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RESUMEN

Los campos magnéticos intensos de magnitud v/eB > Agcp pueden ser relevantes para
una serie de escenarios fisicos. Dichos campos logran resolver la estructura de quarks de
un hadrén, modificando significativamente las propiedades de la materia que interactia
fuertemente. En esta tesis empleamos un modelo efectivo de quarks para investigar el efecto
que un campo magnético uniforme externo tiene sobre las propiedades de los hadrones méas
ligeros, es decir, los mesones pseudoescalares y los nucleones. Especificamente, utilizamos
un modelo tipo Nambu-Jona-Lasinio (NJL), en el cual la interaccién entre quarks es local
preservando la simetria quiral. Para el andlisis de las particulas cargadas, presentamos
un método basado en el uso de autofunciones tipo Ritus para sistemas magnetizados que
nos permite tener completamente en cuenta los efectos debidos a la presencia de fases de
Schwinger no nulas que han sido usualmente desestimadas en la literatura. Para regularizar
el modelo utilizamos un esquema en el cual sélo las contribuciones que no dependen
explicitamente del campo son regularizadas. Esto permite evitar ciertos inconvenientes
que aparecen en otro tipo de esquemas alternativos. Ademas, exploramos la posibilidad
de incorporar el efecto de catalisis magnética inversa mediante el uso de un acoplamiento
dependiente del campo magnético. Dentro de este marco, nos centramos en la dependencia
con el campo magnético de las masas del nonete de mesones pseudoescalares asi como de los
nucleones, donde estos ltimos se construyen como estados ligados quark-diquark. Otras
propiedades de los piones también son calculadas, como los acoplamientos quark-pion,
las velocidades transversales y las constantes de decaimiento, lo que permite estimar el
ancho de decaimiento de los piones cargados magnetizados. El decaimiento se analiza en
términos generales mediante el método de Ritus, donde mostramos que aparecen cuatro
factores de forma independientes al hadronizar las corrientes de quarks. Ademaés revelamos
que, en presencia de campo magnéticos muy intensos, el mecanismo de supresion de
helicidad esta ausente, y que la distribucion angular de las particulas salientes es altamente
anisotropica. El método de Ritus y otras estrategias presentadas en este trabajo para
tratar sistemas magnetizados representan una herramienta 1util que puede aplicarse al

calculo de propiedades de particulas cargadas a través de diferentes enfoques.
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ABSTRACT

Strong magnetic fields of magnitude veB > Agcp may be relevant for a range of physical
scenarios. Such fields can resolve the quark structure of an hadron, significantly modifying
the properties of strongly interacting matter. In this thesis we employ an effective quark
model to investigate the effect that an external uniform magnetic field has on the properties
of the lightest hadrons, i.e. pseudoscalar mesons and nucleons. Specifically, we use a
Nambu—Jona-Lasinio (NJL) type model, in which the interaction between quarks is local
while preserving chiral symmetry. For the analysis of charged particles, we present a
method based on the use of Ritus-type eigenfunctions for magnetized systems which allow
us to fully account for the effects due to the presence of Schwinger phases that have been
usually disregarded in the literature. To regularize the model we use a scheme in which
only the contributions that do not depend explicitly on the field are regularized. This
allows us to avoid certain drawbacks that appear in other types of alternative schemes. In
addition, we explore the possibility of incorporating the inverse magnetic catalysis effect
through the use of a magnetic field dependent coupling. Within this framework, we focus
on the magnetic field dependence of the masses of the nonet of pseudoscalar mesons as well
as nucleons, where the latter are constructed as bound quark-diquark states. Other pions
properties, such as quark-pion couplings, transverse velocities and decay constants, are
also calculated, allowing for an estimation of the decay width of magnetized charged pions.
The decay is analyzed on general grounds via the Ritus method, where we show that four
independent form factors appear when hadronizing quark currents. We further reveal
that, in the presence of a very strong magnetic field, the helicity suppression mechanism
is absent, and the angular distribution of outgoing particles is highly anisotropic. The
Ritus method and other strategies presented in this work to deal with magnetized systems
represent, a useful tool that can be applied to the calculation of charged particle properties

across different approaches.

Keywords: QCD. Magnetic field. NJL model.
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CHAPTER

Introduction

1.1 Quantum chromodynamics

The theory which describes the strong interactions within the framework of the Standard
Model is known as quantum chromodynamics (QCD). It was established as such several
decades ago, recognizing quarks as the primary constituents of hadrons and gluons as the
mediators of the interaction [1-3]. In this formulation, quarks and gluons possess a property
known as “color charge”, analogous to the electric charge of quantum electrodynamics
(QED), which is responsible for strong interactions. The strength of the interaction
is measured by g,, the dimensionless coupling constant of the theory. However, upon
quantization, logarithmic divergences in one-loop diagrams of perturbation theory imply
that this “constant” actually depends on the typical energy scale u of the processes under
consideration, called the renormalization group scale. This running of the coupling is
specified by the beta-function of the renormalization group. The self-interaction between
gluons dramatically modifies the running of the QCD coupling o, = ¢2/(47), as compared
to QED. For high energies the coupling weakens (a; — 0) and quarks and gluons form
(nearly) free states, a property dubbed as asymptotic freedom [4, 5]. On the other hand,
perturbation theory suggests that for low energy processes oy — 00. Experience indicates
that, under ordinary conditions of temperature and density, say T < 200 MeV and
p < 350 MeV [6], hadrons are the relevant degrees of freedom. This implies that QCD
matter must necessarily glue together in such a way as to form color singlet bound states
whose net color charge is zero, a phenomenon dubbed as (color) confinement. The value of
(o which separates these two regimes is known as the QCD scale Aqcp. For scale energies

below the charm quark mass p < 1.25 GeV, where only the three lightest flavors are active,
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we have Aqcp ~ 300 MeV. The process by which a dimensionless constant such as g, is

replaced by a dimensionful one such as Aqcp is called dimensional transmutation.

1.2 QCD matter under extreme conditions

Shortly after the advent of QCD, it was conjectured that at sufficiently high temperatures
and/or densities states of matter known by the generic name of quark-gluon plasma (QGP)
can form, which are characterized by color deconfinement and where quarks and gluons
are the dominant degrees of freedom [7-9]. This prompted the theoretical study of the
possible phases of QCD under such extreme conditions and revealed a potentially complex
phase structure [10, 11]. In fact, the study of the QCD phase diagram continues to
present a theoretical and experimental challenge to this day [12]. A schematic view in the

temperature and baryon chemical potential g plane is depicted in Figure 1.1.
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Figure 1.1: Schematic view of the QCD phase diagram at finite temperature and chemical
potential (density). Figure from Ref. [10].

The transition between different phases is signaled by critical behavior often associated
with the spontaneous breaking of a global symmetry [13]. The order parameter is the
quantity that establishes the state of a symmetry: it vanishes when the system shares the
symmetry of the Lagrangian and becomes nonzero when the symmetry is spontaneously
broken. In order to properly characterize these phases, it is necessary to study the
symmetry properties of the theory under groups of unitary transformations acting on the

internal degrees of freedom of the theory. The QCD Lagrangian is by construction invariant
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under the SU(3). color group. For massless quarks, it is also invariant under the flavor
chiral group, which can be decomposed into vector and axial groups as U(Ny)r x U(Ny), =
U(l)y x SU(Ny)y x U(1)4 x SU(Ny) 4. Here Ny is the number of flavors: for full QCD,
Ny = 6. For massive quarks, chiral symmetry is broken. Nonetheless, it is approximately
conserved in the light quark sector. In the vacuum state of QCD, the axial symmetry is
broken due to interactions, even for massless quarks. Thus, chiral symmetry is broken
and an effective mass for the quarks is dynamically generated [14]. The order parameter
that characterizes this spontaneous breaking is the chiral condensate (y1)). In fact,
this breaking is responsible for most of the nucleon mass, while the corresponding light
Goldstone bosons [15] are identified with the pions. These dynamical effects are of great
importance in the study of the QCD phase diagram, since there are indications that
this symmetry is restored in the QGP phase. At the phase transition thermodynamic
quantities change characteristically, all related to an anomaly in the pressure. Fluctuations
of conserved quantities, such as baryon, electric charge and strangeness number, are
sensitive observables in relativistic heavy-ion collisions to probe the QCD phase transition.
Furthermore, experimental and theoretical evidence leads to the assumption that the phase
transitions of deconfinement and chiral symmetry restoration occur virtually simultaneously
at low densities [16-18]. However, the exact mechanism that gives rise to this simultaneous
transition is not yet fully understood quantitatively.

The formation of the QGP involves high energy processes, which can only happen
under extreme conditions. These conditions are difficult to produce, leaving few physical
situations for experimental study. One of the natural scenarios where deconfined QCD
phases are believed to be realized is in the hot early Universe, corresponding to the
region of low densities and high temperatures in the phase diagram. According to the hot
big bang model, the early Universe has experienced (at least) two epochs where phase
transitions could occur: the electroweak transition at temperatures around Tgw ~ 100 GeV,
when fermions and gauge bosons became massive particles, and the QCD pseudo-critical
transition 7, when quarks confined into hadrons. From lattice QCD (LQCD) simulations,
the QCD transition is expected to be a smooth crossover at around 7T, ~ 156 MeV [19—
22]. However, there are some known mechanisms that could provide a first order QCD
transition, see e.g. [23-25]. Another natural scenario corresponds to the cores of so-called
compact stars [26, 27]. These neutron stars are extremely stable and dense objects,
which constitute one of the possible final scenarios in the life cycle of a star. In them,
the density is large enough to form color superconducting states, corresponding to the
region of high densities and low temperatures in the phase diagram. At asymptotically
large chemical potentials and small temperatures, where perturbative QCD is applicable

due to asymptotic freedom, 3-flavor QCD matter is in the so-called color-flavor-locked
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phase [28-30]. In this regime chiral symmetry is broken, and the transition temperature
to quark matter is found to be first order [31, 32]. At intermediate densities, including
those relevant for astrophysics environments, alternative phases proposed in the literature
include two-flavor color superconductors, noncolor-flavor-locked mixed phases, crystalline
color superconductivity, kaon condensation, gluonic phases, superfluidity, gapless and
inhomogeneous phases, see Refs. [6, 33-35] for more details.

As for human-made scenarios, several heavy ion accelerators have been built in the
last decades, in which experiments are carried out to reach the phases corresponding to
high temperatures and densities in the QCD phase diagram [36, 37]. Large experimental
programs have been carried out at the Relativistic Heavy Ion Collider (RHIC) [38, 39] at
the BNL laboratory and at the Large Hadron Collider (LHC) [40] under ALICE, ATLAS
and CMS experiments as well as the Super Proton Synchrotron (SPS) at CERN. In this
type of accelerators, the objective is to collide heavy ions such as lead, silver or gold at
center-of-mass energies on the order of 100—200 GeV or more. Extremely high temperatures
are reached during the collision process, above the critical deconfinement temperature
T. [38]. This suggest that a transient QGP is possibly formed, which hadronizes when
cooled down. Outcoming particles from the collision carry indirect information about the
QGP. Present results suggest that QGP has managed to form for time periods on the
order of 10 fm/c [41, 42].

Contrary to original expectations, QGP is not a weakly coupled plasma. It is in fact
strongly coupled and near-perfect liquid, with specific viscosity 1/s value close to 1/47 [36,
43]. Interestingly, the AdS/CFT duality between infinitely strongly coupled gauge theories
(cousins of QCD) and gravitational descriptions has led to the conjecture that for any
relativistic quantum field theory, n/s > 1/47 [44]. The similarity between both results
lends credibility to the idea that holography can provide meaningful insights into QCD.
Due to the assumption of infinite coupling strength in the holographic computation, the
ideal fluid behavior of the QGP has been interpreted as signaling a strongly interacting
system, also supported by the fact that the value of 7/s obtained for a gas of quarks
and gluons in a weak coupling regime is an order of magnitude larger. Despite its short
duration, the QGP exhibits thermodynamic equilibrium properties, further giving evidence
confirming the hypothesis that the phase transition between the hadronic and QGP phases
is of the crossover type [45]. The conditions produced in current heavy ion accelerators
correspond essentially to the vertical axis of the phase diagram, i.e. at low chemical
potentials. The quark-hadron crossover transition observed in this regime is expected to
change into a first order transition for higher pp, with a second order critical endpoint
(CEP) in between. The position of the CEP has been extensively studied within different

theoretical frameworks (see e.g. Refs. [46-49]) and explored in current accelerators [39, 50].
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In fact, its search is one of the benchmarks for future experiments at the Nuclotron-based
Ion Collider fAcility (NICA), the Facility for Antiproton and Ion Research (FAIR) and
the Japan Proton Accelerator Research Complex (J-PARC), where higher densities can be
reached.

While initially the phase diagram was investigated taking density and temperature as
variables, in the last decade there has been greatly increased interest in the presence of
strong (electro)magnetic fields and their effects [51-53]. Even though the electromagnetic
coupling constant e is much smaller than the strong coupling constant g, electromagnetism
can be relevant for QCD physics if the field strength is so strong that veE, veB ~ Agep.
Such intense electromagnetic fields appear in many of the aforementioned physical scenarios.
Several models predict the generation of strong magnetic fields during the early evolution
of the Universe, which are required by present day observations of weak but nonvanishing
intergalactic magnetic fields. Such strong fields could have modified the nature of the
electroweak phase transition, and their effect could have left traces in certain anisotropies
of the cosmic microwave background [54, 55]. On the other hand, at the surface of
certain compact stars called ‘magnetars’, magnetic fields can reach values of the order
10 G [56-58], increasing by a few orders of magnitude to 10'® — 10?*° G towards the
core [59-62]. See Ref. [63] for a current magnetar catalog and also Ref. [64] for a recent
review. The effect of magnetic fields on dense quark matter is also reviewed in Ref. [65].
Regarding human-made scenarios, in the last decade it has been observed that in heavy
ion collisions (HIC) the motion of charged spectator particles produces magnetic fields of
magnitudes as large as 102 — 10%° G [66-70]. Although these fields occur essentially at
the initial moments of the collision and decay rapidly, at times on the order of 1072 s [67],
they could substantially affect the way the QGP hadronizes [51, 71]. Lastly, magnetic
fields are also relevant to quasi-relativistic condensed matter systems like graphene [52].

The phase diagram of QCD in the three-dimensional (u, T, B) space has been studied
within several approaches. While the temperature axis can be directly addressed on the
lattice, for finite chemical potentials the so-called sign problem hinders density studies,
which have been performed mainly through effective models or holographic approaches.
Interestingly, while the majority of effective models predict the increase of the pseudocritical
transition temperature T, with the magnetic field [52, 53], accurate LCQD results [73-76]
have shown the opposite pattern, i.e. a decrease of T, with the magnetic field. In fact,
as shown in Refs. [72, 77], this behavior is prolonged for very strong magnetic fields,
where a first order transition was found at eB = 9 GeV?, implying the existence of a
critical end-point somewhere within the range 4 GeV? < eB < 9 GeV2. An updated QCD
phase diagram in the temperature and magnetic field plane can be found in Figure 1.2, as
proposed by Ref. [72].
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Figure 1.2: QCD phase diagram at finite temperature and magnetic field. The (pseudo)critical
temperature decreases as function of B, and the transition switches from a crossover to first
order at a critical end point located in the range 4 GeV? < eBg < 9 GeV2. Figure from Ref. [72].

1.3 Magnetic field effects on QCD matter

It is expected that new detectable effects will emerge in the phase diagram and properties
of strongly interacting matter due to these extreme magnetic fields, causing numerous
phenomenological consequences [52]. These include magnetic catalysis (MC) of the
chiral condensate [52, 78|; inverse magnetic catalysis (IMC) of the restoring chiral and
deconfinement temperature [73, 74, 79, 80]; chiral magnetic effect [66, 81, 82]; chiral
separation effect [83, 84]; chiral magnetic waves [85-89]; vacuum superconductivity [90,
91], as well as many other effects on the properties of the resulting particles that are
detected after collisions [71, 92, 93], to name a few. In addition to its importance for the
phenomenology of the above-mentioned physical scenarios, magnetic fields also of academic
interest on its own because they serve as a probe of the theory of strongly interacting
matter. In particular, a comparison between LQCD and effective model results in the
presence of external electromagnetic fields allow for a constraint of the latter, acquiring a
better understanding of the underlying theory.

For the scope of this thesis, which involves the analysis of light hadron properties, it
will be relevant to discuss in some detail the MC and IMC effects. The term magnetic
catalysis refers to either the enhancement of an existing condensate or the appearance of a
new condensate by the presence of an external magnetic field. In QCD, the generation of
the chiral condensate (1;1/}) breaks in turn chiral symmetry, generating a dynamical mass.
The MC effect was first found in the framework of the NJL [94, 95] and Gross-Neveu
model [96, 97]. The basic idea behind MC is that (¢¢)) can be thought of as a condensate
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of neutral spin-zero fermion-antifermion pairs. Since the magnetic moments of the fermion
(with a fixed charge and spin) and the antifermion (with the opposite charge and spin)
point in the same direction, both magnetic moments can comfortably align along the
magnetic field direction [78].

On more technical grounds, the mechanism behind MC effect was discussed in Refs [98—
100], see Ref. [52] for a more general review. The key point revealed in those references
is that the magnetic field enhances the pairing between fermions and antifermions in
the infrared region, since the dynamics of the pairing is reduced to (1 + 1)-dimensional
dynamics. This is connected to the fact that, in the presence of an uniform magnetic field,
the transverse momentum of free fermions is quantized into discrete numbers, known as
Landau levels (LLs). For the particular case of weak coupling and/or strong magnetic fields,
the connection is explicit; the pairing dynamics is dominated by fermions in the lowest
Landau level (LLL), which are also subject to the dimensional reduction D — D —2. As a
consequence of the pairing, a dynamical mass is generated (mostly in the infrared region)
even at the weakest attractive interaction between fermions, which spontaneously breaks
chiral symmetry and enhances the chiral condensate. The underlying physics of infrared
dynamics becoming stronger because of dimensional reduction is universal, as known from
the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity [101, 102]. In fact, the
mechanism of dimensional reduction was proven at asymptotically strong magnetic fields
eB > A2QC p» Where QCD can be studied rigorously from first-principles [103], obtaining
MC. Moreover, the MC effect has been reproduced across many different approaches such
as QCD effective models, LQCD, QED, holographic approaches and condensed matter
systems [52, 53, 78].

At finite temperature and moderately strong magnetic fields veB 2> Agep, a new
unexpected behavior was discovered by LQCD [73] for temperatures around T, consisting
in a decrease, rather than increase, of the quark condensate with B. This phenomenon, not
foreseen by effective models, was dubbed as inverse magnetic catalysis. The full mechanism
behind IMC at finite temperature is still controversial and under study, see Refs. [79,
104, 105] for some reviews on the subject. This is partially due to the fact that, at these
moderate field strengths, QCD is strongly interacting and the Landau level picture is in
general not well defined anymore, even though some meaningful identification for the LLL
can still be performed [106]. Another controversial aspect exposed by LQCD is that, for
heavy pion masses (m, 2 500 MeV), T, decreases with B even though the condensate is
always an increasing function of B at all temperatures, i.e. there is no IMC [107, 108]. It
has been suggested that the influence of the magnetic field on the confining properties is
the leading effect originating the decrease of T, as a function of B, a phenomenon dubbed

as “deconfinement catalysis”. Pertinent confinement observables include the Polyakov
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loop [107, 109], string tensions [72, 110-112], flux tubes [113], fluctuations of conserved
charges [114] and the ratio of pressure over energy density [75]. The aforementioned
suggestion relies on the fact that some of these confining effects happen even in the absence
of IMC in the chiral condensate.

A key factor toward the understanding of IMC, first performed in Ref. [115], consists
of separating the changes in the quark condensate induced directly through the observable
(valence effect), and indirectly through the fermion determinant contributing to the weight
of the gauge configurations (sea effect). LQCD results show that the magnetic field
enhances the spectral density around zero [109], which according to the Banks-Casher
relation [116] is proportional to the quark condensate. This is a purely “valence” effect that
can be already observed in the quenched approximation, where the backreaction of charged
quarks on the gauge field is ignored, and can be considered the basic mechanism behind
magnetic catalysis. In contrast, the sea effect was found to enhance the condensate only well
below T., whereas around 7, the quark determinant tends to suppress gauge configurations
with larger values of the quark condensate [109]. The sea effect is related to the fact
that, even though gluons themselves do not carry electric charge, they are affected by B
through their coupling to electrically charged quarks. For asymptotically large magnetic
fields eB > A, some light can be shed on the underlying mechanism [103]. There, the
dimensional reduction of the LLL dynamics, which is the most relevant level in this regime,
leads to a large fermion contribution to the gluon polarization operator. As a result, gluons
acquire a mass of order M, 92 x ageB. Since at leading order the strong coupling decreases
logarithmically with B, a,(B) = [bln(eB/Agp)] " with b = (11N, — 2Ny) /67, this leads
to an effective weakening of the interaction between quarks in the presence of an external
magnetic field. At moderate field strengths veB > Agcp, the gluonic dependence on
B was analyzed on the lattice [117], where it was found that its behavior resembles the
one of the chiral condensate. A further analysis of the associated chromo-electromagnetic
fields allows for the speculation that the induced chromomagnetic background interferes
with the dynamics responsible for symmetry breaking.

Hadron properties are also expected to be affected by this screening effect of gluon
interactions. The study of light hadrons under magnetic fields, which is the main topic
of this thesis, is important for several reasons. Strong magnetic fields veB ~ Agep can
in principle resolve the quark structure of a hadron. Thus, the modifications of their
properties in an external magnetic field can help to understand the effects of magnetic fields
on the chiral phase transition. In particular, the magnetic field dependence of the masses
of the lightest hadrons are expected to play a relevant role for the structure of the phase
diagram. Specifically, pions are expected to be dominant in this respect. For example, since

neutral pions are Nambu-Goldstone bosons of the chiral symmetry breaking, the decrease
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of their mass with B could signal a transition to a deconfined/chirally symmetric phase,
as suggested by the simultaneous decrease of T, with B. Besides, for the chiral partners
such as neutral pions and sigma mesons, their mass difference can be also considered as
an order parameter to describe the behavior of the chiral crossover, since their screening
masses become degenerate when chiral symmetry gets restored. On the other hand, it
has been conjectured that strong magnetic fields could reduce the vector meson mass
to zero and lead to the condensation of p-mesons [118], possibly inducing a transition
to a superconducting phase [91]. In this regard, QCD inequalities can be used to show
that massless p-mesons are only allowed if the (connected) neutral pion mass vanishes
as well. Another aspect relevant for the aforementioned physical scenarios concerns the
elementary properties of magnetized hadronic degrees of freedom. For cold astrophysical
environments, the masses of baryons and mesons enter the nuclear equation of state and
influence the mass-radius relations of magnetars [119]. Together with hadronic decay
rates, these also affect stability of such compact objects and cooling mechanisms that
characterize the emitted neutrino spectrum [120]. As for heavy ion collisions, it has been
speculated [121, 122] that long-lived magnetic fields might affect the hadronization process,

primarily influencing heavy baryons.

1.4 Theoretical frameworks

Most of the phenomena of QCD matter mentioned in the previous section require treating
QCD at energy scales below say 1 GeV, where perturbative methods are not applicable. In
this regime, the nonperturbative character of QCD renders calculations extremely difficult.
Thus, these low energy processes must be studied through nonperturbative techniques. Ab
initio approaches include lattice QCD and functional approaches, such as the functional
renormalization group and Dyson-Schwinger Equations [123-126]. In particular, LCQD
has significantly improved over the years, along with technological development, proving
to be a very useful tool for studying the properties of QCD matter [11, 12, 127]. While the
temperature axis can be directly addressed on the lattice, for finite chemical potentials the
so-called sign problem hinders density studies, although recent progress has been achieved
through the use of different techniques for chemical potentials up to pg/T < 3, finding no
signal of the CEP [11, 43, 49, 128|. Regarding the inclusion of magnetic fields, even though
they can be straightforwardly incorporated to the lattice, other technical problems arise
such as the proper handling of lattice artifacts [129], large error bars, the use of higher
than physical quark or pion masses due to computational resources, the use of the root
trick for staggered quarks and differences in the values of results obtained using different

quark implementations.
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Another way to deal with nonperturbative QCD relies in the use of a plethora of
alternative approaches/models, based on QCD. These include QCD sum rules [130-132],
chiral perturbation theory [133, 134, MIT bag model [135-138], quark-meson or linear
sigma model [139-141], Sakai-Sugimoto model [142, 143], relativistic Hamiltonian-based
formalisms and chiral models, to just name a few.

In this thesis we will make use of the Nambu-Jona-Lasinio (NJL) model, an effective
model built upon the chiral symmetries of QCD. It was originally developed in the
sixties to study nucleon interactions [14, 144], aiming to explain in a unified manner the
large baryon masses as well as the intermediate or small meson masses solely from the
isospin symmetry properties of nuclear interactions. The model properly accounts for
the spontaneous symmetry breaking mechanism of the axial group, generating dynamical
masses for the nucleons and giving rise to Goldstone bosons, associated with pions. Years
later, when quarks were recognized as fundamental particles forming hadrons, the model
was reinterpreted as an effective theory for quark interactions [145-147]. In this interaction
gluon degrees of freedom are frozen, resulting in a lack of confinement. Nevertheless, as
long as the quantities under study are not sensitive to the confinement properties, but
instead are well described by chiral symmetry properties, reliable calculations can be
performed within this model. This shortcoming of the theory can be partially remedied by
introducing a dynamic variable known as “Polyakov’s loop” [148-151], which is treated as
a background field that accounts for gluonic degrees of freedom that can reproduce the
deconfinement transition. Another drawback from the model is its nonrenormalizability,
due to the approximation of the gluon mediated exchange between quarks as a local point
interaction. In this regard, an improvement is seen by considering the nonlocal version of
the NJL model [152], although calculations become much more cumbersome.

One of the advantages of the NJL model is that it can be easily extended to include
external parameters such as temperature, chemical potential or electromagnetic fields.
We will focus on the influence of an external uniform magnetic field. In the context of
effective models, it is natural to attribute the IMC failure to the fact that most of these
models lack gluonic degrees of freedom and so are unable to account for the backreaction
of sea quarks due to the external magnetic field. Several possibilities have been explored
in the recent literature to incorporate the IMC effect phenomenologically. Within the NJL
model, these improvements include going beyond mean-field calculations [153] or taking
into consideration the anomalous magnetic moment of quarks [154-157]. Motivated by the
running of the QCD coupling and the fact that gluon screening modifies the coupling as
G x as/M 92 x 1/eB, one of the simplest modifications available consists of introducing
a coupling constant G(B) that depends on the magnetic field (and in some cases also

on the temperature) and can be fixed by fitting some LQCD results, such as the quark
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condensate or the chiral pseudocritical temperature. This strategy has shown that the
NJL model can satisfactorily reproduce LQCD results in a broad range of temperature
and magnetic fields [158-163]. In this regard, an interesting possibility was proposed in
Ref. [164] where G(B) is fitted to reproduce constituent quark masses, which are obtained
from the LQCD calculation of baryon masses by assuming in a simplified way that they
can be obtained by merely summing the masses of their constituents. Lastly, it is worth
mentioning that calculations using the non-local NJL model have shown that IMC and

deconfinement catalysis are obtained naturally [165, 166].

1.5 Outline of the thesis

As already mentioned, the study of light hadrons under strong magnetic fields can provide
relevant information for the understanding of magnetized QCD matter. The objective
of this thesis is to study the effect of an external uniform magnetic field on light hadron
properties, particularly pseudoscalar mesons and nucleons. In the framework of the
NJL model, mesons are usually described as quantum fluctuations in the random phase
approximation (RPA) [145-147], that is, they are introduced via a summation of an infinite
number of quark loops. In the presence of a magnetic field, the calculation of these loops
requires some special care due to the appearance of Schwinger phases [167] associated with
each quark propagator. For neutral mesons these phases cancel out, and as a consequence
the usual momentum basis can be used to diagonalize the corresponding polarization
function. In contrast, the Schwinger phases do not cancel for charged mesons, leading to
a breakdown of translational invariance that prevents to proceed as in the neutral case.
In this situation, some existing calculations just neglect the Schwinger phases, taking
into account only the translational invariant part of the quark propagator [93, 168, 169].
In this thesis we introduce a method based on the use of Ritus-type eigenfunctions for
magnetized systems, which allow us to properly diagonalize charged polarization functions
taking fully into account the translational breaking effects induced by Schwinger phases.
Although originally introduced to deal with mesons in the NJL model, the method can be
applied to charged particles in general, in different magnetized scenarios. In particular,
we apply it to the calculation of nucleon masses within the NJL model, constructed as
composite quark-diquark bound states.

Regarding the calculation of the pion decay constants, it is important to note that the
presence of the external magnetic field opens up new decay channels, parametrized by their
corresponding form factors. Even though some of these new decay constants were already
recognized in the literature [170, 171], some were not. In this thesis we determine all form

factors arising in the presence of an uniform magnetic field by taking into account all
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independent tensor structures that can be formed when hadronizing one-pion-to-vacuum
matrix elements of quark currents. Using the Ritus method for the calculation of these
magnetized matrix elements, we obtain a model-independent expression for the weak decay
width of magnetized charged pions 7= — [/, as well as the angular distribution of outgoing
antineutrinos. Their values can be estimated by providing the magnetic dependence of the
pion decay constants, which must be calculated within some QCD approach. We report
on estimations from the NJL model.

The thesis is organized as follows. In chapter 2 we introduce the theoretical framework.
Since the NJL model is built upon the chiral symmetry of QCD, we first discuss the QCD
theory and describe its flavor transformation properties. Afterwards we introduce the NJL
model, describing the inclusion of magnetic fields at the mean field level. In chapter 3 we
analyze the weak decay of magnetized charged pions solely from quantum field theory
grounds. To that end, we provide expressions for the matter fields of the involved particles
in the presence of the external field. As mentioned, the external magnetic field opens up
new decay channels, so we carefully take into account all possible form factors. In order to
provide actual estimates for the decay width and angular distribution, some pion properties
such as their masses and decay constants need to be supplied by some QCD approach.
In chapter 4 we make use of the two-flavor NJL model to calculate several pion properties,
applying the Ritus method to properly address charged particles. The possibility of
a magnetic field dependent coupling constant is also explored, in order to account for
the IMC effect. In chapter 5 we employ the three-flavor version of the NJL model to
extend the meson pole mass calculation to all mesons from the pseudoscalar nonet. Going
back to the two-flavor formulation of the model, diquark masses can be straightforwardly
obtained by mimicking the pion calculation of chapter 4. Thus, in chapter 6 we analyze
diquarks and use them to study nucleon masses. In our approach, nucleons are treated as
bound quark-diquark states described by a relativistic Fadeev equation, using the static
approximation for quark exchange interactions. The conclusions of this work together
with a future outlook is presented in chapter 7. Finally, some technical details of the

calculations are discussed in the appendices.
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Introduccion

Cromodinamica cuantica

La teoria que describe las interacciones fuertes en el marco del Modelo Estandar se
conoce como cromodindmica cudntica (QCD). Se estableci6 como tal hace varias décadas,
reconociendo a los quarks como los constituyentes primarios de los hadrones y a los gluones
como los mediadores de la interaccién [1-3]. En esta formulacién, los quarks y gluones
poseen una propiedad conocida como “carga de color”, analoga a la carga eléctrica de la
electrodindmica cuantica (QED), responsable de las interacciones fuertes. La fuerza de la
interaccion se mide por gs, la constante adimensional de acoplamiento de la teoria. Sin
embargo, tras la cuantizacién, las divergencias logaritmicas en los diagramas de un lazo
de la teoria de perturbaciones implican que esta “constante” depende en realidad de la
escala de energia tipica p de los procesos considerados, denominada escala del grupo de
renormalizacion. Este corrimiento del acoplamiento viene especificado por la funcién beta
del grupo de renormalizacién. La auto-interaccion entre gluones modifica draméaticamente
el corrimiento del acoplamiento de QCD a, = ¢g2/(4r), en comparaciéon con QED. Para
energias altas el acoplamiento se debilita (as; — 0) y quarks y gluones forman estados
(casi) libres, una propiedad denominada libertad asintética [4, 5]. Por otro lado, la teoria
de perturbaciones sugiere que para procesos de baja energia oy — oo. La experiencia
indica que, en condiciones ordinarias de temperatura y densidad, digamos 7" < 200 MeV
y 1 S 350 MeV [6], los hadrones son los grados de libertad relevantes. Esto implica que
la materia QCD debe necesariamente agruparse de manera de formar estados ligados de
color singlete cuya carga neta de color es cero, un fenémeno denominado confinamiento
(de color). El valor de u que separa estos dos regimenes se conoce como la escala de QCD
Aqep, definida como as(Aqep) = 1. Para escalas de energias por debajo de la masa del
quark charm p < 1,25 GeV, donde sélo los tres sabores mas ligeros estan activos, tenemos
Aqep ~ 300 MeV. El proceso por el cual una constante adimensional como g, se sustituye

por una dimensional como Aqcp se denomina transmutacion dimensional.
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Materia de QCD en condiciones extremas

Poco después del advenimiento de QCD, se conjeturé que a temperaturas y/o densidades
suficientemente altas podian formarse estados de la materia conocidos con el nombre
genérico de plasma de quarks y gluones (QGP), que se caracterizan por el desconfinamiento
de color y donde los quarks y gluones son los grados de libertad dominantes [7-9]. Esto
impulsé el estudio tedrico de las posibles fases de QCD en tales condiciones extremas
y revel6 una estructura de fases potencialmente compleja [10, 11]. De hecho, el estudio
del diagrama de fases de QCD sigue suponiendo un reto tedrico y experimental a dia de
hoy [12]. Una vista esquemadtica en el plano de temperatura y potencial quimico bariénico

ip se representa en la Figura 1.1
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Figura 1.1: Representacion esquematica del diagrama de fases de QCD a temperatura y potencial
quimico bariénico (densidad) finito. Figura extraida de la Ref. [10].

La transicion entre diferentes fases esta senalada por un comportamiento critico a
menudo asociado con la ruptura espontanea de una simetria global [13]. El pardmetro
de orden es la cantidad que establece el estado de una simetria: se desvanece cuando el
sistema comparte la simetria del Lagrangiano y es finito cuando la simetria se rompe
espontaneamente. Para caracterizar adecuadamente estas fases, es necesario estudiar
las propiedades de simetria de la teoria bajo grupos de transformaciones unitarias que
actian sobre los grados de libertad internos de la teoria. El Lagrangiano de QCD es por
construccién invariante ante el grupo de color SU(3).. Para quarks sin masa, también es
invariante ante el grupo quiral de sabor, que puede descomponerse en grupos vectoriales y
axiales como U(Ny)r x U(Ng)p = U(1)y x SU(Nys)yv x U(1)a x SU(Ny)a. Aqui Ny es el
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1.2. Materia de QCD en condiciones extremas

numero de sabores: en QCD completo, Ny = 6. Para quarks masivos, la simetria quiral se
rompe. Sin embargo, se conserva aproximadamente en el sector de quarks ligeros. En el
estado de vacio de QCD, la simetria axial se rompe debido a las interacciones, incluso para
quarks sin masa. Por lo tanto, la simetria quiral se rompe y se genera dinamicamente una
masa efectiva para los quarks [14]. El pardmetro de orden que caracteriza esta ruptura
espontanea es el condensado quiral (152/1> De hecho, esta ruptura es responsable de la
mayor parte de la masa del nucleén, mientras que los correspondientes bosones ligeros
de Goldstone [15] se identifican con los piones. Estos efectos dindmicos son de gran
importancia en el estudio del diagrama de fases QCD, ya que hay indicios de que esta
simetria se restaura en la fase QGP. En la transicion de fase las cantidades termodinamicas
cambian caracteristicamente, todas relacionadas con una anomalia en la presion. Las
fluctuaciones de cantidades conservadas, como el nimero bariénico, de carga eléctrica y de
extraneza, son observables sensibles en las colisiones relativistas de iones pesados para
sondear la transicion de fase de QCD. Ademas, la evidencia experimental y tedrica conduce
a la suposicion de que las transiciones de fase de desconfinamiento y restauracion de la
simetria quiral se producen préacticamente de forma simultdnea a bajas densidades [16—
18].Sin embargo, el mecanismo exacto que da lugar a esta transicion simultdnea ain no se
encuentra comprendido cuantitativamente de manera detallada.

La formacion del QGP implica procesos de alta energia, que sélo pueden darse en
condiciones extremas. Estas condiciones son dificiles de producir, lo que deja pocas
situaciones fisicas para el estudio experimental. Uno de los escenarios naturales donde
se cree que se producen fases desconfinadas de QCD es en el caliente Universo temprano,
correspondiente a la region de bajas densidades y altas temperaturas en el diagrama de
fases. Segun el modelo del big bang caliente, el Universo temprano ha experimentado
(al menos) dos épocas en las que podrian producirse transiciones de fase: la transicion
electrodébil a temperaturas en torno a Tgw ~ 100 GeV, cuando los fermiones y bosones
gauge se convirtieron en particulas masivas, y la transiciéon pseudocritica de QCD T,
cuando los quarks se confinaron en hadrones. A partir de simulaciones de QCD en
la red (LQCD), se espera que la transicion de QCD sea un cruce suave (crossover) en
torno a T ~ 156 MeV [19-22]. Sin embargo, existen algunos mecanismos conocidos que
podrian proporcionar una transicion QCD de primer orden, véase por ejemplo [23-25].
Otro escenario natural corresponde a los niicleos de las llamadas estrellas compactas [26,
27]. Estas estrellas de neutrones son objetos extremadamente estables y densos, que
constituyen uno de los posibles escenarios finales en el ciclo de vida de una estrella. En
ellas, la densidad es lo suficientemente grande como para formar estados superconductores
de color, correspondientes a la region de altas densidades y bajas temperaturas en el

diagrama de fases. A potenciales quimicos asintéticamente grandes y temperaturas
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pequenas, donde QCD perturbativo es aplicable debido a la libertad asintética, la materia
de QCD de 3 sabores se encuentra en la llamada fase de bloqueo de color-sabor [28-30].
En este régimen se rompe la simetria quiral, y la temperatura de transiciéon a la materia
de quarks es de primer orden [31, 32]. A densidades intermedias, incluyendo aquellas
relevantes para ambientes astrofisicos, las fases alternativas propuestas en la literatura
incluyen superconductores de color de dos sabores, fases mixtas sin bloqueo de color y
sabor, superconductividad de color cristalina, condensacién de kaones, fases gludnicas,
superfluidez, fases sin brechas e inhomogéneas, ver Refs. [6, 33-35] para més detalles.

En cuanto a escenarios creados por humanos, en las tultimas décadas se han construido
varios aceleradores de iones pesados, en los que se llevan a cabo experimentos para alcanzar
las fases correspondientes a altas temperaturas y densidades en el diagrama de fases de
QCD [36, 37]. Grandes programas experimentales se han llevado a cabo en el ‘Relativistic
Heavy Ion Collider’ (RHIC) [38, 39] en el laboratorio BNL y en el ‘Large Hadron Collider’
(LHC) [40] bajo los experimentos ALICE, ATLAS y CMS, asi como el ‘Super Proton
Synchrotron’ (SPS) en el CERN. En este tipo de aceleradores, el objetivo es colisionar iones
pesados como plomo, plata u oro a energias del centro de masa del orden de 100-200 GeV
o mas. Durante el proceso de colision se alcanzan temperaturas extremadamente altas,
por encima de la temperatura critica de desconfinamiento 7. MeV [38]. Esto sugiere que
posiblemente se forme un QGP transitorio, que se hadroniza al enfriarse. Las particulas
salientes de la colision llevan informacién indirecta sobre el QGP. Los resultados actuales
sugieren que el QGP ha logrado formarse durante periodos de tiempo del orden de
10 fm/c [41, 42].

Contrariamente a las expectativas iniciales, el QGP no es un plasma débilmente
acoplado. De hecho, estd fuertemente acoplado y es casi un liquido perfecto, con una
viscosidad especifica n/s cercana a 1/4m [36, 43]. Curiosamente, la dualidad AdS/CFT entre
teorfas de gauge infinitamente fuertemente acopladas (primas de QCD) y descripciones
gravitacionales ha llevado a la conjetura de que para cualquier teoria cuantica de campos
relativista, n/s > 1/4n [44]. La similitud entre ambos resultados da credibilidad a la
idea de que la holografia puede proporcionar conocimientos significativos sobre QCD.
Debido a la suposicion de una fuerza de acoplamiento infinita en el calculo holografico,
el comportamiento de fluido ideal del QGP se ha interpretado como la senalizacion de
un sistema que interactia fuertemente, apoyado también por el hecho de que el valor de
n/s obtenido para un gas de quarks y gluones en régimen de acoplamiento débil es un
orden de magnitud mayor. A pesar de su corta duracion el QGP exhibe propiedades de
equilibrio termodinamico, lo que aporta pruebas adicionales que confirman la hipétesis
de que la transicién de fase entre la fase hadrénica y el QGP es del tipo crossover [45].

Las condiciones producidas en los actuales aceleradores de iones pesados corresponden
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esencialmente al eje vertical del diagrama de fases, es decir, a bajos potenciales quimicos.
Se espera que la transicion quark-hadrén de tipo crossover observada en este régimen
cambie a una transiciéon de primer orden para pup mas altos, con un punto critico final
(CEP) de segundo orden entre ambos. La posicion del CEP se ha estudiado ampliamente
en diferentes marcos teéricos (ver por ejemplo Refs. [46-49]) y se ha explorado en los
aceleradores actuales [39, 50]. De hecho, su biisqueda es uno de los puntos de referencia
para futuros experimentos en el ‘Nuclotron-based Ion Collider fAcility’ (NICA), el ‘Facility
for Antiproton and Ton Research’ (FAIR) y el ‘Japan Proton Accelerator Research Complex’
(J-PARC), donde se podran alcanzar mayores densidades.

Mientras que el diagrama de fases se ha investigado tomando inicialmente como
variables la densidad y la temperatura, en la tltima década ha aumentado enormemente
el interés por la presencia de campos (electro)magnéticos fuertes y sus efectos [51-53].
Aunque la constante de acoplamiento electromagnético e es mucho menor que la constante
de acoplamiento fuerte g, el electromagnetismo puede ser relevante para la fisica de
QCD si la intensidad del campo es tan fuerte que veE, veB ~ Aqep. Estos campos
electromagnéticos intensos aparecen en muchos de los escenarios fisicos mencionados.
Varios modelos predicen la generacion de fuertes campos magnéticos durante la evolucion
temprana del Universo, que son requeridos por las observaciones actuales de campos
magnéticos intergalacticos débiles pero no nulos. Estos campos intensos podrian haber
modificado la naturaleza de la transicion de fase electrodébil, y su efecto podria haber
dejado huellas en ciertas anisotropias del fondo césmico de microondas [54, 55]. Por otro
lado, en la superficie de ciertas estrellas compactas denominadas “magnetares”, los campos
magnéticos pueden alcanzar valores del orden de 10 G [56-58], aumentando en algunos
6rdenes de magnitud hasta 10'® —10?° G hacia el nicleo [59-62]. Véase la Ref. [63] para un
catdlogo actual de magnetares y también la Ref. [64] para una revisién reciente. El efecto
de los campos magnéticos en la materia densa de quarks también se revisa en la Ref. [65].
En cuanto a los escenarios creados por humanos, en la tultima década se ha observado
que en las colisiones de iones pesados (HIC) el movimiento de particulas espectadoras
cargadas produce campos magnéticos de magnitudes tan grandes como 10 — 10%° G [66—
70]. Aunque estos campos se producen esencialmente en los momentos iniciales de la
colisién y decaen rapidamente, en ocasiones del orden de 107! s [67], podrian afectar
sustancialmente a la forma en que el QGP se hadroniza [51, 71]. Por ltimo, los campos
magnéticos también son relevantes para sistemas de materia condensada cuasi relativistas
como el grafeno [52].

El diagrama de fases de la QCD en el espacio tridimensional (u, T, B) se ha estudiado
desde varios enfoques. Mientras que el eje de temperaturas puede abordarse directamente

en la red, para potenciales quimicos finitos el llamado problema del signo dificulta los
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Figura 1.2: Diagrama de fases QCD a temperatura y campo magnético finito. La temperatura
(pseudo)critica disminuye en funcién de B, y la transiciéon pasa de ser de tipo crossover a primer
orden en un punto critico final situado en el intervalo 4 GeV? < eBgr < 9 GeV2. Figura extraida
de la Ref. [72].

estudios de densidad, que se han realizado principalmente a través modelos efectivos o
enfoques holograficos. Curiosamente, mientras que la mayoria de los modelos efectivos
predicen un aumento de la temperatura de transiciéon pseudocritica 7T, con el campo
magnético [52, 53], resultados precisos de LCQD [73-76] han mostrado el patrén opuesto,
es decir, una disminucion de 7T, con el campo magnético. De hecho, como se muestra en
las Refs. [72, 77], este comportamiento se prolonga para campos magnéticos muy fuertes,
donde se encontré una transicion de primer orden a eB = 9 GeV2, lo que implica la
existencia de un punto critico final en algtin lugar dentro del rango 4 GeV? < eB < 9 GeV2.
Un diagrama de fase QCD actualizado en el plano de temperatura y campo magnético

puede encontrarse en la Figura 1.2, propuesta en la Ref. [72].

Efectos del campo magnético sobre la materia de QCD

Es esperable que nuevos efectos detectables en el diagrama de fases y las propiedades de
la materia que interactiia fuertemente surjan debido a estos campos magnéticos extremos,
provocando numerosas consecuencias fenomenolégicas [52]. Entre ellas se incluyen la
catélisis magnética (MC) del condensado quiral [52, 78]; la catdlisis magnética inversa
(IMC) de la temperatura de restauracién quiral y de desconfinamiento [73, 74, 79, 80]; el
efecto magnético quiral [66, 81, 82]; el efecto de separacién quiral [83, 84]; ondas magnéticas
quirales [85-89]; superconductividad en el vacio [90, 91|, asi como muchos otros efectos

sobre las propiedades de las particulas resultantes que se detectan tras las colisiones [71,
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92, 93], por nombrar algunos. Ademds de su importancia para la fenomenologia de los
escenarios fisicos mencionados, los campos magnéticos también tienen interés académico
por si mismos, ya que sirven como sonda de la teoria de la materia en interaccion fuerte.
En particular, la comparacion entre resultados de LQCD y modelos efectivos en presencia
de campos electromagnéticos externos permite restringir estos ultimos, adquiriendo una
mejor comprension de la teoria subyacente.

Para el alcance de esta tesis, la cual involucra el andlisis de las propiedades de los
hadrones livianos, serd pertinente discutir con cierto detalle los efectos MC e IMC. El
término catalisis magnética se refiere a la catalizacion de un condensado existente o a
la apariciéon de un nuevo condensado por la presencia de un campo magnético externo.
En QCD, la generacion del condensado quiral <1Z¢> rompe a su vez la simetria quiral,
generando una masa dindmica. El efecto MC se encontr6 por primera vez en el marco del
modelo NJL [94, 95] y Gross-Neveu [96, 97]. La idea basica de la MC es que (¢1)) puede
considerarse como un condensado de pares fermion-antifermion neutros de espin cero.
Dado que los momentos magnéticos del fermién (con carga y espin fijos) y antifermién
(con carga y espin opuestos) apuntan en la misma direccién, ambos momentos magnéticos
pueden alinearse comodamente a lo largo de la direccién del campo magnético [78].

Desde un punto de vista mas técnico, el mecanismo que subyace al efecto MC se discutié
en las Refs [98-100], véase la Ref. [52] para una revisién mas general. El punto clave
revelado en esas referencias es que el campo magnético potencia el emparejamiento entre
fermiones y antifermiones en la region infrarroja, ya que la dinamica del emparejamiento
se reduce a una dindmica (1 + 1)-dimensional. Esto estd relacionado con el hecho de que,
en presencia de un campo magnético uniforme, el momento transversal de los fermiones
libres se cuantiza en nimeros discretos, conocidos como niveles de Landau (LLs). Para
el caso particular de acoplamiento débil y/o campos magnéticos fuertes, la conexién es
explicita; la dinamica de emparejamiento estda dominada por fermiones en el nivel mas
bajo de Landau (LLL), que también estan sujetos a la reduccién dimensional D — D — 2.
Como consecuencia del emparejamiento, se genera una masa dindmica (principalmente
en la region infrarroja) incluso para la interaccién atractiva méas débil entre fermiones,
que rompe espontaneamente la simetria quiral y aumenta el condensado quiral. La
fisica subyacente de la dindamica infrarroja que se hace mas fuerte debido a la reduccién
dimensional es universal, como se conoce de la teoria Bardeen-Cooper-Schrieffer (BCS) de
la superconductividad [101, 102]. De hecho, el mecanismo de reduccién dimensional se
demostr6 a campos magnéticos asintéticamente fuertes eB > Agcp, donde QCD puede
estudiarse rigurosamente desde primeros principios [103], obteniéndose MC. Ademas, el
efecto MC se ha reproducido a través de muchos enfoques diferentes, tales como modelos

efectivos QCD, LQCD, QED, enfoques holograficos y sistemas de materia condensada [52,
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53, 78].

A temperatura finita y campos magnéticos moderadamente fuertes veB > Agep,
un nuevo comportamiento inesperado fue descubierto por LQCD [73] para temperaturas
alrededor de T, consistente en una disminucion, en lugar de un aumento, del condensado
de quarks con B. Este fenémeno, no previsto por los modelos efectivos, se denomind
catalisis magnética inversa. El mecanismo completo detras de IMC a temperatura finita
sigue siendo controvertido y en estudio, vednse las Refs. [79, 104, 105] para algunas
revisiones sobre el tema. Esto se debe en parte al hecho de que, a estas intensidades de
campo moderadas, la QCD interactta fuertemente y la imagen de los niveles de Landau
ya no esta bien definida en general, aunque todavia se puede realizar alguna identificacién
significativa para el LLL [106]. Otro aspecto controvertido expuesto por LQCD es que,
para masas de piones pesadas (m, = 500 MeV), T, disminuye con B a pesar de que el
condensado es siempre una funcién creciente de B a todas las temperaturas, es decir,
no hay IMC [107, 108]. Se ha sugerido que la influencia del campo magnético sobre
las propiedades de confinamiento es el efecto principal que origina la disminuciéon de
T, en funciéon de B, un fenémeno denominado “catéalisis de desconfinamiento”. Entre
los observables de confinamiento pertinentes se incluyen el lazo de Polyakov [107, 109],
las tensiones de las cuerdas [72, 110-112], los tubos de flujo [113], las fluctuaciones de
las cargas conservadas [114] y la relacién entre la presién y la densidad de energia [75].
La sugerencia antes mencionada se basa en el hecho de que algunos de estos efectos de
confinamiento ocurren incluso en ausencia de IMC en el condensado quiral.

Un factor clave hacia la comprensién de IMC, realizado por primera vez en la Ref. [115],
consiste en separar los cambios en el condensado de quarks inducidos directamente a través
del observable (efecto de valencia), e indirectamente a través del determinante fermiénico
que contribuye al peso de las configuraciones de gauge (efecto de mar). Los resultados
de LQCD muestran que el campo magnético aumenta la densidad espectral alrededor de
cero [109], que segun la relacion Banks-Casher [116] es proporcional al condensado de
quarks. Se trata de un efecto puramente de “valencia” que ya puede observarse en la
aproximacion ‘quenched’; en la que se ignora la retroreaccién de los quarks cargados sobre
el campo de gauge, y puede considerarse el mecanismo bésico que subyace a la catalisis
magnética. En contraste, se encontré que el efecto de mar realza el condensado sélo muy
por debajo de T,, mientras que alrededor de T, el determinante de quarks tiende a suprimir
las configuraciones de gauge con valores mayores del condensado de quarks [109]. El efecto
de mar esta relacionado con el hecho de que, aunque los gluones en si mismos no llevan
carga eléctrica, se ven afectados por B a través de su acoplamiento a quarks cargados
eléctricamente. Para campos magnéticos asintoticamente grandes eB > AQQC p, algo de

luz puede arrojarse sobre el mecanismo subyacente [103]. Alli, la reduccién dimensional
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de la dindmica del LLL, que es el nivel mas relevante en este régimen, conduce a una
gran contribuciéon fermiénica al operador de polarizaciéon del gluéon. Como resultado,
los gluones adquieren una masa del orden M 92 x ageB. Puesto que al orden principal
el acoplamiento fuerte disminuye logaritmicamente con B, ay(B) = [bln(eB/A} )]
con b = (11N, — 2Ny)/6m, esto conduce a un debilitamiento efectivo de la interaccién
entre quarks en presencia de un campo magnético externo. A intensidades de campo
moderadas veB 2> Agep, la dependencia gluénica con B se analizé en la red [117], donde
se encontrdé que su comportamiento se asemeja al del condensado quiral. Un andlisis
posterior de los campos cromo-electromagnéticos asociados permite especular que el fondo
cromo-magnético inducido interfiere con la dinamica responsable de la ruptura de simetria.

Es de esperar que las propiedades de los hadrones también se vean afectadas por
este efecto de apantallamiento de las interacciones entre gluones. El estudio de hadrones
ligeros bajo campos magnéticos, que es el tema principal de esta tesis, es importante
por varias razones. Los campos magnéticos fuertes VeB ~ Aqcp pueden, en principio,
resolver la estructura de quarks de un hadréon. Asi, las modificaciones de sus propiedades
en un campo magnético externo pueden ayudar a comprender los efectos de los campos
magnéticos en la transicion de fase quiral. En particular, se espera que la dependencia
con el campo magnético de las masas de los hadrones mas ligeros desempene un papel
relevante para la estructura del diagrama de fases, siendo los piones dominantes. Por
ejemplo, dado que los piones neutros son bosones Nambu-Goldstone de la ruptura de
la simetria quiral, la disminucién de su masa con B podria senalar una transicién a
una fase desconfinada/simétrica quiral, como sugiere la disminuciéon simultédnea de T,
con B. Ademads, para las parejas quirales como los piones neutros y los mesones sigma,
su diferencia de masa también puede considerarse como un parametro de orden para
describir el comportamiento del cruce quiral, ya que sus masas de apantallamiento se
degeneran cuando se restaura la simetria quiral. Por otro lado, se ha conjeturado que
campos magnéticos intensos podrian reducir la masa del meson vectorial a cero y conducir
a la condensacion de mesones p [118], posiblemente induciendo una transiciéon a una fase
superconductora [91]. En este sentido, las desigualdades de QCD se pueden utilizar para
demostrar que los mesones p sin masa sélo se permiten si la masa del pién neutro (conectado)
también desaparece. Otro punto relevante para los escenarios fisicos mencionados concierne
a las propiedades elementales de los grados de libertad hadronicos magnetizados. En
entornos astrofisicos frios, las masas de bariones y mesones entran en la ecuacién de estado
nuclear e influyen en las relaciones masa-radio de los magnetares [119]. Junto con las tasas
de desintegracion hadronica, también afectan a la estabilidad de estos objetos compactos y
a los mecanismos de enfriamiento que caracterizan el espectro de neutrinos emitidos [120].

En cuanto a las colisiones de iones pesados, se ha especulado [121, 122] que los campos
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magnéticos de larga duracion podrian afectar al proceso de hadronizacion, influenciando

principalmente a los bariones pesados.

Formalismos tedricos

La mayoria de los fenémenos de la materia QCD mencionados en la seccién anterior
requieren tratar con QCD a escalas de energia por debajo de, digamos, 1 GeV, donde los
métodos perturbativos no son aplicables. En este régimen, el caracter no perturbativo de la
QCD hace que los calculos sean extremadamente dificiles. Por lo tanto, estos procesos de
baja energia deben estudiarse mediante técnicas no perturbativas. Los enfoques ab initio
incluyen QCD en la red y enfoques funcionales, como el grupo de renormalizacion funcional
y las ecuaciones de Dyson-Schwinger [123-126]. En particular, LCQD ha mejorado
significativamente a lo largo de los anos, junto con el desarrollo tecnologico, demostrando
ser una herramienta muy util para el estudio de las propiedades de la materia de QCD [11,
12, 127]. Mientras que el eje de temperaturas puede ser abordado directamente en la
red, para potenciales quimicos finitos el llamado problema del signo obstruye el estudio
de la densidad, aunque recientemente se ha avanzado en este sentido mediante el uso de
diferentes técnicas para potenciales quimicos de hasta pup/T < 3, no encontrando senal
del CEP [11, 43, 49, 128]. En cuanto a la inclusiéon de campos magnéticos, aunque se
pueden incorporar directamente a la red, surgen otros problemas técnicos como el manejo
adecuado de artefactos de red [129], grandes barras de error, el uso de masas de quarks o
piones superiores a las fisicas debido a los recursos computacionales, el uso del truco de la
raiz para quarks ‘staggered’ y diferencias en los valores de los resultados entre diferentes
implementaciones de quarks.

Otra forma de tratar con QCD no perturbativa se basa en el uso de una plétora
de enfoques/modelos alternativos, basados en QQCD. Estos incluyen reglas de suma de
QCD [130-132], teorfa de perturbacién quiral [133, 134], modelo de bolsa del MIT [135—
138], modelo quark-mesén o sigma lineal [139-141], modelo Sakai-Sugimoto [142, 143],
formalismos relativistas basados en Hamiltonianos y modelos quirales, por nombrar sélo
algunos.

En esta tesis haremos uso del modelo Nambu—Jona-Lasinio (NJL), un modelo efectivo
construido sobre las simetrias quirales de QCD. Fue desarrollado originalmente en los
anos sesenta para estudiar las interacciones entre nucleones [14, 144], con el objetivo de
explicar de forma unificada las grandes masas de bariones asi como las masas intermedias
o pequenas de mesones unicamente a partir de las propiedades de simetria de isospin de
las interacciones nucleares. El modelo explica adecuadamente el mecanismo espontaneo

de ruptura de simetria del grupo axial, generando masas dinamicas para los nucleones y
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dando lugar a los bosones de Goldstone, asociados a los piones. Anos mas tarde, cuando
se reconocio a los quarks como particulas fundamentales que forman hadrones, el modelo
se reinterpreté como una teorfa efectiva para las interacciones entre quarks [145-147]. En
esta interaccion los grados de libertad de los gluones estan congelados, lo que resulta
en una falta de confinamiento. Sin embargo, siempre que las cantidades estudiadas no
sean sensibles a las propiedades de confinamiento, sino que estén bien descritas por las
propiedades de simetria quiral, se pueden realizar calculos fiables dentro de este modelo.
Esta deficiencia de la teoria puede remediarse parcialmente introduciendo una variable
dindmica conocida como “lazo de Polyakov” [148-151], que se trata como un campo de
fondo que da cuenta de grados de libertad gluénicos que pueden reproducir la transicién de
desconfinamiento. Otro inconveniente del modelo es su falta de renormalizabilidad, debido
a la aproximacion del intercambio entre quarks mediado por gluones como una interaccion
puntual local. Con respecto a esto, una mejora se observa al considerar la versién no local
del modelo NJL [152], aunque los célculos se vuelven mucho més complejos.

Una de las ventajas del modelo NJL es que puede ampliarse facilmente para incluir
parametros externos como la temperatura, el potencial quimico o los campos electromag-
néticos. Nos centraremos en la influencia de un campo magnético uniforme externo. En el
contexto de los modelos efectivos, es natural atribuir el fallo del efecto IMC al hecho de
que la mayoria de estos modelos carecen de grados de libertad gluénicos y, por tanto, son
incapaces de dar cuenta de la retroaccién del mar de quarks debida al campo magnético
externo. En la literatura reciente se han explorado varias posibilidades para incorporar
fenomenolégicamente el efecto IMC. Dentro del modelo NJL, estas mejoras incluyen ir mas
alla de los calculos de campo medio [153] o tener en cuenta el momento magnético anémalo
de los quarks [154-157]. Motivado por el corrimiento del acoplamiento de QCD y el hecho
de que el apantallamiento de gluones modifica el acoplamiento segiin G' o< g /M oc 1/eB,
una de las modificaciones mas sencillas disponibles consiste en introducir una constante de
acoplamiento G(B) que depende del campo magnético (y en algunos casos también de la
temperatura) y puede fijarse ajustando algunos resultados de LQCD, como el condensado
de quarks o la temperatura pseudocritica quiral. Esta estrategia ha demostrado que el
modelo NJL puede reproducir satisfactoriamente los resultados de LQCD en un amplio
rango de temperatura y campos magnéticos [158-163]. En este sentido, en la Ref. [164] se
propuso una interesante posibilidad en la que G(B) se ajusta para reproducir las masas de
los quarks constituyentes, obtenidos de resultados de LQCD para las masas de los bariones
asumiendo de forma simplificada que las mismas pueden obtenerse meramente sumando
de las masas de sus constituyentes. Por ultimo, es interesante mencionar que en la version
no local del modelo se ha mostrado que el efecto IMC y la catélisis de desconfinamiento se
obtienen de forma natural [165, 166].
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Esquema de la tesis

Como ya se ha mencionado, el estudio de hadrones ligeros bajo fuertes campos magnéticos
puede proporcionar informacién relevante para la comprension de la materia magnetizada de
QCD. El objetivo de esta tesis es estudiar el efecto de un campo magnético uniforme externo
sobre las propiedades de los hadrones ligeros, en particular de los mesones pseudoscalares
y nucleones. En el marco del modelo NJL, los mesones se describen normalmente como
fluctuaciones cudnticas en la aproximacién de fase aleatoria (RPA) [145-147], es decir, se
introducen a través de una suma de un nimero infinito de lazos de quarks. En presencia
de un campo magnético, el cdlculo de estos lazos requiere cierto cuidado especial debido
a la aparicion de fases de Schwinger [167] asociadas a cada propagador de quark. Para
los mesones neutros estas fases se cancelan, y como consecuencia se puede utilizar la base
de momento habitual para diagonalizar la funciéon de polarizacién correspondiente. En
cambio, las fases de Schwinger no se cancelan para los mesones cargados, lo que conduce a
una ruptura de la invariancia traslacional que impide proceder como en el caso neutro. En
esta situacion, algunos calculos existentes simplemente desprecian las fases de Schwinger,
teniendo en cuenta sélo la parte invariante traslacional del propagador del quark [93, 168,
169]. En esta tesis introducimos un método basado en el uso de funciones propias de
tipo Ritus para sistemas magnetizados, que nos permite diagonalizar adecuadamente las
funciones de polarizacion cargadas teniendo plenamente en cuenta los efectos de ruptura
traslacional inducidos por las fases de Schwinger. Aunque originalmente introducido para
tratar con mesones en el modelo NJL, el método puede aplicarse a particulas cargadas en
general, en diferentes escenarios magnetizados. En particular, lo aplicamos al célculo de
masas nucleénicas dentro del modelo NJL, construidos como estados ligados compuestos
quark-diquark.

En cuanto al calculo de las constantes de desintegracion de los piones, es importante
senalar que la presencia del campo magnético externo abre nuevos canales de desintegracion,
parametrizados por sus factores de forma correspondientes. Aunque algunas de estas
nuevas constantes de desintegracion ya fueron reconocidas en la literatura [170, 171],
otras no. En esta tesis determinamos todos los factores de forma que surgen en presencia
de un campo magnético uniforme teniendo en cuenta todas las estructuras tensoriales
independientes que pueden formarse al hadronizar elementos matriciales entre un piéon
y vacio de las corrientes de quarks. Utilizando el método de Ritus para el calculo de
estos elementos matriciales magnetizados, obtenemos una expresién independiente del
modelo para el ancho de decaimiento débil de los piones cargados magnetizados 7~ — i,
asi como para la distribuciéon angular de los antineutrinos salientes. Sus valores pueden

estimarse proporcionando la dependencia magnética de las constantes de desintegracion

24



1.4. Esquema de la tesis

de los piones, que deben calcularse dentro de alguna aproximacion QCD. Presentamos
estimaciones obtenidas con el modelo NJL.

La tesis esté organizada como se detalla a continuacion. En el capitulo 2 introducimos
el marco teérico. Dado que el modelo NJL se basa en la simetria quiral de la QCD,
primero discutimos la teoria de QCD y describimos sus propiedades de transformacién
de sabor. Después introducimos el modelo NJL, describiendo la inclusiéon de campos
magnéticos en el nivel de campo medio. En el capitulo 3 analizamos el decaimiento
débil de piones cargados magnetizados tinicamente a partir de bases de la teoria cuantica
de campos. Calculamos la anchura de la desintegracion y la distribucién angular de
los antineutrinos salientes. Para ello, proporcionamos expresiones para los campos de
materia de las particulas implicadas en presencia del campo externo. Como ya se ha
mencionado, el campo magnético externo abre nuevos canales de desintegracion, por lo
que tenemos en cuenta todos los factores de forma posibles. Con el fin de proporcionar
estimaciones reales para el ancho de desintegracion y la distribucién angular, algunas
propiedades de los piones, tales como sus masas y constantes de desintegracion, deben ser
proporcionadas por algin enfoque QCD. En el capitulo 4 utilizamos el modelo NJL de
dos sabores para calcular varias propiedades de los piones, aplicando el método de Ritus
para tratar adecuadamente las particulas cargadas. También se explora la posibilidad de
una constante de acoplamiento dependiente del campo magnético, con el fin de tener en
cuenta el efecto IMC. En el capitulo 5 empleamos la versién de tres sabores del modelo
NJL para extender el calculo de la masa del polo del mesén a todos los mesones del nonete
pseudoescalar. Volviendo a la formulacion de dos sabores del modelo, las masas de los
diquarks pueden obtenerse de manera sencilla imitando el calculo piénico del capitulo 4.
Asi, en el capitulo 6 analizamos los diquarks y los utilizamos para estudiar las masas de los
nucleones. En nuestro enfoque, los nucleones se tratan como estados ligados quark-diquark
descritos por una ecuacion relativista de Fadeev, utilizando la aproximacion estatica para
las interacciones de intercambio de quarks. Las conclusiones de este trabajo, junto con una
perspectiva a futuro, se presentan en el capitulo 7. Por iltimo, algunos detalles técnicos

de los célculos se discuten en los apéndices.
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CHAPTER

Theoretical Formalism: QCD and
NJL model

In this chapter we will first describe the basic ideas behind the fundamental theory of
strong interactions, namely quantum chromodynamics (QCD). We will pay particular
attention to the transformation properties of the QCD Lagrangian under the unitary
flavor group, since the corresponding symmetries constitute the basis of the effective
Nambu-Jona-Lasinio (NJL) model to be used in this thesis. In fact, this model is built
upon the symmetries of QCD so as to reproduce some of its essential characteristics, such
as the spontaneous breaking of chiral symmetry. We will introduce the model describing
its connection with QCD and surveying its main features. Even though it is in principle a
quark model, we will illustrate a bosonization procedure which allows for a description
of meson fields. In order to retain predictive power, the parameters of the model are
finite and fixed by fitting some phenomenological observables. The effectiveness of the
interaction is reflected by the presence of a dimensionful coupling constant, which renders
the model nonrenormalizable. Thus we will adopt a regularization scheme to completely
define the model, which physically implies disregarding the contribution of high energy
processes.

In this thesis we will be interested in the effect of an external uniform magnetic field
on some of the properties of QCD matter. We will therefore outline the impact that such
field has over the symmetries of strongly interacting systems and the properties of charged
particles, which are quantized in the directions perpendicular to the applied field. In this
regard, the NJL model can be easily extended to account for the influence of external

parameters, such as electromagnetic fields, temperature or chemical potential. Thus we
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will lastly describe the magnetized NJL model at the mean field level approximation,
paying particular attention to the role of the regularization prescription in this context.

Its application on the calculation of hadron properties will be discussed in future chapters.
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2.1 General aspects of QCD

At a fundamental level, QCD is formulated in terms of quarks and gluons, represented
through fermion and gauge boson fields, respectively. The Lagrangian density which

describes the dynamics of these fields along with its interactions is [3]

- 1
Loco = & (i~ 1)~ § GIGy, | (21)

where we use for the Minkowski metric the convention (1, —1,—1,—1). The covariant

derivative is defined as

R P
D, = au—zgs?Gu, (2.2)
and the gluon field strength tensor reads
Gy, = 9,Gy — 9,G5 + go GG, . (2.3)

The 1) field represents quark states, including the corresponding internal degrees of freedom
of color and flavor. There are three color states and, for the full theory, six flavor states.
These states are described through a tensorial product between both spaces, resulting in
18 spinors. The mass matrix is given in flavor space by 1 = diag(m,,, mq, ms, me, my, my),
with m, >~ mg. Also, gs is the coupling constant of QCD, while G, is the set of massless
gauge fields associated to the gluons. Here a = 1,...,8 and \* are Gell-Mann matrices,
which satisfy

AN = 2if N Tr (A*\P) = 209, (2.4)

where f%¢ are the completely antisymmetric structure constants of the SU(3) group.
The ;E(mau — 1h)1) piece corresponds to the Dirac Lagrangian, which describes the
propagation of free quarks. This term is invariant under global transformations of the
SU(3). group, given by the group of unitary matrices with +1 determinant which act on
color space. Quark states belong to the (3-dimensional) fundamental representation of this
group, while gluons are in the (8-dimensional) adjoint representation. Since T, = \,/2 are
the SU(3) generators in the fundamental representation, we can write an arbitrary global

iTab® where § are the parameters associated to the generators.

transformation as U = e
In order for the Lagrangian to be invariant also under local transformations, i.e. 6%(z),
the partial derivative has to be replaced by the covariant derivative of Eq. (2.2), where

gluon fields transform as

a a 1 a aoc c
Gu—>G#—;8“9 — [0 G (2.5)
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Lastly, the Yang-Mills term G4"GY, of Eq. (2.1) describes gluon field dynamics in
the absence of quarks. It is formulated as a contraction of field strength tensors so as
to be invariant under Lorentz and color groups, mimicking the formulation of quantum
electrodynamics (QED). As in QED, the first two terms of Eq. (2.3) describe the field
propagation. However, in contrast to QED, invariance requires the addition of an extra
term gs f“chzG‘,j, due to the fact that the color group is non-abelian. This term represents
a self-interaction between gluons, which are coupled through three and four-line vertices.

As known, when studying a process in any renormalizable gauge theory, the inclusion
of successive Feynman diagrams in the series expansion can be rearranged so as to express
the final result in terms of a ‘dressed’” coupling constant, which depends on the transferred
momentum (). Consequently, the interaction will behave differently according to the energy
scale under study, where the exact functional dependence will depend on the details of the
interaction under consideration. In QCD, the self-interaction between gluons dramatically
modifies the running of the QCD coupling, as(Q). At 1-loop, it is given by

9:(@%) A

(@) = ir (11 — %Nf) In (QQ/A?QCD> 7 (2:6)

where Ny is the flavor number (six in QCD) and Aqcp is the scale parameter of the theory,
which can be determined by fitting experimental data at large () (where perturbation
theory is applicable). For five flavors in the MS scheme, one finds Aqcp ~ 200 MeV.
As can be seen from this expression, ay — 0 when ) — oco. This property, known as
asymptotic freedom, allows for the study of high energy processes through perturbation
theory. On the other hand, for low energy processes oy — 00, leading to the confinement
of quarks into colorless hadrons (and glueballs). The confinement mechanism has not been
satisfactorily understood yet. In particular, for @) below Aqcp we have oy > 1, precluding
the possibility of a series expansion in the coupling constant. Since the scale of hadron
binding energies lies below this threshold, the study of most hadronic properties must
be performed through nonperturbative methods. Some of the most common approaches
include simulations in lattice QCD or the development of semi-analytic effective models
such as the one used in this thesis, i.e. the NJL model.

It is important to note that, as a consequence of the confinement phenomenon in the
vacuum phase, quark masses are not physical observables. Therefore, when quark current
masses are used as input parameters of the model, their values are subject to a variable
range because they depend on the renormalization scale of the theory. The determination
of quark current masses can in fact be performed within certain precision degree by several
approaches in the M S scheme, resulting in scale dependent quantities. These approaches

include Lattice QCD, sum rules, chiral perturbation theory and heavy quark effective
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2.1. General aspects of QCD

theory. From them it is concluded that up, down and strange quarks are light flavors,
with masses below Aqep [172]. For the low energy properties we will study in this thesis
this is the relevant flavor subspace, since we will study the effect of external magnetic

fields on light hadron properties for scales below the charm quark mass.

2.1.1 Transformation properties in flavor space

In this subsection we will study the properties of the QCD Lagrangian under trans-
formations in quark flavor space. For massless quarks, Lqocp is invariant under global
U(Ng)p x U(Ng)r = U(Ng)y x U(Ny) 4 transformations, given by

UNp)y : = ™% ) U(Np)a : th — eimmb g (2.7)

which correspond to vector and axial transformations, where 7, with 0 < a < NJ% — 1 are
the generators of U(Ny). This invariance is known as chiral symmetry, and leads to the

conservation of the following currents

VI = gy Al = Yyt (2.8)

The associated conserved charges QY# serve as generators of the corresponding symmetry
transformations. Since 7 is proportional to the identity, each U(Ny) subgroup can be
expressed as the product U(Ny) = U(1) x SU(Ny). The U(1)y and SU(2)y groups are
associated to the conservation of the baryon number and isospin, respectively. On the
other hand, axial transformations alter the parity associated with a given state. Even
though U(1) 4 is a symmetry of the classical chiral Lagrangian, it is broken when the theory
is quantized. This is due to the fact that the integration measure in the corresponding
path integral does not remain invariant under such transformation. This phenomenon is
known as axial anomaly [173, 174]. Experimentally, this is evidenced by the fact that one
does not observe opposite parity partners to all hadrons, and also manifests in the rather
heavy 1’ meson mass.

It is important to recall that, in general, there is more than one way in which a given
symmetry of the Lagrangian (such as chiral symmetry) can manifest itself. The crucial
distinction between different modes lies in the vacuum structure. In the Wigner-Weyl mode,
the vacuum is also invariant under such symmetry. The ground state is nondegenerated,
and therefore an eigenstate of QY. The spectrum of all eigenstates splits into degenerate
multiplets of the symmetry, corresponding to irreducible representations of the symmetry
group. On the other hand, in the Nambu-Goldstone mode the vacuum is modified by the

interactions, and may only be invariant under a subgroup of the original symmetry group.
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2.1. General aspects of QCD

This phenomenon is dubbed as spontaneous symmetry breaking. Each broken generator
creates a massless excitation which is degenerated with the vacuum, known as Goldstone
bosons. This is the content of Goldstone’s theorem.

For massive quarks, the conservation of the currents defined in Eq. (2.8) is lost. We

have
OV = 2 [, T, O A = 29 {1, Ta} Y51 . (2.9)

However, chiral symmetry is still a useful concept if we restrict to light quarks, because
the breaking of the symmetry is small by virtue of the small current masses. We say it
is approximately conserved. The light quark subspace includes the up and down sector
(Nf = 2), and even, although with larger deviations, when strange quarks are included as
well (Ny = 3).

For Ny = 2 we have m, ~ mq = m, # 0 and m ~ diag(m,,mq) ~ m.1. As a
result, the vector current is conserved to a good degree of approximation, realized in the
Wigner-Weyl mode. This is experimentally evidenced by the degeneration in the masses
of baryonic and mesonic isospin multiplets, as well as the existence of approximately
conserved currents in processes dominated by the strong interaction.

In contrast, experimental and theoretical evidence indicates that SU(2), symmetry is
realized in the Goldstone mode. Since the charge operators Q2 alter the parity of states,
the realization of this symmetry in the Wigner-Weyl mode would imply that for each
isospin multiplet there exists another degenerated multiplet with opposite parity, which is
not observed in Nature. In addition, hadronic masses are much heavier than current light
quark masses, implying the existence of a dynamical mass generation mechanism, which
in turn provokes the breaking of the symmetry. These observations suggest that axial
symmetry is broken dynamically. In this frame, the Q2 generators of the broken symmetry
create an isospin triplet of pseudoscalar Goldstone bosons, which can be identified with
the pions. This idea is supported by the fact that the components of the pionic triplet
have an exceptionally low mass in comparison to other hadrons (m,/my =~ 0.15). Their
small but nonvanishing mass arises due to the explicit symmetry breaking produced by
current quark masses, as seen from Eq. (2.9). Analogously, the pseudoscalar meson octet
corresponds to the Goldstone bosons of the three-flavor case. The aforementioned axial
anomaly is reflected by the relatively heavy 1’ meson, which should be much lighter (lighter
than the 7 meson) if it were a Goldstone boson of a spontaneously broken symmetry.

The spontaneous (axial) symmetry breaking of the QCD vacuum and the subsequent
generation of a dynamical mass is closely related to the existence of nonvanishing conden-

sates, formed as bilinear products of quark and gluon fields. A relevant one is the chiral
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2.2. NJL model in vacuum

condensate, defined as the expectation value @;/J), which can be expressed as

o) = =i [ 2 Mo S0 (210)
(2m)* e 7

where S(p) is the quark propagator from the full QCD Lagrangian, and the trace is taken
over Dirac, flavor and color space. Since the operator 1) is not invariant under SU (2) 4
transformations, it serves as an order parameter for signaling chiral symmetry breaking.
A nonvanishing expectation value would indicate that the QCD vacuum is realized in the
Goldstone mode of the axial symmetry. Current theoretical estimations for the chiral
condensate suggest that this is effectively the case. For example, according to calculations
based on current algebra and QCD sum rules one has |(ff)[*/? = 190 — 260 MeV [175],
where f represents u or d flavors. Meanwhile, typical simulations performed in lattice
QCD provide |(ff)['/? =231 £ 846 MeV [176].

2.2 NJL model in vacuum

In this thesis we will use NJL effective-type models to calculate several hadronic properties.
The main idea behind the model is to respect the flavor symmetries of QCD discussed
in the previous section, particularly chiral symmetry and its dynamical breaking. In the
NJL model, one argues that the interaction between quarks and antiquarks, which arises
from some complicated processes of gluon exchange, can be attractive. Gluon degrees of
freedom are assumed to be frozen in the low-energy and long-wavelength limit. Then,
similar to Fermi’s theory of the weak interaction, the gluon interaction between quarks is
modeled as an effective four-point (or more) fermion interaction, see Figure 2.1. These
interactions can be thought of to be abstracted from instanton-induced interactions [173,
174].

Since the fundamental quark currents in QCD are color vector currents Jjj = QZ%T @,
one can start by considering the simple example of an interaction based on the local

coupling between two such currents.
- 2
Liw = g (PnT™) . (2.11)

This interaction is invariant under chiral U(3)y x U(3)4. It can be though of as abstracted
from the QCD Lagrangian by converting the original gauge symmetry SU(N,) into a
global symmetry of color quark currents. By Fierz transformations, this interaction can
be rewritten so as to obtain color singlet and color octet terms [146]. In the color singlet

channel, new scalar, pseudoscalar, vector and axial-vector interactions appear in flavor
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q q
q G q
low energy = L
q q
q q
a) b)

Figure 2.1: Low energy approximation of a nonlocal current-current interaction with a nonper-
turbative gluon propagator (a) by a local NJL-type interaction (b). Figure adapted from [177].

space, with the quantum numbers (flavor and spin) of the various meson nonets. Similar
transformations can be performed for the color axial current. Inspired by this observation,
one can construct several four-point interaction terms which are invariant under (global)
SU3)e x U(1)y x SU(Nys)y x SU(Ny)a [145].

In its simplest form, the two-flavor NJL. Lagrangian in FEuclidean space is given by
a combination of a scalar-isoscalar (Lorentz and isospin invariant, respectively) and a

pseudoscalar-isovectorial current

Lo(, ) = (@) (=id + me) ¥(2) = G { (D)) + [&(m)z'ww(x)f} o (212)

where ) = (¢, , ¥q)" and @ = 7,04 + 7 - V, with ~4 = io. Moreover, G is the effective
coupling constant and m, are the up and down current quark masses, which we will assume
equal in this thesis. These are model parameters which have to be fixed by fitting physical
observables. It is common to use as observables the pion mass and decay constant, which
can be relatively easy calculated within the model, as we will show below.

The connection between Minkowski and FEuclidean space is given by a Wick rotation.

Starting from the generating functional
z = / DyYDy et e LWw) (2.13)
and making the complex rotation [178] 2, = iz® and x; p = 2" for i = 1,2, 3 we obtain

Z = / DD e~ | Ao L) (2.14)
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2.2. NJL model in vacuum

Figure 2.2: Graphical representation of the transformation from fermionic to semibosonized
interactions.

where Ly = —L(2° — —iz,). This is the reason why the sign is inverted between the
Dirac Lagrangians of Eq. (2.1) (Minkowski) and (2.12) (Euclidean). The Euclidean action
serves as a starting point to build an analogy between Euclidean quantum field theory and
statistical mechanics. Note that in Euclidean space we use the convention {~,, 7, } = —20,,.

We will omit the Euclidean subindex E in what follows to simplify the notation.

2.2.1 Bosonization formalism

In order to calculate meson properties we resort in what follows to the bosonization
formalism [145, 146, 177, 179]. There, quark degrees of freedom, which are not observed at
low energies, are integrated out and replaced by meson fields, which represent the physical
excitations in that regime. We will exemplify here the two-flavor case.

The idea consists of rewriting the interaction piece of Eq. (2.12) in terms of bosonic
fields which represent the scalar and pseudoscalar mesons o(z) and 7(x), respectively.
Following the procedure described in Appendix A, one arrives at the semibosonized

generating functional
Z = / Do D7 / DYDY eS¢ e [ dwlo@+7@)°] (2.15)
The fermionic field contribution has been grouped under the single term
Sy = / Az d'a’ D(z) Dz, 2') (), (2.16)
where the fermionic operator D is given by
D(x,2') = 0Dz — ') [=id + me + o(x) + ins 7+ ()] - (2.17)

A direct product to an identity matrix in color space is understood. Diagrammatically,

the procedure corresponds to the rearrangement of the four-point fermionic interaction
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2.2. NJL model in vacuum

into Yukawa-type quark-meson vertices, as illustrated in Figure 2.2 [177].

Since so far the bosonization procedure is exact, the semibosonized Lagrangian possess
the symmetries of the original one. Chiral symmetry of the two-flavor NJL model (2.12) is
realized in meson field space as the rotation group O(4), which leaves the “length” of the
particle vector (o, 7) invariant. Hence, all effective potentials of this model depend on the
single variable /o2 + 72. It should be noted that, so far, the auxiliary fields o and 7 are
not dynamic, since no kinetic term of the form 9,00,0 + 0,70,7 appears in Eq. (2.15).
However, when quark degrees of freedom are integrated out their effect is exerted through
quark loops, which dress the boson fields allowing them to describe physical mesons. Both
bosonic fields carry the quantum numbers of the composed operators (¢1)) and (1iys7v),
but not their color [180].

In order to completely bosonize the Lagrangian, quark degrees of freedom can be
integrated out in terms of a fermionic determinant [178]. Using the property IndetD =

TrInD, the generating functional reads
Z = / Do D7 e~ o) (2.18)
where the bosonized action is given by [145]

(2.19)

Spos(o, ) = —Tr lnD+/d4x lM] )

4G

The functional trace is taken over coordinate !, Dirac, color and flavor space. Note that
expression (2.18) is completely equivalent to (2.14).

Now, in models where spontaneous symmetry breaking occurs, meson fields can, in
general, develop nonvanishing mean field (MF) values. Due to translational invariance,
o(x) has a translationally invariant MF value &, while the pionic MF value vanishes in
order to keep the vacuum parity invariant. Expanding the mesonic fields in powers of

fluctuacions around their corresponding MF values
o(z) = o+ do(z) , 7(z) = o7(z), (2.20)

we have
D(z,2") = Dyp(x,2") +6D(x,2') . (2.21)

The MF piece is given by

Dyr(z,7") = 6W(z — ) (—2&9 +m, + 6) : (2.22)

In coordinate space the functional trace is defined as Tr = [ d*z d*z’ §® (z — 2’), being analogous for
momentum space.
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2.2. NJL model in vacuum

where an identity matrix in color and flavor space is understood. From Eq. (2.16) we
see that the inverse of this operator Syp(z,2’) = [Dye(z,2')] " is the quark propagator.

Transforming to Fourier space, it can be expressed as

Suue (2, 2) :/ G S(g), Slq) = —— (2.23)
q

where we have introduced the shorthand notation

/q _ / %. (2.24)

We can therefore identify the dressed quark mass M = m,. + o, where we explicitly see
that the dynamical generation of the mean field & is responsible for the breaking of chiral
symmetry.
On the other hand, the second term on the right-hand-side of Eq. (2.21) reads
§D(z,2') = 6W(z — ') (5(7(@% Meomala) Vs .57r+(x) ) , (2.25)
V2ivs 67~ (z)  do(x) — iys0mo(w)

where 7% = (7, F i) /v/2. Replacing in the bosonized effective action and expanding in

powers of the meson fluctuations around the MF values, we get
—IndetD = — TrInDyy — Trin(1+ DL dD)

= —TrInDyp — Tr (Syr 6D) + %Tr (Sur D) + ... (2.26)

where Syp(2,2') = [Dye(z,2')] " is the quark propagator. The linear term vanishes and

the action can be symbolically written as

Ghos — ghos 4 ghos 4 (2.27)

qua

2.2.2 Mean field approximation

The zero order contribution in Eq. (2.27) gives the mean field approximation, where all

fluctuations are neglected. The MF effective potential reads

bos =2
v 1

Qe = V@ T 4G V@

Trln Dy (z, 2') . (2.28)

In order to proceed we diagonalize by transforming to momentum space, so as to take the

logarithm of the eigenvalues. It can be shown that the Fourier transform of an arbitrary

36



2.2. NJL model in vacuum

operator is

!

O(x,2') = / e O(q,q) e
a9
0(q,q) = /d4x d*z' e7 Oz, ') e (2.29)

Actually, instead of calculating the trace of Dy (z,2), it will be more convenient to
square this quantity. From the cyclic property of the trace, we can multiply left and right
by 7s, since 72 = 1, to obtain

1
Trin Dyy(z,2') = 5 Trin Az, 2'), Az, 2") = 6W(z —2) ((‘?2 + MQ) . (2.30)
Applying the transformation (2.29), this operator is diagonalized in Fourier space as

Alg,d) = 2m)* 69 (g —¢) (¢ + M) , (2.31)

2

where we have used that g2 = —q°. Since the logarithm of a diagonal matrix is also

diagonal, transforming In Dy (z, 2") to Fourier space through (2.29) we arrive at

N.N ’ o
Trln Dy (2, 2') = 5 ! TrD/d4x d*a’ 6@ (z — ) / e’ In[A(q,q")] e """
a9
N.N
= = I Trg / d*x / In (¢* + M?) . (2.32)
q

Finally, the MF free energy is

. (M_mC)Q 2 2
Que = —2N0Nf/q In (q +M) . (2.33)

The physical value of M is given by the one which minimizes the free energy. This

results in the gap equation
M = mq+2GTr Syp(r,2') = m,+2GMN NI} . (2.34)
where we have defined the I{ (divergent) integral

1
=4[] —— . 2.35
1 /q q2+M2 ( )

Since in this thesis we will be interested in the effect of external magnetic fields, and we

will use a regularization scheme where this B = 0 contribution is regularized, we have

37



2.2. NJL model in vacuum

added a zero superscript to identify this function with the B = 0 case for later convenience.
For a sufficiently strong coupling G a nontrivial solution M # m, is allowed, even in the
chiral limit m,. — 0, producing a gap of AE = 2M in the quark spectrum. In general,
the gap equation possess more than one solution. The physical solution will be the one
which minimizes the free energy. It is worth remarking that there are alternative methods
to derive the gap equation, such as linearizing the quadratic terms in the Lagrangian of
Eq. (2.12).
A closely related quantity is the quark or chiral condensate, defined as
- 0 M —m,

1 /
(P)) = — = e = T Tr Syr(z,2') = —MN.N; I} . (2.36)

where in the third equality we have made use of the gap equation. Note that this is the
average quark condensate, i.e. (1)) = ((au) + (dd))/2. In this B = 0 case, (uu) = {(dd).
A nonzero quark condensate tells us that the vacuum is filled with quark-antiquark pairs.
Equivalently, the gap equation can be written as M = m, — 2G{y¢)). Thus, M (or &)

servers as an order parameter to determine in which mode the symmetry is realized.

2.2.3 Meson masses

In order to obtain a phenomenological description of mesons, it is necessary to study the
theory retaining field fluctuations at quadratic order. From the expansion of Eq. (2.26)

we arrive at the quadratic action

1 ) 2407 (x)?
Sema = 5 Tt (Sur 0D)* + / d%[ o() 4+G () ] : (2.37)
where the operator product in coordinate space is defined as
0\0y(x,2') = / 3" Oy (x, ") O(a”, 7). (2.38)

Taking some of the traces and rearranging terms, we can express the action in the form

Shos | = % 5 [ ape l%&‘”)  Julz,a)| 6P() (2.39)
where the polarization functions are given by
Jo(x,2') = — 2N, Trp [Syr(z,2") L Syr (2, ) 1]
Jo(z,2") = 2N, Trp [Sur(z, 2") 15 Sur (2, ) 5] (2.40)
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In order to diagonalize the polarization functions, we introduce the Fourier transform

of the meson fields

dP(z) = / e §P(p) . (2.41)
p
Together with the transformation of the quark propagator in Eq. (2.23), we obtain

Sima =5 3 [ 0PCD) o5 - Te)] 670, (2.42)

P=o,7

where

J,(p) = — 2N, /TTrD [S (7"—}—‘5)]15(7“—1—2?) ]l] ,
Jo(p) = 2N, / Trp [S (7“ + g) S (r . g) 75] , (2.43)

and r = (qf + qp)/2 is the average of the quarks momenta ¢ and g. Explicit calculation

leads to
To(?) = 2N, [+ (0 +4M?) 5(%)]
J=(p%) = 2N |1} +p* I(p°)] (2.44)

where I} was defined in Eq. (2.35) and

0/ 2y _ 1
80" = = | oA 24

It is worth remarking that the same result for the polarization functions can be obtained
iterating the four-point vertex in the Bethe-Salpeter equation for the mesonic propagator
within the random phase approximation [145, 181]. In that case, the pion mass is given
by the pole of the mesonic propagator. In our case, the two-point function, given by the
bracket term in Eq. (2.42), serves as an inverse meson propagator. Since the mass is

defined as the pole of the propagator, one is required to solve
1-2G Jp(p* = -m3) = 0. (2.46)

In the chiral limit m. — 0 it can be seen that m, = 0, in agreement with Goldstone

theorem.
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2.2.4 Pion decay constant

Since the pion is a pseudoscalar, its decay constant can be obtained from the matrix
element of the axial current between the vacuum and a one-pion state
T(l

(O D(@) 75 5 ¥(@) 7°(F)) = —ipu fre™ ", (2.47)

We will come back to this point in more detail in section 3.2. The left hand side of this
equation can be calculated within the NJL model by “gauging” the effective action. We
postpone the details to section 4.3, where the same procedure will be applied but in
the presence of an external magnetic field. It can also be deduced by translating the

corresponding diagram, see Refs. [145, 181]. One obtains

b s(. P s(. D 7’
fﬂpuaa = —Onqq / TI‘D,f,c |fs (T‘ + 5) ’757-(18 <T - 5) 7#755] 3 (248)
where ¢4, is the pion-quark-quark coupling constant, calculated as the residue at the pole
of the pion two-point function 1/2G — J(p), i.e. grgq = —0J:(p?)/0p*|p2=—p2. Explicit

calculation of the trace results in
.f7r = —Onqq 2NcM ]g(—mi) s (249)

where I9(p?) has been defined in Eq. (2.45).

Results from current algebra, such as the Goldberger-Treiman (GT) and Gell-Mann-
Qakes-Renner (GMOR) relationships, must necessarily hold as a consequence of the chiral
symmetry of the model. This can be explicitly demonstrated within the NJL model. Recall
that the chiral limit corresponds to m. — 0, which also implies m, — 0. In fact, explicitly

calculating g4, it can be seen that the generalized GT relation is satisfied [182]
f7r 9rqq = My, + O<mc) . (250)

The ch subscript implies that the chiral limit has been taken. Moreover, making use of
this relation together with the gap equation, the generalized GMOR relation [183] is also

obtained

2.2.5 Regularization procedures

So far, we have seen that the NJL model can be used to obtain a phenomenological

description of mesons, yielding results for several meson properties such as masses, couplings
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and decay constants. Moreover, it reproduces low energy relationships from current algebra.
However, in spite of these satisfactory results, the NJL (effective) model presents several

problems:

e It does not confine. This is a consequence of the fact that gluon degrees of freedom
have been frozen, as the purely fermionic version of the model cannot reproduce
a confinement mechanism. Formally, this is reflected in the fact that the integral
in I9(p?), and hence the polarization functions Jp(p?), get an imaginary part for
|p?| > 4M?. As a consequence, mesons with masses over 2M acquire a finite
width, indicating their instability to decay into a free quark-antiquark pair, which is
unphysical. Even though the pion is light enough to avoid this problem, the sigma
meson exceeds the limiting value if m, > 0. Moreover, if vector mesons are included,
it will depend on the parameter set whether their mases are above or below the
limiting value. In particular, for Ny = 3 the 7’-meson mass is generally over the
quark threshold, as well as axial-vector mesons. This is rather a feature of states
that lie high in energy with respect to the scale of the theory. It was assumed when
constructing the NJL model that, for low energy mass spectra and properties, the
role of symmetries overrides that of confinement, which is expected to affect the
high energy behavior of the theory. In order to deal with the lack of confinement,
especially at high temperature, in the literature this problem is usually treated
by including a coupling with the Polyakov loop [148-150], which serves as order

parameter of the deconfinement transition.

e It is not renormalizable. This is due to the way in which the gluon interaction is
modeled, namely as a local point vertex. A regularization scheme specifies a length
scale for the theory, which can be expressed as a cutoff on the quark momentum. One
may regard the cutoff as an approximate, if crude, implementation of the property
of asymptotic freedom of QCD: by suppressing the interaction between quarks for
large space-like momentum transfer, one simulates the behavior of the running
coupling constant of QCD. In the model, the nonrenormalizability is reflected in
the fact that calculated expressions contain divergent integrals, see e.g. Eqgs. (2.35)
and (2.45). Thus, one should specify how to regularize these divergences. The
prescription involves the manipulation of improper integrals and the stage at which
the regularization procedure is applied. For example, in order the reach the final
expressions (2.44) for the meson polarizations, one has to perform a variable shift
along the calculation, which is only valid if the momentum integrals go to infinity.
Once the cutoff is introduced the invariance is lost, so it has to be introduced at

the end of the calculation. Thus, it is the regularization scheme which determines
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the model, and not vice-versa. In the literature several regularization schemes exist,

cach with its own advantages and drawbacks [145, 179].

In this subsection we deal with the second problem, defining the regularization scheme
we choose for (most of) this thesis. A possible regularization consists of incorporating to
the divergent integrand a three-dimensional cutoff function fa(|p’|). The function depends
on the modulus of the spatial momenta and for high values of |7| it tends to zero fast
enough so that the integral yields finite. It also contains a cutoff value A with units
of energy which determines the scale beyond which the strength of interaction becomes
negligible. In the model, A is taken as an input parameter, usually between 0.5 and 1 GeV.

The choice of this regularization is based on several factors. Its main advantage lies
in its simplicity and the fact that it preserves the analytical structure. In addition, as
already mentioned, it qualitatively emulates the asymptotic freedom of QCD. Even though
it is possible to implement a Lorentz covariant treatment, applying a regulator which
depends on the four-components of the momentum, the noncovariance does not represent
an inconvenient since our objective is to work in magnetized mediums which already
explicitly break Lorentz invariance. The scheme also breaks gauge symmetry. However, as
discussed below Eq. (2.11), since in the NJL model the local color symmetry of QCD is
replaced by a global symmetry, this scheme brings no further complications. An important
aspect is that chiral symmetry and the Goldstone theorem are strictly preserved after
regularizing.

For the shape of the cutoff function, we choose a Heaviside step function, i.e. fo(|7]) =
O(A —|¢|). This physically intuitive regularization implies that all quark states with
momentum |7’| < A contribute equally to the vacuum energy, disregarding contributions
arising from higher momentum values. Performing the time component integral first, for
the regularized version of the I and I functions defined in Eq. (2.35) and (2.45) (denoted
by the ‘vac’ superscript) we get the well-known results [145]

1 M
0" = — |[AVA2+ M2+ M? 1 2.52
! 27r2l * + nA+‘/A2+M2]’ (2.52)
1 [t A M? 4 y(1 — y)p?
) = L / dy VM .
A2 o VA2 + M2 +y(1 - y)p? A A2+ M2+ y(1 — y)p?
(2.53)

Once the model has been regularized, we can obtain solutions for the dressed quark

mass M. To that end, is convenient to adimensionalyze the regularized gap equation

M
r / / / / 12
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Figure 2.3: Adimensional dressed quark mass M’ = M/A as a function of the dimensionless
coupling constant ¢’ = GA? NNy /w2, Chiral (red solid line) and nonchiral (black dashed line)
cases are shown.

where we have introduced the dimensionless quantities M’ = M/A, m! = m./A and
g = GA* N.N;/m*. The results are shown in Figure 2.3 for m. # 0 as well as for the chiral
limit. We see that the dynamical breaking of chiral symmetry depends on the strength of
the interaction. For m, = 0 there is a critical value g/, = 1, or equivalently g. = 72/(N.Ny)

for g = GA?, which separates two phases were the symmetry is realized in different modes:

o The Wigner-Weyl mode for g < g.. In the chiral limit the dressed mass vanishes, and
SU(2) 4 symmetry is restored. When m, # 0, chiral symmetry is explicitly broken.
However, it is approximately conserved due to the smallness of the current mass,

reflected by the fact that the value of M stays only slightly above m..

e The Nambu-Goldstone mode for g > g.. Here M > 0 even in the chiral limit, and
steadily increases with g. Quarks acquire a dynamical mass breaking SU(2) , symme-
try, leading to the appearance of Goldstone bosons which are massive (massless) in
the nonchiral (chiral) case. The behavior of M does not differ significantly between
the chiral and nonchiral case, since in this mode the effect of the current mass is

negligible.

As mentioned above, in this thesis we have (mostly) chosen a regularization scheme
based on the use of a three-dimensional cutoff step function. It is worth remarking that
other regularization procedures can be found in the literature. Within the usual NJL
model, covariant schemes include the use of four-momentum cutoff functions, regularization
in proper time formalism and the Pauli-Villars method [145, 179]. On the other hand,
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2.2. NJL model in vacuum

there exists a generalization of the model where local interactions are replaced by nonlocal
separable ones, which depend on the field values over coordinate (or momentum) space
and thus divergences are handled in a more natural way [152]. Even though some results
are improved in this version of the model, such as the recovery of a momentum-dependent

quark self energy [184], calculations become much more cumbersome.

2.2.6 Parameter fixing

In its simplest form, given by the Lagrangian of Eq. (2.12), the NJL model has three
parameters: G, A and m.. Note that for variants of the model with more interactions
(such as vector and axial-vector types), additional coupling constants are added. These
parameters must be fixed to completely define the model. Usually, this is done by fitting
phenomenological observables which the model can reproduce. The typically chosen
physical quantities are (1&1/1), m, and f,, whose fixed values are used to determine G, A
and m, by solving the regularized form of Eqs. (2.34), (2.46) and (2.49).

From these three observables, m, and f, are experimentally well-measured:
my= = 139.57039 £+ 0.00018 MeV, m, = 134.9768 £+ 0.0005 MeV and f, =
92.3198 £+ 0.0919 MeV [172]. For simplicity we will take m, = 138 MeV and
fr = 92.4 MeV hereafter. On the other hand, the quark condensate is not measured exper-
imentally. Nonetheless, its value can be estimated from several approaches. Calculations
based on current algebra and QCD sum rules set the range |(f f)|'/3 = 190 —260 MeV [175]
at a scale of 1 GeV, where f represents u or d flavors. A combination of QCD sum
rules and chiral perturbation theory yields 242 + 15 MeV [185] (also at 1 GeV). An
approach based on renormalization group equations also results in a large range of
170 — 310 MeV, which can be narrowed to 244 MeV when estimating the scale of the
theory as Aqep = 280 MeV [186]. Meanwhile, simulations performed in Ny = 2 + 1 lattice
QCD provide |(ff)|*/3 = 272 £ 5 MeV [187], at a higher scale of 2 GeV. We will take
variations of this parameter around |(i1))|'/3 ~ 245 MeV.

We have seen that the quark condensate is related to the dressed mass through the gap
equation, M = m, — 2G <77EQ/J> Thus, we can alternatively use M to refer to the parameter
set. Keeping in mind that the nucleon mass is My ~ 940 MeV and they are composed
of three valence quarks, the quark mass value can be estimated as My/3, suggesting the
approximated value M ~ 310 MeV. However, as the quark condensate, this quantity is
subject to certain degree of uncertainty. For the aforementioned estimated values of (1)),
compatibles values of M lie within the range 300 — 500 MeV.
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2.3. Uniform magnetic field

2.3 Uniform magnetic field

In this thesis we will be interested in the effect of an external uniform magnetic field
on hadron properties. Without loss of generality, we can set it in the 3-direction. The
background field breaks rotational symmetry into parallel and transverse field directions.
In Euclidean space (similarly for Minkowski space) we have SO(4) — SO(2), x SO(2),
with SO(2), and SO(2); corresponding to rotations in the x; — xo and x3 — x4 planes,
respectively. Moreover, up and down quarks cannot be considered as isospin symmetric
anymore due to their different electric charges. Chiral symmetry SU(2)y x SU(2) 4 x U(1)y
is broken explicitly to U(1)3 x U(1)3 x U(1)y, where the superscript 3 in the vector
and axial groups denotes the transformations generated by 73 and 7375, respectively. The
magnitude of isospin symmetry breaking is manifested e.g. in the difference between up
and down quark chiral condensates. Moreover, due to this reduced symmetry there is only
one true Goldstone boson, the neutral pion 7° (associated to 73). In contrast, charged
pions are massive even in the chiral limit.

Electromagnetic fields, as gluon fields, are coupled to quarks through the covariant
derivative

9, — D, = 3, —iQA,, (2.55)

where Q = diag(Q1, Q2, .., @n,) is the electric charge matrix which acts on flavor space,
with e > 0 being the proton electric charge. The corresponding QED Dirac Lagrangian in

Euclidean space is

Lo = Y(—il) + ). (2.56)

In the particular case of an external uniform magnetic field, we can disregard the pure

gauge term since it is constant. The Dirac equation for a particular flavor reads

(—id = QrA+myp); = 0. (2.57)

At this stage we choose the Landau gauge A, = d,2 Bz;. Then, the solutions of
Eq. (2.57) can be expanded in terms of the (Euclidean) Ritus spinor eigenfunctions [188-
190]

Ei(z) = > By, (x) Py Ay, (2.58)
A==

where

Bia) = N eltsmstuwasan) p, (5), (2.59)

q
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2.3. Uniform magnetic field

and

(47 By)7
Vn!

Here ¢ = (n,q2,qs,q4) collects the four quantum numbers needed to fully specify the

[ 2
Nn = y ﬁs = B_f (Bf xr1 — Spg) s Ps = (]_ — 57%0)11 + 5n,OAs . (260)

state. Note that gsx = (nsx, g2, g3, ¢1). Other definitions are in order: s = sign(Q);B) and
By = |Q¢B|; Ay = (1+ A\X,)/2, with 3, = iy'4?, are spin projectors in the magnetic
field direction with eigenvalues A = +1; n and ng, = n — (1 — s\)/2 are non-negative
integers, representing the Landau and orbital Landau levels respectively; and D,,(x) are
the cylindrical parabolic functions.

The corresponding eigenfunctions fulfill the orthogonality and completeness relations

i E(z) Eg(x')* = 5(4)(x — '), /d4$ E(z) EZ,(x)" = dqq/ Py, (2.61)

q

where we have introduced the shorthand notation

dgodqsd A /
i Z CJ2 q3 L by = (@) Gnw 02— 08) 8(gs — ab) (g — ) - (2.62)

q

Moreover, they satisfy (@ — iQ.A)> Ef = (2nBf + ¢3 + ¢7) E, leading to the energy
dispersion relation
Ei(B)* = —qi = m}+2nB;+ ¢ . (2.63)

As seen, in the presence of a uniform field the momentum of charged particles in the plane
perpendicular to B is quantized in discrete states known as Landau levels (LL). These
are characterized by a non-negative integer n which represents the total quantum angular
momentum. For fermions, n is given by a combination of orbital angular momentum and
spin. Since ngy > 0, at the lowest Landau level (n = 0) the spin points only in the A = s
direction. This information is codified in the projectors P;. All other energy values are
degenerated with respect to the two spin orientations in the field direction. Moreover, all
values of the squared perpendicular momenta g7 + g5 which fall between two successive
Landau levels coalesce into a single level. The number of these levels, i.e. the degeneration,

is given through integration in polar coordinates by [51, 191]

S By
— [ dpidpy = ——F—— 2.64
(Qﬂ)z/ P1dp2 (1—|—5n70)7rs’ (2.64)

where S is the area of the orbit in the x — y plane.

It is worth remarking that, from the four quantum numbers ¢ needed to label the
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2.3. Uniform magnetic field

particle-state, only three of them appear in the energy dispersion relation. This is a
reflection of gauge invariace, since the remaining number is a gauge-dependent quantity.
In our case this number is ¢o, associated to translational invariance in the 2-direction

present in the Landau gauge.

2.3.1 Magnetized NJL model in mean field approximation

The NJL model has become a popular analytic model in part due to its flexibility, since
it has the nice property that it can be easily extended to include the effect of external
parameters, such as temperature, chemical potentials and magnetic fields. In the presence
of an external uniform magnetic field, one can proceed in general grounds as before,
bosonizing and expanding the fields as fluctuations around their MF values. In this
subsection we will perform the mean field approximation, deferring the calculation of
hadron properties to forthcoming chapters.

The Euclidean Lagrangian density for the NJL two-flavor model in the presence of an
electromagnetic field is simply obtained by replacing 9, — D, = 0, — z’QAM in Eq. (2.12),
where Q = diag(Qu, Qq) with Q, = 2¢/3 and Q, = —e/3. Recall that we are considering
the particular case of an uniform magnetic field B along the positive 3-axis described
through the Landau gauge, A, = 0,2 Bz;. We proceed as in the vacuum case; the
fermionic action is bosonized introducing (o, 7') meson fields, and then expanded in field
fluctuations around their MF values ¢ and 7, = 0. In fact, the calculation is exactly the
same, leading to the free energy of Eq. (2.28). The only difference lies in the derivative

inside the flavor-diagonal MF fermion operator in Eq. (2.22), which is now covariant
Dyr(w,2') = 6D (w—a') (i) + M) . (2.65)

The mean field quark propagator Sy is given by the inverse of (2.65). Since Dy is
flavor-diagonal, so is Syr. As is well known, its explicit form can be written in different
ways [52, 53]. For convenience we take the form in which it is given by a product of a

phase factor and a translational invariant function, namely
-1 . , . N o=
Shilwa') = [Dhplaa)] " = et [t 51(q), (2.66)
q

for each flavor.

The breaking of translational symmetry, induced by the gauge choice, is manifested
in the presence of the so-called Schwinger phase ®¢(x,2') = QrB(x1 + ) (22 — x4)/2,
which also comprises the gauge dependence of the propagator. We express S/ (¢) in the
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2.3. Uniform magnetic field

Schwinger form [52, 53]

S(q) = / dr e ™™D L (M — qiy) [1 4 is 1y tanh(rBy)] — % . (2.67)

0 cosh”(7By)
Since the magnetic fields breaks rotational symmetry, we have accordingly collected
“perpendicular” and “parallel” contributions in separated vectors: 7, = (71,72) and
Y = (73,74). Similarly, ¢ = (¢1,¢2) and ¢ = (g3, q4). Moreover, we have defined the

function
tanh(7By) ,

Ti(r,q) = M*+qi + 5, q — e, (2.68)

where the limit € — 0 is implicitly understood. Notice that the integral in Eq. (2.67) is
divergent and has to be properly regularized, as we discuss below.

In order to obtain the gap equation, we proceed as before by diagonalizing Dy in the
free energy (2.28), so as to take the logarithm of the eigenvalues. However, the Fourier
transformation is not convenient now due to the breakdown of translational invariance
(induced by the gauge choice). As seen before for the Dirac Lagrangian, in a magnetic
field the corresponding eigenfunctions are the Ritus ones. Theferore, to diagonalize the
fermion operator one has to transform to Ritus space. It can be shown that the Ritus

transform of an arbitrary operator is

O(z,7') = i E:(2) Opg B ()" |

a,q’
O = /d4x d'a' B (x)" O(x, ') B2 (2') (2.69)
The eigenfunctions satisty )’ Ef(z) = e Eg(x), with eigenvalues e; = ¢f 4 2nBy.
Again, instead of Dy it will be more convenient to deal with the A,;z operator defined
in Eq. (2.30), replacing d, — D,. Applying the transformation (2.69) and using the
orthogonality relation (2.61), in Ritus space this operator reads

Az = /d4x d*a E? ()" §W(x — ) (Eq + M2> Efj,(x’) = S(M/Pj (Eq + MQ) , (2.70)

which is diagonal as expected. Since the logarithm of a diagonal matrix is also diagonal,
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2.3. Uniform magnetic field

transforming In Dy (z, 2’) to Ritus space through Eq. (2.69) we arrive at

TrIn Dyp(z,2') = % > TrD/d4a: d*a’ 6@ (z — ) i E(x) In(Agq ) E (2')"
f

aq'

_ e Z TrD/d x Zjﬂzs Ej(x)" In (& + M?) (2.71)

Since the eigenvalues do not depend on the gauge-dependent coordinate ¢o, we can integrate

in that variable and then take the Dirac trace, using

21 g

d
/ Y o) Ex(a) = BiP,  Tep P = 22— 6,0). (2.72)
Finally, the magnetized MF free energy is [145]

(M =m.)? dgsdq, )
O = 7 = NZ - / T In (g +2nBy + M?) . (2.73)

Since TrIn Dy = Indet Dy, the same result can be obtained exploiting the fact the
determinant is the sum over the eigenvalues, taking into account the corresponding
degeneracies.

Minimizing the free energy with respect to M and using the Schwinger parametrization

to move to proper time representation, we obtain the gap equation

L, + 13
M = me +2G Tr Sup(x,2) = my, +4GMN, < ; 1d) , (2.74)
where B oy
_ f < —zM?2
I = 4_772/0 — e coth(zBy) (2.75)

is a divergent integral. The contribution from each flavor arises independently because the
magnetic field differentiates between particles of different charges.

On the other hand, at the MF level the chiral condensate for each flavor is given by
s

¢f = <ff>B = _5mf

N,
- - T [ @ Sl = —NMI.(276)

2.3.2 Regularization scheme in the presence of a magnetic field

As we have seen, when a background magnetic field is introduced the vacuum energy
acquires a LL structure, and additional care is required in the treatment of the divergences,

such as the momentum integral of Eq (2.75). In the literature, a widely used choice to
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2.3. Uniform magnetic field

regularize such divergences is the introduction of regulating functions of the form hy(Q),
with @ = \/2nBf + p3. The form of these cutoff functions include Lorenztian [168, 169,
192-197], Woods-Saxon [154, 170, 198-200], Gaussian [201-203], Fermi-Dirac [204-206],
3D [207-209] and 4D cutoff regularizations. Unlike the B = 0 case, where there is a
single divergent integral, the sum over Landau levels implies a regularization for each
integral and for each flavor state, so it is natural that the regulator depends on the energy
through these quantum numbers. An example which highlights the importance of a correct
regularization procedure is the calculation of thermodynamical quantities. Since several
thermodynamic quantities involve derivatives of the thermodynamic potentials, they are
strongly dependent on the regularization and can lead to the existence of unphysical
oscillations, leading to unreliable results. This is particularly dramatic when studying color
superconducting phases in dense magnetized mediums, since these unphysical oscillations
can be easily confused with actual de Haas-van Alfven oscillations [210, 211].

A nice review on the importance of the regularization prescription can be found in
Ref. [212]. There, the authors compare the NJL average and difference condensate against
lattice results for all regularization schemes found the literature: form factors, proper
time and Pauli-Villars. When all form factors are considered, it is clearly seen that the
magnitude of the nonphysical oscillations is proportional to the sharpness of the regulating
function, in agreement with previous studies [194, 207, 213, 214]. For some of these sharp
functions, a reasonable agreement with lattice results is only found for small magnetic
fields, eB < 0.3 GeV? [73]. On the other hand, the use of a too smooth function leads to
values of the average quark condensate which are quite above the phenomenological range.

One possible scheme where these unphysical oscillations are completely removed is
the ‘magnetic field independent regularization’ (MFIR) scheme. The idea is to avoid
the magnetic dependence in the regularization by regularizing only the vacuum, where
one has more control over the model and we have seen that some meson properties are
recovered. To that end, one simply adds and subtract the B = 0 limit of the corresponding
divergent integral, separating the integral into vacuum and magnetic pieces. The magnetic
term is finite, and only the vacuum term needs to be regularized by implementing one of
the aforementioned regularization schemes; these include form factors, proper time and
Pauli-Villars. When the calculation is performed using the LL representation of the quark
propagator, the finiteness of the magnetic term in the free energy can be elegantly proven
following the steps of the dimensional regularization prescription of QCD, performing the
sum over all Landau levels [215]. On the other hand, the proper-time formalism is more

convenient for this scheme since the B — 0 limit can be easily taken [216]. For example,
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2.3. Uniform magnetic field

the limit of I in Eq. (2.75) is

1 [=d )
0 = /0 9% gmaM? (2.77)

472 22

which, as expected, coincides with Eq. (2.35) when one goes back to the momentum repre-
sentation. As a drawback, this formalism is not available in the nonlocal generalizations
of the model, where the effective mass depends on the momentum.

In the aforementioned review of Ref. [212], it is seen that for the MFIR scheme the
unphysical oscillations are effectively removed from the condensate for all types of form
factors. Moreover, the use of the MFIR scheme tends to provide condensate values which are
in closer agreement with lattice QCD calculations, as compared to non-MFIR schemes such
as the magnetic dependent proper time [100, 164, 203, 217, 218] and Pauli-Villars [153,
219-224] regularizations. The authors conclude that, from for all the regularizations
considered, the noncovariant 3D-cutoff, the covariant 4D-cutoff and Pauli-Villars are
the ones that better describe the lattice results. Apart from the condensate, the MFIR
scheme has also been shown to avoid unphysical oscillations for other quantities in the
context of magnetized quark matter in the presence of color superconductivity, thus
avoidining the misinterpretation of unreal van Alphen-de Haas transitions [206, 207, 225,
226]. An improvement within the MFIR scheme was recently suggested in Ref. [163] for
the calculation of many mean-field observables. However, this modification is not relevant
for the quantities we will study in this thesis, namely quark condensates, hadron masses
and pion decay constants, so we can safely omit it.

In order to implement the MFIR scheme, we add and subtract the B = 0 contribu-
tion (2.77) to the gap equation (2.74). Then, the divergent integral can be separated into

magnetic and vacuum pieces. After regularizing the vacuum term we obtain
LP = I+ 0. (2.78)

For a sharp 3D cutoff, I* is given by Eq. (2.52), while the finite magnetic contribution
can be written as [212, 227]

)
mag 1 @ 67ZM2

1
= By coth(zBy) — -
v A { s coth(zBy) Z]

1 In2
1 ”] , (2.79)

By
= 53 [hlf‘(xf)—l—a:f— (xf—§> Inzy — 5

with x; = M?/(2By). Since the condensate is driven by the same divergent integral, the
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2.3. Uniform magnetic field

regularized version in the MFIR scheme reads

¢\}ac — _NCMII/aC

¢1}eg = qg‘}ac + ¢}nag ’ mag mag

(2.80)
For the NJL, in the case of a small coupling ¢’ < 1 the dynamical mass squared will be
much smaller than the magnetic field, M? < By. Then, for M < A there is a nontrivial

solution for arbitrarily small g even in the chiral limit, given by [100]

B .
M = ‘/_f e NNBG (2.81)
T

analogous to the gap obtained in BCS theory [51, 99, 101]. A nontrivial solution exits
in fact for all g, as shown in Ref. [99]. Thus, in contrast to the B = 0 case analyzed
in subsection 2.2.5, where chiral symmetry can be broken only for ¢’ > 1, the presence of
a magnetic field always leads to the generation of a dynamical mass, even at the weakest
attractive interaction between fermions. Moreover, the magnetic field enhances the gap,

and therefore the condensate, reproducing the familiar magnetic catalysis effect.
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CHAPTER

Leptonic decay of magnetized

charged pions

The objective of this thesis is to determine the effect that an external magnetic field has
over several hadron properties. Although we will mainly investigate their masses, another
important property we are interested in is the decay of pions, with particular focus on
the weak decay 7~ — [ + 1, (the effects are similar for 71). The details of pion decay in
the presence of a magnetic field are not fully understood yet, see Refs. [170, 171, 228] for
some approaches on the charged case. Thus, before considering a particular QCD-like
approach, in this chapter we will study the generalities of this decay in order to determine
which hadronic observables must be known in order to calculate the corresponding decay
width. These observables, such as masses and decay constants, will be calculated in the
next chapter for the particular case of the NJL model, allowing for an estimation of the
corresponding decay width.

The width associated to the decay 7~ — [ + 1 is proportional to the squared modulus

of the amplitude, which can be written in a general form as

(L AL ln) = — % cos / 22 (01 (x) 7 (1 — 75) dal@)m) x
(1, () 7 (L — ) o (2)]0) (3.1)

where Ly, is the usual axial-vector four-fermion effective weak interaction Lagrangian [229].
Here Gp = 1.1663788 x 107° GeV 2 is the Fermi constant and 6, is the Cabibbo angle,
related to the ud element of the CKM matrix by cosf, = V,q = 0.97373 [172]. While

the leptonic matrix element can be calculated using magnetized fields from QED, the
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3. Leptonic decay of magnetized charged pions

hadronic element involves (in the initial pion state) strong interactions in a low energy
regime, which can not be treated perturbatively. Instead, it can be parameterized in terms
of decay form factors, taking into account the Lorentz structure and the symmetries of
the theory.

First, we will obtain an expression for each involved matter field in the presence of
an external uniform magnetic field, necessary to calculate the matrix elements. Next, we
will show that the presence of the external field opens up the possibility for new decay
channels, reflected in the existence of new axial and vector decay constants which appear
when hadronizing the pion-to-vacuum matrix elements of quark currents. Taking into
account these new decay constants, we will finally calculate the partial decay width for the
magnetized 7~ — [ + v decay. Throughout this chapter we will work in Minkowski space
with metric convention g" = diag(1, —1,—1,—1), as well as €"23 = +1 for the totally
antisymmetric tensor ¢#¥“?. For a space-time coordinate four-vector we adopt the notation
z# = (2° 7). Results from this chapter are based on Refs. [230, 231].
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3.1. Matter quantum fields in the presence of a uniform magnetic field

3.1 Matter quantum fields in the presence of a uni-

form magnetic field

3.1.1 Gauge choice and quantum numbers

In this chapter we will study the effect of an external uniform magnetic field on the weak
charged pion decay 7~ — [ + ;. Without loss of generality, we take the field as oriented
in the 3-direction, B = B3, Moreover, we consider two gauge choices: the Landau gauge
(LG) and symmetric gauge (SG). The comparison between the results obtained with each
of these gauges will serve as a verification of the gauge invariance of our result. As briefly
mentioned in the previous chapter, in the presence of an external uniform magnetic field
the quantum numbers which define charged particle states differ from those in the absence
of the field. This is due to the fact that, in the plane perpendicular to B , the momentum
is quantized in Landau levels. Quantum numbers are given by the eigenvalues of operators
which commute with the corresponding Hamiltonian. We recall that if a physical quantity
has an associated quantum mechanical operator O, the field theoretical realization of this

operator is given by

O - /Vd% @) Ov() : (3.2)

where () is the corresponding particle field.

Some of these numbers are actually gauge-dependent. In order to specify them,
one has to choose a particular gauge. For charged pions and leptons it can be shown
that, in both gauges, the 3-component of the canonical momentum commutes with the
associated Hamiltonian (Klein-Gordon and Dirac, respectively). From the eigenvalues of
the Hamiltonian itself, it can be seen that the Landau level corresponds to another quantum
number, needed to completely define energy states. Regarding the third quantum number,
it is actually gauge-dependent. In the LG the 2-component of the canonical momentum
also commutes with the Hamiltonian, while for the SG the corresponding operator is the
canonical total angular momentum. It is worth remarking that even though the mechanical
momentum and the mechanical total angular momentum are gauge-covariant operators,
they do not commute with the associated Hamiltonians and therefore do not correspond
to conserved quantities [231].

Using Cartesian coordinates & = (2!, 22, 2%) in the LG we have
At = 52 Brt = DM = 0" +isB,a' 0"?, (3.3)

where s = sign(oB) and B, = e|B| for a particle of charge Q = oe, e > 0 being the

proton charge and o = +. In this gauge, the relevant quantum numbers of the charged
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3.1. Matter quantum fields in the presence of a uniform magnetic field

particles involved are the 2— and 3— components of the canonical momentum together
with the corresponding Landau level. For antineutrinos, they are the usual three Cartesian
momentum components.

On the other hand, for the SG we have A =B x /2. In this gauge it is convenient to

use cylindrical coordinates & = (pcos ¢, psin ¢, z3). The vector potential is then given by

At = %(COSQﬁ&“’Q —singdé*!) = DF=0"+i Sl;ep(cos ¢6"* —singp sty . (3.4)

One can define a complete basis of states of well defined energy by taking as quantum
numbers the Landau level, the 3-component of the canonical momentum and the 3-
component of the canonical total angular momentum j3. For antineutrinos, having zero
electric charge, we take k3, js and k. = \/(k')? + (k2)2, where k is the antineutrino linear
momentum.

The shorthand notation used for the quantum numbers and other related labels of the
7, [~ and y; particles in each gauge is summarized in Table 3.1. There, ¢, n, 2, and v
are non-negative integers, while j is an integer. To this set of quantum numbers one has
to add the polarization 7 = 1,2 of the charged lepton (we assume the antineutrino to be
purely righthanded). Notice that, although not indicated explicitly, the pion mass m - is
a function of the magnetic field B. The explicit form of the 77, [~ and v, fields will be

given in the following subsections.

3.1.2 Neutral pion and neutrino quantum fields

The expressions for neutral fields are not modified by the presence of the external magnetic
field. Thus, they can be written in terms of the usual creation and annihilation operators
of definite momentum states. Following the conventions given e.g. in Ref. [232], the neutral
pion field is given by

bur(z) = / (QW;Z%WO [a00(7) €77 + ap(F)! €77 (3.5)

where p = (Epo,p), with Eo = /m2, + |p|?. It is worth mentioning that, in the presence

of an external field, one could also take into account corrections leading to an anisotropic

dispersion relation [170]. The operators ao(7) and ao ()" satisfy the commutation rule

(ax0 (), amo (7)) = 2B (27)° 59 (5 — ). (3.6)
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Pion (77) Lepton (I7) Antineutrino ()
PM P’ ¢ k3
LL l n —
Energy \/mfr, + (20 +1)B, + (p3)? \/m? +2nB. + (¢°)? k? + (k3)?
Four-QN p=(Exr.p) q = (Ey,q) k= (B, k)

Landau Gauge

QN p= (L0 p") = (n,¢"¢") k= (kK2R

Diff. [dp, = 3 [ dp*dp? [di, =3 [dg*dg’ [dky, = [ dk'dk?di?
£=0 n=0

Deltas 6]545/ = (5@751 H (5(pi—pi/) (5(17,11 = 5n,n’ H 5(qi—q“) 6,} k= 6(3)(E—E/)
i=2,3 i=2,3 ’

Symmetric Gauge

QN p=(0,p°) i=(n,v,q") k= (ke k)
Diff. [dp, =5 [dp? [di, = > [dg* [dk, = > 27 [dk3dk, k,
£2=0 n,v=0 )=—00
33 33 Sy SkL-K|) 13 143
Deltas 515’1;/ = (Sg,g/ (51’1/ (5(}? —p ) 55’5/ = 5n,n’ 6v,v’ (S(q —q ) 57@,12’ = % kL 5(]€ —k )
J3 —s(0 —1) —s(n—v—1/2) 7—1/2

Table 3.1: Shorthand notation for particle quantum numbers. PM stands for parallel momentum,
QN for quantum numbers and LL for Landau level, while diff. is an abbreviation of differential.

On the other hand, the massless neutrino field can be written in the helicity basis as

dk . y y y
Uy (z) = / W;El (b (k. L) Uy (K, L) + dyy (B, R)' Vi, (x, K, R)] , (3.7)

where E,, = E; = \/k? + (k3)%2. In the expansion we have taken into account that
neutrinos (antineutrinos) are left-handed (right-handed). The corresponding creation and

annihilation operators satisfy

{0, (6, 1), by, (k' 1) = {duy (B, B, d (k' R)'} = 2B, (2m)° 6y

{bu (k. L), dy (B, R)TY = {dy, (K, L)1, b, (k' R)T} = 0. (3.8)

The definition of 0y , can be read from Table 3.1. Since neutrinos are neutral, the explicit

form of the spinors U,, and V,, does not depend on the gauge. However, they do depend
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3.1. Matter quantum fields in the presence of a uniform magnetic field

on the chosen coordinates. In the LG we have

v 9 . %

U, (x,k L) = e®u, (kL) V,,(z,k,R) = ¢*" v, (k,R) . (3.9)

where wu,, (l::, L) and v, (l;:, R) are the usual Weyl spinors

—k' 4+ ik?
o o 1 E + k?)
uy, (k,L) = v, (k,R) = ——| " . 3.10
(D) = ) = =z | (3.10)
0

On the other hand, for the SG

\/ El/l - k3 J](klp)

1 3 Lo
Uy, (2,k, L) = — i e7iBae’ k%) iy By + ke i (kp)

- : 3.11
0 (3.11)
0
EVZ — k? J](k]_p)
; | N e g
Vi, (2,5, R) = — (i) eilBan82) gmige | 70V B T 06 ) ERE
0

where J,(z) are Bessel functions of the first kind. In the SG it can be shown that the
eigenvalue of the canonical total angular momentum operator J; acting on a neutrino state
is 7V = —(; — 1/2), while for an antineutrino state one has ¥ = 7 — 1/2 [231].

Lastly, it is worth noticing that these neutrino spinors satisfy the orthogonality relations
/ &*r Uy, (v, k, L)' U, (x, K, L) = / &z V,, (. k, RV, (2,K', R) = 2B, (27)*6 1, ,
/d3x Uy, (x,k, L)V, (¢, K, R) = /d% V,(x,k, R)" U, (x, k', L) =0. (3.13)

3.1.3 Charged pion quantum field

The charged pion fields can be written as (see Table 3.1 for some shorthand notations)

0l0) = 05e @) = [ G [oe () B0 e ) @] 0
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3.1. Matter quantum fields in the presence of a uniform magnetic field

The operators satisfy the commutation relations
[0 (5), 45 (5')1] = 2B e (27)° B (3.15)

It should be noticed that, with these conventions, the creation and annihilation operators
turn out to have different dimensions from the ones usually defined in the absence of the
external magnetic field — see Eq. (3.6). In addition, the gauge-dependent Ritus-type basis
functions Bj(z) are solutions of the eigenvalue Klein-Gordon equation for a point-like spin
0 particle in the presence of an electromagnetic field

D,D" By(x) = — |E2% — (20 +1)B. — ()| Bi(x) . (3.16)

p

They can be chosen to satisfy
L@ = 0=y, [dB@BE = b G
D

where, similar to Eq. (2.62), we have introduced the shorthand notation

dp°d ) ,
yﬁ / DD = @) 0 — ") b (3.18)

For the LG we have

B;(x) = NZ e_i(Eﬂ"’xO_p21'2_p3$3) Dé(/BS) , (319>
where )
4 B,)1 2
Ny = % ; Bs = 5 (Bexl —8p2) , (3.20)

and Dy(z) are the cylindrical parabolic functions, with the standard convention D_;(x) = 0.
On the other hand, in the SG the Ritus-type basis functions read

. B.p?
B;(l’) _ o efz(Em107p3x) —is(l ¢R€z< 2p ) : (321>
where
b _z g, Be !
Ry,(x) = Ny, = e 2 L "(2), N, = / (3.22)

with L*(x) the associated Laguerre polynomials. In this gauge it can be shown that the
eigenvalue of the canonical total angular momentum operator J; acting on a charged pion

state is j§™ ) = —s(¢ — 1) [231]. Thus, we take y = 2 as the third quantum number.
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3.1. Matter quantum fields in the presence of a uniform magnetic field

Lastly, in order to define the decay width it will be useful to calculate the particle

number associated with the state |77(p)) = aq(p)7|0) in a gauge-dependent volume V,
nee = [ & 0158 @) (3.25)
VX

where 7% is the current density

30 (@) = i [fro ()10 re () — e (1) o ()] (3.24)

In absence of external fields, the usual normalization is p = n/V = 2E. When the
external field is present, the choice of normalization depends on the gauge. In the LG it is
convenient to consider an infinite cylinder of section S = L L3 lying along the 1-axis; then
Npgo = 2F 02w Ly L3. On the other hand, in the SG we consider a cylinder of infinite radius
lying along the 3-axis; then n,. = 2E,-47%Ls.

3.1.4 Charged lepton field

The charged lepton field can be written as (see Table 3.1 for some shorthand notations)

= 2 2W32El[b( DU g ) +d @) Vit )], (3.25)

7=1,2

where the creation and annihilation operators satisfy

{b(@,7),d(q", ™)'} = {b(g, " dg’ =)'} = 0. (3.26)

U (2,4, 7) = Bf(2) u' (@,7) . V" (2,4,7) = E;%(2) o7 (@,7) . (327)

q

—S1

where the spinors «;" and v; * are given in the Weyl basis by

) 1 (B, +my + 5,/2nB, 75 — ¢°13) () (3.28)
u Q7 T = T Y *
: 2E +my) \ (Ei+my —sv/2nBe 72 + ¢*r3) )
—8 (u ) 1 (El +m; — 5 \V/ 2nBe Ty — q3T3) &)(T) (3 29)
U q7 T = T ot Y *
: 2(E +my) \ — (B +my + siv/2nB. T2+ ¢°13) O
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3.1. Matter quantum fields in the presence of a uniform magnetic field

with @1 = —®® = (1,0)t and ®® = &1 = (0,1)f. They satisfy the relations

ST (g, ) o (g, T) = 57175[ —my, (3.30)

where ¢/ = (E;,0,—sy2nB.,¢*). In Eq. (3.27), EJ(z) and E;*(z) are Ritus spinor

eigenfunctions that satisfy the eigenvalue equation

i By (x) = ¢, B (x) = (i) ]EZ? (z) = [Bf —2nB. - (¢°)°] E§ (),
iPE;(2) = —¢  Bi(zx) = (iP) E%(x) = [E} —2nB, — (¢*)*) E5*(2) .
(3.31)
They can be written as
EY (@ Z B )P AN Z Bq_f’M P7SIAN (3.32)

where A* = (14+)X,)/2, with 3, = iy12, are spin projectors in the magnetic field direction
and B} (r) are the gauge-dependent Ritus-type basis functions defined in Egs. (3.19)
and (3.21) for the LG and SG, respectively. Moreover, we have used the shorthand
notation gs,x = (¢°, nsn, X, ¢°) where x is a gauge-dependent quantum number and n,\ =
—(1—s,A\)/2 is a non-negative integer index representing the orbital Landau level. In the
particular case of the lowest Landau level (LLL), n = 0, the relation ng, > 0 implies that
only one polarization state A = s; is allowed. This information is codified in the projectors
P = (1—0,0)1 + 9, 0A%. Therefore, we see that the structure of the lepton spinors in
Eq. (3.27) is similar to the neutrino one in Eq. (3.9) except that, for the coordinate piece,
instead of plane waves one has to use the Ritus basis due to the presence of the magnetic
field. Compared to charged pions, we see that both particles share the same scalar basis
functions Bg(x), as could be expected from the fact that the Dirac equation also satisfies
the Klein-Gordon equation. Nonetheless, the lepton has an additional Dirac structure,
codified in the spin-polarization projectors PSA*.
Similarly to the neutrino case, see Eq. (3.13), it can be seen that the lepton spinors in

Eq. (3.27) satisfy the orthogonality relations
/d?’x Uiz, ¢, 7) U (2, {, 7)) = /d3x ViU (2, g, 7))V e, ) = 2E,(27) 2054 Orr

/de Uiz, ¢, 7) V5 (2, §, 7)) = /d3x Vo, ¢, 7) Uz, §, 7)) =0, (3.33)
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3.2. Pion-to-vacuum amplitudes in the presence of a uniform magnetic field

and
/ B U5 (a6, 7) U (2, 77) = — / BV (2,4, 7) Vi (o, d, 7) = 2ma(27) S 0o
/ B T (2,4, 7) Vo' (5, ) = / BTV (i, 7) U (3,4, 7) = 0, (3.34)

where d; » can be found in Table 3.1 and & = (2°, —%). Moreover, as already stated in

Eq. (2.61), the Ritus spinor eigenfunctions satisfy relations similar to (3.17)

i E(x) By (') = 6@ (z — '), / d'z By (¢) Ej(2)” = b0 Py . (3.35)
q
The gauge-dependent quantum number y needed to complete ¢ was implicitly defined
in the basis functions B3 (x). We comment on it explicitly. In the LG, it is the 2-component
of the canonical momentum, y = ¢>. Meanwhile, in the SG it can be shown that the
eigenvalue of the canonical total angular momentum operator J; acting on a lepton state
is js¥ = —s(n — v —1/2), while for an antilepton state one has jél_) =s(n—v—1/2) [231].
Thus, x =v.

3.2 Pion-to-vacuum amplitudes in the presence of a

uniform magnetic field

In this section we analyze the general form of the vacuum-to-pion matrix elements of
vector and axial-vector quark currents, which are involved in the weak decay of pions. Let
us start by considering the hadronic matrix elements for the case of a neutral pion in the

absence of external fields. The matrix element of the hadronic current is given by

Hp' (2, p) = Hy"(2,5) — Hy"(x,p) = (0 (2)7"(1 ~ %)? ()| (P)) (3.36)

where 9(z) = (¢ (), 0q(z))" is the two-flavor quark field and 75 is a Pauli matrix acting
on flavor space. In order to deal with these matrix elements it is possible to hadronize
the quark currents, i.e. to consider matrix elements of hadronic field operators carrying
appropriate Lorentz indexes and quantum numbers. In the low energy limit (typically,
below the p meson threshold), the relevant hadronic field is the pion field ¢o(z), and
in absence of external fields the only available vector-like differential operator is the

momentum operator p# = i0". Since the pion field is pseudoscalar, only the matrix
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3.2. Pion-to-vacuum amplitudes in the presence of a uniform magnetic field

element of the axial-vector hadronic current can be nonzero. In this way, one has

Ol ()" So@)I"(F)) = 0,

Ol () s 5 W@ (@) = F(0%) 9 (0lém (@) 7)) (3.37)

The function f(p?) contains all the information of nonperturbative QCD contributions.
Using the explicit form of ¢no(z) — see Eq. (3.5) — and the commutation rules for the

corresponding creation and annihilation operators — see Eq. (3.6)— one immediately finds

H{O/H<m>ﬁ) =0,
Hy (,p) = —if (p°) p'e™ ™™ (3.38)

As usual, the four-momentum p# is defined by p* = (E,,p), with E, = /m2 + |p]%.
Similar expressions can be obtained for charged pions. It can be seen that the invariance of
strong interactions under discrete transformations, such as parity P, charge conjugation C
and temporal inversion 7, implies that f(p?) is a real function. In the absence of external
fields, the pion decay constant is given by fr = f(m2) ~ 92.32 MeV [172].

We turn now to the situation in which a static external electromagnetic field is present.
In this case, other tensor structures are possible. For a particle of charge @) the relevant
basic tensors are the gauge covariant derivative D* and the gauge invariant electromagnetic
field strength F*, defined as

D' = QAN FM o= 9RAY — 0V AN (3.39)

Taking them as building blocks, one can in principle obtain an infinite number of differential
operators with different Lorentz tensor structures. However, for the particular case of a
uniform static magnetic field B, it is well-known - sce e.g. Refs. [188, 227] - that only a
few independent tensors exist. Noting that F = 0 and F¥ = Fj; = —e;;5B*, we get

[D*, D"] = iQF" = —iQ ™" B* | k=1,2,3. (3.40)

For definiteness, and without losing generality, in what follows we take B¥ = B §%3. Using
the above relations one can prove that there are in fact only two independent scalars,

apart from the particle electric charge @ and F*F,,, = 2B% These can be taken to be
D = (D*)?—=(D°)?, D} = —(D')*—(D*?. (3.41)
In addition, it is possible to find four independent four-vectors. One possible choice is the
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3.2. Pion-to-vacuum amplitudes in the presence of a uniform magnetic field

set

D" = (D°, D),
—i "D, = —i B (0,D* —D',0),
F"F, D = —B* (0,D', D?0),

1
3 P F,,Ds = B (D?0,0,D°). (3.42)

Notice that the last of these tensors transforms in fact as an axial-vector.

3.2.1 Neutral pion case

From the above expressions for Lorentz scalars and four-vectors, we can write now a
general form for the hadronic currents we are interested in. We consider first the case of
the neutral pion, for which Q = 0 and the operator D* reduces to the usual derivative O*.
Taking into account once again the intrinsic parity of the pion field, the corresponding

matrix element can be parametrized as

f(AQ) v « f(A3)
— FMFaD" T | x

1%
f()

HpH(x,p) = |"*PF,D — D" f +i P D,

(0] pro () |7°(P)) (3.43)

where ffrov) and ﬁsf” are complex functions depending on the magnetic field and the
scalar differential operators 92 and 9?. The hadronic matrix elements can be readily
obtained using Egs. (3.5) and (3.6). It is convenient to define the following “parallel” and

“perpendicular” combinations

Hf(x,p) = HY(x,9) + e Hy  (2,p) ,
HYS(x,p) = HY (2, 0) +ie HY (2, 5) (3.44)

where ¢ = £. As in the B = 0 case, it is important to consider the constraints on the form
factors arising from the discrete symmetries of the interaction Lagrangian in the presence
of the magnetic field. This is discussed in some detail in Appendix B, where it is shown
that these symmetries lead to f7(ré,42) = 0 while the remaining form factors turn out to be
real. In this way, we conclude that the most general form of the vector and axial-vector

pion-to-vacuum matrix elements, in the presence of an external uniform magnetic field
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3.2. Pion-to-vacuum amplitudes in the presence of a uniform magnetic field

along the 3-axis, are

H\?f(x’ﬁ) =1 [ffr?l) — €f,(rov)] (Eﬂo +€p3> e P
HYy (o 7) = i |[fa = f37] (0 +iep?) e (3.45)

where all form factors are real functions of p? = (p')? + (p?)? and p? = E2, — (p?®)?, with
pt — p? = p* = mZ,. The results in Eq. (3.45) are in agreement with the observation
made in Ref. [170] that, due to the explicit breaking of rotational invariance caused by the
magnetic field, one can define for the neutral meson two different form factors related to
the axial current - see also Ref. [103]. One of them can be associated with the direction
parallel to B , and the other one with the perpendicular directions. In addition, according
to Eq. (3.45) we find that a new form factor £\ related to the vector current can be
defined as well, as first stated in Ref. [230].

3.2.2 Charged pion case

We consider now the case of the charged pion 77, with 0 = &+ (electric charge @) = oe).

In this case the matrix element is given by

Hp"(x,p) = HY!(2,p) — HY"(2,9) = (01(2)7"(1 = )7~ 0 (2)|77(p)) . (3.46)

where 7% = (1, & i75)/2. In analogy with Eq. (3.43), we can parametrize this element as

AV) » A(42) p(a3)
Hg“(%ﬁ) = emjaﬁFuaD,B 27FB _Duféf)‘l) +7;8FMVDV WB —}PMVPLO[Z)O‘WB—2 X

V2 (0 ¢re () |77 (D)) - (3.47)

Here f1) and f{2 are functions of the scalar operators D? and D? defined in Eq. (3.41),
while s = sign(¢B). The form factors fiv) and f* were already defined in Ref. [171].
On the other hand, £4® is new, first defined in [230]. As in the case of the neutral pion,
it will be convenient to deal with the linear combinations defined in Eq. (3.44). The
hadronic matrix element can be readily obtained using the expressions given in previous
subsections. Let us define it in a general way as (0|¢x- (2)|77(p)) = By(z), where Bj(x) are

the gauge-dependent Ritus-type basis function that satisfy the eigenvalue equation (3.16).
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3.3. Weak decay width of charged pions under a uniform magnetic field

Then, it is not hard to prove that in any gauge we obtain

Hf(2,5) = iV2 (fi0 = ef)) (Bro + ep®) Bi(a),

HY(2,9) = sevV2 (i) — sefid? — f9) /(20 +1 - s€)B, By (x),  (3.48)

where the form factors ffry) and fééi) turn out to be gauge-independent functions of
Mo, p°, £ and B. Moreover, p — se refers to the fact that one should take ¢ — se for
the Landau level. As in the case of the neutral pion, the discrete symmetries of the
interaction Lagrangian in the presence of the magnetic field lead to some restrictions on
the form factors fr- V) and fro (49 Indeed, as shown in Appendix B, they have to be real
and independent of the sign of the pion charge. Moreover, it can be seen that the vector
form factor £{¥) should be odd under the exchange B — — B, while the axial-vector form

factors £ (i = 1,2,3) should be even functions of B.

3.3 Weak decay width of charged pions under a uni-

form magnetic field

3.3.1 Decay width and kinematics

Let us analyze the decay width for the process 7= — [y, with [ = u, e, in the presence of

the external magnetic field. On general grounds, it is given by

. 1 dj dky (S =1)sl
I(B) = lim — N N 4
((B) = [lim o EEQ /(gﬁ):sQEl/(Qw)?)zEﬁl T (3.49)

where (S — 1)y; is the relevant S-matrix element between the initial and final states, and
n.- is the particle number associated with the initial 7~ state - see text below Eq. (3.24).
The shorthand notation dg, and dl?:x refers to the fact that one should sum or integrate
over the relevant quantum numbers of each particle, which are gauge-dependent quantities
- see Table 3.1. Thus, one has

- . . 1 dgy d];'x (1(4; )17;(12, R)|Lw |7 (p))|?
i (B) = SX,hTH—lwo 2F, /(27T)32El /(277)32Ew 721:2 2nS, T ’

(3.50)
where T" and S, are the time and space interval in which the interaction is active. Here
Sy is a gauge-dependent quantity, with S, = LyL3 in the LG and S, = 27 L3 in the SG.
At the end of the calculation, the limit S,,T — oo will be taken. The decay amplitude

can be separated in hadronic and leptonic elements according to Eq. (3.1). The leptonic
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3.3. Weak decay width of charged pions under a uniform magnetic field

piece can be calculated using the notation introduced in previous subsections, resulting in

(G, 7) (k. R) L |7~ () ) = —%g o 0,

/d4l‘HE’ (:E p) U (:E q, )’7/1 (1 _75) Vl/z(xa ]::’ R)> (3'51)

where H, *(z, p) stands for the matrix element of the hadronic current, defined in Eq. (3.46).
Using the final expressions of Eq. (3.48) for these currents, together with the explicit form of
the antineutrino and charged lepton spinors, given in subsection 3.1.2 and subsection 3.1.4

respectively, we get

(Ud,m) ik, R) Lw |~ (5)) = (2m)? 0y 6(En = Ey = Ep) 8(0* — ¢* = k) M(p, d, k) ,
(3.52)

where the polarization amplitudes M(p, ¢, ]\%, 7) (implicitly evaluated at the constraints
imposed by these delta functions) will be given below. As expected from the symmetries
of the Lagrangian, energy is conserved together with the momentum in the field direction.
There is also a remaining conservation of the quantum number x codified in the d, ,/
function. We recall that this quantum number depends on the gauge and therefore does
not represent a physical quantity. In the LG it corresponds to the 2-component of the
canonical momentum and therefore §, ., = d(p* — ¢*> — k*), while in the SG it is an
integer related to the canonical total angular momentum in the field direction, leading to
Oy = 5j§w 045
The decay Wldth is obtained by inserting Eq. (3.52) into Eq. (3.50). As customary, we

(77) -
replace (similarly for 62 )
27 0(E, — B — Ep))” — dim 27T §(Er — By — By)
—00
3 3 13)]° - 3_ 3 13
[27“5(]) —q —k)] — L£1Ln0027rL35<p —q —k) ) (3.53)

Taking the limit of infinite space-time volume we finally get

_ _ d%cdk 3 3 3 2
705) = forp 2 [ i o 60— Fi= B0 =4 = 4) [ Mo [
(3.54)
where )
2 y
‘Mﬂ——ﬂﬁl = Z M(ﬁa‘jvk77> (355>
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3.3. Weak decay width of charged pions under a uniform magnetic field

The calculation of the polarization amplitudes leads to

5.d, k1) = iG 0,
M(p,q,k,1) = iGpcos e

M(p,§,k,2) = G 0.
(0,4, k,2) reosbe | B

(3.56)

where we have defined the functions

AB, 4. k) = ax-(Bx- + %) \JEy — K Ly + sdn- /200 + 1+ 8)Be \/Ey, + K Iy,
B(p,G.k) = be(En- —p*) \/ B + k3 Iy +sce \J(20+ 1= 8)Be /By — k3 Iy, .
(3.57)
In these functions, the decay coefficients are
ar- = [V -1 be = L2+ £
T R R SR RN CL
while the spatial integrals read
1—s 1—s
le = leIX(£7n_ 9 ) ) IQX: f2xzx<‘€+87n_ 9 ) )
1+s 1+s
Iy = fg,XIX<€—s,n— . ) , Ly = f4XIX<€,n— . ) L (3.59)

Here, Z, and f;, are gauge dependent functions of the remaining spatial integral. In the
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3.3. Weak decay width of charged pions under a uniform magnetic field

LG they are given by

ikt + k?
LG: «fiy = fay = W fox = foy =1,

Z,((,n) = —iN; N, / dzt e '+ x

[ ).

o —ik' 4 s k?
V2B,

\/% (%) Li=(k) if >,

n—~¢
Ly~ (k) if n >/
. —is kl(p2+q2) K 7’L'
= —i2me 2B e 2 X

(3.60)
while in the SG they read
SG 'fszla Jj=1,.4,
Ix(ga ﬂ) = (_Z)J 27T/ dp P Rf,z(p) Rn,v( ) J(E (n—v) (k/lp)
0
In! —1)—(n—v
= (i om (=) g 2 R e Lo () L () (3.61)

!

where we have introduced the dimensionless variable x = k? /(2B,). Details for the spatial
integrals can be found in Apps. C of Refs. [230, 231]. Note that since Q; = Q,-, we have
grouped the notation of sg = sign(Q)B) for charged pions and leptons under a single

symbol s.

3.3.2 Lowest energy state

As it is usually done, in what follows we will concentrate on the situation in which the
decaying pion is in the lowest energy state (LES). This corresponds to the case £ = 0 and

p* = 0. The expressions for Z, involve factorials of ¢. Therefore, £ = 0 entails
Z.(-1,n) = 0. (3.62)

If s < 0 this implies I, = 0, and therefore the decay width does not depend on the

(A1) (A2)

combination f,° — 4% We reach the same conclusion for s > 0, since I 3y =0

in that case.
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3.3. Weak decay width of charged pions under a uniform magnetic field

Let us take for definiteness B > 0. Then s < 0 and the decay amplitudes simplify to
n—1

2(E1jl — kS) K 2 MX %

El + my vVn — ]_‘

|0 Ex (B + 11 = ¢%) = bo- B (Eg, + k%) + ¢ 2Bo(k — )| , (3.63)

M(Brps, 6, k,2) = iGpcosb, (—1)"2 Bk &7
LESy {5 v, = 1 COoS U, (— v
Pres: 4 d BB +mi) /nl X

{arEr 2nB, — (B, +m; + ¢°) {brEr (Ep +k*) — ¢p 2B.(k — n)}} , (3.64)

M(ﬁLES7qJ7 ]::7 1) = GF COS 90 (_1)n+1 27

where

(MBS

wWored) (kD —ik?\?
&Z MX = e 2Be 1 (m) € s

|
SG: My = (=ip /5 (~1)F RO L (k) (3.65)
.

Regarding the decay width, for £ = p? = 0 energy conservation implies

_ bk, max 3_13 3, 13
§ (B, —E — Ey) = e O(Mmax — 1) O™ — ky) [6(K° — k) + 0 (k> + )] |
(3.66)
where O(x) is the Heaviside step function and we have defined
m2 —m? + B,

Nmax = 2B, : (3.67)

kM = E. —\/mi+2nB., (3.68)
= 1

= o VIEZ —2B.(n— k) —m® — 8B.E2 k.. (3.69)

The difference between both gauges is condensed in the | M, |* coefficient, which appears
when calculating the squared modulus of the amplitude in Eq. (3.54). In the LG we easily
get |M,|*> = e™". In the SG the calculation is more difficult due to the sum over the

charged lepton quantum number v. However, it is shown in Ref. [231] that

2
' v—1
(=)™ (FD T e LT ) = e (3.70)

>

v=0
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3.3. Weak decay width of charged pions under a uniform magnetic field

Putting all these results together, after some algebra one finally arrives at

G2 CcoS 9 T'max Kmax 1 ,{n—l

o E B, Z de — —— e A (), (3.71)

where Kpax = (KM%%)%/(2B,) and
AP) = (B2 —2Bu(n— ) — ] »
m2
[# (n|ax|? + £|be-|?) + Bo(n — &) (n]ar — cx-|* + K|bs — cﬂ|2)1 +
2B, K {E2 [nya,, by P = (= R)[br — |2 +(n—n)ml2]cﬂ|2} L (3.72)

It should be noted that the width does not depend on 2 (related to the total angular
momentum jéﬂ_)) in the SG, nor on p? in the LG. Since the calculation was carried out
using two different gauges, their coincidence provides an explicit confirmation of the gauge
independence of our expression for the decay width. Moreover, it is worth remarking that
under the exchange B — — B, which implies s — —s and f," V) ,(,Y), we have checked
that the above expression for the partial decay width remains invariant, as expected.
Moreover, it can be seen that in the B — 0 limit one recovers the usual expression for the

decay width in the absence of external fields, see Ref. [230] for details.

3.3.3 Strong magnetic field: LLL and chiral limit

It is interesting at this point to study the case of a large external magnetic field. As
stated, since the pion is built with charged quarks, the pion mass will depend in general
on the magnetic field. Now, if the mass growth is relatively mild, for large magnetic
fields one should get B, > m2 — m?. In fact, this is what is obtained from lattice
QCD calculations [129] as well as from effective approaches like the Nambu—Jona-Lasinio
model [233], for values of the magnetic field say B, = 0.05 GeV?. According to Eq. (3.67),
this implies Ny, = 0; hence the outgoing muon or electron (assuming that the energy
is below the 7 production threshold) has to lie in its lowest Landau level n = 0. As
mentioned in subsection 3.1.4, only one polarization state is allowed in this case. Since
we are considering s = —1, this corresponds to 7 = 2. This can also be easily seen from
Egs. (3.56) and (3.57), since Z, (¢, —1) = 0 implies M (P, §,..., k, 1) = 0. In this case the
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3.3. Weak decay width of charged pions under a uniform magnetic field

expression for the partial width simplifies to

G2 cos? 0, (B k, _x
I (B) = £ "¢ dk, —= e 2Bc
l,LLL( ) 27TE7r7 /0 L 13 (& X

[ml? (Eyl|b7r|2 - g—i|cﬂ|2> + E K by —cr ] . (3.73)
We can compare this result with the expression quoted in Eq. (5) of Ref. [171], which also
corresponds to the limit of a large external magnetic field. The authors of that work make
some approximations for the motion of a charged pion in the presence of the magnetic field,
concluding that only one of the two possible antineutrino polarizations can contribute to the
decay amplitude. Moreover, based on considerations of angular momentum conservation,
they assume that the antineutrino momentum in the perpendicular plane k . vanishes. It
can be seen that if one imposes such condition in Eq. (3.73), the result quoted in Ref. [171]
are recovered. However, we find that if the effect of the magnetic field is fully taken into
account in the charged pion field, conservation laws do not imply kL =0. In fact, an
integration over all possible values of the antineutrino momentum has to be performed, as
in Eq. (3.73). Another important difference between our work and the analysis in Ref. [171]
is that our calculations include a perpendicular piece of the hadronic amplitude (related
to ¢,-), which arises due to the presence of a 7~ zero point motion in the perpendicular
plane, even in the ¢ = 0 state.

A final observation concerns the situation in which B, > m2. — m? and also B, > m}.
In this case, in addition to n = 0, we can neglect the charged lepton mass in the amplitude,

obtaining

M(Brws, Goons K = — iGpcos b, 2w \/2E(E,, + k3) M, x

1 —sign(k®)| |br Ex —cr (B — )] (3.74)

and therefore

G2 cos?f. B? E2\ _E. 2
Fl_,LLL(B)Ch = E T Ee, |} - (1 + 2; ) e 2Be ] ’f(‘—/) - f75142) —f—fT(riqg)’ . (375)

As seen, while for k3 > 0 the amplitude vanishes, for k% < 0 in general it does not. This
can be understood in terms of helicity conservation. The helicity of a lepton state can
be calculated using Eq. (3.2) together with the lepton field defined in Eq. (3.25). In the
chiral limit m; — 0, for a charged lepton in the LLL we get [231]

s |l(qULLL)>Ch = SSign(qS) |l((jLLL)>Ch : (376)
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3.3. Weak decay width of charged pions under a uniform magnetic field

Noting that ¢ = —k3, when s = —1 we see that for &% > 0 the outgoing charged lepton
would be right-handed, which is forbidden by helicity conservation since antineutrinos
are always right-handed. This is very different from what happens in the absence of a
magnetic field. For B = 0, momentum conservation together with helicity conservation
imply that the total decay amplitude of a pion at rest must vanish as m; — 0, as can be
checked in Eq. (3.75) since all form factors except f*" cancel when B — 0. At large
magnetic field, however, momentum conservations are different, and helicity conservation
only implies that the projection of the antineutrino momentum in the direction of B must
be opposite to B.

Clearly, the relevance of Eq. (3.75) depends on whether these form factors are non-
negligible for magnetic fields that are much larger than the lepton mass squared. While
this is likely to happen for the 7~ decay to e 7., in the case of the muon (and of course, the
tau) the situation is less clear, and the corrections arising from a finite lepton mass should
be taken into account. Interestingly, it is possible to obtain relatively simple expressions

for the 7= — [y, decay width at leading order in the ratio m,;/FE,-. From Eq. (3.73) one

gets
7,0 (B) =~ T, (Bla+ ol Be o
fi|ba- > = 2fo Re(b:- cr-) + f Icwﬂ m; + O(g) : (3.77)
where
fi = (1+a)? = (1+2a)e*+2a? (I(a) —ln%) ;
fr = a(2+a) — 20e” + 2a(a — 1) <I(a) —In g:) ,
f3 = a* +2a —2+2(1 —a)e* 4+ 2a(a —2) (I(a) —In g:) , (3.78)

with o = E2 /(2B.) and I(a) = fol dz(e*® —1)/x. It can be seen that for m; = m, =
105.65 MeV and B, = 0.3 GeV?, Eq. (3.77) approximates the full result in Eq. (3.73)

within 15% accuracy.

3.3.4 Angular distribution of outgoing antineutrinos

We have seen in Eq. (3.74) that, in the large magnetic field limit, the amplitude vanishes
for k3 > 0. This implies a highly anisotropic distribution of outgoing antineutrinos, which

is not explicitly seen in the final expression of the decay width. This in contrast to the

73



3.3. Weak decay width of charged pions under a uniform magnetic field

B = 0 case, where the distribution is isotropic. In fact, denoting w = cos = k*/ \E |, the

differential decay rate for the pion LES can be written as

dUy (B)  GZcos?f, "mx (1—1)? w'' A (u) )
= 3 | 22— 4w B .
dw Am = r(l—w?)? nl [l k3 (u) twB ()|, (3.79)
where
1 E2 (1—r)?
- = 2 _ (52 _ o 2) (1 — a2 _ e ) '
r= g VEL — (B2 —2nB, —m}) (1 —w?), u T RTERTIR (3.80)

and the function B!" (u) is defined as

B™(u) = E, Ku]brP — n\ar\2> m? + 2B.(n — u) (u!bﬂf —cp [P —nlay — CWIQ)} .
(3.81)
The term proportional to B{™ (u) in Eq. (3.79) does not contribute to the total decay
width since it vanishes after integration over w, recovering the result in Eq. (3.71).
In particular, when B, > m? and B, > m, — m;, we have n = 0 only and m; = 0
approximately. In this chiral case, helicity conservation implies that all antineutrinos
should be produced with momenta in the half-space k* < 0, see Eq. (3.74). Indeed, the

normalized differential decay width is given by

1 fw) e Ai+w/0-w) .
= 22 ( f <0
1 ALy 11 (B — (1—w)pP31—(1+A)e? s

(B d ’
v (B duw 0 if w>0

(3.82)

where A\ = E2_ /(2B.).

We conclude that, in contrast to the isotropy seen at B = 0, the presence of an external
magnetic field induces an anisotropy in the angular distribution of outgoing antineutrinos.
The anisotropy is sharpened for strong fields and lower lepton masses (closer to the chiral
limit), where antineutrinos are mostly produced with momenta in the half-space opposite
to the direction of B. In addition, it is worth noticing that for large values of B most
antineutrinos come out with low |k?|, i.e. in directions approximately perpendicular to the

magnetic field.
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CHAPTER

Pion properties under strong
magnetic fields in the SU(2) NJL

model

The influence of magnetic fields on the lightest scalar and pseudoscalar mesons (o and 7) has
been calculated mostly using two-flavor schemes, such as chiral perturbation theory [234—
237], the linear sigma model [238-240], two-flavor quark-meson model [228], relativistic
Hamiltonian-based formalisms [236, 241], effective chiral confinement Lagrangian ap-
proach [242, 243], QCD sum rules [244], holographic Sakai-Sugimoto model [245], the
two-flavor NJL model [156, 157, 161, 162, 168-170, 218, 222-224, 246-249], or its nonlocal
version [250, 251]. See also [53] for a comprehensive review on effective models under
strong magnetic fields. In this chapter we will study the behavior of several pion properties
in the presence of a static uniform magnetic field within the framework of the two-flavor
NJL model, using a magnetic field-independent regularization scheme. These properties
include their masses and decay constants, which in turn allow us to estimate partial decay
widths and angular distributions, according to results from chapter 3. Once again, we will
consider the particular case of an uniform magnetic field B along the positive 3-axis. We
will perform calculations only in the Landau gauge.

Pions are described as quantum fluctuations, constructed through quark bubble sum-
mation in the frame of the random phase approximation (RPA) [145, 181]. For neutral
pions, the polarization function is translational invariant since Schwinger phases cancel out,
and it can be diagonalized by transforming to the usual momentum basis in Fourier space.

In contrast, for charged pions Schwinger phases do not cancel and the polarization function
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4. Pion properties under strong magnetic fields in the SU(2) NJL model

is not translational invariant. For simplicity, many works in the literature simply disregard
the Schwinger phases, allowing for a diagonalization in the usual Fourier space [168, 169,
247]. In Ref. [222], the use of a derivative expansion approach has been proposed as an
improved approximation to deal with this issue. Nevertheless, such an approach should be
expected to be less reliable as the mass of the meson and/or the magnetic field increase.
The aim of the present chapter is to introduce a method that allows us to fully take into
account the translational-breaking effects introduced by the Schwinger phases. To that
end, the treatment of charged pions will be carried out on the basis of the Ritus-type
eigenfunction approach to magnetized relativistic systems, introduced in previous chapters,
which allows for a proper diagonalization of the system.

As expected, it will be seen that for nonzero magnetic field the 7° meson can still
be treated as a pseudo Nambu-Goldstone boson, with the corresponding form factors
satisfying various chiral relations. For definite parametrizations of the model, we will
obtain numerical results for the aforementioned pion properties and compare them with
previous calculations given in the literature. Results from this chapter are based on
Refs. [233, 252, 253].
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4.1. Pion masses

4.1 Pion masses

In contrast to the previous chapter were we worked in the framework of Minkowski space-
time, we perform model calculations within the Euclidean metric as in chapter 2, replacing
20 = —izy, p* = —ipy and 4° = —i7,. In this metric all indexes are down since their
placement is irrelevant. Then, the Euclidean Lagrangian density for the NJL two-flavor

model in the presence of an electromagnetic field is
L= (=iP+m)y—G[v)?+ @inTe) (4.1)

where 1) = (¢, 14)" is the two-flavor quark field and m,. is the current quark mass, which
is assumed to be equal for v and d quarks. The interaction between the fermions and the
electromagnetic field A, is driven by the covariant derivative D, = 0, — z'Q.AM, where
Q= diag(Qy, Qq) with Q, = 2¢/3 and Q4 = —e/3. We will consider the particular case of
an uniform magnetic field B along the positive 3-axis. In the Landau gauge, A, = Bx1d,2.

We already showed in subsection 2.3.1 how to proceed in this case, obtaining the gap
equation in the mean field approximation. However, in order to make this chapter more
self-contained for the reader convenience, we will outline the main steps repeating some of
the formulas. Since we are interested in studying meson properties, it is convenient to
bosonize the fermionic action, introducing scalar o(z) and pseudoscalar 7(x) fields and
integrating out the fermion fields. The bosonized Euclidean action — see Eq. (2.19) — can

be written as

Sbes = —Tr lnD—f—% / &'z [o(x)o(z) + 7(x) - 7(@)] | (4.2)

where Tr refers to a trace in all spaces; color, flavor, Dirac and coordinates. The fermionic

operator reads
D(x,2') = 0D (z —a) [=i D+ me+o(x) +ivs 7 7(x)| (4.3)

where a direct product to an identity matrix in color space is understood.

We proceed by expanding the bosonized action in powers of fluctuations do(x) and
dm;(x) around their corresponding mean field (MF) values. As usual, we assume that the
field o(x) has a nontrivial translational invariant MF value &, while the vacuum expectation
values of pseudoscalar fields are zero in order to keep the vacuum parity-invariant. Thus

we write
D(z,2") = Dyp(x,2") +6D(x,2) . (4.4)
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4.1. Pion masses

The MF piece is flavor-diagonal. It can be written as
DMF(xu xl> = diag (,DI\ZZF(:Ua :C/) ’ DgAF(x7 l‘l)) ) (45)

where
Dfp(w,a') = 6W(x —a') (—id — QrA+ M) . (4.6)

The quark effective mass M is given by M = m, + ¢. On the other hand, the operator
0D was given in Eq. (2.25). Replacing Eq. (4.4) in the bosonized effective action and
expanding in powers of the meson fluctuations around the MF values — see Eq. (2.26) —
the action can be symbolically written as

Ghos — ghos 4 ghos (4.7)

qua

where the linear term vanishes.

In the previous expansion we have introduced the mean field quark propagators for
each flavor Sf.(z,2') = [D{m (x,2' )} 71, since Dy is diagonal in flavor space. Their explicit
form can be written in different ways [52, 53]. For convenience we take the Schwinger
form, given in Eqgs. (2.66-2.68). We recall some shorthand notation: s; = sign(Q;B) and
By = |Q¢Bl; v = (71,72) and vy = (73,74); similarly ¢ = (q1,¢2) and g = (g3, qa).

The zero order contribution in Eq. (2.26) gives the mean field approximation. The
MF free energy Qy = S /V® is given by Eq. (2.28). The fermion operator Dy can
be diagonalized by transforming to Ritus space, resulting in expression (2.73) for Q.
Minimizing the free energy with respect to M and using Schwinger parametrization to
move to proper-time representation, we obtain the gap equation (2.74)

, It + Iy
M = m.+2G Tr Syp(x,2") = m.+4GMN, — 5 | (4.8)

where I} is a divergent integral, see (2.75). The contribution from each flavor arises
independently because the magnetic field differentiates between particles of different

reg

charges. Regularization through the MFIR scheme leads to [ 1Bf — I, where
I'f = "+ 17*. (4.9)

Namely, the divergent integral is separated into a finite magnetic field dependent contribu-
tion, given in Eq. (2.79), and a regularized vacuum (B = 0) piece which does depend on
the regularization prescription. Choosing the standard procedure in which one introduces

a 3D momentum cutoff A, we recover the expression given in Eq. (2.52).
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4.1. Pion masses

On the other hand, the MF chiral condensate for each flavor is given by (2.76)

r QEA%S Nc
fbf - <ff>B = _5mf = —m

Trp / d'z Sl (v,2) = —NM I . (4.10)

After regularization using the MFIR scheme with a 3D cutoff, we obtain (2.80)

re vac ma, ¢Va€ - _NCM Ifac

¢fg = be +¢f g7 Ifna ma. (4-11)
4.1.1 Pion polarization functions
The quadratic contribution in Eq. (4.7) is given by

‘ 1 0B (x — 2
shos == S [ dads’ 5P(x) =) e lopey,  (412)
! 2 P=0,m0 1t 2G

where 7+ = (1, F im,) /v/2 and

J7r°(£7 ZE,) = NC ZTrD [Sg/m(x7 ZE,) V5 SI{/IF(I/’ ZL“) Vs } )

f
Jo-(z,2") = 2N, Trp [SSIF(I, ') 5 Sup (2, x) 75} :
Joo(x,2") = 2N, Trp [SﬁF(x, 2') vs SE (2!, x) 75} : (4.13)

The expression for J, is obtained from that of Jyo replacing v5 — —i 1. Since J.(z,2') =
Jr- (o', ), both charged pions have the same mass, and we can proceed by considering
only the negatively charged pion 7~.

Before proceeding to each individual case, it is interesting to note some properties from
general structure of the polarization functions, which can be studied through the general

definition
crp(zya’) = 2N. Trp {SI{IF(L ') s S{Z;,(x’, x) 75} , (4.14)

for two quarks of flavors f and f’. We start by replacing into this expression the quark
propagator of Eq. (2.66). This leads to

Chp (.’L‘,ﬂ?l) _ €i<1>p(a:,x’) /eiv(x—x’) Cr.p (U) , (415)
v

where ®p(z,2") = QpB(x; + })(x2 — 24)/2 involves the difference of flavor charges,

Qp = Qf — Qp. Similarly to the quark propagator, the polarization function can also
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4.1. Pion masses

be written as the product of a Schwinger phase and a gauge and translational invariant
function. The gauge transformation properties of the polarization function are gathered in

the Schwinger phase. The momentum function is given by

crp(v) = 2Nc/TlfD {Sf(H)% Sf/(T—)%} ) (4.16)

where 1 =r £v/2. Here r = (g5 + qy)/2 and v = gy — gy are the average and difference
of the quarks momenta ¢f and g.

We will perform the calculation in the most general possible scenario, assuming different
quark masses (this will be relevant for the next chapter). To proceed, we first insert the

quark propagators of Eq. (2.67) and take the Dirac trace

Cf7f/(v) = 8NC/ /0 dTl/o dro e—'rle(ﬁ,r+)—'rsz(7'2,r—) [(1 + stf’tlft2f’) X

2

<Mfo/ + i — %) + (1=t (1 —t35) (ﬁ - %) ] : (4.17)

where we have defined t;; = tanh(m By) and typ = tanh(m,By). By shifting variables

according to 7 = yz and 7 = (1 — y)z, after some rearranging we arrive at

00 1
ij/(?]) = 8N, /(; dZ/(; dy Z€7Z¢O(v) /ezdn(r,v) [(1+Sf$f/tftf/) X
2

v v?
(Mfo, + i — Z|> + (1=t (1 —t3) (rﬁ - j) ] : (4.18)
where now
tp | tp
t; = tanh(yzBy),  tp = tanh[(1 —y)zBp],  to = L+ (4.19)
Bf Bf/

Moreover, we have defined the functions

2 2 2 3 —t? "UE
¢o(v) = yM} + (1 —y)M7 +y(1 — y)oi + =—— =,
Zt+ 4
u1?  ty t_ v 2
ér(r,v) = | —(1—2y) 5} + = .+ Z 5 ) (4.20)
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To perform the momentum integrals we make use of the following relations

1
7Z¢)1(T,’U) - - 421
/T ‘ 167221, (421)
[1 v? 1
—z¢1(rw) .2 | T . 29
/r e AT E + (1 —2y) 1 ] 672210, (4.22)
r 2
1 t_\ " v? 1
() 2 — | =) = ——. 4.23
/7,v € e t+ + <t+> 4] 167T22t+ ( )
Finally, a straightforward calculation leads to
Nc [e'e) 1 6_Z¢O(U)
ij/(’l}i,v‘%) = ﬁ dZ/ dy / {(1 +8f8f/tftf/) X
™ Jo 0 +
1

Mty L -t + 0 -pa -0 [~ (1- ) 2| }-

We have remarked in the function dependence that, in the pion case, the invariant

polarization function is only a function of v? and vf.

4.1.2 Neutral pion mass

For the calculation of pion masses, we start by the simpler case of the neutral pion 7°.

Actually, the analysis of the 7 pole mass in the presence of a magnetic field within the
MFIR scheme has already been carried out in Refs. [161, 248]. However, in those works
the authors use a representation of the quark propagator different from the Schwinger one
in Eqgs. (2.66-2.67). Thus, we find it opportune to verify that both representations lead to
the same results for the 7° mass. Moreover, it will serve us to highlight the differences
with the treatment of the charged pion. The study of the o sigma meson mass can be
performed in an entirely equivalent way, and will not be considered here.

In the neutral case, the contributions of Schwinger phases to each term of the sum cancel
out since they correspond to the same quark flavor. As a consequence, the polarization
function is translational invariant because it depends only on the difference x — 2/, which
leads to the conservation of momentum. If we take now the Fourier transform of the 7°
fields to the momentum basis given in Eq. (2.41), the corresponding transform of the

polarization function will be diagonal in momentum space. Thus, the 7° contribution to
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the quadratic action in the momentum basis can be written as

= 1 0(— L_ 2 2 0
ST['O = 2/pv (571'( p) [2G JWO(pJJpH) 57'( (p)’ (425>

where the polarization function reads

Cu,u(p?_apﬁ) + cd,d(pivpﬁ> )

Here ¢ ¢(p?,p?) is obtained taking equal flavors in Eq. (4.24). Explicitly,
N.B s
cr.r(pl,vh) = f/ dy/ ds e~ M2 +y(-y)pt] —1r W, ) o
{M +——y(1—y)p}coth(zB) L 1_,}/(yz)i
f [ f Slnh2(ZBf) Yy, B ,
(4.27)
e inh(y2By) sinh[(1 — y) 2 By]
simn(yz sin —y)z
9:2) = : ! (4.28)

sinh(zBy)

This expression can be also derived from Eq. (2.14) of Ref. [254].
As done at the MF level, we regularize the integral in Eq. (4.27) using the MFIR

scheme. Specifically, we subtract the corresponding unregulated contribution in the B =0

limit, given by

Nc o dz ! — M2 _ 2 2
As(0°) = 53 _/ dy e M0 2 4 21—y (4.29)
™ Jo 2 Jo z

and add it in a regularized form ¢}’ (p?). The regularized flavor polarization function is

then

reg

ol ) = 50 + FE W) (4.30)

where ¢/} (

P, ot) = crp(pl,pi) — ¢}, (p*) and ¢} is chosen to be regularized using a 3D

momentum cutoff scheme, as in the case of the gap equation. In that case one has
) = 2N [+ L (") (4.31)

where I} and I;°°(p?) are given in Eqgs. (2.52) and (2.53), respectively. Choosing the
frame in which the 7 meson is at rest, its pole mass can be obtained by solving the

equation
1

- reg 2 —
oTe (0,—m2) = 0. (4.32)
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For the calculation of the meson masses we can take p? = 0 and p? < 0. Assuming

pi| < 2M;, one can integrate by parts to write the magnetic piece of the ¢ functions in
f g y 8 ff
the form of Eq. (4.31)

il =0,p7) = 2N, [11]0 + pi ]mag(pn)} ) (4.33)

where [, is given in Eq. (2.79) and

By [ ! 1
Imag( H) 8_7:2/(; dz/(; dy efz[MQer(lfy)pm lCOth(ZBf) _ Z_Bf‘|

1
_ # /O dy [w( ) —In(@)) + %1 | (4.34)
Here, z; = [M*+y(1 —y)pi]/(2By) and ¢(z) is the digamma function. It is interesting to
note that this expression of J5*(0, pff) = [ci28(0, p7) + cz'g?(0,p})]/2 is in agreement with
the one obtained in Ref. [248], where the calculatlon has been done using an expansion
in Landau levels for the quark propagators instead of considering the Schwinger form of
Eq. (2.67). Since both calculations use the 3D cutoff regularization for the B = 0 piece, it
is checked that different representations of the quark propagator lead to the same result

for the (finite) magnetic dependent piece of the polarization function, as expected.

4.1.3 Charged pion mass

We turn now to the determination of charged pion masses. Contrary to the 7° case,
Schwinger phases do not cancel here due to the charge difference in the quark flavors
involved. Therefore, the polarization function of Eq. (4.13) is not translational invariant,
and consequently it will not become diagonal when transformed to the Fourier momentum

basis. Instead, we expand the charged pion field as

) = i Bi(x) 7(5), (4.35)

where we have used the shorthand notation of Eq. (2.62). The Euclidean Ritus-type basis
function B3(x) are given in Eq. (2.59) for the Landau gauge. Here, p = (¢, p2, p3, ps), where
¢ labels the charged meson Landau level, and s = sign(Q,=B). The corresponding piece of

the action then reads

S, = %i (57 )" [5 B — o (0.6 07" (4.36)
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where from Eq. (4.15)

Io(p.p) = / ¢y (0) hp(pphv), P =n* (4.37)

v

which depends on the function ¢y (v?,v?) defined in Eq. (4.24) and on the spatial integral

p p

hp(ﬁ,ﬁ/, U) /d433' d4 / zCDP(xa: ) eiv(mf:r’) B§(ZL‘)* B‘i,(x') ) (4.38)

For P =7, f = d and f’' = u, while for P = n* flavors are interchanged, f = u and

fr=d

Most of the coordinate integrals are trivial and provide deltas

4

— — / 2
hp(p,p'v) = (27)6 5(2)(27\\ — ) Z(S(pi — p;) NeNp B X
i=2 P

/ dzy =)Dy (8,) Do () L (439)

I 25 (o
Ty =—z1+ 55 (p2—v2)

where Bp = |QpB|, fs = V2Bpx1 — 51/2/Bppy and 5. = \/2Bp x| — $,/2/Bpps. In
order to perform the remaining coordinate integral, we make use of the following property

of the cylindrical parabolic functions

/ ¢ Dy — ) Dy + ) =

o (=120 (iy + )" L (% +42) if >0 o)
(=) O (—iy + )" L2+ %) if >0

Taking polar coordinates v, = (7, cos, ¥, sin ) we get (note that o2 = v?)

_ 3 r : 47T
he(p,p5v) = (2m)° 6@ (1 — ) D 8(pi (—1)" e X
i=1 BP
o, 202
.\ 15 at () ez
<_23i> ’ pis(t=)¢ o ' d 7 (4.41)
P

T (0
%Lg,f (%) >0

where L¢(x) are generalized Laguerre polynomials. The parallel Dirac delta 6@ (p; — v))

is a consequence of the translational invariance in the parallel directions, since Schwinger
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4.1. Pion masses

phases do not depend on them. Now, according to Eq. (4.37), we have to perform the
momentum integrals over v. The main point here is that ¢y ¢ (v) = ¢f p(vE, v?) is actually
a function of the squared parallel and perpendicular momenta, see Eq. (4.24). Therefore,

the integration over the angle provides an extra delta function

21
/ dp =% = 215,40 | (4.42)
0

which implies that the polarization function is diagonal in the chosen basis. In fact, we
arrive at Jp(p,p') = 055 Jp(£,112), where 12 = (20 + 1)Bp + p? is introduced for later

convenience and

Jp(0,11) = / dv, by po(@}) cp g (07,11 = (20 +1)Bp) (4.43)
0
with ;
2 v? 2
v¥) = (=1) = ¢ B [ <—L> . 4.44
pe(vi) = ( )Bp ‘\ B, (4.44)
Since -
/ di, 5, pu(@?) = 1, (4.45)
0

pe(9?) resembles a normalized distribution function for the perpendicular momenta. Using
the explicit form of ¢; ¢ (v, v?) given in Eq. (4.24) we can perform the last integral through
the use of the following properties — see lines 6 and 7 of 7.414 of Ref. [255]

/000 dx e Ly(x) = u )

bl+1
~ b—1)2(b—1—1
/0 drwe L) = 020 be<+2 ) (4.46)
Finally, one gets
o0 1 —ZM2 )
Jp(0,11%) = N, dz | dy o~ 2y(1—) [P —(26+1) By)] (Oé_—> o
22 /o 0 o4 oy

{ |:]\42 + é - y(l — y)(H2 — (2£+ 1) Bp):| (1 + Sf Sf/ tftf/) -+

(1—-t3H)(1—t7)

o

[a_ + (- —ay) /] } ) (4.47)
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4.1. Pion masses

where t; and ¢ty were defined in Eq. (4.19) while

Bftf/ + Bf/ tf =+ Bptftf/

4.4

oy =

For the 7~ case we have B, = B, = |eB|, f =d, [’ = u and s,s4 = —1. Regarding the
7T, exchanging d <+ u and shifting y — 1 — y one can show that J,. (¢,11%) = J, (¢, 11?),
which implies that both charged pions have the same mass, as expected from charge
conservation.

As in the case of the neutral pion, the polarization function in Eq. (4.47) turns out to
be divergent and has to be regularized. Once again, this can be done within the MFIR
scheme. However, due to quantization in the 1-2 plane this requires some care, viz. the
subtraction of the B = 0 contribution to the polarization function has to be carried out
once the latter has been written in terms of the squared canonical momentum I12. Thus,

the regularized 7~ polarization function is given by
Je(0,T17) = J¥C(I1%) 4 Je (¢, 11%) (4.49)

where J¥¢(I1?) is given in Eq. (4.31) for the 3D cutoff regularization, replacing p* — 112,
and J8(0,11%) = J, (¢,11?) — J°(I1?), where the B = 0 term is given in Eq. (4.29)
since in that limit J2(p?) = ¢} ;(p*). Constructed this way, the magnetic field-dependent
contribution is well behaved in the limit z — 0 and therefore finite.

Given the regularized polarization function, we can now derive an equation for the 7~
meson pole mass in the presence of the magnetic field. To do this, let us first consider a
point-like pion. For such a particle, in Euclidean space, the two-point function will vanish
(i.e., the propagator will have a pole) when IT1? = —m2 . Therefore, in our framework the

charged pion pole mass can be obtained for each Landau level ¢ by solving the equation

1

— — B, —m2) = 0. 4.50

s — (=) (4.50)
While for a point-like pion m,- is a B-independent quantity (the 7~ mass in vacuum), in
the present model—which takes into account the internal quark structure of the pion—this
pole mass turns out to depend on the magnetic field. Instead of dealing with this quantity,
it has become customary in the literature to define the 7= “magnetic field-dependent mass”

as the lowest quantum-mechanically allowed energy of the 7~ meson (see e.g. Ref. [74]),

= \m2 +B.. (4.51)

Notice that this “mass” is magnetic field dependent even for a point-like particle. In fact,

namely

E. (B) = \/m2 + (20 +1) B, + p}

p3=0,£=0
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4.2. Pion field redefinition and quark-meson coupling constants

owing to zero-point motion in the 1-2 plane, even for ¢ = 0 the charged pion cannot be at

rest in the presence of the magnetic field.

4.2 Pion field redefinition and quark-meson coupling

constants

As usual, the pion field wave function has to be redefined. In the absence of an external
magnetic field we have 7(p) = ZX/2 7(p), where Z, is usually called the “wave function
renormalization constant”. It is defined by fixing the residue of the two-point function at
the pion pole. One has

0Jr (pQ)

Z7t = )

0y = g2 (4.52)

mqq ’

p?=—m2

where J,(p?) is the polarization function. Then, in the vicinity of the pole, the action

reads

Sy ~ %/57?(—]9) (p* +m2) 67 (p) . (4.53)

As expected, the energy dispersion relation is isotropic in this context.

We consider now the situation in which the external magnetic field is present. For the
neutral pion, as shown in Eq. (4.27), the polarization function J5¢(p?, p?) depends in a
different way on the perpendicular and parallel components of p. We expand the action in
Eq. (4.25) around the pion pole (p, = 0, pf = —m2,), factorize out the parallel derivative,
and redefine the pion field according to 7°(p) = Zul/ *7%(p). This leads to

1 B -
Sro 5/(571'0(—])) [ufropi —l—pﬁ—kmio} 5770(})), (4.54)
p
where we have defined
dJ e dJ" e Z
-1 _ o s — -2 -1 — — T 20 = — . .
ST T, S BT Tl e T )

Denoting My(y) = [M? — y(1 — y)m2,]*/2 and M, (y) = [A% + Moy(y)?]*/2, from Egs. (4.27-
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4.2. Pion field redefinition and quark-meson coupling constants

2.53) we obtain
Ly 4m? ! A Mo(y) A y(1 —y)mZ
Zr N T 2/ W [m( o <A+MA< >> - 2Mo<y>2MA<y>31 }

Z/ dz/ dy e MW’ (1 — y) x

9 +B 1 232
o - 2 _] - *Br S 7F 4.56
{ { +y( y)mrr + > ( tanh(ZBf) * Z sinhQ(ZBf) 7 ( )

and
A Mo (y) AN y(1 —y)m2
7 2/0 dy [ ) <A+MA<y>) - 2Mo<y>2MA<y>3] )
/OOO dz i dy e~ Mo’ { — (Y, 2) <ztan;(ZBf) * sinhil(gng)) "
, ) , 2 3y(l —
(M2 4+ y(1 = y)m?2| ly(l —y) - t;ff(/zB)f)] 4 3 . y)} : (4.57)

where v¢(y, z) was defined in Eq. (4.28). It is seen that, owing to the pion internal structure,
the energy dispersion relation is anisotropic in the presence of an external magnetic field.

Namely, as already stated in Ref. [170], one has
E% = —pi = ulep, +p5+mio. (4.58)

The direct comparison of our results for the renormalization constants with those quoted
in Ref. [170] is not possible due to the fact that different regularization procedures were
followed in each case (we use the MFIR scheme, while in Ref. [170] an ultraviolet cutoff
is introduced). However, we have found some discrepancies between both results when
comparing the corresponding unregularized expressions. We will come back to this point
in section 4.5.

For charged pions, the momentum in the plane perpendicular to the external magnetic

field is quantized in Landau levels ¢. The energy dispersion relation reads in this case

E?2 = —p] = (20+1)B. +p5+m2 . (4.59)
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4.3. Pion-to-vacuum vector and axial vector amplitudes and weak decay constants

The redefined (negative) charged pion field is given by 7= (p) = ZM? 7~ (p), where

S IR

= e = g2 . (4.60)

ng'qu

M2=—m?2
s

Explicitly, denoting M_(y) = [M? — y(1 — y)m2 ]2 and M*(y) = [A® + M_(y)?]'/2, from
Eq. (4.49) we find

2 2;2 = - /01 dy lM//\\(y) in (A f 1\4@1)@)) - 2Aﬂzyiz);§4)172;>3] i

o0 1 2
/ dz/ dy e M- 5y (1 — y){ [M2 +y(1—1y) (mfr, + (20 + 1)Be> + 2| %
0 0
of 1] 171
— (1—t,¢ 2y(1—y)(24+1)Be _ *| L {_ — (1l — ) (20 +1 Be]
-t A AR AR -A
aft 9 5 1-y)(20+1)B
(1=t (1- 1) - + (- — ay) ] eVIDEEDE S (4.61)
+

Here, t, and t4 are defined in Eq. (4.19) for f = d and f’ = u, while ay are given in
Eq. (4.48).

4.3 Pion-to-vacuum vector and axial vector ampli-

tudes and weak decay constants

In order to obtain pion-to-vacuum vector and axial-vector amplitudes, we have to “gauge”
the effective action by introducing a set of vector and axial vector gauge fields, W ()

and W§ 4(z), respectively. This is done by performing the replacement

3 a

, T
YOy — VuOp — 1 Z 5 Z Lo Wip(r), (4.62)

a=1 B=V,A

where B =V, A with I',,y = v, and I', 4 = ,7. Once this extended gauged effective
action is built, the corresponding pion-to-vacuum amplitudes are obtained as the derivative
of this action with respect to W/ g(v) and the redefined meson fields, evaluated at
 5(z) = 0. Therefore, the relevant terms in the action are those linear in the pion and

gauge fields. This piece of the action can be written as

S = X% [dedn W Foplr ) b6, (009

B=V,A rk=%,3
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4.3. Pion-to-vacuum vector and axial vector amplitudes and weak decay constants

where W, 5 = (Wip F iW?2 5)/V2. The functions FJf p(x,2') are defined as

FiB(I?x = — —ZCMB x, ') (4.64)
_ i g

FM,B(‘Tv 17,) = - 5 CZ B(aja x/) ’ (46‘5)

Flrp(z,a) = — 3 cﬁdB(:r x'), (4.66)

where, in analogy with Eq. (4.14), we have defined the function
ci:g(x,az') = 2N, Trp [S&F(:E,a:')% S{ZF(Q:’,:E) FMB} ) (4.67)

Proceeding as in Eqgs. (4.14-4.18), this function can be expressed as the product of a

Schwinger phase and a translational invariant function

) = v [ e, (468)

where
k) = 2N / Trp, [(q+v/2) 75 8 (g — v/2) Tus] - (4.69)

The only difference remains in the calculation of the trace. From Eq. (4.18), we can write

the momentum function in a general way as

o) 1
) = 2N [ s [ayzese e 00 @0

where T, g(r,v) represents the corresponding traces, which can be found in App. A of

Ref. [252]. Regarding the momentum integrals, besides Eq. (4.21) we only need

. t_ vy +iev 1
7,2(,231 (7’,11) _ — L 2 471
/r e (r1 + tery) I 5 67221, (4.71)

Finally, defining the linear combinations (e = +1)

<

/

o f ) = b ) +eckh(v),

Q

<
<

Il

g (v) = el (v) +iechp(v) (4.72)
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4.3. Pion-to-vacuum vector and axial vector amplitudes and weak decay constants

and assuming M; = M we arrive at

e N M —z Seter+ spte
i) = i—5 52 dz/ dy e~ % -e
) =0, (4.73)
and
he ooty L Sesptpty
0{,7.1;7 (v) = 27T2 / dz/ dy e bo(v %v‘“
cﬁfzve(v 27r2 / dz/ dy e 260(v) o
Byt (1 — tf)(l +espty) + Bpty(1 — tf/)(l —esply) | .
Bfo/ t_|_ J_ ) .

where v = vy + €v3 and v{ = vy + e vo.

4.3.1 Neutral pion amplitudes and form factors

As in the analysis of the 7° mass, we expand the neutral pion field in Eq. (4.63) in the

Fourier basis. After redefining the pion field, pion-to-vacuum amplitudes read

7'3 ~0 GSFW

@) = 0@ s 3 @R = = grapraws, o

= — Z|1/2/ diz’ e Fp g(x, ') (4.75)

Using Eqgs. (4.64) and (4.68), and taking into account that Schwinger phases cancel out in

this case, after integrating over =’ we get

H) p(x,p) = —21/2 ip Zc (4.76)

For convenience, we consider the linear combinations of Eq. (4.72). Using the relations
of Egs. (4.73) and (4.74), after a straightforward calculation we obtain

0o 1
Hﬁ’;(l‘,ﬁ) = _‘EpH_6 elpx Zsf/o dz/o dyfﬂ(y>z)a
f

HY(2,5) = 0, (4.77)
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4.3. Pion-to-vacuum vector and axial vector amplitudes and weak decay constants

and

0 1
H\?,’j(%ﬁ) = —ipe?” Z/ dZ/ dy F°(p,y, z) coth(2By) ,
7 Jo 0

: * h{(2y —1)25/]
H076 7) — 5 ;€ oWPT d d N cos f 478
L714(33710) 1p e Zf:/o Z/o yf“(p,y, z) sinh(z B;) , ( )

where we have defined p§ = ps + € ps, p{ = p1 + tep2 and

. N.M
Fpy,2) = 2, 872

By e~ M1-mnt] )5 (4.79)

Now, following the notation of Eq. (3.45), we define the neutral pion decay form factors

as
Hiy(a,p) = —epi“e™ fi”,
HpA(x,) = —ipf elp””fié‘”) :
HY () = —iple® [f30 — e 52 — f39] . (4.80)

Note that, since we are working in Euclidean space, the relations H, = iH° and p, = ip°
need to be considered when comparing with the expressions in Eq. (3.45). In this way, for
an on-shell pion in its rest frame, i.e. taking p, = #m0d,4, the axial decay constants are

given by

(4 _ p1j2 NeM J / dy e—Mow? __Br
fro 2 872 Z/ : ve tanh(zB;) ’

fa? =0,

(43) _ 1/2 N.M 2B ood ld —zMo(y)? 4.81
[ =2, 87T22f: s f de | dye Ye(y, 2) (4.81)

while the vector decay constant reads

N M
;& = 1/2 szf/ dz/ dy e *MoW™ (4.82)

We recall that My(y) = [M? — y(1 — y)m2]Y? and v (y, 2) is defined in Eq. (4.28). It is
seen that fﬁ:j‘” vanishes, as indicated from the general analysis of Appendix B. Thus, we
find that in the presence of the external magnetic field there are in general two axial and
one vector nonvanishing form factors for the neutral pion. Notice that in the chosen frame

both Hﬁ’fv and Hﬁ’fA are zero, hence f#?g) will not contribute to the amplitudes.
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4.3. Pion-to-vacuum vector and axial vector amplitudes and weak decay constants

(A3)

It can be easily seen that f5 "’ and fiov) are finite and vanish in the B — 0 limit. On

the contrary, the expression for ' in Eq. (4.81) is divergent. It can be regularized in
the context of the MFIR scheme, i.e., subtracting the corresponding divergent contribution
in the B = 0 limit, f?, and adding it in a regularized form, f73°. One has

f7(r641),reg _ pvac + fioAl),mag 7 (483)

0

where f™8 — f(AD _ 0 The divergent B = 0 piece,

N.M [ Ld 2
2=z / dz / &Y e==Mow)® (4.84)
a7, 0o 2

can be regularized using a 3D momentum cutoff scheme, as done in the previous subsections.
One has in this way
fae — —2 Z1PN,M I (—m2,) (4.85)

s 0

where 5% is given in Eq. (2.53). Note that we do not take the B — 0 limit in Z; (strictly,
one should first regularize the form factor and then redefine the pion wave function).

Finally, we find it convenient to define “parallel” and “perpendicular” axial decay

constants f" and f", given in terms of £V and £

- o according to

All Al), Al Al), A3
f7(rO ) - féo )reg7 f7(ro ) - f7(ro )reg_f;go ). (486)

Our expressions for the 7° decay constants, taken before any regularization scheme is
applied, can be compared with those obtained in Ref. [170]. Although, as mentioned in the
previous subsection, we have found some discrepancies in the results for the renormalization
constants, it can be checked that the ratios fT(r?H) / Grogq annd iy Grogq are in agreement

with those quoted in Ref. [170], once different notations have been properly compatibilized.

4.3.2 Charged pion amplitudes and form factors

As in the case of the polarization functions, we expand the charged pion fields using
Eq. (4.35). Since charged decay constants are real and equal for both charged pions

(see Appendix B), it is sufficient to consider the 7= hadronic amplitudes

aSTrI/V

Hyle,5) = OO T, 7" Yl (9) = V2 gempite s
p K

= — V227 / By(a') Fy (") (4.87)
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4.3. Pion-to-vacuum vector and axial vector amplitudes and weak decay constants

We recall that p = (¢, pa, p3, ps) = (P, pa), see also Table 3.1, and s = sign(Q,- B). From
Egs. (4.65) and (4.68) we have
- o i S 1P, - (z,2 w(x—x' U
H, gz, p) = 7 ZY2 [ dta Bi(a') '~ (=, )/e ( )CiB(v), (4.88)
which resembles the form of expression (4.37). Integrating first over z’ some Dirac deltas

appear, leading to

_ o _47TNg
H, - (x,q) = Z\/§Be

K K s/ vi=pi ! (4'89)

g 28 ()
zy=—z1+ 5> (p2—v2)

Z71T{2 eip2:fc2+ipw/ CduB(U) ewl(ml*x/l)Dg(ﬁ/)
vl

where we recall 8. = /2B, x| — s1/2/B. pa. The remaining momentum integrals can be
performed with the aid of the following relations, which can be derived from property
7.724 of Ref. [255]

) V2B¥? (1 -4B)! 0"
' D =~ : Dy se(Bs ’
/UJ_ vy é(wlap%w_) € ts¢e A (1 ‘|—”}/Be)e+1 (1 o SE”}/Be) ¢ (ﬁ )

—~v? Be (1 B /yBey
/vL Dé(xlap%UL) e " = . W DZ(BS) ) (4'90)

where S5 = /2B, x1 — 51/2/ B, ps and

. va—po 2
Dg(xl,pQ, /UJ_) _ 6211)1 (1‘1+3 Be ) Dg [— QBe 1+ 54/ E (pg — 2U2)‘| . (491)
For our case, from ¢o(v) in Eq. (4.20) we have v = ¢, (1 — 2 /t1)/4.

For convenience, as in the 7° case we concentrate on the linear combinations H, ; and

H g, defined as in Eq. (4.72). After some algebra one arrives at

fe'e) 1
HO ) = —iv/3 pf By(a) / dz / dy F=(1,2) (1 — tuta)
0 0

Hf(x,p) = —sev/2,/(20+ 1~ se)B, By (x) x

[e’s) 1 —S€
/ dz/ dy F~(p,y, 2) <a__> (14 €esuty)(1 —€sqtq) ,
0 0 a4

(e’ 1
Hif(ep) = —ev/2p Bia) / dz / dy F(5,9,2) (sutu — sata) .
0 0

H v (x,p) = 0, (4.92)

94



4.3. Pion-to-vacuum vector and axial vector amplitudes and weak decay constants

where s; = —s,, = s and
N.M ot 2 2
F Py, z) = Z;P yo Olf+1 e AIM+y(l=y)py] (4.93)
+

We recall the shorthand notation p+ € = (¢ + €, pa, p3, pa) and pf = ps + € ps.
As in the neutral pion case we follow the notation of Eq. (3.48), defining the charged

pion decay constants in Euclidean space as

H\Déle(xaﬁ) = —1 \/§f(:41) pHe B§($) )
Hj(z,p) = —seV?2 [ (AL _ ge f142) 75?3)} \/(2€ +1—s€)B. By ().
Hif(,p) = —evV2 (Y preBia) (4.94)

From Egs. (4.92) and (4.94), evaluating at the pion mass p? + (20 + 1)B. = —m2_ we
obtain

¢
75141) _ 1/2/ / N M o o~ AM?—y(1—y)[m2_+(20+1)Bc]} (1—tutq),

A2 @Jrl

N M o ‘¢

[2%(1“ )(1+td)—20‘7+(1—tu)<1—td)] ,

(43) _ 71/2 / A / —1 oM y(1-y)m?_ 4B

ot

[1 tuta— 20‘——(1 1) (1 + tg) — 20‘7*(1 (1 — td)] ,

472

N.M o
7(:) _ 1/2/ dz/ dy Oéﬂ —z{M?—y(1—y)[m2_+(20+1)B.]} (Sutu — Sqtq) . (4.95)

In the B — 0 limit we have Z, — Z, and f\*" — f9, the latter given by Eq. (4.84).
Meanwhile, f. (42), fT(ri%) and fT(rY) are finite and vanish in the limit B — 0. Therefore, as
expected, both neutral and charged pion weak form factors tend to the usual pion decay
constant in the absence of the external field.

Once again, the expression for f,(rfm in Eq. (4.95) is divergent and needs to be regularized.

Using a 3D cutoff within the MFIR scheme, the regularized expression reads

(Al)reg _ V?C_i_f(Al) mag (4.96)
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4.4. Chiral limit relations

where fiA1me8 — p(AD _ 10 gee Fq. (4.84) for the B = 0 expression, and
vac 9 zVI N, M IR (—m2) (4.97)

with I5%(p?) given by Eq. (2.53).
As in the case of the neutral pion, we find it convenient to introduce parallel and per-
pendicular 7~ axial decay form factors. Thus, we define one parallel and two perpendicular

decay constants, according to

7&4\\) o (Al),reg (AL+) (Al),regj:f(A2) (A3) (498)

™ Y T ™

It is worth noticing that if the pion lies on the lowest Landau level, i.e. ¢ = 0, from
Eq. (4.94) one has H] 'y (v, p) = 0, hence in that case the 7~ weak decay amplitude will
not depend on f**7). In fact, strictly speaking, for £ = 0 one cannot determine f{**+~
from Egs. (4.92) and (4.94).

The 7t decay constants can be obtained following a similar procedure. As stated
in Appendix B, one can check that f,(ri) = ,(r];), where j =V, Al, A2, A3. Moreover, by

changing B — — B one can check that

W,B) = — 7, -B),

W, B) = f40,-B),  i=1,2,3. (4.99)

4.4 Chiral limit relations

It is interesting to discuss the relations satisfied by the quantities studied in the previous
section in the chiral limit, i.e., for m. — 0. First, it should be stressed that even in
the presence of an external magnetic field, the neutral pion remains being a pseudo-
Nambu-Goldstone (NG) boson. This can be shown by taking into account the polarization

function JIo8(

pt,pl) evaluated at pf = p? = 0. After integration by parts it is seen that
J5*%(0,0) = 2N. I;"*®, where I;"*® is given by the average of Eq. (2.79). Hence, from

Egs. (4.9), (2.52) and (4.31) one gets
J'#(0,0) = 2N, ;2. (4.100)

Now, taking into account this result together with the (regularized) gap equation (2.34),
in the chiral limit one gets J55(0,0)a, = 1/(2G), which implies myo o, = 0. In this way,
associated chiral relations are expected to hold even for nonzero B.

From the expressions for the renormalization constants, Eqs. (4.56-4.57), and the axial
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4.4. Chiral limit relations

form factors, Eq. (4.81), it is seen that the parallel and perpendicular axial decay constants
for the 7% meson introduced in Eq. (4.86) satisfy the generalized Goldberger-Treiman

relations

Grgq fro = M+ O(m2o) (4.101)
Grogg f4) = u2o gy Moy + O(m2) . (4.102)

Thus, in the chiral limit one has [170]

Jaoan = o, Jebhel - (4.103)
In fact, this equation can be readily obtained from a general effective low energy action for
NG bosons in the presence of a magnetic field, see e.g. Ref. [103]. Making use of Eq. (4.101),
together with the gap equation, one obtains the generalized Gell-Mann-Oakes-Renner
relation [234]

2 tu + dd).
(e FE40)° = — 2, STF e, (4.104)
where we have taken into account that in our model the averaged quark condensate satisfies
(w4 dd) /2 = — Mg,/ (4G) + O(m,). Note that a similar relation can be found for fé{f‘ﬁg

using Eq. (4.103).
It is also interesting to consider the expression for f,ﬁ? in the chiral limit. From
Eqgs. (4.82) and (4.101) it is seen that for m. — 0 one has

B
i, = —a (4.105)
87T2 T(ro, c)h

This relation —to the best of our knowledge—has not been previously stated in the
literature. It is worth noticing it can be obtained from the anomalous Wess-Zumino-
Witten (WZW) effective Lagrangian [256, 257]. The WZW term that couples a neutral

pion to an electromagnetic field and a vector field Wl‘j’y is given by

i1 N.e

_ 0 3
TOAWYV o 487T2f7r' T €uvap 8[LWV’V Faﬁ ) (4,106)

Ly zw
where €4103 = 1. If one identifies the constant f, in this effective Lagrangian with fT(roAH), and
the electromagnetic field tensor with the external magnetic field (Fjo = —Fy = B), taking
into account the definitions in Eq. (4.80) one arrives at the chiral relation in Eq. (4.105).

In the case of charged pions, the presence of an external magnetic field leads to the
explicit breakdown of chiral symmetry and, in general, 7% cannot be identified with NG

bosons. However, chiral relations should be recovered in the limit of low B. In particular,
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me (MeV) g = GA? A (MeV) ~(wa)'? (MeV) M (MeV)
Set I 5.6616 2.2501 613.39 243.26 350
Set 11 5.4192 2.1364 639.49 246.91 320
Set III 5.7921 2.3642 596.11 241.36 380

Table 4.1: Parameters sets for the two-flavor NJL model.

the coupling of charged pions to the magnetic field and an external vector current arising
from the WZW Lagrangian has the same form of Eq. (4.106), taking the i = 1,2 isospin

components of the fields 7* and W} /.

4.5 Numerical results

For definiteness, we consider B > 0 and only 7~ for the charged pions. Therefore
Sy = —Sq = —s = +1. In order to obtain numerical results for the different pion properties
one has to fix the model parametrization. In addition to the usual requirements for the
description of low-energy phenomenological properties, such as the pion mass and decay
constant, we find it adequate to choose a parameter set that takes into account LQCD
results for the behavior of quark-antiquark condensates under an external magnetic field.

In order to compare with LQCD results given in Refs. [73] we introduce the quantities

= _ AXL(B)+ AXy(B)

AS(B) = . . 27(B) = AX,(B) — ASy(B), (4.107)

where AX¢(B) = —2m, [( fHhe—(ff >0] /D*. Here D is a phenomenological normalization
constant given by D = (135 x 86)'/2 MeV.

In order to test the sensitivity of our results to the parametrization, we consider the
three parametrization sets listed in Table 4.1. All of these reproduce the phenomenological
values m, = 138 MeV and f, = 92.4 MeV. Moreover, we also explore the possibility of
considering a magnetic field dependent coupling G(B), so as to incorporate the sea effect
produced by the backreaction of gluons to magnetized quarks loops, as discussed in the

introduction. We adopt the expression proposed in Ref. [161], given by

o+ fe B

G(B) = G "=

: (4.108)

where o = 1.44373 GeV~—2 3 = 3.06 GeV~2 and v = 1.31 GeV~*. We have normalized the
functional dependence so that G(0) = G corresponds to the coupling constant of each set
of Table 4.1. Since variations in the parametrization turn out to have a negligible impact

on the outcomes, for visual clarity we will show results using G(B) only for set 1.
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Figure 4.1: Effective quark mass M as function of eB. Solid lines correspond to set I using G
(black) and G(B) (red), while the limits of the gray bands correspond to set II (dashed lines)
and set III (dotted lines) using a constant coupling.

The effective quark mass M, which is a solution to the gap equation (2.34), is displayed
in Figure 4.1 for all three sets of Table 4.1 using a constant coupling G' but only for set I
using G(B). For the rest of this section, solid lines in the figures indicate the results for
parameter set I, while the limits of the gray bands correspond to set II (dashed lines) and
set 11T (dotted lines). As seen, the magnetic-field dependent coupling greatly diminishes
the enhancement of M with B, even resulting in a nonmonotonic behavior.

In Figure 4.2 we show the comparison between the sets of Table 4.1, using G and G(B),
and LCQD results for the normalized condensates of Eq. (4.107). We see that results
obtained using a constant coupling are in good agreement with lattice calculations of
Ref. [73] for the normalized average and difference condensate, being set I the closest one.
On the other hand, G(B) results show a somewhat larger deviation from lattice simulations.

It is also seen that our predictions are not significantly affected by the parameter choice.

4.5.1 Neutral pion

In Figure 4.3 we show our numerical results for the quantities associated with the neutral
pion as functions of e B. We observe that the qualitative behavior of all calculated quantities
remains basically unaffected by changes in the model parameters within phenomenological
reasonable limits.

Panel (a) shows the effect of the magnetic field on the neutral pion mass. It is seen

that for a constant coupling GG the mass shows a slight non-monotonic decrease with B.
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Figure 4.2: Behavior of AY (left) and ¥~ (right) as functions of eB. Solid lines correspond to
set I using G (black) and G(B) (red), while the limits of the gray bands correspond to set II
(dashed lines) and set III (dotted lines) using a constant coupling. Results from lattice QCD
calculations [73] are included as blue squares for comparison.

On the other hand, the decrease is not only monotonic but more pronounced when a
magnetic field dependent coupling is used.

In panel (b) we display the pion-to-quark coupling constant g.o,, and the transverse
velocity w0, given by Eqs. (4.55-4.57). We observe that for constant G, gro,, shows some
enhancement if B is increased, in contrast to what happens for the G(B) case. On the other
hand, for both type of couplings u,o decreases monotonously with B, remaining always
lower than one guaranteeing the law of causality. This result is consistent with the one
obtained in Refs. [100, 153, 217]. It should be also noticed that u,o is basically insensitive
to the parametrization. In fact, it remains almost unchanged if one takes m. — 0, which
implies that for nonzero B neutral pions move at a speed lower than the speed of light
even in the chiral limit. We notice that, on the contrary, u,o > 1 is found in Ref. [170]. In
addition to the already mentioned discrepancies in the expressions for the renormalization
constants, this behavior is likely due to the choice of a bad regularization scheme in that
work, namely a soft cutoff magnetic function. This claim is supported by the fact that a
subluminal behavior is also obtained when using the (non MFIR) Pauli-Villar scheme [153].

Results for the neutral axial decay constants are shown in panel (c). Starting from a

f(Ai)

common value at B = 0, it is seen that while fig‘”) is enhanced for increasing B, f.o

is reduced. In both cases the B dependence is stronger than for the other quantities
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Figure 4.3: Neutral pion properties as functions of eB. Solid lines correspond to set I using G
(black) and G(B) (red), while the limits of the gray bands correspond to set II (dashed lines)
and set III (dotted lines) using a constant coupling.

discussed previously. Note that our results indicate that fT(FOAL) < ffroAH) for all considered
values of eB, which differs from the result in Ref. [170]. This seems to be related to the
fact that, as stated, in that reference ur0 > 1 is obtained. Finally, in panel (d) we show
the behavior of ffrg/), which grows with B.

It is interesting to notice that the numerical results given above (which have been
obtained from parametrization sets leading to m, = 138 MeV and f, = 92.4 MeV at
B = 0) satisfy quite well the chiral limit relations in Eqs. (4.101-4.105). In fact, it is found
that all these relations are satisfied at a level of less than 2% for all considered values of
eB.

To conclude this subsection, in the next figures we show a comparison between our
results and others found in the literature. In Figure 4.4 we compare normalized neutral
pion masses. For a constant coupling G, it shows a slight decrease with B, in agreement
with the analysis of Refs. [161, 248] also done within the NJL model. Moreover, this
behavior is nonmonotonic: the mass increases for strong enough fields. In contrast, lattice
simulations seem to lean toward a monotonic decrease of m,o with the magnetic field.

Also shown are lattice results obtained using Wilson fermions with a heavy pion mass of
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Figure 4.4: Normalized neutral pion mass as a function of eB. Grey band (red solid line)
correspond to this work using a constant (magnetic) coupling; light blue band to LQCD results of
Ref. [129] employing quenched Wilson quarks; magenta dots to LQCD results of Ref. [258] using
highly improved staggered quarks; and green dashed-dotted line to results from the nonlocal-NJL
model [251].

mx(0) = 415 MeV in vacuum [129], and highly improved staggered quarks with similar
to physical pion masses of m,(0) = 220 MeV [258]. As seen in the figure, through the
introduction of a magnetic coupling G(B), which schematically takes into account the
effect of sea quarks on the gluon fields, the NJL model is able to reproduce this monotonic
behavior together with an enhancement of the decrease, in agreement with Ref. [161]. It
is interesting to note that in the framework of NJL-like models, this behavior can also
be reproduced by considering nonlocal interactions (nINJL) [250, 251}, whose results are
displayed as well in Figure 4.4.

In Figure 4.5 we compare normalized axial decay constants. In the left panel, the usual
parallel component is displayed. Our results using G show a somewhat mild increase with
the magnetic field. By putting G(B) the enhancement is magnified, in better agreement
with estimations from LQCD [258] and the nonlocal-NJL model [251], which show a steeper
enhancement. Lastly, results from the functional renormalization group approach to the
quark-meson model (rgQMM) [228] show an even greater increase of f"". This is likely
to be correlated with the fact that in that approach the 7¥ mass shows a stronger decrease
as the magnetic field increases.

On the other hand, results for the perpendicular component are displayed in the right
panel. For constant G our results show a decreasing behavior. The effect is stronger

when G(B) is used. An even steeper decrease is obtained in the nINJL model [251]. In
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Figure 4.5: Left (right) panel: normalized parallel (perpendicular) neutral axial decay constant as
a function of eB. Grey band (red solid line) correspond to this work using a constant (magnetic)
coupling; magenta dots to LQCD results of Ref. [258] using highly improved staggered quarks;
green dashed-dotted line to results from the nonlocal-NJL model [251]; and blue connected dots
to results from the functional renormalization group approach to the quark-meson model [228].

contrast, rgQMM results show a milder decrease with the magnetic field [228]. It should be
mentioned that additional calculations for fT(rEf‘H) have been carried out using ChPT [235]
and within the effective chiral confinement Lagrangian approach [243]. The latter shows a
behavior similar to that of the nINJL model considered in Ref. [250], while ChPT results,
trustable for values of the magnetic field up to say eB ~ 0.1 GeV?, are found to be in
reasonable agreement with our curves.

It is worth mentioning that all of the quantities displayed in Figure 4.3 have also been
calculated in the nonlocal version of the NJL model, see Ref. [251] for comparison. We
briefly outline the remaining results of the nINJL compared to our study: g4, shows a
decreasing behavior, in contrast with our results for G but in agreement when using G(B);

uro decreases more with B; and ffrg/) displays a milder increase with B.

4.5.2 Charged pions

In Figure 4.6 we show our numerical results for the quantities associated with the charged
pions in the lowest Landau level (LLL), as functions of eB. As in the case of the 7°, the
qualitative behavior of all calculated quantities is not significantly affected by changes in
the model parametrization within the considered limits. The curves corresponding to g4,
and ffr‘_/) are very similar to those obtained for the neutral pion in Figure 4.3. Regarding
the decay constants, it is interesting to note that while the use of G(B) decreases the
value of fff,) for i = Al, A2,V the effect is reversed for ffrf‘?’). All decay constants show

an enhancement with the magnetic field. This is particularly interesting for the new
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Figure 4.6: Charged pion properties as functions of eB. Solid lines correspond to set I using G
(black) and G(B) (red), while the limits of the gray bands correspond to set II (dashed lines)
and set III (dotted lines) using a constant coupling.

decay constants, fifm), fﬁf‘g) and ffr‘_/). While for low magnetic fields their value is almost
negligible, for strong magnetic fields fﬁfm) and ffr‘,/) can reach values comparable to fr(f”),
and therefore have a possibly meaningful impact on the decay. Moreover, as discussed

in subsection 3.3.2, if the pion lies on the lowest energy state then the combination
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Figure 4.7: Difference of squared lowest energies of charged pions between the case at B # 0
and B = 0 as a function of eB. The grey band (red solid line) correspond to this work using a
constant (magnetic) coupling, while the orange dashed-dotted line represents the point-like case
(eB). The dark yellow solid line is obtained by disregarding Schwinger phases (Fourier transform)
using set I and a constant coupling. LQCD results are displayed as: green rhombus for Ref. [74],
magenta dots for Ref. [258], and blue squares for Ref. [129].

ffrfuﬂ = fT(rfu)’reg + ffrfm) — fﬁf‘?’) is the only perpendicular form factor relevant for the
evaluation of the matrix elements of the axial current. From the above curves, one can
check that fT(rfqu) exhibits a strong increase with B for a constant coupling G, reaching
a magnitude of about 180 MeV for eB = 1 GeV?. In contrast, for G(B) it exhibits a
nonmonotic behavior, with ffrfu“ ~ 124 MeV at eB = 1 GeV2.

In Figure 4.7 we compare our results for the charged pion lowest energy with lattice
simulations. Instead of normalizing E,- with respect to its vacuum value, as done for the
neutral pion, we find it convenient to compare the difference of squared lowest energies,
ie. E,-(B)>— E,-(0)% see Eq. (4.51). The main advantage lies on the fact that for
the point-like case this quantity is just eB and therefore independent of the vacuum
mass, which is different for each simulation. Thus, it serves as a common reference for
all calculations. We see that our results for constant G are in fair agreement with those
obtained in quenched LQCD [129] using heavy pions with m,- (B = 0) = 415 MeV. In order
to make a more sensible comparison, an alternative procedure was proposed in Ref. [161],
which consists of using a parameter set where the current quark mass is increased so
that m,- (B = 0) matches the value considered in Ref. [129]. For the charged case, this
is discussed in Ref. [233], where it is shown that for the normalized lowest energy the

aforementioned procedure provides closer agreement with LQCD results from Ref. [129].
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Nevertheless, for the quantity displayed in Figure 4.7 results from both procedures are
almost identical. On the other hand, lattice simulations using staggered quarks point to
a different behavior. For low magnetic fields, say eB < 0.2 GeV?, our results coincide
fairly well with those obtained in lattice simulations using stout smeared [74] and highly
improved [258] staggered quarks. However, for large magnetic fields our results start to
deviate, showing a steeper enhancement with e B. Moreover, no trace of the non-monotonic
behavior found in Ref. [258] is seen.

At this point it is worth mentioning the difference between our results for the lowest
energy as compared to those obtained in the literature by simply disregarding the Schwinger
phases in the charged pion polarization function [168, 169, 247]. In the latter case,
the calculation is analogous to the one performed for the neutral pion, using Fourier
transformations. At the end, the polarization is simply given by the function cq,(p?, p?)
in Eq. (4.24), evaluated at p, = im, 6,4. It is interesting to note that, compared to
the full result in Eq. (4.47), for ¢ = p3 = 0 disregarding Schwinger phases amounts to
replace ay, — t, and m2 + B, — m2 . The result is shown in Figure 4.7 for set I and
a constant coupling G. As expected, at weak magnetic fields, say eB < 0.1 GeV?, both
methods yield similar results. However, their behavior deviates at high magnetic fields,
where disregarding Schwinger phases triggers a much stronger enhancement with B. At
eB =1 GeV? we get B~ = 1.65 GeV for the Fourier transformation, as compared to the
lower value E,- = 1.25 GeV obtained using the full Ritus method. On the other hand,
Schwinger phases are properly accounted for in Refs. [222, 223]. In the former reference,
an approach based on the derivative expansion is proposed, while the analysis of the latter
work is analogous to ours but using a Landau level expansion for the quark propagator. In
both analyses, which share the regularization choice of a non-MFIR Pauli-Villars scheme,
an even stronger magnetic enhancement is found at an intermediate eB < 0.4 GeV? regime.

In the framework of lattice QCD, some results for ffrfw) and f;y) in the presence
of an external magnetic field have been presented in Ref. [129]. However, a sensible
comparison with our results is not possible since in that reference decay constants are
defined differently, using a Fourier instead of a Ritus basis. Nevertheless, it can be seen
that, although errors are still relatively large, for staggered quarks at the physical point
both decay constants shows an overall increase with the magnetic field, in qualitative
agreement with our results. In fact, for f7(r‘_/) our NJL predictions are compatible within
errors with lattice data, which have been obtained for eB up to 0.3 GeV?. However,
for weak fields a continuum extrapolation seems to indicate that f*" starts out with
a negative slope, which differs from our results and also from the neutral case. We find
this result difficult to understand, since the decay constants of charged and neutral pions
should behave similarly [235] for very small values of eB. In addition, in Ref. [244] the
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magnetic field dependence of ffrfm) has been analyzed in the context of QCD sum rules. In
comparison with our results, their analysis shows a steeper enhancement with B, leading
to fi‘f‘”) ~ 0.17 GeV for eB = 1 GeV2. In any case, it should be stressed that our results
show that, as expected [236, 259], the Goldberger-Treiman and Gell-Mann-Oakes-Renner
relations for charged pions [i.e., the equivalent to Egs. (4.101) and (4.104), obtained for
neutral mesons] are violated for eB 2> m?2, for both ffrf‘”) and ffrqu, the latter being
defined in Eq. (4.98).

To conclude, let us make an additional comment on the magnetic field dependences
of the decay constants. In the chiral limit, it can be seen that for low values of eB the
difference ffrfm) — ffrfw) is given by

B 7B
(A2) (A3) e [
fo - = —— 1= — 4+ ... ]. 4.109
T g g, ( 45 M3, > (4.109)

On the other hand, in the case of ffr‘,/), for low values of the magnetic field a relation
similar to Eq. (4.105) is expected to be satisfied in the chiral limit. Even though the 7~
cannot be considered a pseudo-Goldstone boson in the presence of the magnetic field, from

our numerical calculations we find quite remarkable that relations of the same form, i.e.,

B 7B
(A2) (A3) __ e e
L e = g2 fAD (1 a 45M2> ’ (4.110)
and B
vy _ e
ol = 8712—f(m)’ (4.111)

are in fact valid also for intermediate values of the external magnetic field, up to say
eB < 0.4 GeV2. Moreover, for a constant coupling G we find that f (42) _ fT(rf‘?’) and fT(rY)

can be approximated by the expressions in Eqs. (4.110) and (4.111) within 15% and 10%
accuracy, respectively, for values of eB up to 1 GeV2. For a magnetic coupling G(B) these
expressions deviate, especially the one in Eq. (4.110). It would be interesting to verify if
equivalent relations also arise within other theoretical approaches to low energy hadron

physics.

4.5.3 Weak decay width of magnetized charged pions

In section 3.3 we have a obtained a general expression for the weak decay width of charged
pions under a uniform magnetic field. In that expression, the internal structure of the
pions is parametrized in terms of several form factors. In the absence of exact QCD
solutions, these are model-dependent. As usual, we will concentrate on the pion lowest

energy state (LES) case, i.e. £ =0 and p3 = 0. The relevant expressions can be found
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Figure 4.8: 7~ partial decay widths into e~ 7, (red line) and p~ 7, (black line) for set I using a
constant coupling G, as functions of eB in logarithmic (linear) scale for left (right) panel. Left
panel: dotted blue line represents to the n = 0 asymptotic contribution for m, = 0. Right panel:
dashed lines correspond to results using G(B), in grey (orange) for electron (muon) decay.

in Egs. (3.71) and (3.72). For the LES, only the perpendicular combination f{** — f(4%
is relevant. Using the masses and decay constants obtained in this chapter within the
two-flavor NJL model, we provide actual estimates for the magnetic field dependence of
the 7~ decay width. For visual clarification we will only display results from set I, since
we have checked that results from sets II and III do not differ from by more than 3%.

Our results for the 7~ partial decay widths to both p~v, (I',) and e~ 7, (I'.) using a
constant coupling as functions of eB are shown in Figure 4.8. The effect at weak magnetic
fields is better seen using a logarithmic scale, as shown in the left panel. It is seen that
the partial widths are strongly enhanced by the magnetic field. This enhancement is more
pronounced for the decay to e~ v, since for low values of B helicity suppression becomes
important. The bump observed in this curve for eB ~ 1072 GeV? is due to the fact that
this region is dominated by the n = 1 Landau level contribution, which disappears at
about eB ~ 2 x 1072 GeV? leaving n = 0 as the only energetically allowed electron Landau
level. The dotted line in the graph corresponds to the asymptotic decay width quoted
in Eq. (3.75), corresponding to n = 0 and m, = 0. As expected, this curve approximates
fairly well the results at eB > m? and eB > m,- — m,, especially for the (less massive)
electron. Since the effects of using a magnetic coupling take place at high magnetic fields,
we compare the results using a linear scale in the right panel, where it is seen that the use
of G(B) strongly strengthens the value of the decay compared to the constant coupling
case.

In Figure 4.9 we show the behavior of the total decay width I'. +1I',,, normalized to its

value at B = 0. For this effective model the enhancement factor is found to be about 1000
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Figure 4.9: Normalized total 7~ partial decay width [I'; (B) + ', (B)]/[I'; (0) + T, (0)] using G
(black line) and G(B) (red line) as functions of eB in linear (left) and logarithmic scale (right).
LQCD bands quoted in Ref. [171] are included in the left panel for comparison.

for eB ~ 1 GeV? when using a constant coupling, increasing up to 1800 for G(B). In the
left panel we include for comparison results from LQCD calculations quoted in Ref. [171],
which cover values of eB up to about 0.45 GeV?2. Dark and light blue regions correspond
to staggered and quenched Wilson quarks, respectively. Although these LQCD results also
predict a significant growth of the total width with the magnetic field, it is seen that in
our case the slope of the curve gets more rapidly enhanced with B. This is, in part, due
to the e~ v, channel contribution.

The dramatic enhancement of the rate implies a drastic reduction of the mean lifetime
7. = 1/T. A typical B > 0 lifetime and the lowest possible lifetime considered in this work

are

5x 10710 for B =~ 0.3GeV?/e ~ 5x 10" G,

Q

Tr

(4.112)

Q

e~ 1.5x107Ms  for B ax 1GeV’/e ~ 1.7x10%G.

As noted in Ref. [171], since lifetimes of magnetic fields in off-central heavy-ion collisions
are by 13-15 orders of magnitude smaller [51], this effect will not result in any observable
predictions for heavy-ion phenomenology. However, the B dependence of weak decays is
expected to be relevant in astrophysical environments, since the upper limit for magnetic
field strengths in the core of magnetized neutron stars is thought to be around B =
10*® — 10%° G [59, 61]. Indeed, for B = 0 the pion mean lifetime and the time scale for
cooling via inverse Compton scattering are roughly comparable [260]. Thus, a reduction
in 7, will inevitably decrease radiation energy loss of pions and result in a harder neutrino

spectrum. Neutrino emissivities of meson-condensed matter, even though not as high as
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Figure 4.10: Ratio I'c/T",, using G (black line) and G(B) (red line) as a function of eB.

the ones of the direct Urca processes, still lead to fast cooling, and could have an impact
on the cooling curves of compact stars [261].

Another interesting consequence of the presence of the magnetic fields is the absence
of helicity suppression, which yields a stronger e~ v, production. As seen in Figure 4.8,
at B # 0 the electron contribution strongly grows with eB. Therefore, while at B = 0
muon production dominates, at strong fields both contributions compete. To measure this
effect, in Figure 4.10 we quote the ratio I'. /T, as a function of eB. We notice that the
presence of the external field leads to a strong increase of this ratio with the strength of the
magnetic field, reaching a value of about 0.5 for eB ~ 1 GeV? using a constant coupling,
increasing to 0.7 when using G(B). In contrast, for B = 0 one has I'./T’, ~ 1.2 x 107
This could be interesting e.g. regarding the expected flavor composition of neutrino fluxes
coming from the cores of magnetars and other stellar objects. It is worth to remark that
our estimation for the ratio I'. /T, is different from the one obtained in Ref. [171], where
helicity suppression leads to a ratio of the order of 107 that becomes almost independent

of the magnetic field.

4.5.4 Angular distribution of outgoing antineutrinos

Another interesting consequence of the presence of the external magnetic field is its effect
on the angular distribution of outgoing antineutrinos. As mentioned in subsection 3.3.4,
while for B = 0 the distribution is isotropic, this changes significantly for B # 0. Denoting
w = cosf = ks /|k|, the relevant expressions are in Egs. (3.79-3.81).

Our numerical results for the normalized differential partial decay widths are shown
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Figure 4.11: Normalized differential partial decay widths of 7~ into e~ 7, (left) and =1, (right),
as functions of w = cos 6 for selected values of eB. All results correspond to set I using constant
coupling G, except for the red solid line in the right panel which corresponds to set I using G(B)
at eB =1 GeV2.

in Figure 4.11, where several representative values of eB are considered. Left and right
panels correspond to 7~ decays into e~ 7, and p~ v, respectively. The inclusion of magnetic
effects through the coupling G(B) only has an appreciable impact on the decay constants
values of Figure 4.6 for strong magnetic fields, say eB > 0.4 GeV2. Therefore, for the
selected values of eB displayed in Figure 4.11, the use of G(B) is only discernible for the
greatest chosen value of eB = 1 GeV?, as seen on the red line of the right panel.

It is seen that the fraction of antineutrinos that come out in the upper half-space
w > 0 fluctuates when the magnetic field is increased, becoming strongly suppressed for
values of eB much larger than the lepton mass squared and the difference m,- — m,. This
suppression is mildly enhanced by the use of G(B). The anisotropy can be qualitatively
understood as follows. When eB > m,- —m,, only n = 0 is allowed. In addition, for
B, > m? the lepton can be considered massless. In the chiral limit, the lepton has to be
left-handed. Therefore from Eq. (3.76) one gets g3 > 0. Conservation of the 3 component
of total momentum implies g3 + k3 = p3 = 0. Hence, for large B, in the m, — 0 limit all
antineutrinos should be produced with momentum in the lower half-space k3 < 0. Indeed,
for m;, = 0 and n = 0 the normalized differential decay width is given by Eq. (3.82).

We conclude that, in contrast to the isotropy seen at B = 0, the presence of an external
magnetic field induces an anisotropy in the angular distribution of outgoing antineutrinos.
The anisotropy is sharpened for strong fields and lower lepton masses, where antineutrinos
are mostly produced with momenta in the half-space opposite to the direction of B. Within
the NJL model, a strong anisotropy in the electron production is already seen at eB = 0.05

GeV?, with virtually vanishing antineutrino momentum in the direction of the field for
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eB = 0.1 GeV2. The anisotropy is reduced for muon production since they are heavier;
even at eB = 1 GeV? there is still some non-negligible antineutrino momenta in the field
direction. In addition, it is worth noticing that for large values of B most antineutrinos

come out with low |ks|, i.e. in directions approximately perpendicular to the magnetic
field.
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CHAPTER

Light pseudoscalar meson masses

under strong magnetic fields within
the SU(3) NJL model

In the previous chapter we have calculated several pion properties in a strongly magnetized
medium within the framework of the SU(2) NJL model, using a magnetic field-independent
regularization scheme. There are very few calculations of meson properties incorporating
the strange quark. In Refs. [262, 263], using a nonrelativistic constituent SU(3) quark model,
neutral and charged mesons masses are considered. By using a relativistic Hamiltonian-
based formalism, in Refs. [236, 241] pions and kaons are calculated and comparisons with
chiral perturbation theory and LQCD results are considered. In Ref. [264], kaons and
antikaons are investigated in a chiral SU(3) model.

The aim of this chapter is to extend the pole mass calculation to all mesons of the
pseudoscalar nonet. To that end, we work with the SU(3) version of the NJL model. Once
again, we employ both a constant and a magnetic field-dependent coupling G(B) so as to
include the backreaction of the gluons due to the coupling of the magnetic field to sea
quarks. Numerical results for the pole masses are obtained for definite parametrizations of
the model, which we compare with previous calculations given in the literature. Results
from this chapter are based on Ref. [265].
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5.1. Pseudoscalar meson masses

5.1 Pseudoscalar meson masses

5.1.1 Effective Lagrangian and mean field properties

We consider the Euclidean action of the SU(3) NJL model which includes a scalar-
pseudoscalar interaction and the 't Hooft six-fermion interaction in the presence of an

external magnetic field. It is written as
., 8.1/ - 2 - 2
5 — /d4x [w (<iP+m) -Gy [(wazp) T (Pirsha ) ] +K(d, +d)] (5.1
a=0

where G and K are coupling constants, ) = (1, 1q, ws)T represents a quark field with
three flavors, di = det w (1+75) w} and 1 = diag (m,, mg, ms) is the corresponding
current quark mass matrix. In addition, A\g = \/T/Z%I , where [ is the unit matrix in the
three-flavor space, and A, with a = 1, ..., 8 denote the Gell-Mann matrices. The coupling
of quarks to the electromagnetic field A,, is implemented through the covariant derivative
D, =0,— iQAM where Q = diag (Qu, Qa, Q) represents the quark electric charge matrix
with Q,/2 = —Q4 = —Qs = ¢/3, e > 0 being the proton electric charge. As in previous
chapters we consider a uniform magnetic field in the 3-direction. Using the Landau gauge
we have A, = By 0,,2.

The 't Hooft term explicitly breaks the axial symmetry U4 (1), as expected from the
axial anomaly of QCD [173, 174]. This anomaly is in turn responsible for the higher
value of the 1’ mass as compared to the i one. Therefore, this term is necessary in the
SU(3) version of the model in order to reproduce physical n and 1’ mesons. The standard
SU(2) version of the model used in Eq. (4.1) corresponds to taking K = 2@G, i.e. having
maximum flavor mixing. In that case, M, = My. In contrast, for K = 0 quark flavors get
fully decoupled.

In order to study meson properties, we proceed as in the SU(2) case by bosonizing
the action in terms of scalar o,(x) and pseudoscalar m,(z) fields and the corresponding
auxiliary s,(z) and p,(x) fields. We follow the standard procedure described in Appendix A,

starting with the partition function
7 = / DyYDip e . (5.2)
By introducing functional delta functions, the scalar (¢A,1)) and pseudoscalar (1ivs\a1))

terms present in the action are replaced by s,(z) and p,(z). The remaining functional

gaussian integration on the fermionic fields 1 and 1) can be performed by standard methods.
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We obtain

Z = / Do, D, det D(z,z') / Ds, Dp, ¢/ ?@loa@sa@+ma@pa(@)] 5

el 412 {Gloa(@)50 (@) +Pa (@)pa(@)] = Aavclsa ()3 (@)se () ~3sa (@)po(@)pe(@)] } (5.3)

where
D(z,2") = §Y(z —2) {—zlﬁ + 1+ Agou () + i’75>\a7Ta(l')} : (5.4)

and the totally symmetric array A, is given by

dabc s a,b,c = 1, ,8
Agpe = {—1/vV6 , a=0,b=c=1,...8 . (5.5)
2/3  , a=b=c=0

Here, dgp. = tr(Ao{ s, Ac})/4 refer to the totally symmetric structure constants of the
SU(3) group.

Since, in contrast to the SU(2) case, the integrals over the auxiliary fields are not
gaussian, we perform the stationary phase approximation (SPA). That is, we replace the
auxiliary fields by the values §,(z) and p,(z) that minimize the integrand of the partition
function. This yields a set of coupled equations among the bosonic fields; at the end, §,(z)
and p,(z) are to be considered as implicit functions of o,(x) and m,(z). The bosonized
action in the SPA then reads

Shos = — TrinD(z,z") — /d4a: {aa(as)§a($) + o (2)pa(x) +
G [ga(x)ga(:E) + Isa(x)f)a(xﬂ - %Aabc [ga(x>§b(x)§c(x) - 3§a(x)|5b(‘r)ﬁ0(x)] } )
(5.6)
where §,(z) and p,(z) satisfy the SPA conditions
oo(x) + 2G5, () — gAabc [Sp(x)3.(z) — pp(x)pe(x)] = 0,
Ta() + 2G Pa(@) + K Aase S(2)pe(x) = 0. (5.7)

We can now proceed as in subsection 2.2.1, expanding the bosonized action in powers
of field fluctuations around the corresponding translationally invariant mean field values o,

and 7,, 1. e. 04(x) = 0,+00,(x) and 7,(z) = T, +m,(x). Due to charge conservation, only
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5.1. Pseudoscalar meson masses

00, 03 and oy are different from zero, while the vacuum expectation values of pseudoscalar
boson fields are zero, 7, = 0. For convenience, we introduce ¢ = diag(cy,0q4,05) =

A0 + A303 + Agog. Symbolically, the expansion of the action reads

P = Shov 4 Shes 4 (5.8)

qua

At the mean field level, the Euclidean action per unit volume or free energy is given by

Sbos 1 1 o — K? - =
vw =y BmDue(w,a) = 5|5y 5+ G 8y 5~ 58 8a S, | (5.9)

constrained by the SPA conditions
K
5’a+2G§a— ?Eabceabcgbgc =20. (510)

The trace Tr refers to all spaces; color, flavor, Dirac and coordinates. Here, 5; = §;(7,)
represents the auxiliary field at the mean field level within the SPA approximation (note

that py = 0). The MF fermionic operator is flavor-diagonal
Dyr(z,2’) = diag (D;‘AF(QC,Q:’), DI (2,2, D;F(x,x')) : (5.11)

where

Dfe(w,a') = 6Dz — ') (=i — QpA+ My) . (5.12)

represents the inverse of the mean field quark propagator S/,.(x, z')~! for each flavor, with
effective mass My = my + 0. Once again we choose to write the quark propagator in its
Schwinger form, given by Egs. (2.66) and (2.67). Note, however, that the substitution
M — M; has to be made, since quark masses are different in this case due to the 't Hooft
term in the Lagrangian.

Minimizing the free energy with respect to My we obtain the gap equation sy = 2¢y,
where ¢y = —N.MI}; is the chiral condensate for each flavor, given in Eq. (4.10). The
function I 1Bf defined in Eq. (2.75) is divergent integral and has to be properly regularized.
As in previous chapters, we use the MFIR scheme. Then the quark condensate is given by
Eq. (4.11), where IT%** and [;* were defined in Eqgs. (2.79) and (2.52) respectively. Recall
that the substitution M — M/ has to be made for the SU(3) case.

Finally, by combining the equations from the SPA together with the gap equations, we

obtain that the regularized form of the set of coupled equations for the effective quarks
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5.1. Pseudoscalar meson masses

masses read

M, = m, —4G ¢, + 2K 9750

Mg = mq—4G ¢;° + 2K ¢80
M, = my —AG '8 + 2K §5¢"e . (5.13)

5.1.2 Meson sector

For the calculation of meson masses, we consider the second-order correction to the mean

field bosonized Euclidean action. At the quadratic level we get for the pseudoscalar sector

oy = 1/c1l4:16’al43c > 0P (x) Gppi(x,2') OP'(a"), (5.14)

2 PP’

where the sum indexes run over the nonet of pseudoscalar mesons. Namely, P, P’ =

ms, mF, KO K° K% 1y, ns, where we have defined the physical meson fields as

7T3+\/gﬁo+%778 Vent V2K
ATl = \/§7T_ —T3 + \/%770 + %'I’]g \/§K0 (515)
V2K~ V2K° \/%7)0 — s

The inverse meson propagator in coordinate space can be written as
Q;},(m,x’) = Tpp 00 (x—2') — Jpp(z,2). (5.16)

For P, P’ = %, K*, K° K° this operator is diagonal

Tpp = Tp opp ) JP,P/(%QJI) = JP(JU,iU/) dppr , (5.17)
where
T, =T, = [2G—K¢)™" | Jo(z,2") = Jo(2,2) = cqu(z,2),
Ty = T = 2G — Ko¢g ™", Ji-(x,2") = T (2, 2) = csulx, '),
Txo = Tho = 2G— K], Jo(z,2") = Jgo(2', ) = cas(z,2’) . (5.18)

The functions ¢y p(z, ') were already defined in Eq. (4.14).
On the other hand, in the P, P' = 73,19, ns subspace, Q;jp, (x,2’) is nondiagonal but
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symmetric. The corresponding matrix elements of Tp pr are

K (¢u + 0a)° — 4GK ¢, — 8G

T7r371'3 )
f

T _ 2[K2<¢u+¢d_¢s)_2GK] (¢u_¢d)

N073 \/GF )
T [K*(¢u + da + 2¢5) + 4GK] (pu — da)

7873 \/gF )
T 2K2 [(¢d - ¢s)2 + ¢u(¢u - 2¢d - 2¢s)] + 8GK(¢U + de + ¢s) - 24G2

nono 3F ’
T — 2K2 [<¢u - (bd)2 + ¢s(¢u + ¢d — Q(bs)] - 4GK <¢u + ¢d - 2¢s)

7870 3\/§F )
717]87]8 _ K2 [(¢u - ¢d)2 + 4¢s(¢u + ¢d + Qﬁ;;l —4GK (2¢u + 2¢d - ¢s) - 24G2 : (519)

where
F = —4K*¢,0a0s + AGK? (62 + ¢3 + ¢7) — 16G° . (5.20)

In turn, the polarization function elements can be expressed as

Jpp(z,2') = Z%{’,P’ crp(z, '), (5.21)
f

where the coefficients 71’; p are given by

u d 1 s u _a _ s _ 1
Vrgms = TVmgms = ) ) Vrgms = 05 Tnone = Tnono = Tnomo ~ 30
u d 1 s _ u _ d _ 1 s _ 1
Tnoms = T noms T % ’ Tnors = 0, Tnsno = Tnsmo = _5%78?70 - ﬁ )
u d 1 s _ u _ d _ s _ 1
Tngms = T pgms T ! Tngms = 0, Tnsns = Tngns = +_7?78?78 - & (5'22)
2v/3 4 6

For the pseudoscalar mesons we are interested in, the cs (2, 2’) functions can be

worked out leading to the expressions given by Eqs. (4.15) and (4.24).

5.1.2.1 Neutral mesons

For neutral mesons the contributions of Schwinger phases associated with the quark
propagators in Eq. (4.14) cancel out. Therefore, the polarization functions depend only
on the difference (x — z’), which leads to the conservation of momentum, since they are

translationally invariant. If we take the Fourier transform of neutral meson fields to
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the momentum basis, the corresponding transform of the polarization functions will be
diagonal in momentum space. Thus, the neutral meson contribution to the quadratic

action in the momentum basis can be written as

1

Sglcl):d,neutral = 5 Z 5P*(_p> g;l(pi,pﬁ) 6P(p)—|—
P=KO0 K0 P
1 N _
5 Y [ en g, 6
P,P'=n p
s 3,710,718

Here, the inverse neutral kaon propagator is given by

Gro (02, 17) = Gao i, ph) = [2G — Koo)' — cas(p.ph) (5.24)

while for P, P’ = 73,19, ns we have

Gop (P, pt) = Trp — > vhpr cps(0?.ph) - (5.25)
7

The values of Tp pr and ’y}; p can be found in Egs. (5.19) and (5.22), respectively.
An explicit expression for ¢;p(p?, pt) was found in Eq. (4.24). In the neutral case,
this function may involve quarks of different flavors as in Eq. (5.24), but of equal charges.

Thus, taking @)y = @ we arrive at

NB M2 M, e B
crp (0t pf) = f/ d,z/ dye [MEH M i B

1 B 2
MoMo+ 5 (1 — 2} th(zB,) 4+ —2F |1 - )2
{[ My +Z y( y)pj | coth(z f>+sinh2(zBf)l Yy, 2 B

5.26)

where v¢(y, z) is given in Eq. (4.28). Expression (5.26) properly reduces to Eq. (4.27) in
the particular case My = M.

The function ¢ p/(p?, p?) is divergent. As in the previous chapter, we regularize it using
the MFIR scheme, by adding and subtracting its unregulated contribution in the B =0
limit. The calculation of the B = 0 contribution for different quark masses is outlined
in Appendix C, where the relevant expression is given in Eq. (C.2). Regularizing the
B = 0 piece using a 3D cutoff, the function is then separated in a vacuum and a magnetic

contribution

reg

o) = e 0?) + EE W o) - (5.27)

In contrast to the two-flavor case, in SU(3) the 1’ mass can overcome the quark threshold
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My + M. Therefore, we carefully proceed with the calculation taking into account
this possibility. The neutral pole masses are calculated in the rest frame of the mesons,
ie. setting p, = impd,s, with mp > 0. For the vacuum, the calculation is detailed
in section C.1 of Appendix C, leading to the expression in Eq. (C.12). In turn, the
magnetic contribution is discussed in section C.2. We outline below the strategy followed
for the latter case.

Assuming that mp < My + My, the magnetic term can be integrated by parts to be

re-expressed as

ma, Imag + Im?g ma
AP0, —m%) = 2NC{”TU = [m} — (M; = Mp)?] 12ffg(—m§3)} . (5.28)

The function 74" has already been given in Eq. (2.79), while

ma I , . , , 1
L7E(—m}) = — lim i dy [¢(xf7f/ —t€) — In(xy p —i€) +

87T2 e—0 Q(j}fdu — ZE)

] (529

is a generalization of I57¥(pf) in Eq. (4.34). Here () is the digamma function and we

have defined
yM; + (1 —y) M} —y(1 —y)mp

Trp = 2B, : (5.30)

For mp < My + My, zyp > 0 for all values of y within the integration range of the
integral of Eq. (5.29). The function I} is well-defined then and the limit € — 0 can be
directly taken.

On the other hand, for the 1’ we expect that mp > My + M. In this case one has to
have special care since Z sy can be negative within the interval 0 <y < 1. We proceed
by taking the analytic continuation of both the digamma and logarithm functions. This
implies that the inverse propagators become complex functions. Thus, we assume that pj

develops an imaginary part
~ 2
?
p = = (me—3Tr) . (531)

where I'p is associated with the decay width of the meson. Following the customary
method introduced in Ref. [266], we assume that the width is not too large and neglect
its contribution inside the /57 function (this also applies to the equivalent vacuum

contribution)

mag I{r}ag 4 I{T}?g i 2 5] mag )
cf,f’ (mp,Fp) ~ QNC T — (mp — §Fp> — (Mf — Mf/) [2ff,(—mp) .
(5.32)
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Note that in Eq. (5.29) one might hit some poles of the digamma function if the limit
e — 0 is naively taken. As detailed in Appendix C, through a careful treatment of these
poles one can explicitly calculate the ;%% function. The general result for f # f is
given in Eq. (C.22). We remark here that, as a consistency check, we have repeated the
calculation using the Landau level representation of the quark propagator, well-defined for
all mp, obtaining the same result. For the determination of the 7’ mass we only need the

f = f" version of the general expression, given by
1 ! M3 mp(1+ Bo)
ma, 2 . — f P 0

-REn (R sl EY] e

mPnon mPn()n

where g, = 2 — 0,9 and N = Floor [m% 3 /8 B;]. Moreover,

AM?  8nB
8, = \l1— +_ o (5.34)
mp mP

For the neutral kaons, we expect mygo = mzo < Mg+ M. In this case the polarization
function is real and I, is well defined in the € — 0 limit of Eq. (5.29). Therefore, the

pole-mass will be given by the solution of
Gro(p! = 0,pf = —miw) = 0. (5.35)

In the P, P' = 73,19, ng subspace, the corresponding quadratic action can be expressed

in matrix notation through the following inverse matrix propagator

-1 -1 -1
gﬂ'37T3 gﬂ3770 gﬂ’3778
M= g

1 1
073 gno 1o gno n8 )
1 1 1
gﬂs 3 gno 78 g778 18

(5.36)

which is actually symmetric. The physical meson pole-masses and widths will be given by

the roots of
det[M(mp,Tp)] = 0, (5.37)

where the three pair of roots are to be associated with the 7%, 1, n’. Of course, one expects
to get I';o =Ty, = 0, while I';; is expected to be nonvanishing. Note that when B =0, 73
(i.e. ¥ in this case) decouples from the 79,7 states due to isospin symmetry. However,
in the presence of an external magnetic field this symmetry breaks down due to different

quark electric charges. In that case, the 7%, 1, ’ neutral mesons consist of a mix of 3, 19, 75
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states, reflected by the fact that nondiagonal terms are present in the inverse propagator
of Eq. (5.36).

5.1.2.2 Charged mesons

For charged mesons the contributions of Schwinger phases associated with the quark
propagators do not cancel out, leading to a breakdown of translational invariance. As in

the previous chapter, in order to diagonalize the charged meson fields we expand them as

5P(z) — i Bi(x) 6P (). (5.38)

where we have used the shorthand notation of Eq. (2.62). The Euclidean Ritus-type basis
function Bi(z) are given in Eq. (2.59) for the Landau gauge. Here, p = (¢, pa, p3,p4),
where ¢ labels the charged meson Landau level, and s = sign(QpB). In this subsection,
P = %, K*. Thus, the charged meson contribution to the quadratic action in the Ritus

basis reads

1 —\\* 1 ? —— —y
Sevnd,charged = 3 i (67*(p)) lQG——K% Op50 — Jr= (DD )] o (p') +
PP’
1 +3\" 1 g R +(=1
3 L OE0) | gg—gan e = T (B OK(7) . (5:39)
pp’

where from Eq. (4.15)

TG = [ G50, T @5) = [euhe Gy, (640
For positively charged mesons, flavors must be interchanged in the ¢ y/(v) functions defined
in Eq. (4.16). The spatial integral hp(p,p’,v) is given by Eq. (4.38).

Following the same steps of subsection 4.1.3, we can integrate to obtain the generaliza-
tion of the polarization function found in Eq. (4.47) to the case of different quark masses.

These functions are divergent and need to be regularized. Within the MFIR scheme using

A

a 3D cutoff, defining J,- (7, p’) = 0550 Jo- (€, 112) and Jx—(p, p') = 055 Jic- (£, 112) they can

be expressed as
TEE(ETI) = JES(IR) + JES(e,TTR) (5.41)
Once again, the regularized vacuum contribution is given in Eq. (C.12) of Appendix C,
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evaluated at p? — II2. After a long but straightforward calculation, we obtain the following

expression for the magnetic contribution

= 1

mas () [[2) = Nc/ d,z/ dye*Z[ZJM?+(1*y)M]%/+y(lfy)(H27(25+1)BP):| y
0 0
1

272

{ {Mfo' + - =yl -y) (P~ 20+ D)Bp)| x
(1 +Spspty tf,) o ¢ e—2y(1-y)(2¢+1)Bp
e () -
Q-1 -13) (a )
- -~ £ — .
ata_ oy o+ (e )]
e—2y(1-y)2+1)Be 1
> P y(1—y)(20 + 1)Bp] } , (5.42)

which properly reduces to (4.47) when M; = M. Here Bp = |QpB| with Qp = Qf — Q.
Also, see Eqgs. (4.19) and (4.48) for the definitions of ¢;, t;» and ay. For charged pions
and kaons, Bp = |eB| = B..

For these mesons we expect them to develop only a real pole-mass, i.e. 11> = —m2 with
mp < My + M. In that case the integrals in Eq. (5.42) are convergent and well-defined.
Therefore, for each Landau level the charged mesons pole-masses will be given by the

solutions of

1
2G — K¢y

-
2G — K¢y

Je (011 = —m2 ) = 0,
J (0,117 = —m3%. ) = 0. (5.43)

For the 7% and KT, it is easy to see that J..(¢,11%) = J, ({,11%) and Jg(¢,11?) =
Ji- (¢, 11%), which implies that for the same charged meson both masses are equal as

expected from charge conservation.

5.2 Numerical results

To obtain numerical results for the magnetic field dependence of the meson masses one
has to fix the model parametrization. Here, following Ref. [266], we take the parameter
set m, = mg = 5.5 MeV, m, = 140.7 MeV, A = 602.3 MeV, GA? = 1.835 and KA’ =
12.36, which has been determined on fixing that for vanishing external field one gets
My = 135 MeV, mg = 497.7 MeV, m,y = 957.8 MeV and f, = 92.4 MeV. This parameter
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Figure 5.1: Effective quark masses M, (black), My (red) and M (blue) as functions of eB for
fixed (solid lines) and B-dependent (dashed lines) coupling G.

set gives an 7 mass of m, = 514.8 MeV, which compares reasonably well with the physical
value mgh = 548.8 MeV, together with an appropriate value for the chiral condensate of
(ff)Y3? =242 MeV for f = u,d. As mentioned in the introduction, while local NJL-like
models are able to reproduce the MC effect at vanishing temperature, they fail to lead
to the IMC effect. As in the previous chapter, to incorporate the backreaction of gluons
due to magnetized quark loops, we allow for magnetic field dependence of the coupling
constant. In particular, we adopt the expression proposed in Ref. [158] in the context of
an SU(3) NJL model with the same parameters that we use. In that work the current
quark masses, A and K were kept constant while for G(B) the form
1+ a(eB/Ayep)® +b(eB/Agep)?

G(B) = G T+ c(eB/Nb0p)” + d(eB/ Aoyt (5.44)

was introduced. Here, a = 0.0108805, b = —1.0133 107%, ¢ = 0.02228, d = 1.84558 10~*
and Aqep = 300 MeV. As stated in Ref. [158], this form of the scalar coupling has been
fitted so that the lattice QCD pseudocritical chiral transition temperatures are reproduced.

Results for the magnetic field dependence of the dynamical quark masses are shown
in Figure 5.1, for both constant and B-dependent coupling G. As we see, for constant G
all quark masses increase with B. In contrast, for G(B) they display a nonmonotonous
behavior, less affected by the magnetic field. In this case, My and M initially decrease
with B, while about eB ~ 0.6 — 0.7 GeV? this tendency reverses. On the other hand, M,
has just the opposite behavior. In fact, these dependencies of the dynamical quark masses

on the magnetic field are roughly consistent with the results obtained in Ref. [164]. In
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Figure 5.2: Condensate average (left) and difference (right) as functions of eB. Results for

constant (black) and B-dependent (red) coupling G are shown in solid lines. LQCD results from
Ref. [73] (light blue bands) are added for comparison.

that work these quantities have been extracted from a LQCD calculation of the baryon
masses using a simple minded approximation based on the constituent quark model.

It should be stressed that in spite of the rather different behavior between the dynamical
quark masses, a magnetic catalysis effect at zero temperature is obtained independently
on whether G depends on B or not. This is shown in Figure 5.2, where we display the
conveniently normalized light quark condensates defined in Eq. (4.107) for both constant
and B-dependent coupling G. In the left panel we plot the average AY = (AX, + AXy)/2
while in the right panel the difference ¥~ = AY, — AY,; is shown. We recall that
AXy = —2my[¢8(B) — ¢75(0)]/D*, where D = (135 x 86)'/% MeV is a phenomenological
normalization constant. We compare our results with LQCD ones, represented in the
bands of Figure 5.2. As in the SU(2) case, we observe that although the predictions for
constant G are somewhat closer to the LQCD results, those corresponding to G(B) can
certainly be considered as acceptable. It is interesting to remark here that other form
functions of G(B), such as the ones proposed in Refs. [161, 164], reproduce similar trends
for these quantities.

We turn now to our results for the magnetic field dependence of the masses of the
nonet of pseudoscalar mesons. They are shown in Figure 5.3, where for charged mesons

we instead display their lowest energy states, given by

— Jm2. +eB. (5.45)

pa=t=0

Eps = \/mbs + (20 + 1)eB + pj
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Figure 5.3: Pseudoscalar neutral meson pole-masses and charged mesons lowest energies as
functions of eB for constant (left) and B-dependent (right) coupling G.

It should be noticed that both Ep and mp depend on B, although not explicitly stated.
The left (right) panel corresponds to the case of constant coupling G' (B-dependent G).
We observe that, except for the n'-mass, the B-dependence is rather mild in the case of
the neutral mesons. On the other hand a rather strong increase with growing B is found
for charged meson masses. These results are analyzed in further detail in what follows.
The case of ' is somewhat special and, therefore, indicated in dashed lines in Figure 5.3.
In fact, already at B = 0 its mass is above the threshold for gg-decay and, thus, the
associated gq polarization diagram receives an unphysical imaginary part. Following
Ref. [266] we accept this as an unavoidable feature of the NJL model and define the
n’-mass as the real part of the corresponding pole in the complex plane. We should keep
in mind, however, that this fact makes the predictions for the n’-mass less reliable as
compared to those of the other mesons. The situation worsens for finite magnetic field.
First, new divergencies appear at low magnetic fields due the existence of thresholds
associated with the Landau levels of the intermediate quark states. Although these
divergencies are along the real axis, they originate the kind of oscillatory behavior found
for eB < 0.2 GeV2. In passing, we note that including in the calculation the imaginary
part of the polarization function makes these divergences less harmful. If one neglects that
contribution, as done in Ref. [147], the determination of m,, becomes full of ambiguities
making its determination even more troublesome. The other point has to do with the fact

that at finite magnetic field the width is in general larger than the already non-negligible
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Figure 5.4: Normalized neutral meson masses as functions of eB for constant (black solid lines)
and B-dependent (red solid lines) coupling G. LQCD results from Ref. [129] (light blue band)
and Ref. [258] (magenta circles) are added for comparison.

value at B =0, Fﬁzo = 269 MeV. For constant GG, we encounter a nonmonotonic behavior
of the width, which shows a close-to-vacuum mean value of Fﬁ’mea” = 332 MeV but can
reach values of I'}) ~ 590 MeV at intermediate fields. On the other hand, for G(B) the
pace of growth of the width increases. At fields strengths around eB ~ 0.5 GeV? the width
exceeds the mass, with a value of I’,]f, ~ 1.46 GeV. This enhancement of the width, together
with the decrease of G(B) as B increases, results in the fact that for eB > 0.5 GeV? no
solution of Eq. (5.37) can be found apart from the ones associated with 7% and 7. Namely,
above such a value of the magnetic field the coupling strength is not enough to form an
n’-resonance in the ¢g-continuum.

To discuss our results for the other neutral mesons (7°, K°, K° and 7) in more detail
we display in Figure 5.4 the corresponding masses taken with respect to their values at
B = 0. We show results using a constant and a B-dependent coupling GG, together with
LCQD simulations from Refs. [129, 258] for comparison. It should be noticed that these
LQCD calculations correspond to unphysical pion masses of 415 and 220 MeV respectively,
for vanishing magnetic field. In both cases they point to a stronger decrease of the 7% mass
with increasing B than the one found in our calculation with constant G. On the other
hand, the results obtained using G(B) are in reasonable good agreement with LQCD ones.
The same conclusion was reached in the previous chapter for the SU(2) case; for both

versions of the model results for m,o are rather similar, although SU(3) values are slightly
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Figure 5.5: Charged meson masses (top) and differences of squared lowest energies between the
case at B # 0 and B = 0 (bottom) for charged pions (left) and kaons (right) as a function of
eB. Results for constant and B-dependent coupling G are shown in black and red solid lines,
respectively. Green dotted lines correspond to energies associated with point-like charged mesons.
LQCD results from Ref. [129] (blue squares) and Ref. [258] (magenta circles) are added for
comparison.

higher. This seems to also provide further support to the relation between the IMC effect
and the reduction of the neutral pion mass at finite B mentioned in Ref. [258]. A similar
behavior is observed for K and K° masses (central panel), although the magnitude of
the decrease is reduced. For these mesons, the only LQCD result that has been reported
is that of Ref. [258]. We observe that, once again, a much better agreement with these
results is obtained when a B-dependent coupling G is used in the NJL model. Finally, in
the right panel we show our predictions for the behavior of the normalized n-meson mass.
They turn out to be quite similar to the ones obtained for the K° and K° relative masses.

Finally, we consider the masses of charged pseudoscalar mesons 7% and K*. We
display the differences in their squared lowest energies from the case of a zero magnetic
field, i.e. E%.(B) — E%.(B = 0), in Figure 5.5. We also include their masses in the top
graphs for completeness. We show results for G and G(B) as compared to a point-like
charged meson and LQCD simulations from Refs. [129, 258]. We observe that for both

charged pions and kaons, our results show a stronger increase with growing B as compared
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with the ones associated with point-like mesons. Those obtained using a B-dependent
coupling are, however, somewhat closer to them. Results are very similar to the ones
obtained in the SU(2) case in Figure 4.7, although SU(3) values are slightly higher. As
for the comparison with LQCD results, we note that in the case of charged pions there
are significant differences between the results reported by the two different LQCD groups,
specially at large magnetic fields. Although our results seem to be more consistent with
those of Ref. [129] it should be recalled that they correspond to a larger (unphysical) value
of the B = 0 pion mass and have larger error bars. In any case, we see that, for both
charged pions and kaons, our NJL results show no sign of the strong nonmonotonous
behavior found in the LQCD calculation of Ref. [258]. Results obtained within the SU(2)
version of the model seem to indicate that the inclusion of quark anomalous magnetic
moments does not modify the trend of the charged pion mass obtained in the present
work [157].
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CHAPTER

Diquark and nucleon masses under

strong magnetic fields within the
SU(2) NJL model

In the past few years, the effects of a magnetic field on baryon masses has been addressed
in the context of ChPT [267, 268], nonrelativistic quark models [269], extended linear
sigma model [270], Walecka model [270, 271], soliton models [272], finite energy QCD
sum rules [273], and also lattice QCD [164]. It is worth noticing that these theoretical
approaches lead to various different results for the behavior of nucleon masses. In this
chapter we complement these works by studying the effect of an intense external magnetic
field on scalar diquark and nucleon properties within the framework of the two-flavor
Nambu—Jona-Lasinio (NJL) model. In the NJL model, diquarks are constructed through
the resummation of quark loop chains using the random phase approximation, while
nucleons are treated as bound quark-diquark states described by a relativistic Fadeev
equation, using the static approximation for quark exchange interactions. For charged
particles, analytical calculations are performed using the Ritus-type eigenfunction method
presented in previous chapters, which properly takes into account the breakdown of
translation invariance that arises from the presence of Schwinger phases. Within this
scheme, for definite model parametrizations we obtain numerical predictions for diquark
and nucleon masses, which are compared with Chiral Perturbation Theory and Lattice
QCD results. In addition, numerical estimations for the nucleon magnetic moments are
obtained. Results from this chapter are based on Ref. [274].
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6.1. Diquarks and nucleons

6.1 Diquarks and nucleons

6.1.1 Bosonized NJL model with diquark interactions in the

presence of an external magnetic field

We start by considering the Euclidean Lagrangian density for the NJL two-flavor model in

the presence of an electromagnetic field and color pairing interactions. One has

L= (~iPtm) -G+ @irraw)] — H (deinsmada ) (deinsmAa) |

(6.1)
where 1) = (y,14)T represents a quark field with two flavors, G and H are coupling
constants and m,. is the current quark mass, which is assumed to be equal for v and d
quarks. Moreover we have defined v, = y9v4", while 7, and A4, with a = 1,2, 3 and
A = 25,7, stand for Pauli and Gell-Mann matrices acting on flavor and color spaces,
respectively. The interaction between the fermions and the electromagnetic field A, is
driven by the covariant derivative D, = 0, — i@AH, where Q = diag(Qu, Qq). As before,
we consider the particular case of an uniform stationary magnetic field B orientated along
the 3-axis, represented in the Landau gauge A, = Bx16,2.

As in previous chapters, it is convenient to bosonize the fermionic action. The
procedure follows the idea outlined in Appendix A, taking additional care of the color
pairing interactions. Then, the action is rewritten in terms of scalar o(z), pseudoscalar
7q(x) and diquark fields A 4(x), while fermion fields are integrated out. The bosonized

Euclidean action can be written as

o(z)o(z) + mo(x) ma(x)  Aa(x)*As(x)
o y Bal)s ] 62)

Shos = —%Tr 1nD—|—/d4$ [

where

D(z,2') = 6@ (x — ') ( —1Y, Dy + me + ¢(x) P95 To Aa Au(w) ) (63

i’}/5 T2 )\A AA(JZ)* —Z’}/uD; + me + ¢(x)T

with ¢(x) = o(x) + iy57.ma(x). As customary, we have used here the Nambu-Gorkov
formalism, see e.g. [275]. In the former equations, and in what follows, matrices in
Nambu-Gorkov space are denoted in boldface.

We proceed by expanding the bosonized action in powers of the fluctuations do(z),
dm,(z) and A 4(z) around the corresponding mean field (MF) values. As before, we

assume that the field o(x) has a nontrivial translational invariant MF value &, while the
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vacuum expectation values of pseudoscalar and diquark fields are zero. Then, one has
D(z,2') = Dyp(z,2') +0D(x,2) . (6.4)

The MF piece reads

D /
Dyr(z,2") = (z,27) 0 , (6.5)
0 D.(x,2")
where
D(z,2') = 6% (x — ) (—iv, Dy, + M),
Dufe,a') = 0Dz — ) (—iny Dy + M), (6.6)

Here M denotes the quark effective mass, M = m,. 4+ o, and we have omitted the MF

subindex for visual clarity. The fluctuation piece is given by

(6.7)

oD(z,2') = 6@ (2 — ') d¢(x) P95 T2 Aa 0A 4 ()
| ivs A 0BA()  0g(a)T '

The MF operators D(z, 2’) and D.(z, ') are flavor-diagonal, and their inverses corre-

spond to the MF quark propagators in the presence of a magnetic field. One has

D Yx,2') = S(x,2') = diag (S“(x,x/) : Sd(x,x’)) , (6.8)

D, (w,2)) = Si(w,2)) = diag (S"(x,2'), S™(x,2')) , (6.9)

where the minus signs in front of the flavor indices f = u, d indicate that the sign of the
corresponding quark electric charge in the propagator has to be reversed. As before, we
choose to write the quark propagator in its Schwinger form, given by Eqgs. (2.66) and (2.67)
(see text below these equations for some shorthand notation).

Replacing the previous relations in the bosonized effective action and expanding in
powers of meson fluctuations around the MF values, one gets

Ghos — ghos 4 ghos 4 (6.10)

qua

together with those of the mesonic contributions to SP% ., are

: bos
The expression of S quad’

MF
given in Eqgs. (2.28) and (4.12) respectively. In each corresponding section, the procedure
followed to obtain the regularized gap equation and the expressions required to calculate
various meson properties are discussed in detail. In the present case, Spos, includes an
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additional contribution that is quadratic in the diquark fields. This will be discussed in

the next subsection.

6.1.2 Diquark mass and propagator

The diquark contribution to Sgos, is given by
1
St = Sa+Sa=g5 > / dz d's’ 3D, (2)" G5l (x,4') DA(x),  (6.11)
D=A,A
where )
Gol(x,2') = 10 S (x —2') — Jp(x, 7). (6.12)
The polarization functions read
/ 1 / /
Ja(z,2") = 5N Trp [cy—a(x, o) + c4—u(x,2")] | (6.13)
1
Jx(x, o) = 5N Trp [c_wa(z, ') + c_gu(z, )], (6.14)

where the trace is taken over Dirac space and the functions ¢y y(z,2") were defined in
Eq. (4.14). As seen from its quark content, A (A) corresponds to the diquark with charge
Qa =¢/3 (Qa = —e/3). Since Ja(z,2") = Ja(2,x), both diquarks have the same mass,
and we can proceed by considering only the positively charged diquark A.

As in the case of charged pions, there is no cancellation of Schwinger phases, leading
to the breakdown of translational invariance. Therefore, in order to diagonalize the
polarization function we expand the charged diquark field in terms of Ritus-type basis
functions

A4 (x) = i Bi(x) 6AA(p) , (6.15)

P
where we have used the shorthand notation of Eq. (2.62). The Euclidean Ritus-type basis
function Bj(x) are given in Eq. (2.59) for the Landau gauge. Here, p = (¢, p2, p3, p1), where
¢ labels the diquark Landau level, s = sign(QaB) and Ba = |QaB| = B./3. Replacing

this expansion in Eq. (6.11) we have

1

Sa = 5 i SAL(P) GM(B.7) 6. (6.16)

» 0

p,p
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where GX' (P, 7') = 05 /JAH — Ja(p, 7). Then, from Eq. (4.15) we arrive at

1

JA(ﬁaﬁ/> - 2Nc /[Cu,—d(v)+cd,—u(v)] hA(ﬁvﬁlvv)’ (617)

which depends on the ¢ (v) function defined in Eq. (4.16) and on the spatial integral
ha(p,p',v) defined in Eq. (4.38). Notice from the result in Eq. (4.24) that ¢, _q(v) =
Ca—u(V).

The remaining integrals in the polarization function can be worked out following the
same steps as those described in subsection 4.1.3 for the case of charged pions. As a result,
the polarization function turns out to be diagonal in the Ritus-type eigenfunction basis,
ie. JA(D, ) =05y Ja(l,112), where II? = (20 + 1) Bx + p?. The expression for J (¢, 1%
can be obtained from Eq. (4.47) by replacing P = A, f = u, f' = —d and dividing by N..

As in the meson case, the polarization function Ja(¢,11?) is divergent and can be
regularized within the MFIR scheme, carefully subtracting the B = 0 contribution once
the latter has been written in terms of the squared canonical momentum II2. Thus, the

regularized diquark polarization function can be written as
JRE(CIT%) = JR(I1%) + JA (0, 11°), (6.18)
where

00 1
TR 1) = dz / dy e M O-n (=B )]
0 0

272

HMH%—y(l—y)(H2—(2£+1)BA)1 X

CY{ efzy(lfy)(2f+1)BA
[F(l—ktutd)— , ] +
o 2 2
—5 (1 —=1,) (1 —tg) [a— + (- —aq) (] —
Oy
efzy(lfy)(2€+1)BA 1
- e —y>(2£+1>34} (6.19)

This magnetic field-dependent contribution is finite since the integrand in Eq. (6.19) is
well behaved in the limit z — 0. On the other hand, we regularize the expression for the
added B = 0 piece by using a 3D cutoff. We get

JRIP) = 2 [ + P13 (112) | (6.20)
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where the explicit expressions of 1" and I3* are given in Eqs. (2.52) and (2.53), respec-
tively.

After diagonalization, the regulated inverse diquark propagator reads

1/= — N 1 Te
G (0.7) = S |77 — JRHLID)| (6.21)

Consequently, the diquark pole mass in the presence of the magnetic field can be obtained
for each Landau level ¢ by solving the equation
1 reg 2
Although not explicitly stated, ma depends on the magnetic field. As in the case of the
charged pions, instead of dealing with ma one can define the A “magnetic field-dependent
mass” as the lowest quantum-mechanically allowed energy of the diquark, Ea. The latter
is given by
2 2 2 2 leB]
{=p3=0 3

Notice that this “mass” is magnetic field dependent even for a point-like diquark (in which
case the pole mass ma would be independent of B). In fact, owing to zero-point motion in
the 1-2 plane, even for £ = 0 a diquark cannot be at rest in the presence of the magnetic
field.

Since the inverse of the diquark propagator is diagonal in this basis, it can be trivially

inverted. We have
gA(ﬁ?ﬁ/) — Opyp gzeg(&pﬁ), (624)

where . .
reg 2 o - reg 2
RH(a) = | - IR (6.25)

Given the diagonal form of the diquark propagator in Ritus space, see Eq. (6.24), we can

transform it back to coordinate space. One obtains

Galx, ') = ePal@a) /eip(x_x,) Galpe,pi) (6.26)
p
where )
5 2 & re 2
Galpr,p) = 2¢7 55 3 (~1)  GRE(Lp2) Ly | 22 ) (6.27)
=0 Ba

We recall here the notation p, = (p1,p2) and pj = (ps, pa)-
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X —/— X
y ———« y

Figure 6.1: Diagrams contributing to the full baryon propagator.

6.1.3 Nucleon masses

The baryon propagator can be obtained consistently with the bound quark-diquark
structure following Ref. [276]. From the infinite sum illustrated by the diagrams in Figure 6.1

one arrives at a relation of the form
SP([zsyl [ y']) = Sg'([wiy], [259]) +
[t P 5D HED S0 ) o (623)
where, in our case, the kernel H is given by
H(z,t) = ivsmoAa Se(z, 1) iy5T2 A (6.29)

In Eq. (6.28), S? stands for the full baryon propagator, while S& describes the unperturbed

propagation of a diquark and a quark, namely
Sy ([x:y), [t:2]) = Galw, 1) S(y,2). (6.30)

Since the nucleon fields are bilocal, we have introduced the notation of pairs [z;y|, where
the first and second coordinates correspond to the diquark and the quark, respectively.
The resummation of the diagrams in Figure 6.1 leads to a relativistic Fadeev equation

that can be written in the form

SPlail i) = [ dats[59 e =260y 1) = Llfasy), [5)] S (. o).
(6.31)
where
L([z5y), [251]) = Sg' [yl [t 2) H(=, 1) - (6.32)

The nucleon masses will be given by the poles of the operator in square brackets in
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Eq. (6.31). Acting on the baryon field v, one has

/ d'z d't Ll o), [z 0) v 4) = (). (6.33)

It should be noticed that in our calculation only isocalar-scalar diquark interactions have
been considered. This implies that the nucleon isospin is directly given by the flavor of
the unpaired quark. Projecting on color singlet baryon states, and using the explicit form

of the matrices in flavor space, one gets
2 [ % Gal 1) S(5,2) 16 8 (et 15 vl [558) = wi(lsal)

2/d4zd4t Ga (2, 1) 8y, 2) 15 8" (2,1) 15 Un([2:8]) = vnl([z;9]) (6.34)

where 1), and v, stand for proton and neutron fields, respectively.

It should be noticed that in the absence of an external magnetic field both equations
coincide. Moreover, since in that case both quark and diquark fields are translational
invariant, one can perform a Fourier transformation into momentum space. The resulting
Fadeev equation, discussed e.g. in Refs. [277, 278], turns out to be a nonseparable integral
equation. Given its complexity, in Ref. [277] the so-called “static approximation” was
used, in which one disregards the momentum dependence of the exchanged quark. Then,
in Ref. [278] the full equation was solved numerically, showing that in fact the static
approximation can be taken as a good qualitative approach to the exact results. Having
this in mind, and taking into account the additional difficulty introduced by the external
magnetic field, we find it appropriate to consider the static approximation to get an

estimation of the behavior of nucleon masses with the external field. This means to take

_ 1
S, q) — 7 (6.35)

Since in this approximation one has S~/ (x,y) = 6@ (x — y) and H(x,2) ox §¥(z — 2),
Eq. (6.34) reduces to

2 4 u —
M/d 2 Ga(z,2) 8"(7,2) Yp(2) = Yp(z),

2 / d* Ga (2, 2) SU(w.2) ta(2) = tale) (6.36)

Notice that within this approximation there is no further need to consider coordinate pairs

in the arguments of nucleon fields, which become local.
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Inserting Eqs. (2.66) and (6.26) into Eq. (6.36), we get

2 . = = i —1i z
M/ e!Pra Qa(m,ﬂ)su(m,%)/d‘*z e TIHDZ 4y (2) = p(2)
p.q

2 . _ _ .
i / TG (n i) SHaq, qn) / diz e PFDZ ) (2) = y(z),  (6.37)
p,q

where the Schwinger phase appearing in the equation for the proton is given by

B
Oy(z,2") = Pa(z,2') + Py(z,2') = Q;

(21 + ) (22 — 75) (6.38)

with @p = e > 0. As expected, in the neutron equation the Schwinger phase vanishes. In

order to change to a diagonal basis, it is convenient to introduce the transformations

wlo) = Y ER0G(P) wale) = [ ). (6.39)
P
Note that while in the case of the neutron P denotes the usual four-momentum, for
the proton field P = (n, P, P, P;) denotes its corresponding quantum numbers in the
Landau gauge, including the Landau level n. The Euclidean Ritus spinor eigenfunctions
EZ(x) have been defined in Eq. (2.58) for the Landau gauge, with B, = [eB| = B. and
sp = sign(eB).
Inserting the expansions of Eq. (6.39) into Eq. (6.37) one gets

i DE ¢p(P) = 0, D ¢u(P) = 0, (6.40)

]5/

where
~ 2 / = =
D%)’)ﬁ’ = 6p713/ 1 — M / I;’jg/(ﬂ Q) gA(vapH) A)x SU<QL7qH) A)\’ P (641)
AN JIpg
) 2 (& cd
Dy =1 — M QA(ppPH)S (PJ_ —p, B —pH), (6-42)
P

with A\, \ = &+ and
];,7/;3’/ (p.q) = /d4x dy i@ (@2)+(p+a)(z—2)] o (2)* B2, (2). (6.43)

P PN

The spin projectors, defined below Eq. (3.32), are given by A, = diag(1,0,1,0) and
A_ = diag(0,1,0,1). Meanwhile, the Ritus-type basis function Bj—;; () were defined in
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6.1. Diquarks and nucleons

Eq. (2.59), with Py = (ny, Py, Ps, Py) where ny = n— (1 —s,\)/2 is a non-negative integer.
We omit the s, subscript in the notation of ny for visual clarity.

It is not obvious from Eq. (6.41) that D'® )15, is diagonal in Ritus space. However, after
a rather long calculation, it can be shown that ]Dgf)P/

main steps of the calculation are detailed in section D.1 of Appendix D. Using the form of

is indeed proportional to 0 5.5 The

the quark and diquark propagator given in Eqs. (2.67) and (6.27) one finally obtains

A

DY, = dpp Y. {Xﬁp) +YP Py + 2P 72} Ay,

PP
A=+
Dg) _ Z [X>(\n) + Y)\(n) PH - + Z(n) PL . ’YL} A)\ , (644)
A=+

ny ST _(mta)? . 2a + )2
XP =1 (=)™ —/ e B Galpr,pn) TN (q, Pi — pi) Ln, <M> ,
p,qL

B, B,
(6.45)
&1 _mta)?
Y(P) — _1 SN Bp
A (1) MBP/MG GalpL,pi) x
pi- B 2(q. +p1)?

1— Tu(q, Py —py) Ly, | 282 4

( P > N(a, Pr—pi) La, ( B, (6.46)
87TS (pl+qm2 _
7®) _ P By
Y ”nB / Ga(pL,pi) X
. u 2(qL +p.)?
a1 [(q1 + p1) — iX(g2 + p2)] V*(qu, P —pi) Ly, (%) , (6.47)
1Y
for the proton and
X =1- 2/ Galpe,pi) TR(PL —po, P —pi) (6.48)
p
n 2 = . P
YA() = —/ Ga(pL, 1) Tf(P —p, Pi—pi) <1 b 5 ) , (6.49)
M Jp By
n - P,
Z>(\) = / gA (pL,p1) ( —p, P —p) <1 pLP2l> , (6.50)
€
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for the neutron, with

T (q.q) = / dr e ™™D [1 4 X sptanh(1By)]
0

Vf((ﬂaQH) = / dr e 7Y (9) SeChQ(TBf). (6.51)
0

The function Y;(7,q) was defined in Eq. (2.68). Also, similarly to Eq. (2.24), we have

defined the shorthand notation
dq1 dgo
= . (6.52)
/qL / (2m)?

In what follows we will concentrate on the determination of the proton and neutron

lowest possible energies. Since these quantities are usually interpreted as the nucleon
masses, we denote them as My, with N = p,n. For the neutron we just take, as usual,
P, = P3 =0 and P? = —M?2. In the proton case, as done for diquarks, we consider the
squared canonical momentum, I1* = 2nB, + B?. The lowest energy state corresponds to
P; = 0 and the lowest Landau level (LLL), n = 0. Then P} = —Mg, as for the neutron
case. Since the determinants of the Dirac operators in Eq. (6.44) have to vanish at the

pole masses, the corresponding eigenvalue equations read
(£0) a2 (1) = 0 (X@) M2 (1) =0, (653)
Sp P Sp - ) A n A - ) :

where we have denoted by )A(; and f/j; the coefficients in Eq. (6.44) evaluated at n = 0,
P; =0 and P, = 0. Note that for the lowest energy states there is no contribution from
the Z ip) and Z f\n) terms. In addition, for the proton case only the projection A = s, is
nonvanishing for n = 0. For the neutron, both projections are in principle allowed, and
one should take the value of A that leads to the lowest value of the mass.

To obtain the explicit form of the coefficients X% and Y} needed to evaluate —and
solve — Eq. (6.53), one has to replace the diquark propagator of Eq. (6.27) into Eqs. (6.45-
6.50). For convenience we consider first the form of the coefficients in the absence of the

external magnetic field (in this case both nucleons are taken at rest). They are given by
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(see section D.2)

N 1 ©dr [ MR my 27 pmy
X =1- — dp p* GR°(p? & J 6.54
47r2mN/1 T /0 pp gA (p )6 1< A2B ) ) ( )
N 1 OOdT oo _ M2+p2—m§
Y — - d 2 vac 2 T A%
—47T2mNM/1 . /0 pp” GA“(p7) e X
27 pmy P 2T pmy
[L( A% ) mNJ2< A% ' (6:55)

Here, and below, my denotes the nucleon mass at B = 0 while J,,(z) are Bessel functions.

The B = 0 diquark propagator [see Eq. (6.25)] is given by

o I1

=) = [

A

G (6.56)

Notice that Eqs. (6.54) and (6.55) include a cutoff parameter A g, which has been introduced
in order to regularize the otherwise divergent quark-diquark loop within the proper time
regularization scheme.

For nonzero magnetic field B, in the case of the proton we have

X(P) — _ B“BA /OO dT 1 + tu s Bu + (Bp — BA)tu ¢ %
% 2m2A% [, By + (Bp + Ba)ty = | Bu+ (B + Ba)tu

M?+pf — M

* re -7 £ 2 M
/ dpi pi GAE(L,p7) € Yoo # :
0 A%

o0 o0 V4
ow _ _BuBa / i 1+t, [Bu—l—(Bp—BA)tu] y
1 U

° 2m2MAY (Bp 4+ Ba)tu | Bu+ (Bp + Ba)tu

> M My 2Trp M 2 2T py M
dpy p1 G20, p? | p) -2 ®
/0 P D QA ( 7pu) € [ 0 ( AQB Mp 1 AQB )

(6.57)
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while for the neutron we get

> (n) BdBA & 14 )\Sdtd s Bd — BAtd ¢
X)\ = 1 T 5 9A0 dT |: :|
27T2AB 1 Bd + BAtd —0 Bd + BAtd
> Te. —T M2+pf|7M$L 2 T Mn
/ dpi pi GaE(0,p7) € Yoo p\—; ;
0 Ag
V@ BaBa /OO dr 1+ Asgla & {Bd - BAtdr
A 22 MA% Jy ByBaty 1By + Bata
> MR M 27p M DI 27p M
re 2 7] n n
/0 dpy pi Ga2 (4, pif) e A lJ()( A - /\/lnjl A2 -

(6.58)

In these equations we have used the definition ¢; = tanh (7B;/A%).

6.1.4 Nucleon magnetic moments

We finish this section by noting that in order to study how nucleon masses get modified to
lowest order in the magnetic field, the above expressions for X ¥ and f//\” can be expanded

around B = 0. Let us define the corresponding slopes ay by
My = my+ oy |B|+ O(B?). (6.59)

After a rather long calculation, sketched in section D.2, we obtain

—Qu (M +my) Ty — iy To) + QW

ap = = = )
MY +2myW
M T — my I
a, = Qd[( —':mN) 1 ,\mN 2] 7 (660)
MY +2myW
where
W = (M+m)Zi — 2my+ M) Ty + my Iy, (6.61)
and the integrals Z; are given by
1 o o _ o Moy 2Tpm
i = —— | d dpp"tt GR=O(p? N 5. 6.62

To find the relation between «y and the nucleon magnetic moments we proceed as

follows. First, we take into account that to leading order in the magnetic field the change
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in the nucleon energy is given by [267, 279

|3

R 17 . 3 2
o~ B+ O(B). (6.63)

AEy

The first term corresponds to orbital motion. While it vanishes for the neutron, for the
proton it provides a contribution due to zero point motion in the plane perpendicular to
the magnetic field. The second term represents, for both p and n, the spin contribution

leading to the Zeeman effect. Thus, we have

¢| Bl

AB, = (1 — pp) 2y +0(B%),
AE, = —am B Lo (6.64)
n — Hn 2mN ) :

where, as usual, the nucleon magnetic moments are expressed in units of the nuclear
magneton py = e/(2my). Note that for the proton we have taken into account the fact
that for the lowest energy state one has A = s,. In this way, identifying the corresponding

slopes at B = 0, the nucleon magnetic moments are given by

2mN 2Tn’N

py = 1— pn = —Asign(B) Qp (6.65)

e

6.2 Numerical results

For definiteness, in what follows we will consider B > 0. To obtain numerical results
for diquark and baryon properties one has to fix the model parametrization. Here we
will consider only set I of Table 4.1, which from the three sets of the table provides the
best agreement with lattice QCD results [73] for the normalized average condensate up to
eB ~ 1 GeV?, as seen in Figure 4.2. The effective Lagrangian in Eq. (6.1) also includes
the scalar quark-quark coupling constant H. Typical effective approaches for the strong
interaction, such as the One Gluon Exchange or the Instanton Liquid Model, lead to
H/G = 0.75 [181]. However, this value is subject to somewhat large uncertainties from the
phenomenological point of view. In fact, larger values for this ratio seem to be favored from
the determination of baryon properties within the Fadeev approach [277, 278, 280, 281].
Here we choose to take H/G within the range 0.75 < H/G < 1.2, typically considered
in the literature. The corresponding values of the diquark mass and binding energies at
B = 0 are shown in Figure 6.2. We observe that for H/G ~ 0.75 the scalar diquark is
barely bound by 5 MeV, while for H/G = 1.2 one gets binding energies of about 200 MeV.

Let us consider the effect of an uniform magnetic field on the (LLL) diquark mass,
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Figure 6.2: A mass (top) and binding energy (bottom) at B = 0 as functions of H/G.

contained in Eq. (6.22). In the upper panel of Figure 6.3 we show the magnetic dependence
of the diquark mass, normalized with respect to its B = 0 value. The curves correspond to
some selected values of the ratio H/G within the range mentioned above. We get ma (B =
0) = 0.685, 0.653, 0.609 and 0.555 GeV for H/G = 0.8, 0.9, 1.0 and 1.1, respectively. It is
seen that for all considered values of H/G the normalized mass initially decreases as B
increases, attaining a minimum at about eB ~ 0.2 GeVZ2. Beyond this minimum the curves
steadily increase with the magnetic field, reaching a ratio ma(B)/ma(0) = 1 somewhere
in the range eB ~ 0.4 — 0.6 GeV?2, depending on the precise value of H/G. Notice that
this nonmonotonic behavior differs from the steady charged pion mass increase found
in Figure 5.5. Lastly, results obtained disregarding Schwinger phases greatly deviate at
high magnetic fields, showing a rather strong enhancement with B.

In the lower panel of Figure 6.3 we show the difference of squared lowest energies,
i.e. EA(B)?— EA(0)2, see Eq. (6.23). For a point-like diquark this difference is simply
given by eB/3, indicated by the straight dotted black line. It can be observed that, as a

consequence of the nonmonotonic behavior of the pole mass, for small (large) values of eB
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Figure 6.3: Diquark normalized mass (top) and squared energy difference (bottom) as functions
of eB for some representative values of H/G. The point-like case is indicated by the dotted

line, while results obtained disregarding Schwinger phases are depicted as a dark yellow line for
H/G =0.8.

the difference Fx(B)? — EA(0)? lies below (above) that straight line. A similar behavior
was found in the analysis of Ref. [169], where Schwinger phases were not taken into account.
As for charged pions, for £ = p3 = 0 this amounts to replace oy — ¢, and m3 + Ba — m%
in the final expression of Eq. (6.19). We see that in this case not only the crossing is found
to occur at a lower value of eB, of about 0.2 GeV? for H/G = 0.8, but also the behavior
of the curve deviates at high magnetic fields, showing a rather steep enhancement with
B. It is also interesting to note that as H/G increases the behavior of the squared energy
difference gets closer to the point-like case. This might be understood by realizing that
a larger value of H/G implies a more deeply bound diquark and, consequently, a more
localized one.

We turn next to the analysis of nucleon masses. As mentioned in subsection 6.1.3,
the calculation of these quantities requires the introduction of an additional cutoff pa-

rameter, Ap, to regularize the otherwise divergent quark-diquark loop in the proper time
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regularization scheme. For a given value of H/G, we adjust this parameter demanding the
B = 0 eigenvalue equation | X| = my |Y] [see Eqs. (6.54) and (6.55)] to be satisfied for the
physical value my = 0.938 GeV. In this way we obtain Ag = 1.618, 1.380 and 1.104 GeV
for H/G = 0.8, 0.9 and 1.0, respectively. For larger values of H/G, no value of Ap is found
to be compatible with the physical nucleon mass at zero magnetic field in this model.
Having determined all input parameters, one can solve the eigenvalue equations (6.53) to
obtain proton and neutron masses for nonvanishing external magnetic field.

Before reporting the corresponding results, we find it convenient to make a few comments
concerning the numerical details of the calculation. Firstly, we note that to evaluate the
coefficients X and Y{" in Egs. (6.57) and (6.58) one has to perform a sum over Landau
levels (LL). In that sum we have taken into account as many LL as needed in order to
obtain a stable result for the calculated mass. For low values of eB, this implies the
inclusion of a quite large number of LL. For example, at eB = 0.04 GeV?, for H/G =1
about 300 LL are needed in order to obtain an accuracy of about 1 MeV in the nucleon
mass. For H/G = 0.8 the required number of LL is found to be even larger, of the order
of 600. As expected, for larger values of the magnetic field the needed number of LL
gets significantly reduced. Still, it is found that for eB as large as 0.8 GeV? about 10 LL
are needed to obtain the above mentioned accuracy in the mass determination. Another
issue that requires some care is the numerical evaluation of the integrals in Eqs. (6.57)
and (6.58), due to the highly oscillatory behavior of the Bessel functions for large values
of their arguments.

Our results for the behavior of nucleon masses as functions of the external magnetic
field are given in Figure 6.4. In the upper (lower) panel we show the magnetic dependence
of the proton (neutron) mass, considering H/G = 0.8, 0.9 and 1.0. In all cases it is seen
that both nucleon masses display a nonmonotonic behavior. While they initially decrease
when the magnetic field is increased, a steady growth is observed for larger fields. The
decrease becomes less pronounced (and the corresponding minimum occurs at smaller eB)
the larger the value of H/G is. It is also seen that the dependence on H/G is weaker
in the case of the neutron. Let us recall that for a proton in the LLL only the spin
projection A = s, = sign(@pB) is allowed, while both values of A are allowed for the
neutron. In Figure 6.4 we have plotted the values corresponding to the lower solution of
Eq. (6.53), defined as the neutron mass. In our model, for B > 0 (B < 0) it is found that
this lower state corresponds to A = —1 (A = 1). For the higher state, not shown in the
figure, we have seen that the neutron mass initially increases with eB. This solution is
found to exist only for eB < 0.1 — 0.2 GeV? (the state becomes unbound for larger values
of the external field).

As stated, close to B = 0 both proton and neutron masses are shown to decrease for

146



6.2. Numerical results

1.2 e —

1.0

0.8

0.6 - -
— H/G=0.8

[ - = H/G=0.9
0.4 - —.— H/G=10
SPTTRN ChPT i
02 F O LQCD (a= 0499 GeV'
O  LQCD (a=0.632GeV") 1

0.0 S

M, [GeV]

~—
1

=

L

S| _

§= 0.6 - .
0.4 - R
0.2 | ]
0.0 e T

0.0 0.2 0.4 0.6 0.8 1.0

eB [GeV?

Figure 6.4: Proton and neutron masses as functions of eB for various values of H/G. Open dots
and dotted lines correspond to Lattice QCD results given in Ref. [164] and ChPT results given
in Ref. [268], respectively.

increasing external field, i.e. the slopes oy, and «a, obtained from Eq. (6.60) are found to be
negative. Taking into account that for the lowest neutron state one has Asign(B) = —1,
from Eq. (6.65) one gets p, > 0 and p1, < 0, as expected from phenomenology. In addition,
the negative slopes found at B = 0 are consistent with results from ChPT quoted in
Ref. [268]. The latter, which are expected to hold for low values of the external field,
are displayed as dotted lines in Figure 6.4. Notice, however, that the slopes obtained
within ChPT are in general steeper that those found from our results. The lower slopes
in our model imply in turn relatively low results for the absolute values of proton and
neutron magnetic moments. From the numerical evaluation of Eq. (6.60) and (6.65) we

find the magnetic moments quoted in Table 6.1, to be compared with the empirical values
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pp = 2.79 and p, = —1.91. In this regard, it should be stressed that in our work we have
neglected for simplicity the axial-vector diquark correlations. The latter can be important
to get an enhancement in || and ||, as shown in Ref. [282]. Finally, let us compare our
results with those obtained from LQCD simulations. In Figure 6.4 we have depicted as
open dots the LQCD results quoted in Ref. [164], corresponding to two different values of
the lattice spacing a. We observe some qualitative agreement with our results, although
LQCD values tend to show a lower dependence on the external field. In the case of the
proton, a few lattice points seem to show a mass enhancement for eB ~ 0.2 — 0.3 GeV2.
Presumably, this could be due to the fact that, as mentioned by the authors of Ref. [164],
the Zeeman-splitting cannot be fully resolved. We believe that our results exhibit a more

trustable initial slope, in view of the results arising from ChPT.

H/G o fn
0.8 2.63 -1.19
0.9 2.30 -1.05
1.0 1.99 -0.94

Table 6.1: Predicted values of nucleon magnetic moments for different values of H/G.
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CHAPTER

Conclusions

In this thesis we have investigated the effect of an external uniform magnetic field on
several light hadron properties, composed by strongly interacting quark matter. Since
strong magnetic fields can resolve the quark structure of hadrons, the effect on their
properties can provide meaningful information about the magnetized QCD phase diagram,
relevant for various physical scenarios. Since the nonperturbative character of QCD at
low energies render calculations extremely complicated, to calculate hadron properties
we have employed the Nambu—Jona-Lasinio effective model, where current-current color
interactions mediated by gluon exchanges are approximated by local four-point interactions.
The model, introduced in chapter 2, is built upon the symmetries of QCD and is able to
reproduce the chiral symmetry breaking phenomenon.

Since pions are the lightest hadrons, they can be easily produced in the aforementioned
magnetized systems. However, they are unstable particles, prompt to decay into less
heavier ones such as leptons and photons. In the absence of external fields, a unique decay
constant is associated to the weak decay of charged pions. In contrast, the presence of a
uniform magnetic field modifies the symmetries of the system and opens up the possibility
for new decay constants to appear. In chapter 3 we have presented a general method
to parametrize the magnetized one-pion-to-vacuum matrix elements of the vector and
axial-vector hadronic currents, based on Refs. [230] and [231]. When the magnetic field is
present, new gauge-covariant tensor structures are available. We have shown that, in fact,
four independent four-vectors can be formed, leading the existence of four form factors or
decay constants; three associated to the vector-axial current, and one to the vector current.
These are constrained by discrete symmetries. As a result, all form factors are real, and
for charged pions they are independent of the charge sign. Moreover, in the neutral pion

case, such symmetries prevent the appearance of a particular axial form factor.
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Choosing B to be orientated along the 3-axis, we have shown that the matrix elements
of the parallel (0- and 3-) components of the vector current can be expressed in terms of
one single real form factor, fT(r})/) or ffr‘i/), while the perpendicular (1- and 2-) components
vanish identically. For the matrix elements of the axial-vector current, two real form
factors fé?l) and ffr?s) can be defined in the neutral pion case. Alternatively, these can
be written in terms of a parallel and a perpendicular form factor, reflecting the anistropy
induced by the external field [170]. For charged pions, in contrast, three form factors
fifl), ffrf) and f;f‘q’) are in general required to parametrize the matrix elements of the
axial-vector current. While ffroAB)
171], the decay constants f$” and f2* are new, first defined in [230].

Using the above results we have introduced a general, model-independent framework

, fg) and fT(rim) were already known in the literature [170,

to study the weak decay m~ — [ 74 in the presence of an uniform external magnetic field.
To that end, we described for each involved particle the specific form of the field, taking
fully into account the effect of the magnetic field on the corresponding eigenfunctions.
By performing calculations in two different gauges, Landau [230] and symmetric [231],
we were able to provide an explicit test of gauge independence of our result. Moreover,
this has let us clarify on the behavior of the associated quantum numbers. For both
gauges, the momentum in the field direction together with the energy are conserved. The
remaining quantum numbers are the Landau level and a last one which depends on the
chosen gauge. For the Landau gauge it is the canonical momentum along the 2-direction,
while for the symmetric gauge it is the canonical total angular momentum along the
3-direction. Although these quantities are conserved, they are gauge dependent and thus
do not correspond to physical observables.

For the case in which the decaying pion lies in its state of minimum energy (i.e. in
the lowest Landau level, with zero momentum along the 3-direction), we have obtained
an explicit expression for the magnetized 7= — [y, decay width in Eq. (3.71). As
expected, this expression coincides for both chosen gauges and does not depend on
their corresponding gauge-dependent quantum numbers. Moreover, we have revealed
that angular momentum conservation does not imply, as claimed in Ref. [171], that the
antineutrino momentum has to be necessarily parallel to the magnetic field. For large
magnetic fields, i.e. eB > m2 — m? ~ 0.05 GeV? but smaller than the squared 7 lepton
mass, this expression reduces to Eq. (3.73). In fact, a novel result was obtained for strong
fields which also satisfy eB > m?. As seen in the simplified expression of Eq. (3.75),
valid for very intense magnetic fields, the magnetized decay width does not vanish in
the chiral limit m; — 0, i.e. it does not show the helicity suppression found in the
absence of the external magnetic field. In fact, helicity conservation only implies that

the projection of the antineutrino momentum in the magnetic field direction should be
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antiparallel to the magnetic field. This implies a highly anisotropic distribution of outgoing
antineutrinos,signaling a significant suppression in the direction of the external field.

In order to quantitatively estimate how weak decay rates of charged pions are modified
by the magnetic field, the behavior of the decay form factors and pion masses should be
determined. In chapter 4, these and other pion properties have been calculated in the
framework of the two-flavor NJL model (introduced in chapter 2), based on Refs. [233,
252]. While for neutral pions one can take the usual momentum basis to diagonalize
the corresponding polarization functions, this is not possible for charged pions, due to
the presence of nonvanishing contributions from Schwinger phases. In chapter 3 we have
shown that the Ritus eigenfunction method presented allows us to fully take into account
the translational-breaking effects induced by these phases. Calculations of charged meson
properties using this method have been performed in [233, 252] for the first time. In our
numerical calculations we have used three model parametrization sets that satisfactorily
describe not only meson properties in the absence of the magnetic field but also lattice
QCD results for the behavior of quark condensates under a magnetic field. Moreover, we
have explored the possibility of considering a magnetic field dependent coupling G(B), so
as to incorporate the inverse magnetic catalysis effect. Due to the nonrenormalizability of
the model, divergent results were regulated using a 3D cutoff in the MFIR scheme, which
has been proven to provide more reliable results as compared to other magnetic dependent
regularization schemes [212].

We have found that, for a constant coupling G, the magnetic field slightly diminishes
the 7° mass, in agreement with previous NJL results [161, 248]. However, the m2 behavior
found is nonmonotonic, in contrast with LQCD [129, 258] and nonlocal NJL [250, 251]
results, which display a monotonous decrease of the mass with B. For eB < 1 GeV?
this trend is recovered when a magnetic coupling G(B) is used [161], which mimics the
backreaction of sea quarks due to the external field. Meanwhile, the pion-to-quark coupling
constant gro,, shows some enhancement if B is increased for a constant G, in contrast to
what happens for the G(B) case. On the other hand, for both couplings the directional
refraction index u,o decreases monotonously with B, remaining always lower than one
(subluminal pions) even in the chiral limit, in agreement with Refs. [100, 217]. Regarding
neutral decay constants, in the NJL model ffer) vanishes, as expected from the constraints
imposed by the discrete symmetries of the interaction. For both couplings f;?”) = ffr?l)
and fﬁ(‘f ) are enhanced for increasing B, while f;(fu‘) = ffrfl) — ffrfs) is reduced. The use
of G(B) leads to better agreement with some other approaches [243, 251, 258], which
show a steeper behavior. We have also remarked that our results satisfy quite well several
chiral limit relations, such as the well-known generalized Goldberger-Treiman and Gell-

Mann-Oakes-Renner equations for f Al

o ) (see e.g. Ref. [234]). Moreover, we have shown
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that relations £G4 = w2, f%" and &) = eB/(8x2f%") also hold in the chiral limit.
While the former can be derived from Refs. [103, 170, 228], the latter can be related to the
anomalous Wess-Zumino-Witten effective Lagrangian, and — to the best of our knowledge —
has not been previously stated in the literature.

Turning now to the charged pion case, we remark that calculations have been performed
fully accounting for Schwinger phases through the Ritus eigenfunction method. We have
obtained m, = m,., as expected from charge invariance. Moreover, a mass for each
Landau level can be obtained; we have considered only the lowest Landau level mass.
In particular, we have found that the magnetic-field dependent mass E, . (defined as its
lowest energy state) steadily increases with the magnetic field [less markedly for G(B)],
remaining always larger than that of a point-like pion. For low values of eB (say eB < 0.15
GeV?), results for E2.(B) — E2.(0) are in good agreement with LQCD calculations using
staggered quarks with realistic pion masses [74, 258|. For larger values of eB, our results
are consistent with quenched LQCD simulations at unphysically large pion masses [129].
However, NJL results do not reproduce the nonmonotonic behavior with values below
the point-like case found in [258], using highly improved staggered quarks with close-to-
physical pion masses. As compared to results obtained disregarding Schwinger phases, as
done in previous works, the latter show an even steeper enhancement with B, in further
contrast with lattice outputs. On the other hand, as in the neutral case, g, 4, shows
some enhancement if B is increased for a constant G, in contrast to what happens for
the G(B) case. Regarding the four charged decay constants, they all increase with B —
see [171] for some LQCD results obtained in Fourier space. The use of G(B) moderates this
enhancement, except for f. (43) Where it is intensified. We stress that some chiral relations,
such as GT and GMOR, are violated for eB = m2, for both fT(fH) and ffrfuﬂ. However,
for a constant coupling G, new relations involving f;‘,/) or the difference f. (42) _ 7(:‘3) are
approximately satisfied.

From the NJL outcomes for these pion properties, we have obtained an estimation
of the effect of an external uniform magnetic field on the magnitude of the decay rate
I'(m~ — 1) and the angular distribution of the antineutrinos in the final state, based
on Ref. [253]. Our estimation took into account the contribution of all four possible 7w~
decay form factors. It also considered the 7~ in its lowest possible energy state. Then,
from the two possible form factors combinations f (Ald) _ fffl) + f (42) _ f7(ri43) which

) contributes. Our results

parametrize the matrix elements of the axial current, only f (Al
show that the total decay rate I'. +I', becomes strongly increased with respect to its
B = 0 value, with the enhancement factor reaching a value of 1000 at eB ~ 1 GeV? when
using a constant coupling, increased up to 1800 for G(B). Moreover, owing to the presence

of the new decay constants and the features of nonzero B kinematics, it was found that
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the decay width I'; does not vanish in the limit m; = 0. As a consequence, for large values
of B the ratio I'./T", changes dramatically with respect to the B = 0 value (of about
1.2 x 107%), reaching a magnitude of ~ 0.5 at eB ~ 1 GeV2. This could be interesting
e.g. regarding the expected flavor composition of neutrino fluxes coming from the cores
of magnetars and other stellar objects. Also, a reduction in the pion mean lifetime will
inevitably decrease radiation energy loss of pions and result in a harder neutrino spectrum.
On the other hand, it was found that for large B the angular distribution of outgoing
antineutrinos becomes highly anisotropic, showing a significant suppression in the direction
of the external field. In addition, most antineutrinos come out with low momentum in the
field direction, i.e. in directions approximately perpendicular to the magnetic field.

It is worth noticing that for the three parametrization sets used, we have found that
all mentioned results are rather insensitive to variations in the parametrization.

The Ritus eigenfunction method presented for the calculation of charged pion properties
can be straightforwardly extended to calculate properties for all charged mesons of the
pseudoscalar nonet. To that end, we worked with the three-flavor version of the NJL
model, including the 't Hooft-Maekawa six-fermion interaction which explicitly breaks
axial symmetry U(1) 4. Results are based on Ref. [265]. Bosonization is performed using
the stationary phase approximation. Once again we considered a magnetic field dependent
coupling G(B) and regularized divergent results using a 3D cutoff in the MFIR scheme.

For neutral mesons the magnetic field breaks isospin symmetry, leading to a mixing
between all three 7° — n — 1/ states [105] in contrast to the B = 0 case, where 7 is
decoupled. As known, the 7 meson comes out in the model as a resonance or unstable
particle. In this regard, we have developed a new formalism to deal with the multiple
complex magnetic poles. Nevertheless, results for this meson are less reliable, approaching
the limit of applicability of the NJL model due to the lack of confinement. In fact, its
width increases with B and we have found that when using G(B) the coupling strength
is not enough to form an 7/-resonance for eB > 0.5 GeV?. Results for the 7° mass are
rather similar to those obtained in the two-flavor case, although SU(3) values are slightly
higher. For constant G, the mass displays a non-monotonous behavior with B, while the
monotonous decreasing behavior found in LQCD [129, 258] is reproduced using G(B).
A similar behavior is found for K°, K° and n masses. From the behavior of neutral
pseudoscalar meson masses, we conclude that the incorporation of the inverse magnetic
catalysis effect in the NJL. model, as done e.g. in this thesis through the magnetic field
dependent coupling G(B), is fundamental to qualitatively reproduce the available LQCD
results.

Concerning charged mesons, for their lowest energies Fp:(B) (P = m, K) a strong

enhancement with B was found, surpassing the energy associated with a point-like charged
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meson. Once again, pion results are very similar to the ones obtained in the two-flavor
case. Our NJL results for E%.(B) — E%.(0) are in reasonable agreement with LQCD
results of Ref. [129] within error bars for P = 7, being closer for the constant coupling
case. On the other hand, no sign of the non-monotonous behavior found in the LQCD
calculation of Ref. [258] is observed for P = 7, K.

Lastly, the Ritus eigenfunction method has been applied to the calculation of diquark
and nucleon masses, within the two-flavor NJL. model. To account for diquarks, scalar
quark-quark color pairing interactions were included, driven by a constant coupling H.
We have considered values of the interaction strength ratio in the usually studied range
0.75 < H/G < 1.2. Bosonization has been performed using the Nambu-Gorkov formalism.

Diquarks can be treated in a very similar fashion as charged pions. As before, the
regularization has been performed using a 3D cutoff within the MFIR scheme. At B = 0,
the (LLL) mass ma decreases with H/G. Inversely, the binding energy 2M —m increases:
while for H/G = 0.75 the scalar diquark is barely bound by 5 MeV, at H/G = 1.2 the
binding energy is about 200 MeV. At B # 0, results for ma and the lowest energy state Fa
showed that, for low values of B, both curves lie below those corresponding to a point-like
diquark. This is reversed for eB > 0.3 — 0.5 GeV?, where the growth gets steeper in
comparison with the point-like case. In fact, the increase becomes even more pronounced
for lower values of the ratio H/G. In comparison, results obtained disregarding Schwinger
phases show an early crossing of the point-like curve and a rather strong enhancement at
high magnetic fields.

Regarding the analysis of baryon states, in our framework nucleons have been built as
bound quark-diquark states following a relativistic Fadeev approach. Given the complexity
of the problem, we have considered a static approximation in which one disregards the
momentum dependence of the exchanged quark. This approximation has been shown to
lead to an adequate description of nucleon properties in the absence of external fields [278].
In addition, we have introduced a further model parameter Ag to regularize the otherwise
divergent quark-diquark loops, for which we have chosen the proper time regularization
scheme. We have found that for values of H/G larger than 1 no value of Ag is compatible
with a physical value of the nucleon mass at zero external magnetic field.

We have obtained numerical results for the magnetic field dependence of the lowest
energy nucleon states, usually interpreted as the nucleon masses. In general, it is seen that
the masses initially decrease for increasing magnetic field, whereas they show a steady
growth for large values of eB. In the proton case, results strongly depend on the ratio
H/G. Tt was also seen that the negative slopes of the mass curves at B = 0 lead to the
phenomenologically correct signs for the nucleon magnetic moments. Moreover, there is a

qualitative agreement with ChPT results [268], although the slopes in our model are found
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to be somewhat lower. This leads to numerical absolute values for the proton and neutron
magnetic moments that are relatively small in comparison with the empirical ones. An
improvement on the predictions of nucleon magnetic moments is expected to be obtained
by including axial-vector diquark interactions [282]. Moreover, a full calculation would
require to take into account the momentum dependence of the exchanged quark.

In this thesis we have introduced a method to deal with uniformly magnetized charged
systems which fully takes into account the translational breaking effect of Schwinger
phases, induced by the gauge choice representation of an external uniform magnetic field.
The method is based on the use of Ritus-type eigenfunctions, which allow for a proper
diagonalization of the system. Concerning the future outlook on this subject, it is clear
that the method introduced in this thesis can be used to provide a consistent determination
of other light charged hadron properties. In fact, charged vector and axial-vector mesons
can be readily studied within the NJL model using this method, see Ref. [283] for recent
advances in this direction. Moreover, the range of applicability can be extended to study
magnetized systems in dense and/or hot mediums, relevant for different physical scenarios.
In that regard, a natural improvement would be to consider inhomogeneous magnetic fields,
as suggested by heavy ion collision studies. Although in this thesis we have mainly applied
the Ritus method to the particular case of the NJL effective model, other approaches
could benefit from the insights gained using this strategy.
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En esta tesis hemos investigado el efecto de un campo magnético uniforme externo sobre
varias propiedades de los hadrones ligeros, compuestos por materia de quarks fuertemente
interactuante. Dado que los campos magnéticos fuertes pueden resolver la estructura de
quarks de los hadrones, el efecto sobre sus propiedades puede proporcionar informacién
significativa sobre el diagrama de fases magnetizado de QCD, relevante para varios
escenarios fisicos. Dado que el caracter no perturbativo de QCD a bajas energias hace
que los calculos sean extremadamente complicados, para calcular propiedades hadronicas
hemos empleamos el modelo efectivo de Nambu-Jona-Lasinio, donde las interacciones de
color corriente-corriente mediadas por el intercambio de gluones se aproximan mediante
interacciones locales de cuatro puntos. El modelo, introducido en el capitulo 2, esta
construido sobre las simetrias de QCD y es capaz de reproducir el fenémeno de ruptura de
la simetria quiral.

Dado que los piones son los hadrones mas ligeros, pueden producirse facilmente en
los sistemas magnetizados antes mencionados. Sin embargo, son particulas inestables,
propensas a decaer en otras menos pesadas, como leptones y fotones. En ausencia de
campos externos, el decaimiento de los piones cargados se asocia con una tnica constante
de decaimiento. En cambio, la presencia de un campo magnético uniforme modifica
las simetrias del sistema y abre la posibilidad de que aparezcan nuevas constantes de
decaimiento. En el capitulo 3 hemos presentamos un método general para parametrizar
los elementos matriciales magnetizados de un pién a vacio de las corrientes hadroénicas
vectoriales y axiales-vectoriales, basado en las Refs. [230] y [231]. Cuando el campo
magnético estd presente, nuevas estructuras tensoriales covariantes de gauge se vuelven
disponibles. Hemos mostrado que, de hecho, pueden formarse cuatro cuadrivectores
independientes, lo que conduce a la existencia de cuatro factores de forma o constantes de
decaimiento; tres asociados a la corriente vectorial-axial, y uno a la corriente vectorial.
Estos factores estan limitados por simetrias discretas. Como resultado, todos los factores
de forma son reales, y para los piones cargados son independientes del signo de la carga.
Ademas, en el caso del pién neutro, dichas simetrias impiden la aparicién de un factor de

forma axial en particular.
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Escogiendo B orientado a lo largo del eje 3, hemos mostrado que los elementos
matriciales de las componentes paralelas (0- y 3-) de la corriente vectorial pueden expresarse

V) )

en términos de un tunico factor de forma real, f,o’ o f,+’, mientras que las componentes

70
perpendiculares (1- y 2-) desaparecen idénticamente. Para los elementos matriciales de la
corriente axial-vectorial, pueden definirse dos factores de forma reales fﬁfl) y fffg) en el
caso del pién neutro. Alternativamente, estos pueden escribirse en términos de un factor
de forma paralelo y otro perpendicular, reflejando la anistropia inducida por el campo
externo [170]. Para piones cargados, en cambio, se requieren en general tres factores
de forma fT(riu), fT(rim) y ffrf?’) para parametrizar los elementos matriciales de la corriente

axial-vectorial. Mientras que f(AS)

0y fg) y ffrim) ya eran conocidos en la literatura [170,

171], las constantes de decaimiento féov) y ffig) son nuevas, definidas por primera vez
en [230].

Utilizando los resultados anteriores, hemos introducido un marco general, independiente
del modelo, para estudiar el decaimiento débil 7= — [7; en presencia de un campo
magnético externo uniforme. Para ello, describimos para cada particula implicada la
forma especifica del campo, teniendo plenamente en cuenta el efecto del campo magnético
sobre las correspondientes autofunciones. Mediante la realizacién de calculos en dos
gauges diferentes, Landau [230] y simétrico [231], hemos sido capaces de proporcionar una
prueba explicita de la independencia de gauge de nuestro resultado. Ademas, esto nos
ha permitido aclarar el comportamiento de los niimeros cudnticos asociados. Para ambos
gauges, el momento en la direccion del campo junto con la energia se conservan. Los
nimeros cuanticos restantes son el nivel de Landau y un tltimo que depende del gauge
elegido. Para el gauge de Landau es el momento canénico a lo largo de la direccién 2,
mientras que para el gauge simétrico es el momento angular canénico total a lo largo de
la direccién 3. Aunque estas cantidades se conservan, al depender del gauge elegido no
corresponden a observables fisicos.

Para el caso en que el pién que decae se encuentra en su estado de minima energia (es
decir, en el nivel més bajo de Landau, con momento cero a lo largo de la direccion 3), hemos
obtenido una expresion explicita para el ancho de decaimiento magnetizado 7~ — [ 7, en
la Ec. (3.71). Como era de esperar, esta expresion coincide para ambos gauges elegidos y
no depende de sus correspondientes nimeros cuanticos dependientes del gauge. Ademas,
hemos revelado que la conservacion del momento angular no implica, como se afirma en
la Ref. [171], que el momento del antineutrino tenga que ser necesariamente paralelo al
campo magnético. Para campos magnéticos grandes, es decir eB > m2_ —m? ~ 0.05 GeV?,
pero menores que la masa del leptén 7 al cuadrado, esta expresion se reduce a la Ec. (3.73).
De hecho, se obtuvo un resultado novedoso para campos fuertes que también satisfacen

eB > m?. Como se observa en la expresién simplificada de la Ec. (3.75), vdlida para
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campos magnéticos muy intensos, el ancho de decaimiento magnetizado no desaparece en el
limite quiral m; — 0, es decir, no muestra la supresion de helicidad encontrada en ausencia
del campo magnético externo. De hecho, la conservacion de la helicidad sélo implica que
la proyeccién del momento del antineutrino en la direccién del campo magnético debe ser
antiparalela al campo magnético. Esto implica una distribucion altamente anisotropica de
los antineutrinos salientes, senalando una supresion significativa en la direccion del campo
externo.

Para estimar cuantitativamente como las tasas de decaimiento débil de los piones carga-
dos se ven modificadas por el campo magnético, es necesario determinar el comportamiento
de los factores de forma del decaimiento y de las masas de los piones. En el capitulo 4,
estas y otras propiedades de los piones se han calculado en el marco del modelo NJL de
dos sabores (introducido en el capitulo 2), basado en las Refs. [233, 252]. Mientras que
para los piones neutros se puede tomar la base de momento habitual para diagonalizar las
funciones de polarizacién correspondientes, esto no es posible para los piones cargados,
debido a la presencia de contribuciones no nulas de las fases de Schwinger. En el capitulo 3
hemos demostrado que el método de autofunciones de Ritus presentado nos permite
tener plenamente en cuenta los efectos de ruptura traslacional inducidos por estas fases.
Los calculos de las propiedades de los mesones cargados utilizando este método se han
realizado en [233, 252] por primera vez. En nuestros calculos numéricos hemos utilizado
tres conjuntos de parametrizaciéon del modelo que describen satisfactoriamente no solo las
propiedades de los mesones en ausencia del campo magnético, sino también los resultados
de QCD en la red para el comportamiento de los condensados de quarks bajo un campo
magnético. Ademas, hemos explorado la posibilidad de considerar un acoplamiento G(B)
dependiente del campo magnético, con el fin de incorporar el efecto de catalisis magnética
inversa. Debido a la no renormalizabilidad del modelo, los resultados divergentes se han
regulado utilizando un corte 3D en el esquema MFIR, que ha demostrado proporcionar
resultados mas fiables en comparacién con otros esquemas de regularizacién dependientes
del campo magnético [212].

Hemos encontrado que, para un acoplamiento constante G, el campo magnético
disminuye ligeramente la masa del 7°, de acuerdo con resultados previos obtenidos en
el modelo NJL [161, 248]. Sin embargo, el comportamiento encontrado de m2 no es
mondtono, en contraste con los resultados de LQCD [129, 258] y NJL no local [250, 251],
que muestran una disminucién monétona de la masa con B. Para eB < 1 GeV? esta
tendencia se recupera cuando se utiliza un acoplamiento magnético G(B) [161], que imita
la retroreaccion del mar de quarks debida al campo externo. Mientras tanto, la constante
de acoplamiento pién-quark gro,, muestra cierto aumento si se incrementa B para un

GG constante, en contraste con lo que ocurre para el caso G(B). Por otro lado, para
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ambos acoplamientos el indice de refracciéon direccional w0 decrece monétonamente con B,
permaneciendo siempre menor que uno (piones subluminales) incluso en el limite quiral,
de acuerdo con las Refs. [100, 217]. En cuanto a las constantes de decaimiento neutras,
en el modelo NJL f7§§‘2> desaparece, como era de esperarse de las restricciones impuestas
por las simetrias discretas de la interaccion. Para ambos acoplamientos f A = ffréfu)

™
y fT(r(‘)/) aumentan con B, mientras que fﬁffu‘) = f(?l) — f(ff‘g) se reduce. El uso de G(B)

s s

conduce a un mejor acuerdo con algunos otros enfoques [243, 251, 258], que muestran un
comportamiento mas pronunciado. Tamibén hemos observado que nuestros resultados
satisfacen bastante bien varias relaciones en limite quiral, como las conocidas ecuaciones

generalizadas de Goldberger-Treiman y Gell-Mann-Oakes-Renner para ffrgm) (véase por

ejemplo la Ref. [234]). Ademds, hemos demostrado que las relaciones f}ré‘“ = u, frfu) y
f}r}f) = eB/(8n* f;?‘l)) también se cumplen en el limite quiral. Mientras que la primera

puede deducirse de las Refs. [103, 170, 228], la segunda puede relacionarse con el lagrangiano
efectivo andémalo de Wess-Zumino-Witten, y — hasta donde sabemos — no se ha establecido
previamente en la literatura.

Pasando ahora al caso del pién cargado, remarcamos que los calculos se han realizado
teniendo plenamente en cuenta las fases de Schwinger mediante el método de autofunciones
de Ritus. Hemos obtenido m,- = m,+, como era de esperar a partir de la invariancia de
carga. Ademas, se puede obtener una masa para cada nivel de Landau; nosotros hemos
considerado sélo la masa del nivel de Landau mas bajo. Las masas de piones cargados
se obtuvieron utilizando este método por primera vez en la Ref. [233]. En particular,
hemos encontrado que la masa dependiente del campo magnético E,: (definida como su
estado de energia mas bajo) aumenta constantemente con el campo magnético [menos
marcadamente para G(B)], permaneciendo siempre mayor que la de un pién puntual. Para
valores bajos de eB (digamos eB < 0.15 GeV?), los resultados para F2.(B) — E2,(0) estdn
en buen acuerdo con los calculos de LQCD usando quarks ‘staggered’ con masas de piones
realistas [74, 258]. Para valores mayores de eB, nuestros resultados son consistentes con
simulaciones de LQCD que utilizan masas de piones mayores que las fisicas [129]. Sin
embargo, los resultados de NJL no reproducen el comportamiento no monétono con valores
por debajo del caso puntual encontrado en [258], utilizando quarks ‘staggered’ altamente
mejorados con masas de piones cercanas a la fisica. En comparacién con los resultados
obtenidos sin tener en cuenta las fases de Schwinger, como se hizo en trabajos anteriores,
estos ultimos muestran un realzamiento atin mas pronunciado con B, en mayor contraste
con los resultados de la red. Por otra parte, como en el caso neutro, g,-4, muestra cierto
incremento si se aumenta B para un G constante, en contraste con lo que ocurre para el
caso G(B). En cuanto a las cuatro constantes de decaimiento cargadas, todas aumentan

con B — véase la Ref. [171] para algunos resultados de LQCD obtenidos en el espacio de
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Fourier. El uso de G(B) modera este aumento, excepto para ffr‘flg) donde se intensifica.
Destacamos que algunas relaciones quirales, como GT y GMOR, se violan para eB > m2,

+)

tanto para fﬁfw) como para fﬁ‘f‘l Sin embargo, para un acoplamiento constante G,

se satisfacen aproximadamente nuevas relaciones que implican a ffr‘,/) o a la diferencia
(A2)  £(A3)
p .

A partir de los resultados de NJL para estas propiedades piénicas, hemos obtenido una
estimacion del efecto que un campo magnético uniforme externo tiene sobre la magnitud
de la tasa de decaimiento I'(m~ — [~ ;) y la distribucién angular de los antineutrinos en el
estado final, basdndonos en la Ref. [253]. Nuestra estimacién tuvo en cuenta la contribucién
de los cuatro posibles factores de forma del decaimiento 7#—. También se consideré el
pion cargado en su estado de energia mas bajo posible. Entonces, de las dos posibles

(ALd) _ p(AD 4 £(42) _ £(43) (46 parametrizan los

combinaciones de factores de forma f
elementos matriciales de la corriente axial, sélo contribuye fffl”. Nuestros resultados
muestran que la tasa de decaimiento total I'. + I, se incrementa fuertemente con respecto
a su valor B = 0, alcanzando el factor de incremento un valor de 1000 para eB ~ 1 GeV?
cuando se utiliza un acoplamiento constante, aumentado hasta 1800 para G(B). Ademas,
debido a la presencia de las nuevas constantes de decaimiento y a las caracteristicas de
la cinematica a B finito, se encontré que el ancho de decaimiento I'; no desaparece en el
limite m; = 0. Como consecuencia, para valores grandes de B la relacion I'./T", cambia
drésticamente con respecto al valor de B = 0 (de aproximadamente 1,2 x 10~%), alcanzando
una magnitud de ~ 0,5 a eB ~ 1 GeV2. Esto podria ser interesante, por ejemplo, para
la composicién de sabores esperada de los flujos de neutrinos procedentes de los nicleos
de magnetares y otros objetos estelares. Ademas, una reduccién de la vida media del
pion disminuird inevitablemente la pérdida de energia de radiacion de los piones y dara
lugar a un espectro de neutrinos mas duro. Por otro lado, se encontré que para grandes
B la distribucion angular de los antineutrinos salientes se vuelve altamente anisotrépica,
mostrando una supresién significativa en la direccién del campo externo. Ademds, la
mayoria de los antineutrinos salen con bajo momento en la direccién del campo, es decir,
en direcciones aproximadamente perpendiculares al campo magnético.

Cabe senalar que, para los tres conjuntos de parametrizacién utilizados, hemos com-
probado que todos los resultados mencionados son bastante insensibles a las variaciones
de la parametrizacion.

El método de autofunciones de Ritus presentado para el calculo de las propiedades de
los piones cargados puede extenderse directamente para calcular las propiedades de todos
los mesones cargados del nonete pseudoescalar. Para ello, trabajamos con la versién de
tres sabores del modelo NJL, incluyendo la interaccién 't Hooft-Maekawa de seis fermiones

que rompe explicitamente la simetria axial U(1) 4. Los resultados se basan en la Ref. [265].
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La bosonizacion se realiza utilizando la aproximacion de fase estacionaria. Una vez mas
consideramos un acoplamiento G(B) dependiente del campo magnético y regularizamos
los resultados divergentes utilizando un corte 3D en el esquema MFIR.

Para los mesones neutros, el campo magnético rompe la simetria de isospin, dando lugar
a una mezcla entre los tres estados 7° —n—n' [105], en contraste con el caso B = 0 donde 7°
esta desacoplado. Sus masas polares y anchos se obtienen como las raices del determinante
inverso de la matriz de propagacién de 3x3. Como es sabido, el mesén 1 sale en el
modelo como una resonancia o particula inestable. A este respecto, hemos desarrollado
un nuevo formalismo para tratar los multiples polos magnéticos complejos. Sin embargo,
los resultados para este mesén son menos fiables, acercandose al limite de aplicabilidad
del modelo NJL debido a la falta de confinamiento. De hecho, su ancho aumenta con B
y hemos encontrado que cuando se usa G(B) la fuerza del acoplamiento no es suficiente
para formar una resonancia ' para eB > 0.5 GeV?2. Los resultados para la masa 7° son
bastante similares a los obtenidos en el caso de dos sabores, aunque los valores en SU(3)
son ligeramente superiores. Para GG constante, la masa muestra un comportamiento no
mondétono con B, mientras que el comportamiento mondétono decreciente encontrado en
LQCD [129, 258] se reproduce usando G(B). Un comportamiento similar se encuentra
para las masas K°, K° y n. A partir del comportamiento de las masas de mesones
pseudoescalares neutros, concluimos que la incorporacion del efecto de catalisis magnética
inversa en el modelo NJL, como se hace por ejemplo en esta tesis a través del acoplamiento
G(B) dependiente del campo magnético, es fundamental para reproducir cualitativamente
los resultados de LQCD disponibles.

Con respecto a los mesones cargados, para sus energias mas bajas Ep:(B) (P =, K)
se encontré un fuerte incremento con B, superando la energia asociada a un mesén cargado
puntual. Una vez maés, los resultados de los piones son muy similares a los obtenidos en el
caso de dos sabores. Nuestros resultados en el modelo NJL para E3.(B) — E%.(0) estan
razonablemente de acuerdo con los resultados de LQCD de la Ref. [129] dentro de las
barras de error para P = 7, estando mas cerca para el caso de acoplamiento constante.
Por otro lado, no se encontré ningtin signo del comportamiento no monoétono encontrado
en el célculo de LQCD de la Ref. [258] para P = 7, K.

Por 1ltimo, se ha aplicado el método de autofunciones de Ritus al calculo de las masas
de diquarks y nucleones, dentro del modelo NJL de dos sabores. Para dar cuenta de los
diquarks, se incluyeron interacciones escalares quark-quark de emparejamiento de color,
conducidas por un acoplamiento constante H. Hemos considerado valores de la razon entre
interacciones en el rango usualmente estudiado de 0,75 < H/G < 1,2. La bosonizacién se
ha realizado utilizando el formalismo de Nambu-Gorkov.

Los diquarks pueden tratarse de forma muy similar a los piones cargados. Como antes,
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la regularizacién se ha realizado utilizando un corte 3D dentro del esquema MFIR. Para
B = 0, la masa (LLL) ma disminuye con H/G. Inversamente, la energia de ligadura
2M —ma aumenta: mientras que para H/G = 0,75 el diquark escalar se encuentra apenas
ligado por 5 MeV, a H/G = 1,2 la energia de ligadura es de unos 200 MeV. A B # 0, los
resultados para ma y el estado de menor energia Fo muestran que, para valores bajos
de B, ambas curvas se sitian por debajo de las correspondientes a un diquark puntual.
Esto se invierte para eB > 0,3 — 0,5 GeV?, donde el crecimiento se hace mds pronunciado
en comparacion con el caso puntual. De hecho, el aumento se hace aiin mas pronunciado
para valores més bajos de la relacién H/G.

En cuanto al analisis de los estados barionicos, en nuestro marco los nucleones se han
construido como estados ligados quark-diquark siguiendo una aproximacion relativista
de Fadeev. Dada la complejidad del problema, hemos considerado una aproximaciéon
estatica en la que se desprecia la dependencia del momento del quark intercambiado. Se ha
demostrado que esta aproximacion conduce a una descripcion adecuada de las propiedades
de los nucleones en ausencia de campos externos [278]. Ademds, hemos introducido un
parametro modelo adicional A para regularizar los lazos quark-diquark, que de otro modo
serfan divergentes, para lo cual hemos elegido el esquema de regularizaciéon de tiempo
propio. Hemos encontrado que para valores de H/G mayores que 1 ningin valor de Ap es
compatible con un valor fisico de la masa del nucleén a campo magnético externo cero.

Hemos obtenido resultados numéricos para la dependencia del campo magnético
de los estados nucleénicos de mas baja energia, normalmente interpretados como las
masas nuclednicas. En general, se observa que las masas disminuyen inicialmente al
aumentar el campo magnético, mientras que muestran un crecimiento constante para
valores grandes de eB. En el caso del proton, los resultados dependen fuertemente de la
relacion H/G. También se observéd que las pendientes negativas de las curvas de masa en
B = 0 conducen a signos fenomenolégicamente correctos para los momentos magnéticos
de los nucleones. Ademds, existe un acuerdo cualitativo con los resultados de ChPT [268],
aunque las pendientes en nuestro modelo resultan ser algo menores. Esto conduce a valores
absolutos numéricos para los momentos magnéticos del protén y del neutréon que son
relativamente pequenos en comparacion con los empiricos. Se espera obtener una mejora
en las predicciones de los momentos magnéticos de los nucleones incluyendo interacciones
axiales-vectoriales entre diquarks [282]. Ademéds, un calculo completo requeriria tener en
cuenta la dependencia del momento del quark intercambiado.

En esta tesis hemos introducido un método para tratar sistemas cargados uniformemente
magnetizados que tiene plenamente en cuenta el efecto de ruptura traslacional de las fases
de Schwinger, inducido por un campo magnético uniforme externo. El método se basa en

el uso de funciones propias de tipo Ritus, que permiten una diagonalizaciéon adecuada del
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sistema. Con respecto a las perspectivas futuras en esta area, esta claro que el método
introducido en esta tesis puede utilizarse para proporcionar una determinaciéon consistente
de otras propiedades de hadrones ligeros cargados. De hecho, los mesones vectoriales
y axiales-vectoriales cargados pueden ser facilmente estudiados dentro del modelo NJL
usando este método, ver Ref. [283] para avances recientes en esta direccién. Ademas, el
rango de aplicabilidad puede extenderse para estudiar sistemas magnetizados en medios
densos y/o calientes, relevantes para diferentes escenarios fisicos. En este sentido, una
mejora natural seria considerar campos magnéticos no homogéneos, como sugieren los
estudios de colisiones de iones pesados. Aunque en esta tesis hemos aplicado principalmente
el método de Ritus al caso particular del modelo efectivo NJL, otros enfoques podrian

beneficiarse de los conocimientos obtenidos utilizando esta estrategia.
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APPENDIX

Bosonization procedure

The starting point is the generating functional associated to the Euclidean NJL Lagrangian

given in Eq. (2.12). It reads
Z = / DYDyp e~ doe Lel0) (A1)

We omit the Euclidean subscript E hereafter. Next, we rewrite the interactions in (2.12)
in terms of bosonic fields that will represent the scalar and pseudoscalar mesons o(x) and
7(x), respectively. The treatment for each interaction term is equivalent, so we will only

detail the one corresponding to the scalar case. Using the equality

Flidal] = [ Ds Ssta) — @) £sla)] (A.2)
we can rewrite the interaction term as follows
e G Jd'zjs(x)js(z) _ /Ds §[s(z) — jo(x)] eCld'ws@se) (A.3)

where s(x) is an auxiliary field which will be later removed by integration and js(z) =

() (x) is the scalar quark current. Then, using

3 (s(a) ~ (o) = N, [ Dor el xeoitor s, (A4)
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A. Bosonization procedure

the contribution to the action from the scalar interaction term is re-expressed as
erd4mjs(m)js(x) = N, /DS Do efd4a: {U(x)[s(w)—js(a:)}+Gs(x)2} : (AS)

where NNy is a normalization factor. Repeating this procedure for the pseudoscalar field

introduces a vector of fields p(z) analogous to s(z), resulting in the partition function
zZ = NSNP/D(; Dy e~ Jd e b(=idtmo)y
/Ds DO' e.fd4z{a(x)[S(x)fjs(w)]‘FGS(x)s(m)} %

/Dﬁ D7 el {7@) [p) G @)] e p B} (A.6)

where J,(z) = ¢ i .

We can evaluate the integrals over s(z), p(x), v(x) and (), leaving the action
expressed in terms of the bosonic degrees of freedom o(z) and 7(x). To that end, we
rearrange the terms in (A.6) so as to factorize the integrals, which can be performed since

they are Gaussian. The Gaussian integral over continuous fields is written as
/ Ds e~ 25 Kstos — N/ e37K 7 (A7)

where N/ is a factor that does not depend on ¢ and the field product notation im-
plies sKs = [d*zd*z's(z)K(z,2')s(2’), with the inverse of K given by the relation
[d*a" K (z,2") K1 (2", 2") = 0¥ (2 — 2’). In our case, K(x,2') = —2G 6" (x — 2’). Then,

for the scalar field we have

/ Do o Jdwo@is() / D otz [Gs(@)s(@)+o@)s(x)] _

/Da o~ Jd*zo(@)js(a) N e%fd‘*wd“x/a(x)[_5(4)2(2_””1)]0(56’) B
N / Do o I8 (2552 +o@)s@)] (A.8)

Repeating this calculation for p(x) we obtain the analogous expression
N / D o Jate [BED R 0) )] (A.9)

After replacing these expressions, we can group all fermionic field contributions to the
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A. Bosonization procedure

actions under the single term
Se = [ dta @) =ip + mo)u(e) + o(w)ife) + 7(w) Gyfo)
= /d4x d*a’ p(z) D(x,2') ('),
where we have defined the fermionic operator
D(x,2') = 0“2 — ) |[=id +mo + o(x) + i757 - 7(w)] .
Finally, the semibosonized generating functional reads

Z = / Do D7 / DYDY e=5¢ ¢~c [d*wlo@P+7 @)

where we have omitted the unphysical normalization factors Ng, N, N{ and NJ.

(A.10)

(A.11)

(A.12)

(A.13)
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APPENDIX

Discrete symmetries

In the Landau gauge, the electromagnetic interaction term between the light quarks and

the external field (chosen to be orientated along the z axis) is given by
L(x) = = QB ¢p(x)vaths(x) (B.1)
f

where the sum extends over f = u,d, and (); are the corresponding electric charges. As
can be checked, the action is separately invariant under P, CT and PCT, where P, C and
T stand for parity, charge conjugation and time reversal transformations acting on the
quark fields. Moreover, it can be seen that the Lagrangian density in Eq. (B.1) is invariant
under the transformation CRy, where R; is a spatial rotation by angle m about the 1 axis
(i.e., a rotation that inverts the orientation of the magnetic field é)

The existence of these symmetries imposes constraints on the form factors of the
pion-to-vacuum hadronic matrix elements discussed in chapter 3. As in the case of no
external field, parity is responsible for selecting which Lorentz structures in Eq. (3.42)
contribute to the matrix elements of the vector and axial-vector currents, as quoted in
Egs. (3.43) and (3.47). Moreover, it is possible to use CT and CR; symmetries to show
that the form factors are real and equal for both charged pions.

We start by using C7 symmetry to show that the form factor fg/) in Eq. (3.45) is real.
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B. Discrete symmetries

One has

(Oloy (@) vr (@) (1)) = OCT)ICT vy (a)y" vy (x) (CT)'CTIn (7))
= 7 0IC'C ¥y (=2) 7104 (=7) CCln’ (=)
= (01 (=) nab (=2) |7 (=F))" (B.2)

0

where # = (2Y, —7), and the phase np, arising from the action of the time reversal

operator on the pion state, has been taken to be equal to —1 due to PC7T invariance. From
Egs. (3.45) and (B.2) it can be seen that f';” is real. For example, from the definition of
HYM(z,7), Bq. (B.2) implies HY(z, 7)) = Hy(—&, —p)*, which according to the relation
in Eq. (3.45) leads to

—if et = (=if)) (=) €7, (B.3)

ie. ffrg/) = fg/) ", For matrix elements of the axial-vector current, a similar analysis leads

to £ = 497 fori=1,2,3.

On the other hand, taking into account the invariance of the action under CR; one has

H(w,5) = (01(CR1) CR1y () (7" + iey*) 150 () (CR1)TCR: |7° (7))
= (0[CTCys(2) (7" — ier?) sty (2)CTCIT" (57))
= (0ds(2')(v! — ier* sy (2) |7 (")) = HY (2, ") | (B4)

where 2" = (2%, 2!, —2% —23) and p’ = (p', —p?, —p*). From Egs. (3.43) and (3.44), this

hadronic amplitude reads
HYS(2,7) = =i [f0) —efe? — [V (0" +iep®) e . (B.5)
Therefore Eq. (B.4) leads to
—i [f = e 5P = LGV (0 +iep?) e =

—i [ e £ = £V (0 —dep™) eV (BG)

which implies fT(FBAQ) =0.

We consider next matrix elements with charged pion initial states. Proceeding in a

169



B. Discrete symmetries

similar way as in the neutral case, from Eq. (3.47) we get

Hy!(x,) = (OCT)'CT ()"~ () (CT)'CT|n ()
= —0[C'C(=2)y.m (=) C'Cln (p"))"
= (0 (=2) 7T (=2) |77 ()" = g Hy ™" (=2,5")" (B.7)

where we have used C|n*(p)) = |77 (p)) and defined p’ = (¢, —p?, —p?). Since By(z) =

B;7 (=) for p" = (Ex-,p'), taking 1 = 0 and o = — one obtains [see Eq. (3.48)]

—if By () = [<if p P BL(-8)] = —i [P By (w) (B.8)
which leads to f,. W = = ) Now, from the invariance of the action under CR, one has

HY (2,5) = (01(CR)ICR19(2)7 7~ () (CR1)'CR: |77 (1)
= (0lCTCy (2" T (a")CICln7 ("))
= — (0[N ()7~ (3")) = —Hy"(2,i") . (B.9)

Since Bg (r) = B,/ ('), taking o = — one obtains fY = £ and then Im( (V)) = 0.

For the matrix elements of the axial-vector current, the analysis of the zeroth and third

components of the pion-to-vacuum amplitude leads to f (A1) — f. (A1) and Im( (Al)) 0.

7r+
f(A3)

To constrain the form factors f{2? and one needs to study the first and second

components. Taking into account the invariance under CT one has (e = +)

HY (2, p) = O[CT)ICT (@) (' +ier?) 79 () (CT)'CT | (p))
= —(0ICTC(—7) (1 — ie2)ys7 “p(—7) CTCln7 (p"))*
= + (0] (—7)(y" — iy )y (—2) |77 ()"
= [H,7 (=2.p") —ie H,"(-2,p")| = [H G (-2,5)] . (B.10)

In this way, taking 0 = — in Eqs. (3.48) and (B.10) one obtains

[f;rAnJr ef4D _ (A3)} By, (x) = [f§f1)+ef7§f2)— 75143)] Bf,.(—% )", (B.11)

(42) _ pa2)®
ﬂ-+

which implies f;* and fA = fAD " (we have used the fact that f(*" = f(4 *)
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Finally, considering CR; transformations, one has

HT%(2,5) = (0[(CR1)'CR1 9 (2) (v + iey* )57 7(2) (CR1)TCRA |77 (1))

0l (2') (" —iey* s (a") |77 (p7))

= H;7 2, p') —ieH 72, p') = H (2, p") (B.12)

=
= (0[C'CY (") (v" = iey*)rsT W (") C'Clx7 (5"))
= 3

which leads to f(‘fm = f7(r142) and f7(riq3) = féfg)a together with Im( 7(rf2)) - Im( 7(ff3)) =0.

The calculation done in this Appendix was carried out in the Landau gauge. However,

taking into account the gauge invariance of the form factors, the same conclusions applied

for the symmetric gauge.
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APPENDIX

Flavor polarization functions

C.1 Vacuum polarization function

vac

The functions c§; appear in Egs. (5.27) and (5.41). In their unregularized form they are
defined by the B = 0 contribution

) = QNC/TYD [87%(g-) %5 8(g1) 5] (C.1)
q

where S/0(q) = (¢ + My)~" is the usual vacuum propagator for a quark of mass My and
g+ = q = p/2. We recall that all four-momenta are defined in Euclidean space. By taking

the trace and integrating over ¢ one obtains

N. [ ! —z|yM3+(1—y) M2, +y(1—y)p>—ie| 1 2

cp(?) = 2—2/ dz/ dy e g d E {Mfo' +-—y(l —y)pz} :
72 J 0 z z

(C.2)

We have expressed this function in the proper time formalism. Through some algebraic

manipulation, it can also be written in the following standard form

I?f + I?f,

o) = B s oty - P By 00} (3
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C.1. Vacuum polarization function

where the integrals I7; and I3, are defined by

1
B=1f oo
Y g @+ M;
1

I2ff,( Y = _2/q (q3+Mf2—ie)(qi+M2,—ie)' (C4)

In order to regularize the vacuum loop integrals we introduce a 3D cutoff A. For I Fone
gets the regularized function of Eq. (2.52) by replacing M — M. For I3, (p®) we note
that in order to determine meson masses, the external momenta p in the loop integrals has
to be extended to the region p? < 0. Hence, we find it convenient to introduce p? = —p?,
with p,, > 0. In this case the function has several poles. To treat them, we go from
Euclidean to the original Minkowski space by taking g4 = —iqy for the quarks momenta.
Then, by choosing appropriate contours the ¢y integral can be calculated in the complex

plane to yield

A P 2 2
215 s o e W JET L,
where
1 2 2 2
T (M= Mp)? = pZ) [(My + Mp)* = p2 ] - (C.6)

When M; = My and p,, < 2My, this expression can be brought to the usual form of
L*(p?) in Eq. (2.53). In the general case, depending on the value of p,, this expression
may still have a pole in a point of the integration line if » > 0. For those regions of p,,
where a pole exists, we proceed by employing a generalized version of the Sokhotski-Plemelj
formula. Assuming there exists a function f(x) that has single poles at a set of values z;,
for which exist two other functions g(x) and h(x) such that g(z;) # 0 and h(x;) # 0, then

; ' G ’ h(x Sl n[g(z;
b 0 g — PV g S el €0

where PV denotes the Cauchy principal value of the integral. By using this property we

can fully calculate the complex function ]QV?(}, in the most general case. For the regularized
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real part we get

Re {I;?;,(—pfn)} = —@{(pfn + M; — M3) [arcsinh <Mif> — Ff] +
(2, — M7 + M) [arcsinh <Miﬂ> - Ff/] } , (C.8)
where
\/ﬁ arctanh (ﬁ %) for p, <p® or p, > p?
Fy = \/ﬁ arccoth (ﬁ‘ %) for p,gg) < P < pg) . (C.9)

y_\ M7 + A2

A | M?—?
( ! y) for p{t) < p, < pi?

Here y1 = /£r, with r defined in Eq. (C.6), and

0 1/2 1
A = [z 0z vont o e+ a) | ) = apEMl. (C0)

For the regularized imaginary part we get

Y+
—~ for p? < p, < pid
Tm [ 1335, (—p2,)| = AT P, (C.11)
0 otherwise

Putting all together, the regularized version of the vacuum ¢, function defined in Eq. (C.3)
is given by
0¥+ 0y B

2 5 — (M — My )?] IQV??/(—pfn)} . (Ca2)

R = =ik = 230

C.2 Neutral magnetic polarization function

The unregularized magnetic function ¢f7#(pf, pi) was defined for the neutral case in (5.26).

The B — 0 limit of this expression C?f/ is given by Eq. (C.2). Then, the finite magnetic
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contribution is defined within the MFIR scheme as the difference

mag

Cry (pL,p”) = Cff/(piapﬁ) - C[J)‘f’(p2>

2 2 i€
_ 27T2 dz dye [yM +(1—y) M2, +y(1—y)pi— } y
_A/f(yz)i (1—y)p?
v 1 Bse B emay(l-yipt
7\[ , - 1 o 2:| f _
{|: fAEf + P y( y)pl\ tanh(zBf) P +

!

L
B]% o VWA 5 -
sinh®(2B;) !

e—2y(1—y)p? )

g L=z —yt] ¢ (C.13)
where v7(y, ) is given in Eq. (4.28). Pole masses are calculated in the rest frame of the
meson, i.e. setting p, = impd, 4, with mp > 0. Assuming that mp < My + My, one can

integrate by parts to write this function in the form

Imag + I{I}i}g _ {

280, —m2) = 2Nc{ } — (M; — MY zg;;g,(—mfb)} . (C.14)

where [, is defined in Eq. (2.79). On the other hand, I, is given by

1 1
Ig}a}%( m2) = —3.3 dy/ dz e~ 2@y =9) (cothz—;> (C.15)

with M2 (1 AL a i
yM; + (1 —y) M7 —y(1 —y)m
vy = —4 215;; £ (C.16)

When mp < My + My we always have that xyp > 0. In that case, the function I} as

given in Eq. (C.15) is well-defined and can alternatively written as

1

Imag 1 !

2ff’< m%) = 8 2 dy [¢(Iff/ — ZE) — ln(fff/ — ZE) —|— s (C].?)
where 1 (z) is the digamma function. Note that in this case one can safely take the € — 0
limit, recovering expression (4.34) in the My = My case.

On the other hand, if mp > My 4+ My then Z;p can be negative in the integration
domain. In this case, the integral in Eq. (C.15) is not convergent. However, one can still

proceed by considering the analytic extension of the form given in Eq. (C.17). Since T
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is a positive quadratic function of y, it is immediate to see that ¢)(Zss) has N + 1 poles,

N = Floor{Q;f [1 _ (Mfm;PMfﬂ lm% _ (Mﬂ} . (C.18)

To proceed we first isolate the poles by using the digamma recurrence relation

where

N
1
Tep—i€) = Y(Tp+N+1)— Y ———m— . C.19
V(@yp —ie) = (@ + N +1) g):iff/ e (C.19)
Expressed this way, the first term in the right-hand side is pole-free. Then

1 X g
mag 2 o n
Lyrfi(—mp) = —/ dy[ (Zsp + N +1) —In(Zpp — ie) —527 T An—ic|

(C.20)

where g, = 2 — 0, 0. The complex logarithm is defined by taking the principal branch. For

the region where z;p < 0 we have
li_r)% In(—|zsp| —ie) = In(|zsp|) —in. (C.21)

Lastly, the third term on the right-hand side of Eq. (C.20) contains two simple poles,
which once again can be handled using the generalization of the Sokhotski-Plemelj formula

presented in Eq. (C.7). After some algebra we finally obtain that for mp > My + M

5} = -m) = - _{ e e
o B [0
b [ vt Ny (-2 2) ez
with
M e - O T (] e

We remark that the calculation of /57 was performed here within the proper time
formalism, which is well-defined for mp < My + My and leads to Eq. (C.17). For

mp > M+ My we have taken the analytic continuation of this equation. As a consistency
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check, we have repeated the calculation using the Landau level representation for the
quark propagator in Minkowski space, which is well-defined for all mp, obtaining the same
final result of Eq. (C.22).
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APPENDIX

Diagonalization and B = (0 expansion

for nucleons

(p)

D.1 Diagonalization of D55 in Ritus space

In this section of the appendix we briefly sketch how to prove that the Dirac operator
Dgfp, in Eq. (6.41) is diagonal. Let us start by taking into account the integral I g’;, (p,r)
in Eq. (6.43). Denoting w = x; — z; and integrating over the remaining space variables, it
can be show that
/
X% (por) = (2m)8 6@ (P = P) 6(Py — P3) 6P (py + 11— P1) Gy, (b +71) . (D.1)

PP/

where

(_1)n/\+n'x

Gy, (pL+11) = B

o
Ny, Ny, / dw e'Prrw
0

p

2 B
Dn/\ (Sp g <p2 + TQ) - 7})“}) X
P

2 B
D, (sp \ lg (p2 + 1) + 7" w) : (D.2)
P

The integral over w can be carried out using the property of Eq. (4.40) for the cylindrical

parabolic functions. Assuming that n,, > n, (the analysis is similar for the other case),
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PP

D.1. Diagonalization of D in Ritus space

one has
.4 1 mn)? |4 LN
Gy, (P 7)) = (=)™ —= \/ n/,\ e o, i(pr +71) + sp(p2 +72) «
Bp 7’L>\l. Bp/2
2
Loy (2(& — ) ' (D.3)
A BP

We now use this result to carry out the integral over perpendicular momenta in
Eq. (6.41), which can be defined as

I = > G, (00 +10) Galpr, pi) A S™(r, P — pi) Ay (D.4)

pLTL AN

Using the form of the quark propagator in Eq. (2.67), it can be seen that the product
A\S"(ry, Py — pi) Ay can be written as

ANS (re, Pi—pi) Ax = A(re, Pr—pi) ax Ax + B(r, Pr—pi) re -y 6-a v Ay, (D.5)

where A(r., Py — p)) and B(ry, P) — p) are functions of 2. Then we get

I = / Galpe,pi) > [Gnk,n’)\ (pL +7) A(re, Pr—pi) Ax +
pLTL A

G e (pL+70) Blro, P —pu) (r —iAr2)m Aoy, (D.6)

where v\ = (71 +iAy2)/2. To carry out the angular integrals in Eq. (D.6) it is convenient
to use polar coordinates, namely p, = (p, cosf,p, sinf) and r, = (7, cosp, T, siny).
Noticing that the diquark propagator depends only on the squared momenta p? and p?
[see Eq. (6.27)], from Eq. (D.3) we get

Fpodp [TrLdE 5
I =
i /0 (%)2/0 2n)? Gal(P,p1) X

o 27
> L‘l(ﬁ, P —p) AA/ dip e (M) / dO Fo, g, (P, 71,0 — ) +
0 0

A

2 2
7L B(FL, Pr—pi) ya A-x / dyp €Z[Sp(n,*nk)+)‘]@/ do Fy v (P, 71,0 — )|,
0

0 (D.7)

where F}, .., is a function that depends on 6 — ¢ only through periodic functions sin(6 — ),
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cos(f — ). Taking into account that
n'y—ny =n —n, Sp(N_x —ny) + A = sp(n/ —n), (D.8)

and using the periodicity of the function F;, ,. , it is seen that

2
/ d(p e—iSp(n/_n) p— 27T 577,771/ , (Dg)
0

and therefore I, o< 27 6y, . Together with the result of Eq. (D.1), this shows that D®

PP
is proportional to 5 /.

D.2 Expansion around B =0

In this section of the appendix we provide some hints for the expansions of the coefficients
X% and Y in Eq. (6.53) around B = 0. These expansions allow us to obtain the expressions
for X and Y in Eqs. (6.54-6.55), as well as the slopes ay in Eq. (6.60).

The coefficients Xi and ffj; depend on B both explicitly and implicitly, through M,
and M. In fact, it can be seen that dM/dB|p—y = 0, hence the effective quark mass M
can be taken as a constant at the lowest order in an expansion in powers of |B|. In this
way, from Eq. (6.53) the slopes dMy/d|B| at B = 0 are given by

XY o oYy
oy = O\Bllp=0_ : 91B|lp=0 (D.10)
o 0X N )
Omy M Omy

where appropriate values of A should be taken for N = p and N = n (see discussion in the
main text).

In particular, the partial derivatives in the numerator of the rhs of Eq. (D.10) have to
be calculated with some care due to the sums over Landau levels in Egs. (6.57) and (6.58).

As an example, let us consider the expression for X E,ff) in Eq. (6.57). The factors that
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depend explicitly on the magnetic field can be expanded as

reg / 2\ __ pvacy 2 2B ngaC(pQ) B O B2 KBS
A (6pi) = G (i + A)+—d2 A+ O(B%(B7),
P p*=p2+2(Ba
B, (1+t,) T 5
— 14+ - (B,— B, — Ba) +O(B?,
Bt (Bt Ba)tw A3 p— Ba) +O5)
Bu + (B, — Ba)tu ] _orems 272(BAB

B P = B 5|1+ —=2 1+ O(B*(B%| . D.11

For the evaluation of the sum over Landau levels in the limit of low magnetic field, one

can use the relation

BY e F((B) = /OO do e=% F(z) + %F(O) B+o(B), (D12

which is valid for o > 0 if the function F(z) allows a Taylor expansion around z = 0 and

is well behaved at x — oo. In this way, after an integration by parts one arrives at

B, (1 + tu) e lBu + (BP — BA)tu]g reg
Ba

A (E,pﬁ) =
By + (Bp + Ba) /= | Bu+ (B + Ba)ty

1

> —T vac T WT2B
[ TG ) |14 (B B+ 2T
0

A

5 Az +0O(B*) | . (D.13)

The variable w can be identified with p? in the B — 0 limit. In addition, with the aid

of some properties of the Bessel functions one can prove the relations
Tap [ dp e F@E ) = [ dpe R Blap) £GP
Pi P Jolapn) f(Bi+07) = — P pL Ji(apy) F(PL)
0 0 0

o0 R oo R ~ R ~ . 8 o0 B ~ R .
/ dp / dpy 1 Jo(apn) f(BF +51) = 5/ dpu By Ja(ap) f(B1),  (D.14)
0 0 0
where p; = |p, | and p; = |pi|. Now, using Egs. (D.13) and (D.14) it can be seen that

A oX @
= X °p
B=0 ’ J|B|

X

- (Qp —Qu) T — QpIQ ) (D.15)

B=0

where X and Z;, are given by Egs. (6.54) and (6.62), respectively.
A similar procedure can be followed in order to obtain the expansions for ?Sip), X and
V™. The evaluation of the derivatives in the denominator of Eq. (D.10) is straightforward,

leading to the final expressions of o, and oy in Eq. (6.60).
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