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Аннотация: путём применения геометрической конструкции лифта Эйзенхарта, позволяющего 

каждой механической системе тождественно сопоставить некоторое многообразие, к динамическим 

системам на плоскости с гармоническим потенциалом исследуется вопрос построения всевозможных 

pp-волновых решений вакуумных уравнений Эйнштейна, обладающих скрытыми симметриями, т.е. 

таких решений, которые допускают существование тензоров Киллинга. В частности, приводятся 

явные построения динамических систем, соответствующих Риччи-плоским решениям уравнений 

Эйнштейна с дополнительными линейными и квадратичными симметриями. 
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Abstract: а class of pp-type Ricci-flat spacetime admitting hidden symmetries is constructed and analyzed by 

using the Eisenhart lift. 

A class of pp-type Ricci-flat solutions of Einstein equations admitting hidden symmetries are constructed and 

analyzed by applying the geometrical framework of Eisenhart lift, that allows one to embed the equations of 

motion of classical dynamical system into the null geodesic equations of some manifold, to dynamical systems on 

plane with harmonic potential. In particular, the explicit constructions of Ricci-flat solutions of Einstein 

equations endowed with linear and quadratic symmetries are given. 
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Введение. 

В римановой геометрии преобразования симметрии (псевдо)риманового многообразия ( , )M g  

генерируются векторными полями Киллинга ( )B

Ay   , компоненты которых удовлетворяют 

уравнению Киллинга 
( ) 0A B   . Каждому векторному полю Киллинга можно сопоставить 

сохраняющуюся величину ( ) ( )B A

ABg y y y  для пробной частицы, движущейся по геодезическим 

траекториям Γ 0A A B C

BCy y y   на данном многообразии. Прямым обобщением понятия вектора 

Киллинга является тензор Киллинга -- полностью симметричное тензорное поле 
1

( )
kA AK y

 ранга k, 

удовлетворяющее уравнению 
1( ) 0

kA A AK   . Если (псевдо)риманово многообразие допускает 

существование тензора Киллинга, то уравнения геодезических обладают дополнительным интегралом 

движения k-го порядка по скоростям 
1

1( )
k

AA

k
A A

dydy
K y

d d 
  . В то время, как векторы Киллинга задают 

инфинитезимальные координатные преобразования, сохраняющие форму метрики, тот факт, что 

тензорам Киллинга не соответствуют никакие преобразования координат, связывают с наличием у 

рассматриваемого многообразия так называемых скрытых симметрий. 

Несмотря на активный поиск пространств со скрытыми симметриями, до недавнего времени не было 

известно примеров, допускающих неприводимый тензор Киллинга, кроме знаменитого примера 

геометрии черной дыры Керра [1], в котором наличие неприводимого тензора Киллинга второго ранга 

позволило разделить переменные и проинтегрировать уравнения геодезических, Гамильтона-Якоби, 

Шрёдингера, а также уравнения Клейна-Гордона-Фока и Дирака на таком искривлённом фоне. 



 

Используя лифт Эйзенхарта, в работах [2,3] были построены неприводимые тензоры Киллинга ранга 3 и 

4 на основе волчков Горячёва-Чаплыгина и Ковалевской, в работе [4] были построены тензоры Киллинга 

вплоть до ранга n в пространстве размерности n+2 на основе модели Калоджеро, а в работе [5] получены 

тензоры Киллинга вплоть до ранга n, ассоциированные с n-мерной цепочкой Тоды. Также в работах [6-8] 

были рассмотрены тензоры Киллинга высших рангов для моделей динамических систем во внешних 

векторных полях.  

Ключевым аспектов в данных работах было использование лифта Эйзенхарта [9,10] - 

геометрического подхода, в котором уравнения движения исходной механической системы с n 

степенями свободы вкладываются в уравнения геодезических (псевдо)риманова многообразия 

размерности d=n+2. Этот подход интересен в первую очередь тем, что открывает новый способ 

построения Риччи--плоских многообразий, допускающих неприводимые тензоры Киллинга. 

В частности, в недавней работе [11] были получены вакуумные решения уравнения Эйнштейна, 

допускающие тензоры Киллинга ранга 3 и 4, в пространствах ультрагиперболической сигнатуры (2,q) с 

q=2,3,4, а в [12] был построен новый класс (анти-)самодуальных Риччи--плоских многообразий 

ультрагиперболической сигнатуры, допускающих неприводимый тензор Киллинга второго ранга и 

обладающих максимально суперинтегрируемыми потоками геодезических. 

Целью настоящей работы является построение pp-волновыx решений вакуумных уравнений 

Эйнштейна лоренцевой сигнатуры со скрытыми симметриями в d=4. 

Для этой цели в части 1 приведены основные сведения о конструкции Эйзенхарта. Затем, в части 2, 

используя лифт Эйзенхарта, получены ограничения на вид Риччи--плоских решений. В части 3 

рассматриваются интегрируемые системы во внешнем векторном поле, а в части 4 интегрируемые 

системы с гармоническим потенциалом, которым, по средством лифта Эйзенхарта, сопоставляются 

решения вакуумных уравнений Эйнштейна. В Заключении сформулированы основные результаты, 

полученные в работе, и обсуждаются ее возможные обобщения. 

1. Лифт Эйзенхарта 

Лифт Эйзенхарта представляет собой один из методов геометризации динамических систем 

классической механики, в котором исходная механическая система, параметризованная координатами 
ix , и задается лагранжианом 

1
( , ) ( ) ( ) ( ) ,

2

i j i

ij iL x x g x x x U x A x x    (1)  

где 
ijg  есть метрика N-мерного конфигурационного многообразия сигнатуры (p,q), ( )U x  и 

( )iA x  - скалярный и векторный потенциалы, 1, ,i N  . Механическая система вкладывается в 

D=(N+2)-мерное многообразие ( , )ABM g  сигнатуры (p+1,q+1), с координатами { , , }A iy t s x  и 

метрический тензором 
2 2( ) ( ) 2 2 2 .A B i j i

AB ij id g y dy dy g x dx dx dtds Udt Adx dt       (2)  

Уравнения движения исходной динамической системы содержатся в уравнении светоподобных 

геодезических 

Γ 0, 0,A A B C A B

BC ABy y y g y y    (3)  

Здесь Γ ( )A

BC y  - символы Кристоффеля, построенные по метрике Эйзенхарта (1), ненулевые 

компоненты которых имеют вид 

( )

1
Γ ( ) , Γ ( ) ,

2

Γ ( ) , Γ ( ) ,

1
Γ ( ) , Γ ( ) Γ ( ),

2

s i s k

tt i it k i i

s i i

ij i j tt

i i i i

jt j jk jk

y A U y A F U

y A y U

y F y x

 

 

   

 

  

 (4)  

где F dA , Γ ( )i

jk x  -- символы Кристоффеля конфигурационного многообразия. Опускание, 

поднимание и свёртка индексов совершается посредством метрического тензора конфигурационного 

пространства ( )ijg x   

Выписывая в компонентах уравнения геодезических (3) 
2 2

2 2
Γ ( ) 0,

i i j j
i i i

jk j

d x dx dx d t dx dt
x U F

d d d d d d


     
     (5)  



 

 

, 2 ,i

i

dt ds
C U A x H const

d dt
       (6)  

заключаем, что первое уравнение совпадает с уравнением Эйлера-Лагранжа для исходной 

механической системы (1), C - произвольная константа, связывающая t с  , H - совпадает с полной 

энергией системы. Условие того, что геодезическая является светоподобной, имеет вид 

0.
ds

L
dt

   (7)  

Стоит отметить, что риманово многообразие M, построенное по метрике Эйзенхарта (2), можно 

интерпретировать как главное расслоение [10] над базой tE R  со структурной группой ( , )R   и 

слоями, диффеоморфными R . Восстановление уравнений движения исходной динамической системы 

можно представить как каноническую проекцию : ,где ( , , ) ( , )i i

tM E R s t x t x    , т.е. нуль-

редукцию вдоль орбит нулевого ковариантно постоянного вектора Киллинга s . 

Если исходная динамическая система (1), обладает интегралом движения ( , , )kI t x x , являющимся 

полиномом k-го порядка по скоростям, то в методе Эйзенхарта ему сопоставляется сохраняющаяся 

величина для уравнений геодезических (3) вида 

1

11
( , ) ( ) ( ) ,

! p

AA
pk

k k A A

dydydt
I y y I K y

d p d d  
    (8)  

откуда непосредственно извлекается тензор Киллинга 
1

( )
pA AK y . 

2. Риччи--плоские многообразия в методе Эйзенхарта 

Главной целью настоящей работы является построение пространств, допускающих тензоры Киллинга 

ранга 2 и доставляющих решения вакуумным уравнениям Эйнштейна 0ABR  .  

Для достижения этой цели можно рассмотреть введённую ранее метрику Эйзенхарта (2), 

построенную по механической системе вида (1) 
2 2( ) ( ) 2 2 2 .A B i j i

AB ij id g y dy dy g x dx dx dtds Udt Adx dt       (9)  

Для того чтобы она являлась решением вакуумных уравнений Эйнштейна, необходимо потребовать 

выполнение следующих условий на ненулевые компоненты тензора Риччи 

1
ln | ( ) | 0, 0,

4

1
( ln | ( ) | Γ ( )) 0,

2

i i ij

tt i i ij ij ij

k k k l

ti k i i k l ik

R U g x U F F R R

R F F g x F x

   

 

     

    

 (10)  

где ijR  тензор Риччи, построенный по метрике конфигурационного пространства ( )ijg x   

Простейшее решение этой системы можно получить, если рассматривать обычную классическую 

механику с ( )ij ijg x    

1
( , ),

2

i iL x x U x y   (11)  

для которой условия (11) сводятся к уравнению Лапласса 0.i iU     

Другой класс решений можно получить, рассматривая плоское конфигурационное пространство 

( )ij ijg x  . Тогда, соотношения на ненулевые компоненты тензора Риччи примут вид 

1 1
0, ( ) 0.

4 2

i ij k

tt i ij ti k iR U F F R F         (12)  

Так как 
ijF  имеет одну ненулевую компоненту в двумерном конфигурационном пространстве, то 

последнее уравнение легко интегрируется 
xyF F const  . Следовательно, любая механическая 

система во внешнем векторном поле 



 

1
( ) ( , ),

2

i i i

iL x x A x x U x y    (13)  

сопоставляется решению вакуумных уравнений Эйнштейна, если потенциал удовлетворяет 

уравнению Пуассона 
2

2
i i

F
U     (14)  

Таким образом, любая механическая система с гармоническим потенциалом (11), или система во 

внешнем векторном поле, потенциал которой удовлетворяет (14), при отображении Эйзенхарта 

позволяет построить решение вакуумных уравнений Эйнштейна лоренцевой сигнатуры 

2 2 2

1

2 ( ) 2 ( ) 2 .
n

i

i i

i

d U x dt dtds dx Adx dt


      (15)  

Решения подобного типа известны как pp--волны. 

3. Интегрируемые системы во внешнем векторном поле 

Рассмотрим механическую систему (13) во внешнем векторном поле, потенциал которой 

удовлетворяет уравнению Пуассона. Простейшие условия, при которых данной метрике сопоставляется 

вакуумное решение уравнений Эйнштейна: 

( , ) 0, 0.U x y F   (16)  

Из второго соотношения в (14) 
1 2y xA A  получим, что 1 xA f  и 

2 yA f , где ( , )f x y  

произвольная функция. Т.е. чистая калибровка. 

Переходя в гамильтонов формализм, можно найти, что такая тривиальная система обладает 2 

интегралами движения 

2 2

1 2

1 1
( ) ( )

2 2

, .

x x y y

x x y y

H p f p f

I p f I p f

   

   

 (17)  

Интересной особенностью данного решения является калибровочная инвариантность. 

Другой класс решений доставляется при непосредственном решении уравнения Пуассона (14) с 

точностью до произвольной гармонической функции ( , )u x y   

2
2( , ) ( ) ( , ).

8

F
U x y x y u x y


    (18)  

Выбирая компоненты векторного потенциала в виде 

1 2,x yA f A xF f    (19)  

и переходя в гамильтонов формализм, получим интегрируемую систему с калибровочной 

инвариантностью 
2

2 2 2

1

1 1
( ) ( ) ( ) ( , )

2 2 8

( ) ( )

x x y y

x x y y

F
H p f p f x y u x y

I p f p f xF

      

    

 (20)  

Заметим, что в случае отсутствия векторного поля, система (20) является суперинтегрируемой и 

добавлением квадратичного гармонического потенциала можно изменить коэффициенты при 
2x и 

2y на 

любые, наперед заданные, значения. 

К сожалению, подобрать условия, при которых система остаётся интегрируемой и при наличии 

внешнего векторного поля, не удалось. 

4. Интегрируемые системы с гармоническим потенциалом 

Рассмотрим механические системы, потенциал которых удовлетворяет уравнению Лаппласа. 

Переходя к комплексным координатам z x iy  , получим 

Δ ( , ) 0 0 ( , ) ( ) ( ),U x y U U z z u z v z        (21)  

Так как мы рассматриваем только вещественные потенциалы, то с необходимостью ( ) ( )v z u z .  

Лагранжиан динамической системы (11) в комплексных координатах примет вид 
˙

2 21 1
( ) ( , ) ( ) ( ).

2 2
L x y U x y L z z u z v z        (22)  

Совершая преобразования Лежандра, придём к гамильтониану 



 

2 ( ) ( ),H pp u z v z    (23)  

где импульс 
1

( )
2

x yp p ip  канонически сопряжен координате z . 

Выведем условия на потенциал ( )u z , при которых у системы (23) существует первый интеграл k-го 

порядка по импульсам, т.е.{ , } 0kI H  .  

4.1 Линейные интегралы движения 
Исследование начнем с линейного интеграла движения 

1 ( ) ( ) ,I A z p B z p   (24)  

где ( )A z  и ( )B z  некоторые аналитические функции. 

Из условий сохранения во времени получим систему 

0 0,z z z zA B Au Bv     (25)  

которая, учитывая ( ) ( )B z A z  , легко интегрируется. Таким образом, помимо 1u z , получим 

потенциал 
2 2

1( ) ( ) ( , ) ( ).u z ln z U x y ln x y      (26)  

Интеграл движения перепишется в следующем виде 

1 ( )y xI zp zp i xp yp      (27)  

Заметим, что последний потенциал является фундаментальным решением уравнения Лапласа. 

4.2. Квадратичные интегралы движения 

Перейдём к рассмотрению квадратичному по скоростям интегралу движения 
2 2

2 ( ) ( ) ( , ) ( , ),I A z p B z p C z z pp D z z     (28)  

где ( )A z , ( )B z , ( , )C z z , ( , )D z z  функции, подлежащие определению. Требуя, чтобы 𝐼2 являлся 

сохраняющейся во времени величиной, получим систему линейных дифференциальных уравнений в 

частных производных 

0, 0,

2 2 , 2 2 .

z z z z

z z z z z z

A C B C

D Bv Cu D Au Cv

   

   
 (29)  

Решая условие совместности для уравнений последних уравнений в (29), получим 

2( ) 2( ) ,z z z z z z z zBv C u Au C v    (30)  

Заменяя 𝐶𝑧 и 𝐶𝑧 из (29), получим систему обыкновенных дифференциальных уравнений 

3 2 3 2 ,z z zz z z zzA u Au B v Bv     (31)  

где   некоторая константа. 

Принимая во внимание, что
2

1 2 3( ) ( )A z B z a z a z a    , получим общее решение в виде 

3

2

( )
2( ) ,

( ( ))

z A z dz C

u z dz

A z







  (32)  

где C  - константа интегрирования.  

Таким образом, полагая поочерёдно равными нулю константы ia , получим помимо уже известных 1u  

и 1u , ещё 3 потенциала, имеющих нормальную вещественную форму: 



 

2 2 2

2

2 2 2 2 2 2

2

2 2

2 2 2 2 2

2 2
2 2

2 2 2

2 2

2 2 2

2

( , ) ( ),

4 2( 2 ( ))

( , ) ,
( )

2 ( )
( ) ( ) ( ) ,

( , ) ,

( )( ) ( )( ) (
2

x y

y x

y

u z U x y x y

I p p zz p p x y

x y
u U x y

z x y

z z x y
I zp zp xp yp

z z x y

x x y
U x y

z x y

I p p zp pz z z z z p x
zz

u

 

 












   

      


  




       



 
  



       

2 2

2 2
) .y x

x y x
p yp y

x y


 
 



 (33)  

Отметим, что все эти системы являются суперинтегрируемыми. 

4.3. Кубичные интегралы движения 

Перейдём к изучению систем, обладающих интегралами движения 3 порядка по импульсам 

𝐼3 = 𝐴(𝑧)𝑝3 + 𝐵(𝑧)𝑝
3
+ 𝐶(𝑧, 𝑧)𝑝2𝑝 + 𝐷(𝑧, 𝑧)𝑝𝑝

2
+ 𝐸(𝑧, 𝑧)𝑝 + 𝐹(𝑧, 𝑧)𝑝, (34)  

 

где функции 𝐴(𝑧), ( )B z , ( , )C z z , ( , )D z z , ( , )E z z  и ( , )F z z  подлежат определению.  

Из условия сохранения 3I  во времени, получаем систему уравнений 

0, 0, 0,

2 3 , 2 3 ,

, 0.

z z z z z z

z z z z z z

z z z z z z

A C B D C D

E Au Cv F Bv Du

E F Cu Dv Eu Fv

     

   

    

 (35)  

Прежде чем решать систему, посчитаем, какое возможно максимальное число различных интегралов 

3-го порядка. Решая систему (35) и учитывая, что ( ) ( )B z A z  , получим 6 различных констант, 

полагая поочерёдно все кроме одной равными нулю, будем иметь 6 различных интегралом 3 порядка 

(возможно приводимых). Далее, учитывая системы первого порядка 1u  и 1u , их приводимые 

комбинации интегралов движения 
3

1I , 
3

1I , 1 1( )I H u  и 
1 1( )I H u , получим, что можно понизить число 

различных интегралом до 2.  

Заключение 

В данной работе были изучены pp-волновые решения вакуумных решений уравнений Эйнштейна, 

обладающих скрытыми симметриями. Были явно построены и проанализированы решения, 

допускающие существование неприводимых тензоров Киллинга ранга 2. 

В качестве возможного развития данной работы представляет интерес подробное исследование 

решения 2 2
u

z


  из (33), которое помимо суперинтегрируемости обладает так же конформной 

инвариантностью. 

С физической точки зрения основной интерес для дальнейшего изучения представляет построение 

интегрируемых систем на плоскости, описываемых гармоническим потенциалом и обладающих 

интегралом движения третьего (или выше) порядка по скоростям, а так же их возможная классификация. 

 

Работа поддержана грантом Президента РФ МК-2101.2017.2. 

 

Список литературы / References 

 

1. Kerr R. Gravitational field of a spinning mass as an example of algebraically special metrics // Physical 

Review Letters. 1963. V. 11. P. 237-238. 

2. Gibbons G.W., Houri T., Kubiznak D., Warnick C. Some spacetimes with higher rank Killing--Stackel 

tensors // Physics Letters B., 2011. V. 700. P. 68. arXiv:1103.5366. 



 

3. Gibbons G.W., Rugina C. Goryachev--Chaplygin, Kovalevskaya, and Brdi\v{c}ka--Eardley--Nappi--Witten 

pp--waves spacetimes with higher rank St\"ackel--Killing tensors // Journal of Mathematical Physics., 2011. 

V. 52. P. 122901. arXiv:1107.5987. 

4. Galajinsky A. Higher rank Killing tensors and Calogero model // Physical Review D., 2012. V. 85. P. 

085002. arXiv:1201.3085. 

5. Cariglia M., Gibbons G.W. Generalised Eisenhart lift of the Toda chain // Journal of Mathematical Physics., 

2014. V. 55. P. 022701. arXiv:1312.2019. 

6. Visinescu M. Higher order first integrals, Killing tensors and Killing-Maxwell system // Journal of Physics: 

Conference Series., 2012. V. 343. P. 012126. 

7. Cariglia M. Hidden symmetries of Eisenhart-Duval lift metrics and the Dirac equation with flux // Physical 

Review D., 2012. V. 86. P. 084050.  

8. Cariglia M., Gibbons G.W., van Holten J.W., Horv\'athy P.A., Kosinski P., Zhang P.M. Killing tensors and 

canonical geometry // Classical and Quantum Gravity, 2014. V. 31. P. 125001. arXiv:1401.8195. 

9. Eisenhart L. Dynamical trajectories and geodesics // Annals of Mathematics, 1929. V. 30. P. 591. 

10. Minguzzi E. Eisenhart's theorem and the causal simplicity of Eisenhart's spacetime // Classical and Quantum 

Gravity, 2007. V. 24. P. 2781. arXiv:gr-qc/0612014. 

11. Galajinsky A. Ricci-flat spacetimes admitting higher rank Killing tensors // Physics Letters B., 2015. V. 744. 

P. 320. arXiv:1503.02162v1. 

12. Filyukov S., Galajinsky A. Self-dual metrics with maximally superintegrable geodesic flows // Physical 

Review D., 2015 V. 91 P. 10. arXiv:1504.03826v1. 

13. Carter B. Global structure of the Kerr family of gravitational fields // Physical Review. 1968. V. 174. P. 

1559-1571. 

14. Duval C., Gibbons G.W., Horv\'athy P.A. Celestial Mechanics, Conformal Structures, and Gravitational 

Waves // Physical Review D., 1991. V. 43. P. 3907. arXiv:hep-th/0512188v1. 

15. Santillan O. P. Killing-Yano tensors and some applications // Journal of Mathematical Physics, 2012. V. 53. 

P. 043509. arXiv:1108.0149v2. 

16. Cariglia M. Hidden symmetries of dynamics in classical and quantum physics // Reviews of Modern Physics, 

2014. V. 86. P. 1283. arXiv:1411.1262. 

17. Prince G.E., Eliezer C.J. On the Lie symmetries of the classical Kepler problem // Journal of Physics A: 

Mathematical and General, 1981. V. 14. P. 587-596. 


