volume” of the burst [99]

L =4n RE-Ad =47 R: T -c-t,, (B.13)
where t, is the variability timescale in the source frame; for details see Refs. [99] [106]. Thus the
beaming factor in Eq. (B.12)) enters because energy and volume V. are computed by assuming
isotropic emission, whereas only a fraction ( fyeam) ! of that energy is actually emitted by the GRB.
In addition, note that Eq. (B.12) factorizes in an energy-dependent part and a redshift-dependent
part, as it is often assumed in the literature.

In order to address the UHECR connection, a frequently used approach is to use the local energy
injection rate between 10! and 102 GeV [I71], which can be obtained from Eq. (B.11)) as

1012 GeV _ 1012 GedeiSO
gll010%] _ / Ler(E,0) EJE = T‘S}ZB'?O / 5 ER EdE, (B.14)
eam
1010 GeV 1010 GeV

~~
_ [1010’1012]
=Ecg

which is again proportional to the local GRB rate. From Eq. (B.14), using Eq. (B.10)), we can
then derive Eq. (4.3).

B.0.6 Neutrinos and multi-messenger physics with GRBs

In order to include the neutrinos in the discussion, we have to take into account that they come
from photohadronic interactions, for which the proton and photon densities in the source are the
required input; see, e.g., Ref. [96]. Typically, the energy in protons is related to the energy in
electrons/photons by partition arguments, similar to the approach used in Refs. [91], 02], i.e.,

o0

dn, 1 TdN 1
/ T; EdFE = 7 T; ede = f*En/’iso y (B15)
0

where we compute it in the source frame for this discussion. Note that minimal and maximal
proton and photon energies are to be defined within dN,/dE and dN,/de, respectively. The
energy range of the gamma-rays is typically given by the instrument, such as Fermi GBM. The
energy range of the protons spans the whole proton spectrum, from the set minimal to the set
maximal energy, at least covering the energy range relevant for the neutrino production which is
different from that of the UHECRE] The factor f;! is commonly known as “baryonic loading”.

2The neutrino spectra peak at about ~ 1PeV due to secondary cooling [07], and come from ~ 10 PeV protons.
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Let us assume that a fraction for < 1 of the protons can escape from the source as cosmic rays

and define
1012 Gede 0o AN
= -'p -'p
Jbol = / 1B EdFE / / a5 EdFE (B.16)
1010 GeV 0

as the bolometric correction factor describing how much of the proton energy sits in the UHE
rangeﬂ This bolometric correction depends on the energy range of the proton spectrum, the
proton spectral index, and the maximal proton energy, and is for all practical applications < 1.
We can then derive from Eq. and Eq. the energy injected into UHECR from the
individual burst, Eq. .

In order to see the connection between gamma-rays, cosmic rays, and neutrinos including the
processes in the source, we rewrite Eq. (B.11)) using Eq. (B.10)):
dNgg N1
dE  fihresn 4m DL;)-[ f=
We can then write the injected energy in the UHECR range with Eq. (4.4) as
10'2 GeV
Lor(E,z) EAE = for -
1010 GeV
which shows the relationship to the gamma-ray observations.

Lcr(E,z) = H(z). (B.17)

fbol'E1 N 1

fe e fthresh 4 D?{ Iz

H(z), (B.18)

Since neutrinos do not interact, it is straightforward to define an injection function similar to that
of the cosmic rays as (cf., Eq. (B.11]))
dnN, 1

EV(E, z) = TEV . m . fLGRB(Z) s (B.lg)

where the neutrinos only suffer from energy losses due to the adiabatic expansion of the universe.
Note that the beaming factor can be interpreted in different ways here: either only the bursts
beamed in our direction can be seen (read in combination with first factor), or only a fraction
of the isotropic energy is actually injected (read in combination with last factor). In order to
connect with the physics of the sources, we assume here, for the sake of simplicity, that a fraction
f= of the proton energy goes into pion production (pion production efficiency [89, 2]), that 50% of
the pions produced in photohadronic interactions are charged pions, and each lepton in the pion
decay obtains about 25% of the pion energy. Then we have from Eq. with Eq. and
Eq. the injected energy into neutrinos

Ey max -
fo 1 N 1
LB, 2)EdE~2". B .. - H(2) . B.20
E/ ( ) 8 fe v Jthresh 47TD13L]fz ( ) ( )

Of course, this simple estimate does not take into account the energy dependence of the proton
interaction length and the normalization change from the cooling of secondaries [4], O8], which
we fully take into account in our numerical simulations, but it can serve as a first estimate. For
the gamma-rays, similar considerations can be made. However, it is straightforward to identify
the common scaling factors from Eq. using Eq. (B.10)). These considerations, including

Eqs. (B.18)) and (B.20)), are pictorially represented in Fig.

3Note that we take the UHE range in the source frame (in principle, the energy has to be higher in the source
frame to match the observed 10'° GeV), which is however similar to the observed UHE range because the mean free
path of the protons at 10*° GeV is only 1 Gpc, and therefore z < 0.25.




Appendix C

Details of the statistical analysis

Here we show the details of the statistical analysis that was used to produce the results presented
in chapter

We fit the UHECR proton flux generated by our propagation code (see Chapter to the surface ob-

servation data recorded by the Telescope Array (TA) [I56]. These consist of pairs (F;, (E3 JCR) iTA),

TA

i

/ - TA \ 2
(1) =Y (EiSJCR (B Je) = (B on), ) + <5E)2 , (C.1)

0 OE

with o; the uncertainty on (E3JCR) . We define a simple two-parameter y? function as

i

with the sum performed over the data points that have energies E; > 10'° GeV for the ankle
model and E; > 10° GeV for the dip model. When minimized, this function yields the value of the
normalization f, !, and the energy-scale displacement dg, defined so that E — E' = (1 +6g) E.
Since the (Gaussian) error bars on each TA flux data point 7 are asymmetric, we have chosen the
uncertainty o; for each to be the size of the upper bar, if, for given values of f, ! and dg, the
calculated flux EZ(3JCR (EZ’ fe 1) lies above the central value of the data point; otherwise, we have
equaled it to the size of the lower bar. For the systematic energy uncertainty of the TA experiment
we have used o = 0.21, following Ref. [244].

For the estimation of the number of expected neutrino events and the calculation of the limits,
we use a simple approach which folds the neutrino flux prediction with the parameters of the
measurement. The number of neutrino events #v is calculated as

#y:/dEJV(E)-AeH(E)ieXp-éLTr , (C.2)

where J,(E) is the neutrino flux as function of energy (in [GeV 'em™2s7!sr7!]), Aeg(E) the
energy-dependent effective area including Earth attenuation effects (in [cmﬂ ); texp the exposure
(in [s]), and 47 is the factor for the full solid angle (in [sr]). The standard 90% C.L. exclusion
limit by Feldman and Cousins for an arbitrary flux is obtained by choosing the normalization in
Eq. to obtain 2.44 events [245] (background-free case).

The differential limits in this study are given by

E

E2 T imit(E) =
vt (E) 2.3 Aefr - texp 41

(C.3)
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that is, a neutrino flux exactly following the differential limit over one order of magnitude in
energy will yield one event. The current limit for the prompt neutrino flux is based on the
model-independent solid angle-averaged effective area from the combined 1C40+-59 GRB stacking
analysis [92] with the exposure being estimated from comparing the 215 bursts of the combined
sample to the assumed 667 (long) bursts per year, i.e., texp, = 215/667 yr. For the cosmogenic
neutrinos, we calculate the current limit from the average effective area for a 4m-isotropic v, flux
during 615.9 days lifetime with the IC79 and IC86 configurations, given in Ref. [7]. Both of
these analyses are considered to be background-free, the stacking analysis because of timing and
directional information, the UHE analysis because of the cut in energy.

To calculate the extrapolated neutrino upper bounds after tey, = 15yr of full detector exposure,
for the prompt neutrinos we simply rescale the current bound by the factor 215/ (15-667), while
for the cosmogenic neutrinos we rescale the corresponding current bound by 615.9/ (15 - 365).



Appendix D

Algorithms for the dynamical GRB
model

In this appendix we include pseudocode descriptions of the algorithms used in the dynamical GRB
model introduced in chapter

Algorithm 1 Sample main program

Input parameters:
> Ngp: initial number of shells in the fireball

> Tmin: distance of the last shell (¢ = Ngp) to the emitter

> Tdec: maximum distance up to which shells are propagated, i.e., start of the external shock zone

> [: initial width with which a shell is emitted (I = cty)

> d: initial separation between consecutive shells (emitter frequency f = ¢/d)

> Ei5° . initial internal energy of an emitted shell

> I'p: characteristic Lorentz boost factor

> A: fluctuation of the Lorentz factor

> z: redshift of the emitter

> {ﬂ;on_ﬁ.} s A{tobs,k s {Tcon,k } s {Tcoll ks } {E;;‘{,bh,mn‘k} JAleon, ks {Mecon i}, {0te,x}: arrays in which the parameters
for each of the simulated collisions will be returned; respectively, collision time in the source frame, collision time
in the observer’s frame, collision radius, Lorentz factor of the merged shell created in the collision, internal en-
ergy of the merged shell, width of the merged shell, mass of the merged shell, emission timescale of the colli-
sion

1: EVOlveFireball(NSh7 Tmin, Tdec, lv d7 iirslg:)-shv Fo, A7 Z, {LtCOllyk}7 {tobs,k}7 {Tcoll,k}y {FCOUJC}’ { iirsl?—sh—coll,k}v
{leco,k }s {Meconi }s {0te,r})

2: // This will create a fireball with, initially, Nen identical shells of width I, separated by a distance d from each
other, each with internal energy FEiS . and a random Lorentz factor that follows a log-normal distribution.
The shells will propagate, collide, and merge, until either only one shell remains or until the shells are ordered
with increasing Lorentz factor. The resulting parameters of the simulated collisions will be stored in the arrays
{icull,k}y {tobs,k }s {rcot}s {Lcottic }s {Ef;i?,sh,cou,k}, {leotie}s {mecotrc}, {Ote i}
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Algorithm 2
EvolveFireball(Ngy, Tmin, Tdec, I, d ES0 . To, A, 2, {teomi}s {tobsi}ts {reomi}ts {Teollk},

{ iirsl(i?—sh—coll,k}7 {leolik }s {mconk}s {0tek})

Input parameters:
> Ngp: initial number of shells in the fireball
> Tmin: distance of the last shell (i = Ngp) to the emitter

A2 VAR VAR VAR VAR VAR V4

v

7
l:

d: initial separation between consecutive shells (emitter frequency f = ¢/d)

"dec: Maximum distance up to which shells are propagated, i.e., start of the external deceleration zone

initial width with which a shell is emitted (I = ct,)

0150 ¢ initial internal energy of an emitted shell
int-sh .

T'g: characteristic Lorentz boost factor
A: fluctuation of the Lorentz factor
z: redshift of the emitter

{{Coll,l\:} X {7‘,0])‘;);‘,,} , {7’(,011}'} X {Fcoll,kr} , {Eii;(ffsh—coll.k} , {[coll,k:} , {777m';11,k:} , {(51‘,(,‘;‘.}: arrays in which the parameters for

each of the simulated collisions will be returned; respectively, collision time in the source frame, collision time in the observer’s
frame, collision radius, Lorentz factor of the merged shell created in the collision, internal energy of the merged shell, width of
the merged shell, mass of the merged shell, emission timescale of the collision

1:
: Neow < 0 // number of collisions since t = 0
1 // Emit Ngy, identical shells to initialise the fireball — the arrays {rr}, {lx}, {Eiso }, {Tr}, {mx}, {Br} will store the

t+0

int-sh,k
shell parameters (see the definition of InitialiseFireball for details)

4: InitialiseFireball(Nun, ramins L d, B¢ s To, A, {rih (U {E5g g b ATk {mnd, {6e})

5: // Note that the shell index grows with proximity to the emitter; the shell closest to the emitter has i = Ngy

6: while Ny, > 1 and shells not ordered with increasing values of Lorentz factor do

7 // The next collision will occur at t + Al between shells icoy and iz + 1

8: {icoll,Af, Tcoll} < IndexTimeRadiusNextCollision(Ngn, {rx}, {lk}, {Bk})

9: for : =1 to Ny, do

10: 0« r;y // ausiliary variable

11: ri < +cBi At // before the collision, propagate each existing shell for At to its new position

12: // We do not consider shell width growth during propagation

13: if r; > rqec and ¢ # ico then

14: // Remove the shell if it has reached the external shock zone (if it is not a colliding shell)

15: EliminateShell(i, Ny, {r}, {1}, {E52. .} (D%}, {ma}. (8i))

16: Ngh ¢ Ngp — 1

17: end if

18: end for

19: // Only now perform the collision and merge the colliding shells

20: Nsh < Nsh —1

21: Neon « Neon +1

22: t—t+ At

231 {reon Tun, B gy s by o, Ot |
 ParametersOfMergedshell(icon, icon + 1, Teotts {ri} {li} {EiZ o bo ATk}, {mu} {8c})

24 tobs — (L (2) = Teon) /c+ 1t // time in observer’s frame; L (2) is the lookback distance to the emitter

25:  saveCollisiomData(Neoll, T, fobss Teoll, Dms Bisg s Ims Mm, Ote, {fconn}, {tobsk}s {rcomn}, {Teomr},
{Eiirslsc)—sh—coll,k}’ {leon i }s {mconk}, {0ter})

26: // Eliminate the inner shell that participated in the collision

27:  EliminateShell(icon + 1, Non, {r}, (s { B0 g bo Tk}, {ma}, {Be})

28: // Insert the new merged shell

29: InsertShell(iCOllv Tcolly lmyEiiIS)?_sh,m? L, {Tk}r {lk}v {Eiif,g_sh,k}v {Fk}7 {mk}7 {Bk})

30: end while

1 // Now find the burst with the lowest value of tops and set it to zero, since this will be the time at which the burst starts

to be observed.

: tobs,min <~ min({tobs,k})
: for i =1 to Neoip do

tobs,i <~ tobs,i - tobs,min

: end for
: sort the arrays {fcou,k }, {tobs,k }» {Tcoll,k }> {Tcoll,k }» {Eiifft’_sh_comk}, {lecont }, {Mcon,k }, {6te,r} in increasing order

of tops
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Algorithm 3
InitialiseFireball(Non, rmin, L dy E52 g Do, A, {rid, {1k, {500 b AT, i, {8:)

Input parameters:
> Ngn: initial number of shells in the fireball
> Tmin: distance of the last shell (i = Ngy) to the emitter
> I: initial width with which a shell is emitted (I = ct,)
> d: initial separation between consecutive shells (emitter frequency f = ¢/d)
> EiS° . initial internal energy of an emitted shell
> I'p: characteristic Lorentz boost factor
> A: fluctuation of the Lorentz factor
> {ri},{li} ,{ 1‘;‘{&,,1} AT}, {m:},{B:}: arrays of shell position, width, internal energy, Lorentz factor, mass,
speed
1: for i = Ng, to 1 do
2: T + LogNormalDistribution(I'o, A)
3: InsertShell(i, rmin + (Nsn —4) (I +d), I, iif;ct)-sh7 T, {T’C}7 {lk}7 {Eiirsx(t)-sh,k}v {Fk}v {mk}v {Bk})
4: end for

Algorithm 4 IndexTimeRadiusNextCollision(Ng, {7}, {li}, {Bi})

Input parameters:
> Ngn: current total number of shells in the fireball
> {ri},{li},{B:}: arrays of shell position, width, and speed
: fori=1to Ngy — 1 do
dijit1 < T3 — g1 — liv1 // separation between all consecutive pairs of shells

2o di,it1
Atz,z-}—l — C(5i+1—5i)

// collision time between all pairs

1
2
3
4: end for

5: // The next collision will occur between the pairs for which the collision time is shortest
6: deon argmin({Aﬂ-,H_l})

T AE — Aiicollaicoll+1

8 Teoll 4= Tigon+1 + Bicoy+1AE

9: return {icon, Af, rcou}

Algorithm 5 ElininateShell(j, N, {ri}, {1}, { Eit.. } (T}, {mi}, {6:)

int-sh,i

Input parameters:
> j: index of the shell that will be eliminated
> Ngn: current total number of shells in the fireball
> {ri}, {lLi}, {Ef;‘{,\‘h‘i} AT}, {mi},{Bi}: arrays of shell position, width, internal energy, Lorentz factor, mass,
speed
1: for i = j to Ng», do
2: T < Tit1
3 li .<— l¢+1
4 int-sh,i < Pint-sh,i+1
5: Fz‘ < Fz‘_»,_l
6: m; <— Mi+1
7 B+ Bit1
8: end for

Algorithm 6 LogNormalDistribution(I'g, A)
Input parameters:
> I'g: characteristic Lorentz boost factor
> A: fluctuation of the Lorentz factor

1: z < sample from P (z)dx = 6_22/2/\/ﬁdx // sample x from a Gaussian
2: T+ 14 (g — 1) e?® // distribution In (1}:;11) = Az

3: return T




148 D. Algorithms for the dynamical GRB model

Algorithm 7 InsertShell(j, r, [, ES . T, {r;}, {l;}, { fﬁ‘gshz}, {Ti}, {m;}, {Bi})

Input parameters:

> j: index of the new shell to be inserted

> 7: position at which the new shell will be inserted (r = 0 to emit a new shell, next to the emitter)

> [: initial width with which a shell is inserted (I = cty)

> Ei5° - initial internal energy of the inserted shell

> I': Lorentz boost factor of the shell

> {r:},{lL}, {b“:‘gsh,} AT}, {m:},{B:i}: arrays of shell position, width, internal energy, Lorentz factor, mass,
speed

1:rj<r

2: lj 1

3: iii(t)-sh,j < 1lrs)(t)sh

4: Fj T

5 my « Big g/ (Dic?)
6: B /1-T;?

Algorithm 8
SaveCollisionData(Neon, t, tobs, 7, I', EEC 0 1, m, Ote, {fconk}, {tobsik}ts {reoik}s {Teoik}s

{EiiISq(g-sh-coll,k}’ {leott i} {Meoltk ), {0ter})

Input parameters:
> Neon: current number of collisions since the start of the simulation
> 1, tobs, 7, I, FiS2 1, m, dt.: collision time in the source frame, collision time in the observer’s frame, collision radius,
Lorentz factor of the merged shell created in the collision, internal energy of the merged shell, width of the merged
shell, mass of the merged shell, emission timescale of the collision
> {fmn_k,} Atobs ke by {Tco ks {Tcot i } s {Eiiﬁ?_sh_m“)k} J{loonk} s {mecor,k } , {0te,x}: arrays in which the parameters
for each of the simulated collisions will be returned; respectively, collision time in the source frame, collision time
in the observer’s frame, collision radius, Lorentz factor of the merged shell created in the collision, internal en-
ergy of the merged shell, width of the merged shell, mass of the merged shell, emission timescale of the colli-
sion

1: tholl —t
tobs,NCO“ < tobs
Tcoll,Ngoyp = T
LPeon,Negy < T

iso iso
int-sh-coll,Ngoy; < Lint-sh

leon, Negy <1

Mecoll, N, —m

coll
Ote,N oy < Ote
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Algorithm 9
ParameterstMergedShell(2’, 75 Teolly NVsh, {Ti}7 {li}v { llrsl(f?shz}’ {Fi}v {mz}’ {/Bz})

Input parameters:

> 4, 7: indices of the shells that will be merged
> Teon: collision radius
> Ngn: current total number of shells in the fireball
> {ri}, {li} ,{ f;‘(,glm} AT}, {mi},{Bi}: arrays of shell position, width, internal energy, Lorentz factor, mass,
speed
1: if I'; > T'; then

2. 1< // r: rapid shell
3: s« j // s slow shell
4: else
5: rj
6: S+ 1
7: end if
8 I'm + % // Lorentz factor of the merged shell
9: iif,?_sh’m — (I = Th) myc? + (Ts —Tw) mec? // internal energy of the merged shell
10: Ty < Ty % // Lorentz factor of forward shock
11: Ty < T % // Lorentz factor of reverse shock
12: B, V1 -172
13: By« V1T,
14: Bgs + /1 = T2
15: Bes ¢ V1 -T2
16: Iy < Is %ffss__%’: + 1, %’:__gfs // width of merged shell
17: ny < my/ (47r7'3lr) // average proton densities of rapid and slow shells
18: ng < ms/ (4777"518)
19: nm  (nely + nsls) [lm // average proton density of the merged shell
20: Viso < 42yl // isotropic volume of the merged shell
21: mpm  nmViso // mass of merged shell
22: Ote C(Brl_irﬁrs) // emission timescale, i.e., time at which the reverse shock crosses the rapid shell
23: return {rcou,l"m, iif,‘f_sh,m,lm, mm,dte}
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Appendix E

Calculation of the pair creation
cut-off for photons

In our calculations, we also include a simple treatment of the pair creation cut-off in the photon
spectrum. As soon as the the photon energies extend beyond the threshold of 5’7 > b11keV, it
is possible that two photons of sufficient energy interact and produce an electron-positron pair.
Depending on the photon density, it is possible that these photon-photon interactions introduce
an additional cut-off in the spectrum of the escaping photons. This effect unfortunately introduces
a further subtlety in our treatment as the input spectrum in the calculations no longer is the same
as the escaping photon spectrum. In the next few paragraphs, we want to detail how we determine
the value of the cut-off and if it affects the photon spectrum.

The first step of this calculation consists of defining our input photon spectrum. For sake of
simplicity, we assume that all the photon spectra from the different collisions are identical in all
parameters apart from the normalization. The minimal photon energy is set to 0.2 eV, the maximal
photon energy is set to 1PeV (for numerical reasons; is assumed to be infinity), and the break
energy of the spectrum is set to 1keV; all of these energies are in the SRF. We assume that the
photon spectra follow a broken power-law in energy (simplified version of the Band function). The
spectral indices are assumed to be a, = 1 and 3, = 2. As stated before, the only difference in the
spectra is the normalization. The normalization is calculated from the properties of an individual
collision, i.e. we assume that the fraction of liberated energy in form of photons (with the value
of said energy given in the source frame) is distributed in the energy range of the Fermi GBM
instrument (from 0.2keV to 30 MeV in the observer’s frame). We, however, need the normalization
of the photon spectrum in the rest frame of the shock (SRF), hence need to correctly boost all
energies using the merged shell’s Lorentz factor I';,. We do not discuss if such a spectrum can
be obtained from the usual processes associated with non-thermal photon spectra. Conversely,
we invoke the heuristic argument that these kind of spectra are similar to the ones observed in
GRB observations. However, we additionally want to check what the maximal energy for the
escaping photons is when we account for pair creation on the input photon spectrum. We estimate
the optical thickness for yy-interactions 7., to the shell thickness ;,, to the interaction length for
yy-interactions I, ,,:
/
Tyym = l,li . (El)
¥v,m

While I, is known for all our collisions, we still need to calculate the interaction length /., for
the given photon spectrum. Based on the relativistic kinematics for each collision, see Ref. [246],
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we can calculate said (inverse) collision length as

+1

It (eh) = /de'7 . (€)) / dc;)sﬁ (1 —cosf) oy, (), cos0) (E.2)
0 1

where n;m is the photon spectrum released in a collision in [GeV_1 cm_3] (in SRF) and 0~ (zs/77 cos 9)
is the interaction cross section for photon-photon scattering (in [CIHQ]). For our calculation, we
will use an approximated version of the interaction cross section based on the approach by Gould

and Schréder [246],
oyy(s) ~3/807 -4 (mecz)2 /s [log (5/ (m602)2 — 1) - 1] , (E.3)

with the Thomson cross section o7 = 0.665 - 10724 cm?. Note that this approximation is valid for
energies high above the threshold s > 4 (m602)2 and is basically equivalen to the approximation

given by Baring [247] when using 2 = 1/s/ (mec2)?; for the full energy-dependent interaction
cross section, see Ref. [248]. With this simplification of the interact cross section and with the
assumption that the photon field is isotropic in the SRF, we can reduce Eq. to a single
integration. By substituting the integration over cosf into an inte%ration over the center-of-mass
energy s = 2¢ €; (1 — cosf) and using the threshold s > 4 (mec?)”, the calculation reduces to

3 n (6/) (meCQ)Z
=) = / de!, = gp . 2T - (mec?)?
w,m( t) 716 T 522 5/72 (mec”)

This equation can easily be implemented into a numerical code to calculate the photon-photon
interaction length for a given target photon energy ;. By scanning these target photon energies,
we can obtain the energy at which the optical thickness 7, ,, = 1. This is then considered to
be our cut-off energy due to pair creation in the escaping photon spectrum. In the plots
throughout this note, we use the energy values obtained by this method as E, max, the maximal
energy for escaping photons. Note that this is a different value from the maximal photon energy
of our input photon spectrum.

The problem with this calculation is that some of the collisions are still optically thick and the
aforementioned calculation gives unreasonably low values. In fact, all our calculations only apply
if we are in a regime beyond the photosphere. Subphotospheric processes cannot be described by
our approach and we need to ensure that we are beyond the photosphere. To obtain the correct
value for the photosphere of the mth collision, we need to check if it is possible for electrons
(or protons) to escape our mth shell without scattering off photons. Since the photon number
density is significantly higher than the number density of leptons or baryons, interactions among
the photons can lead to the production of several e*-pairs, see discussion in Ref. [249]. Following
said reference, we can infer that we have additional pairs, if the radiation compactness parameter
¢ > 1. The definition of the radiation compactness parameter is similar an optical thickness and
can be adapted from Ref. [249] for our calculations as

= Uy -0 o1 (E.5)

m

'The only difference is the —1 inside the logarithm, which improves the result at low energies significantly.
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Even though the calculation is a bit simplistic compared to the detailed calculation in Eq. ,
it is useful to estimate the total pair creation since ~y~v-interactions as well as py-interactions
can lead to pair creation. When a shell actually has such a radiation compactness ¢/, > 1, it
can be considered to be radiation-dominated and the number density of leptons n/, is enchanced
compared to the number density of protons n]’D. The maximal enhanced for this case is considered
to be nly =~ my, /(2me) -n;,. The other extreme case is the so called baryon-dominated plasma,
with ¢/ < 1 and n/, ~ n;. The latter relation is a consequence of charge conservation, as at least
the same number of electrons is needed to counter the proton charges in a neutral plasma. Hence,
with the e* density known, we can now calculate the photospheric interaction length l;h with the

simple formula
1

n!. or

bh = (E.6)

While the calculation in the baryon-dominated is straight forward, there is still some room for
interpretation in the radiation-dominated case
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Appendix F

Photodisintegration of nuclei

There is indirect evidence, coming especially from the Pierre Auger Observatory, that the com-
position of UHECRs becomes heavier towards the highest energies. It is not yet clear whether or
not it is possible for astrophysical accelerators to boost nuclei up to ~ 102 GeV, as nuclei will
inevitably interact with the photon field at the source and break up via photodisintegration, i.e.,
via the emission of one or more neutron or proton as a result of the interaction with the source
photons. Here we will calculate the maximum proton energy that the nuclei can reach when sub-
ject to photodisintegration, for our simulated bursts. For this, we will assume that the UHECRs
are entirely composed of the heaviest nuclei: iron, with Z = 26 and A = 56.

To calculate the photodisintegration interaction length for each simulated collision we will adapt
the formalism of appendix B in Ref. [06]. The interaction rate [s~!] in the SRF is then calculated

as
00

T, (E') = / 42 () f <El5l> , (F.1)

2E/ mp

where E’ and ¢’ are, respectively, the energy of the nucleus and of the photon in the SRF, and the
response function is defined as

1 2y /AN /
fy) = QyQ/Eéh de' €'oay (€') (F.2)

with y = E’¢’/m,, and o4, the photodisintegration cross section.

For the photodisintegration cross section, we choose not to follow the detailed, channel-by-channel
calculation in the literature developed by Puget, Stecker, and Bredekamp [250] and updated by
Stecker and Salamon [251]. Instead, we adopt the simpler expression for the total cross section, in
units of cm?, from Ref. [252] (the behaviour above &/ is adopted from Ref. [253]):

n _ | ocpr (&) el <& <éf
0 Ay (5) - { maX{UGDR (), 1072714/8} 7 8/1 < < ) (F.3)

max

where GDR (£’) is the approximation of the giant dipole resonance:

; (£A)°
oGDR (') =00 (4 F.4
(&)=l [ — e (4)]" + (4)° e
n3 C[0.925- 4248 A <4
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Figure F.1: Left: Photodisintegration cross section for helium nuclei (A = 4), neon nuclei (A = 20), and iron
nuclei (A = 56). Right: Response function f for the same three nuclei, calculated using Eq. (F.2).

00(A) =1.45-A4-1072" cm? . (F.6)

Below the threshold energy ¢}, , the cross section is taken to be zero. Even though the value of ef,
depends on the nuclide and on the particular emission process, as shown in Ref. [251], for simplicity
we have set it to a fixed value €}, = 2 MeV, following Ref. [250]. Note that single-nucleus emission
dominates below €| = 30 MeV, while double-nucleus emission dominates above ¢). Finally, we
have set the energy above which the cross section drops to zero to e, = 150 MeV [252, 250].
Fig. shows the variation with energy of the photodisintegration cross section and the response
function for helium nuclei (A = 4), neon nuclei (A = 20), and iron nuclei (4 = 56).

As usual, for the photon spectrum we assume a broken power law:

—a,
1yt / / /
(6 /E'y,break) ’ev,min <e < E'y,break

PN -8
n. (e')=C - v , F.7
v ( ) v (5//€£y,break> ’6/ > dy,break ( )
0 ,otherwise
where we have fixed oy =1, 3 =2, ¢l ; =0.2eV, 5’%break =1keV, &l .x = 1PeV, and C is the

normalisation constant, which varies for each collision of the simulated burst. For each collision,
we normalise the photon spectrum in the usual way (e.g., Egs. (13) and (15) in Ref. [106]), i.e.,

!
keV iso,m

10 Mev /AN / E'lyis—osh7m
/1 de” e'ny () = =" (F.8)
From our simulations, we have for each collision the following quantities, given in the source frame:
the energy output as photons, Eiysﬂshm; the collision radius, R.; and the width of the merged shell,
=E%, Tand V. = 47R2l, = 47 R%(Tly,).

lm. In the SRF, these quantities become Elyiiosh,m e shum som

From Eq. (F.8), we that the normalisation constant N, therefore has a I'~2 dependence.
The photodisintegration interaction length for each collision is given simply by
l;l%m = C/FA7 . (FQ)
As for pair creation (see appendix |[E]), we estimate the optical depth simply as
l/

Tasm = T (F.10)
Ay,m
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Figure F.2: Left: Photodisintegration interaction length for iron nuclei in a sample collision with fixed parameters
Es° = 10°! erg, l,, = 1500 km, I',, = 100, and two values of R.: 10°® km (black, solid line) and 10° km (red,

~v—sh,m
dashed line). Right: Optical depth for the same two collisions. The blue, dotted line shows where TE‘; =1.

Nuclei will be able to escape the source (provided no other energy-loss processes are present) as
long as 74,,m < 1. Therefore, we estimate the maximum energy of the nucleus, E{fax, as that for
which 74, (Ely) = 1.

Fig. shows the interaction length (left panel) and optical depth (right panel) as functions of
energy (in the SRF) for iron nuclei in a sample collision with fixed parameters ivsfshm = 10! erg,
I = 1500 km, T',,, = 100, and two values of R.: 10% km (black, solid line) and 10° km (red, dashed
line) nuclei. Notice that the interaction length scales as Iy, , ~ 1/T'ay ~ 1/C ~ Vil JE!
Since Vi, ,,, ~ R2l!,, the optical depth decreases with collision radius as 74 ~ E ! R?%, which
is consistent with Fig. the maximum energy increases with collision radius, since the photon
density is lower at larger radius. On the other hand, Fig. [F-2] shows that the optical depth first
rises with nucleus energy, up to a kink due the break in the photon spectrum; a plateau follows,
which continues up to a second break due to having reached the minimum photon energy available,
after which the optical depth falls with nucleus energy. In the collisions where photodisintegration
is relevant, the maximum nucleus energy EX¢_ will be determined by the first region of the optical
depth curve, where it is rising with nucleus energy.

In Fig. [F.3] we show the maximum nucleus energy in the presence of photodisintegration for fully-
ionised iron nuclei (A = 56, Z = 26), in the source frame, for the eight simulated bursts whose
parameters can be found in table For those collisions in which EF¢_ is photodisintegration-
limited (black dots), we see that indeed the maximum energy increases with collision radius,
as expected (see above for explanation). We have defined the fraction of collisions which are

photodisintegration-limited as fa,—1im and we show its value for each of the bursts.

Notice that it is predominantly the low-radii collisions that are photodisintegration-limited, since
the photon density is higher for these collisions: nuclei from collisions occurring at higher radii are
more liable to escape. The fraction fay—_iim rises with the value of the dispersion in the distribution
of the initial Lorentz factor of the shells: it is smallest for case C, which has the lowest dispersion
value (Ar = 0.2) and highest for case I, which has the largest dispersion (Ar = 2). This is to be
expected, since a higher value of Ar implies that shell speeds will be different enough for many
of them to catch up to each other and collide early on in the expansion of fireball, that is, at low
radii: clearly most of the collisions in case I occur at lower radii than in case C. Cases G, G’, and
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Parameter | C | D [ D [ G [ G [ G'" | H | 1
Fireball parameters
Nen 1000 [ 1000 | 1000 [ 1000 | 1000 | 1000 | 1000 [ 1000
ot [s] 0.01 | 0.01 | 001 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01
Ar 0.2 0.6 0.6 1.0 1.0 1.0 1.5 2.0
log (Ei5o 0/erg) | 52.84 | 51.94 | 51.92 | 51.60 | 51.59 | 51.67 | 51.43 | 51.35
I'o 300 | 300 | 300 | 300 | 500 | 1000 | 300 | 300
d/l 1 0.7 1 1 1 1 1 1
Simulation results
Neonn 911 [ 990 | 986 [ 996 | 990 [ 919 | 995 [ 996
Too [s] 60.18 | 51.18 | 58.91 | 55.55 | 58.85 | 52.55 | 55.80 | 54.74
ty [1072 g 6.60 | 517 | 5.97 | 558 | 594 | 572 | 5.61 | 5.50
log (EX° 01 /erg) 53 53 53 53 53 53 53 53
log (Ei5; /erg) 54.08 | 54.08 | 54.08 | 54.08 | 54.08 | 54.08 | 54.08 | 54.08
Expected results according to standard relations
log (RZY /km) 9.02 [ 885 [ 893 [ 877 | 9.21 | 9.86 | 872 | 8.87
log (Efifﬁd/erg) 50.04 | 50.00 | 50.01 | 50.00 | 50.00 | 50.04 | 50.00 | 50.00
rstd 204.5 | 264.7 | 266.3 | 222.1 | 368.6 | 778.6 | 209.3 | 248.3
554 1072 5] 6.00 | 510 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00
5% [g] 54.66 | 50.49 | 59.16 | 59.76 | 59.40 | 55.14 | 59.70 | 59.76

Table F.1: Parameters and simulation results for eight prototypical simulated bursts. In all cases,
we have fixed | = cdt, ry,, = 10° km, z = 2, rqec = 5.5-10'! km, ¢, = eg = 1/12, and ¢, = 5/6.

iso

The total initial kinetic energy of each burst is Eif] o - Nen.
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Figure F.3: Maximum energy, in the source frame, of Fe nuclei (4 = 56, Z = 26), for different simulated bursts.
Collisions in which the maximum energy is photodisintegration-limited are depicted as black dots; those limited by
synchrotron losses are depicted in blue; and those limited by adiabatic losses, in red. The fraction of collisions in

which the maximum energy is limited by photodisintegration is denoted as fay—iim-

G” all have a value of Ar =1 (considered to be necessary for the burst to be efficient), but differ
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on the mean value of the initial Lorentz factor distribution: I'g = 300, 500, and 1000, respectively.
Fig. shows that fa,—_iim is highest for G, lower for G’, and lowest for G”. The reason for this
is that, for G”, due to the high I'g = 1000, shells are able to travel much farther before colliding,
so that when they finally do collide, the photon density is low enough for the maximum nucleus
energy not to be photodisintegration-limited. For bursts G and G’, shells are slower and so more
of them collide at lower radii, where the photon density is higher.

All in all, it is clear that in a simulated burst with realistic parameters (Ar = 1, Ty = 300), a

sizeable fraction of nuclei will not be limited by photodisintegration and, if no other energy-process
intervenes, will be able to escape.
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