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Resumen

Los campos magnéticos intensos de magnitud
√
eB  ΛQCD pueden ser relevantes para

una serie de escenarios físicos. Dichos campos logran resolver la estructura de quarks de
un hadrón, modicando signicativamente las propiedades de la materia que interactúa
fuertemente. En esta tesis empleamos un modelo efectivo de quarks para investigar el efecto
que un campo magnético uniforme externo tiene sobre las propiedades de los hadrones más
ligeros, es decir, los mesones pseudoescalares y los nucleones. Especícamente, utilizamos
un modelo tipo Nambu–Jona-Lasinio (NJL), en el cual la interacción entre quarks es local
preservando la simetría quiral. Para el análisis de las partículas cargadas, presentamos
un método basado en el uso de autofunciones tipo Ritus para sistemas magnetizados que
nos permite tener completamente en cuenta los efectos debidos a la presencia de fases de
Schwinger no nulas que han sido usualmente desestimadas en la literatura. Para regularizar
el modelo utilizamos un esquema en el cual sólo las contribuciones que no dependen
explícitamente del campo son regularizadas. Esto permite evitar ciertos inconvenientes
que aparecen en otro tipo de esquemas alternativos. Además, exploramos la posibilidad
de incorporar el efecto de catálisis magnética inversa mediante el uso de un acoplamiento
dependiente del campo magnético. Dentro de este marco, nos centramos en la dependencia
con el campo magnético de las masas del nonete de mesones pseudoescalares así como de los
nucleones, donde estos últimos se construyen como estados ligados quark-diquark. Otras
propiedades de los piones también son calculadas, como los acoplamientos quark-pión,
las velocidades transversales y las constantes de decaimiento, lo que permite estimar el
ancho de decaimiento de los piones cargados magnetizados. El decaimiento se analiza en
términos generales mediante el método de Ritus, donde mostramos que aparecen cuatro
factores de forma independientes al hadronizar las corrientes de quarks. Además revelamos
que, en presencia de campo magnéticos muy intensos, el mecanismo de supresión de
helicidad está ausente, y que la distribución angular de las partículas salientes es altamente
anisotrópica. El método de Ritus y otras estrategias presentadas en este trabajo para
tratar sistemas magnetizados representan una herramienta útil que puede aplicarse al
cálculo de propiedades de partículas cargadas a través de diferentes enfoques.

Palabras claves: QCD. Campo magnético. Modelo NJL.



Abstract

Strong magnetic elds of magnitude
√
eB  ΛQCD may be relevant for a range of physical

scenarios. Such elds can resolve the quark structure of an hadron, signicantly modifying
the properties of strongly interacting matter. In this thesis we employ an eective quark
model to investigate the eect that an external uniform magnetic eld has on the properties
of the lightest hadrons, i.e. pseudoscalar mesons and nucleons. Specically, we use a
Nambu–Jona-Lasinio (NJL) type model, in which the interaction between quarks is local
while preserving chiral symmetry. For the analysis of charged particles, we present a
method based on the use of Ritus-type eigenfunctions for magnetized systems which allow
us to fully account for the eects due to the presence of Schwinger phases that have been
usually disregarded in the literature. To regularize the model we use a scheme in which
only the contributions that do not depend explicitly on the eld are regularized. This
allows us to avoid certain drawbacks that appear in other types of alternative schemes. In
addition, we explore the possibility of incorporating the inverse magnetic catalysis eect
through the use of a magnetic eld dependent coupling. Within this framework, we focus
on the magnetic eld dependence of the masses of the nonet of pseudoscalar mesons as well
as nucleons, where the latter are constructed as bound quark-diquark states. Other pions
properties, such as quark-pion couplings, transverse velocities and decay constants, are
also calculated, allowing for an estimation of the decay width of magnetized charged pions.
The decay is analyzed on general grounds via the Ritus method, where we show that four
independent form factors appear when hadronizing quark currents. We further reveal
that, in the presence of a very strong magnetic eld, the helicity suppression mechanism
is absent, and the angular distribution of outgoing particles is highly anisotropic. The
Ritus method and other strategies presented in this work to deal with magnetized systems
represent a useful tool that can be applied to the calculation of charged particle properties
across dierent approaches.

Keywords: QCD. Magnetic eld. NJL model.
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1
Introduction

1.1 Quantum chromodynamics
The theory which describes the strong interactions within the framework of the Standard
Model is known as quantum chromodynamics (QCD). It was established as such several
decades ago, recognizing quarks as the primary constituents of hadrons and gluons as the
mediators of the interaction [1–3]. In this formulation, quarks and gluons possess a property
known as “color charge”, analogous to the electric charge of quantum electrodynamics
(QED), which is responsible for strong interactions. The strength of the interaction
is measured by gs, the dimensionless coupling constant of the theory. However, upon
quantization, logarithmic divergences in one-loop diagrams of perturbation theory imply
that this “constant” actually depends on the typical energy scale µ of the processes under
consideration, called the renormalization group scale. This running of the coupling is
specied by the beta-function of the renormalization group. The self-interaction between
gluons dramatically modies the running of the QCD coupling αs = g2s◁(4π), as compared
to QED. For high energies the coupling weakens (αs → 0) and quarks and gluons form
(nearly) free states, a property dubbed as asymptotic freedom [4, 5]. On the other hand,
perturbation theory suggests that for low energy processes αs → ∞. Experience indicates
that, under ordinary conditions of temperature and density, say T  200 MeV and
µ  350 MeV [6], hadrons are the relevant degrees of freedom. This implies that QCD
matter must necessarily glue together in such a way as to form color singlet bound states
whose net color charge is zero, a phenomenon dubbed as (color) connement. The value of
µ which separates these two regimes is known as the QCD scale ΛQCD. For scale energies
below the charm quark mass µ < 1▷25 GeV, where only the three lightest avors are active,
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1.2. QCD matter under extreme conditions

we have ΛQCD ∼ 300 MeV. The process by which a dimensionless constant such as gs is
replaced by a dimensionful one such as ΛQCD is called dimensional transmutation.

1.2 QCD matter under extreme conditions
Shortly after the advent of QCD, it was conjectured that at suciently high temperatures
and/or densities states of matter known by the generic name of quark-gluon plasma (QGP)
can form, which are characterized by color deconnement and where quarks and gluons
are the dominant degrees of freedom [7–9]. This prompted the theoretical study of the
possible phases of QCD under such extreme conditions and revealed a potentially complex
phase structure [10, 11]. In fact, the study of the QCD phase diagram continues to
present a theoretical and experimental challenge to this day [12]. A schematic view in the
temperature and baryon chemical potential µB plane is depicted in Figure 1.1.

Figure 1.1: chematic view of the QCD phase diagram at nite temperature and chemical
potential (density). Figure from Ref. [10].

The transition between dierent phases is signaled by critical behavior often associated
with the spontaneous breaking of a global symmetry [13]. The order parameter is the
quantity that establishes the state of a symmetry: it vanishes when the system shares the
symmetry of the Lagrangian and becomes nonzero when the symmetry is spontaneously
broken. In order to properly characterize these phases, it is necessary to study the
symmetry properties of the theory under groups of unitary transformations acting on the
internal degrees of freedom of the theory. The QCD Lagrangian is by construction invariant

2



1.2. QCD matter under extreme conditions

under the SU(3)c color group. For massless quarks, it is also invariant under the avor
chiral group, which can be decomposed into vector and axial groups as U(Nf )L×U(Nf )L =
U(1)V × SU(Nf)V × U(1)A × SU(Nf)A. Here Nf is the number of avors: for full QCD,
Nf = 6. For massive quarks, chiral symmetry is broken. Nonetheless, it is approximately
conserved in the light quark sector. In the vacuum state of QCD, the axial symmetry is
broken due to interactions, even for massless quarks. Thus, chiral symmetry is broken
and an eective mass for the quarks is dynamically generated [14]. The order parameter
that characterizes this spontaneous breaking is the chiral condensate ⟨ψ̄ψ⟩. In fact,
this breaking is responsible for most of the nucleon mass, while the corresponding light
Goldstone bosons [15] are identied with the pions. These dynamical eects are of great
importance in the study of the QCD phase diagram, since there are indications that
this symmetry is restored in the QGP phase. At the phase transition thermodynamic
quantities change characteristically, all related to an anomaly in the pressure. Fluctuations
of conserved quantities, such as baryon, electric charge and strangeness number, are
sensitive observables in relativistic heavy-ion collisions to probe the QCD phase transition.
Furthermore, experimental and theoretical evidence leads to the assumption that the phase
transitions of deconnement and chiral symmetry restoration occur virtually simultaneously
at low densities [16–18]. However, the exact mechanism that gives rise to this simultaneous
transition is not yet fully understood quantitatively.

The formation of the QGP involves high energy processes, which can only happen
under extreme conditions. These conditions are dicult to produce, leaving few physical
situations for experimental study. One of the natural scenarios where deconned QCD
phases are believed to be realized is in the hot early Universe, corresponding to the
region of low densities and high temperatures in the phase diagram. According to the hot
big bang model, the early Universe has experienced (at least) two epochs where phase
transitions could occur: the electroweak transition at temperatures around TEW ∼ 100 GeV,
when fermions and gauge bosons became massive particles, and the QCD pseudo-critical
transition Tc when quarks conned into hadrons. From lattice QCD (LQCD) simulations,
the QCD transition is expected to be a smooth crossover at around Tc ≃ 156 MeV [19–
22]. However, there are some known mechanisms that could provide a rst order QCD
transition, see e.g. [23–25]. Another natural scenario corresponds to the cores of so-called
compact stars [26, 27]. These neutron stars are extremely stable and dense objects,
which constitute one of the possible nal scenarios in the life cycle of a star. In them,
the density is large enough to form color superconducting states, corresponding to the
region of high densities and low temperatures in the phase diagram. At asymptotically
large chemical potentials and small temperatures, where perturbative QCD is applicable
due to asymptotic freedom, 3-avor QCD matter is in the so-called color-avor-locked

3



1.2. QCD matter under extreme conditions

phase [28–30]. In this regime chiral symmetry is broken, and the transition temperature
to quark matter is found to be rst order [31, 32]. At intermediate densities, including
those relevant for astrophysics environments, alternative phases proposed in the literature
include two-avor color superconductors, noncolor-avor-locked mixed phases, crystalline
color superconductivity, kaon condensation, gluonic phases, superuidity, gapless and
inhomogeneous phases, see Refs. [6, 33–35] for more details.

As for human-made scenarios, several heavy ion accelerators have been built in the
last decades, in which experiments are carried out to reach the phases corresponding to
high temperatures and densities in the QCD phase diagram [36, 37]. Large experimental
programs have been carried out at the Relativistic Heavy Ion Collider (RHIC) [38, 39] at
the BNL laboratory and at the Large Hadron Collider (LHC) [40] under ALICE, ATLAS
and CMS experiments as well as the Super Proton Synchrotron (SPS) at CERN. In this
type of accelerators, the objective is to collide heavy ions such as lead, silver or gold at
center-of-mass energies on the order of 100−200GeV or more. Extremely high temperatures
are reached during the collision process, above the critical deconnement temperature
Tc [38]. This suggest that a transient QGP is possibly formed, which hadronizes when
cooled down. Outcoming particles from the collision carry indirect information about the
QGP. Present results suggest that QGP has managed to form for time periods on the
order of 10 fm/c [41, 42].

Contrary to original expectations, QGP is not a weakly coupled plasma. It is in fact
strongly coupled and near-perfect liquid, with specic viscosity η◁s value close to 1◁4π [36,
43]. Interestingly, the AdS/CFT duality between innitely strongly coupled gauge theories
(cousins of QCD) and gravitational descriptions has led to the conjecture that for any
relativistic quantum eld theory, η◁s > 1◁4π [44]. The similarity between both results
lends credibility to the idea that holography can provide meaningful insights into QCD.
Due to the assumption of innite coupling strength in the holographic computation, the
ideal uid behavior of the QGP has been interpreted as signaling a strongly interacting
system, also supported by the fact that the value of η◁s obtained for a gas of quarks
and gluons in a weak coupling regime is an order of magnitude larger. Despite its short
duration, the QGP exhibits thermodynamic equilibrium properties, further giving evidence
conrming the hypothesis that the phase transition between the hadronic and QGP phases
is of the crossover type [45]. The conditions produced in current heavy ion accelerators
correspond essentially to the vertical axis of the phase diagram, i.e. at low chemical
potentials. The quark-hadron crossover transition observed in this regime is expected to
change into a rst order transition for higher µB, with a second order critical endpoint
(CEP) in between. The position of the CEP has been extensively studied within dierent
theoretical frameworks (see e.g. Refs. [46–49]) and explored in current accelerators [39, 50].

4



1.2. QCD matter under extreme conditions

In fact, its search is one of the benchmarks for future experiments at the Nuclotron-based
Ion Collider fAcility (NICA), the Facility for Antiproton and Ion Research (FAIR) and
the Japan Proton Accelerator Research Complex (J-PARC), where higher densities can be
reached.

While initially the phase diagram was investigated taking density and temperature as
variables, in the last decade there has been greatly increased interest in the presence of
strong (electro)magnetic elds and their eects [51–53]. Even though the electromagnetic
coupling constant e is much smaller than the strong coupling constant gs, electromagnetism
can be relevant for QCD physics if the eld strength is so strong that

√
eE,

√
eB ∼ ΛQCD.

Such intense electromagnetic elds appear in many of the aforementioned physical scenarios.
Several models predict the generation of strong magnetic elds during the early evolution
of the Universe, which are required by present day observations of weak but nonvanishing
intergalactic magnetic elds. Such strong elds could have modied the nature of the
electroweak phase transition, and their eect could have left traces in certain anisotropies
of the cosmic microwave background [54, 55]. On the other hand, at the surface of
certain compact stars called ‘magnetars’, magnetic elds can reach values of the order
1015 G [56–58], increasing by a few orders of magnitude to 1018 − 1020 G towards the
core [59–62]. See Ref. [63] for a current magnetar catalog and also Ref. [64] for a recent
review. The eect of magnetic elds on dense quark matter is also reviewed in Ref. [65].
Regarding human-made scenarios, in the last decade it has been observed that in heavy
ion collisions (HIC) the motion of charged spectator particles produces magnetic elds of
magnitudes as large as 1019 − 1020 G [66–70]. Although these elds occur essentially at
the initial moments of the collision and decay rapidly, at times on the order of 10−21 s [67],
they could substantially aect the way the QGP hadronizes [51, 71]. Lastly, magnetic
elds are also relevant to quasi-relativistic condensed matter systems like graphene [52].

The phase diagram of QCD in the three-dimensional (µ, T,B) space has been studied
within several approaches. While the temperature axis can be directly addressed on the
lattice, for nite chemical potentials the so-called sign problem hinders density studies,
which have been performed mainly through eective models or holographic approaches.
Interestingly, while the majority of eective models predict the increase of the pseudocritical
transition temperature Tc with the magnetic eld [52, 53], accurate LCQD results [73–76]
have shown the opposite pattern, i.e. a decrease of Tc with the magnetic eld. In fact,
as shown in Refs. [72, 77], this behavior is prolonged for very strong magnetic elds,
where a rst order transition was found at eB = 9 GeV2, implying the existence of a
critical end-point somewhere within the range 4 GeV2 < eB < 9 GeV2. An updated QCD
phase diagram in the temperature and magnetic eld plane can be found in Figure 1.2, as
proposed by Ref. [72].
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1.3. Magnetic eld eects on QCD matter

Figure 1.2: QCD phase diagram at nite temperature and magnetic eld. The (pseudo)critical
temperature decreases as function of B, and the transition switches from a crossover to rst
order at a critical end point located in the range 4 GeV2 < eBE < 9 GeV2. Figure from Ref. [72].

1.3 Magnetic eld eects on QCD matter
It is expected that new detectable eects will emerge in the phase diagram and properties
of strongly interacting matter due to these extreme magnetic elds, causing numerous
phenomenological consequences [52]. These include magnetic catalysis (MC) of the
chiral condensate [52, 78]; inverse magnetic catalysis (IMC) of the restoring chiral and
deconnement temperature [73, 74, 79, 80]; chiral magnetic eect [66, 81, 82]; chiral
separation eect [83, 84]; chiral magnetic waves [85–89]; vacuum superconductivity [90,
91], as well as many other eects on the properties of the resulting particles that are
detected after collisions [71, 92, 93], to name a few. In addition to its importance for the
phenomenology of the above-mentioned physical scenarios, magnetic elds also of academic
interest on its own because they serve as a probe of the theory of strongly interacting
matter. In particular, a comparison between LQCD and eective model results in the
presence of external electromagnetic elds allow for a constraint of the latter, acquiring a
better understanding of the underlying theory.

For the scope of this thesis, which involves the analysis of light hadron properties, it
will be relevant to discuss in some detail the MC and IMC eects. The term magnetic
catalysis refers to either the enhancement of an existing condensate or the appearance of a
new condensate by the presence of an external magnetic eld. In QCD, the generation of
the chiral condensate ⟨ψ̄ψ⟩ breaks in turn chiral symmetry, generating a dynamical mass.
The MC eect was rst found in the framework of the NJL [94, 95] and Gross-Neveu
model [96, 97]. The basic idea behind MC is that ⟨ψ̄ψ⟩ can be thought of as a condensate

6



1.3. Magnetic eld eects on QCD matter

of neutral spin-zero fermion-antifermion pairs. Since the magnetic moments of the fermion
(with a xed charge and spin) and the antifermion (with the opposite charge and spin)
point in the same direction, both magnetic moments can comfortably align along the
magnetic eld direction [78].

On more technical grounds, the mechanism behind MC eect was discussed in Refs [98–
100], see Ref. [52] for a more general review. The key point revealed in those references
is that the magnetic eld enhances the pairing between fermions and antifermions in
the infrared region, since the dynamics of the pairing is reduced to (1 + 1)-dimensional
dynamics. This is connected to the fact that, in the presence of an uniform magnetic eld,
the transverse momentum of free fermions is quantized into discrete numbers, known as
Landau levels (LLs). For the particular case of weak coupling and/or strong magnetic elds,
the connection is explicit; the pairing dynamics is dominated by fermions in the lowest
Landau level (LLL), which are also subject to the dimensional reduction D → D− 2. As a
consequence of the pairing, a dynamical mass is generated (mostly in the infrared region)
even at the weakest attractive interaction between fermions, which spontaneously breaks
chiral symmetry and enhances the chiral condensate. The underlying physics of infrared
dynamics becoming stronger because of dimensional reduction is universal, as known from
the Bardeen-Cooper-Schrieer (BCS) theory of superconductivity [101, 102]. In fact, the
mechanism of dimensional reduction was proven at asymptotically strong magnetic elds
eB ≫ Λ2

QCD, where QCD can be studied rigorously from rst-principles [103], obtaining
MC. Moreover, the MC eect has been reproduced across many dierent approaches such
as QCD eective models, LQCD, QED, holographic approaches and condensed matter
systems [52, 53, 78].

At nite temperature and moderately strong magnetic elds
√
eB  ΛQCD, a new

unexpected behavior was discovered by LQCD [73] for temperatures around Tc, consisting
in a decrease, rather than increase, of the quark condensate with B. This phenomenon, not
foreseen by eective models, was dubbed as inverse magnetic catalysis. The full mechanism
behind IMC at nite temperature is still controversial and under study, see Refs. [79,
104, 105] for some reviews on the subject. This is partially due to the fact that, at these
moderate eld strengths, QCD is strongly interacting and the Landau level picture is in
general not well dened anymore, even though some meaningful identication for the LLL
can still be performed [106]. Another controversial aspect exposed by LQCD is that, for
heavy pion masses (mπ  500 MeV), Tc decreases with B even though the condensate is
always an increasing function of B at all temperatures, i.e. there is no IMC [107, 108]. It
has been suggested that the inuence of the magnetic eld on the conning properties is
the leading eect originating the decrease of Tc as a function of B, a phenomenon dubbed
as “deconnement catalysis”. Pertinent connement observables include the Polyakov
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loop [107, 109], string tensions [72, 110–112], ux tubes [113], uctuations of conserved
charges [114] and the ratio of pressure over energy density [75]. The aforementioned
suggestion relies on the fact that some of these conning eects happen even in the absence
of IMC in the chiral condensate.

A key factor toward the understanding of IMC, rst performed in Ref. [115], consists
of separating the changes in the quark condensate induced directly through the observable
(valence eect), and indirectly through the fermion determinant contributing to the weight
of the gauge congurations (sea eect). LQCD results show that the magnetic eld
enhances the spectral density around zero [109], which according to the Banks-Casher
relation [116] is proportional to the quark condensate. This is a purely “valence” eect that
can be already observed in the quenched approximation, where the backreaction of charged
quarks on the gauge eld is ignored, and can be considered the basic mechanism behind
magnetic catalysis. In contrast, the sea eect was found to enhance the condensate only well
below Tc, whereas around Tc the quark determinant tends to suppress gauge congurations
with larger values of the quark condensate [109]. The sea eect is related to the fact
that, even though gluons themselves do not carry electric charge, they are aected by B

through their coupling to electrically charged quarks. For asymptotically large magnetic
elds eB ≫ Λ2

QCD, some light can be shed on the underlying mechanism [103]. There, the
dimensional reduction of the LLL dynamics, which is the most relevant level in this regime,
leads to a large fermion contribution to the gluon polarization operator. As a result, gluons
acquire a mass of order M2

g ∝ αseB. Since at leading order the strong coupling decreases
logarithmically with B, αs(B) = [b ln(eB◁Λ2

QCD)]−1 with b = (11Nc − 2Nf )◁6π, this leads
to an eective weakening of the interaction between quarks in the presence of an external
magnetic eld. At moderate eld strengths

√
eB  ΛQCD, the gluonic dependence on

B was analyzed on the lattice [117], where it was found that its behavior resembles the
one of the chiral condensate. A further analysis of the associated chromo-electromagnetic
elds allows for the speculation that the induced chromomagnetic background interferes
with the dynamics responsible for symmetry breaking.

Hadron properties are also expected to be aected by this screening eect of gluon
interactions. The study of light hadrons under magnetic elds, which is the main topic
of this thesis, is important for several reasons. Strong magnetic elds

√
eB ∼ ΛQCD can

in principle resolve the quark structure of a hadron. Thus, the modications of their
properties in an external magnetic eld can help to understand the eects of magnetic elds
on the chiral phase transition. In particular, the magnetic eld dependence of the masses
of the lightest hadrons are expected to play a relevant role for the structure of the phase
diagram. Specically, pions are expected to be dominant in this respect. For example, since
neutral pions are Nambu-Goldstone bosons of the chiral symmetry breaking, the decrease
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of their mass with B could signal a transition to a deconned/chirally symmetric phase,
as suggested by the simultaneous decrease of Tc with B. Besides, for the chiral partners
such as neutral pions and sigma mesons, their mass dierence can be also considered as
an order parameter to describe the behavior of the chiral crossover, since their screening
masses become degenerate when chiral symmetry gets restored. On the other hand, it
has been conjectured that strong magnetic elds could reduce the vector meson mass
to zero and lead to the condensation of ρ-mesons [118], possibly inducing a transition
to a superconducting phase [91]. In this regard, QCD inequalities can be used to show
that massless ρ-mesons are only allowed if the (connected) neutral pion mass vanishes
as well. Another aspect relevant for the aforementioned physical scenarios concerns the
elementary properties of magnetized hadronic degrees of freedom. For cold astrophysical
environments, the masses of baryons and mesons enter the nuclear equation of state and
inuence the mass-radius relations of magnetars [119]. Together with hadronic decay
rates, these also aect stability of such compact objects and cooling mechanisms that
characterize the emitted neutrino spectrum [120]. As for heavy ion collisions, it has been
speculated [121, 122] that long-lived magnetic elds might aect the hadronization process,
primarily inuencing heavy baryons.

1.4 Theoretical frameworks
Most of the phenomena of QCD matter mentioned in the previous section require treating
QCD at energy scales below say 1 GeV, where perturbative methods are not applicable. In
this regime, the nonperturbative character of QCD renders calculations extremely dicult.
Thus, these low energy processes must be studied through nonperturbative techniques. Ab
initio approaches include lattice QCD and functional approaches, such as the functional
renormalization group and Dyson-Schwinger Equations [123–126]. In particular, LCQD
has signicantly improved over the years, along with technological development, proving
to be a very useful tool for studying the properties of QCD matter [11, 12, 127]. While the
temperature axis can be directly addressed on the lattice, for nite chemical potentials the
so-called sign problem hinders density studies, although recent progress has been achieved
through the use of dierent techniques for chemical potentials up to µB◁T < 3, nding no
signal of the CEP [11, 43, 49, 128]. Regarding the inclusion of magnetic elds, even though
they can be straightforwardly incorporated to the lattice, other technical problems arise
such as the proper handling of lattice artifacts [129], large error bars, the use of higher
than physical quark or pion masses due to computational resources, the use of the root
trick for staggered quarks and dierences in the values of results obtained using dierent
quark implementations.
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Another way to deal with nonperturbative QCD relies in the use of a plethora of
alternative approaches/models, based on QCD. These include QCD sum rules [130–132],
chiral perturbation theory [133, 134], MIT bag model [135–138], quark-meson or linear
sigma model [139–141], Sakai-Sugimoto model [142, 143], relativistic Hamiltonian-based
formalisms and chiral models, to just name a few.

In this thesis we will make use of the Nambu–Jona-Lasinio (NJL) model, an eective
model built upon the chiral symmetries of QCD. It was originally developed in the
sixties to study nucleon interactions [14, 144], aiming to explain in a unied manner the
large baryon masses as well as the intermediate or small meson masses solely from the
isospin symmetry properties of nuclear interactions. The model properly accounts for
the spontaneous symmetry breaking mechanism of the axial group, generating dynamical
masses for the nucleons and giving rise to Goldstone bosons, associated with pions. Years
later, when quarks were recognized as fundamental particles forming hadrons, the model
was reinterpreted as an eective theory for quark interactions [145–147]. In this interaction
gluon degrees of freedom are frozen, resulting in a lack of connement. Nevertheless, as
long as the quantities under study are not sensitive to the connement properties, but
instead are well described by chiral symmetry properties, reliable calculations can be
performed within this model. This shortcoming of the theory can be partially remedied by
introducing a dynamic variable known as “Polyakov’s loop” [148–151], which is treated as
a background eld that accounts for gluonic degrees of freedom that can reproduce the
deconnement transition. Another drawback from the model is its nonrenormalizability,
due to the approximation of the gluon mediated exchange between quarks as a local point
interaction. In this regard, an improvement is seen by considering the nonlocal version of
the NJL model [152], although calculations become much more cumbersome.

One of the advantages of the NJL model is that it can be easily extended to include
external parameters such as temperature, chemical potential or electromagnetic elds.
We will focus on the inuence of an external uniform magnetic eld. In the context of
eective models, it is natural to attribute the IMC failure to the fact that most of these
models lack gluonic degrees of freedom and so are unable to account for the backreaction
of sea quarks due to the external magnetic eld. Several possibilities have been explored
in the recent literature to incorporate the IMC eect phenomenologically. Within the NJL
model, these improvements include going beyond mean-eld calculations [153] or taking
into consideration the anomalous magnetic moment of quarks [154–157]. Motivated by the
running of the QCD coupling and the fact that gluon screening modies the coupling as
G ∝ αs◁M

2
g ∝ 1◁eB, one of the simplest modications available consists of introducing

a coupling constant G(B) that depends on the magnetic eld (and in some cases also
on the temperature) and can be xed by tting some LQCD results, such as the quark
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condensate or the chiral pseudocritical temperature. This strategy has shown that the
NJL model can satisfactorily reproduce LQCD results in a broad range of temperature
and magnetic elds [158–163]. In this regard, an interesting possibility was proposed in
Ref. [164] where G(B) is tted to reproduce constituent quark masses, which are obtained
from the LQCD calculation of baryon masses by assuming in a simplied way that they
can be obtained by merely summing the masses of their constituents. Lastly, it is worth
mentioning that calculations using the non-local NJL model have shown that IMC and
deconnement catalysis are obtained naturally [165, 166].

1.5 Outline of the thesis
As already mentioned, the study of light hadrons under strong magnetic elds can provide
relevant information for the understanding of magnetized QCD matter. The objective
of this thesis is to study the eect of an external uniform magnetic eld on light hadron
properties, particularly pseudoscalar mesons and nucleons. In the framework of the
NJL model, mesons are usually described as quantum uctuations in the random phase
approximation (RPA) [145–147], that is, they are introduced via a summation of an innite
number of quark loops. In the presence of a magnetic eld, the calculation of these loops
requires some special care due to the appearance of Schwinger phases [167] associated with
each quark propagator. For neutral mesons these phases cancel out, and as a consequence
the usual momentum basis can be used to diagonalize the corresponding polarization
function. In contrast, the Schwinger phases do not cancel for charged mesons, leading to
a breakdown of translational invariance that prevents to proceed as in the neutral case.
In this situation, some existing calculations just neglect the Schwinger phases, taking
into account only the translational invariant part of the quark propagator [93, 168, 169].
In this thesis we introduce a method based on the use of Ritus-type eigenfunctions for
magnetized systems, which allow us to properly diagonalize charged polarization functions
taking fully into account the translational breaking eects induced by Schwinger phases.
Although originally introduced to deal with mesons in the NJL model, the method can be
applied to charged particles in general, in dierent magnetized scenarios. In particular,
we apply it to the calculation of nucleon masses within the NJL model, constructed as
composite quark-diquark bound states.

Regarding the calculation of the pion decay constants, it is important to note that the
presence of the external magnetic eld opens up new decay channels, parametrized by their
corresponding form factors. Even though some of these new decay constants were already
recognized in the literature [170, 171], some were not. In this thesis we determine all form
factors arising in the presence of an uniform magnetic eld by taking into account all
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independent tensor structures that can be formed when hadronizing one-pion-to-vacuum
matrix elements of quark currents. Using the Ritus method for the calculation of these
magnetized matrix elements, we obtain a model-independent expression for the weak decay
width of magnetized charged pions π− → lν̄l, as well as the angular distribution of outgoing
antineutrinos. Their values can be estimated by providing the magnetic dependence of the
pion decay constants, which must be calculated within some QCD approach. We report
on estimations from the NJL model.

The thesis is organized as follows. In chapter 2 we introduce the theoretical framework.
Since the NJL model is built upon the chiral symmetry of QCD, we rst discuss the QCD
theory and describe its avor transformation properties. Afterwards we introduce the NJL
model, describing the inclusion of magnetic elds at the mean eld level. In chapter 3 we
analyze the weak decay of magnetized charged pions solely from quantum eld theory
grounds. To that end, we provide expressions for the matter elds of the involved particles
in the presence of the external eld. As mentioned, the external magnetic eld opens up
new decay channels, so we carefully take into account all possible form factors. In order to
provide actual estimates for the decay width and angular distribution, some pion properties
such as their masses and decay constants need to be supplied by some QCD approach.
In chapter 4 we make use of the two-avor NJL model to calculate several pion properties,
applying the Ritus method to properly address charged particles. The possibility of
a magnetic eld dependent coupling constant is also explored, in order to account for
the IMC eect. In chapter 5 we employ the three-avor version of the NJL model to
extend the meson pole mass calculation to all mesons from the pseudoscalar nonet. Going
back to the two-avor formulation of the model, diquark masses can be straightforwardly
obtained by mimicking the pion calculation of chapter 4. Thus, in chapter 6 we analyze
diquarks and use them to study nucleon masses. In our approach, nucleons are treated as
bound quark-diquark states described by a relativistic Fadeev equation, using the static
approximation for quark exchange interactions. The conclusions of this work together
with a future outlook is presented in chapter 7. Finally, some technical details of the
calculations are discussed in the appendices.
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Introducción

Cromodinámica cuántica
La teoría que describe las interacciones fuertes en el marco del Modelo Estándar se
conoce como cromodinámica cuántica (QCD). Se estableció como tal hace varias décadas,
reconociendo a los quarks como los constituyentes primarios de los hadrones y a los gluones
como los mediadores de la interacción [1–3]. En esta formulación, los quarks y gluones
poseen una propiedad conocida como “carga de color”, análoga a la carga eléctrica de la
electrodinámica cuántica (QED), responsable de las interacciones fuertes. La fuerza de la
interacción se mide por gs, la constante adimensional de acoplamiento de la teoría. Sin
embargo, tras la cuantización, las divergencias logarítmicas en los diagramas de un lazo
de la teoría de perturbaciones implican que esta “constante” depende en realidad de la
escala de energía típica µ de los procesos considerados, denominada escala del grupo de
renormalización. Este corrimiento del acoplamiento viene especicado por la función beta
del grupo de renormalización. La auto-interacción entre gluones modica dramáticamente
el corrimiento del acoplamiento de QCD αs = g2s◁(4π), en comparación con QED. Para
energías altas el acoplamiento se debilita (αs → 0) y quarks y gluones forman estados
(casi) libres, una propiedad denominada libertad asintótica [4, 5]. Por otro lado, la teoría
de perturbaciones sugiere que para procesos de baja energía αs → ∞. La experiencia
indica que, en condiciones ordinarias de temperatura y densidad, digamos T  200 MeV
y µ  350 MeV [6], los hadrones son los grados de libertad relevantes. Esto implica que
la materia QCD debe necesariamente agruparse de manera de formar estados ligados de
color singlete cuya carga neta de color es cero, un fenómeno denominado connamiento
(de color). El valor de µ que separa estos dos regímenes se conoce como la escala de QCD
ΛQCD, denida como αs(ΛQCD) = 1. Para escalas de energías por debajo de la masa del
quark charm µ < 1, 25 GeV, donde sólo los tres sabores más ligeros están activos, tenemos
ΛQCD ∼ 300 MeV. El proceso por el cual una constante adimensional como gs se sustituye
por una dimensional como ΛQCD se denomina transmutación dimensional.
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Materia de QCD en condiciones extremas
Poco después del advenimiento de QCD, se conjeturó que a temperaturas y/o densidades
sucientemente altas podían formarse estados de la materia conocidos con el nombre
genérico de plasma de quarks y gluones (QGP), que se caracterizan por el desconnamiento
de color y donde los quarks y gluones son los grados de libertad dominantes [7–9]. Esto
impulsó el estudio teórico de las posibles fases de QCD en tales condiciones extremas
y reveló una estructura de fases potencialmente compleja [10, 11]. De hecho, el estudio
del diagrama de fases de QCD sigue suponiendo un reto teórico y experimental a día de
hoy [12]. Una vista esquemática en el plano de temperatura y potencial químico bariónico
µB se representa en la Figura 1.1

Figura 1.1: Representación esquemática del diagrama de fases de QCD a temperatura y potencial
químico bariónico (densidad) nito. Figura extraída de la Ref. [10].

La transición entre diferentes fases está seĳalada por un comportamiento crítico a
menudo asociado con la ruptura espontánea de una simetría global [13]. El parámetro
de orden es la cantidad que establece el estado de una simetría: se desvanece cuando el
sistema comparte la simetría del Lagrangiano y es nito cuando la simetría se rompe
espontáneamente. Para caracterizar adecuadamente estas fases, es necesario estudiar
las propiedades de simetría de la teoría bajo grupos de transformaciones unitarias que
actúan sobre los grados de libertad internos de la teoría. El Lagrangiano de QCD es por
construcción invariante ante el grupo de color SU(3)c. Para quarks sin masa, también es
invariante ante el grupo quiral de sabor, que puede descomponerse en grupos vectoriales y
axiales como U(Nf )L ×U(Nf )L = U(1)V × SU(Nf )V ×U(1)A × SU(Nf )A. Aquí Nf es el
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número de sabores: en QCD completo, Nf = 6. Para quarks masivos, la simetría quiral se
rompe. Sin embargo, se conserva aproximadamente en el sector de quarks ligeros. En el
estado de vacío de QCD, la simetría axial se rompe debido a las interacciones, incluso para
quarks sin masa. Por lo tanto, la simetría quiral se rompe y se genera dinámicamente una
masa efectiva para los quarks [14]. El parámetro de orden que caracteriza esta ruptura
espontánea es el condensado quiral ⟨ψ̄ψ⟩. De hecho, esta ruptura es responsable de la
mayor parte de la masa del nucleón, mientras que los correspondientes bosones ligeros
de Goldstone [15] se identican con los piones. Estos efectos dinámicos son de gran
importancia en el estudio del diagrama de fases QCD, ya que hay indicios de que esta
simetría se restaura en la fase QGP. En la transición de fase las cantidades termodinámicas
cambian característicamente, todas relacionadas con una anomalía en la presión. Las
uctuaciones de cantidades conservadas, como el número bariónico, de carga eléctrica y de
extraĳeza, son observables sensibles en las colisiones relativistas de iones pesados para
sondear la transición de fase de QCD. Además, la evidencia experimental y teórica conduce
a la suposición de que las transiciones de fase de desconnamiento y restauración de la
simetría quiral se producen prácticamente de forma simultánea a bajas densidades [16–
18].Sin embargo, el mecanismo exacto que da lugar a esta transición simultánea aún no se
encuentra comprendido cuantitativamente de manera detallada.

La formación del QGP implica procesos de alta energía, que sólo pueden darse en
condiciones extremas. Estas condiciones son difíciles de producir, lo que deja pocas
situaciones físicas para el estudio experimental. Uno de los escenarios naturales donde
se cree que se producen fases desconnadas de QCD es en el caliente Universo temprano,
correspondiente a la región de bajas densidades y altas temperaturas en el diagrama de
fases. Según el modelo del big bang caliente, el Universo temprano ha experimentado
(al menos) dos épocas en las que podrían producirse transiciones de fase: la transición
electrodébil a temperaturas en torno a TEW ∼ 100 GeV, cuando los fermiones y bosones
gauge se convirtieron en partículas masivas, y la transición pseudocrítica de QCD Tc

cuando los quarks se connaron en hadrones. A partir de simulaciones de QCD en
la red (LQCD), se espera que la transición de QCD sea un cruce suave (crossover) en
torno a Tc ≃ 156 MeV [19–22]. Sin embargo, existen algunos mecanismos conocidos que
podrían proporcionar una transición QCD de primer orden, véase por ejemplo [23–25].
Otro escenario natural corresponde a los núcleos de las llamadas estrellas compactas [26,
27]. Estas estrellas de neutrones son objetos extremadamente estables y densos, que
constituyen uno de los posibles escenarios nales en el ciclo de vida de una estrella. En
ellas, la densidad es lo sucientemente grande como para formar estados superconductores
de color, correspondientes a la región de altas densidades y bajas temperaturas en el
diagrama de fases. A potenciales químicos asintóticamente grandes y temperaturas
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pequeĳas, donde QCD perturbativo es aplicable debido a la libertad asintótica, la materia
de QCD de 3 sabores se encuentra en la llamada fase de bloqueo de color-sabor [28–30].
En este régimen se rompe la simetría quiral, y la temperatura de transición a la materia
de quarks es de primer orden [31, 32]. A densidades intermedias, incluyendo aquellas
relevantes para ambientes astrofísicos, las fases alternativas propuestas en la literatura
incluyen superconductores de color de dos sabores, fases mixtas sin bloqueo de color y
sabor, superconductividad de color cristalina, condensación de kaones, fases gluónicas,
superuidez, fases sin brechas e inhomogéneas, ver Refs. [6, 33–35] para más detalles.

En cuanto a escenarios creados por humanos, en las últimas décadas se han construido
varios aceleradores de iones pesados, en los que se llevan a cabo experimentos para alcanzar
las fases correspondientes a altas temperaturas y densidades en el diagrama de fases de
QCD [36, 37]. Grandes programas experimentales se han llevado a cabo en el ‘Relativistic
Heavy Ion Collider’ (RHIC) [38, 39] en el laboratorio BNL y en el ‘Large Hadron Collider’
(LHC) [40] bajo los experimentos ALICE, ATLAS y CMS, así como el ‘Super Proton
Synchrotron’ (SPS) en el CERN. En este tipo de aceleradores, el objetivo es colisionar iones
pesados como plomo, plata u oro a energías del centro de masa del orden de 100-200 GeV
o más. Durante el proceso de colisión se alcanzan temperaturas extremadamente altas,
por encima de la temperatura crítica de desconnamiento Tc MeV [38]. Esto sugiere que
posiblemente se forme un QGP transitorio, que se hadroniza al enfriarse. Las partículas
salientes de la colisión llevan información indirecta sobre el QGP. Los resultados actuales
sugieren que el QGP ha logrado formarse durante períodos de tiempo del orden de
10 fm/c [41, 42].

Contrariamente a las expectativas iniciales, el QGP no es un plasma débilmente
acoplado. De hecho, está fuertemente acoplado y es casi un líquido perfecto, con una
viscosidad especíca η◁s cercana a 1◁4π [36, 43]. Curiosamente, la dualidad AdS/CFT entre
teorías de gauge innitamente fuertemente acopladas (primas de QCD) y descripciones
gravitacionales ha llevado a la conjetura de que para cualquier teoría cuántica de campos
relativista, η◁s > 1◁4π [44]. La similitud entre ambos resultados da credibilidad a la
idea de que la holografía puede proporcionar conocimientos signicativos sobre QCD.
Debido a la suposición de una fuerza de acoplamiento innita en el cálculo holográco,
el comportamiento de uido ideal del QGP se ha interpretado como la seĳalización de
un sistema que interactúa fuertemente, apoyado también por el hecho de que el valor de
η◁s obtenido para un gas de quarks y gluones en régimen de acoplamiento débil es un
orden de magnitud mayor. A pesar de su corta duración el QGP exhibe propiedades de
equilibrio termodinámico, lo que aporta pruebas adicionales que conrman la hipótesis
de que la transición de fase entre la fase hadrónica y el QGP es del tipo crossover [45].
Las condiciones producidas en los actuales aceleradores de iones pesados corresponden
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esencialmente al eje vertical del diagrama de fases, es decir, a bajos potenciales químicos.
Se espera que la transición quark-hadrón de tipo crossover observada en este régimen
cambie a una transición de primer orden para µB más altos, con un punto crítico nal
(CEP) de segundo orden entre ambos. La posición del CEP se ha estudiado ampliamente
en diferentes marcos teóricos (ver por ejemplo Refs. [46–49]) y se ha explorado en los
aceleradores actuales [39, 50]. De hecho, su búsqueda es uno de los puntos de referencia
para futuros experimentos en el ‘Nuclotron-based Ion Collider fAcility’ (NICA), el ‘Facility
for Antiproton and Ion Research’ (FAIR) y el ‘Japan Proton Accelerator Research Complex’
(J-PARC), donde se podrán alcanzar mayores densidades.

Mientras que el diagrama de fases se ha investigado tomando inicialmente como
variables la densidad y la temperatura, en la última década ha aumentado enormemente
el interés por la presencia de campos (electro)magnéticos fuertes y sus efectos [51–53].
Aunque la constante de acoplamiento electromagnético e es mucho menor que la constante
de acoplamiento fuerte gs, el electromagnetismo puede ser relevante para la física de
QCD si la intensidad del campo es tan fuerte que

√
eE,

√
eB ∼ ΛQCD. Estos campos

electromagnéticos intensos aparecen en muchos de los escenarios físicos mencionados.
Varios modelos predicen la generación de fuertes campos magnéticos durante la evolución
temprana del Universo, que son requeridos por las observaciones actuales de campos
magnéticos intergalácticos débiles pero no nulos. Estos campos intensos podrían haber
modicado la naturaleza de la transición de fase electrodébil, y su efecto podría haber
dejado huellas en ciertas anisotropías del fondo cósmico de microondas [54, 55]. Por otro
lado, en la supercie de ciertas estrellas compactas denominadas “magnetares”, los campos
magnéticos pueden alcanzar valores del orden de 1015 G [56–58], aumentando en algunos
órdenes de magnitud hasta 1018−1020 G hacia el núcleo [59–62]. Véase la Ref. [63] para un
catálogo actual de magnetares y también la Ref. [64] para una revisión reciente. El efecto
de los campos magnéticos en la materia densa de quarks también se revisa en la Ref. [65].
En cuanto a los escenarios creados por humanos, en la última década se ha observado
que en las colisiones de iones pesados (HIC) el movimiento de partículas espectadoras
cargadas produce campos magnéticos de magnitudes tan grandes como 1019 − 1020 G [66–
70]. Aunque estos campos se producen esencialmente en los momentos iniciales de la
colisión y decaen rápidamente, en ocasiones del orden de 10−21 s [67], podrían afectar
sustancialmente a la forma en que el QGP se hadroniza [51, 71]. Por último, los campos
magnéticos también son relevantes para sistemas de materia condensada cuasi relativistas
como el grafeno [52].

El diagrama de fases de la QCD en el espacio tridimensional (µ, T,B) se ha estudiado
desde varios enfoques. Mientras que el eje de temperaturas puede abordarse directamente
en la red, para potenciales químicos nitos el llamado problema del signo diculta los
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Figura 1.2: Diagrama de fases QCD a temperatura y campo magnético nito. La temperatura
(pseudo)crítica disminuye en función de B, y la transición pasa de ser de tipo crossover a primer
orden en un punto crítico nal situado en el intervalo 4 GeV2 < eBE < 9 GeV2. Figura extraída
de la Ref. [72].

estudios de densidad, que se han realizado principalmente a través modelos efectivos o
enfoques holográcos. Curiosamente, mientras que la mayoría de los modelos efectivos
predicen un aumento de la temperatura de transición pseudocrítica Tc con el campo
magnético [52, 53], resultados precisos de LCQD [73–76] han mostrado el patrón opuesto,
es decir, una disminución de Tc con el campo magnético. De hecho, como se muestra en
las Refs. [72, 77], este comportamiento se prolonga para campos magnéticos muy fuertes,
donde se encontró una transición de primer orden a eB = 9 GeV2, lo que implica la
existencia de un punto crítico nal en algún lugar dentro del rango 4 GeV2 < eB < 9 GeV2.
Un diagrama de fase QCD actualizado en el plano de temperatura y campo magnético
puede encontrarse en la Figura 1.2, propuesta en la Ref. [72].

Efectos del campo magnético sobre la materia de QCD
Es esperable que nuevos efectos detectables en el diagrama de fases y las propiedades de
la materia que interactúa fuertemente surjan debido a estos campos magnéticos extremos,
provocando numerosas consecuencias fenomenológicas [52]. Entre ellas se incluyen la
catálisis magnética (MC) del condensado quiral [52, 78]; la catálisis magnética inversa
(IMC) de la temperatura de restauración quiral y de desconnamiento [73, 74, 79, 80]; el
efecto magnético quiral [66, 81, 82]; el efecto de separación quiral [83, 84]; ondas magnéticas
quirales [85–89]; superconductividad en el vacío [90, 91], así como muchos otros efectos
sobre las propiedades de las partículas resultantes que se detectan tras las colisiones [71,
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92, 93], por nombrar algunos. Además de su importancia para la fenomenología de los
escenarios físicos mencionados, los campos magnéticos también tienen interés académico
por sí mismos, ya que sirven como sonda de la teoría de la materia en interacción fuerte.
En particular, la comparación entre resultados de LQCD y modelos efectivos en presencia
de campos electromagnéticos externos permite restringir estos últimos, adquiriendo una
mejor comprensión de la teoría subyacente.

Para el alcance de esta tesis, la cual involucra el análisis de las propiedades de los
hadrones livianos, será pertinente discutir con cierto detalle los efectos MC e IMC. El
término catálisis magnética se reere a la catalización de un condensado existente o a
la aparición de un nuevo condensado por la presencia de un campo magnético externo.
En QCD, la generación del condensado quiral ⟨ψ̄ψ⟩ rompe a su vez la simetría quiral,
generando una masa dinámica. El efecto MC se encontró por primera vez en el marco del
modelo NJL [94, 95] y Gross-Neveu [96, 97]. La idea básica de la MC es que ⟨ψ̄ψ⟩ puede
considerarse como un condensado de pares fermión-antifermión neutros de espín cero.
Dado que los momentos magnéticos del fermión (con carga y espín jos) y antifermión
(con carga y espín opuestos) apuntan en la misma dirección, ambos momentos magnéticos
pueden alinearse cómodamente a lo largo de la dirección del campo magnético [78].

Desde un punto de vista más técnico, el mecanismo que subyace al efecto MC se discutió
en las Refs [98–100], véase la Ref. [52] para una revisión más general. El punto clave
revelado en esas referencias es que el campo magnético potencia el emparejamiento entre
fermiones y antifermiones en la región infrarroja, ya que la dinámica del emparejamiento
se reduce a una dinámica (1 + 1)-dimensional. Esto está relacionado con el hecho de que,
en presencia de un campo magnético uniforme, el momento transversal de los fermiones
libres se cuantiza en números discretos, conocidos como niveles de Landau (LLs). Para
el caso particular de acoplamiento débil y/o campos magnéticos fuertes, la conexión es
explícita; la dinámica de emparejamiento está dominada por fermiones en el nivel más
bajo de Landau (LLL), que también están sujetos a la reducción dimensional D → D − 2.
Como consecuencia del emparejamiento, se genera una masa dinámica (principalmente
en la región infrarroja) incluso para la interacción atractiva más débil entre fermiones,
que rompe espontáneamente la simetría quiral y aumenta el condensado quiral. La
física subyacente de la dinámica infrarroja que se hace más fuerte debido a la reducción
dimensional es universal, como se conoce de la teoría Bardeen-Cooper-Schrieer (BCS) de
la superconductividad [101, 102]. De hecho, el mecanismo de reducción dimensional se
demostró a campos magnéticos asintóticamente fuertes eB ≫ ΛQCD, donde QCD puede
estudiarse rigurosamente desde primeros principios [103], obteniéndose MC. Además, el
efecto MC se ha reproducido a través de muchos enfoques diferentes, tales como modelos
efectivos QCD, LQCD, QED, enfoques holográcos y sistemas de materia condensada [52,
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53, 78].
A temperatura nita y campos magnéticos moderadamente fuertes

√
eB  ΛQCD,

un nuevo comportamiento inesperado fue descubierto por LQCD [73] para temperaturas
alrededor de Tc, consistente en una disminución, en lugar de un aumento, del condensado
de quarks con B. Este fenómeno, no previsto por los modelos efectivos, se denominó
catálisis magnética inversa. El mecanismo completo detrás de IMC a temperatura nita
sigue siendo controvertido y en estudio, veánse las Refs. [79, 104, 105] para algunas
revisiones sobre el tema. Esto se debe en parte al hecho de que, a estas intensidades de
campo moderadas, la QCD interactúa fuertemente y la imagen de los niveles de Landau
ya no está bien denida en general, aunque todavía se puede realizar alguna identicación
signicativa para el LLL [106]. Otro aspecto controvertido expuesto por LQCD es que,
para masas de piones pesadas (mπ  500 MeV), Tc disminuye con B a pesar de que el
condensado es siempre una función creciente de B a todas las temperaturas, es decir,
no hay IMC [107, 108]. Se ha sugerido que la inuencia del campo magnético sobre
las propiedades de connamiento es el efecto principal que origina la disminución de
Tc en función de B, un fenómeno denominado “catálisis de desconnamiento”. Entre
los observables de connamiento pertinentes se incluyen el lazo de Polyakov [107, 109],
las tensiones de las cuerdas [72, 110–112], los tubos de ujo [113], las uctuaciones de
las cargas conservadas [114] y la relación entre la presión y la densidad de energía [75].
La sugerencia antes mencionada se basa en el hecho de que algunos de estos efectos de
connamiento ocurren incluso en ausencia de IMC en el condensado quiral.

Un factor clave hacia la comprensión de IMC, realizado por primera vez en la Ref. [115],
consiste en separar los cambios en el condensado de quarks inducidos directamente a través
del observable (efecto de valencia), e indirectamente a través del determinante fermiónico
que contribuye al peso de las conguraciones de gauge (efecto de mar). Los resultados
de LQCD muestran que el campo magnético aumenta la densidad espectral alrededor de
cero [109], que según la relación Banks-Casher [116] es proporcional al condensado de
quarks. Se trata de un efecto puramente de “valencia” que ya puede observarse en la
aproximación ‘quenched’, en la que se ignora la retroreacción de los quarks cargados sobre
el campo de gauge, y puede considerarse el mecanismo básico que subyace a la catálisis
magnética. En contraste, se encontró que el efecto de mar realza el condensado sólo muy
por debajo de Tc, mientras que alrededor de Tc el determinante de quarks tiende a suprimir
las conguraciones de gauge con valores mayores del condensado de quarks [109]. El efecto
de mar está relacionado con el hecho de que, aunque los gluones en sí mismos no llevan
carga eléctrica, se ven afectados por B a través de su acoplamiento a quarks cargados
eléctricamente. Para campos magnéticos asintóticamente grandes eB ≫ Λ2

QCD, algo de
luz puede arrojarse sobre el mecanismo subyacente [103]. Allí, la reducción dimensional
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de la dinámica del LLL, que es el nivel más relevante en este régimen, conduce a una
gran contribución fermiónica al operador de polarización del gluón. Como resultado,
los gluones adquieren una masa del orden M2

g ∝ αseB. Puesto que al orden principal
el acoplamiento fuerte disminuye logarítmicamente con B, αs(B) = [b ln(eB◁Λ2

QCD)]−1

con b = (11Nc − 2Nf)◁6π, esto conduce a un debilitamiento efectivo de la interacción
entre quarks en presencia de un campo magnético externo. A intensidades de campo
moderadas

√
eB  ΛQCD, la dependencia gluónica con B se analizó en la red [117], donde

se encontró que su comportamiento se asemeja al del condensado quiral. Un análisis
posterior de los campos cromo-electromagnéticos asociados permite especular que el fondo
cromo-magnético inducido interere con la dinámica responsable de la ruptura de simetría.

Es de esperar que las propiedades de los hadrones también se vean afectadas por
este efecto de apantallamiento de las interacciones entre gluones. El estudio de hadrones
ligeros bajo campos magnéticos, que es el tema principal de esta tesis, es importante
por varias razones. Los campos magnéticos fuertes

√
eB ∼ ΛQCD pueden, en principio,

resolver la estructura de quarks de un hadrón. Así, las modicaciones de sus propiedades
en un campo magnético externo pueden ayudar a comprender los efectos de los campos
magnéticos en la transición de fase quiral. En particular, se espera que la dependencia
con el campo magnético de las masas de los hadrones más ligeros desempeĳe un papel
relevante para la estructura del diagrama de fases, siendo los piones dominantes. Por
ejemplo, dado que los piones neutros son bosones Nambu-Goldstone de la ruptura de
la simetría quiral, la disminución de su masa con B podría seĳalar una transición a
una fase desconnada/simétrica quiral, como sugiere la disminución simultánea de Tc

con B. Además, para las parejas quirales como los piones neutros y los mesones sigma,
su diferencia de masa también puede considerarse como un parámetro de orden para
describir el comportamiento del cruce quiral, ya que sus masas de apantallamiento se
degeneran cuando se restaura la simetría quiral. Por otro lado, se ha conjeturado que
campos magnéticos intensos podrían reducir la masa del mesón vectorial a cero y conducir
a la condensación de mesones ρ [118], posiblemente induciendo una transición a una fase
superconductora [91]. En este sentido, las desigualdades de QCD se pueden utilizar para
demostrar que los mesones ρ sin masa sólo se permiten si la masa del pión neutro (conectado)
también desaparece. Otro punto relevante para los escenarios físicos mencionados concierne
a las propiedades elementales de los grados de libertad hadrónicos magnetizados. En
entornos astrofísicos fríos, las masas de bariones y mesones entran en la ecuación de estado
nuclear e inuyen en las relaciones masa-radio de los magnetares [119]. Junto con las tasas
de desintegración hadrónica, también afectan a la estabilidad de estos objetos compactos y
a los mecanismos de enfriamiento que caracterizan el espectro de neutrinos emitidos [120].
En cuanto a las colisiones de iones pesados, se ha especulado [121, 122] que los campos
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magnéticos de larga duración podrían afectar al proceso de hadronización, inuenciando
principalmente a los bariones pesados.

Formalismos teóricos
La mayoría de los fenómenos de la materia QCD mencionados en la sección anterior
requieren tratar con QCD a escalas de energía por debajo de, digamos, 1 GeV, donde los
métodos perturbativos no son aplicables. En este régimen, el carácter no perturbativo de la
QCD hace que los cálculos sean extremadamente difíciles. Por lo tanto, estos procesos de
baja energía deben estudiarse mediante técnicas no perturbativas. Los enfoques ab initio
incluyen QCD en la red y enfoques funcionales, como el grupo de renormalización funcional
y las ecuaciones de Dyson-Schwinger [123–126]. En particular, LCQD ha mejorado
signicativamente a lo largo de los aĳos, junto con el desarrollo tecnológico, demostrando
ser una herramienta muy útil para el estudio de las propiedades de la materia de QCD [11,
12, 127]. Mientras que el eje de temperaturas puede ser abordado directamente en la
red, para potenciales químicos nitos el llamado problema del signo obstruye el estudio
de la densidad, aunque recientemente se ha avanzado en este sentido mediante el uso de
diferentes técnicas para potenciales químicos de hasta µB◁T < 3, no encontrando seĳal
del CEP [11, 43, 49, 128]. En cuanto a la inclusión de campos magnéticos, aunque se
pueden incorporar directamente a la red, surgen otros problemas técnicos como el manejo
adecuado de artefactos de red [129], grandes barras de error, el uso de masas de quarks o
piones superiores a las físicas debido a los recursos computacionales, el uso del truco de la
raíz para quarks ‘staggered’ y diferencias en los valores de los resultados entre diferentes
implementaciones de quarks.

Otra forma de tratar con QCD no perturbativa se basa en el uso de una plétora
de enfoques/modelos alternativos, basados en QCD. Estos incluyen reglas de suma de
QCD [130–132], teoría de perturbación quiral [133, 134], modelo de bolsa del MIT [135–
138], modelo quark-mesón o sigma lineal [139–141], modelo Sakai-Sugimoto [142, 143],
formalismos relativistas basados en Hamiltonianos y modelos quirales, por nombrar sólo
algunos.

En esta tesis haremos uso del modelo Nambu–Jona-Lasinio (NJL), un modelo efectivo
construido sobre las simetrías quirales de QCD. Fue desarrollado originalmente en los
aĳos sesenta para estudiar las interacciones entre nucleones [14, 144], con el objetivo de
explicar de forma unicada las grandes masas de bariones así como las masas intermedias
o pequeĳas de mesones únicamente a partir de las propiedades de simetría de isospín de
las interacciones nucleares. El modelo explica adecuadamente el mecanismo espontáneo
de ruptura de simetría del grupo axial, generando masas dinámicas para los nucleones y
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dando lugar a los bosones de Goldstone, asociados a los piones. Aĳos más tarde, cuando
se reconoció a los quarks como partículas fundamentales que forman hadrones, el modelo
se reinterpretó como una teoría efectiva para las interacciones entre quarks [145–147]. En
esta interacción los grados de libertad de los gluones están congelados, lo que resulta
en una falta de connamiento. Sin embargo, siempre que las cantidades estudiadas no
sean sensibles a las propiedades de connamiento, sino que estén bien descritas por las
propiedades de simetría quiral, se pueden realizar cálculos ables dentro de este modelo.
Esta deciencia de la teoría puede remediarse parcialmente introduciendo una variable
dinámica conocida como “lazo de Polyakov” [148–151], que se trata como un campo de
fondo que da cuenta de grados de libertad gluónicos que pueden reproducir la transición de
desconnamiento. Otro inconveniente del modelo es su falta de renormalizabilidad, debido
a la aproximación del intercambio entre quarks mediado por gluones como una interacción
puntual local. Con respecto a esto, una mejora se observa al considerar la versión no local
del modelo NJL [152], aunque los cálculos se vuelven mucho más complejos.

Una de las ventajas del modelo NJL es que puede ampliarse fácilmente para incluir
parámetros externos como la temperatura, el potencial químico o los campos electromag-
néticos. Nos centraremos en la inuencia de un campo magnético uniforme externo. En el
contexto de los modelos efectivos, es natural atribuir el fallo del efecto IMC al hecho de
que la mayoría de estos modelos carecen de grados de libertad gluónicos y, por tanto, son
incapaces de dar cuenta de la retroacción del mar de quarks debida al campo magnético
externo. En la literatura reciente se han explorado varias posibilidades para incorporar
fenomenológicamente el efecto IMC. Dentro del modelo NJL, estas mejoras incluyen ir más
allá de los cálculos de campo medio [153] o tener en cuenta el momento magnético anómalo
de los quarks [154–157]. Motivado por el corrimiento del acoplamiento de QCD y el hecho
de que el apantallamiento de gluones modica el acoplamiento según G ∝ αs◁M

2
g ∝ 1◁eB,

una de las modicaciones más sencillas disponibles consiste en introducir una constante de
acoplamiento G(B) que depende del campo magnético (y en algunos casos también de la
temperatura) y puede jarse ajustando algunos resultados de LQCD, como el condensado
de quarks o la temperatura pseudocrítica quiral. Esta estrategia ha demostrado que el
modelo NJL puede reproducir satisfactoriamente los resultados de LQCD en un amplio
rango de temperatura y campos magnéticos [158–163]. En este sentido, en la Ref. [164] se
propuso una interesante posibilidad en la que G(B) se ajusta para reproducir las masas de
los quarks constituyentes, obtenidos de resultados de LQCD para las masas de los bariones
asumiendo de forma simplicada que las mismas pueden obtenerse meramente sumando
de las masas de sus constituyentes. Por último, es interesante mencionar que en la versión
no local del modelo se ha mostrado que el efecto IMC y la catálisis de desconnamiento se
obtienen de forma natural [165, 166].
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Esquema de la tesis
Como ya se ha mencionado, el estudio de hadrones ligeros bajo fuertes campos magnéticos
puede proporcionar información relevante para la comprensión de la materia magnetizada de
QCD. El objetivo de esta tesis es estudiar el efecto de un campo magnético uniforme externo
sobre las propiedades de los hadrones ligeros, en particular de los mesones pseudoscalares
y nucleones. En el marco del modelo NJL, los mesones se describen normalmente como
uctuaciones cuánticas en la aproximación de fase aleatoria (RPA) [145–147], es decir, se
introducen a través de una suma de un número innito de lazos de quarks. En presencia
de un campo magnético, el cálculo de estos lazos requiere cierto cuidado especial debido
a la aparición de fases de Schwinger [167] asociadas a cada propagador de quark. Para
los mesones neutros estas fases se cancelan, y como consecuencia se puede utilizar la base
de momento habitual para diagonalizar la función de polarización correspondiente. En
cambio, las fases de Schwinger no se cancelan para los mesones cargados, lo que conduce a
una ruptura de la invariancia traslacional que impide proceder como en el caso neutro. En
esta situación, algunos cálculos existentes simplemente desprecian las fases de Schwinger,
teniendo en cuenta sólo la parte invariante traslacional del propagador del quark [93, 168,
169]. En esta tesis introducimos un método basado en el uso de funciones propias de
tipo Ritus para sistemas magnetizados, que nos permite diagonalizar adecuadamente las
funciones de polarización cargadas teniendo plenamente en cuenta los efectos de ruptura
traslacional inducidos por las fases de Schwinger. Aunque originalmente introducido para
tratar con mesones en el modelo NJL, el método puede aplicarse a partículas cargadas en
general, en diferentes escenarios magnetizados. En particular, lo aplicamos al cálculo de
masas nucleónicas dentro del modelo NJL, construidos como estados ligados compuestos
quark-diquark.

En cuanto al cálculo de las constantes de desintegración de los piones, es importante
seĳalar que la presencia del campo magnético externo abre nuevos canales de desintegración,
parametrizados por sus factores de forma correspondientes. Aunque algunas de estas
nuevas constantes de desintegración ya fueron reconocidas en la literatura [170, 171],
otras no. En esta tesis determinamos todos los factores de forma que surgen en presencia
de un campo magnético uniforme teniendo en cuenta todas las estructuras tensoriales
independientes que pueden formarse al hadronizar elementos matriciales entre un pión
y vacío de las corrientes de quarks. Utilizando el método de Ritus para el cálculo de
estos elementos matriciales magnetizados, obtenemos una expresión independiente del
modelo para el ancho de decaimiento débil de los piones cargados magnetizados π− → lν̄l,
así como para la distribución angular de los antineutrinos salientes. Sus valores pueden
estimarse proporcionando la dependencia magnética de las constantes de desintegración
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de los piones, que deben calcularse dentro de alguna aproximación QCD. Presentamos
estimaciones obtenidas con el modelo NJL.

La tesis está organizada como se detalla a continuación. En el capítulo 2 introducimos
el marco teórico. Dado que el modelo NJL se basa en la simetría quiral de la QCD,
primero discutimos la teoría de QCD y describimos sus propiedades de transformación
de sabor. Después introducimos el modelo NJL, describiendo la inclusión de campos
magnéticos en el nivel de campo medio. En el capítulo 3 analizamos el decaimiento
débil de piones cargados magnetizados únicamente a partir de bases de la teoría cuántica
de campos. Calculamos la anchura de la desintegración y la distribución angular de
los antineutrinos salientes. Para ello, proporcionamos expresiones para los campos de
materia de las partículas implicadas en presencia del campo externo. Como ya se ha
mencionado, el campo magnético externo abre nuevos canales de desintegración, por lo
que tenemos en cuenta todos los factores de forma posibles. Con el n de proporcionar
estimaciones reales para el ancho de desintegración y la distribución angular, algunas
propiedades de los piones, tales como sus masas y constantes de desintegración, deben ser
proporcionadas por algún enfoque QCD. En el capítulo 4 utilizamos el modelo NJL de
dos sabores para calcular varias propiedades de los piones, aplicando el método de Ritus
para tratar adecuadamente las partículas cargadas. También se explora la posibilidad de
una constante de acoplamiento dependiente del campo magnético, con el n de tener en
cuenta el efecto IMC. En el capítulo 5 empleamos la versión de tres sabores del modelo
NJL para extender el cálculo de la masa del polo del mesón a todos los mesones del nonete
pseudoescalar. Volviendo a la formulación de dos sabores del modelo, las masas de los
diquarks pueden obtenerse de manera sencilla imitando el cálculo piónico del capítulo 4.
Así, en el capítulo 6 analizamos los diquarks y los utilizamos para estudiar las masas de los
nucleones. En nuestro enfoque, los nucleones se tratan como estados ligados quark-diquark
descritos por una ecuación relativista de Fadeev, utilizando la aproximación estática para
las interacciones de intercambio de quarks. Las conclusiones de este trabajo, junto con una
perspectiva a futuro, se presentan en el capítulo 7. Por último, algunos detalles técnicos
de los cálculos se discuten en los apéndices.
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2
Theoretical Formalism: QCD and
NJL model

In this chapter we will rst describe the basic ideas behind the fundamental theory of
strong interactions, namely quantum chromodynamics (QCD). We will pay particular
attention to the transformation properties of the QCD Lagrangian under the unitary
avor group, since the corresponding symmetries constitute the basis of the eective
Nambu-Jona–Lasinio (NJL) model to be used in this thesis. In fact, this model is built
upon the symmetries of QCD so as to reproduce some of its essential characteristics, such
as the spontaneous breaking of chiral symmetry. We will introduce the model describing
its connection with QCD and surveying its main features. Even though it is in principle a
quark model, we will illustrate a bosonization procedure which allows for a description
of meson elds. In order to retain predictive power, the parameters of the model are
nite and xed by tting some phenomenological observables. The eectiveness of the
interaction is reected by the presence of a dimensionful coupling constant, which renders
the model nonrenormalizable. Thus we will adopt a regularization scheme to completely
dene the model, which physically implies disregarding the contribution of high energy
processes.

In this thesis we will be interested in the eect of an external uniform magnetic eld
on some of the properties of QCD matter. We will therefore outline the impact that such
eld has over the symmetries of strongly interacting systems and the properties of charged
particles, which are quantized in the directions perpendicular to the applied eld. In this
regard, the NJL model can be easily extended to account for the inuence of external
parameters, such as electromagnetic elds, temperature or chemical potential. Thus we
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2. Theoretical Formalism: QCD and NJL model

will lastly describe the magnetized NJL model at the mean eld level approximation,
paying particular attention to the role of the regularization prescription in this context.
Its application on the calculation of hadron properties will be discussed in future chapters.
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2.1 General aspects of QCD
At a fundamental level, QCD is formulated in terms of quarks and gluons, represented
through fermion and gauge boson elds, respectively. The Lagrangian density which
describes the dynamics of these elds along with its interactions is [3]

LQCD = ψ̄ (i ◁D − m̂)ψ − 1
4 Gµν

a Ga
µν , (2.1)

where we use for the Minkowski metric the convention (1,−1,−1,−1). The covariant
derivative is dened as

Dµ = ∂µ − i gs
λa

2 Ga
µ , (2.2)

and the gluon eld strength tensor reads

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gs f

abcGb
µG

c
ν ▷ (2.3)

The ψ eld represents quark states, including the corresponding internal degrees of freedom
of color and avor. There are three color states and, for the full theory, six avor states.
These states are described through a tensorial product between both spaces, resulting in
18 spinors. The mass matrix is given in avor space by m̂ = diag(mu,md,ms,mc,mb,mt),
with mu ≃ md. Also, gs is the coupling constant of QCD, while Ga

µ is the set of massless
gauge elds associated to the gluons. Here a = 1, ▷▷▷, 8 and λa are Gell-Mann matrices,
which satisfy

[λa,λb] = 2ifabcλc , Trc(λaλb) = 2δab , (2.4)

where fabc are the completely antisymmetric structure constants of the SU(3) group.
The ψ̄(iγµ∂µ − m̂)ψ piece corresponds to the Dirac Lagrangian, which describes the

propagation of free quarks. This term is invariant under global transformations of the
SU(3)c group, given by the group of unitary matrices with +1 determinant which act on
color space. Quark states belong to the (3-dimensional) fundamental representation of this
group, while gluons are in the (8-dimensional) adjoint representation. Since Ta = λa◁2 are
the SU(3) generators in the fundamental representation, we can write an arbitrary global
transformation as U = ei Taθa, where θa are the parameters associated to the generators.

In order for the Lagrangian to be invariant also under local transformations, i.e. θa(x),
the partial derivative has to be replaced by the covariant derivative of Eq. (2.2), where
gluon elds transform as

Ga
µ −→ Ga

µ −
1
gs

∂µθ
a − fabc θbGc

µ ▷ (2.5)
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Lastly, the Yang-Mills term Gµν
a Ga

µν of Eq. (2.1) describes gluon eld dynamics in
the absence of quarks. It is formulated as a contraction of eld strength tensors so as
to be invariant under Lorentz and color groups, mimicking the formulation of quantum
electrodynamics (QED). As in QED, the rst two terms of Eq. (2.3) describe the eld
propagation. However, in contrast to QED, invariance requires the addition of an extra
term gsf

abcGb
µG

c
ν , due to the fact that the color group is non-abelian. This term represents

a self-interaction between gluons, which are coupled through three and four-line vertices.
As known, when studying a process in any renormalizable gauge theory, the inclusion

of successive Feynman diagrams in the series expansion can be rearranged so as to express
the nal result in terms of a ‘dressed’ coupling constant, which depends on the transferred
momentum Q. Consequently, the interaction will behave dierently according to the energy
scale under study, where the exact functional dependence will depend on the details of the
interaction under consideration. In QCD, the self-interaction between gluons dramatically
modies the running of the QCD coupling, αs(Q). At 1-loop, it is given by

αs(Q2) = g2s(Q2)
4π = 4π

11− 2
3Nf


ln

Q2◁Λ2

QCD

 , (2.6)

where Nf is the avor number (six in QCD) and ΛQCD is the scale parameter of the theory,
which can be determined by tting experimental data at large Q (where perturbation
theory is applicable). For ve avors in the MS scheme, one nds ΛQCD ≃ 200 MeV.
As can be seen from this expression, αs → 0 when Q → ∞. This property, known as
asymptotic freedom, allows for the study of high energy processes through perturbation
theory. On the other hand, for low energy processes αs → ∞, leading to the connement
of quarks into colorless hadrons (and glueballs). The connement mechanism has not been
satisfactorily understood yet. In particular, for Q below ΛQCD we have αs > 1, precluding
the possibility of a series expansion in the coupling constant. Since the scale of hadron
binding energies lies below this threshold, the study of most hadronic properties must
be performed through nonperturbative methods. Some of the most common approaches
include simulations in lattice QCD or the development of semi-analytic eective models
such as the one used in this thesis, i.e. the NJL model.

It is important to note that, as a consequence of the connement phenomenon in the
vacuum phase, quark masses are not physical observables. Therefore, when quark current
masses are used as input parameters of the model, their values are subject to a variable
range because they depend on the renormalization scale of the theory. The determination
of quark current masses can in fact be performed within certain precision degree by several
approaches in the MS scheme, resulting in scale dependent quantities. These approaches
include Lattice QCD, sum rules, chiral perturbation theory and heavy quark eective
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theory. From them it is concluded that up, down and strange quarks are light avors,
with masses below ΛQCD [172]. For the low energy properties we will study in this thesis
this is the relevant avor subspace, since we will study the eect of external magnetic
elds on light hadron properties for scales below the charm quark mass.

2.1.1 Transformation properties in avor space
In this subsection we will study the properties of the QCD Lagrangian under trans-
formations in quark avor space. For massless quarks, LQCD is invariant under global
U(Nf)L × U(Nf)R = U(Nf)V × U(Nf)A transformations, given by

U(Nf)V : ψ → ei τaθ
V
a ψ , U(Nf)A : ψ → ei γ5τaθ

A
a ψ , (2.7)

which correspond to vector and axial transformations, where τa with 0 ≤ a ≤ N2
f − 1 are

the generators of U(Nf). This invariance is known as chiral symmetry, and leads to the
conservation of the following currents

V µ
a = ψ̄γµτaψ , Aµ

a = ψ̄γµγ5τaψ ▷ (2.8)

The associated conserved charges QV,A
a serve as generators of the corresponding symmetry

transformations. Since τ0 is proportional to the identity, each U(Nf) subgroup can be
expressed as the product U(Nf) = U(1)× SU(Nf). The U(1)V and SU(2)V groups are
associated to the conservation of the baryon number and isospin, respectively. On the
other hand, axial transformations alter the parity associated with a given state. Even
though U(1)A is a symmetry of the classical chiral Lagrangian, it is broken when the theory
is quantized. This is due to the fact that the integration measure in the corresponding
path integral does not remain invariant under such transformation. This phenomenon is
known as axial anomaly [173, 174]. Experimentally, this is evidenced by the fact that one
does not observe opposite parity partners to all hadrons, and also manifests in the rather
heavy η′ meson mass.

It is important to recall that, in general, there is more than one way in which a given
symmetry of the Lagrangian (such as chiral symmetry) can manifest itself. The crucial
distinction between dierent modes lies in the vacuum structure. In the Wigner-Weyl mode,
the vacuum is also invariant under such symmetry. The ground state is nondegenerated,
and therefore an eigenstate of QV,A

a . The spectrum of all eigenstates splits into degenerate
multiplets of the symmetry, corresponding to irreducible representations of the symmetry
group. On the other hand, in the Nambu-Goldstone mode the vacuum is modied by the
interactions, and may only be invariant under a subgroup of the original symmetry group.
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This phenomenon is dubbed as spontaneous symmetry breaking. Each broken generator
creates a massless excitation which is degenerated with the vacuum, known as Goldstone
bosons. This is the content of Goldstone’s theorem.

For massive quarks, the conservation of the currents dened in Eq. (2.8) is lost. We
have

∂µV
µ
a = 2i ψ̄ [m̂, τa]ψ , ∂µA

µ
a = 2i ψ̄ {m̂, τa} γ5 ψ ▷ (2.9)

However, chiral symmetry is still a useful concept if we restrict to light quarks, because
the breaking of the symmetry is small by virtue of the small current masses. We say it
is approximately conserved. The light quark subspace includes the up and down sector
(Nf = 2), and even, although with larger deviations, when strange quarks are included as
well (Nf = 3).

For Nf = 2 we have mu ≃ md ≡ mc ̸= 0 and m̂ ≃ diag(mu,md) ≃ mc . As a
result, the vector current is conserved to a good degree of approximation, realized in the
Wigner-Weyl mode. This is experimentally evidenced by the degeneration in the masses
of baryonic and mesonic isospin multiplets, as well as the existence of approximately
conserved currents in processes dominated by the strong interaction.

In contrast, experimental and theoretical evidence indicates that SU(2)A symmetry is
realized in the Goldstone mode. Since the charge operators QA

a alter the parity of states,
the realization of this symmetry in the Wigner-Weyl mode would imply that for each
isospin multiplet there exists another degenerated multiplet with opposite parity, which is
not observed in Nature. In addition, hadronic masses are much heavier than current light
quark masses, implying the existence of a dynamical mass generation mechanism, which
in turn provokes the breaking of the symmetry. These observations suggest that axial
symmetry is broken dynamically. In this frame, the QA

a generators of the broken symmetry
create an isospin triplet of pseudoscalar Goldstone bosons, which can be identied with
the pions. This idea is supported by the fact that the components of the pionic triplet
have an exceptionally low mass in comparison to other hadrons (mπ◁mN ≃ 0▷15). Their
small but nonvanishing mass arises due to the explicit symmetry breaking produced by
current quark masses, as seen from Eq. (2.9). Analogously, the pseudoscalar meson octet
corresponds to the Goldstone bosons of the three-avor case. The aforementioned axial
anomaly is reected by the relatively heavy η′ meson, which should be much lighter (lighter
than the η meson) if it were a Goldstone boson of a spontaneously broken symmetry.

The spontaneous (axial) symmetry breaking of the QCD vacuum and the subsequent
generation of a dynamical mass is closely related to the existence of nonvanishing conden-
sates, formed as bilinear products of quark and gluon elds. A relevant one is the chiral
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condensate, dened as the expectation value ⟨ψ̄ψ⟩, which can be expressed as

⟨ψ̄ψ⟩ = −i

ˆ

d4p

(2π)4 TrD,f,c S(p) , (2.10)

where S(p) is the quark propagator from the full QCD Lagrangian, and the trace is taken
over Dirac, avor and color space. Since the operator ψ̄ψ is not invariant under SU(2)A
transformations, it serves as an order parameter for signaling chiral symmetry breaking.
A nonvanishing expectation value would indicate that the QCD vacuum is realized in the
Goldstone mode of the axial symmetry. Current theoretical estimations for the chiral
condensate suggest that this is eectively the case. For example, according to calculations
based on current algebra and QCD sum rules one has |⟨f̄f⟩|1◁3 = 190− 260 MeV [175],
where f represents u or d avors. Meanwhile, typical simulations performed in lattice
QCD provide |⟨f̄f⟩|1◁3 = 231± 8± 6 MeV [176].

2.2 NJL model in vacuum
In this thesis we will use NJL eective-type models to calculate several hadronic properties.
The main idea behind the model is to respect the avor symmetries of QCD discussed
in the previous section, particularly chiral symmetry and its dynamical breaking. In the
NJL model, one argues that the interaction between quarks and antiquarks, which arises
from some complicated processes of gluon exchange, can be attractive. Gluon degrees of
freedom are assumed to be frozen in the low-energy and long-wavelength limit. Then,
similar to Fermi’s theory of the weak interaction, the gluon interaction between quarks is
modeled as an eective four-point (or more) fermion interaction, see Figure 2.1. These
interactions can be thought of to be abstracted from instanton-induced interactions [173,
174].

Since the fundamental quark currents in QCD are color vector currents Ja
µ = ψ̄γµT

aψ,
one can start by considering the simple example of an interaction based on the local
coupling between two such currents.

Lc
int = g


ψ̄γµT

aψ
2

▷ (2.11)

This interaction is invariant under chiral U(3)V ×U(3)A. It can be though of as abstracted
from the QCD Lagrangian by converting the original gauge symmetry SU(Nc) into a
global symmetry of color quark currents. By Fierz transformations, this interaction can
be rewritten so as to obtain color singlet and color octet terms [146]. In the color singlet
channel, new scalar, pseudoscalar, vector and axial-vector interactions appear in avor
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2.2. NJL model in vacuum

Figure 2.1: Low energy approximation of a nonlocal current-current interaction with a nonper-
turbative gluon propagator (a) by a local NJL-type interaction (b). Figure adapted from [177].

space, with the quantum numbers (avor and spin) of the various meson nonets. Similar
transformations can be performed for the color axial current. Inspired by this observation,
one can construct several four-point interaction terms which are invariant under (global)
SU(3)c × U(1)V × SU(Nf)V × SU(Nf)A [145].

In its simplest form, the two-avor NJL Lagrangian in Euclidean space is given by
a combination of a scalar-isoscalar (Lorentz and isospin invariant, respectively) and a
pseudoscalar-isovectorial current

LE(ψ, ψ̄) = ψ̄(x)

−i◁∂ +mc


ψ(x)−G


ψ̄(x)ψ(x)

2
+

ψ̄(x)iγ5τ⃗ψ(x)

2
, (2.12)

where ψ = (ψu , ψd)T and ◁∂ = γ4∂4 + γ⃗ · ∇⃗, with γ4 = iγ0. Moreover, G is the eective
coupling constant and mc are the up and down current quark masses, which we will assume
equal in this thesis. These are model parameters which have to be xed by tting physical
observables. It is common to use as observables the pion mass and decay constant, which
can be relatively easy calculated within the model, as we will show below.

The connection between Minkowski and Euclidean space is given by a Wick rotation.
Starting from the generating functional

Z =
ˆ

Dψ̄Dψ ei
´

d4xL(ψ,ψ̄) , (2.13)

and making the complex rotation [178] x4 = ix0 and xi,E = xi for i = 1, 2, 3 we obtain

Z =
ˆ

Dψ̄Dψ e−
´

d4xE LE(ψ,ψ̄) , (2.14)

33



2.2. NJL model in vacuum

Figure 2.2: Graphical representation of the transformation from fermionic to semibosonized
interactions.

where LE = −L(x0 → −ix4). This is the reason why the sign is inverted between the
Dirac Lagrangians of Eq. (2.1) (Minkowski) and (2.12) (Euclidean). The Euclidean action
serves as a starting point to build an analogy between Euclidean quantum eld theory and
statistical mechanics. Note that in Euclidean space we use the convention {γµ, γν} = −2δµν .
We will omit the Euclidean subindex E in what follows to simplify the notation.

2.2.1 Bosonization formalism
In order to calculate meson properties we resort in what follows to the bosonization
formalism [145, 146, 177, 179]. There, quark degrees of freedom, which are not observed at
low energies, are integrated out and replaced by meson elds, which represent the physical
excitations in that regime. We will exemplify here the two-avor case.

The idea consists of rewriting the interaction piece of Eq. (2.12) in terms of bosonic
elds which represent the scalar and pseudoscalar mesons σ(x) and π⃗(x), respectively.
Following the procedure described in Appendix A, one arrives at the semibosonized
generating functional

Z =
ˆ

DσDπ⃗

ˆ

Dψ̄Dψ e−SF e−
1
4G

´

d4x [σ(x)2+π⃗(x)2] ▷ (2.15)

The fermionic eld contribution has been grouped under the single term

SF =
ˆ

d4x d4x′ ψ̄(x) D(x, x′) ψ(x′) , (2.16)

where the fermionic operator D is given by

D(x, x′) = δ(4)(x− x′)

−i◁∂ +mc + σ(x) + iγ5 τ⃗ · π⃗(x)


▷ (2.17)

A direct product to an identity matrix in color space is understood. Diagrammatically,
the procedure corresponds to the rearrangement of the four-point fermionic interaction
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into Yukawa-type quark-meson vertices, as illustrated in Figure 2.2 [177].
Since so far the bosonization procedure is exact, the semibosonized Lagrangian possess

the symmetries of the original one. Chiral symmetry of the two-avor NJL model (2.12) is
realized in meson eld space as the rotation group O(4), which leaves the “length” of the
particle vector (σ, π⃗) invariant. Hence, all eective potentials of this model depend on the
single variable

√
σ2 + π⃗2. It should be noted that, so far, the auxiliary elds σ and π⃗ are

not dynamic, since no kinetic term of the form ∂µσ∂µσ + ∂µπ⃗∂µπ⃗ appears in Eq. (2.15).
However, when quark degrees of freedom are integrated out their eect is exerted through
quark loops, which dress the boson elds allowing them to describe physical mesons. Both
bosonic elds carry the quantum numbers of the composed operators (ψ̄ψ) and (ψ̄iγ5τ⃗ψ),
but not their color [180].

In order to completely bosonize the Lagrangian, quark degrees of freedom can be
integrated out in terms of a fermionic determinant [178]. Using the property ln detD =
Tr lnD, the generating functional reads

Z =
ˆ

DσDπ⃗ e−Sbos(σ,π⃗) , (2.18)

where the bosonized action is given by [145]

Sbos(σ, π⃗) = −Tr lnD +
ˆ

d4x


σ(x)2 + π⃗(x)2

4G


▷ (2.19)

The functional trace is taken over coordinate 1, Dirac, color and avor space. Note that
expression (2.18) is completely equivalent to (2.14).

Now, in models where spontaneous symmetry breaking occurs, meson elds can, in
general, develop nonvanishing mean eld (MF) values. Due to translational invariance,
σ(x) has a translationally invariant MF value σ̄, while the pionic MF value vanishes in
order to keep the vacuum parity invariant. Expanding the mesonic elds in powers of
uctuacions around their corresponding MF values

σ(x) = σ̄ + δσ(x) , π⃗(x) = δπ⃗(x) , (2.20)

we have
D(x, x′) = DMF(x, x′) + δD(x, x′) ▷ (2.21)

The MF piece is given by

DMF(x, x′) = δ(4)(x− x′)

−i◁∂ +mc + σ̄


, (2.22)

1In coordinate space the functional trace is dened as T̃r =
´

d4xd4x′ δ(4)(x− x′), being analogous for
momentum space.
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where an identity matrix in color and avor space is understood. From Eq. (2.16) we
see that the inverse of this operator SMF(x, x′) = [DMF(x, x′)]−1 is the quark propagator.
Transforming to Fourier space, it can be expressed as

SMF(x, x′) =
ˆ

q

eiq(x−x′) S̄(q) , S̄(q) = 1
◁q +M

, (2.23)

where we have introduced the shorthand notation
ˆ

q

=
ˆ

d4q

(2π)4 ▷ (2.24)

We can therefore identify the dressed quark mass M = mc + σ̄, where we explicitly see
that the dynamical generation of the mean eld σ̄ is responsible for the breaking of chiral
symmetry.

On the other hand, the second term on the right-hand-side of Eq. (2.21) reads

δD(x, x′) = δ(4)(x− x′)

δσ(x) + iγ5δπ0(x)

√
2iγ5 δπ+(x)√

2iγ5 δπ−(x) δσ(x)− iγ5δπ0(x)


 , (2.25)

where π± = (π1 ∓ iπ2) ◁
√
2. Replacing in the bosonized eective action and expanding in

powers of the meson uctuations around the MF values, we get

− ln detD = − Tr lnDMF − Tr ln(1 +D−1
MF δD)

= − Tr lnDMF − Tr (SMF δD) + 1
2 Tr (SMF δD)2 + ▷ ▷ ▷ (2.26)

where SMF(x, x′) = [DMF(x, x′)]−1 is the quark propagator. The linear term vanishes and
the action can be symbolically written as

Sbos = Sbos
MF + Sbos

quad + ▷ ▷ ▷ (2.27)

2.2.2 Mean eld approximation
The zero order contribution in Eq. (2.27) gives the mean eld approximation, where all
uctuations are neglected. The MF eective potential reads

ΩMF = Sbos
MF

V (4) = σ̄2

4G − 1
V (4) Tr lnDMF(x, x′) ▷ (2.28)

In order to proceed we diagonalize by transforming to momentum space, so as to take the
logarithm of the eigenvalues. It can be shown that the Fourier transform of an arbitrary
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operator is

O(x, x′) =
ˆ

q,q′
eiqxO(q, q′) e−iq′x′ ,

O(q, q′) =
ˆ

d4x d4x′ e−iqxO(x, x′) eiq′x′ ▷ (2.29)

Actually, instead of calculating the trace of DMF(x, x′), it will be more convenient to
square this quantity. From the cyclic property of the trace, we can multiply left and right
by γ5, since γ2

5 = , to obtain

Tr lnDMF(x, x′) = 1
2 Tr lnA(x, x′) , A(x, x′) = δ(4)(x− x′)


◁∂
2 +M2


▷ (2.30)

Applying the transformation (2.29), this operator is diagonalized in Fourier space as

A(q, q′) = (2π)4 δ(4)(q − q′)

q2 +M2


, (2.31)

where we have used that ◁q2 = −q2. Since the logarithm of a diagonal matrix is also
diagonal, transforming lnDMF(x, x′) to Fourier space through (2.29) we arrive at

Tr lnDMF(x, x′) = NcNf

2 TrD
ˆ

d4x d4x′ δ(4)(x− x′)
ˆ

q,q′
eiqx ln[A(q, q′)] e−iq′x′

= NcNf

2 TrD
ˆ

d4x

ˆ

q

ln

q2 +M2


▷ (2.32)

Finally, the MF free energy is

ΩMF = (M −mc)2
4G − 2NcNf

ˆ

q

ln

q2 +M2


▷ (2.33)

The physical value of M is given by the one which minimizes the free energy. This
results in the gap equation

M = mc + 2GTrSMF(x, x′) = mc + 2GMNcNfI
0
1 ▷ (2.34)

where we have dened the I01 (divergent) integral

I01 = 4
ˆ

q

1
q2 +M2 ▷ (2.35)

Since in this thesis we will be interested in the eect of external magnetic elds, and we
will use a regularization scheme where this B = 0 contribution is regularized, we have
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added a zero superscript to identify this function with the B = 0 case for later convenience.
For a suciently strong coupling G a nontrivial solution M ̸= mc is allowed, even in the
chiral limit mc → 0, producing a gap of ∆E = 2M in the quark spectrum. In general,
the gap equation possess more than one solution. The physical solution will be the one
which minimizes the free energy. It is worth remarking that there are alternative methods
to derive the gap equation, such as linearizing the quadratic terms in the Lagrangian of
Eq. (2.12).

A closely related quantity is the quark or chiral condensate, dened as

⟨ψ̄ψ⟩ ≡ −δΩMF

δmc
= M −mc

2G = − 1
V (4) TrSMF(x, x′) = −MNcNf I

0
1 ▷ (2.36)

where in the third equality we have made use of the gap equation. Note that this is the
average quark condensate, i.e. ⟨ψ̄ψ⟩ = (⟨ūu⟩+ ⟨d̄d⟩)◁2. In this B = 0 case, ⟨ūu⟩ = ⟨d̄d⟩.
A nonzero quark condensate tells us that the vacuum is lled with quark-antiquark pairs.
Equivalently, the gap equation can be written as M = mc − 2G⟨ψ̄ψ⟩. Thus, M (or σ̄)
servers as an order parameter to determine in which mode the symmetry is realized.

2.2.3 Meson masses
In order to obtain a phenomenological description of mesons, it is necessary to study the
theory retaining eld uctuations at quadratic order. From the expansion of Eq. (2.26)
we arrive at the quadratic action

Sbos
quad = 1

2 Tr (SMF δD)2 +
ˆ

d4x


δσ(x)2 + δπ⃗(x)2

4G


, (2.37)

where the operator product in coordinate space is dened as

O1O2(x, x′) =
ˆ

d4x′′ O1(x, x′′)O2(x′′, x′) ▷ (2.38)

Taking some of the traces and rearranging terms, we can express the action in the form

Sbos
quad = 1

2


P=σ,π⃗

ˆ

d4x d4x′ δP (x)

δ(4)(x− x′)

2G − JP (x, x′)

δP (x′) , (2.39)

where the polarization functions are given by

Jσ(x, x′) = − 2NcTrD [SMF(x, x′) SMF(x′, x) ] ,

Jπ(x, x′) = 2NcTrD [SMF(x, x′) γ5 SMF(x′, x) γ5] ▷ (2.40)
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In order to diagonalize the polarization functions, we introduce the Fourier transform
of the meson elds

δP (x) =
ˆ

p

eipx δP (p) ▷ (2.41)

Together with the transformation of the quark propagator in Eq. (2.23), we obtain

Sbos
quad = 1

2


P=σ,π⃗

ˆ

p

δP (−p)
 1
2G − JP (p)


δP (p) , (2.42)

where

Jσ(p) = − 2Nc

ˆ

r

TrD

S̄

r + p

2


S̄

r − p

2

 
,

Jπ(p) = 2Nc

ˆ

r

TrD

S̄

r + p

2


γ5 S̄


r − p

2


γ5


, (2.43)

and r = (qf + qf ′)◁2 is the average of the quarks momenta qf and qf ′ . Explicit calculation
leads to

Jσ(p2) = 2Nc


I01 + (p2 + 4M2) I02 (p2)


,

Jπ⃗(p2) = 2Nc


I01 + p2 I02 (p2)


, (2.44)

where I01 was dened in Eq. (2.35) and

I02 (p2) = −2
ˆ

r

1
[(r + p◁2)2 +M2] [(r − p◁2)2 +M2] ▷ (2.45)

It is worth remarking that the same result for the polarization functions can be obtained
iterating the four-point vertex in the Bethe-Salpeter equation for the mesonic propagator
within the random phase approximation [145, 181]. In that case, the pion mass is given
by the pole of the mesonic propagator. In our case, the two-point function, given by the
bracket term in Eq. (2.42), serves as an inverse meson propagator. Since the mass is
dened as the pole of the propagator, one is required to solve

1− 2GJP (p2 = −m2
P ) = 0 ▷ (2.46)

In the chiral limit mc → 0 it can be seen that mπ = 0, in agreement with Goldstone
theorem.
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2.2.4 Pion decay constant
Since the pion is a pseudoscalar, its decay constant can be obtained from the matrix
element of the axial current between the vacuum and a one-pion state

⟨0| ψ̄(x)γµγ5
τa

2 ψ(x) |πb(p⃗ )⟩ = −i pµ fπ e
ipx δab , (2.47)

We will come back to this point in more detail in section 3.2. The left hand side of this
equation can be calculated within the NJL model by “gauging” the eective action. We
postpone the details to section 4.3, where the same procedure will be applied but in
the presence of an external magnetic eld. It can also be deduced by translating the
corresponding diagram, see Refs. [145, 181]. One obtains

fπpµδ
ab = −gπqq

ˆ

r

TrD,f,c


S̄

r + p

2


γ5τ

a S̄

r − p

2


γµγ5

τ b

2


, (2.48)

where gπqq is the pion-quark-quark coupling constant, calculated as the residue at the pole
of the pion two-point function 1◁2G− Jπ(p), i.e. gπqq = −∂Jπ(p2)◁∂p2|p2=−m2

π
. Explicit

calculation of the trace results in

fπ = −gπqq 2NcM I02 (−m2
π) , (2.49)

where I02 (p2) has been dened in Eq. (2.45).
Results from current algebra, such as the Goldberger-Treiman (GT) and Gell–Mann-

Qakes-Renner (GMOR) relationships, must necessarily hold as a consequence of the chiral
symmetry of the model. This can be explicitly demonstrated within the NJL model. Recall
that the chiral limit corresponds to mc → 0, which also implies mπ → 0. In fact, explicitly
calculating gπqq it can be seen that the generalized GT relation is satised [182]

fπ gπqq = Mch +O(mc) ▷ (2.50)

The ch subscript implies that the chiral limit has been taken. Moreover, making use of
this relation together with the gap equation, the generalized GMOR relation [183] is also
obtained

m2
π f

2
π,ch = −2mc⟨ψ̄ψ⟩+ O(mc) ▷ (2.51)

2.2.5 Regularization procedures
So far, we have seen that the NJL model can be used to obtain a phenomenological
description of mesons, yielding results for several meson properties such as masses, couplings
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and decay constants. Moreover, it reproduces low energy relationships from current algebra.
However, in spite of these satisfactory results, the NJL (eective) model presents several
problems:

• It does not conne. This is a consequence of the fact that gluon degrees of freedom
have been frozen, as the purely fermionic version of the model cannot reproduce
a connement mechanism. Formally, this is reected in the fact that the integral
in I02 (p2), and hence the polarization functions JP (p2), get an imaginary part for
|p2| > 4M2. As a consequence, mesons with masses over 2M acquire a nite
width, indicating their instability to decay into a free quark-antiquark pair, which is
unphysical. Even though the pion is light enough to avoid this problem, the sigma
meson exceeds the limiting value if mc > 0. Moreover, if vector mesons are included,
it will depend on the parameter set whether their mases are above or below the
limiting value. In particular, for Nf = 3 the η′-meson mass is generally over the
quark threshold, as well as axial-vector mesons. This is rather a feature of states
that lie high in energy with respect to the scale of the theory. It was assumed when
constructing the NJL model that, for low energy mass spectra and properties, the
role of symmetries overrides that of connement, which is expected to aect the
high energy behavior of the theory. In order to deal with the lack of connement,
especially at high temperature, in the literature this problem is usually treated
by including a coupling with the Polyakov loop [148–150], which serves as order
parameter of the deconnement transition.

• It is not renormalizable. This is due to the way in which the gluon interaction is
modeled, namely as a local point vertex. A regularization scheme species a length
scale for the theory, which can be expressed as a cuto on the quark momentum. One
may regard the cuto as an approximate, if crude, implementation of the property
of asymptotic freedom of QCD: by suppressing the interaction between quarks for
large space-like momentum transfer, one simulates the behavior of the running
coupling constant of QCD. In the model, the nonrenormalizability is reected in
the fact that calculated expressions contain divergent integrals, see e.g. Eqs. (2.35)
and (2.45). Thus, one should specify how to regularize these divergences. The
prescription involves the manipulation of improper integrals and the stage at which
the regularization procedure is applied. For example, in order the reach the nal
expressions (2.44) for the meson polarizations, one has to perform a variable shift
along the calculation, which is only valid if the momentum integrals go to innity.
Once the cuto is introduced the invariance is lost, so it has to be introduced at
the end of the calculation. Thus, it is the regularization scheme which determines
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the model, and not vice-versa. In the literature several regularization schemes exist,
each with its own advantages and drawbacks [145, 179].

In this subsection we deal with the second problem, dening the regularization scheme
we choose for (most of) this thesis. A possible regularization consists of incorporating to
the divergent integrand a three-dimensional cuto function fΛ(|p⃗ |). The function depends
on the modulus of the spatial momenta and for high values of |p⃗ | it tends to zero fast
enough so that the integral yields nite. It also contains a cuto value Λ with units
of energy which determines the scale beyond which the strength of interaction becomes
negligible. In the model, Λ is taken as an input parameter, usually between 0.5 and 1 GeV.

The choice of this regularization is based on several factors. Its main advantage lies
in its simplicity and the fact that it preserves the analytical structure. In addition, as
already mentioned, it qualitatively emulates the asymptotic freedom of QCD. Even though
it is possible to implement a Lorentz covariant treatment, applying a regulator which
depends on the four-components of the momentum, the noncovariance does not represent
an inconvenient since our objective is to work in magnetized mediums which already
explicitly break Lorentz invariance. The scheme also breaks gauge symmetry. However, as
discussed below Eq. (2.11), since in the NJL model the local color symmetry of QCD is
replaced by a global symmetry, this scheme brings no further complications. An important
aspect is that chiral symmetry and the Goldstone theorem are strictly preserved after
regularizing.

For the shape of the cuto function, we choose a Heaviside step function, i.e. fΛ(|q⃗ |) =
Θ(Λ − |q⃗ |). This physically intuitive regularization implies that all quark states with
momentum |q⃗ | < Λ contribute equally to the vacuum energy, disregarding contributions
arising from higher momentum values. Performing the time component integral rst, for
the regularized version of the I01 and I02 functions dened in Eq. (2.35) and (2.45) (denoted
by the ‘vac’ superscript) we get the well-known results [145]

Ivac1 = 1
2π2


Λ
√
Λ2 +M2 +M2 ln M

Λ+
√
Λ2 +M2


, (2.52)

Ivac2 (p2) = 1
4π2

ˆ 1

0
dy


 Λ

Λ2 +M2 + y(1− y)p2
+ ln


M2 + y(1− y)p2

Λ+

Λ2 +M2 + y(1− y)p2


 ▷

(2.53)

Once the model has been regularized, we can obtain solutions for the dressed quark
mass M . To that end, is convenient to adimensionalyze the regularized gap equation

M ′ = m′
c + g′M ′

√
1 +M ′2 +M ′2 ln M ′

1 +
√
1 +M ′2


, (2.54)
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Figure 2.3: Adimensional dressed quark mass M ′ = M◁Λ as a function of the dimensionless
coupling constant g′ = GΛ2NcNf◁π

2. Chiral (red solid line) and nonchiral (black dashed line)
cases are shown.

where we have introduced the dimensionless quantities M ′ = M◁Λ, m′
c = mc◁Λ and

g′ = GΛ2NcNf◁π
2. The results are shown in Figure 2.3 for mc ̸= 0 as well as for the chiral

limit. We see that the dynamical breaking of chiral symmetry depends on the strength of
the interaction. For mc = 0 there is a critical value g′c = 1, or equivalently gc = π2◁(NcNf )
for g = GΛ2, which separates two phases were the symmetry is realized in dierent modes:

• The Wigner-Weyl mode for g < gc. In the chiral limit the dressed mass vanishes, and
SU(2)A symmetry is restored. When mc ≠ 0, chiral symmetry is explicitly broken.
However, it is approximately conserved due to the smallness of the current mass,
reected by the fact that the value of M stays only slightly above mc.

• The Nambu-Goldstone mode for g > gc. Here M > 0 even in the chiral limit, and
steadily increases with g. Quarks acquire a dynamical mass breaking SU(2)A symme-
try, leading to the appearance of Goldstone bosons which are massive (massless) in
the nonchiral (chiral) case. The behavior of M does not dier signicantly between
the chiral and nonchiral case, since in this mode the eect of the current mass is
negligible.

As mentioned above, in this thesis we have (mostly) chosen a regularization scheme
based on the use of a three-dimensional cuto step function. It is worth remarking that
other regularization procedures can be found in the literature. Within the usual NJL
model, covariant schemes include the use of four-momentum cuto functions, regularization
in proper time formalism and the Pauli-Villars method [145, 179]. On the other hand,
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there exists a generalization of the model where local interactions are replaced by nonlocal
separable ones, which depend on the eld values over coordinate (or momentum) space
and thus divergences are handled in a more natural way [152]. Even though some results
are improved in this version of the model, such as the recovery of a momentum-dependent
quark self energy [184], calculations become much more cumbersome.

2.2.6 Parameter xing
In its simplest form, given by the Lagrangian of Eq. (2.12), the NJL model has three
parameters: G, Λ and mc. Note that for variants of the model with more interactions
(such as vector and axial-vector types), additional coupling constants are added. These
parameters must be xed to completely dene the model. Usually, this is done by tting
phenomenological observables which the model can reproduce. The typically chosen
physical quantities are ⟨ψ̄ψ⟩, mπ and fπ, whose xed values are used to determine G, Λ
and mc by solving the regularized form of Eqs. (2.34), (2.46) and (2.49).

From these three observables, mπ and fπ are experimentally well-measured:
mπ± = 139▷57039 ± 0▷00018 MeV, mπ0 = 134▷9768 ± 0▷0005 MeV and fπ =
92▷3198 ± 0▷0919 MeV [172]. For simplicity we will take mπ = 138 MeV and
fπ = 92▷4 MeV hereafter. On the other hand, the quark condensate is not measured exper-
imentally. Nonetheless, its value can be estimated from several approaches. Calculations
based on current algebra and QCD sum rules set the range |⟨f̄f⟩|1◁3 = 190−260 MeV [175]
at a scale of 1 GeV, where f represents u or d avors. A combination of QCD sum
rules and chiral perturbation theory yields 242 ± 15 MeV [185] (also at 1 GeV). An
approach based on renormalization group equations also results in a large range of
170 − 310 MeV, which can be narrowed to 244 MeV when estimating the scale of the
theory as ΛQCD = 280 MeV [186]. Meanwhile, simulations performed in Nf = 2+ 1 lattice
QCD provide |⟨f̄f⟩|1◁3 = 272 ± 5 MeV [187], at a higher scale of 2 GeV. We will take
variations of this parameter around |⟨ψ̄ψ⟩|1◁3 ∼ 245 MeV.

We have seen that the quark condensate is related to the dressed mass through the gap
equation, M = mc − 2G⟨ψ̄ψ⟩. Thus, we can alternatively use M to refer to the parameter
set. Keeping in mind that the nucleon mass is MN ∼ 940 MeV and they are composed
of three valence quarks, the quark mass value can be estimated as MN◁3, suggesting the
approximated value M ∼ 310 MeV. However, as the quark condensate, this quantity is
subject to certain degree of uncertainty. For the aforementioned estimated values of ⟨ψ̄ψ⟩,
compatibles values of M lie within the range 300− 500 MeV.
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2.3 Uniform magnetic eld
In this thesis we will be interested in the eect of an external uniform magnetic eld
on hadron properties. Without loss of generality, we can set it in the 3-direction. The
background eld breaks rotational symmetry into parallel and transverse eld directions.
In Euclidean space (similarly for Minkowski space) we have SO(4) → SO(2)⊥ × SO(2)||,
with SO(2)⊥ and SO(2)|| corresponding to rotations in the x1 − x2 and x3 − x4 planes,
respectively. Moreover, up and down quarks cannot be considered as isospin symmetric
anymore due to their dierent electric charges. Chiral symmetry SU(2)V ×SU(2)A×U(1)V
is broken explicitly to U(1)3V × U(1)3A × U(1)V , where the superscript 3 in the vector
and axial groups denotes the transformations generated by τ3 and τ3γ5, respectively. The
magnitude of isospin symmetry breaking is manifested e.g. in the dierence between up
and down quark chiral condensates. Moreover, due to this reduced symmetry there is only
one true Goldstone boson, the neutral pion π0 (associated to τ3). In contrast, charged
pions are massive even in the chiral limit.

Electromagnetic elds, as gluon elds, are coupled to quarks through the covariant
derivative

∂µ −→ Dµ = ∂µ − iQ̂Aµ , (2.55)

where Q̂ = diag(Q1, Q2, ▷▷▷, QNf
) is the electric charge matrix which acts on avor space,

with e > 0 being the proton electric charge. The corresponding QED Dirac Lagrangian in
Euclidean space is

LD = ψ̄(−i ◁D + m̂)ψ ▷ (2.56)

In the particular case of an external uniform magnetic eld, we can disregard the pure
gauge term since it is constant. The Dirac equation for a particular avor reads

(−i◁∂ −Qf ◁A+mf)ψf = 0 ▷ (2.57)

At this stage we choose the Landau gauge Aµ = δµ,2Bx1. Then, the solutions of
Eq. (2.57) can be expanded in terms of the (Euclidean) Ritus spinor eigenfunctions [188–
190]

Es
q̄(x) =



λ=±
Bs
q̄sλ(x) P

s
n ∆λ , (2.58)

where
Bs
q̄(x) = Nn ei(q2x2+q3x3+q4x4)Dn(βs) , (2.59)
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and

Nn = (4πBf)
1
4√

n!
, βs =


2
Bf

(Bf x1 − s p2) , P s
n = (1− δn,0) + δn,0∆s ▷ (2.60)

Here q̄ = (n, q2, q3, q4) collects the four quantum numbers needed to fully specify the
state. Note that q̄sλ = (nsλ, q2, q3, q4). Other denitions are in order: s = sign(QfB) and
Bf = |QfB|; ∆λ = (1 + λΣz)◁2, with Σz = iγ1γ2, are spin projectors in the magnetic
eld direction with eigenvalues λ = ±1; n and nsλ = n − (1 − sλ)◁2 are non-negative
integers, representing the Landau and orbital Landau levels respectively; and Dn(x) are
the cylindrical parabolic functions.

The corresponding eigenfunctions fulll the orthogonality and completeness relations

ˆ

q̄

Es
q̄(x)Es

q̄(x′)∗ = δ(4)(x− x′) ,
ˆ

d4x Es
q̄(x)Es

q̄ ′(x)∗ = δ̂q̄,q̄ ′ P
s
n , (2.61)

where we have introduced the shorthand notation

ˆ

q̄

= 1
2π

∞

n=0

ˆ

dq2dq3dq4
(2π)3 , δ̂q̄,q̄′ = (2π)4 δn,n′ δ(q2− q′2) δ(q3− q′3) δ(q4− q′4) ▷ (2.62)

Moreover, they satisfy (◁∂ − iQf ◁A)2 Es
q̄ = (2nBf + q23 + q24)Es

q̄, leading to the energy
dispersion relation

Ef(B)2 = −q24 = m2
f + 2nBf + q23 ▷ (2.63)

As seen, in the presence of a uniform eld the momentum of charged particles in the plane
perpendicular to B⃗ is quantized in discrete states known as Landau levels (LL). These
are characterized by a non-negative integer n which represents the total quantum angular
momentum. For fermions, n is given by a combination of orbital angular momentum and
spin. Since nsλ ≥ 0, at the lowest Landau level (n = 0) the spin points only in the λ = s

direction. This information is codied in the projectors P s
n. All other energy values are

degenerated with respect to the two spin orientations in the eld direction. Moreover, all
values of the squared perpendicular momenta q21 + q22 which fall between two successive
Landau levels coalesce into a single level. The number of these levels, i.e. the degeneration,
is given through integration in polar coordinates by [51, 191]

S

(2π)2
ˆ

dp1dp2 = Bf

(1 + δn,0)π
S , (2.64)

where S is the area of the orbit in the x− y plane.
It is worth remarking that, from the four quantum numbers q̄ needed to label the

46



2.3. Uniform magnetic eld

particle-state, only three of them appear in the energy dispersion relation. This is a
reection of gauge invariace, since the remaining number is a gauge-dependent quantity.
In our case this number is q2, associated to translational invariance in the 2-direction
present in the Landau gauge.

2.3.1 Magnetized NJL model in mean eld approximation
The NJL model has become a popular analytic model in part due to its exibility, since
it has the nice property that it can be easily extended to include the eect of external
parameters, such as temperature, chemical potentials and magnetic elds. In the presence
of an external uniform magnetic eld, one can proceed in general grounds as before,
bosonizing and expanding the elds as uctuations around their MF values. In this
subsection we will perform the mean eld approximation, deferring the calculation of
hadron properties to forthcoming chapters.

The Euclidean Lagrangian density for the NJL two-avor model in the presence of an
electromagnetic eld is simply obtained by replacing ∂µ → Dµ = ∂µ− iQ̂Aµ in Eq. (2.12),
where Q̂ = diag(Qu, Qd) with Qu = 2e◁3 and Qd = −e◁3. Recall that we are considering
the particular case of an uniform magnetic eld B⃗ along the positive 3-axis described
through the Landau gauge, Aµ = δµ,2Bx1. We proceed as in the vacuum case; the
fermionic action is bosonized introducing (σ, π⃗) meson elds, and then expanded in eld
uctuations around their MF values σ̄ and π̄a = 0. In fact, the calculation is exactly the
same, leading to the free energy of Eq. (2.28). The only dierence lies in the derivative
inside the avor-diagonal MF fermion operator in Eq. (2.22), which is now covariant

DMF(x, x′) = δ(4)(x− x′)

−i ◁D +M


▷ (2.65)

The mean eld quark propagator SMF is given by the inverse of (2.65). Since DMF is
avor-diagonal, so is SMF. As is well known, its explicit form can be written in dierent
ways [52, 53]. For convenience we take the form in which it is given by a product of a
phase factor and a translational invariant function, namely

Sf
MF(x, x′) ≡


Df

MF(x, x′)
−1

= eiΦf (x,x′)
ˆ

q

eiq(x−x′) S̄f(q) , (2.66)

for each avor.
The breaking of translational symmetry, induced by the gauge choice, is manifested

in the presence of the so-called Schwinger phase Φf(x, x′) = QfB(x1 + x′
1)(x2 − x′

2)◁2,
which also comprises the gauge dependence of the propagator. We express S̄f(q) in the
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Schwinger form [52, 53]

S̄f(q) =
ˆ ∞

0
dτ e−τΥf (τ,q)


(M − q||γ||) [1 + is γ1γ2 tanh(τBf)]−

q⊥γ⊥
cosh2(τBf)


▷ (2.67)

Since the magnetic elds breaks rotational symmetry, we have accordingly collected
“perpendicular” and “parallel” contributions in separated vectors: γ⊥ = (γ1, γ2) and
γ|| = (γ3, γ4). Similarly, q⊥ = (q1, q2) and q|| = (q3, q4). Moreover, we have dened the
function

Υf(τ, q) = M2 + q2|| +
tanh(τBf)

τBf
q2⊥ − iϵ , (2.68)

where the limit ϵ → 0 is implicitly understood. Notice that the integral in Eq. (2.67) is
divergent and has to be properly regularized, as we discuss below.

In order to obtain the gap equation, we proceed as before by diagonalizing DMF in the
free energy (2.28), so as to take the logarithm of the eigenvalues. However, the Fourier
transformation is not convenient now due to the breakdown of translational invariance
(induced by the gauge choice). As seen before for the Dirac Lagrangian, in a magnetic
eld the corresponding eigenfunctions are the Ritus ones. Theferore, to diagonalize the
fermion operator one has to transform to Ritus space. It can be shown that the Ritus
transform of an arbitrary operator is

O(x, x′) =
ˆ

q̄,q̄ ′

Es
q̄(x)Oq̄,q̄ ′ Es

q̄ ′(x′)∗ ,

Oq̄,q̄ ′ =
ˆ

d4x d4x′ Es
q̄(x)∗O(x, x′)Es

q̄ ′(x′) , (2.69)

The eigenfunctions satisfy ◁D
2 Es

q̄(x) = ϵq̄ Es
q̄(x), with eigenvalues ϵq̄ = q2|| + 2nBf .

Again, instead of DMF it will be more convenient to deal with the AMF operator dened
in Eq. (2.30), replacing ∂µ → Dµ. Applying the transformation (2.69) and using the
orthogonality relation (2.61), in Ritus space this operator reads

Aq̄,q̄ ′ =
ˆ

d4x d4x′ Es
q̄(x)∗ δ(4)(x− x′)


ϵq̄ +M2


Es
q̄ ′(x′) = δ̂q̄,q̄ ′P s

n


ϵq̄ +M2


, (2.70)

which is diagonal as expected. Since the logarithm of a diagonal matrix is also diagonal,

48



2.3. Uniform magnetic eld

transforming lnDMF(x, x′) to Ritus space through Eq. (2.69) we arrive at

Tr lnDMF(x, x′) = Nc

2


f

TrD
ˆ

d4x d4x′ δ(4)(x− x′)
ˆ

q̄,q̄ ′

Es
q̄(x) ln(Aq̄,q̄ ′)Es

q̄ ′(x′)∗

= Nc

2


f

TrD
ˆ

d4x
ˆ

q̄

Es
q̄(x)Es

q̄(x)∗ ln

ϵq̄ +M2


, (2.71)

Since the eigenvalues do not depend on the gauge-dependent coordinate q2, we can integrate
in that variable and then take the Dirac trace, using

ˆ

dq2
2π Es

q̄(x) Es
q̄(x)∗ = BfP

s
n , TrD P s

n = 2(2− δn,0) ▷ (2.72)

Finally, the magnetized MF free energy is [145]

ΩMF = (M −mc)2
4G −Nc



f,n

Bf

2π (2− δn,0)
ˆ

dq3dq4
(2π)2 ln


q2|| + 2nBf +M2


▷ (2.73)

Since Tr lnDMF = ln detDMF, the same result can be obtained exploiting the fact the
determinant is the sum over the eigenvalues, taking into account the corresponding
degeneracies.

Minimizing the free energy with respect to M and using the Schwinger parametrization
to move to proper time representation, we obtain the gap equation

M = mc + 2G TrSMF(x, x′) = mc + 4GMNc


IB
1u + IB

1d
2


, (2.74)

where
IB
1f = Bf

4π2

ˆ ∞

0

dz

z
e−zM2 coth(zBf) , (2.75)

is a divergent integral. The contribution from each avor arises independently because the
magnetic eld dierentiates between particles of dierent charges.

On the other hand, at the MF level the chiral condensate for each avor is given by

ϕf = ⟨f̄f⟩B = −Ωbos
MF

δmf
= − Nc

V (4) TrD
ˆ

d4x Sf
MF(x, x) = −NcM IB

1f ▷ (2.76)

2.3.2 Regularization scheme in the presence of a magnetic eld
As we have seen, when a background magnetic eld is introduced the vacuum energy
acquires a LL structure, and additional care is required in the treatment of the divergences,
such as the momentum integral of Eq (2.75). In the literature, a widely used choice to
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regularize such divergences is the introduction of regulating functions of the form hΛ(Q),
with Q =


2nBf + p23. The form of these cuto functions include Lorenztian [168, 169,

192–197], Woods-Saxon [154, 170, 198–200], Gaussian [201–203], Fermi-Dirac [204–206],
3D [207–209] and 4D cuto regularizations. Unlike the B = 0 case, where there is a
single divergent integral, the sum over Landau levels implies a regularization for each
integral and for each avor state, so it is natural that the regulator depends on the energy
through these quantum numbers. An example which highlights the importance of a correct
regularization procedure is the calculation of thermodynamical quantities. Since several
thermodynamic quantities involve derivatives of the thermodynamic potentials, they are
strongly dependent on the regularization and can lead to the existence of unphysical
oscillations, leading to unreliable results. This is particularly dramatic when studying color
superconducting phases in dense magnetized mediums, since these unphysical oscillations
can be easily confused with actual de Haas-van Alfven oscillations [210, 211].

A nice review on the importance of the regularization prescription can be found in
Ref. [212]. There, the authors compare the NJL average and dierence condensate against
lattice results for all regularization schemes found the literature: form factors, proper
time and Pauli-Villars. When all form factors are considered, it is clearly seen that the
magnitude of the nonphysical oscillations is proportional to the sharpness of the regulating
function, in agreement with previous studies [194, 207, 213, 214]. For some of these sharp
functions, a reasonable agreement with lattice results is only found for small magnetic
elds, eB < 0▷3 GeV2 [73]. On the other hand, the use of a too smooth function leads to
values of the average quark condensate which are quite above the phenomenological range.

One possible scheme where these unphysical oscillations are completely removed is
the ‘magnetic eld independent regularization’ (MFIR) scheme. The idea is to avoid
the magnetic dependence in the regularization by regularizing only the vacuum, where
one has more control over the model and we have seen that some meson properties are
recovered. To that end, one simply adds and subtract the B = 0 limit of the corresponding
divergent integral, separating the integral into vacuum and magnetic pieces. The magnetic
term is nite, and only the vacuum term needs to be regularized by implementing one of
the aforementioned regularization schemes; these include form factors, proper time and
Pauli-Villars. When the calculation is performed using the LL representation of the quark
propagator, the niteness of the magnetic term in the free energy can be elegantly proven
following the steps of the dimensional regularization prescription of QCD, performing the
sum over all Landau levels [215]. On the other hand, the proper-time formalism is more
convenient for this scheme since the B → 0 limit can be easily taken [216]. For example,
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2.3. Uniform magnetic eld

the limit of IB
1f in Eq. (2.75) is

I01f = 1
4π2

ˆ ∞

0

dz

z2
e−zM2

, (2.77)

which, as expected, coincides with Eq. (2.35) when one goes back to the momentum repre-
sentation. As a drawback, this formalism is not available in the nonlocal generalizations
of the model, where the eective mass depends on the momentum.

In the aforementioned review of Ref. [212], it is seen that for the MFIR scheme the
unphysical oscillations are eectively removed from the condensate for all types of form
factors. Moreover, the use of the MFIR scheme tends to provide condensate values which are
in closer agreement with lattice QCD calculations, as compared to non-MFIR schemes such
as the magnetic dependent proper time [100, 164, 203, 217, 218] and Pauli-Villars [153,
219–224] regularizations. The authors conclude that, from for all the regularizations
considered, the noncovariant 3D-cuto, the covariant 4D-cuto and Pauli-Villars are
the ones that better describe the lattice results. Apart from the condensate, the MFIR
scheme has also been shown to avoid unphysical oscillations for other quantities in the
context of magnetized quark matter in the presence of color superconductivity, thus
avoidining the misinterpretation of unreal van Alphen-de Haas transitions [206, 207, 225,
226]. An improvement within the MFIR scheme was recently suggested in Ref. [163] for
the calculation of many mean-eld observables. However, this modication is not relevant
for the quantities we will study in this thesis, namely quark condensates, hadron masses
and pion decay constants, so we can safely omit it.

In order to implement the MFIR scheme, we add and subtract the B = 0 contribu-
tion (2.77) to the gap equation (2.74). Then, the divergent integral can be separated into
magnetic and vacuum pieces. After regularizing the vacuum term we obtain

Ireg1f = Imag
1f + Ivac1 ▷ (2.78)

For a sharp 3D cuto, Ivac1 is given by Eq. (2.52), while the nite magnetic contribution
can be written as [212, 227]

Imag
1f = 1

4π2

ˆ ∞

0

dz

z
e−zM2


Bf coth(zBf)−

1
z



= Bf

2π2


lnΓ(xf) + xf −


xf −

1
2


lnxf −

ln 2π
2


, (2.79)

with xf = M2◁(2Bf). Since the condensate is driven by the same divergent integral, the

51



2.3. Uniform magnetic eld

regularized version in the MFIR scheme reads

ϕreg
f = ϕvac

f + ϕmag
f ,




ϕvac
f = −NcMIvac1

ϕmag
f = −NcMImag

1f

▷ (2.80)

For the NJL, in the case of a small coupling g′ ≪ 1 the dynamical mass squared will be
much smaller than the magnetic eld, M2 ≪ Bf . Then, for M ≪ Λ there is a nontrivial
solution for arbitrarily small g even in the chiral limit, given by [100]

M =

Bf

π
e
− π2

NcNfBfG , (2.81)

analogous to the gap obtained in BCS theory [51, 99, 101]. A nontrivial solution exits
in fact for all g, as shown in Ref. [99]. Thus, in contrast to the B = 0 case analyzed
in subsection 2.2.5, where chiral symmetry can be broken only for g′ > 1, the presence of
a magnetic eld always leads to the generation of a dynamical mass, even at the weakest
attractive interaction between fermions. Moreover, the magnetic eld enhances the gap,
and therefore the condensate, reproducing the familiar magnetic catalysis eect.
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3
Leptonic decay of magnetized
charged pions

The objective of this thesis is to determine the eect that an external magnetic eld has
over several hadron properties. Although we will mainly investigate their masses, another
important property we are interested in is the decay of pions, with particular focus on
the weak decay π− → l + ν̄l (the eects are similar for π+). The details of pion decay in
the presence of a magnetic eld are not fully understood yet, see Refs. [170, 171, 228] for
some approaches on the charged case. Thus, before considering a particular QCD-like
approach, in this chapter we will study the generalities of this decay in order to determine
which hadronic observables must be known in order to calculate the corresponding decay
width. These observables, such as masses and decay constants, will be calculated in the
next chapter for the particular case of the NJL model, allowing for an estimation of the
corresponding decay width.

The width associated to the decay π− → l + ν̄l is proportional to the squared modulus
of the amplitude, which can be written in a general form as

⟨ l, ν̄l|LW |π− ⟩ = − GF√
2
cos θc

ˆ

d4x ⟨0|ψ̄u(x) γµ(1− γ5)ψd(x)|π−⟩ ×

⟨ l, ν̄l|ψ̄l(x) γµ(1− γ5)ψνl(x)|0⟩ , (3.1)

where LW is the usual axial-vector four-fermion eective weak interaction Lagrangian [229].
Here GF = 1▷1663788× 10−5 GeV−2 is the Fermi constant and θc is the Cabibbo angle,
related to the ud element of the CKM matrix by cos θc = Vud = 0▷97373 [172]. While
the leptonic matrix element can be calculated using magnetized elds from QED, the
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3. Leptonic decay of magnetized charged pions

hadronic element involves (in the initial pion state) strong interactions in a low energy
regime, which can not be treated perturbatively. Instead, it can be parameterized in terms
of decay form factors, taking into account the Lorentz structure and the symmetries of
the theory.

First, we will obtain an expression for each involved matter eld in the presence of
an external uniform magnetic eld, necessary to calculate the matrix elements. Next, we
will show that the presence of the external eld opens up the possibility for new decay
channels, reected in the existence of new axial and vector decay constants which appear
when hadronizing the pion-to-vacuum matrix elements of quark currents. Taking into
account these new decay constants, we will nally calculate the partial decay width for the
magnetized π− → l + ν̄l decay. Throughout this chapter we will work in Minkowski space
with metric convention gµν = diag(1,−1,−1,−1), as well as ϵ0123 = +1 for the totally
antisymmetric tensor ϵµναβ. For a space-time coordinate four-vector we adopt the notation
xµ = (x0, x⃗). Results from this chapter are based on Refs. [230, 231].
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3.1. Matter quantum elds in the presence of a uniform magnetic eld

3.1 Matter quantum elds in the presence of a uni-
form magnetic eld

3.1.1 Gauge choice and quantum numbers
In this chapter we will study the eect of an external uniform magnetic eld on the weak
charged pion decay π− → l + ν̄l. Without loss of generality, we take the eld as oriented
in the 3-direction, B⃗ = B 3̂. Moreover, we consider two gauge choices: the Landau gauge
(LG) and symmetric gauge (SG). The comparison between the results obtained with each
of these gauges will serve as a verication of the gauge invariance of our result. As briey
mentioned in the previous chapter, in the presence of an external uniform magnetic eld
the quantum numbers which dene charged particle states dier from those in the absence
of the eld. This is due to the fact that, in the plane perpendicular to B⃗, the momentum
is quantized in Landau levels. Quantum numbers are given by the eigenvalues of operators
which commute with the corresponding Hamiltonian. We recall that if a physical quantity
has an associated quantum mechanical operator O, the eld theoretical realization of this
operator is given by

Ô =
ˆ

V

d3x : ψ(x)†Oψ(x) : , (3.2)

where ψ(x) is the corresponding particle eld.
Some of these numbers are actually gauge-dependent. In order to specify them,

one has to choose a particular gauge. For charged pions and leptons it can be shown
that, in both gauges, the 3-component of the canonical momentum commutes with the
associated Hamiltonian (Klein-Gordon and Dirac, respectively). From the eigenvalues of
the Hamiltonian itself, it can be seen that the Landau level corresponds to another quantum
number, needed to completely dene energy states. Regarding the third quantum number,
it is actually gauge-dependent. In the LG the 2-component of the canonical momentum
also commutes with the Hamiltonian, while for the SG the corresponding operator is the
canonical total angular momentum. It is worth remarking that even though the mechanical
momentum and the mechanical total angular momentum are gauge-covariant operators,
they do not commute with the associated Hamiltonians and therefore do not correspond
to conserved quantities [231].

Using Cartesian coordinates x⃗ = (x1, x2, x3) in the LG we have

Aµ = δµ,2Bx1 ⇒ Dµ = ∂µ + isBe x
1 δµ,2 , (3.3)

where s = sign(σB) and Be = e|B| for a particle of charge Q = σe, e > 0 being the
proton charge and σ = ±. In this gauge, the relevant quantum numbers of the charged
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3.1. Matter quantum elds in the presence of a uniform magnetic eld

particles involved are the 2− and 3− components of the canonical momentum together
with the corresponding Landau level. For antineutrinos, they are the usual three Cartesian
momentum components.

On the other hand, for the SG we have A⃗ = B⃗ × r⃗◁2. In this gauge it is convenient to
use cylindrical coordinates x⃗ = (ρ cosϕ, ρ sinϕ, x3). The vector potential is then given by

Aµ = Bρ

2 (cosϕ δµ,2 − sinϕ δµ,1) ⇒ Dµ = ∂µ + i
sBeρ

2 (cosϕ δµ,2 − sinϕ δµ,1) ▷ (3.4)

One can dene a complete basis of states of well dened energy by taking as quantum
numbers the Landau level, the 3-component of the canonical momentum and the 3-
component of the canonical total angular momentum j3. For antineutrinos, having zero
electric charge, we take k3, j3 and k⊥ =


(k1)2 + (k2)2, where k⃗ is the antineutrino linear

momentum.
The shorthand notation used for the quantum numbers and other related labels of the

π−, l− and ν̄l particles in each gauge is summarized in Table 3.1. There, ℓ, n, ı, and υ

are non-negative integers, while ȷ is an integer. To this set of quantum numbers one has
to add the polarization τ = 1, 2 of the charged lepton (we assume the antineutrino to be
purely righthanded). Notice that, although not indicated explicitly, the pion mass mπ− is
a function of the magnetic eld B. The explicit form of the π−, l− and ν̄l elds will be
given in the following subsections.

3.1.2 Neutral pion and neutrino quantum elds
The expressions for neutral elds are not modied by the presence of the external magnetic
eld. Thus, they can be written in terms of the usual creation and annihilation operators
of denite momentum states. Following the conventions given e.g. in Ref. [232], the neutral
pion eld is given by

ϕπ0(x) =
ˆ

d3p

(2π)32Eπ0


aπ0(p⃗ ) e−ip·x + aπ0(p⃗ )† eip·x


, (3.5)

where p = (Eπ0, p⃗ ), with Eπ0 =

m2

π0 + |p⃗ |2. It is worth mentioning that, in the presence
of an external eld, one could also take into account corrections leading to an anisotropic
dispersion relation [170]. The operators aπ0(p⃗ ) and aπ0(p⃗ )† satisfy the commutation rule

[aπ0(p⃗ ), aπ0(p⃗ ′)†] = 2Eπ0 (2π)3 δ(3)(p⃗− p⃗ ′) ▷ (3.6)
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3.1. Matter quantum elds in the presence of a uniform magnetic eld

Pion (π−) Lepton (l− ) Antineutrino (ν̄l)

PM p3 q3 k3

LL ℓ n —

Energy

m2

π− + (2ℓ+ 1)Be + (p3)2

m2

l + 2nBe + (q3)2

k2⊥ + (k3)2

Four-QN p̄ = (Eπ−, p̆) q̄ = (El, q̆) k̄ = (Eν̄l , k̆)

Landau Gauge

QN p̆ = (ℓ, p2, p3) q̆ = (n, q2, q3) k̆ = (k1, k2, k3)

Di.
´

dp̆χ =
∞
ℓ=0

´

dp2dp3
´

dq̆χ =
∞
n=0

´

dq2dq3
´

dk̆χ =
´

dk1dk2dk3

Deltas δp̆,p̆′ = δℓ,ℓ′


i=2,3
δ(pi−pi ′) δq̆,q̆′ = δn,n′


i=2,3

δ(qi−qi ′) δk̆,k̆′ = δ(3)(k⃗−k⃗ ′)

Symmetric Gauge

QN p̆ = (ℓ, ı, p3) q̆ = (n, υ, q3) k̆ = (ȷ, k⊥, k3)

Di.
´

dp̆χ =
∞

ℓ,ı=0

´

dp3
´

dq̆χ =
∞

n,υ=0

´

dq3
´

dk̆χ =
∞

ȷ=−∞
2π

´

dk3dk⊥k⊥

Deltas δp̆,p̆′ = δℓ,ℓ′ δı,ı′ δ(p3−p ′ 3) δq̆,q̆′ = δn,n′ δυ,υ′ δ(q3−q ′ 3) δk̆,k̆′ =
δȷȷ′
2π

δ(k⊥−k′⊥)
k⊥

δ(k3−k ′ 3)

j3 −s(ℓ− ı) −s(n− υ − 1◁2) ȷ− 1◁2

Table 3.1: horthand notation for particle quantum numbers. PM stands for parallel momentum,
QN for quantum numbers and LL for Landau level, while di. is an abbreviation of dierential.

On the other hand, the massless neutrino eld can be written in the helicity basis as

ψνl(x) =
ˆ

dk̆χ
(2π)32Eνl


bνl(k̆, L) Uνl(x, k̆, L) + dνl(k̆, R)† Vνl(x, k̆, R)


, (3.7)

where Eνl = Eν̄l =

k2⊥ + (k3)2. In the expansion we have taken into account that

neutrinos (antineutrinos) are left-handed (right-handed). The corresponding creation and
annihilation operators satisfy


bνl(k̆, L), bνl(k̆ ′, L)†


=

dνl(k̆, R), dνl(k̆ ′, R)†


= 2Eνl (2π)3 δk̆,k̆′ ,


bνl(k̆, L), dνl(k̆ ′, R)†


=

dνl(k̆, L)†, bνl(k̆ ′, R)†


= 0 ▷ (3.8)

The denition of δk̆,k̆′ can be read from Table 3.1. Since neutrinos are neutral, the explicit
form of the spinors Uνl and Vνl does not depend on the gauge. However, they do depend
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3.1. Matter quantum elds in the presence of a uniform magnetic eld

on the chosen coordinates. In the LG we have

Uνl(x, k̆, L) = e−ik·x uνl(k̆, L) , Vνl(x, k̆, R) = eik·x vνl(k̆, R) ▷ (3.9)

where uνl(k̆, L) and vνl(k̆, R) are the usual Weyl spinors

uνl(k̆, L) = vνl(k̆, R) = 1
Eνl + k3




−k1 + ik2

Eνl + k3

0
0




▷ (3.10)

On the other hand, for the SG

Uνl


x, k̆, L


= − iȷ e−i(Eνlx

0−k3x3) e−iȷ ϕ





Eνl − k3 Jȷ(k⊥ρ)

i

Eνl + k3 eiϕ Jȷ−1(k⊥ρ)

0
0




, (3.11)

Vνl


x, k̆, R


= − (−i)ȷ ei(Eνlx

0−k3x3) e−iȷ ϕ





Eνl − k3 Jȷ(k⊥ρ)

−i

Eνl + k3 eiϕ Jȷ−1(k⊥ρ)

0
0




, (3.12)

where Jȷ(x) are Bessel functions of the rst kind. In the SG it can be shown that the
eigenvalue of the canonical total angular momentum operator ĵ3 acting on a neutrino state
is j(νl)3 = −(ȷ− 1◁2), while for an antineutrino state one has j(ν̄l)3 = ȷ− 1◁2 [231].

Lastly, it is worth noticing that these neutrino spinors satisfy the orthogonality relations
ˆ

d3r Uνl(x, k̆, L)† Uνl(x, k̆′, L) =
ˆ

d3xVνl(x, k̆, R)† Vνl(x, k̆′, R) = 2Eνl (2π)2δk̆,k̆′ ,
ˆ

d3xUνl(x, k̆, L)† Vνl(x, k̆′, R) =
ˆ

d3xVνl(x, k̆, R)† Uνl(x, k̆′, L) = 0 ▷ (3.13)

3.1.3 Charged pion quantum eld
The charged pion elds can be written as (see Table 3.1 for some shorthand notations)

ϕs
πσ(x) = ϕs

π−σ(x)† =
ˆ

dp̆

(2π)3 2Eπσ


aπσ(p̆) Bs

p̄(x) + aπ−σ(p̆)† B−s
p̄ (x)∗


▷ (3.14)
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3.1. Matter quantum elds in the presence of a uniform magnetic eld

The operators satisfy the commutation relations


aπσ(p̆), aπσ′ (p̆ ′)†


= 2Eπσ (2π)3 δp̆,p̆′ δσ,σ′ ▷ (3.15)

It should be noticed that, with these conventions, the creation and annihilation operators
turn out to have dierent dimensions from the ones usually dened in the absence of the
external magnetic eld – see Eq. (3.6). In addition, the gauge-dependent Ritus-type basis
functions Bs

p̄(x) are solutions of the eigenvalue Klein-Gordon equation for a point-like spin
0 particle in the presence of an electromagnetic eld

DµD
µ Bs

p̄(x) = −

E2

πσ − (2ℓ+ 1)Be − (p3)2

Bs
p̄(x) ▷ (3.16)

They can be chosen to satisfy

ˆ

p̄

Bs
p̄(x)Bs

p̄(y)∗ = δ(4)(x− y) ,
ˆ

d4x Bs
p̄(x)Bs

p̄′(x)∗ = δ̂p̄,p̄′ , (3.17)

where, similar to Eq. (2.62), we have introduced the shorthand notation

ˆ

p̄

=
ˆ

dp0dp̆χ
(2π)4 , δ̂p̄,p̄′ = (2π)4 δ(p0 − p ′ 0) δp̆,p̆′ ▷ (3.18)

For the LG we have

Bs
p̄(x) = Nℓ e

−i(Eπσx0−p2x2−p3x3)Dℓ(βs) , (3.19)

where
Nℓ = (4πBe)

1
4√

ℓ!
, βs =


2
Be


Be x

1 − s p2

, (3.20)

andDℓ(x) are the cylindrical parabolic functions, with the standard convention D−1(x) = 0.
On the other hand, in the SG the Ritus-type basis functions read

Bs
p̄(x) =

√
2π e−i(Eπσx0−p3x3) e−is(ℓ−ı)ϕRℓ,ı


Beρ

2

2


, (3.21)

where

Rℓ,ı(x) = Nℓ,ı x
ℓ−ı
2 e−

x
2 Lℓ−ı

ı (x) , Nℓ,ı =

Be ı!
ℓ! , (3.22)

with Lα
ı (x) the associated Laguerre polynomials. In this gauge it can be shown that the

eigenvalue of the canonical total angular momentum operator ĵ3 acting on a charged pion
state is j(π

σ)
3 = −s(ℓ− ı) [231]. Thus, we take χ = ı as the third quantum number.
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3.1. Matter quantum elds in the presence of a uniform magnetic eld

Lastly, in order to dene the decay width it will be useful to calculate the particle
number associated with the state |πσ(p̆)⟩ = aπσ(p̆)†|0⟩ in a gauge-dependent volume Vχ

nπσ =
ˆ

Vχ

d3x ⟨πσ(p̆)| j 0
πσ(x)|πσ(p̆)⟩ , (3.23)

where j 0
πσ is the current density

j0πσ(x) = i

ϕπσ(x)†∂0ϕπσ(x)− ∂0ϕπσ(x)† ϕπσ(x)


▷ (3.24)

In absence of external elds, the usual normalization is ρ = n◁V = 2E. When the
external eld is present, the choice of normalization depends on the gauge. In the LG it is
convenient to consider an innite cylinder of section S = L2L3 lying along the 1-axis; then
nπσ = 2Eπσ2πL2L3. On the other hand, in the SG we consider a cylinder of innite radius
lying along the 3-axis; then nπσ = 2Eπσ4π2L3.

3.1.4 Charged lepton eld
The charged lepton eld can be written as (see Table 3.1 for some shorthand notations)

ψsl
l (x) =



τ=1,2

ˆ

dq̆

(2π)32El


b (q̆, τ) U sl

l (x, q̆, τ) + d (q̆, τ)† V −sl
l (x, q̆, τ)


, (3.25)

where the creation and annihilation operators satisfy


b(q̆, τ), b(q̆ ′, τ ′)†


=

d(q̆, τ), d(q̆ ′, τ ′)†


= 2El (2π)3 δq̆,q̆′ δτ,τ ′ ,


b(q̆, τ), d(q̆ ′, τ ′)†


=

b(q̆, τ)†, d(q̆ ′, τ ′)†


= 0 ▷ (3.26)

The spinors U sl
l and V −sl

l can be written as

U sl
l (x, q̆, τ) = Esl

q̄ (x) usl
l (q̆, τ) , V −sl

l (x, q̆, τ) = Ẽ−sl
q̄ (x) v−sl

l (q̆, τ) , (3.27)

where the spinors usl
l and v−sl

l are given in the Weyl basis by

usl
l (q̆, τ) = 1

2(El +ml)


 (El +ml + sl

√
2nBe τ2 − q3τ3)Φ(τ)

(El +ml − sl
√
2nBe τ2 + q3τ3)Φ(τ)


 , (3.28)

v−sl
l (q̆, τ) = 1

2(El +ml)


 (El +ml − sl

√
2nBe τ2 − q3τ3) Φ̃(τ)

−(El +ml + sl
√
2nBe τ2 + q3τ3) Φ̃(τ)


 , (3.29)
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with Φ(1) = −Φ̃(2) = (1, 0)† and Φ(2) = Φ̃(1) = (0, 1)†. They satisfy the relations



τ=1,2
usl
l (q̆, τ) ūsl

l (q̆, τ) = ◁̂qsl
+ml ,



τ=1,2
v−sl
l (q̆, τ) v̄−sl

l (q̆, τ) = ◁̂q−sl
−ml , (3.30)

where q̂ µ
sl = (El, 0,−s

√
2nBe, q

3). In Eq. (3.27), Esl
q̄ (x) and Ẽ−sl

q̄ (x) are Ritus spinor
eigenfunctions that satisfy the eigenvalue equation




i ◁D Esl
q̄ (x) = ◁̂qsl

Esl
q̄ (x) ⇒ (i ◁D)2 Esl

q̄ (x) = [E2
l − 2nBe − (q3)2] Esl

q̄ (x) ,

i ◁D Ẽ−sl
q̄ (x) = −◁̂q−s

Ẽ−sl
q̄ (x) ⇒ (i ◁D)2 Ẽ−sl

q̄ (x) = [E2
l − 2nBe − (q3)2] Ẽ−sl

q̄ (x) ▷
(3.31)

They can be written as

Esl
q̄ (x) =



λ=±
Bsl
q̄slλ

(x)P sl
n ∆λ , Ẽ−sl

q̄ (x) =


λ=±
B−sl
q̄−slλ

(x)∗P−sl
n ∆λ , (3.32)

where∆λ = (1+λΣz)◁2, with Σz = iγ1γ2, are spin projectors in the magnetic eld direction
and Bsl

q̄ (x) are the gauge-dependent Ritus-type basis functions dened in Eqs. (3.19)
and (3.21) for the LG and SG, respectively. Moreover, we have used the shorthand
notation q̄slλ = (q0, nslλ,χ, q

3) where χ is a gauge-dependent quantum number and nslλ =
n− (1−slλ)◁2 is a non-negative integer index representing the orbital Landau level. In the
particular case of the lowest Landau level (LLL), n = 0, the relation nslλ ≥ 0 implies that
only one polarization state λ = sl is allowed. This information is codied in the projectors
P sl
n = (1− δn,0) + δn,0∆sl. Therefore, we see that the structure of the lepton spinors in

Eq. (3.27) is similar to the neutrino one in Eq. (3.9) except that, for the coordinate piece,
instead of plane waves one has to use the Ritus basis due to the presence of the magnetic
eld. Compared to charged pions, we see that both particles share the same scalar basis
functions Bs

q̄(x), as could be expected from the fact that the Dirac equation also satises
the Klein-Gordon equation. Nonetheless, the lepton has an additional Dirac structure,
codied in the spin-polarization projectors P s

n∆λ.
Similarly to the neutrino case, see Eq. (3.13), it can be seen that the lepton spinors in

Eq. (3.27) satisfy the orthogonality relations
ˆ

d3x U sl
l (x, q̆, τ)† U sl

l (x, q̆′, τ ′) =
ˆ

d3x V −sl
l (x, q̆, τ)† V −sl

l (x, q̆′, τ ′) = 2El(2π)3δq̆,q̆′ δτ,τ ′ ,
ˆ

d3x U sl
l (x, q̆, τ)† V −sl

l (x, q̆′, τ ′) =
ˆ

d3x V −sl
l (x, q̆, τ)† U sl

l (x, q̆′, τ ′) = 0 , (3.33)
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and
ˆ

d3x Ū sl
l (x, q̆, τ)U sl

l (x, q̆′, r′) =−
ˆ

d3x V̄ −sl
l (x, q̆, τ)V −sl

l (x, q̆′, τ ′) = 2ml(2π)3δq̆,q̆′ δτ,τ ′ ,
ˆ

d3x Ū sl
l (x, q̆, τ)V −sl

l (x̃, q̆′, τ ′) =
ˆ

d3x V̄ −sl
l (x, q̆, τ)U sl

l (x̃, q̆′, τ ′) = 0 , (3.34)

where δq̆,q̆′ can be found in Table 3.1 and x̃ = (x0,−x⃗ ). Moreover, as already stated in
Eq. (2.61), the Ritus spinor eigenfunctions satisfy relations similar to (3.17)

ˆ

q̄

Esl
q̄ (x)Esl

q̄ (x′)∗ = δ(4)(x− x′) ,
ˆ

d4x Esl
q̄ (x)Esl

q̄ ′(x)∗ = δ̂q̄,q̄ ′ P
sl
n ▷ (3.35)

The gauge-dependent quantum number χ needed to complete q̄ was implicitly dened
in the basis functions Bsl

q̄ (x). We comment on it explicitly. In the LG, it is the 2-component
of the canonical momentum, χ = q2. Meanwhile, in the SG it can be shown that the
eigenvalue of the canonical total angular momentum operator ĵ3 acting on a lepton state
is j(l)3 = −s(n− υ− 1◁2), while for an antilepton state one has j( l̄ )3 = s(n− υ− 1◁2) [231].
Thus, χ = υ.

3.2 Pion-to-vacuum amplitudes in the presence of a
uniform magnetic eld

In this section we analyze the general form of the vacuum-to-pion matrix elements of
vector and axial-vector quark currents, which are involved in the weak decay of pions. Let
us start by considering the hadronic matrix elements for the case of a neutral pion in the
absence of external elds. The matrix element of the hadronic current is given by

H0,µ
L (x, p⃗) = H0,µ

V (x, p⃗)−H0,µ
A (x, p⃗) = ⟨0|ψ̄(x)γµ(1− γ5)

τ3
2 ψ(x)|π0(p⃗ )⟩ (3.36)

where ψ(x) = (ψu(x),ψd(x))T is the two-avor quark eld and τ3 is a Pauli matrix acting
on avor space. In order to deal with these matrix elements it is possible to hadronize
the quark currents, i.e. to consider matrix elements of hadronic eld operators carrying
appropriate Lorentz indexes and quantum numbers. In the low energy limit (typically,
below the ρ meson threshold), the relevant hadronic eld is the pion eld ϕπ0(x), and
in absence of external elds the only available vector-like dierential operator is the
momentum operator p̂µ = i∂µ. Since the pion eld is pseudoscalar, only the matrix
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element of the axial-vector hadronic current can be nonzero. In this way, one has

⟨0|ψ̄(x)γµ τ3
2 ψ(x)|π

0(p⃗ )⟩ = 0 ,

⟨0|ψ̄(x)γµγ5
τ3
2 ψ(x)|π

0(p⃗ )⟩ = f(p̂2) ∂µ⟨0|ϕπ0(x)|π0(p⃗ )⟩ ▷ (3.37)

The function f(p̂2) contains all the information of nonperturbative QCD contributions.
Using the explicit form of ϕπ0(x) – see Eq. (3.5) – and the commutation rules for the
corresponding creation and annihilation operators – see Eq. (3.6)– one immediately nds

H0,µ
V (x, p⃗ ) = 0 ,

H0,µ
A (x, p⃗ ) = −if(p2) pµe−ip·x ▷ (3.38)

As usual, the four-momentum pµ is dened by pµ = (Eπ, p⃗ ), with Eπ =

m2

π + |p⃗ |2.
Similar expressions can be obtained for charged pions. It can be seen that the invariance of
strong interactions under discrete transformations, such as parity P, charge conjugation C
and temporal inversion T , implies that f(p2) is a real function. In the absence of external
elds, the pion decay constant is given by fπ = f(m2

π) ≃ 92▷32 MeV [172].
We turn now to the situation in which a static external electromagnetic eld is present.

In this case, other tensor structures are possible. For a particle of charge Q the relevant
basic tensors are the gauge covariant derivative Dµ and the gauge invariant electromagnetic
eld strength F µν , dened as

Dµ = ∂µ + iQAµ , F µν = ∂µAν − ∂νAµ ▷ (3.39)

Taking them as building blocks, one can in principle obtain an innite number of dierential
operators with dierent Lorentz tensor structures. However, for the particular case of a
uniform static magnetic eld B⃗, it is well-known - see e.g. Refs. [188, 227] - that only a
few independent tensors exist. Noting that F 0i = 0 and F ij = Fij = −ϵijkB

k, we get

[Dµ, Dν ] = iQF µν = −iQ ϵ0µνk Bk , k = 1, 2, 3 ▷ (3.40)

For deniteness, and without losing generality, in what follows we take Bk = B δk,3. Using
the above relations one can prove that there are in fact only two independent scalars,
apart from the particle electric charge Q and F µνFµν = 2B2. These can be taken to be

D2
|| = (D3)2 − (D0)2 , D2

⊥ = −(D1)2 − (D2)2 ▷ (3.41)

In addition, it is possible to nd four independent four-vectors. One possible choice is the
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set

Dµ = (D0, D⃗) ,

−i F µνDν = −i B (0, D2,−D1, 0) ,

F µνFναD
α = −B2 (0, D1, D2, 0) ,

1
2 ϵµναβFναDβ = B (D3, 0, 0, D0) ▷ (3.42)

Notice that the last of these tensors transforms in fact as an axial-vector.

3.2.1 Neutral pion case
From the above expressions for Lorentz scalars and four-vectors, we can write now a
general form for the hadronic currents we are interested in. We consider rst the case of
the neutral pion, for which Q = 0 and the operator Dµ reduces to the usual derivative ∂µ.
Taking into account once again the intrinsic parity of the pion eld, the corresponding
matrix element can be parametrized as

H0,µ
L (x, p⃗ ) =


ϵµναβFναDβ

f̂ (V )
π0

2B −Dµ f̂ (A1)
π0 + i F µνDν

f̂ (A2)
π0

B
− F µνFναD

α f̂ (A3)
π0

B2


 ×

⟨0|ϕπ0(x)|π0(p⃗ )⟩ , (3.43)

where f̂ (V )
π0 and f̂ (Ai)

π0 are complex functions depending on the magnetic eld and the
scalar dierential operators ∂2

|| and ∂2
⊥. The hadronic matrix elements can be readily

obtained using Eqs. (3.5) and (3.6). It is convenient to dene the following “parallel” and
“perpendicular” combinations

H0, ϵ
||,L(x, p⃗ ) ≡ H0,0

L (x, p⃗ ) + ϵH0,3
L (x, p⃗ ) ,

H0, ϵ
⊥,L(x, p⃗ ) ≡ H0,1

L (x, p⃗ ) + iϵH0,2
L (x, p⃗ ) , (3.44)

where ϵ = ±. As in the B = 0 case, it is important to consider the constraints on the form
factors arising from the discrete symmetries of the interaction Lagrangian in the presence
of the magnetic eld. This is discussed in some detail in Appendix B, where it is shown
that these symmetries lead to f (A2)

π0 = 0 while the remaining form factors turn out to be
real. In this way, we conclude that the most general form of the vector and axial-vector
pion-to-vacuum matrix elements, in the presence of an external uniform magnetic eld
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along the 3-axis, are

H0, ϵ
||,L(x, p⃗ ) = i


f (A1)
π0 − ϵ f (V )

π0

 
Eπ0 + ϵ p3


e−ip·x ,

H0, ϵ
⊥,L(x, p⃗ ) = i


f (A1)
π0 − f (A3)

π0


(p1 + iϵp2) e−ip·x , (3.45)

where all form factors are real functions of p2⊥ = (p1)2 + (p2)2 and p2|| = E2
π0 − (p3)2, with

p2|| − p2⊥ = p2 = m2
π0. The results in Eq. (3.45) are in agreement with the observation

made in Ref. [170] that, due to the explicit breaking of rotational invariance caused by the
magnetic eld, one can dene for the neutral meson two dierent form factors related to
the axial current - see also Ref. [103]. One of them can be associated with the direction
parallel to B⃗, and the other one with the perpendicular directions. In addition, according
to Eq. (3.45) we nd that a new form factor f (V )

π0 related to the vector current can be
dened as well, as rst stated in Ref. [230].

3.2.2 Charged pion case
We consider now the case of the charged pion πσ, with σ = ± (electric charge Q = σe).
In this case the matrix element is given by

Hσ,µ
L (x, p̆) = Hσ,µ

V (x, p̆)−Hσ,µ
A (x, p̆) = ⟨0|ψ̄(x)γµ(1− γ5)τ−σψ(x)|πσ(p̆)⟩ , (3.46)

where τ± = (τ1 ± iτ2)◁2. In analogy with Eq. (3.43), we can parametrize this element as

Hσ,µ
L (x, p̆) =


ϵµναβFναDβ

f̂ (V )
πσ

2B −Dµ f̂ (A1)
πσ + is F µνDν

f̂ (A2)
πσ

B
− F µνFναD

α f̂ (A3)
πσ

B2


 ×

√
2 ⟨0|ϕπσ(x)|πσ(p̆)⟩ ▷ (3.47)

Here f̂ (V )
πσ and f̂ (Ai)

πσ are functions of the scalar operators D2
|| and D2

⊥ dened in Eq. (3.41),
while s = sign(σB). The form factors f (V )

πσ and f (A2)
πσ were already dened in Ref. [171].

On the other hand, f (A3)
πσ is new, rst dened in [230]. As in the case of the neutral pion,

it will be convenient to deal with the linear combinations dened in Eq. (3.44). The
hadronic matrix element can be readily obtained using the expressions given in previous
subsections. Let us dene it in a general way as ⟨0|ϕπσ(x)|πσ(p̆)⟩ ≡ Bs

p̄(x), where Bs
p̄(x) are

the gauge-dependent Ritus-type basis function that satisfy the eigenvalue equation (3.16).
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Then, it is not hard to prove that in any gauge we obtain

Hσ,ϵ
||,L(x, p̆) = i

√
2

f (A1)
πσ − ϵf (V )

πσ

 
Eπσ + ϵp3


Bs
p̄(x) ,

Hσ,ϵ
⊥,L(x, p̆) = sϵ

√
2

f (A1)
πσ − sϵf (A2)

πσ − f (A3)
πσ


(2ℓ+ 1− sϵ)Be Bs

p̄−sϵ(x) , (3.48)

where the form factors f
(V )
πσ and f

(Ai)
πσ turn out to be gauge-independent functions of

mπσ , p3, ℓ and B. Moreover, p̄ − sϵ refers to the fact that one should take ℓ − sϵ for
the Landau level. As in the case of the neutral pion, the discrete symmetries of the
interaction Lagrangian in the presence of the magnetic eld lead to some restrictions on
the form factors f (V )

πσ and f (Ai)
πσ . Indeed, as shown in Appendix B, they have to be real

and independent of the sign of the pion charge. Moreover, it can be seen that the vector
form factor f (V )

πσ should be odd under the exchange B → −B, while the axial-vector form
factors f (Ai)

πσ (i = 1, 2, 3) should be even functions of B.

3.3 Weak decay width of charged pions under a uni-
form magnetic eld

3.3.1 Decay width and kinematics
Let us analyze the decay width for the process π− → l ν̄l, with l = µ, e, in the presence of
the external magnetic eld. On general grounds, it is given by

Γ−
l (B) = lim

T→∞
1
nπ−



τ=1,2

ˆ

dq̆χ
(2π)32El

ˆ

dk̆χ
(2π)32Eν̄l

|(S − 1)fi|2
T

, (3.49)

where (S − 1)fi is the relevant S-matrix element between the initial and nal states, and
nπ− is the particle number associated with the initial π− state - see text below Eq. (3.24).
The shorthand notation dq̆χ and dk̆χ refers to the fact that one should sum or integrate
over the relevant quantum numbers of each particle, which are gauge-dependent quantities
- see Table 3.1. Thus, one has

Γ−
l (B) = lim

Sχ, T→∞
1

2Eπ−

ˆ

dq̆χ
(2π)32El

ˆ

dk̆χ
(2π)32Eν̄l



τ=1,2

|⟨ l(q̆, τ) ν̄l(k̆, R)|LW |π−(p̆) ⟩|2
2πSχ T

,

(3.50)
where T and Sχ are the time and space interval in which the interaction is active. Here
Sχ is a gauge-dependent quantity, with Sχ = L2L3 in the LG and Sχ = 2πL3 in the SG.
At the end of the calculation, the limit Sχ, T → ∞ will be taken. The decay amplitude
can be separated in hadronic and leptonic elements according to Eq. (3.1). The leptonic
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piece can be calculated using the notation introduced in previous subsections, resulting in

⟨ l(q̆, τ) ν̄l(k̆, R)|LW |π−(p̆) ⟩ = −GF√
2
cos θc×

ˆ

d4xH−,µ
L (x, p̆) Ū−

l (x, q̆, τ) γµ (1− γ5)Vνl(x, k̆, R) , (3.51)

whereH−,µ
L (x, p̆) stands for the matrix element of the hadronic current, dened in Eq. (3.46).

Using the nal expressions of Eq. (3.48) for these currents, together with the explicit form of
the antineutrino and charged lepton spinors, given in subsection 3.1.2 and subsection 3.1.4
respectively, we get

⟨ l(q̆, τ) ν̄l(k̆, R)|LW |π−(p̆) ⟩ = (2π)3 δχ,χ′ δ(Eπ− −El −Eν̄l) δ(p3 − q3 − k3) M(p̆, q̆, k̆, τ) ,
(3.52)

where the polarization amplitudes M(p̆, q̆, k̆, τ) (implicitly evaluated at the constraints
imposed by these delta functions) will be given below. As expected from the symmetries
of the Lagrangian, energy is conserved together with the momentum in the eld direction.
There is also a remaining conservation of the quantum number χ codied in the δχ,χ′

function. We recall that this quantum number depends on the gauge and therefore does
not represent a physical quantity. In the LG it corresponds to the 2-component of the
canonical momentum and therefore δχ,χ′ = δ(p2 − q2 − k2), while in the SG it is an
integer related to the canonical total angular momentum in the eld direction, leading to
δχ,χ′ = δ

j
(πσ)
3 , j

(l)
3 +j

(ν̄l)
3

.
The decay width is obtained by inserting Eq. (3.52) into Eq. (3.50). As customary, we

replace (similarly for δ 2
χ,χ′)

[2π δ(Eπ− −El −Eν̄l)]
2 → lim

T→∞
2π T δ(Eπ− −El −Eν̄l) ,


2π δ

p3 − q3 − k3

2 → lim
L3→∞

2πL3 δ

p3 − q3 − k3


▷ (3.53)

Taking the limit of innite space-time volume we nally get

Γ−
l (B) = 1

16πEπ−

∞

n=0

ˆ

dq̆χ dk̆χ
(2π)3ElEν̄l

δχ,χ′ δ(Eπ− −El −Eν̄l) δ(p3 − q3 − k3)
Mπ−→ l ν̄l


2
,

(3.54)
where Mπ−→ l ν̄l


2
=


τ=1,2

M(p̆, q̆, k̆, τ)

2
▷ (3.55)
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The calculation of the polarization amplitudes leads to

M(p̆, q̆, k̆, 1) = iGF cos θc


2
El +ml


(El +ml − q3)A(p̆, q̆, k̆)− s


2nBeB(p̆, q̆, k̆)


,

M(p̆, q̆, k̆, 2) = GF cos θc


2
El +ml


(El +ml + q3)B(p̆, q̆, k̆)− s


2nBeA(p̆, q̆, k̆)


,

(3.56)

where we have dened the functions

A(p̆, q̆, k̆) ≡ aπ−(Eπ− + p3)

Eν̄l − k3 I1χ + s dπ−


2(ℓ+ 1 + s)Be


Eν̄l + k3 I2χ ,

B(p̆, q̆, k̆) ≡ bπ−(Eπ− − p3)

Eν̄l + k3 I4χ + s cπ−


(2ℓ+ 1− s)Be


Eν̄l − k3 I3χ ▷

(3.57)

In these functions, the decay coecients are

aπ− ≡ f (A1)
π− − f (V )

π− , bπ− ≡ f (A1)
π− + f (V )

π− ,

cπ− ≡ f (A1)
π− − s f (A2)

π− − f (A3)
π− , dπ− ≡ f (A1)

π− + s f (A2)
π− − f (A3)

π− , (3.58)

while the spatial integrals read

I1χ = f1χ Iχ

ℓ, n− 1− s

2


, I2χ = f2χ Iχ


ℓ+ s, n− 1− s

2


,

I3χ = f3χ Iχ

ℓ− s, n− 1 + s

2


, I4χ = f4χ Iχ


ℓ, n− 1 + s

2


▷ (3.59)

Here, Iχ and fjχ are gauge dependent functions of the remaining spatial integral. In the
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LG they are given by

LG : • f1χ = f3χ = ik1 + k2

k⊥
, f2χ = f4χ = 1 ,

• Iχ(ℓ, n) = −iNℓNn

ˆ ∞

−∞
dx1 e−ik1x1 ×

Dℓ


2Bex

1 − s


2
Be

p2

Dn


2Bex

1 − s


2
Be

q2


= −i 2π e
−is k1(p2+q2)

2Be e−
κ
2 ×






ℓ!
n!


−ik1 + s k2√

2Be

n−ℓ

Ln−ℓ
ℓ (κ) if n ≥ ℓ


n!
ℓ!


−ik1 − s k2√

2Be

ℓ−n

Lℓ−n
n (κ) if ℓ ≥ n ,

(3.60)

while in the SG they read

SG : • fjχ = 1 , j = 1, ▷▷▷4 ,

• Iχ(ℓ, n) = (−i)ȷ 2π
ˆ ∞

0
dρ ρ Rℓ,ı(ρ) Rn,υ(ρ) J(ℓ−ı)−(n−υ)(k⊥ρ)

= (−i)ȷ 2π (−1)ı+υ


ı!n!
ℓ! υ! κ

(ℓ−ı)−(n−υ)
2 e−κ Lυ−ı

ı (κ)Lℓ−n
n (κ) ▷ (3.61)

where we have introduced the dimensionless variable κ = k2⊥◁(2Be). Details for the spatial
integrals can be found in Apps. C of Refs. [230, 231]. Note that since Ql = Qπ−, we have
grouped the notation of sQ = sign(QB) for charged pions and leptons under a single
symbol s.

3.3.2 Lowest energy state
As it is usually done, in what follows we will concentrate on the situation in which the
decaying pion is in the lowest energy state (LES). This corresponds to the case ℓ = 0 and
p3 = 0. The expressions for Iχ involve factorials of ℓ. Therefore, ℓ = 0 entails

Iχ(−1, n) = 0 ▷ (3.62)

If s < 0 this implies I2χ = 0, and therefore the decay width does not depend on the
combination f (A1)

π− − f (A2)
π− − f (A3)

π− . We reach the same conclusion for s > 0, since I3χ = 0
in that case.

69



3.3. Weak decay width of charged pions under a uniform magnetic eld

Let us take for deniteness B > 0. Then s < 0 and the decay amplitudes simplify to

M(p̆LES, q̆, k̆, 1) = GF cos θc (−1)n+1 2π

2(Eν̄l − k3)
El +ml

κ
n−1
2√

n− 1!
Mχ ×


aπ−Eπ−(El +ml − q3)− bπ−Eπ−(Eν̄l + k3) + cπ−2Be(κ− n)


, (3.63)

M(p̆LES, q̆, k̆, 2) = iGF cos θc (−1)n 2π

 Eν̄l − k3

Be(El +ml)
κ

n−1
2√
n!

Mχ ×


aπ−Eπ− 2nBe − (El +ml + q3)


bπ−Eπ−(Eν̄l + k3)− cπ− 2Be(κ− n)


, (3.64)

where

LG : Mχ = e
i k1(p2+q2)

2Be in

k1 − ik2

k1 + ik2

n
2

e−
κ
2 ,

SG : Mχ = (−i)ȷ−1


ı!
υ! (−1)ı+υ κ(υ−ı)◁2 e−κLυ−ı

ı (κ) ▷ (3.65)

Regarding the decay width, for ℓ = p3 = 0 energy conservation implies

δ (Eπ− −El −Eν̄l) = ElEν̄l

Eπ− k̄3
Θ(nmax − n) Θ(kmax

⊥ − k⊥)

δ

k3 − k̄3


+ δ

k3 + k̄3


,

(3.66)
where Θ(x) is the Heaviside step function and we have dened

nmax = m2
π− −m2

l +Be

2Be
, (3.67)

kmax
⊥ = Eπ− −


m2

l + 2nBe , (3.68)

k̄3 = 1
2Eπ−


[E2

π− − 2Be(n− κ)−m2
l ]
2 − 8BeE2

π−κ ▷ (3.69)

The dierence between both gauges is condensed in the |Mχ|2 coecient, which appears
when calculating the squared modulus of the amplitude in Eq. (3.54). In the LG we easily
get |Mχ|2 = e−κ. In the SG the calculation is more dicult due to the sum over the
charged lepton quantum number υ. However, it is shown in Ref. [231] that

∞

υ=0


(−i)ȷ−1


ı!
υ! (−1)ı+υ κ

υ−ı
2 e−κ Lυ−ı

ı (κ)


2

= e−κ ▷ (3.70)
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Putting all these results together, after some algebra one nally arrives at

Γ−
l (B) = G2

F cos2 θc
2πE2

π−

Be

nmax

n=0

ˆ κmax

0
dκ

1
k̄3

κn−1

n! e−κ A
(n)
π− (κ) , (3.71)

where κmax = (kmax
⊥ )2◁(2Be) and

A
(n)
π− (κ) =


E2

π− − 2Be(n− κ)−m2
l


×


m2

l

2 (n|aπ−|2 + κ|bπ−|2) +Be(n− κ)(n|aπ− − cπ−|2 + κ|bπ− − cπ−|2)

+

2Be κ

E2

π−


n|aπ− − bπ−|2 − (n− κ)|bπ− − cπ−|2


+ (n− κ)m2

l |cπ−|2


▷ (3.72)

It should be noted that the width does not depend on ı (related to the total angular
momentum j

(π−)
3 ) in the SG, nor on p2 in the LG. Since the calculation was carried out

using two dierent gauges, their coincidence provides an explicit conrmation of the gauge
independence of our expression for the decay width. Moreover, it is worth remarking that
under the exchange B → −B, which implies s → −s and f (V )

π− → −f (V )
π− , we have checked

that the above expression for the partial decay width remains invariant, as expected.
Moreover, it can be seen that in the B → 0 limit one recovers the usual expression for the
decay width in the absence of external elds, see Ref. [230] for details.

3.3.3 Strong magnetic eld: LLL and chiral limit
It is interesting at this point to study the case of a large external magnetic eld. As
stated, since the pion is built with charged quarks, the pion mass will depend in general
on the magnetic eld. Now, if the mass growth is relatively mild, for large magnetic
elds one should get Be > m2

π− − m2
l . In fact, this is what is obtained from lattice

QCD calculations [129] as well as from eective approaches like the Nambu–Jona-Lasinio
model [233], for values of the magnetic eld say Be  0▷05 GeV2. According to Eq. (3.67),
this implies nmax = 0; hence the outgoing muon or electron (assuming that the energy
is below the τ production threshold) has to lie in its lowest Landau level n = 0. As
mentioned in subsection 3.1.4, only one polarization state is allowed in this case. Since
we are considering s = −1, this corresponds to τ = 2. This can also be easily seen from
Eqs. (3.56) and (3.57), since Iχ(ℓ,−1) = 0 implies M(p̆, q̆LLL, k̆, 1) = 0. In this case the
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3.3. Weak decay width of charged pions under a uniform magnetic eld

expression for the partial width simplies to

Γ−
l, LLL

(B) = G2
F cos2 θc
2πEπ−

ˆ Eπ−−ml

0
dk⊥

k⊥

k̄3
e−

k2⊥
2Be ×


m2

l


Eν̄l|bπ−|2 − k2⊥

Eπ−
|cπ−|2


+El k

2
⊥ |bπ− − cπ−|2


▷ (3.73)

We can compare this result with the expression quoted in Eq. (5) of Ref. [171], which also
corresponds to the limit of a large external magnetic eld. The authors of that work make
some approximations for the motion of a charged pion in the presence of the magnetic eld,
concluding that only one of the two possible antineutrino polarizations can contribute to the
decay amplitude. Moreover, based on considerations of angular momentum conservation,
they assume that the antineutrino momentum in the perpendicular plane k⃗⊥ vanishes. It
can be seen that if one imposes such condition in Eq. (3.73), the result quoted in Ref. [171]
are recovered. However, we nd that if the eect of the magnetic eld is fully taken into
account in the charged pion eld, conservation laws do not imply k⃗⊥ = 0. In fact, an
integration over all possible values of the antineutrino momentum has to be performed, as
in Eq. (3.73). Another important dierence between our work and the analysis in Ref. [171]
is that our calculations include a perpendicular piece of the hadronic amplitude (related
to cπ−), which arises due to the presence of a π− zero point motion in the perpendicular
plane, even in the ℓ = 0 state.

A nal observation concerns the situation in which Be > m2
π− −m2

l and also Be ≫ m2
l .

In this case, in addition to n = 0, we can neglect the charged lepton mass in the amplitude,
obtaining

M(p̆LES, q̆LLL, k̆)ch = − iGF cos θc 2π

2El(Eνl + k3) Mχ ×


1− sign(k3)

 
bπ− Eπ− − cπ− (Eνl − k3)


, (3.74)

and therefore

Γ−
l, LLL

(B)ch = G2
F cos2 θc

π

B2
e

Eπ−


1−

1 + E2

π−

2Be


e−

E2
π−

2Be

 f (V )
π− − f (A2)

π− + f (A3)
π−


2
▷ (3.75)

As seen, while for k3 > 0 the amplitude vanishes, for k3 < 0 in general it does not. This
can be understood in terms of helicity conservation. The helicity of a lepton state can
be calculated using Eq. (3.2) together with the lepton eld dened in Eq. (3.25). In the
chiral limit ml → 0, for a charged lepton in the LLL we get [231]

γ5 |l(q̆LLL)⟩ch = s sign(q3) |l(q̆LLL)⟩ch ▷ (3.76)
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Noting that q3 = −k3, when s = −1 we see that for k3 > 0 the outgoing charged lepton
would be right-handed, which is forbidden by helicity conservation since antineutrinos
are always right-handed. This is very dierent from what happens in the absence of a
magnetic eld. For B = 0, momentum conservation together with helicity conservation
imply that the total decay amplitude of a pion at rest must vanish as ml → 0, as can be
checked in Eq. (3.75) since all form factors except f (A1)

π− cancel when B → 0. At large
magnetic eld, however, momentum conservations are dierent, and helicity conservation
only implies that the projection of the antineutrino momentum in the direction of B⃗ must
be opposite to B⃗.

Clearly, the relevance of Eq. (3.75) depends on whether these form factors are non-
negligible for magnetic elds that are much larger than the lepton mass squared. While
this is likely to happen for the π− decay to e ν̄e, in the case of the muon (and of course, the
tau) the situation is less clear, and the corrections arising from a nite lepton mass should
be taken into account. Interestingly, it is possible to obtain relatively simple expressions
for the π− → lν̄l decay width at leading order in the ratio ml◁Eπ−. From Eq. (3.73) one
gets

Γ−
l, LLL

(B) ≃ Γ−
l, LLL

(B)ch +
G2

F cos2 θc
2π

Be

Eπ−
e−

E2
π−

2Be ×

f1 |bπ−|2 − 2f2Re(b∗π− cπ−) + f3 |cπ−|2


m2

l + O

m3

l

E3
π−


, (3.77)

where

f1 = (1 + α)2 − (1 + 2α) eα + 2α2

I(α)− ln ml

Eπ−


,

f2 = α(2 + α)− 2α eα + 2α(α− 1)

I(α)− ln ml

Eπ−


,

f3 = α2 + 2α− 2 + 2(1− α) eα + 2α(α− 2)

I(α)− ln ml

Eπ−


, (3.78)

with α = E2
π−◁(2Be) and I(α) =

´ 1
0 dx(eαx − 1)◁x. It can be seen that for ml = mµ =

105▷65 MeV and Be  0▷3 GeV2, Eq. (3.77) approximates the full result in Eq. (3.73)
within 15% accuracy.

3.3.4 Angular distribution of outgoing antineutrinos
We have seen in Eq. (3.74) that, in the large magnetic eld limit, the amplitude vanishes
for k3 > 0. This implies a highly anisotropic distribution of outgoing antineutrinos, which
is not explicitly seen in the nal expression of the decay width. This in contrast to the
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3.3. Weak decay width of charged pions under a uniform magnetic eld

B = 0 case, where the distribution is isotropic. In fact, denoting w = cos θ = k3◁|⃗k|, the
dierential decay rate for the pion LES can be written as

dΓ−
l (B)
dw

= G2
F cos2 θc
4π

nmax

n=0

(1− r)2
r (1− w2)2

un−1

n! e−u


|w|A

(n)
π− (u)
k̄3(u)

+ wB
(n)
π− (u)


 , (3.79)

where

r = 1
Eπ−


E2

π− − (E2
π− − 2nBe −m2

l ) (1− w2) , u = E2
π−

2Be

(1− r)2
(1− w2) , (3.80)

and the function B
(n)
π− (u) is dened as

B
(n)
π− (u) = Eπ−


u|bπ−|2 − n|aπ−|2


m2

l + 2Be(n− u)

u|bπ− − cπ−|2 − n|aπ− − cπ−|2


▷

(3.81)
The term proportional to B

(n)
π− (u) in Eq. (3.79) does not contribute to the total decay

width since it vanishes after integration over w, recovering the result in Eq. (3.71).
In particular, when Be ≫ m2

l and Be > mπ− −ml, we have n = 0 only and ml = 0
approximately. In this chiral case, helicity conservation implies that all antineutrinos
should be produced with momenta in the half-space k3 < 0, see Eq. (3.74). Indeed, the
normalized dierential decay width is given by

1
Γ−
l, LLL

(B)ch
dΓ−

l, LLL
(B)ch

dw
=





2λ2 (1 + w)
(1− w)3

e−λ(1+w)◁(1−w)

1− (1 + λ) e−λ
if w ≤ 0

0 if w > 0
, (3.82)

where λ = E2
π−◁(2Be).

We conclude that, in contrast to the isotropy seen at B = 0, the presence of an external
magnetic eld induces an anisotropy in the angular distribution of outgoing antineutrinos.
The anisotropy is sharpened for strong elds and lower lepton masses (closer to the chiral
limit), where antineutrinos are mostly produced with momenta in the half-space opposite
to the direction of B⃗. In addition, it is worth noticing that for large values of B most
antineutrinos come out with low |k3|, i.e. in directions approximately perpendicular to the
magnetic eld.
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4
Pion properties under strong
magnetic elds in the SU(2) NJL
model

The inuence of magnetic elds on the lightest scalar and pseudoscalar mesons (σ and π⃗) has
been calculated mostly using two-avor schemes, such as chiral perturbation theory [234–
237], the linear sigma model [238–240], two-avor quark-meson model [228], relativistic
Hamiltonian-based formalisms [236, 241], eective chiral connement Lagrangian ap-
proach [242, 243], QCD sum rules [244], holographic Sakai-Sugimoto model [245], the
two-avor NJL model [156, 157, 161, 162, 168–170, 218, 222–224, 246–249], or its nonlocal
version [250, 251]. See also [53] for a comprehensive review on eective models under
strong magnetic elds. In this chapter we will study the behavior of several pion properties
in the presence of a static uniform magnetic eld within the framework of the two-avor
NJL model, using a magnetic eld-independent regularization scheme. These properties
include their masses and decay constants, which in turn allow us to estimate partial decay
widths and angular distributions, according to results from chapter 3. Once again, we will
consider the particular case of an uniform magnetic eld B⃗ along the positive 3-axis. We
will perform calculations only in the Landau gauge.

Pions are described as quantum uctuations, constructed through quark bubble sum-
mation in the frame of the random phase approximation (RPA) [145, 181]. For neutral
pions, the polarization function is translational invariant since Schwinger phases cancel out,
and it can be diagonalized by transforming to the usual momentum basis in Fourier space.
In contrast, for charged pions Schwinger phases do not cancel and the polarization function
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4. Pion properties under strong magnetic elds in the SU(2) NJL model

is not translational invariant. For simplicity, many works in the literature simply disregard
the Schwinger phases, allowing for a diagonalization in the usual Fourier space [168, 169,
247]. In Ref. [222], the use of a derivative expansion approach has been proposed as an
improved approximation to deal with this issue. Nevertheless, such an approach should be
expected to be less reliable as the mass of the meson and/or the magnetic eld increase.
The aim of the present chapter is to introduce a method that allows us to fully take into
account the translational-breaking eects introduced by the Schwinger phases. To that
end, the treatment of charged pions will be carried out on the basis of the Ritus-type
eigenfunction approach to magnetized relativistic systems, introduced in previous chapters,
which allows for a proper diagonalization of the system.

As expected, it will be seen that for nonzero magnetic eld the π0 meson can still
be treated as a pseudo Nambu-Goldstone boson, with the corresponding form factors
satisfying various chiral relations. For denite parametrizations of the model, we will
obtain numerical results for the aforementioned pion properties and compare them with
previous calculations given in the literature. Results from this chapter are based on
Refs. [233, 252, 253].
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4.1. Pion masses

4.1 Pion masses
In contrast to the previous chapter were we worked in the framework of Minkowski space-
time, we perform model calculations within the Euclidean metric as in chapter 2, replacing
x0 = −ix4, p0 = −ip4 and γ0 = −iγ4. In this metric all indexes are down since their
placement is irrelevant. Then, the Euclidean Lagrangian density for the NJL two-avor
model in the presence of an electromagnetic eld is

L = ψ̄

−i ◁D +mc


ψ −G


(ψ̄ ψ)2 + (ψ̄ iγ5τ⃗ ψ)2


, (4.1)

where ψ = (ψu,ψd)T is the two-avor quark eld and mc is the current quark mass, which
is assumed to be equal for u and d quarks. The interaction between the fermions and the
electromagnetic eld Aµ is driven by the covariant derivative Dµ = ∂µ − i Q̂Aµ, where
Q̂ = diag(Qu, Qd) with Qu = 2e◁3 and Qd = −e◁3. We will consider the particular case of
an uniform magnetic eld B⃗ along the positive 3-axis. In the Landau gauge, Aµ = Bx1 δµ,2.

We already showed in subsection 2.3.1 how to proceed in this case, obtaining the gap
equation in the mean eld approximation. However, in order to make this chapter more
self-contained for the reader convenience, we will outline the main steps repeating some of
the formulas. Since we are interested in studying meson properties, it is convenient to
bosonize the fermionic action, introducing scalar σ(x) and pseudoscalar π⃗(x) elds and
integrating out the fermion elds. The bosonized Euclidean action – see Eq. (2.19) – can
be written as

Sbos = −Tr lnD + 1
4G

ˆ

d4x [σ(x)σ(x) + π⃗(x) · π⃗(x)] , (4.2)

where Tr refers to a trace in all spaces; color, avor, Dirac and coordinates. The fermionic
operator reads

D(x, x′) = δ(4)(x− x′)

−i ◁D +mc + σ(x) + i γ5 τ⃗ · π⃗(x)


, (4.3)

where a direct product to an identity matrix in color space is understood.
We proceed by expanding the bosonized action in powers of uctuations δσ(x) and

δπi(x) around their corresponding mean eld (MF) values. As usual, we assume that the
eld σ(x) has a nontrivial translational invariant MF value σ̄, while the vacuum expectation
values of pseudoscalar elds are zero in order to keep the vacuum parity-invariant. Thus
we write

D(x, x′) = DMF(x, x′) + δD(x, x′) ▷ (4.4)
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The MF piece is avor-diagonal. It can be written as

DMF(x, x′) = diag

Du

MF(x, x′) , Dd
MF(x, x′)


, (4.5)

where
Df

MF(x, x′) = δ(4)(x− x′)

−i◁∂ −Qf ◁A+M


▷ (4.6)

The quark eective mass M is given by M = mc + σ̄. On the other hand, the operator
δD was given in Eq. (2.25). Replacing Eq. (4.4) in the bosonized eective action and
expanding in powers of the meson uctuations around the MF values – see Eq. (2.26) –
the action can be symbolically written as

Sbos = Sbos
MF + Sbos

quad + ▷ ▷ ▷ (4.7)

where the linear term vanishes.
In the previous expansion we have introduced the mean eld quark propagators for

each avor Sf
MF(x, x′) =


Df

MF(x, x′)
−1

, since DMF is diagonal in avor space. Their explicit
form can be written in dierent ways [52, 53]. For convenience we take the Schwinger
form, given in Eqs. (2.66-2.68). We recall some shorthand notation: sf = sign(QfB) and
Bf = |QfB|; γ⊥ = (γ1, γ2) and γ|| = (γ3, γ4); similarly q⊥ = (q1, q2) and q|| = (q3, q4).

The zero order contribution in Eq. (2.26) gives the mean eld approximation. The
MF free energy ΩMF = Sbos

MF ◁V
(4) is given by Eq. (2.28). The fermion operator DMF can

be diagonalized by transforming to Ritus space, resulting in expression (2.73) for ΩMF.
Minimizing the free energy with respect to M and using Schwinger parametrization to
move to proper-time representation, we obtain the gap equation (2.74)

M = mc + 2G TrSMF(x, x′) = mc + 4GMNc


IB
1u + IB

1d
2


, (4.8)

where IB
1f is a divergent integral, see (2.75). The contribution from each avor arises

independently because the magnetic eld dierentiates between particles of dierent
charges. Regularization through the MFIR scheme leads to IB

1f → Ireg1f , where

Ireg1f = Ivac1 + Imag
1f ▷ (4.9)

Namely, the divergent integral is separated into a nite magnetic eld dependent contribu-
tion, given in Eq. (2.79), and a regularized vacuum (B = 0) piece which does depend on
the regularization prescription. Choosing the standard procedure in which one introduces
a 3D momentum cuto Λ, we recover the expression given in Eq. (2.52).
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On the other hand, the MF chiral condensate for each avor is given by (2.76)

ϕf = ⟨f̄f⟩B = −Ωbos
MF

δmf
= − Nc

V (4) TrD
ˆ

d4x Sf
MF(x, x) = −NcM IB

1f ▷ (4.10)

After regularization using the MFIR scheme with a 3D cuto, we obtain (2.80)

ϕreg
f = ϕvac

f + ϕmag
f ,




ϕvac
f = −NcM Ivac1

ϕmag
f = −NcM Imag

1f

▷ (4.11)

4.1.1 Pion polarization functions
The quadratic contribution in Eq. (4.7) is given by

Sbos
quad = 1

2


P=σ,π0,π±

ˆ

d4x d4x′ δP (x)∗

δ(4)(x− x′)

2G − JP (x, x′)

δP (x′) , (4.12)

where π± = (π1 ∓ iπ2) ◁
√
2 and

Jπ0(x, x′) = Nc



f

TrD

Sf

MF(x, x′) γ5 Sf
MF(x′, x) γ5


,

Jπ−(x, x′) = 2NcTrD

Sd

MF(x, x′) γ5 Su
MF(x′, x) γ5


,

Jπ+(x, x′) = 2NcTrD

Su

MF(x, x′) γ5 Sd
MF(x′, x) γ5


▷ (4.13)

The expression for Jσ is obtained from that of Jπ0 replacing γ5 → −i . Since Jπ+(x, x′) =
Jπ−(x′, x), both charged pions have the same mass, and we can proceed by considering
only the negatively charged pion π−.

Before proceeding to each individual case, it is interesting to note some properties from
general structure of the polarization functions, which can be studied through the general
denition

cf,f ′(x, x′) ≡ 2NcTrD

Sf

MF(x, x′) γ5 Sf ′
MF(x′, x) γ5


, (4.14)

for two quarks of avors f and f ′. We start by replacing into this expression the quark
propagator of Eq. (2.66). This leads to

cf,f ′(x, x′) = eiΦP (x,x′)
ˆ

v

eiv(x−x′) cf,f ′(v) , (4.15)

where ΦP (x, x′) = QPB(x1 + x′
1)(x2 − x′

2)◁2 involves the dierence of avor charges,
QP = Qf − Qf ′. Similarly to the quark propagator, the polarization function can also
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be written as the product of a Schwinger phase and a gauge and translational invariant
function. The gauge transformation properties of the polarization function are gathered in
the Schwinger phase. The momentum function is given by

cf,f ′(v) = 2Nc

ˆ

r

TrD

S̄f(r+) γ5 S̄f ′(r−) γ5


, (4.16)

where r± = r ± v◁2. Here r = (qf + qf ′)◁2 and v = qf − qf ′ are the average and dierence
of the quarks momenta qf and qf ′ .

We will perform the calculation in the most general possible scenario, assuming dierent
quark masses (this will be relevant for the next chapter). To proceed, we rst insert the
quark propagators of Eq. (2.67) and take the Dirac trace

cf,f ′(v) = 8Nc

ˆ

r

ˆ ∞

0
dτ1

ˆ ∞

0
dτ2 e−τ1Υf (τ1,r+)−τ2Υf (τ2,r−)


(1 + sfsf ′t1f t2f ′)×


MfMf ′ + r2|| −

v2||
4


+ (1− t21f)(1− t22f ′)


r2⊥ − v2⊥

4


▷ (4.17)

where we have dened t1f = tanh(τ1Bf) and t2f ′ = tanh(τ2Bf ′). By shifting variables
according to τ1 = yz and τ2 = (1− y)z, after some rearranging we arrive at

cf,f ′(v) = 8Nc

ˆ ∞

0
dz

ˆ 1

0
dy z e−zϕ0(v)

ˆ

r

e−zϕ1(r,v)

(1 + sfsf ′tf tf ′)×


MfMf ′ + r2|| −

v2||
4


+ (1− t2f)(1− t2f ′)


r2⊥ − v2⊥

4


▷ (4.18)

where now

tf = tanh(yzBf) , tf ′ = tanh[(1− y)zBf ′] , t± = tf
Bf

± tf ′

Bf ′
▷ (4.19)

Moreover, we have dened the functions

ϕ0(v) = yM2
f + (1− y)M2

f ′ + y(1− y)v2|| +
t2+ − t2−
z t+

v2⊥
4 ,

ϕ1(r, v) =

r|| − (1− 2y) v||

2

2
+ t+

z


r⊥ + t−

t+

v⊥
2

2

▷ (4.20)
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To perform the momentum integrals we make use of the following relations
ˆ

r

e−zϕ1(r,v) = 1
16π2 z t+

, (4.21)

ˆ

r

e−zϕ1(r,v) r2|| =

1
z
+ (1− 2y)2 v

2
||

4


1

16π2 z t+
, (4.22)

ˆ

r

e−zϕ1(r,v) r2⊥ =

 1
t+

+

t−
t+

2
v2⊥
4


 1
16π2 z t+

▷ (4.23)

Finally, a straightforward calculation leads to

cf,f ′(v2⊥, v2|| ) = Nc

2π2

ˆ ∞

0
dz

ˆ 1

0
dy

e−zϕ0(v)

t+


(1 + sfsf ′tf tf ′)×


MfMf ′ + 1

z
− y(1− y)v2||


+ (1− t2f)(1− t2f ′)


1
t+

−

1− t2−

t2+


v2⊥
4


▷

(4.24)

We have remarked in the function dependence that, in the pion case, the invariant
polarization function is only a function of v2⊥ and v2|| .

4.1.2 Neutral pion mass
For the calculation of pion masses, we start by the simpler case of the neutral pion π0.
Actually, the analysis of the π0 pole mass in the presence of a magnetic eld within the
MFIR scheme has already been carried out in Refs. [161, 248]. However, in those works
the authors use a representation of the quark propagator dierent from the Schwinger one
in Eqs. (2.66-2.67). Thus, we nd it opportune to verify that both representations lead to
the same results for the π0 mass. Moreover, it will serve us to highlight the dierences
with the treatment of the charged pion. The study of the σ sigma meson mass can be
performed in an entirely equivalent way, and will not be considered here.

In the neutral case, the contributions of Schwinger phases to each term of the sum cancel
out since they correspond to the same quark avor. As a consequence, the polarization
function is translational invariant because it depends only on the dierence x− x′, which
leads to the conservation of momentum. If we take now the Fourier transform of the π0

elds to the momentum basis given in Eq. (2.41), the corresponding transform of the
polarization function will be diagonal in momentum space. Thus, the π0 contribution to
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the quadratic action in the momentum basis can be written as

Sπ0 = 1
2

ˆ

p

δπ0(−p)
 1
2G − Jπ0(p2⊥, p2||)


δπ0(p) , (4.25)

where the polarization function reads

Jπ0(p2⊥, p2||) = cu,u(p2⊥, p2||) + cd,d(p2⊥, p2||)
2 ▷ (4.26)

Here cf,f(p2⊥, p2||) is obtained taking equal avors in Eq. (4.24). Explicitly,

cf,f(p2⊥, p2||) = NcBf

2π2

ˆ 1

0
dy

ˆ ∞

0
dz e−z[M2+y(1−y)p2||] e−γf (y,z)

p2⊥
Bf ×


M2

f + 1
z
− y(1− y)p2||


coth(zBf) +

Bf

sinh2(zBf)


1− γf(y, z)

p2⊥
Bf


,

(4.27)

where
γf(y, z) = sinh(yzBf) sinh[(1− y)zBf ]

sinh(zBf)
▷ (4.28)

This expression can be also derived from Eq. (2.14) of Ref. [254].
As done at the MF level, we regularize the integral in Eq. (4.27) using the MFIR

scheme. Specically, we subtract the corresponding unregulated contribution in the B = 0
limit, given by

c0f,f(p2) = Nc

2π2

ˆ ∞

0

dz

z

ˆ 1

0
dy e−z[M2+y(1−y) p2]


M2 + 2

z
− y(1− y) p2


, (4.29)

and add it in a regularized form cvacf,f (p2). The regularized avor polarization function is
then

cregf,f(p2⊥, p2||) = cvacf,f (p2) + cmag
f,f (p2⊥, p2||) , (4.30)

where cmag
f,f (p2⊥, p2||) = cf,f(p2⊥, p2||)− c0f,f(p2) and cvacf,f is chosen to be regularized using a 3D

momentum cuto scheme, as in the case of the gap equation. In that case one has

cvacf,f (p2) = 2Nc


Ivac1 + p2Ivac2 (p2)


, (4.31)

where Ivac1 and Ivac2 (p2) are given in Eqs. (2.52) and (2.53), respectively. Choosing the
frame in which the π0 meson is at rest, its pole mass can be obtained by solving the
equation

1
2G − J reg

π0 (0,−m2
π0) = 0 ▷ (4.32)
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4.1. Pion masses

For the calculation of the meson masses we can take p2⊥ = 0 and p2|| < 0. Assuming
|p||| < 2Mf , one can integrate by parts to write the magnetic piece of the cf,f functions in
the form of Eq. (4.31)

cmag
f,f (p2⊥ = 0, p2||) = 2Nc


Imag
1f + p2|| I

mag
2f (p2||)


, (4.33)

where Imag
1f is given in Eq. (2.79) and

Imag
2f (p2||) = − Bf

8π2

ˆ ∞

0
dz

ˆ 1

0
dy e−z[M2+y(1−y)p2|| ]


coth(zBf)−

1
zBf



= 1
8π2

ˆ 1

0
dy


ψ(x̄f)− ln(x̄f) +

1
2x̄f


▷ (4.34)

Here, x̄f = [M2 + y(1− y)p2|| ]◁(2Bf ) and ψ(x) is the digamma function. It is interesting to
note that this expression of Jmag

π0 (0, p2||) = [cmag
u,u (0, p2||) + cmag

d,d (0, p2||)]◁2 is in agreement with
the one obtained in Ref. [248], where the calculation has been done using an expansion
in Landau levels for the quark propagators instead of considering the Schwinger form of
Eq. (2.67). Since both calculations use the 3D cuto regularization for the B = 0 piece, it
is checked that dierent representations of the quark propagator lead to the same result
for the (nite) magnetic dependent piece of the polarization function, as expected.

4.1.3 Charged pion mass
We turn now to the determination of charged pion masses. Contrary to the π0 case,
Schwinger phases do not cancel here due to the charge dierence in the quark avors
involved. Therefore, the polarization function of Eq. (4.13) is not translational invariant,
and consequently it will not become diagonal when transformed to the Fourier momentum
basis. Instead, we expand the charged pion eld as

π±(x) =
ˆ

p̄

Bs
p̄(x)π±(p̄) , (4.35)

where we have used the shorthand notation of Eq. (2.62). The Euclidean Ritus-type basis
function Bs

p̄(x) are given in Eq. (2.59) for the Landau gauge. Here, p̄ = (ℓ, p2, p3, p4), where
ℓ labels the charged meson Landau level, and s = sign(Qπ±B). The corresponding piece of
the action then reads

Sπ± = 1
2
ˆ

p̄,p̄ ′


δπ±(p̄)

∗  1
2G δ̂p̄,p̄ ′ − Jπ±(p̄, p̄ ′)


δπ±(p̄ ′) , (4.36)
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4.1. Pion masses

where from Eq. (4.15)

JP (p̄, p̄ ′) =
ˆ

v

cf,f ′(v)hP (p̄, p̄ ′, v) , P = π± , (4.37)

which depends on the function cf,f ′(v2⊥, v2|| ) dened in Eq. (4.24) and on the spatial integral

hP (p̄, p̄ ′, v) =
ˆ

d4x d4x′ eiΦP (x,x′) eiv(x−x′) Bs
p̄(x)∗ Bs

p̄ ′(x′) ▷ (4.38)

For P = π−, f = d and f ′ = u, while for P = π+ avors are interchanged, f = u and
f ′ = d.

Most of the coordinate integrals are trivial and provide deltas

hP (p̄, p̄ ′, v) = (2π)6 δ(2)(p|| − v||)
4

i=2
δ(pi − p′i)NℓNℓ′

2
BP

×

ˆ

dx1 e
iv1(x1−x′1)Dℓ(βs)Dℓ′(β′

s)

x′1=−x1+ 2s

BP
(p2−v2)

, (4.39)

where BP = |QPB|, βs =
√
2BP x1 − s


2◁BP p2 and β′

s =
√
2BP x′

1 − s

2◁BP p2. In

order to perform the remaining coordinate integral, we make use of the following property
of the cylindrical parabolic functions
ˆ

dψ eiγψDℓ(η − ψ)Dℓ′(η + ψ) =

√
2π e−

γ2+η2
2 ×





(−1)ℓ ℓ! (iγ + η)ℓ
′−ℓ Lℓ′−ℓ

ℓ (η2 + γ2) if ℓ′ ≥ ℓ

(−1)ℓ′ ℓ′! (−iγ + η)ℓ−ℓ′ Lℓ−ℓ′
ℓ′ (η2 + γ2) if ℓ ≥ ℓ′ ▷

(4.40)

Taking polar coordinates v⊥ = (ṽ⊥ cosφ, ṽ⊥ sinφ) we get (note that ṽ2⊥ = v2⊥)

hP (p̄, p̄ ′, v) = (2π)6 δ(2)(p|| − v||)
3

i=1
δ(pi − p′i) (−1)ℓ′ e−

v2
⊥

BP

4π
BP

×


−2v2⊥
BP

 |ℓ−ℓ′|
2

eis(ℓ−ℓ′)φ ×






ℓ!
ℓ′! L

ℓ′−ℓ
ℓ


2v2⊥
BP


, ℓ′ ≥ ℓ


ℓ′!
ℓ! L

ℓ−ℓ′
ℓ′


2v2⊥
BP


, ℓ ≥ ℓ′

, (4.41)

where La
n(x) are generalized Laguerre polynomials. The parallel Dirac delta δ(2)(p|| − v||)

is a consequence of the translational invariance in the parallel directions, since Schwinger
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4.1. Pion masses

phases do not depend on them. Now, according to Eq. (4.37), we have to perform the
momentum integrals over v. The main point here is that cf,f ′(v) = cf,f ′(v2|| , v2⊥) is actually
a function of the squared parallel and perpendicular momenta, see Eq. (4.24). Therefore,
the integration over the angle provides an extra delta function

ˆ 2π

0
dφ eis(ℓ−ℓ′)φ = 2π δℓ,ℓ′ , (4.42)

which implies that the polarization function is diagonal in the chosen basis. In fact, we
arrive at JP (p̄, p̄ ′) = δ̂p̄,p̄ ′JP (ℓ,Π2), where Π2 = (2ℓ+ 1)BP + p2|| is introduced for later
convenience and

JP (ℓ,Π2) =
ˆ ∞

0
dṽ⊥ ṽ⊥ ρℓ(ṽ2⊥) cf,f ′


ṽ2⊥,Π2 − (2ℓ+ 1)BP


, (4.43)

with
ρℓ(v2⊥) = (−1)ℓ 2

BP

e
− v2

⊥
BP Lℓ


2v2⊥
BP


▷ (4.44)

Since
ˆ ∞

0
dṽ⊥ ṽ⊥ ρℓ(ṽ2⊥) = 1 , (4.45)

ρℓ(ṽ2⊥) resembles a normalized distribution function for the perpendicular momenta. Using
the explicit form of cf,f ′(v2|| , v2⊥) given in Eq. (4.24) we can perform the last integral through
the use of the following properties – see lines 6 and 7 of 7.414 of Ref. [255]

ˆ ∞

0
dx e−bx Lℓ(x) = (b− 1)ℓ

bℓ+1 ,

ˆ ∞

0
dx x e−bx Lℓ(x) = (b− 1)ℓ−2 (b− 1− ℓ)

bℓ+2 ▷ (4.46)

Finally, one gets

JP (ℓ,Π2) = Nc

2π2

ˆ ∞

0
dz

ˆ 1

0
dy

e−zM2

α+
e−zy(1−y)[Π2−(2ℓ+1)BP )]


α−
α+

ℓ

×


M2 + 1
z
− y(1− y)(Π2 − (2ℓ+ 1)BP )


(1 + sf sf ′ tf tf ′)+

(1− t2f)(1− t2f ′)
α+ α−

[α− + (α− − α+) ℓ]

, (4.47)
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where tf and tf ′ were dened in Eq. (4.19) while

α± = Bf tf ′ +Bf ′ tf ±BP tf tf ′

Bf Bf ′
▷ (4.48)

For the π− case we have Bπ− ≡ Be = |eB|, f = d, f ′ = u and susd = −1. Regarding the
π+, exchanging d ↔ u and shifting y → 1− y one can show that Jπ+(ℓ,Π2) = Jπ−(ℓ,Π2),
which implies that both charged pions have the same mass, as expected from charge
conservation.

As in the case of the neutral pion, the polarization function in Eq. (4.47) turns out to
be divergent and has to be regularized. Once again, this can be done within the MFIR
scheme. However, due to quantization in the 1-2 plane this requires some care, viz. the
subtraction of the B = 0 contribution to the polarization function has to be carried out
once the latter has been written in terms of the squared canonical momentum Π2. Thus,
the regularized π− polarization function is given by

J reg
π− (ℓ,Π2) = Jvac

π (Π2) + Jmag
π− (ℓ,Π2) , (4.49)

where Jvac
π (Π2) is given in Eq. (4.31) for the 3D cuto regularization, replacing p2 → Π2,

and Jmag
π− (ℓ,Π2) = Jπ−(ℓ,Π2) − J0

π(Π2), where the B = 0 term is given in Eq. (4.29)
since in that limit J0

π(p2) = c0f,f(p2). Constructed this way, the magnetic eld-dependent
contribution is well behaved in the limit z → 0 and therefore nite.

Given the regularized polarization function, we can now derive an equation for the π−

meson pole mass in the presence of the magnetic eld. To do this, let us rst consider a
point-like pion. For such a particle, in Euclidean space, the two-point function will vanish
(i.e., the propagator will have a pole) when Π2 = −m2

π−. Therefore, in our framework the
charged pion pole mass can be obtained for each Landau level ℓ by solving the equation

1
2G − J reg

π− (ℓ,−m2
π−) = 0 ▷ (4.50)

While for a point-like pion mπ− is a B-independent quantity (the π− mass in vacuum), in
the present model—which takes into account the internal quark structure of the pion—this
pole mass turns out to depend on the magnetic eld. Instead of dealing with this quantity,
it has become customary in the literature to dene the π− “magnetic eld-dependent mass”
as the lowest quantum-mechanically allowed energy of the π− meson (see e.g. Ref. [74]),
namely

Eπ−(B) =

m2

π− + (2ℓ+ 1)Be + p23


p3=0, ℓ=0

=

m2

π− +Be ▷ (4.51)

Notice that this “mass” is magnetic eld dependent even for a point-like particle. In fact,
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4.2. Pion eld redenition and quark-meson coupling constants

owing to zero-point motion in the 1-2 plane, even for ℓ = 0 the charged pion cannot be at
rest in the presence of the magnetic eld.

4.2 Pion eld redenition and quark-meson coupling
constants

As usual, the pion eld wave function has to be redened. In the absence of an external
magnetic eld we have π⃗(p) = Z1◁2

π
˜⃗π(p), where Zπ is usually called the “wave function

renormalization constant”. It is dened by xing the residue of the two-point function at
the pion pole. One has

Z−1
π = −∂Jπ(p2)

∂p2


p2=−m2

π

≡ g−2
πqq , (4.52)

where Jπ(p2) is the polarization function. Then, in the vicinity of the pole, the action
reads

Sπ ≃ 1
2

ˆ

δ ˜⃗π(−p) (p2 +m2
π) δ ˜⃗π(p) ▷ (4.53)

As expected, the energy dispersion relation is isotropic in this context.
We consider now the situation in which the external magnetic eld is present. For the

neutral pion, as shown in Eq. (4.27), the polarization function J reg
π0 (p2⊥, p2||) depends in a

dierent way on the perpendicular and parallel components of p. We expand the action in
Eq. (4.25) around the pion pole (p⊥ = 0, p2|| = −m2

π0), factorize out the parallel derivative,
and redene the pion eld according to π0(p) = Z

1◁2
|| π̃0(p). This leads to

Sπ0 ≃ 1
2

ˆ

p

δπ̃0(−p)

u2
π0 p2⊥ + p2|| +m2

π0


δπ̃0(p) , (4.54)

where we have dened

Z−1
|| = −dJ reg

π0

dp2||

 p2⊥= 0
p2|| = −m2

π0

≡ g−2
π0qq , Z−1

⊥ = −dJ reg
π0

dp2⊥

 p2⊥= 0
p2|| = −m2

π0

, u2
π0 =

Z||

Z⊥
▷ (4.55)

Denoting M0(y) = [M2 − y(1− y)m2
π0 ]1◁2 and MΛ(y) = [Λ2 +M0(y)2]1◁2, from Eqs. (4.27-
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2.53) we obtain

Z−1
||

4π2

Nc
= − 2

ˆ 1

0
dy


Λ

MΛ(y)
+ ln


M0(y)

Λ+MΛ(y)


− Λ3 y(1− y)m2

π0

2M0(y)2MΛ(y)3


−



f

ˆ ∞

0
dz

ˆ 1

0
dy e−zM0(y)2 y(1− y) ×






M2 + y(1− y)m2

π0 +
2
z


1− zBf

tanh(zBf)


+ 1

z
− zB2

f

sinh2(zBf)



 , (4.56)

and

Z−1
⊥

4π2

Nc
= − 2

ˆ 1

0
dy


Λ

MΛ(y)
+ ln


M0(y)

Λ+MΛ(y)


− Λ3 y(1− y)m2

π0

2M0(y)2MΛ(y)3


−



f

ˆ ∞

0
dz

ˆ 1

0
dy e−zM0(y)2



− γf(y, z)


1

z tanh(zBf)
+ 2Bf

sinh2(zBf)


+


M2 + y(1− y)m2

π0

 
y(1− y)− γf(y, z)

tanh(zBf)


+ 3y(1− y)

z



 , (4.57)

where γf (y, z) was dened in Eq. (4.28). It is seen that, owing to the pion internal structure,
the energy dispersion relation is anisotropic in the presence of an external magnetic eld.
Namely, as already stated in Ref. [170], one has

E2
π0 = −p24 = u2

π0 p2⊥ + p23 +m2
π0 ▷ (4.58)

The direct comparison of our results for the renormalization constants with those quoted
in Ref. [170] is not possible due to the fact that dierent regularization procedures were
followed in each case (we use the MFIR scheme, while in Ref. [170] an ultraviolet cuto
is introduced). However, we have found some discrepancies between both results when
comparing the corresponding unregularized expressions. We will come back to this point
in section 4.5.

For charged pions, the momentum in the plane perpendicular to the external magnetic
eld is quantized in Landau levels ℓ. The energy dispersion relation reads in this case

E2
π− = −p24 = (2ℓ+ 1)Be + p23 +m2

π− ▷ (4.59)
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The redened (negative) charged pion eld is given by π−(p̄) = Z
1◁2
π− π̃−(p̄), where

Z−1
π− = −dJ reg

π− (ℓ,Π2)
dΠ2


Π2=−m2

π−

≡ g−2
π−qq ▷ (4.60)

Explicitly, denoting M−(y) = [M2 − y(1− y)m2
π− ]1◁2 and MΛ

−(y) = [Λ2 +M−(y)2]1◁2, from
Eq. (4.49) we nd

Z−1
π−

2π2

Nc
= −

ˆ 1

0
dy


Λ

MΛ
−(y)

+ ln


M−(y)
Λ+MΛ

−(y)


− Λ3 y(1− y)m2

π−

2M−(y)2MΛ
−(y)3


+

ˆ ∞

0
dz

ˆ 1

0
dy e−zM−(y)2 z y(1− y)






M2 + y(1− y)


m2

π− + (2ℓ+ 1)Be


+ 2

z


×


αℓ
−

αℓ+1
+

(1− tu td) ezy(1−y)(2ℓ+1)Be − 1
z


− 1

z

1
z
− y(1− y)(2ℓ+ 1)Be


+

αℓ−1
−

αℓ+2
+

(1− t2u) (1− t2d)

α− + (α− − α+) ℓ


ezy(1−y)(2ℓ+1)Be



 ▷ (4.61)

Here, tu and td are dened in Eq. (4.19) for f = d and f ′ = u, while α± are given in
Eq. (4.48).

4.3 Pion-to-vacuum vector and axial vector ampli-
tudes and weak decay constants

In order to obtain pion-to-vacuum vector and axial-vector amplitudes, we have to “gauge”
the eective action by introducing a set of vector and axial vector gauge elds, W a

µ,V (x)
and W a

µ,A(x), respectively. This is done by performing the replacement

γµ∂µ → γµ∂µ − i
3

a=1

τa

2


B=V,A

Γµ,B W a
µ,B(x) , (4.62)

where B = V,A with Γµ,V = γµ and Γµ,A = γµγ5. Once this extended gauged eective
action is built, the corresponding pion-to-vacuum amplitudes are obtained as the derivative
of this action with respect to W a

µ,B(x) and the redened meson elds, evaluated at
W a

µ,B(x) = 0. Therefore, the relevant terms in the action are those linear in the pion and
gauge elds. This piece of the action can be written as

SπW =


B=V,A



κ=±,3

ˆ

d4x d4x′ W−κ
µ,B(x)F κ

µ,B(x, x′) δπκ(x′) , (4.63)

89



4.3. Pion-to-vacuum vector and axial vector amplitudes and weak decay constants

where W±
µ,B = (W 1

µ,B ∓ iW 2
µ,B)◁

√
2. The functions F κ

µ,B(x, x′) are dened as

F 3
µ,B(x, x′) = − i

4


f

cffµ,B(x, x′) , (4.64)

F−
µ,B(x, x′) = − i

2 cduµ,B(x, x′) , (4.65)

F+
µ,B(x, x′) = − i

2 cudµ,B(x, x′) , (4.66)

where, in analogy with Eq. (4.14), we have dened the function

cf,f
′

µ,B(x, x′) = 2NcTrD

Sf

MF(x, x′) γ5 Sf ′
MF(x′, x)Γµ,B


▷ (4.67)

Proceeding as in Eqs. (4.14-4.18), this function can be expressed as the product of a
Schwinger phase and a translational invariant function

cf,f
′

µ,B(x, x′) = eiΦπ(x,x′)
ˆ

v

eiv(x−x′) cf,f
′

µ,B(v) , (4.68)

where
cf,f

′
µ,B(v) = 2Nc

ˆ

r

TrD

S̄f(q + v◁2) γ5 S̄f ′(q − v◁2) Γµ,B


▷ (4.69)

The only dierence remains in the calculation of the trace. From Eq. (4.18), we can write
the momentum function in a general way as

cf,f
′

µ,B(v) = 2Nc

ˆ ∞

0
dz

ˆ 1

0
dy z e−zϕ0(v)

ˆ

r

e−zϕ1(r,v) Tµ,B(r, v) , (4.70)

where Tµ,B(r, v) represents the corresponding traces, which can be found in App. A of
Ref. [252]. Regarding the momentum integrals, besides Eq. (4.21) we only need

ˆ

r

e−zϕ1(r,v)(r1 + iϵ r2) = − t−
t+

v1 + iϵ v2
2

1
16π2 z t+

, (4.71)

Finally, dening the linear combinations (ϵ = ±1)

cf,f
′, ϵ

||,B (v) = cf,f
′

4,B (v) + ϵ cf,f
′

3,B (v) ,

cf,f
′, ϵ

⊥,B (v) = cf,f
′

1,B (v) + iϵ cf,f
′

2,B (v) , (4.72)
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and assuming Mf = Mf ′ we arrive at

cf,f
′, ϵ

||,V (v) = i
NcM

2π2

ˆ ∞

0
dz

ˆ 1

0
dy e−zϕ0(v) sf tf + sf ′tf ′

t+
ϵ v−ϵ

|| ,

cf,f
′, ϵ

⊥,V (v) = 0 , (4.73)

and

cf,f
′, ϵ

||,A (v) = − NcM

2π2

ˆ ∞

0
dz

ˆ 1

0
dy e−zϕ0(v) 1 + sfsf ′tf tf ′

t+
vϵ|| ,

cf,f
′, ϵ

⊥,A (v) = − NcM

2π2

ˆ ∞

0
dz

ˆ 1

0
dy e−zϕ0(v) ×

Bf tf ′(1− t2f)(1 + ϵ sf ′tf ′) +Bf ′tf(1− t2f ′)(1− ϵ sf tf)
BfBf ′ t2+

vϵ⊥ , (4.74)

where vϵ|| = v4 + ϵ v3 and vϵ⊥ = v1 + iϵ v2.

4.3.1 Neutral pion amplitudes and form factors
As in the analysis of the π0 mass, we expand the neutral pion eld in Eq. (4.63) in the
Fourier basis. After redening the pion eld, pion-to-vacuum amplitudes read

H0
µ,B(x, p⃗ ) = ⟨0|ψ̄(x)Γµ,B

τ 3

2 ψ(x)|π̃0(p⃗ )⟩ = − ∂SπW

∂δπ̃0(p) ∂W 3
µ,B(x)

= − Z
1◁2
||

ˆ

d4x′ eipx
′
F 3
µ,B(x, x′) ▷ (4.75)

Using Eqs. (4.64) and (4.68), and taking into account that Schwinger phases cancel out in
this case, after integrating over x′ we get

H0
µ,B(x, p⃗ ) = i

4 Z
1◁2
|| eipx



f

cffµ,B(p) ▷ (4.76)

For convenience, we consider the linear combinations of Eq. (4.72). Using the relations
of Eqs. (4.73) and (4.74), after a straightforward calculation we obtain

H0, ϵ
||,V (x, p⃗ ) = − ϵ p−ϵ

|| eipx


f

sf

ˆ ∞

0
dz

ˆ 1

0
dyF0(y, z) ,

H0, ϵ
⊥,V (x, p⃗ ) = 0 , (4.77)
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and

H0, ϵ
||,A(x, p⃗ ) = − i pϵ|| e

ipx


f

ˆ ∞

0
dz

ˆ 1

0
dyF0(p⃗, y, z) coth(zBf) ,

H0, ϵ
⊥,A(x, p⃗ ) = − i pϵ⊥ eipx



f

ˆ ∞

0
dz

ˆ 1

0
dyF0(p⃗, y, z) cosh[(2y − 1)zBf ]

sinh(z Bf)
, (4.78)

where we have dened pϵ|| = p4 + ϵ p3, pϵ⊥ = p1 + iϵ p2 and

F0(p⃗, y, z) = Z
1◁2
||

NcM

8π2 Bf e
−z[M2+y(1−y)p2||] e−γf (y,z)

p2⊥
Bf ▷ (4.79)

Now, following the notation of Eq. (3.45), we dene the neutral pion decay form factors
as

H0, ϵ
||,V (x, p⃗ ) = − ϵ p−ϵ

|| eipx f (V )
π0 ,

H0, ϵ
||,A(x, p⃗ ) = − i pϵ|| e

ipxf (A1)
π0 ,

H0, ϵ
⊥,A(x, p⃗ ) = − i pϵ⊥ eipx


f (A1)
π0 − ϵ f (A2)

π0 − f (A3)
π0


▷ (4.80)

Note that, since we are working in Euclidean space, the relations H4 = iH0 and p4 = ip0

need to be considered when comparing with the expressions in Eq. (3.45). In this way, for
an on-shell pion in its rest frame, i.e. taking pµ = imπ0δµ4, the axial decay constants are
given by

f (A1)
π0 = Z

1◁2
||

NcM

8π2



f

ˆ ∞

0
dz

ˆ 1

0
dy e−zM0(y)2 Bf

tanh(zBf)
,

f (A2)
π0 = 0 ,

f (A3)
π0 = Z

1◁2
||

NcM

8π2



f

2Bf

ˆ ∞

0
dz

ˆ 1

0
dy e−zM0(y)2 γf(y, z) , (4.81)

while the vector decay constant reads

f (V )
π0 = Z

1◁2
||

NcM

8π2



f

sfBf

ˆ ∞

0
dz

ˆ 1

0
dy e−zM0(y)2 ▷ (4.82)

We recall that M0(y) = [M2 − y(1− y)m2
π0]1◁2 and γf(y, z) is dened in Eq. (4.28). It is

seen that f (A2)
π0 vanishes, as indicated from the general analysis of Appendix B. Thus, we

nd that in the presence of the external magnetic eld there are in general two axial and
one vector nonvanishing form factors for the neutral pion. Notice that in the chosen frame
both H0,ϵ

⊥,V and H0,ϵ
⊥,A are zero, hence f (A3)

π0 will not contribute to the amplitudes.
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It can be easily seen that f (A3)
π0 and f (V )

π0 are nite and vanish in the B → 0 limit. On
the contrary, the expression for f (A1)

π0 in Eq. (4.81) is divergent. It can be regularized in
the context of the MFIR scheme, i.e., subtracting the corresponding divergent contribution
in the B = 0 limit, f 0

π , and adding it in a regularized form, f vac
π0 . One has

f (A1),reg
π0 = fvac

π0 + f (A1),mag
π0 , (4.83)

where f (A1),mag
π0 = f (A1)

π0 − f0
π . The divergent B = 0 piece,

f0
π = Z1◁2

π

NcM

4π2

ˆ ∞

0
dz

ˆ 1

0

dy

z
e−zM0(y)2 , (4.84)

can be regularized using a 3D momentum cuto scheme, as done in the previous subsections.
One has in this way

fvac
π0 = −2Z1◁2

|| NcMIvac2 (−m2
π0) , (4.85)

where Ivac2 is given in Eq. (2.53). Note that we do not take the B → 0 limit in Z|| (strictly,
one should rst regularize the form factor and then redene the pion wave function).

Finally, we nd it convenient to dene “parallel” and “perpendicular” axial decay
constants f (A||)

π0 and f (A⊥)
π0 , given in terms of f (A1),reg

π0 and f (A3)
π0 according to

f (A||)
π0 = f (A1),reg

π0 , f (A⊥)
π0 = f (A1),reg

π0 − f (A3)
π0 ▷ (4.86)

Our expressions for the π0 decay constants, taken before any regularization scheme is
applied, can be compared with those obtained in Ref. [170]. Although, as mentioned in the
previous subsection, we have found some discrepancies in the results for the renormalization
constants, it can be checked that the ratios f (A||)

π0 ◁gπ0qq and f (A⊥)
π0 ◁gπ0qq are in agreement

with those quoted in Ref. [170], once dierent notations have been properly compatibilized.

4.3.2 Charged pion amplitudes and form factors
As in the case of the polarization functions, we expand the charged pion elds using
Eq. (4.35). Since charged decay constants are real and equal for both charged pions
(see Appendix B), it is sucient to consider the π− hadronic amplitudes

H−
µ,B(x, p̆) = ⟨0|ψ̄ Γµ,B τ+ ψ|π̃−(p̆)⟩ = −

√
2 ∂SπW

∂δπ̃−
p̄ ∂W+

µ,B(x)

= −
√
2 Z

1◁2
π−

ˆ

x′
Bs
p̄(x′)F−

µ,B(x, x′) ▷ (4.87)
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We recall that p̄ = (ℓ, p2, p3, p4) = (p̆, p4), see also Table 3.1, and s = sign(Qπ−B). From
Eqs. (4.65) and (4.68) we have

H−
µ,B(x, p̆) = i√

2
Z

1◁2
π−

ˆ

d4x′ Bs
p̄(x′) eiΦπ−(x,x′)

ˆ

v

eiv(x−x′) cduµ,B(v) , (4.88)

which resembles the form of expression (4.37). Integrating rst over x′ some Dirac deltas
appear, leading to

H−
µ,C(x, q̆) = i

4πNℓ√
2Be

Z
1◁2
π− eip2x2+ip||x||

ˆ

v⊥
cduµ,B(v) eiv1(x1−x′1)Dℓ(β′

s)
 v||=p||

x′1=−x1+ 2s
Be

(p2−v2)

, (4.89)

where we recall β′
s =

√
2Be x

′
1 − s


2◁Be p2. The remaining momentum integrals can be

performed with the aid of the following relations, which can be derived from property
7.724 of Ref. [255]

ˆ

v⊥
vϵ⊥ Dℓ(x1, p2, v⊥) e−γv2

⊥ = − isϵ

√
2B3◁2

e

4π
(1− γBe)ℓ
(1 + γBe)ℓ+1

ℓ
1+sϵ

2

(1− sϵγBe)
Dℓ−sϵ(βs) ,

ˆ

v⊥
Dℓ(x1, p2, v⊥) e−γv2

⊥ = Be

4π
(1− γBe)ℓ
(1 + γBe)ℓ+1 Dℓ(βs) , (4.90)

where βs =
√
2Be x1 − s


2◁Be p2 and

Dℓ(x1, p2, v⊥) = e2iv1(x1+s v2−p2
Be

) Dℓ


−

2Be x1 + s


2
Be

(p2 − 2v2)

▷ (4.91)

For our case, from ϕ0(v) in Eq. (4.20) we have γ = t+(1− t2−◁t
2
+)◁4.

For convenience, as in the π0 case we concentrate on the linear combinations H−, ϵ
||,B and

H−, ϵ
⊥,B, dened as in Eq. (4.72). After some algebra one arrives at

H−, ϵ
||,A (x, p̆) = − i

√
2 p ϵ

|| Bs
p̄(x)

ˆ ∞

0
dz

ˆ 1

0
dy F−(p̆, y, z) (1− tutd) ,

H−, ϵ
⊥,A(x, p̆) = − sϵ

√
2

(2ℓ+ 1− sϵ)Be Bs

p̄−sϵ(x)×
ˆ ∞

0
dz

ˆ 1

0
dy F−(p̆, y, z)


α−
α+

−sϵ

(1 + ϵ sutu)(1− ϵ sdtd) ,

H−, ϵ
||,V (x, p̆) = − ϵ

√
2 p−ϵ

|| Bs
p̄(x)

ˆ ∞

0
dz

ˆ 1

0
dy F−(p̆, y, z) (sutu − sdtd) ,

H−, ϵ
⊥,V (x, p̆) = 0 , (4.92)
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where sd = −su = s and

F−(p̆, y, z) = Z
1◁2
π−

NcM

4π2
αℓ
−

αℓ+1
+

e−z[M2+y(1−y)p2|| ] ▷ (4.93)

We recall the shorthand notation p̄+ ϵ = (ℓ+ ϵ, p2, p3, p4) and p ϵ
|| = p4 + ϵ p3.

As in the neutral pion case we follow the notation of Eq. (3.48), dening the charged
pion decay constants in Euclidean space as

H−, ϵ
||,A (x, p̆) = − i

√
2 f (A1)

π− p ϵ
|| Bs

p̄(x) ,

H−, ϵ
⊥,A(x, p̆) = − sϵ

√
2

f (A1)
π− − sϵ f (A2)

π− − f (A3)
π−

 
(2ℓ+ 1− sϵ)Be Bs

p̄−sϵ(x) ▷

H−, ϵ
||,V (x, p̆) = − ϵ

√
2 f (V )

π− p−ϵ
|| Bs

p̄(x) , (4.94)

From Eqs. (4.92) and (4.94), evaluating at the pion mass p2|| + (2ℓ + 1)Be = −m2
π− we

obtain

f (A1)
π− = Z

1◁2
π−

ˆ ∞

0
dz

ˆ 1

0
dy

NcM

4π2
αℓ
−

αℓ+1
+

e−z{M2−y(1−y)[m2
π−+(2ℓ+1)Be]} (1− tu td) ,

f (A2)
π− = Z

1◁2
π−

ˆ ∞

0
dz

ˆ 1

0
dy

NcM

4π2
αℓ
−

αℓ+1
+

e−z{M2−y(1−y)[m2
π−+(2ℓ+1)Be]} ×


α−
2α+

(1 + tu)(1 + td)−
α+

2α−
(1− tu)(1− td)


,

f (A3)
π− = Z

1◁2
π−

ˆ ∞

0
dz

ˆ 1

0
dy

NcM

4π2
αℓ
−

αℓ+1
+

e−z{M2−y(1−y)[m2
π−+(2ℓ+1)Be]} ×


1− tu td −

α−
2α+

(1 + tu)(1 + td)−
α+

2α−
(1− tu)(1− td)


,

f (V )
π− = Z

1◁2
π−

ˆ ∞

0
dz

ˆ 1

0
dy

NcM

4π2
αℓ
−

αℓ+1
+

e−z{M2−y(1−y)[m2
π−+(2ℓ+1)Be]} (sutu − sdtd) ▷ (4.95)

In the B → 0 limit we have Zπ− → Zπ and f (A1)
π− → f0

π , the latter given by Eq. (4.84).
Meanwhile, f (A2)

π− , f (A3)
π− and f (V )

π− are nite and vanish in the limit B → 0. Therefore, as
expected, both neutral and charged pion weak form factors tend to the usual pion decay
constant in the absence of the external eld.

Once again, the expression for f (A1)
π− in Eq. (4.95) is divergent and needs to be regularized.

Using a 3D cuto within the MFIR scheme, the regularized expression reads

f (A1),reg
π− = fvac

π− + f (A1),mag
π− , (4.96)
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where f (A1),mag
π− = f (A1)

π− − f0
π , see Eq. (4.84) for the B = 0 expression, and

fvac
π− = −2Z1◁2

π− NcM Ivac2 (−m2
π−) , (4.97)

with Ivac2 (p2) given by Eq. (2.53).
As in the case of the neutral pion, we nd it convenient to introduce parallel and per-

pendicular π− axial decay form factors. Thus, we dene one parallel and two perpendicular
decay constants, according to

f (A||)
π− = f (A1),reg

π− , f (A⊥±)
π− = f (A1),reg

π− ± f (A2)
π− − f (A3)

π− ▷ (4.98)

It is worth noticing that if the pion lies on the lowest Landau level, i.e. ℓ = 0, from
Eq. (4.94) one has H−,−

⊥,A (x, p̆) = 0, hence in that case the π− weak decay amplitude will
not depend on f (A⊥−)

π− . In fact, strictly speaking, for ℓ = 0 one cannot determine f (A⊥−)
π−

from Eqs. (4.92) and (4.94).
The π+ decay constants can be obtained following a similar procedure. As stated

in Appendix B, one can check that f (j)
π+ = f (j)

π− , where j = V,A1, A2, A3. Moreover, by
changing B → −B one can check that

f (V )
π± (ℓ, B) = − f (V )

π± (ℓ,−B) ,

f (Ai)
π± (ℓ, B) = f (Ai)

π± (ℓ,−B) , i = 1, 2, 3 ▷ (4.99)

4.4 Chiral limit relations
It is interesting to discuss the relations satised by the quantities studied in the previous
section in the chiral limit, i.e., for mc → 0. First, it should be stressed that even in
the presence of an external magnetic eld, the neutral pion remains being a pseudo-
Nambu-Goldstone (NG) boson. This can be shown by taking into account the polarization
function J reg

π0 (p2|| , p2⊥) evaluated at p2|| = p2⊥ = 0. After integration by parts it is seen that
Jmag
π0 (0, 0) = 2Nc I

mag
1 , where Imag

1 is given by the average of Eq. (2.79). Hence, from
Eqs. (4.9), (2.52) and (4.31) one gets

J reg
π0 (0, 0) = 2Nc I

reg
1 ▷ (4.100)

Now, taking into account this result together with the (regularized) gap equation (2.34),
in the chiral limit one gets J reg

π0 (0, 0)ch = 1◁(2G), which implies mπ0, ch = 0. In this way,
associated chiral relations are expected to hold even for nonzero B.

From the expressions for the renormalization constants, Eqs. (4.56-4.57), and the axial
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form factors, Eq. (4.81), it is seen that the parallel and perpendicular axial decay constants
for the π0 meson introduced in Eq. (4.86) satisfy the generalized Goldberger-Treiman
relations

gπ0qq f
(A||)
π0 = Mch +O(m2

π0) , (4.101)

gπ0qq f
(A⊥)
π0 = u2

π0, chMch +O(m2
π0) ▷ (4.102)

Thus, in the chiral limit one has [170]

f (A⊥)
π0, ch = u2

π0, ch f
(A||)
π0, ch ▷ (4.103)

In fact, this equation can be readily obtained from a general eective low energy action for
NG bosons in the presence of a magnetic eld, see e.g. Ref. [103]. Making use of Eq. (4.101),
together with the gap equation, one obtains the generalized Gell-Mann-Oakes-Renner
relation [234]


mπ0 f (A||)

π0, ch

2
= − 2mc

⟨ūu+ d̄d⟩ch
2 , (4.104)

where we have taken into account that in our model the averaged quark condensate satises
⟨ūu+ d̄d⟩◁2 = −Mch◁(4G) +O(mc). Note that a similar relation can be found for f (A⊥)

π0, ch

using Eq. (4.103).
It is also interesting to consider the expression for f (V )

π0 in the chiral limit. From
Eqs. (4.82) and (4.101) it is seen that for mc → 0 one has

f (V )
π0, ch = Be

8π2f (A||)
π0, ch

▷ (4.105)

This relation —to the best of our knowledge—has not been previously stated in the
literature. It is worth noticing it can be obtained from the anomalous Wess-Zumino-
Witten (WZW) eective Lagrangian [256, 257]. The WZW term that couples a neutral
pion to an electromagnetic eld and a vector eld W 3

µ,V is given by

LWZW


π0AWV

= iNc e

48π2fπ
π0 ϵµναβ ∂µW

3
ν,V Fαβ , (4.106)

where ϵ4123 = 1. If one identies the constant fπ in this eective Lagrangian with f (A||)
π0 , and

the electromagnetic eld tensor with the external magnetic eld (F12 = −F21 = B), taking
into account the denitions in Eq. (4.80) one arrives at the chiral relation in Eq. (4.105).

In the case of charged pions, the presence of an external magnetic eld leads to the
explicit breakdown of chiral symmetry and, in general, π± cannot be identied with NG
bosons. However, chiral relations should be recovered in the limit of low B. In particular,

97



4.5. Numerical results

mc (MeV) g = GΛ2 Λ (MeV) -⟨uū⟩1◁3 (MeV) M (MeV)
Set I 5.6616 2.2501 613.39 243.26 350
Set II 5.4192 2.1364 639.49 246.91 320
Set III 5.7921 2.3642 596.11 241.36 380

Table 4.1: Parameters sets for the two-avor NJL model.

the coupling of charged pions to the magnetic eld and an external vector current arising
from the WZW Lagrangian has the same form of Eq. (4.106), taking the i = 1, 2 isospin
components of the elds πi and W i

µ,V .

4.5 Numerical results
For deniteness, we consider B > 0 and only π− for the charged pions. Therefore
su = −sd = −s = +1. In order to obtain numerical results for the dierent pion properties
one has to x the model parametrization. In addition to the usual requirements for the
description of low-energy phenomenological properties, such as the pion mass and decay
constant, we nd it adequate to choose a parameter set that takes into account LQCD
results for the behavior of quark-antiquark condensates under an external magnetic eld.

In order to compare with LQCD results given in Refs. [73] we introduce the quantities

∆Σ̄(B) ≡ ∆Σu(B) +∆Σd(B)
2 , Σ−(B) = ∆Σu(B)−∆Σd(B) , (4.107)

where ∆Σf (B) = −2mc


⟨f̄f⟩B −⟨f̄f⟩0


◁D4. Here D is a phenomenological normalization

constant given by D = (135× 86)1◁2 MeV.
In order to test the sensitivity of our results to the parametrization, we consider the

three parametrization sets listed in Table 4.1. All of these reproduce the phenomenological
values mπ = 138 MeV and fπ = 92▷4 MeV. Moreover, we also explore the possibility of
considering a magnetic eld dependent coupling G(B), so as to incorporate the sea eect
produced by the backreaction of gluons to magnetized quarks loops, as discussed in the
introduction. We adopt the expression proposed in Ref. [161], given by

G(B) = G
α+ β e−γB2

e

α+ β
, (4.108)

where α = 1▷44373 GeV−2 β = 3▷06 GeV−2 and γ = 1▷31 GeV−4. We have normalized the
functional dependence so that G(0) = G corresponds to the coupling constant of each set
of Table 4.1. Since variations in the parametrization turn out to have a negligible impact
on the outcomes, for visual clarity we will show results using G(B) only for set I.
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Figure 4.1: Eective quark mass M as function of eB. olid lines correspond to set I using G
(black) and G(B) (red), while the limits of the gray bands correspond to set II (dashed lines)
and set III (dotted lines) using a constant coupling.

The eective quark mass M , which is a solution to the gap equation (2.34), is displayed
in Figure 4.1 for all three sets of Table 4.1 using a constant coupling G but only for set I
using G(B). For the rest of this section, solid lines in the gures indicate the results for
parameter set I, while the limits of the gray bands correspond to set II (dashed lines) and
set III (dotted lines). As seen, the magnetic-eld dependent coupling greatly diminishes
the enhancement of M with B, even resulting in a nonmonotonic behavior.

In Figure 4.2 we show the comparison between the sets of Table 4.1, using G and G(B),
and LCQD results for the normalized condensates of Eq. (4.107). We see that results
obtained using a constant coupling are in good agreement with lattice calculations of
Ref. [73] for the normalized average and dierence condensate, being set I the closest one.
On the other hand, G(B) results show a somewhat larger deviation from lattice simulations.
It is also seen that our predictions are not signicantly aected by the parameter choice.

4.5.1 Neutral pion
In Figure 4.3 we show our numerical results for the quantities associated with the neutral
pion as functions of eB. We observe that the qualitative behavior of all calculated quantities
remains basically unaected by changes in the model parameters within phenomenological
reasonable limits.

Panel (a) shows the eect of the magnetic eld on the neutral pion mass. It is seen
that for a constant coupling G the mass shows a slight non-monotonic decrease with B.

99



4.5. Numerical results

Figure 4.2: Behavior of ∆Σ̄ (left) and Σ− (right) as functions of eB. olid lines correspond to
set I using G (black) and G(B) (red), while the limits of the gray bands correspond to set II
(dashed lines) and set III (dotted lines) using a constant coupling. Results from lattice QCD
calculations [73] are included as blue squares for comparison.

On the other hand, the decrease is not only monotonic but more pronounced when a
magnetic eld dependent coupling is used.

In panel (b) we display the pion-to-quark coupling constant gπ0qq and the transverse
velocity uπ0, given by Eqs. (4.55-4.57). We observe that for constant G, gπ0qq shows some
enhancement if B is increased, in contrast to what happens for the G(B) case. On the other
hand, for both type of couplings uπ0 decreases monotonously with B, remaining always
lower than one guaranteeing the law of causality. This result is consistent with the one
obtained in Refs. [100, 153, 217]. It should be also noticed that uπ0 is basically insensitive
to the parametrization. In fact, it remains almost unchanged if one takes mc → 0, which
implies that for nonzero B neutral pions move at a speed lower than the speed of light
even in the chiral limit. We notice that, on the contrary, uπ0 > 1 is found in Ref. [170]. In
addition to the already mentioned discrepancies in the expressions for the renormalization
constants, this behavior is likely due to the choice of a bad regularization scheme in that
work, namely a soft cuto magnetic function. This claim is supported by the fact that a
subluminal behavior is also obtained when using the (non MFIR) Pauli-Villar scheme [153].

Results for the neutral axial decay constants are shown in panel (c). Starting from a
common value at B = 0, it is seen that while f (A||)

π0 is enhanced for increasing B, f (A⊥)
π0

is reduced. In both cases the B dependence is stronger than for the other quantities
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Figure 4.3: Neutral pion properties as functions of eB. olid lines correspond to set I using G
(black) and G(B) (red), while the limits of the gray bands correspond to set II (dashed lines)
and set III (dotted lines) using a constant coupling.

discussed previously. Note that our results indicate that f (A⊥)
π0 < f (A||)

π0 for all considered
values of eB, which diers from the result in Ref. [170]. This seems to be related to the
fact that, as stated, in that reference uπ0 > 1 is obtained. Finally, in panel (d) we show
the behavior of f (V )

π0 , which grows with B.
It is interesting to notice that the numerical results given above (which have been

obtained from parametrization sets leading to mπ = 138 MeV and fπ = 92▷4 MeV at
B = 0) satisfy quite well the chiral limit relations in Eqs. (4.101-4.105). In fact, it is found
that all these relations are satised at a level of less than 2% for all considered values of
eB.

To conclude this subsection, in the next gures we show a comparison between our
results and others found in the literature. In Figure 4.4 we compare normalized neutral
pion masses. For a constant coupling G, it shows a slight decrease with B, in agreement
with the analysis of Refs. [161, 248] also done within the NJL model. Moreover, this
behavior is nonmonotonic: the mass increases for strong enough elds. In contrast, lattice
simulations seem to lean toward a monotonic decrease of mπ0 with the magnetic eld.
Also shown are lattice results obtained using Wilson fermions with a heavy pion mass of
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Figure 4.4: Normalized neutral pion mass as a function of eB. Grey band (red solid line)
correspond to this work using a constant (magnetic) coupling; light blue band to LQCD results of
Ref. [129] employing quenched Wilson quarks; magenta dots to LQCD results of Ref. [258] using
highly improved staggered quarks; and green dashed-dotted line to results from the nonlocal-NJL
model [251].

mπ(0) = 415 MeV in vacuum [129], and highly improved staggered quarks with similar
to physical pion masses of mπ(0) = 220 MeV [258]. As seen in the gure, through the
introduction of a magnetic coupling G(B), which schematically takes into account the
eect of sea quarks on the gluon elds, the NJL model is able to reproduce this monotonic
behavior together with an enhancement of the decrease, in agreement with Ref. [161]. It
is interesting to note that in the framework of NJL-like models, this behavior can also
be reproduced by considering nonlocal interactions (nlNJL) [250, 251], whose results are
displayed as well in Figure 4.4.

In Figure 4.5 we compare normalized axial decay constants. In the left panel, the usual
parallel component is displayed. Our results using G show a somewhat mild increase with
the magnetic eld. By putting G(B) the enhancement is magnied, in better agreement
with estimations from LQCD [258] and the nonlocal-NJL model [251], which show a steeper
enhancement. Lastly, results from the functional renormalization group approach to the
quark-meson model (rgQMM) [228] show an even greater increase of f (A||)

π0 . This is likely
to be correlated with the fact that in that approach the π0 mass shows a stronger decrease
as the magnetic eld increases.

On the other hand, results for the perpendicular component are displayed in the right
panel. For constant G our results show a decreasing behavior. The eect is stronger
when G(B) is used. An even steeper decrease is obtained in the nlNJL model [251]. In
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Figure 4.5: Left (right) panel: normalized parallel (perpendicular) neutral axial decay constant as
a function of eB. Grey band (red solid line) correspond to this work using a constant (magnetic)
coupling; magenta dots to LQCD results of Ref. [258] using highly improved staggered quarks;
green dashed-dotted line to results from the nonlocal-NJL model [251]; and blue connected dots
to results from the functional renormalization group approach to the quark-meson model [228].

contrast, rgQMM results show a milder decrease with the magnetic eld [228]. It should be
mentioned that additional calculations for f (A||)

π0 have been carried out using ChPT [235]
and within the eective chiral connement Lagrangian approach [243]. The latter shows a
behavior similar to that of the nlNJL model considered in Ref. [250], while ChPT results,
trustable for values of the magnetic eld up to say eB ∼ 0▷1 GeV2, are found to be in
reasonable agreement with our curves.

It is worth mentioning that all of the quantities displayed in Figure 4.3 have also been
calculated in the nonlocal version of the NJL model, see Ref. [251] for comparison. We
briey outline the remaining results of the nlNJL compared to our study: gπqq shows a
decreasing behavior, in contrast with our results for G but in agreement when using G(B);
uπ0 decreases more with B; and f (V )

π0 displays a milder increase with B.

4.5.2 Charged pions
In Figure 4.6 we show our numerical results for the quantities associated with the charged
pions in the lowest Landau level (LLL), as functions of eB. As in the case of the π0, the
qualitative behavior of all calculated quantities is not signicantly aected by changes in
the model parametrization within the considered limits. The curves corresponding to gπ−qq

and f (V )
π− are very similar to those obtained for the neutral pion in Figure 4.3. Regarding

the decay constants, it is interesting to note that while the use of G(B) decreases the
value of f (i)

π− for i = A1, A2, V , the eect is reversed for f (A3)
π− . All decay constants show

an enhancement with the magnetic eld. This is particularly interesting for the new
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Figure 4.6: Charged pion properties as functions of eB. olid lines correspond to set I using G
(black) and G(B) (red), while the limits of the gray bands correspond to set II (dashed lines)
and set III (dotted lines) using a constant coupling.

decay constants, f (A2)
π− , f (A3)

π− and f (V )
π− . While for low magnetic elds their value is almost

negligible, for strong magnetic elds f (A2)
π− and f (V )

π− can reach values comparable to f
(A||)
π− ,

and therefore have a possibly meaningful impact on the decay. Moreover, as discussed
in subsection 3.3.2, if the pion lies on the lowest energy state then the combination
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Figure 4.7: Dierence of squared lowest energies of charged pions between the case at B ̸= 0
and B = 0 as a function of eB. The grey band (red solid line) correspond to this work using a
constant (magnetic) coupling, while the orange dashed-dotted line represents the point-like case
(eB). The dark yellow solid line is obtained by disregarding chwinger phases (Fourier transform)
using set I and a constant coupling. LQCD results are displayed as: green rhombus for Ref. [74],
magenta dots for Ref. [258], and blue squares for Ref. [129].

f (A⊥+)
π− = f (A1),reg

π− + f (A2)
π− − f (A3)

π− is the only perpendicular form factor relevant for the
evaluation of the matrix elements of the axial current. From the above curves, one can
check that f (A⊥+)

π− exhibits a strong increase with B for a constant coupling G, reaching
a magnitude of about 180 MeV for eB = 1 GeV2. In contrast, for G(B) it exhibits a
nonmonotic behavior, with f (A⊥+)

π− ≃ 124 MeV at eB = 1 GeV2.
In Figure 4.7 we compare our results for the charged pion lowest energy with lattice

simulations. Instead of normalizing Eπ− with respect to its vacuum value, as done for the
neutral pion, we nd it convenient to compare the dierence of squared lowest energies,
i.e. Eπ−(B)2 − Eπ−(0)2, see Eq. (4.51). The main advantage lies on the fact that for
the point-like case this quantity is just eB and therefore independent of the vacuum
mass, which is dierent for each simulation. Thus, it serves as a common reference for
all calculations. We see that our results for constant G are in fair agreement with those
obtained in quenched LQCD [129] using heavy pions with mπ−(B = 0) = 415 MeV. In order
to make a more sensible comparison, an alternative procedure was proposed in Ref. [161],
which consists of using a parameter set where the current quark mass is increased so
that mπ−(B = 0) matches the value considered in Ref. [129]. For the charged case, this
is discussed in Ref. [233], where it is shown that for the normalized lowest energy the
aforementioned procedure provides closer agreement with LQCD results from Ref. [129].
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Nevertheless, for the quantity displayed in Figure 4.7 results from both procedures are
almost identical. On the other hand, lattice simulations using staggered quarks point to
a dierent behavior. For low magnetic elds, say eB < 0▷2 GeV2, our results coincide
fairly well with those obtained in lattice simulations using stout smeared [74] and highly
improved [258] staggered quarks. However, for large magnetic elds our results start to
deviate, showing a steeper enhancement with eB. Moreover, no trace of the non-monotonic
behavior found in Ref. [258] is seen.

At this point it is worth mentioning the dierence between our results for the lowest
energy as compared to those obtained in the literature by simply disregarding the Schwinger
phases in the charged pion polarization function [168, 169, 247]. In the latter case,
the calculation is analogous to the one performed for the neutral pion, using Fourier
transformations. At the end, the polarization is simply given by the function cd,u(p2⊥, p2||)
in Eq. (4.24), evaluated at pµ = imπ− δµ,4. It is interesting to note that, compared to
the full result in Eq. (4.47), for ℓ = p3 = 0 disregarding Schwinger phases amounts to
replace α+ → t+ and m2

π− + Be → m2
π−. The result is shown in Figure 4.7 for set I and

a constant coupling G. As expected, at weak magnetic elds, say eB  0▷1 GeV2, both
methods yield similar results. However, their behavior deviates at high magnetic elds,
where disregarding Schwinger phases triggers a much stronger enhancement with B. At
eB = 1 GeV2 we get Eπ− = 1▷65 GeV for the Fourier transformation, as compared to the
lower value Eπ− = 1▷25 GeV obtained using the full Ritus method. On the other hand,
Schwinger phases are properly accounted for in Refs. [222, 223]. In the former reference,
an approach based on the derivative expansion is proposed, while the analysis of the latter
work is analogous to ours but using a Landau level expansion for the quark propagator. In
both analyses, which share the regularization choice of a non-MFIR Pauli-Villars scheme,
an even stronger magnetic enhancement is found at an intermediate eB < 0▷4 GeV2 regime.

In the framework of lattice QCD, some results for f (A||)
π− and f (V )

π− in the presence
of an external magnetic eld have been presented in Ref. [129]. However, a sensible
comparison with our results is not possible since in that reference decay constants are
dened dierently, using a Fourier instead of a Ritus basis. Nevertheless, it can be seen
that, although errors are still relatively large, for staggered quarks at the physical point
both decay constants shows an overall increase with the magnetic eld, in qualitative
agreement with our results. In fact, for f (V )

π− our NJL predictions are compatible within
errors with lattice data, which have been obtained for eB up to 0.3 GeV2. However,
for weak elds a continuum extrapolation seems to indicate that f (A||)

π− starts out with
a negative slope, which diers from our results and also from the neutral case. We nd
this result dicult to understand, since the decay constants of charged and neutral pions
should behave similarly [235] for very small values of eB. In addition, in Ref. [244] the
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magnetic eld dependence of f (A||)
π− has been analyzed in the context of QCD sum rules. In

comparison with our results, their analysis shows a steeper enhancement with B, leading
to f (A||)

π− ∼ 0▷17 GeV for eB = 1 GeV2. In any case, it should be stressed that our results
show that, as expected [236, 259], the Goldberger-Treiman and Gell–Mann-Oakes-Renner
relations for charged pions [i.e., the equivalent to Eqs. (4.101) and (4.104), obtained for
neutral mesons] are violated for eB  m2

π, for both f (A||)
π− and f (A⊥+)

π− , the latter being
dened in Eq. (4.98).

To conclude, let us make an additional comment on the magnetic eld dependences
of the decay constants. In the chiral limit, it can be seen that for low values of eB the
dierence f (A2)

π− − f (A3)
π− is given by

f (A2)
π−, ch − f (A3)

π−, ch = Be

8π2f (A||)
π−, ch


1 − 7Be

45M2
ch

+ ▷ ▷ ▷

▷ (4.109)

On the other hand, in the case of f (V )
π− , for low values of the magnetic eld a relation

similar to Eq. (4.105) is expected to be satised in the chiral limit. Even though the π−

cannot be considered a pseudo-Goldstone boson in the presence of the magnetic eld, from
our numerical calculations we nd quite remarkable that relations of the same form, i.e.,

f (A2)
π− − f (A3)

π− = Be

8π2f (A||)
π−


1 − 7Be

45M2


, (4.110)

and
f (V )
π− = Be

8π2f
(A||)
π−

, (4.111)

are in fact valid also for intermediate values of the external magnetic eld, up to say
eB  0▷4 GeV2. Moreover, for a constant coupling G we nd that f (A2)

π− − f (A3)
π− and f (V )

π−

can be approximated by the expressions in Eqs. (4.110) and (4.111) within 15% and 10%
accuracy, respectively, for values of eB up to 1 GeV2. For a magnetic coupling G(B) these
expressions deviate, especially the one in Eq. (4.110). It would be interesting to verify if
equivalent relations also arise within other theoretical approaches to low energy hadron
physics.

4.5.3 Weak decay width of magnetized charged pions
In section 3.3 we have a obtained a general expression for the weak decay width of charged
pions under a uniform magnetic eld. In that expression, the internal structure of the
pions is parametrized in terms of several form factors. In the absence of exact QCD
solutions, these are model-dependent. As usual, we will concentrate on the pion lowest
energy state (LES) case, i.e. ℓ = 0 and p3 = 0. The relevant expressions can be found
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Figure 4.8: π− partial decay widths into e−ν̄e (red line) and µ−ν̄µ (black line) for set I using a
constant coupling G, as functions of eB in logarithmic (linear) scale for left (right) panel. Left
panel: dotted blue line represents to the n = 0 asymptotic contribution for ml = 0. Right panel:
dashed lines correspond to results using G(B), in grey (orange) for electron (muon) decay.

in Eqs. (3.71) and (3.72). For the LES, only the perpendicular combination f (A2)
π− − f (A3)

π−

is relevant. Using the masses and decay constants obtained in this chapter within the
two-avor NJL model, we provide actual estimates for the magnetic eld dependence of
the π− decay width. For visual clarication we will only display results from set I, since
we have checked that results from sets II and III do not dier from by more than 3%.

Our results for the π− partial decay widths to both µ−ν̄µ (Γµ) and e−ν̄e (Γe) using a
constant coupling as functions of eB are shown in Figure 4.8. The eect at weak magnetic
elds is better seen using a logarithmic scale, as shown in the left panel. It is seen that
the partial widths are strongly enhanced by the magnetic eld. This enhancement is more
pronounced for the decay to e−ν̄e, since for low values of B helicity suppression becomes
important. The bump observed in this curve for eB ∼ 10−2 GeV2 is due to the fact that
this region is dominated by the n = 1 Landau level contribution, which disappears at
about eB ∼ 2×10−2 GeV2 leaving n = 0 as the only energetically allowed electron Landau
level. The dotted line in the graph corresponds to the asymptotic decay width quoted
in Eq. (3.75), corresponding to n = 0 and ml = 0. As expected, this curve approximates
fairly well the results at eB ≫ m2

l and eB > mπ− −ml, especially for the (less massive)
electron. Since the eects of using a magnetic coupling take place at high magnetic elds,
we compare the results using a linear scale in the right panel, where it is seen that the use
of G(B) strongly strengthens the value of the decay compared to the constant coupling
case.

In Figure 4.9 we show the behavior of the total decay width Γe + Γµ, normalized to its
value at B = 0. For this eective model the enhancement factor is found to be about 1000
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Figure 4.9: Normalized total π− partial decay width [Γ−
e (B) + Γ−

µ (B)]◁[Γ−
e (0) + Γ−

µ (0)] using G
(black line) and G(B) (red line) as functions of eB in linear (left) and logarithmic scale (right).
LQCD bands quoted in Ref. [171] are included in the left panel for comparison.

for eB ≃ 1 GeV2 when using a constant coupling, increasing up to 1800 for G(B). In the
left panel we include for comparison results from LQCD calculations quoted in Ref. [171],
which cover values of eB up to about 0.45 GeV2. Dark and light blue regions correspond
to staggered and quenched Wilson quarks, respectively. Although these LQCD results also
predict a signicant growth of the total width with the magnetic eld, it is seen that in
our case the slope of the curve gets more rapidly enhanced with B. This is, in part, due
to the e−ν̄e channel contribution.

The dramatic enhancement of the rate implies a drastic reduction of the mean lifetime
τπ = 1◁Γ. A typical B > 0 lifetime and the lowest possible lifetime considered in this work
are





τπ ≈ 5× 10−10 s for B ≈ 0▷3 GeV2◁e ≈ 5× 1019 G ,

τπ ≈ 1▷5× 10−11 s for B ≈ 1 GeV2◁e ≈ 1▷7× 1020 G ▷
(4.112)

As noted in Ref. [171], since lifetimes of magnetic elds in o-central heavy-ion collisions
are by 13-15 orders of magnitude smaller [51], this eect will not result in any observable
predictions for heavy-ion phenomenology. However, the B dependence of weak decays is
expected to be relevant in astrophysical environments, since the upper limit for magnetic
eld strengths in the core of magnetized neutron stars is thought to be around B =
1018 − 1020 G [59, 61]. Indeed, for B = 0 the pion mean lifetime and the time scale for
cooling via inverse Compton scattering are roughly comparable [260]. Thus, a reduction
in τπ will inevitably decrease radiation energy loss of pions and result in a harder neutrino
spectrum. Neutrino emissivities of meson-condensed matter, even though not as high as
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Figure 4.10: Ratio Γe◁Γµ using G (black line) and G(B) (red line) as a function of eB.

the ones of the direct Urca processes, still lead to fast cooling, and could have an impact
on the cooling curves of compact stars [261].

Another interesting consequence of the presence of the magnetic elds is the absence
of helicity suppression, which yields a stronger e−ν̄e production. As seen in Figure 4.8,
at B ̸= 0 the electron contribution strongly grows with eB. Therefore, while at B = 0
muon production dominates, at strong elds both contributions compete. To measure this
eect, in Figure 4.10 we quote the ratio Γe◁Γµ as a function of eB. We notice that the
presence of the external eld leads to a strong increase of this ratio with the strength of the
magnetic eld, reaching a value of about 0.5 for eB ≃ 1 GeV2 using a constant coupling,
increasing to 0.7 when using G(B). In contrast, for B = 0 one has Γe◁Γµ ≃ 1▷2× 10−4.
This could be interesting e.g. regarding the expected avor composition of neutrino uxes
coming from the cores of magnetars and other stellar objects. It is worth to remark that
our estimation for the ratio Γe◁Γµ is dierent from the one obtained in Ref. [171], where
helicity suppression leads to a ratio of the order of 10−5 that becomes almost independent
of the magnetic eld.

4.5.4 Angular distribution of outgoing antineutrinos
Another interesting consequence of the presence of the external magnetic eld is its eect
on the angular distribution of outgoing antineutrinos. As mentioned in subsection 3.3.4,
while for B = 0 the distribution is isotropic, this changes signicantly for B ̸= 0. Denoting
w = cos θ = k3◁|⃗k|, the relevant expressions are in Eqs. (3.79-3.81).

Our numerical results for the normalized dierential partial decay widths are shown
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Figure 4.11: Normalized dierential partial decay widths of π− into e−ν̄e (left) and µ−ν̄µ (right),
as functions of w = cos θ for selected values of eB. All results correspond to set I using constant
coupling G, except for the red solid line in the right panel which corresponds to set I using G(B)
at eB = 1 GeV2.

in Figure 4.11, where several representative values of eB are considered. Left and right
panels correspond to π− decays into e−ν̄e and µ−ν̄µ, respectively. The inclusion of magnetic
eects through the coupling G(B) only has an appreciable impact on the decay constants
values of Figure 4.6 for strong magnetic elds, say eB > 0▷4 GeV2. Therefore, for the
selected values of eB displayed in Figure 4.11, the use of G(B) is only discernible for the
greatest chosen value of eB = 1 GeV2, as seen on the red line of the right panel.

It is seen that the fraction of antineutrinos that come out in the upper half-space
w > 0 uctuates when the magnetic eld is increased, becoming strongly suppressed for
values of eB much larger than the lepton mass squared and the dierence mπ− −ml. This
suppression is mildly enhanced by the use of G(B). The anisotropy can be qualitatively
understood as follows. When eB ≫ mπ− −ml, only n = 0 is allowed. In addition, for
Be ≫ m2

l the lepton can be considered massless. In the chiral limit, the lepton has to be
left-handed. Therefore from Eq. (3.76) one gets q3 > 0. Conservation of the 3 component
of total momentum implies q3 + k3 = p3 = 0. Hence, for large B, in the ml → 0 limit all
antineutrinos should be produced with momentum in the lower half-space k3 < 0. Indeed,
for ml = 0 and n = 0 the normalized dierential decay width is given by Eq. (3.82).

We conclude that, in contrast to the isotropy seen at B = 0, the presence of an external
magnetic eld induces an anisotropy in the angular distribution of outgoing antineutrinos.
The anisotropy is sharpened for strong elds and lower lepton masses, where antineutrinos
are mostly produced with momenta in the half-space opposite to the direction of B⃗. Within
the NJL model, a strong anisotropy in the electron production is already seen at eB = 0▷05
GeV2, with virtually vanishing antineutrino momentum in the direction of the eld for
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eB = 0▷1 GeV2. The anisotropy is reduced for muon production since they are heavier;
even at eB = 1 GeV2 there is still some non-negligible antineutrino momenta in the eld
direction. In addition, it is worth noticing that for large values of B most antineutrinos
come out with low |k3|, i.e. in directions approximately perpendicular to the magnetic
eld.
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5
Light pseudoscalar meson masses
under strong magnetic elds within
the SU(3) NJL model

In the previous chapter we have calculated several pion properties in a strongly magnetized
medium within the framework of the SU(2) NJL model, using a magnetic eld-independent
regularization scheme. There are very few calculations of meson properties incorporating
the strange quark. In Refs. [262, 263], using a nonrelativistic constituent SU(3) quark model,
neutral and charged mesons masses are considered. By using a relativistic Hamiltonian-
based formalism, in Refs. [236, 241] pions and kaons are calculated and comparisons with
chiral perturbation theory and LQCD results are considered. In Ref. [264], kaons and
antikaons are investigated in a chiral SU(3) model.

The aim of this chapter is to extend the pole mass calculation to all mesons of the
pseudoscalar nonet. To that end, we work with the SU(3) version of the NJL model. Once
again, we employ both a constant and a magnetic eld-dependent coupling G(B) so as to
include the backreaction of the gluons due to the coupling of the magnetic eld to sea
quarks. Numerical results for the pole masses are obtained for denite parametrizations of
the model, which we compare with previous calculations given in the literature. Results
from this chapter are based on Ref. [265].
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5.1 Pseudoscalar meson masses

5.1.1 Eective Lagrangian and mean eld properties
We consider the Euclidean action of the SU(3) NJL model which includes a scalar-
pseudoscalar interaction and the ’t Hooft six-fermion interaction in the presence of an
external magnetic eld. It is written as

S =
ˆ

d4x


ψ̄

−i ◁D + m̂


ψ −G

8

a=0


ψ̄ λa ψ

2
+

ψ̄ iγ5λa ψ

2
+K (d+ + d−)


, (5.1)

where G and K are coupling constants, ψ = (ψu,ψd,ψs)T represents a quark eld with
three avors, d± = det


ψ̄ (1± γ5)ψ


and m̂ = diag (mu,md,ms) is the corresponding

current quark mass matrix. In addition, λ0 =

2◁3 I, where I is the unit matrix in the

three-avor space, and λa with a = 1, ▷▷▷, 8 denote the Gell-Mann matrices. The coupling
of quarks to the electromagnetic eld Aµ is implemented through the covariant derivative
Dµ = ∂µ − iQ̂Aµ where Q̂ = diag (Qu, Qd, Qs) represents the quark electric charge matrix
with Qu◁2 = −Qd = −Qs = e◁3, e > 0 being the proton electric charge. As in previous
chapters we consider a uniform magnetic eld in the 3-direction. Using the Landau gauge
we have Aµ = Bx1 δµ,2.

The ’t Hooft term explicitly breaks the axial symmetry UA(1), as expected from the
axial anomaly of QCD [173, 174]. This anomaly is in turn responsible for the higher
value of the η′ mass as compared to the η one. Therefore, this term is necessary in the
SU(3) version of the model in order to reproduce physical η and η′ mesons. The standard
SU(2) version of the model used in Eq. (4.1) corresponds to taking K = 2G, i.e. having
maximum avor mixing. In that case, Mu = Md. In contrast, for K = 0 quark avors get
fully decoupled.

In order to study meson properties, we proceed as in the SU(2) case by bosonizing
the action in terms of scalar σa(x) and pseudoscalar πa(x) elds and the corresponding
auxiliary sa(x) and pa(x) elds. We follow the standard procedure described in Appendix A,
starting with the partition function

Z =
ˆ

Dψ̄Dψ e−S ▷ (5.2)

By introducing functional delta functions, the scalar (ψ̄λaψ) and pseudoscalar (ψ̄iγ5λaψ)
terms present in the action are replaced by sa(x) and pa(x). The remaining functional
gaussian integration on the fermionic elds ψ and ψ̄ can be performed by standard methods.
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We obtain

Z =
ˆ

DσaDπa detD(x, x′)
ˆ

DsaDpa e
´

d4x[σa(x)sa(x)+πa(x)pa(x)] ×

e
´

d4x{G[sa(x)sa(x)+pa(x)pa(x)]−K
6 Aabc[sa(x)sb(x)sc(x)−3 sa(x)pb(x)pc(x)]} , (5.3)

where
D(x, x′) = δ(4)(x− x′)


−i ◁D + m̂+ λaσa(x) + iγ5λaπa(x)


, (5.4)

and the totally symmetric array Aabc is given by

Aabc =





dabc , a, b, c = 1, ▷▷▷, 8

−1◁
√
6 , a = 0 , b = c = 1, ▷▷▷, 8


2◁3 , a = b = c = 0

▷ (5.5)

Here, dabc = tr(λa{λb,λc})◁4 refer to the totally symmetric structure constants of the
SU(3) group.

Since, in contrast to the SU(2) case, the integrals over the auxiliary elds are not
gaussian, we perform the stationary phase approximation (SPA). That is, we replace the
auxiliary elds by the values s̃a(x) and p̃a(x) that minimize the integrand of the partition
function. This yields a set of coupled equations among the bosonic elds; at the end, s̃a(x)
and p̃a(x) are to be considered as implicit functions of σa(x) and πa(x). The bosonized
action in the SPA then reads

Sbos = − Tr lnD(x, x′)−
ˆ

d4x


σa(x)s̃a(x) + πa(x)p̃a(x) +

G [̃sa(x)s̃a(x) + p̃a(x)p̃a(x)]−
K

6 Aabc [̃sa(x)s̃b(x)s̃c(x)− 3 s̃a(x)p̃b(x)p̃c(x)]

,

(5.6)

where s̃a(x) and p̃a(x) satisfy the SPA conditions

σa(x) + 2G s̃a(x)−
K

2 Aabc [̃sb(x)s̃c(x)− p̃b(x)p̃c(x)] = 0 ,

πa(x) + 2G p̃a(x) +KAabc s̃b(x)p̃c(x) = 0 ▷ (5.7)

We can now proceed as in subsection 2.2.1, expanding the bosonized action in powers
of eld uctuations around the corresponding translationally invariant mean eld values σ̄a

and π̄a, i. e. σa(x) = σ̄a+δσa(x) and πa(x) = π̄a+δπa(x). Due to charge conservation, only
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σ̄0, σ̄3 and σ̄8 are dierent from zero, while the vacuum expectation values of pseudoscalar
boson elds are zero, π̄a = 0. For convenience, we introduce σ̄ = diag(σ̄u, σ̄d, σ̄s) =
λ0σ̄0 + λ3σ̄3 + λ8σ̄8. Symbolically, the expansion of the action reads

Sbos = Sbos
MF + Sbos

quad + ▷ ▷ ▷ (5.8)

At the mean eld level, the Euclidean action per unit volume or free energy is given by

Sbos
MF

V (4) = − 1
V (4) Tr lnDMF(x, x′)− 1

2


σ̄f s̄f +G s̄f s̄f −

K

2 s̄u s̄d s̄s

, (5.9)

constrained by the SPA conditions

σ̄a + 2G s̄a −
K

2 ϵabc ϵabc s̄b s̄c = 0 ▷ (5.10)

The trace Tr refers to all spaces; color, avor, Dirac and coordinates. Here, s̄f = s̃f(σ̄a)
represents the auxiliary eld at the mean eld level within the SPA approximation (note
that p̄f = 0). The MF fermionic operator is avor-diagonal

DMF(x, x′) = diag

Du

MF(x, x′) , Dd
MF(x, x′) , Ds

MF(x, x′)

, (5.11)

where
Df

MF(x, x′) = δ(4)(x− x′)

−i◁∂ −Qf ◁A+Mf


▷ (5.12)

represents the inverse of the mean eld quark propagator Sf
MF(x, x′)−1 for each avor, with

eective mass Mf = mf + σ̄f . Once again we choose to write the quark propagator in its
Schwinger form, given by Eqs. (2.66) and (2.67). Note, however, that the substitution
M → Mf has to be made, since quark masses are dierent in this case due to the ’t Hooft
term in the Lagrangian.

Minimizing the free energy with respect to Mf we obtain the gap equation s̄f = 2ϕf ,
where ϕf = −NcMIB

1f is the chiral condensate for each avor, given in Eq. (4.10). The
function IB

1f dened in Eq. (2.75) is divergent integral and has to be properly regularized.
As in previous chapters, we use the MFIR scheme. Then the quark condensate is given by
Eq. (4.11), where Imag

1f and Ivac1 were dened in Eqs. (2.79) and (2.52) respectively. Recall
that the substitution M → Mf has to be made for the SU(3) case.

Finally, by combining the equations from the SPA together with the gap equations, we
obtain that the regularized form of the set of coupled equations for the eective quarks
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5.1. Pseudoscalar meson masses

masses read

Mu = mu − 4G ϕreg
u + 2K ϕreg

d ϕreg
s ,

Md = md − 4G ϕreg
d + 2K ϕreg

s ϕreg
u ,

Ms = ms − 4G ϕreg
s + 2K ϕreg

u ϕreg
d ▷ (5.13)

5.1.2 Meson sector
For the calculation of meson masses, we consider the second-order correction to the mean
eld bosonized Euclidean action. At the quadratic level we get for the pseudoscalar sector

Sbos
quad = 1

2

ˆ

d4x′d4x


P,P ′
δP ∗(x) G−1

P,P ′(x, x′) δP ′(x′) , (5.14)

where the sum indexes run over the nonet of pseudoscalar mesons. Namely, P, P ′ =
π3,π

±,K0, K̄0, K±, η0, η8, where we have dened the physical meson elds as

λaπa =




π3 +


2
3η0 +

1√
3η8

√
2π+ √

2K+
√
2π− −π3 +


2
3η0 +

1√
3η8

√
2K0

√
2K− √

2K̄0


2
3η0 − 2√

3η8


 (5.15)

The inverse meson propagator in coordinate space can be written as

G−1
P,P ′(x, x′) = TP,P ′ δ(4)(x− x′)− JP,P ′(x, x′) ▷ (5.16)

For P, P ′ = π±,K±,K0, K̄0 this operator is diagonal

TP,P ′ = TP δP,P ′ , JP,P ′(x, x′) = JP (x, x′) δP,P ′ , (5.17)

where

Tπ− = Tπ+ = [2G−Kϕs]−1 , Jπ−(x, x′) = Jπ+(x′, x) = cd,u(x, x′) ,

TK− = TK+ = [2G−Kϕd]−1 , JK−(x, x′) = JK+(x′, x) = cs,u(x, x′) ,

TK0 = TK̄0 = [2G−Kϕu]−1 , JK0(x, x′) = JK̄0(x′, x) = cd,s(x, x′) ▷ (5.18)

The functions cf,f ′(x, x′) were already dened in Eq. (4.14).
On the other hand, in the P, P ′ = π3, η0, η8 subspace, G−1

P,P ′(x, x′) is nondiagonal but
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symmetric. The corresponding matrix elements of TP,P ′ are

Tπ3π3 = K2 (ϕu + ϕd)2 − 4GKϕs − 8G2

f
,

Tη0π3 = 2 [K2(ϕu + ϕd − ϕs)− 2GK] (ϕu − ϕd)√
6F

,

Tη8π3 = [K2(ϕu + ϕd + 2ϕs) + 4GK] (ϕu − ϕd)√
3F

,

Tη0η0 = 2K2 [(ϕd − ϕs)2 + ϕu(ϕu − 2ϕd − 2ϕs)] + 8GK(ϕu + ϕd + ϕs)− 24G2

3F ,

Tη8η0 = 2K2 [(ϕu − ϕd)2 + ϕs(ϕu + ϕd − 2ϕs)]− 4GK (ϕu + ϕd − 2ϕs)
3
√
2F

,

Tη8η8 = K2 [(ϕu − ϕd)2 + 4ϕs(ϕu + ϕd + ϕs)]− 4GK (2ϕu + 2ϕd − ϕs)− 24G2

3F , (5.19)

where
F = −4K3ϕuϕdϕs + 4GK2


ϕ2
u + ϕ2

d + ϕ2
s


− 16G3 ▷ (5.20)

In turn, the polarization function elements can be expressed as

JP,P ′(x, x′) =


f

γf
P,P ′ cf,f(x, x′) , (5.21)

where the coecients γf
P,P ′ are given by

γu
π3π3 = +γd

π3π3 = 1
2 , γs

π3π3 = 0 , γu
η0η0 = γd

η0η0 = γs
η0η0 = 1

3 ,

γu
η0π3 = −γd

η0π3 = 1√
6

, γs
η0π3 = 0 , γu

η8η0 = γd
η8η0 = −1

2γ
s
η8η0 = 1

3
√
2
,

γu
η8π3 = −γd

η8π3 = 1
2
√
3

, γs
η8π3 = 0 , γu

η8η8 = γd
η8η8 = +1

4γ
s
η8η8 = 1

6 ▷ (5.22)

For the pseudoscalar mesons we are interested in, the cf,f ′(x, x′) functions can be
worked out leading to the expressions given by Eqs. (4.15) and (4.24).

5.1.2.1 Neutral mesons

For neutral mesons the contributions of Schwinger phases associated with the quark
propagators in Eq. (4.14) cancel out. Therefore, the polarization functions depend only
on the dierence (x− x′), which leads to the conservation of momentum, since they are
translationally invariant. If we take the Fourier transform of neutral meson elds to
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the momentum basis, the corresponding transform of the polarization functions will be
diagonal in momentum space. Thus, the neutral meson contribution to the quadratic
action in the momentum basis can be written as

Sbos
quad,neutral =

1
2



P=K0,K̄0

ˆ

p

δP ∗(−p) G−1
P (p2⊥, p2||) δP (p)+

1
2



P,P ′=π3,η0,η8

ˆ

p

δP ∗(−p) G−1
P,P ′(p2⊥, p2||) δP ′(p) ▷ (5.23)

Here, the inverse neutral kaon propagator is given by

G−1
K0 (p2⊥, p2||) = G−1

K̄0 (p2⊥, p2||) = [2G−Kϕu]−1 − cd,s(p2⊥, p2||) , (5.24)

while for P, P ′ = π3, η0, η8 we have

G−1
P,P ′(p2⊥, p2||) = TP,P ′ −



f

γf
P,P ′ cf,f(p2⊥, p2||) ▷ (5.25)

The values of TP,P ′ and γf
P,P ′ can be found in Eqs. (5.19) and (5.22), respectively.

An explicit expression for cf,f ′(p2⊥, p2||) was found in Eq. (4.24). In the neutral case,
this function may involve quarks of dierent avors as in Eq. (5.24), but of equal charges.
Thus, taking Qf = Qf ′ we arrive at

cf,f ′(p2⊥, p2||) = NcBf

2π2

ˆ ∞

0
dz

ˆ 1

0
dy e

−z


yM2

f+(1−y)M2
f ′+y(1−y)p2||−iϵ


e
−γf (y,z)

p2⊥
Bf ×


MfMf ′ + 1

z
− y(1− y)p2||


coth(zBf) +

Bf

sinh2(zBf)


1− γf(y, z)

p2⊥
Bf


,

(5.26)

where γf(y, z) is given in Eq. (4.28). Expression (5.26) properly reduces to Eq. (4.27) in
the particular case Mf ′ = Mf .

The function cf,f ′(p2⊥, p2||) is divergent. As in the previous chapter, we regularize it using
the MFIR scheme, by adding and subtracting its unregulated contribution in the B = 0
limit. The calculation of the B = 0 contribution for dierent quark masses is outlined
in Appendix C, where the relevant expression is given in Eq. (C.2). Regularizing the
B = 0 piece using a 3D cuto, the function is then separated in a vacuum and a magnetic
contribution

cregf,f ′(p2⊥, p2||) = cvacf,f ′(p2) + cmag
f,f ′ (p2⊥, p2||) ▷ (5.27)

In contrast to the two-avor case, in SU(3) the η′ mass can overcome the quark threshold
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Mf + Mf ′. Therefore, we carefully proceed with the calculation taking into account
this possibility. The neutral pole masses are calculated in the rest frame of the mesons,
i.e. setting pµ = imP δµ,4, with mP > 0. For the vacuum, the calculation is detailed
in section C.1 of Appendix C, leading to the expression in Eq. (C.12). In turn, the
magnetic contribution is discussed in section C.2. We outline below the strategy followed
for the latter case.

Assuming that mP < Mf +Mf ′, the magnetic term can be integrated by parts to be
re-expressed as

cmag
f,f ′ (0,−m2

P ) = 2Nc


Imag
1f + Imag

1f ′

2 −

m2

P − (Mf −Mf ′)2

Imag
2ff ′(−m2

P )


▷ (5.28)

The function Imag
1f has already been given in Eq. (2.79), while

Imag
2ff ′(−m2

P ) = 1
8π2 lim

ϵ→0

ˆ 1

0
dy


ψ(x̄f,f ′ − iϵ)− ln(x̄f,f ′ − iϵ) + 1

2(x̄f,f ′ − iϵ)


, (5.29)

is a generalization of Imag
2f (p2||) in Eq. (4.34). Here ψ(x) is the digamma function and we

have dened

x̄f,f ′ =
yM2

f + (1− y)M2
f ′ − y(1− y)m2

P

2Bf
▷ (5.30)

For mP < Mf + Mf ′, x̄f,f ′ > 0 for all values of y within the integration range of the
integral of Eq. (5.29). The function Imag

2ff ′ is well-dened then and the limit ϵ → 0 can be
directly taken.

On the other hand, for the η′ we expect that mP > Mf +Mf ′ . In this case one has to
have special care since x̄ff ′ can be negative within the interval 0 < y < 1. We proceed
by taking the analytic continuation of both the digamma and logarithm functions. This
implies that the inverse propagators become complex functions. Thus, we assume that p||

develops an imaginary part

p2|| = −

mP − i

2ΓP

2
, (5.31)

where ΓP is associated with the decay width of the meson. Following the customary
method introduced in Ref. [266], we assume that the width is not too large and neglect
its contribution inside the Imag

2ff ′ function (this also applies to the equivalent vacuum
contribution)

cmag
f,f ′ (mP ,ΓP ) ≃ 2Nc


Imag
1f + Imag

1f ′

2 −


mP − i

2ΓP

2
− (Mf −Mf ′)2


Imag
2ff ′(−m2

P )


▷

(5.32)
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Note that in Eq. (5.29) one might hit some poles of the digamma function if the limit
ϵ → 0 is naively taken. As detailed in Appendix C, through a careful treatment of these
poles one can explicitly calculate the Imag

2ff ′ function. The general result for f ̸= f ′ is
given in Eq. (C.22). We remark here that, as a consistency check, we have repeated the
calculation using the Landau level representation of the quark propagator, well-dened for
all mP , obtaining the same result. For the determination of the η′ mass we only need the
f = f ′ version of the general expression, given by

Imag
2ff (−m2

P ) = 1
8π2


ˆ 1

0
dy ψ(x̄f,f ′ +N + 1)− ln


M2

f

2Bf


− 2β0 ln


mP (1 + β0)

2Mf


+

2− 2Bf

m2
P

N

n=0

gn
βn

ln

1− βn

1 + βn


+ i

8π


β0 −

2Bf

m2
P

N

n=0

gn
βn


, (5.33)

where gn = 2− δn0 and N = Floor [m2
Pβ

2
0◁8Bf ]. Moreover,

βn =

1− 4M2
f

m2
P

− 8nBf

m2
P

▷ (5.34)

For the neutral kaons, we expect mK0 = mK̄0 < Md +Ms. In this case the polarization
function is real and Imag

2ff ′ is well dened in the ϵ → 0 limit of Eq. (5.29). Therefore, the
pole-mass will be given by the solution of

G−1
K0 (p2⊥ = 0, p2|| = −m2

K0) = 0 ▷ (5.35)

In the P, P ′ = π3, η0, η8 subspace, the corresponding quadratic action can be expressed
in matrix notation through the following inverse matrix propagator

M =




G−1
π3π3 G−1

π3η0 G−1
π3η8

G−1
η0π3 G−1

η0η0 G−1
η0η8

G−1
η8π3 G−1

η0η8 G−1
η8η8


 , (5.36)

which is actually symmetric. The physical meson pole-masses and widths will be given by
the roots of

det[M(mP ,ΓP )] = 0 , (5.37)

where the three pair of roots are to be associated with the π0, η, η′. Of course, one expects
to get Γπ0 = Γη = 0, while Γη′ is expected to be nonvanishing. Note that when B = 0, π3

(i.e. π0 in this case) decouples from the η0, η8 states due to isospin symmetry. However,
in the presence of an external magnetic eld this symmetry breaks down due to dierent
quark electric charges. In that case, the π0, η, η′ neutral mesons consist of a mix of π3, η0, η8
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states, reected by the fact that nondiagonal terms are present in the inverse propagator
of Eq. (5.36).

5.1.2.2 Charged mesons

For charged mesons the contributions of Schwinger phases associated with the quark
propagators do not cancel out, leading to a breakdown of translational invariance. As in
the previous chapter, in order to diagonalize the charged meson elds we expand them as

δP (x) =
ˆ

p̄

Bs
p̄(x) δP (p̄) , (5.38)

where we have used the shorthand notation of Eq. (2.62). The Euclidean Ritus-type basis
function Bs

p̄(x) are given in Eq. (2.59) for the Landau gauge. Here, p̄ = (ℓ, p2, p3, p4),
where ℓ labels the charged meson Landau level, and s = sign(QPB). In this subsection,
P = π±,K±. Thus, the charged meson contribution to the quadratic action in the Ritus
basis reads

Sbos
quad,charged = 1

2
ˆ

p̄,p̄ ′


δπ±(p̄)

∗


1
2G−Kϕs

δ̂p̄,p̄ ′ − Jπ±(p̄, p̄ ′)

δπ±(p̄ ′) +

1
2
ˆ

p̄,p̄ ′


δK±(p̄)

∗


1
2G−Kϕd

δ̂p̄,p̄ ′ − JK±(p̄, p̄ ′)

δK±(p̄ ′) , (5.39)

where from Eq. (4.15)

Jπ−(p̄, p̄ ′) =
ˆ

v

cd,u(v)hπ−(p̄, p̄ ′, v) , JK−(p̄, p̄ ′) =
ˆ

v

cs,u(v)hK−(p̄, p̄ ′, v) ▷ (5.40)

For positively charged mesons, avors must be interchanged in the cf,f ′(v) functions dened
in Eq. (4.16). The spatial integral hP (p̄, p̄ ′, v) is given by Eq. (4.38).

Following the same steps of subsection 4.1.3, we can integrate to obtain the generaliza-
tion of the polarization function found in Eq. (4.47) to the case of dierent quark masses.
These functions are divergent and need to be regularized. Within the MFIR scheme using
a 3D cuto, dening Jπ−(p̄, p̄ ′) ≡ δ̂p̄,p̄ ′ Jπ−(ℓ,Π2) and JK−(p̄, p̄ ′) ≡ δ̂p̄,p̄ ′ JK−(ℓ,Π2) they can
be expressed as

J reg
P (ℓ,Π2) = Jvac

P (Π2) + Jmag
P (ℓ,Π2) ▷ (5.41)

Once again, the regularized vacuum contribution is given in Eq. (C.12) of Appendix C,
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evaluated at p2 → Π2. After a long but straightforward calculation, we obtain the following
expression for the magnetic contribution

Jmag
P (ℓ,Π2) = Nc

2π2

ˆ ∞

0
dz

ˆ 1

0
dy e

−z


yM2

f+(1−y)M2
f ′+y(1−y)(Π2−(2ℓ+1)BP )


×


MfMf ′ + 1

z
− y(1− y)


Π2 − (2ℓ+ 1)BP


×


(1 + sf sf ′ tf tf ′)

α+


α−
α+

ℓ

− e−zy(1−y)(2ℓ+1)BP

z


 +

(1− t2f)(1− t2f ′)
α2
+α−


α−
α+

ℓ

[α− + ℓ(α− − α+)] −

e−zy(1−y)(2ℓ+1)Be

z

1
z
− y(1− y)(2ℓ+ 1)BP


, (5.42)

which properly reduces to (4.47) when Mf = Mf ′ . Here BP = |QPB| with QP = Qf −Qf ′ .
Also, see Eqs. (4.19) and (4.48) for the denitions of tf , tf ′ and α±. For charged pions
and kaons, BP = |eB| ≡ Be.

For these mesons we expect them to develop only a real pole-mass, i.e. Π2 = −m2
P with

mP < Mf +Mf ′ . In that case the integrals in Eq. (5.42) are convergent and well-dened.
Therefore, for each Landau level the charged mesons pole-masses will be given by the
solutions of

1
2G−Kϕs

− Jπ−(ℓ,Π2 = −m2
π−) = 0 ,

1
2G−Kϕd

− JK−(ℓ,Π2 = −m2
K−) = 0 ▷ (5.43)

For the π+ and K+, it is easy to see that Jπ+(ℓ,Π2) = Jπ−(ℓ,Π2) and JK+(ℓ,Π2) =
JK−(ℓ,Π2), which implies that for the same charged meson both masses are equal as
expected from charge conservation.

5.2 Numerical results
To obtain numerical results for the magnetic eld dependence of the meson masses one
has to x the model parametrization. Here, following Ref. [266], we take the parameter
set mu = md = 5▷5 MeV, ms = 140▷7 MeV, Λ = 602▷3 MeV, GΛ2 = 1▷835 and KΛ5 =
12▷36, which has been determined on xing that for vanishing external eld one gets
mπ = 135 MeV, mK = 497▷7 MeV, mη′ = 957▷8 MeV and fπ = 92▷4 MeV. This parameter

123



5.2. Numerical results

Figure 5.1: Eective quark masses Mu (black), Md (red) and Ms (blue) as functions of eB for
xed (solid lines) and B-dependent (dashed lines) coupling G.

set gives an η mass of mη = 514▷8 MeV, which compares reasonably well with the physical
value mph

η = 548▷8 MeV, together with an appropriate value for the chiral condensate of
⟨f̄f⟩1◁3 = 242 MeV for f = u, d. As mentioned in the introduction, while local NJL-like
models are able to reproduce the MC eect at vanishing temperature, they fail to lead
to the IMC eect. As in the previous chapter, to incorporate the backreaction of gluons
due to magnetized quark loops, we allow for magnetic eld dependence of the coupling
constant. In particular, we adopt the expression proposed in Ref. [158] in the context of
an SU(3) NJL model with the same parameters that we use. In that work the current
quark masses, Λ and K were kept constant while for G(B) the form

G(B) = G


1 + a(eB◁Λ2

QCD)2 + b(eB◁Λ2
QCD)3

1 + c(eB◁Λ2
QCD)2 + d(eB◁Λ2

QCD)4


, (5.44)

was introduced. Here, a = 0▷0108805, b = −1▷0133 10−4, c = 0▷02228, d = 1▷84558 10−4

and ΛQCD = 300 MeV. As stated in Ref. [158], this form of the scalar coupling has been
tted so that the lattice QCD pseudocritical chiral transition temperatures are reproduced.

Results for the magnetic eld dependence of the dynamical quark masses are shown
in Figure 5.1, for both constant and B-dependent coupling G. As we see, for constant G
all quark masses increase with B. In contrast, for G(B) they display a nonmonotonous
behavior, less aected by the magnetic eld. In this case, Md and Ms initially decrease
with B, while about eB ∼ 0▷6− 0▷7 GeV2 this tendency reverses. On the other hand, Mu

has just the opposite behavior. In fact, these dependencies of the dynamical quark masses
on the magnetic eld are roughly consistent with the results obtained in Ref. [164]. In
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Figure 5.2: Condensate average (left) and dierence (right) as functions of eB. Results for
constant (black) and B-dependent (red) coupling G are shown in solid lines. LQCD results from
Ref. [73] (light blue bands) are added for comparison.

that work these quantities have been extracted from a LQCD calculation of the baryon
masses using a simple minded approximation based on the constituent quark model.

It should be stressed that in spite of the rather dierent behavior between the dynamical
quark masses, a magnetic catalysis eect at zero temperature is obtained independently
on whether G depends on B or not. This is shown in Figure 5.2, where we display the
conveniently normalized light quark condensates dened in Eq. (4.107) for both constant
and B-dependent coupling G. In the left panel we plot the average ∆Σ̄ = (∆Σu +∆Σd)◁2
while in the right panel the dierence Σ− = ∆Σu − ∆Σd is shown. We recall that
∆Σf = −2mf [ϕreg

f (B)− ϕreg
f (0)]◁D4, where D = (135× 86)1◁2 MeV is a phenomenological

normalization constant. We compare our results with LQCD ones, represented in the
bands of Figure 5.2. As in the SU(2) case, we observe that although the predictions for
constant G are somewhat closer to the LQCD results, those corresponding to G(B) can
certainly be considered as acceptable. It is interesting to remark here that other form
functions of G(B), such as the ones proposed in Refs. [161, 164], reproduce similar trends
for these quantities.

We turn now to our results for the magnetic eld dependence of the masses of the
nonet of pseudoscalar mesons. They are shown in Figure 5.3, where for charged mesons
we instead display their lowest energy states, given by

EP± =

m2

P± + (2ℓ+ 1)eB + p23


p3=ℓ=0

=

m2

P± + eB ▷ (5.45)
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Figure 5.3: Pseudoscalar neutral meson pole-masses and charged mesons lowest energies as
functions of eB for constant (left) and B-dependent (right) coupling G.

It should be noticed that both EP and mP depend on B, although not explicitly stated.
The left (right) panel corresponds to the case of constant coupling G (B-dependent G).
We observe that, except for the η′-mass, the B-dependence is rather mild in the case of
the neutral mesons. On the other hand a rather strong increase with growing B is found
for charged meson masses. These results are analyzed in further detail in what follows.

The case of η′ is somewhat special and, therefore, indicated in dashed lines in Figure 5.3.
In fact, already at B = 0 its mass is above the threshold for qq̄-decay and, thus, the
associated qq̄ polarization diagram receives an unphysical imaginary part. Following
Ref. [266] we accept this as an unavoidable feature of the NJL model and dene the
η′-mass as the real part of the corresponding pole in the complex plane. We should keep
in mind, however, that this fact makes the predictions for the η′-mass less reliable as
compared to those of the other mesons. The situation worsens for nite magnetic eld.
First, new divergencies appear at low magnetic elds due the existence of thresholds
associated with the Landau levels of the intermediate quark states. Although these
divergencies are along the real axis, they originate the kind of oscillatory behavior found
for eB  0▷2 GeV2. In passing, we note that including in the calculation the imaginary
part of the polarization function makes these divergences less harmful. If one neglects that
contribution, as done in Ref. [147], the determination of mη′ becomes full of ambiguities
making its determination even more troublesome. The other point has to do with the fact
that at nite magnetic eld the width is in general larger than the already non-negligible
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Figure 5.4: Normalized neutral meson masses as functions of eB for constant (black solid lines)
and B-dependent (red solid lines) coupling G. LQCD results from Ref. [129] (light blue band)
and Ref. [258] (magenta circles) are added for comparison.

value at B = 0, ΓB=0
η′ = 269 MeV. For constant G, we encounter a nonmonotonic behavior

of the width, which shows a close-to-vacuum mean value of ΓB,mean
η′ = 332 MeV but can

reach values of ΓB
η′ ∼ 590 MeV at intermediate elds. On the other hand, for G(B) the

pace of growth of the width increases. At elds strengths around eB ∼ 0▷5 GeV2 the width
exceeds the mass, with a value of ΓB

η′ ∼ 1▷46 GeV. This enhancement of the width, together
with the decrease of G(B) as B increases, results in the fact that for eB  0▷5 GeV2 no
solution of Eq. (5.37) can be found apart from the ones associated with π0 and η. Namely,
above such a value of the magnetic eld the coupling strength is not enough to form an
η′-resonance in the qq̄-continuum.

To discuss our results for the other neutral mesons (π0, K0, K̄0 and η) in more detail
we display in Figure 5.4 the corresponding masses taken with respect to their values at
B = 0. We show results using a constant and a B-dependent coupling G, together with
LCQD simulations from Refs. [129, 258] for comparison. It should be noticed that these
LQCD calculations correspond to unphysical pion masses of 415 and 220 MeV respectively,
for vanishing magnetic eld. In both cases they point to a stronger decrease of the π0 mass
with increasing B than the one found in our calculation with constant G. On the other
hand, the results obtained using G(B) are in reasonable good agreement with LQCD ones.
The same conclusion was reached in the previous chapter for the SU(2) case; for both
versions of the model results for mπ0 are rather similar, although SU(3) values are slightly
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5.2. Numerical results

Figure 5.5: Charged meson masses (top) and dierences of squared lowest energies between the
case at B ̸= 0 and B = 0 (bottom) for charged pions (left) and kaons (right) as a function of
eB. Results for constant and B-dependent coupling G are shown in black and red solid lines,
respectively. Green dotted lines correspond to energies associated with point-like charged mesons.
LQCD results from Ref. [129] (blue squares) and Ref. [258] (magenta circles) are added for
comparison.

higher. This seems to also provide further support to the relation between the IMC eect
and the reduction of the neutral pion mass at nite B mentioned in Ref. [258]. A similar
behavior is observed for K0 and K̄0 masses (central panel), although the magnitude of
the decrease is reduced. For these mesons, the only LQCD result that has been reported
is that of Ref. [258]. We observe that, once again, a much better agreement with these
results is obtained when a B-dependent coupling G is used in the NJL model. Finally, in
the right panel we show our predictions for the behavior of the normalized η-meson mass.
They turn out to be quite similar to the ones obtained for the K0 and K̄0 relative masses.

Finally, we consider the masses of charged pseudoscalar mesons π± and K±. We
display the dierences in their squared lowest energies from the case of a zero magnetic
eld, i.e. E2

P±(B)− E2
P±(B = 0), in Figure 5.5. We also include their masses in the top

graphs for completeness. We show results for G and G(B) as compared to a point-like
charged meson and LQCD simulations from Refs. [129, 258]. We observe that for both
charged pions and kaons, our results show a stronger increase with growing B as compared
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with the ones associated with point-like mesons. Those obtained using a B-dependent
coupling are, however, somewhat closer to them. Results are very similar to the ones
obtained in the SU(2) case in Figure 4.7, although SU(3) values are slightly higher. As
for the comparison with LQCD results, we note that in the case of charged pions there
are signicant dierences between the results reported by the two dierent LQCD groups,
specially at large magnetic elds. Although our results seem to be more consistent with
those of Ref. [129] it should be recalled that they correspond to a larger (unphysical) value
of the B = 0 pion mass and have larger error bars. In any case, we see that, for both
charged pions and kaons, our NJL results show no sign of the strong nonmonotonous
behavior found in the LQCD calculation of Ref. [258]. Results obtained within the SU(2)
version of the model seem to indicate that the inclusion of quark anomalous magnetic
moments does not modify the trend of the charged pion mass obtained in the present
work [157].
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6
Diquark and nucleon masses under
strong magnetic elds within the
SU(2) NJL model

In the past few years, the eects of a magnetic eld on baryon masses has been addressed
in the context of ChPT [267, 268], nonrelativistic quark models [269], extended linear
sigma model [270], Walecka model [270, 271], soliton models [272], nite energy QCD
sum rules [273], and also lattice QCD [164]. It is worth noticing that these theoretical
approaches lead to various dierent results for the behavior of nucleon masses. In this
chapter we complement these works by studying the eect of an intense external magnetic
eld on scalar diquark and nucleon properties within the framework of the two-avor
Nambu–Jona-Lasinio (NJL) model. In the NJL model, diquarks are constructed through
the resummation of quark loop chains using the random phase approximation, while
nucleons are treated as bound quark-diquark states described by a relativistic Fadeev
equation, using the static approximation for quark exchange interactions. For charged
particles, analytical calculations are performed using the Ritus-type eigenfunction method
presented in previous chapters, which properly takes into account the breakdown of
translation invariance that arises from the presence of Schwinger phases. Within this
scheme, for denite model parametrizations we obtain numerical predictions for diquark
and nucleon masses, which are compared with Chiral Perturbation Theory and Lattice
QCD results. In addition, numerical estimations for the nucleon magnetic moments are
obtained. Results from this chapter are based on Ref. [274].
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6.1. Diquarks and nucleons

6.1 Diquarks and nucleons

6.1.1 Bosonized NJL model with diquark interactions in the
presence of an external magnetic eld

We start by considering the Euclidean Lagrangian density for the NJL two-avor model in
the presence of an electromagnetic eld and color pairing interactions. One has

L = ψ̄

−i ◁D +mc


ψ −G


(ψ̄ ψ)2 + (ψ̄ iγ5τa ψ)2


−H


ψ̄c iγ5τ2λA ψ

† 
ψ̄c iγ5τ2λA ψ


,

(6.1)
where ψ = (ψu,ψd)T represents a quark eld with two avors, G and H are coupling
constants and mc is the current quark mass, which is assumed to be equal for u and d

quarks. Moreover we have dened ψc = γ2γ4ψ̄
T , while τa and λA, with a = 1, 2, 3 and

A = 2, 5, 7, stand for Pauli and Gell-Mann matrices acting on avor and color spaces,
respectively. The interaction between the fermions and the electromagnetic eld Aµ is
driven by the covariant derivative Dµ = ∂µ − i Q̂Aµ, where Q̂ = diag(Qu, Qd). As before,
we consider the particular case of an uniform stationary magnetic eld B⃗ orientated along
the 3-axis, represented in the Landau gauge Aµ = Bx1 δµ,2.

As in previous chapters, it is convenient to bosonize the fermionic action. The
procedure follows the idea outlined in Appendix A, taking additional care of the color
pairing interactions. Then, the action is rewritten in terms of scalar σ(x), pseudoscalar
πa(x) and diquark elds ∆A(x), while fermion elds are integrated out. The bosonized
Euclidean action can be written as

Sbos = −1
2Tr lnD+

ˆ

d4x


σ(x)σ(x) + πa(x)πa(x)

4G + ∆A(x)∗∆A(x)
4H


, (6.2)

where

D(x, x′) = δ(4)(x− x′)

 −iγµDµ +mc + ϕ(x) i γ5 τ2 λA ∆A(x)

i γ5 τ2 λA ∆A(x)∗ −iγµD
∗
µ +mc + ϕ(x)T


 ▷ (6.3)

with ϕ(x) = σ(x) + iγ5τaπa(x). As customary, we have used here the Nambu-Gorkov
formalism, see e.g. [275]. In the former equations, and in what follows, matrices in
Nambu-Gorkov space are denoted in boldface.

We proceed by expanding the bosonized action in powers of the uctuations δσ(x),
δπa(x) and δ∆A(x) around the corresponding mean eld (MF) values. As before, we
assume that the eld σ(x) has a nontrivial translational invariant MF value σ̄, while the
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6.1. Diquarks and nucleons

vacuum expectation values of pseudoscalar and diquark elds are zero. Then, one has

D(x, x′) = DMF(x, x′) + δD(x, x′) ▷ (6.4)

The MF piece reads

DMF(x, x′) =

 D(x, x′) 0

0 Dc(x, x′)


 , (6.5)

where

D(x, x′) = δ(4)(x− x′) (−iγµDµ +M) ,

Dc(x, x′) = δ(4)(x− x′) (−iγµDµ
∗ +M) , (6.6)

Here M denotes the quark eective mass, M = mc + σ̄, and we have omitted the MF
subindex for visual clarity. The uctuation piece is given by

δD(x, x′) = δ(4)(x− x′)

 δϕ(x) i γ5 τ2 λA δ∆A(x)

i γ5 τ2 λA δ∆A(x)∗ δϕ(x)T


 ▷ (6.7)

The MF operators D(x, x′) and Dc(x, x′) are avor-diagonal, and their inverses corre-
spond to the MF quark propagators in the presence of a magnetic eld. One has

D−1(x, x′) = S(x, x′) = diag

Su(x, x′) , Sd(x, x′)


, (6.8)

D−1
c (x, x′) = Sc(x, x′) = diag


S−u(x, x′) , S−d(x, x′)


, (6.9)

where the minus signs in front of the avor indices f = u, d indicate that the sign of the
corresponding quark electric charge in the propagator has to be reversed. As before, we
choose to write the quark propagator in its Schwinger form, given by Eqs. (2.66) and (2.67)
(see text below these equations for some shorthand notation).

Replacing the previous relations in the bosonized eective action and expanding in
powers of meson uctuations around the MF values, one gets

Sbos = Sbos
MF + Sbos

quad + ▷ ▷ ▷ (6.10)

The expression of Sbos
MF , together with those of the mesonic contributions to Sbos

quad, are
given in Eqs. (2.28) and (4.12) respectively. In each corresponding section, the procedure
followed to obtain the regularized gap equation and the expressions required to calculate
various meson properties are discussed in detail. In the present case, Sbos

quad includes an
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additional contribution that is quadratic in the diquark elds. This will be discussed in
the next subsection.

6.1.2 Diquark mass and propagator
The diquark contribution to Sbos

quad is given by

Sbos
diq = S∆ + S∆̄ = 1

2


D=∆,∆̄

ˆ

d4x d4x′ δDA(x)∗ G−1
D (x, x′) δDA(x′) , (6.11)

where
G−1
D (x, x′) = 1

4H δ(4)(x− x′)− JD(x, x′) ▷ (6.12)

The polarization functions read

J∆(x, x′) = 1
2Nc

TrD [ cu,−d(x, x′) + cd,−u(x, x′) ] , (6.13)

J∆̄(x, x′) = 1
2Nc

TrD [ c−u,d(x, x′) + c−d,u(x, x′) ] , (6.14)

where the trace is taken over Dirac space and the functions cf,f ′(x, x′) were dened in
Eq. (4.14). As seen from its quark content, ∆ (∆̄) corresponds to the diquark with charge
Q∆ = e◁3 (Q∆̄ = −e◁3). Since J∆(x, x′) = J∆̄(x′, x), both diquarks have the same mass,
and we can proceed by considering only the positively charged diquark ∆.

As in the case of charged pions, there is no cancellation of Schwinger phases, leading
to the breakdown of translational invariance. Therefore, in order to diagonalize the
polarization function we expand the charged diquark eld in terms of Ritus-type basis
functions

δ∆A(x) =
ˆ

p̄

Bs
p̄(x) δ∆A(p̄) , (6.15)

where we have used the shorthand notation of Eq. (2.62). The Euclidean Ritus-type basis
function Bs

p̄(x) are given in Eq. (2.59) for the Landau gauge. Here, p̄ = (ℓ, p2, p3, p4), where
ℓ labels the diquark Landau level, s = sign(Q∆B) and B∆ = |Q∆B| = Be◁3. Replacing
this expansion in Eq. (6.11) we have

S∆ = 1
2
ˆ

p̄,p̄′

δ∆A(p̄)∗ G−1
∆ (p̄, p̄′) δ∆A(p̄′) , (6.16)
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where G−1
∆ (p̄, p̄′) = δ̂p̄,p̄′◁4H − J∆(p̄, p̄′). Then, from Eq. (4.15) we arrive at

J∆(p̄, p̄ ′) = 1
2Nc

ˆ

v

[cu,−d(v) + cd,−u(v)] h∆(p̄, p̄ ′, v) , (6.17)

which depends on the cf,f ′(v) function dened in Eq. (4.16) and on the spatial integral
h∆(p̄, p̄ ′, v) dened in Eq. (4.38). Notice from the result in Eq. (4.24) that cu,−d(v) =
cd,−u(v).

The remaining integrals in the polarization function can be worked out following the
same steps as those described in subsection 4.1.3 for the case of charged pions. As a result,
the polarization function turns out to be diagonal in the Ritus-type eigenfunction basis,
i.e. J∆(p̄, p̄′) = δ̂p̄,p̄′ J∆(ℓ,Π2), where Π2 = (2ℓ+ 1)B∆ + p2|| . The expression for J∆(ℓ,Π2)
can be obtained from Eq. (4.47) by replacing P = ∆, f = u, f ′ = −d and dividing by Nc.

As in the meson case, the polarization function J∆(ℓ,Π2) is divergent and can be
regularized within the MFIR scheme, carefully subtracting the B = 0 contribution once
the latter has been written in terms of the squared canonical momentum Π2. Thus, the
regularized diquark polarization function can be written as

J reg
∆ (ℓ,Π2) = Jvac

∆ (Π2) + Jmag
∆ (ℓ,Π2) , (6.18)

where

Jmag
∆ (ℓ,Π2) = 1

2π2

ˆ ∞

0
dz

ˆ 1

0
dy e−z[M2+y(1−y)(Π2−(2ℓ+1)B∆)] ×


M2 + 1

z
− y(1− y)


Π2 − (2ℓ+ 1)B∆

 
×


αℓ
−

αℓ+1
+

(1 + tu td) − e−zy(1−y)(2ℓ+1)B∆

z


+

αℓ−1
−

αℓ+2
+

(1− t2u) (1− t2d) [α− + (α− − α+) ℓ] −

e−zy(1−y)(2ℓ+1)B∆

z

1
z
− y(1− y)(2ℓ+ 1)B∆


▷ (6.19)

This magnetic eld-dependent contribution is nite since the integrand in Eq. (6.19) is
well behaved in the limit z → 0. On the other hand, we regularize the expression for the
added B = 0 piece by using a 3D cuto. We get

Jvac
∆ (Π2) = 2


Ivac1 +Π2Ivac2 (Π2)


, (6.20)
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where the explicit expressions of Ivac1 and Ivac2 are given in Eqs. (2.52) and (2.53), respec-
tively.

After diagonalization, the regulated inverse diquark propagator reads

G−1
∆ (p̄, p̄′) = δ̂p̄,p̄′

 1
4H − J reg

∆ (ℓ,Π2)

▷ (6.21)

Consequently, the diquark pole mass in the presence of the magnetic eld can be obtained
for each Landau level ℓ by solving the equation

1
4H − J reg

∆ (ℓ,−m2
∆) = 0 ▷ (6.22)

Although not explicitly stated, m∆ depends on the magnetic eld. As in the case of the
charged pions, instead of dealing with m∆ one can dene the ∆ “magnetic eld-dependent
mass” as the lowest quantum-mechanically allowed energy of the diquark, E∆. The latter
is given by

E2
∆ = m2

∆ + (2ℓ+ 1)B∆ + p23


ℓ=p3=0

= m2
∆ + |eB|

3 ▷ (6.23)

Notice that this “mass” is magnetic eld dependent even for a point-like diquark (in which
case the pole mass m∆ would be independent of B). In fact, owing to zero-point motion in
the 1-2 plane, even for ℓ = 0 a diquark cannot be at rest in the presence of the magnetic
eld.

Since the inverse of the diquark propagator is diagonal in this basis, it can be trivially
inverted. We have

G∆(p̄, p̄′) = δ̂p̄,p̄′ Greg
∆ (ℓ, p2||) , (6.24)

where
Greg
∆ (ℓ, p2||) =

 1
4H − J reg

∆ (ℓ,Π2)
−1

▷ (6.25)

Given the diagonal form of the diquark propagator in Ritus space, see Eq. (6.24), we can
transform it back to coordinate space. One obtains

G∆(x, x′) = eiΦ∆(x,x′)
ˆ

p

eip(x−x′) Ḡ∆(p⊥, p||) , (6.26)

where
Ḡ∆(p⊥, p||) = 2 e−

p2
⊥

B∆

∞

ℓ=0
(−1)ℓ Greg

∆ (ℓ, p2||) Lℓ


2 p2⊥
B∆


▷ (6.27)

We recall here the notation p⊥ = (p1, p2) and p|| = (p3, p4).
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Figure 6.1: Diagrams contributing to the full baryon propagator.

6.1.3 Nucleon masses
The baryon propagator can be obtained consistently with the bound quark-diquark
structure following Ref. [276]. From the innite sum illustrated by the diagrams in Figure 6.1
one arrives at a relation of the form

SB([x; y], [x′; y′]) = SB
0 ([x; y], [x′; y′]) +
ˆ

d4t d4z SB
0 ([x; y], [t; z])H(z, t)SB

0 ([z; t], [x′; y′]) + ▷ ▷ ▷ (6.28)

where, in our case, the kernel H is given by

H(z, t) = iγ5τ2λA Sc(z, t) iγ5τ2λA′ ▷ (6.29)

In Eq. (6.28), SB stands for the full baryon propagator, while SB
0 describes the unperturbed

propagation of a diquark and a quark, namely

SB
0 ([x; y], [t; z]) = G∆(x, t)S(y, z) ▷ (6.30)

Since the nucleon elds are bilocal, we have introduced the notation of pairs [x; y], where
the rst and second coordinates correspond to the diquark and the quark, respectively.
The resummation of the diagrams in Figure 6.1 leads to a relativistic Fadeev equation
that can be written in the form

SB
0 ([x; y], [x′; y′]) =

ˆ

d4t d4z

δ(4)(x− z)δ(4)(y − t)− L([x; y], [z; t])


SB([z; t], [x′; y′]) ,

(6.31)
where

L([x; y], [z; t]) = SB
0 ([x; y], [t; z])H(z, t) ▷ (6.32)

The nucleon masses will be given by the poles of the operator in square brackets in
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Eq. (6.31). Acting on the baryon eld ψ, one has
ˆ

d4z d4t L([x; y], [z; t])ψ([z; t]) = ψ([x; y]) ▷ (6.33)

It should be noticed that in our calculation only isocalar-scalar diquark interactions have
been considered. This implies that the nucleon isospin is directly given by the avor of
the unpaired quark. Projecting on color singlet baryon states, and using the explicit form
of the matrices in avor space, one gets

2
ˆ

d4z d4t G∆(x, t)Su(y, z) γ5 S−d(z, t) γ5 ψp([z; t]) = ψp([x; y]) ,

2
ˆ

d4z d4t G∆(x, t)Sd(y, z) γ5 S−u(z, t) γ5 ψn([z; t]) = ψn([x; y]) , (6.34)

where ψp and ψn stand for proton and neutron elds, respectively.
It should be noticed that in the absence of an external magnetic eld both equations

coincide. Moreover, since in that case both quark and diquark elds are translational
invariant, one can perform a Fourier transformation into momentum space. The resulting
Fadeev equation, discussed e.g. in Refs. [277, 278], turns out to be a nonseparable integral
equation. Given its complexity, in Ref. [277] the so-called “static approximation” was
used, in which one disregards the momentum dependence of the exchanged quark. Then,
in Ref. [278] the full equation was solved numerically, showing that in fact the static
approximation can be taken as a good qualitative approach to the exact results. Having
this in mind, and taking into account the additional diculty introduced by the external
magnetic eld, we nd it appropriate to consider the static approximation to get an
estimation of the behavior of nucleon masses with the external eld. This means to take

S̄−f(q⊥, q||) → 1
M

▷ (6.35)

Since in this approximation one has S−f(x, y) = δ(4)(x − y) and H(x, z) ∝ δ(4)(x − z),
Eq. (6.34) reduces to

2
M

ˆ

d4z G∆(x, z)Su(x, z)ψp(z) = ψp(x) ,

2
M

ˆ

d4z G∆(x, z)Sd(x, z)ψn(z) = ψn(x) ▷ (6.36)

Notice that within this approximation there is no further need to consider coordinate pairs
in the arguments of nucleon elds, which become local.
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Inserting Eqs. (2.66) and (6.26) into Eq. (6.36), we get

2
M

ˆ

p,q

ei(p+q)x Ḡ∆(p⊥, p||) S̄u(q⊥, q||)
ˆ

d4z eiΦp(x,z) e−i(p+q)z ψp(z) = ψp(x) ,

2
M

ˆ

p,q

ei(p+q)x Ḡ∆(p⊥, p||) S̄d(q⊥, q||)
ˆ

d4z e−i(p+q)z ψn(z) = ψn(x) , (6.37)

where the Schwinger phase appearing in the equation for the proton is given by

Φp(x, x′) = Φ∆(x, x′) + Φu(x, x′) = QpB

2 (x1 + x′
1)(x2 − x′

2) , (6.38)

with Qp = e > 0. As expected, in the neutron equation the Schwinger phase vanishes. In
order to change to a diagonal basis, it is convenient to introduce the transformations

ψp(x) =
ˆ

P̄

Esp
P̄
(x)ψp(P̄ ) , ψn(x) =

ˆ

P

eiPx ψn(P ) ▷ (6.39)

Note that while in the case of the neutron P denotes the usual four-momentum, for
the proton eld P̄ = (n, P2, P3, P4) denotes its corresponding quantum numbers in the
Landau gauge, including the Landau level n. The Euclidean Ritus spinor eigenfunctions
Esp
P̄
(x) have been dened in Eq. (2.58) for the Landau gauge, with Bp = |eB| = Be and

sp = sign(eB).
Inserting the expansions of Eq. (6.39) into Eq. (6.37) one gets

ˆ

P̄ ′

D(p)
P̄ ,P̄ ′ ψp(P̄ ′) = 0 , D(n)

P ψn(P ) = 0 , (6.40)

where

D(p)
P̄ ,P̄ ′ = δ̂P̄ ,P̄ ′ − 2

M



λ,λ′

ˆ

p,q

Iλ,λ′
P̄ ,P̄ ′(p, q) Ḡ∆(p⊥, p||)∆λ S̄u(q⊥, q||)∆λ′ , (6.41)

D(n)
P = − 2

M

ˆ

p

Ḡ∆(p⊥, p||) S̄d(P⊥ − p⊥, P|| − p||) , (6.42)

with λ,λ′ = ± and

Iλ,λ′
P̄ ,P̄ ′(p, q) =

ˆ

d4x d4z ei[Φp(x,z)+(p+q)(x−z)] Bsp
P̄ ,λ

(x)∗ Bsp
P̄ ′,λ′(z) ▷ (6.43)

The spin projectors, dened below Eq. (3.32), are given by ∆+ = diag(1, 0, 1, 0) and
∆− = diag(0, 1, 0, 1). Meanwhile, the Ritus-type basis function Bsp

P̄λ
(x) were dened in
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Eq. (2.59), with P̄λ = (nλ, P2, P3, P4) where nλ = n− (1− spλ)◁2 is a non-negative integer.
We omit the sp subscript in the notation of nλ for visual clarity.

It is not obvious from Eq. (6.41) that D(p)
P̄ ,P̄ ′ is diagonal in Ritus space. However, after

a rather long calculation, it can be shown that D(p)
P̄ ,P̄ ′ is indeed proportional to δ̂P̄ ,P̄ ′ . The

main steps of the calculation are detailed in section D.1 of Appendix D. Using the form of
the quark and diquark propagator given in Eqs. (2.67) and (6.27) one nally obtains

D(p)
P̄ ,P̄ ′ = δ̂P̄ ,P̄ ′



λ=±


X(p)

λ + Y (p)
λ P|| · γ|| + Z(p)

λ γ2

∆λ ,

D(n)
P =



λ=±


X(n)

λ + Y (n)
λ P|| · γ|| + Z(n) P⊥ · γ⊥


∆λ , (6.44)

where

X(p)
λ = 1− (−1)nλ

8π
Bp

ˆ

p,q⊥

e
− (p⊥+q⊥)2

Bp Ḡ∆(p⊥, p||) T u
λ (q⊥, P|| − p||) Lnλ


2(q⊥ + p⊥)2

Bp


,

(6.45)

Y (p)
λ = (−1)nλ

8π
MBp

ˆ

p,q⊥

e
− (p⊥+q⊥)2

Bp Ḡ∆(p⊥, p||)×

1− p|| · P||

P 2
||


T u
λ (q⊥, P|| − p||) Lnλ


2(q⊥ + p⊥)2

Bp


, (6.46)

Z(p)
λ = (−1)n 8π sp

MBp


2

nBp

ˆ

p,q⊥

e
− (p⊥+q⊥)2

Bp Ḡ∆(p⊥, p||)×

|q⊥| [(q1 + p1)− iλ(q2 + p2)] V u(q⊥, P|| − p||) L1
n−1


2(q⊥ + p⊥)2

Bp


, (6.47)

for the proton and

X(n)
λ = 1− 2

ˆ

p

Ḡ∆(p⊥, p||) T d
λ (P⊥ − p⊥, P|| − p||) , (6.48)

Y (n)
λ = 2

M

ˆ

p

Ḡ∆(p⊥, p||) T d
λ (P⊥ − p⊥, P|| − p||)


1− p|| · P||

P 2
||


, (6.49)

Z(n)
λ = 2

M

ˆ

p

Ḡ∆(p⊥, p||) V d(P⊥ − p⊥, P|| − p||)

1− p⊥ · P⊥

P 2
⊥


, (6.50)
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for the neutron, with

T f
λ (q⊥, q||) =

ˆ ∞

0
dτ e−τΥf (τ,q) [1 + λ sf tanh(τBf)] ,

V f(q⊥, q||) =
ˆ ∞

0
dτ e−τΥf (τ,q) sech2(τBf) ▷ (6.51)

The function Υf(τ, q) was dened in Eq. (2.68). Also, similarly to Eq. (2.24), we have
dened the shorthand notation

ˆ

q⊥

=
ˆ

dq1 dq2
(2π)2 ▷ (6.52)

In what follows we will concentrate on the determination of the proton and neutron
lowest possible energies. Since these quantities are usually interpreted as the nucleon
masses, we denote them as MN, with N = p, n. For the neutron we just take, as usual,
P⊥ = P3 = 0 and P 2

4 = −M2
n. In the proton case, as done for diquarks, we consider the

squared canonical momentum, Π2 = 2nBp + P 2
|| . The lowest energy state corresponds to

P3 = 0 and the lowest Landau level (LLL), n = 0. Then P 2
4 = −M2

p, as for the neutron
case. Since the determinants of the Dirac operators in Eq. (6.44) have to vanish at the
pole masses, the corresponding eigenvalue equations read


X̂(p)

sp

2 −M2
p


Ŷ (p)
sp

2
= 0 ,


X̂(n)

λ

2 −M2
n


Ŷ (n)
λ

2
= 0 , (6.53)

where we have denoted by X̂ν
± and Ŷ ν

± the coecients in Eq. (6.44) evaluated at n = 0,
P3 = 0 and P⊥ = 0. Note that for the lowest energy states there is no contribution from
the Z(p)

λ and Z(n)
λ terms. In addition, for the proton case only the projection λ = sp is

nonvanishing for n = 0. For the neutron, both projections are in principle allowed, and
one should take the value of λ that leads to the lowest value of the mass.

To obtain the explicit form of the coecients X̂ν
λ and Ŷ ν

λ needed to evaluate –and
solve – Eq. (6.53), one has to replace the diquark propagator of Eq. (6.27) into Eqs. (6.45 -
6.50). For convenience we consider rst the form of the coecients in the absence of the
external magnetic eld (in this case both nucleons are taken at rest). They are given by
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(see section D.2)

X̂ = 1− 1
4π2mN

ˆ ∞

1

dτ

τ

ˆ ∞

0
dp p2 Gvac

∆ (p2) e−τ
M2+p2−m2

N
Λ2

B J1


2 τ pmN

Λ2
B


, (6.54)

Ŷ = 1
4π2mNM

ˆ ∞

1

dτ

τ

ˆ ∞

0
dp p2 Gvac

∆ (p2) e−τ
M2+p2−m2

N
Λ2

B ×

J1


2 τ pmN

Λ2
B


− p

mN
J2


2 τ pmN

Λ2
B


▷ (6.55)

Here, and below, mN denotes the nucleon mass at B = 0 while Jn(x) are Bessel functions.
The B = 0 diquark propagator [see Eq. (6.25)] is given by

Gvac
∆ (p2) =

 1
4H − Jvac

∆ (p2)
−1

▷ (6.56)

Notice that Eqs. (6.54) and (6.55) include a cuto parameter ΛB, which has been introduced
in order to regularize the otherwise divergent quark-diquark loop within the proper time
regularization scheme.

For nonzero magnetic eld B, in the case of the proton we have

X̂(p)
sp = 1− BuB∆

2π2Λ2
B

ˆ ∞

1
dτ

1 + tu
Bu + (Bp +B∆)tu

∞

ℓ=0


Bu + (Bp −B∆)tu
Bu + (Bp +B∆)tu

ℓ
×

ˆ ∞

0
dp|| p|| Greg

∆ (ℓ, p2||) e
−τ

M2+p2
||−M2

p

Λ2
B J0


2 τ p|| Mp

Λ2
B


,

Ŷ (p)
sp = BuB∆

2π2MΛ2
B

ˆ ∞

1
dτ

1 + tu
Bu + (Bp +B∆)tu

∞

ℓ=0


Bu + (Bp −B∆)tu
Bu + (Bp +B∆)tu

ℓ
×

ˆ ∞

0
dp|| p|| Greg

∆ (ℓ, p2||) e
−τ

M2+p2
||−M2

p

Λ2
B


J0


2 τ p|| Mp

Λ2
B


− p||

Mp
J1


2 τ p|| Mp

Λ2
B


,

(6.57)
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while for the neutron we get

X̂(n)
λ = 1− BdB∆

2π2Λ2
B

ˆ ∞

1
dτ

1 + λsdtd
Bd +B∆td

∞

ℓ=0


Bd −B∆td
Bd +B∆td

ℓ
×

ˆ ∞

0
dp|| p|| Greg

∆ (ℓ, p2||) e
−τ

M2+p2
||−M2

n

Λ2
B J0


2 τ p|| Mn

Λ2
B


,

Ŷ (n)
λ = BdB∆

2π2MΛ2
B

ˆ ∞

1
dτ

1 + λsdtd
BdB∆td

∞

ℓ=0


Bd −B∆td
Bd +B∆td

ℓ
×

ˆ ∞

0
dp|| p|| Greg

∆ (ℓ, p2||) e
−τ

M2+p2
||−M2

n

Λ2
B


J0


2 τ p|| Mn

Λ2
B


− p||

Mn
J1


2 τ p|| Mn

Λ2
B


▷

(6.58)

In these equations we have used the denition tf = tanh (τBf◁Λ2
B).

6.1.4 Nucleon magnetic moments
We nish this section by noting that in order to study how nucleon masses get modied to
lowest order in the magnetic eld, the above expressions for X̂ν

λ and Ŷ ν
λ can be expanded

around B = 0. Let us dene the corresponding slopes αN by

MN = mN + αN |B|+O(B2) ▷ (6.59)

After a rather long calculation, sketched in section D.2, we obtain

αp = −Qu [(M +mN)I1 −mN I2] +Qp Ŵ

M Ŷ + 2mN Ŵ
,

αn = Qd [(M +mN)I1 −mN I2]
M Ŷ + 2mN Ŵ

, (6.60)

where
Ŵ = (M +mN)I1 − (2mN +M)I2 +mN I3 , (6.61)

and the integrals Ik are given by

Ik = 1
4π2 Λ2

B mk
N

ˆ ∞

1
dτ

ˆ ∞

0
dp pk+1 GB=0

∆ (p2) e−τ
M2+p2−m2

N
Λ2

B Jk


2 τ pmN

Λ2
B


▷ (6.62)

To nd the relation between αN and the nucleon magnetic moments we proceed as
follows. First, we take into account that to leading order in the magnetic eld the change
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in the nucleon energy is given by [267, 279]

∆EN = |QNB|
2mN

− µ⃗N · B⃗ +O(B2) ▷ (6.63)

The rst term corresponds to orbital motion. While it vanishes for the neutron, for the
proton it provides a contribution due to zero point motion in the plane perpendicular to
the magnetic eld. The second term represents, for both p and n, the spin contribution
leading to the Zeeman eect. Thus, we have

∆Ep = (1− µp)
e|B|
2mN

+O(B2) ,

∆En = − λ µn
eB

2mN
+O(B2) , (6.64)

where, as usual, the nucleon magnetic moments are expressed in units of the nuclear
magneton µN = e◁(2mN). Note that for the proton we have taken into account the fact
that for the lowest energy state one has λ = sp. In this way, identifying the corresponding
slopes at B = 0, the nucleon magnetic moments are given by

µp = 1− 2mN

e
αp , µn = −λ sign(B) 2mN

e
αn ▷ (6.65)

6.2 Numerical results
For deniteness, in what follows we will consider B > 0. To obtain numerical results
for diquark and baryon properties one has to x the model parametrization. Here we
will consider only set I of Table 4.1, which from the three sets of the table provides the
best agreement with lattice QCD results [73] for the normalized average condensate up to
eB ≃ 1 GeV2, as seen in Figure 4.2. The eective Lagrangian in Eq. (6.1) also includes
the scalar quark-quark coupling constant H. Typical eective approaches for the strong
interaction, such as the One Gluon Exchange or the Instanton Liquid Model, lead to
H◁G = 0▷75 [181]. However, this value is subject to somewhat large uncertainties from the
phenomenological point of view. In fact, larger values for this ratio seem to be favored from
the determination of baryon properties within the Fadeev approach [277, 278, 280, 281].
Here we choose to take H◁G within the range 0▷75 ≤ H◁G ≤ 1▷2, typically considered
in the literature. The corresponding values of the diquark mass and binding energies at
B = 0 are shown in Figure 6.2. We observe that for H◁G ≃ 0▷75 the scalar diquark is
barely bound by 5 MeV, while for H◁G = 1▷2 one gets binding energies of about 200 MeV.

Let us consider the eect of an uniform magnetic eld on the (LLL) diquark mass,
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Figure 6.2: ∆ mass (top) and binding energy (bottom) at B = 0 as functions of H◁G.

contained in Eq. (6.22). In the upper panel of Figure 6.3 we show the magnetic dependence
of the diquark mass, normalized with respect to its B = 0 value. The curves correspond to
some selected values of the ratio H◁G within the range mentioned above. We get m∆(B =
0) = 0▷685, 0▷653, 0▷609 and 0▷555 GeV for H◁G = 0▷8, 0▷9, 1▷0 and 1▷1, respectively. It is
seen that for all considered values of H◁G the normalized mass initially decreases as B
increases, attaining a minimum at about eB ∼ 0▷2 GeV2. Beyond this minimum the curves
steadily increase with the magnetic eld, reaching a ratio m∆(B)◁m∆(0) = 1 somewhere
in the range eB ∼ 0▷4− 0▷6 GeV2, depending on the precise value of H◁G. Notice that
this nonmonotonic behavior diers from the steady charged pion mass increase found
in Figure 5.5. Lastly, results obtained disregarding Schwinger phases greatly deviate at
high magnetic elds, showing a rather strong enhancement with B.

In the lower panel of Figure 6.3 we show the dierence of squared lowest energies,
i.e. E∆(B)2 − E∆(0)2, see Eq. (6.23). For a point-like diquark this dierence is simply
given by eB◁3, indicated by the straight dotted black line. It can be observed that, as a
consequence of the nonmonotonic behavior of the pole mass, for small (large) values of eB
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Figure 6.3: Diquark normalized mass (top) and squared energy dierence (bottom) as functions
of eB for some representative values of H◁G. The point-like case is indicated by the dotted
line, while results obtained disregarding chwinger phases are depicted as a dark yellow line for
H◁G = 0▷8.

the dierence E∆(B)2 −E∆(0)2 lies below (above) that straight line. A similar behavior
was found in the analysis of Ref. [169], where Schwinger phases were not taken into account.
As for charged pions, for ℓ = p3 = 0 this amounts to replace α+ → t+ and m2

∆+B∆ → m2
∆

in the nal expression of Eq. (6.19). We see that in this case not only the crossing is found
to occur at a lower value of eB, of about 0.2 GeV2 for H◁G = 0▷8, but also the behavior
of the curve deviates at high magnetic elds, showing a rather steep enhancement with
B. It is also interesting to note that as H◁G increases the behavior of the squared energy
dierence gets closer to the point-like case. This might be understood by realizing that
a larger value of H◁G implies a more deeply bound diquark and, consequently, a more
localized one.

We turn next to the analysis of nucleon masses. As mentioned in subsection 6.1.3,
the calculation of these quantities requires the introduction of an additional cuto pa-
rameter, ΛB, to regularize the otherwise divergent quark-diquark loop in the proper time
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regularization scheme. For a given value of H◁G, we adjust this parameter demanding the
B = 0 eigenvalue equation |X̂| = mN |Ŷ | [see Eqs. (6.54) and (6.55)] to be satised for the
physical value mN = 0▷938 GeV. In this way we obtain ΛB = 1▷618, 1.380 and 1.104 GeV
for H◁G = 0▷8, 0.9 and 1.0, respectively. For larger values of H◁G, no value of ΛB is found
to be compatible with the physical nucleon mass at zero magnetic eld in this model.
Having determined all input parameters, one can solve the eigenvalue equations (6.53) to
obtain proton and neutron masses for nonvanishing external magnetic eld.

Before reporting the corresponding results, we nd it convenient to make a few comments
concerning the numerical details of the calculation. Firstly, we note that to evaluate the
coecients X̂(N)

± and Ŷ (N)
± in Eqs. (6.57) and (6.58) one has to perform a sum over Landau

levels (LL). In that sum we have taken into account as many LL as needed in order to
obtain a stable result for the calculated mass. For low values of eB, this implies the
inclusion of a quite large number of LL. For example, at eB = 0▷04 GeV2, for H◁G = 1
about 300 LL are needed in order to obtain an accuracy of about 1 MeV in the nucleon
mass. For H◁G = 0▷8 the required number of LL is found to be even larger, of the order
of 600. As expected, for larger values of the magnetic eld the needed number of LL
gets signicantly reduced. Still, it is found that for eB as large as 0.8 GeV2 about 10 LL
are needed to obtain the above mentioned accuracy in the mass determination. Another
issue that requires some care is the numerical evaluation of the integrals in Eqs. (6.57)
and (6.58), due to the highly oscillatory behavior of the Bessel functions for large values
of their arguments.

Our results for the behavior of nucleon masses as functions of the external magnetic
eld are given in Figure 6.4. In the upper (lower) panel we show the magnetic dependence
of the proton (neutron) mass, considering H◁G = 0.8, 0.9 and 1.0. In all cases it is seen
that both nucleon masses display a nonmonotonic behavior. While they initially decrease
when the magnetic eld is increased, a steady growth is observed for larger elds. The
decrease becomes less pronounced (and the corresponding minimum occurs at smaller eB)
the larger the value of H◁G is. It is also seen that the dependence on H◁G is weaker
in the case of the neutron. Let us recall that for a proton in the LLL only the spin
projection λ = sp = sign(QpB) is allowed, while both values of λ are allowed for the
neutron. In Figure 6.4 we have plotted the values corresponding to the lower solution of
Eq. (6.53), dened as the neutron mass. In our model, for B > 0 (B < 0) it is found that
this lower state corresponds to λ = −1 (λ = 1). For the higher state, not shown in the
gure, we have seen that the neutron mass initially increases with eB. This solution is
found to exist only for eB  0▷1− 0▷2 GeV2 (the state becomes unbound for larger values
of the external eld).

As stated, close to B = 0 both proton and neutron masses are shown to decrease for
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Figure 6.4: Proton and neutron masses as functions of eB for various values of H◁G. Open dots
and dotted lines correspond to Lattice QCD results given in Ref. [164] and ChPT results given
in Ref. [268], respectively.

increasing external eld, i.e. the slopes αp and αn obtained from Eq. (6.60) are found to be
negative. Taking into account that for the lowest neutron state one has λ sign(B) = −1,
from Eq. (6.65) one gets µp > 0 and µn < 0, as expected from phenomenology. In addition,
the negative slopes found at B = 0 are consistent with results from ChPT quoted in
Ref. [268]. The latter, which are expected to hold for low values of the external eld,
are displayed as dotted lines in Figure 6.4. Notice, however, that the slopes obtained
within ChPT are in general steeper that those found from our results. The lower slopes
in our model imply in turn relatively low results for the absolute values of proton and
neutron magnetic moments. From the numerical evaluation of Eq. (6.60) and (6.65) we
nd the magnetic moments quoted in Table 6.1, to be compared with the empirical values

147



6.2. Numerical results

µp = 2▷79 and µn = −1▷91. In this regard, it should be stressed that in our work we have
neglected for simplicity the axial-vector diquark correlations. The latter can be important
to get an enhancement in |µp| and |µn|, as shown in Ref. [282]. Finally, let us compare our
results with those obtained from LQCD simulations. In Figure 6.4 we have depicted as
open dots the LQCD results quoted in Ref. [164], corresponding to two dierent values of
the lattice spacing a. We observe some qualitative agreement with our results, although
LQCD values tend to show a lower dependence on the external eld. In the case of the
proton, a few lattice points seem to show a mass enhancement for eB ≃ 0▷2− 0▷3 GeV2.
Presumably, this could be due to the fact that, as mentioned by the authors of Ref. [164],
the Zeeman-splitting cannot be fully resolved. We believe that our results exhibit a more
trustable initial slope, in view of the results arising from ChPT.

H◁G µp µn

0.8 2.63 -1.19

0.9 2.30 -1.05

1.0 1.99 -0.94

Table 6.1: Predicted values of nucleon magnetic moments for dierent values of H◁G.
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7
Conclusions

In this thesis we have investigated the eect of an external uniform magnetic eld on
several light hadron properties, composed by strongly interacting quark matter. Since
strong magnetic elds can resolve the quark structure of hadrons, the eect on their
properties can provide meaningful information about the magnetized QCD phase diagram,
relevant for various physical scenarios. Since the nonperturbative character of QCD at
low energies render calculations extremely complicated, to calculate hadron properties
we have employed the Nambu–Jona-Lasinio eective model, where current-current color
interactions mediated by gluon exchanges are approximated by local four-point interactions.
The model, introduced in chapter 2, is built upon the symmetries of QCD and is able to
reproduce the chiral symmetry breaking phenomenon.

Since pions are the lightest hadrons, they can be easily produced in the aforementioned
magnetized systems. However, they are unstable particles, prompt to decay into less
heavier ones such as leptons and photons. In the absence of external elds, a unique decay
constant is associated to the weak decay of charged pions. In contrast, the presence of a
uniform magnetic eld modies the symmetries of the system and opens up the possibility
for new decay constants to appear. In chapter 3 we have presented a general method
to parametrize the magnetized one-pion-to-vacuum matrix elements of the vector and
axial-vector hadronic currents, based on Refs. [230] and [231]. When the magnetic eld is
present, new gauge-covariant tensor structures are available. We have shown that, in fact,
four independent four-vectors can be formed, leading the existence of four form factors or
decay constants; three associated to the vector-axial current, and one to the vector current.
These are constrained by discrete symmetries. As a result, all form factors are real, and
for charged pions they are independent of the charge sign. Moreover, in the neutral pion
case, such symmetries prevent the appearance of a particular axial form factor.
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Choosing B⃗ to be orientated along the 3-axis, we have shown that the matrix elements
of the parallel (0- and 3-) components of the vector current can be expressed in terms of
one single real form factor, f (V )

π0 or f (V )
π± , while the perpendicular (1- and 2-) components

vanish identically. For the matrix elements of the axial-vector current, two real form
factors f (A1)

π0 and f (A3)
π0 can be dened in the neutral pion case. Alternatively, these can

be written in terms of a parallel and a perpendicular form factor, reecting the anistropy
induced by the external eld [170]. For charged pions, in contrast, three form factors
f (A1)
π± , f (A2)

π± and f
(A3)
π± are in general required to parametrize the matrix elements of the

axial-vector current. While f (A3)
π0 , f (V )

π± and f (A2)
π± were already known in the literature [170,

171], the decay constants f (V )
π0 and f (A3)

π± are new, rst dened in [230].
Using the above results we have introduced a general, model-independent framework

to study the weak decay π− → l ν̄l in the presence of an uniform external magnetic eld.
To that end, we described for each involved particle the specic form of the eld, taking
fully into account the eect of the magnetic eld on the corresponding eigenfunctions.
By performing calculations in two dierent gauges, Landau [230] and symmetric [231],
we were able to provide an explicit test of gauge independence of our result. Moreover,
this has let us clarify on the behavior of the associated quantum numbers. For both
gauges, the momentum in the eld direction together with the energy are conserved. The
remaining quantum numbers are the Landau level and a last one which depends on the
chosen gauge. For the Landau gauge it is the canonical momentum along the 2-direction,
while for the symmetric gauge it is the canonical total angular momentum along the
3-direction. Although these quantities are conserved, they are gauge dependent and thus
do not correspond to physical observables.

For the case in which the decaying pion lies in its state of minimum energy (i.e. in
the lowest Landau level, with zero momentum along the 3-direction), we have obtained
an explicit expression for the magnetized π− → l ν̄l decay width in Eq. (3.71). As
expected, this expression coincides for both chosen gauges and does not depend on
their corresponding gauge-dependent quantum numbers. Moreover, we have revealed
that angular momentum conservation does not imply, as claimed in Ref. [171], that the
antineutrino momentum has to be necessarily parallel to the magnetic eld. For large
magnetic elds, i.e. eB > m2

π− −m2
l ∼ 0▷05 GeV2 but smaller than the squared τ lepton

mass, this expression reduces to Eq. (3.73). In fact, a novel result was obtained for strong
elds which also satisfy eB ≫ m2

l . As seen in the simplied expression of Eq. (3.75),
valid for very intense magnetic elds, the magnetized decay width does not vanish in
the chiral limit ml → 0, i.e. it does not show the helicity suppression found in the
absence of the external magnetic eld. In fact, helicity conservation only implies that
the projection of the antineutrino momentum in the magnetic eld direction should be
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antiparallel to the magnetic eld. This implies a highly anisotropic distribution of outgoing
antineutrinos,signaling a signicant suppression in the direction of the external eld.

In order to quantitatively estimate how weak decay rates of charged pions are modied
by the magnetic eld, the behavior of the decay form factors and pion masses should be
determined. In chapter 4, these and other pion properties have been calculated in the
framework of the two-avor NJL model (introduced in chapter 2), based on Refs. [233,
252]. While for neutral pions one can take the usual momentum basis to diagonalize
the corresponding polarization functions, this is not possible for charged pions, due to
the presence of nonvanishing contributions from Schwinger phases. In chapter 3 we have
shown that the Ritus eigenfunction method presented allows us to fully take into account
the translational-breaking eects induced by these phases. Calculations of charged meson
properties using this method have been performed in [233, 252] for the rst time. In our
numerical calculations we have used three model parametrization sets that satisfactorily
describe not only meson properties in the absence of the magnetic eld but also lattice
QCD results for the behavior of quark condensates under a magnetic eld. Moreover, we
have explored the possibility of considering a magnetic eld dependent coupling G(B), so
as to incorporate the inverse magnetic catalysis eect. Due to the nonrenormalizability of
the model, divergent results were regulated using a 3D cuto in the MFIR scheme, which
has been proven to provide more reliable results as compared to other magnetic dependent
regularization schemes [212].

We have found that, for a constant coupling G, the magnetic eld slightly diminishes
the π0 mass, in agreement with previous NJL results [161, 248]. However, the m0

π behavior
found is nonmonotonic, in contrast with LQCD [129, 258] and nonlocal NJL [250, 251]
results, which display a monotonous decrease of the mass with B. For eB < 1 GeV2

this trend is recovered when a magnetic coupling G(B) is used [161], which mimics the
backreaction of sea quarks due to the external eld. Meanwhile, the pion-to-quark coupling
constant gπ0qq shows some enhancement if B is increased for a constant G, in contrast to
what happens for the G(B) case. On the other hand, for both couplings the directional
refraction index uπ0 decreases monotonously with B, remaining always lower than one
(subluminal pions) even in the chiral limit, in agreement with Refs. [100, 217]. Regarding
neutral decay constants, in the NJL model f (A2)

π0 vanishes, as expected from the constraints
imposed by the discrete symmetries of the interaction. For both couplings f (A||)

π0 = f (A1)
π0

and f (V )
π0 are enhanced for increasing B, while f (A⊥)

π0 = f (A1)
π0 − f (A3)

π0 is reduced. The use
of G(B) leads to better agreement with some other approaches [243, 251, 258], which
show a steeper behavior. We have also remarked that our results satisfy quite well several
chiral limit relations, such as the well-known generalized Goldberger-Treiman and Gell-
Mann-Oakes-Renner equations for f (A∥)

π0 (see e.g. Ref. [234]). Moreover, we have shown
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that relations f (A⊥)
π0 = u2

π0f
(A||)
π0 and f

(V )
π0 = eB◁(8π2f

(A||)
π0 ) also hold in the chiral limit.

While the former can be derived from Refs. [103, 170, 228], the latter can be related to the
anomalous Wess-Zumino-Witten eective Lagrangian, and – to the best of our knowledge –
has not been previously stated in the literature.

Turning now to the charged pion case, we remark that calculations have been performed
fully accounting for Schwinger phases through the Ritus eigenfunction method. We have
obtained mπ− = mπ+, as expected from charge invariance. Moreover, a mass for each
Landau level can be obtained; we have considered only the lowest Landau level mass.
In particular, we have found that the magnetic-eld dependent mass Eπ± (dened as its
lowest energy state) steadily increases with the magnetic eld [less markedly for G(B)],
remaining always larger than that of a point-like pion. For low values of eB (say eB  0▷15
GeV2), results for E2

π±(B)−E2
π±(0) are in good agreement with LQCD calculations using

staggered quarks with realistic pion masses [74, 258]. For larger values of eB, our results
are consistent with quenched LQCD simulations at unphysically large pion masses [129].
However, NJL results do not reproduce the nonmonotonic behavior with values below
the point-like case found in [258], using highly improved staggered quarks with close-to-
physical pion masses. As compared to results obtained disregarding Schwinger phases, as
done in previous works, the latter show an even steeper enhancement with B, in further
contrast with lattice outputs. On the other hand, as in the neutral case, gπ−qq shows
some enhancement if B is increased for a constant G, in contrast to what happens for
the G(B) case. Regarding the four charged decay constants, they all increase with B –
see [171] for some LQCD results obtained in Fourier space. The use of G(B) moderates this
enhancement, except for f (A3)

π− where it is intensied. We stress that some chiral relations,
such as GT and GMOR, are violated for eB  m2

π, for both f (A||)
π− and f (A⊥+)

π− . However,
for a constant coupling G, new relations involving f (V )

π− or the dierence f (A2)
π− − f (A3)

π− are
approximately satised.

From the NJL outcomes for these pion properties, we have obtained an estimation
of the eect of an external uniform magnetic eld on the magnitude of the decay rate
Γ(π− → l−ν̄l) and the angular distribution of the antineutrinos in the nal state, based
on Ref. [253]. Our estimation took into account the contribution of all four possible π−

decay form factors. It also considered the π− in its lowest possible energy state. Then,
from the two possible form factors combinations f (A⊥±)

π− = f (A1)
π− ± f (A2)

π− − f (A3)
π− which

parametrize the matrix elements of the axial current, only f (A⊥+)
π− contributes. Our results

show that the total decay rate Γe + Γµ becomes strongly increased with respect to its
B = 0 value, with the enhancement factor reaching a value of 1000 at eB ≃ 1 GeV2 when
using a constant coupling, increased up to 1800 for G(B). Moreover, owing to the presence
of the new decay constants and the features of nonzero B kinematics, it was found that
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the decay width Γl does not vanish in the limit ml = 0. As a consequence, for large values
of B the ratio Γe◁Γµ changes dramatically with respect to the B = 0 value (of about
1▷2 × 10−4), reaching a magnitude of ∼ 0▷5 at eB ≃ 1 GeV2. This could be interesting
e.g. regarding the expected avor composition of neutrino uxes coming from the cores
of magnetars and other stellar objects. Also, a reduction in the pion mean lifetime will
inevitably decrease radiation energy loss of pions and result in a harder neutrino spectrum.
On the other hand, it was found that for large B the angular distribution of outgoing
antineutrinos becomes highly anisotropic, showing a signicant suppression in the direction
of the external eld. In addition, most antineutrinos come out with low momentum in the
eld direction, i.e. in directions approximately perpendicular to the magnetic eld.

It is worth noticing that for the three parametrization sets used, we have found that
all mentioned results are rather insensitive to variations in the parametrization.

The Ritus eigenfunction method presented for the calculation of charged pion properties
can be straightforwardly extended to calculate properties for all charged mesons of the
pseudoscalar nonet. To that end, we worked with the three-avor version of the NJL
model, including the ’t Hooft-Maekawa six-fermion interaction which explicitly breaks
axial symmetry U(1)A. Results are based on Ref. [265]. Bosonization is performed using
the stationary phase approximation. Once again we considered a magnetic eld dependent
coupling G(B) and regularized divergent results using a 3D cuto in the MFIR scheme.

For neutral mesons the magnetic eld breaks isospin symmetry, leading to a mixing
between all three π0 − η − η′ states [105] in contrast to the B = 0 case, where π0 is
decoupled. As known, the η′ meson comes out in the model as a resonance or unstable
particle. In this regard, we have developed a new formalism to deal with the multiple
complex magnetic poles. Nevertheless, results for this meson are less reliable, approaching
the limit of applicability of the NJL model due to the lack of connement. In fact, its
width increases with B and we have found that when using G(B) the coupling strength
is not enough to form an η′-resonance for eB  0▷5 GeV2. Results for the π0 mass are
rather similar to those obtained in the two-avor case, although SU(3) values are slightly
higher. For constant G, the mass displays a non-monotonous behavior with B, while the
monotonous decreasing behavior found in LQCD [129, 258] is reproduced using G(B).
A similar behavior is found for K0, K̄0 and η masses. From the behavior of neutral
pseudoscalar meson masses, we conclude that the incorporation of the inverse magnetic
catalysis eect in the NJL model, as done e.g. in this thesis through the magnetic eld
dependent coupling G(B), is fundamental to qualitatively reproduce the available LQCD
results.

Concerning charged mesons, for their lowest energies EP±(B) (P = π,K) a strong
enhancement with B was found, surpassing the energy associated with a point-like charged
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meson. Once again, pion results are very similar to the ones obtained in the two-avor
case. Our NJL results for E2

P±(B) − E2
P±(0) are in reasonable agreement with LQCD

results of Ref. [129] within error bars for P = π, being closer for the constant coupling
case. On the other hand, no sign of the non-monotonous behavior found in the LQCD
calculation of Ref. [258] is observed for P = π,K.

Lastly, the Ritus eigenfunction method has been applied to the calculation of diquark
and nucleon masses, within the two-avor NJL model. To account for diquarks, scalar
quark-quark color pairing interactions were included, driven by a constant coupling H.
We have considered values of the interaction strength ratio in the usually studied range
0▷75 ≤ H◁G ≤ 1▷2. Bosonization has been performed using the Nambu-Gorkov formalism.

Diquarks can be treated in a very similar fashion as charged pions. As before, the
regularization has been performed using a 3D cuto within the MFIR scheme. At B = 0,
the (LLL) mass m∆ decreases with H◁G. Inversely, the binding energy 2M−m∆ increases:
while for H◁G = 0▷75 the scalar diquark is barely bound by 5 MeV, at H◁G = 1▷2 the
binding energy is about 200 MeV. At B ̸= 0, results for m∆ and the lowest energy state E∆

showed that, for low values of B, both curves lie below those corresponding to a point-like
diquark. This is reversed for eB  0▷3 − 0▷5 GeV2, where the growth gets steeper in
comparison with the point-like case. In fact, the increase becomes even more pronounced
for lower values of the ratio H◁G. In comparison, results obtained disregarding Schwinger
phases show an early crossing of the point-like curve and a rather strong enhancement at
high magnetic elds.

Regarding the analysis of baryon states, in our framework nucleons have been built as
bound quark-diquark states following a relativistic Fadeev approach. Given the complexity
of the problem, we have considered a static approximation in which one disregards the
momentum dependence of the exchanged quark. This approximation has been shown to
lead to an adequate description of nucleon properties in the absence of external elds [278].
In addition, we have introduced a further model parameter ΛB to regularize the otherwise
divergent quark-diquark loops, for which we have chosen the proper time regularization
scheme. We have found that for values of H◁G larger than 1 no value of ΛB is compatible
with a physical value of the nucleon mass at zero external magnetic eld.

We have obtained numerical results for the magnetic eld dependence of the lowest
energy nucleon states, usually interpreted as the nucleon masses. In general, it is seen that
the masses initially decrease for increasing magnetic eld, whereas they show a steady
growth for large values of eB. In the proton case, results strongly depend on the ratio
H◁G. It was also seen that the negative slopes of the mass curves at B = 0 lead to the
phenomenologically correct signs for the nucleon magnetic moments. Moreover, there is a
qualitative agreement with ChPT results [268], although the slopes in our model are found
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to be somewhat lower. This leads to numerical absolute values for the proton and neutron
magnetic moments that are relatively small in comparison with the empirical ones. An
improvement on the predictions of nucleon magnetic moments is expected to be obtained
by including axial-vector diquark interactions [282]. Moreover, a full calculation would
require to take into account the momentum dependence of the exchanged quark.

In this thesis we have introduced a method to deal with uniformly magnetized charged
systems which fully takes into account the translational breaking eect of Schwinger
phases, induced by the gauge choice representation of an external uniform magnetic eld.
The method is based on the use of Ritus-type eigenfunctions, which allow for a proper
diagonalization of the system. Concerning the future outlook on this subject, it is clear
that the method introduced in this thesis can be used to provide a consistent determination
of other light charged hadron properties. In fact, charged vector and axial-vector mesons
can be readily studied within the NJL model using this method, see Ref. [283] for recent
advances in this direction. Moreover, the range of applicability can be extended to study
magnetized systems in dense and/or hot mediums, relevant for dierent physical scenarios.
In that regard, a natural improvement would be to consider inhomogeneous magnetic elds,
as suggested by heavy ion collision studies. Although in this thesis we have mainly applied
the Ritus method to the particular case of the NJL eective model, other approaches
could benet from the insights gained using this strategy.
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En esta tesis hemos investigado el efecto de un campo magnético uniforme externo sobre
varias propiedades de los hadrones ligeros, compuestos por materia de quarks fuertemente
interactuante. Dado que los campos magnéticos fuertes pueden resolver la estructura de
quarks de los hadrones, el efecto sobre sus propiedades puede proporcionar información
signicativa sobre el diagrama de fases magnetizado de QCD, relevante para varios
escenarios físicos. Dado que el carácter no perturbativo de QCD a bajas energías hace
que los cálculos sean extremadamente complicados, para calcular propiedades hadrónicas
hemos empleamos el modelo efectivo de Nambu–Jona-Lasinio, donde las interacciones de
color corriente-corriente mediadas por el intercambio de gluones se aproximan mediante
interacciones locales de cuatro puntos. El modelo, introducido en el capítulo 2, está
construido sobre las simetrías de QCD y es capaz de reproducir el fenómeno de ruptura de
la simetría quiral.

Dado que los piones son los hadrones más ligeros, pueden producirse fácilmente en
los sistemas magnetizados antes mencionados. Sin embargo, son partículas inestables,
propensas a decaer en otras menos pesadas, como leptones y fotones. En ausencia de
campos externos, el decaimiento de los piones cargados se asocia con una única constante
de decaimiento. En cambio, la presencia de un campo magnético uniforme modica
las simetrías del sistema y abre la posibilidad de que aparezcan nuevas constantes de
decaimiento. En el capítulo 3 hemos presentamos un método general para parametrizar
los elementos matriciales magnetizados de un pión a vacío de las corrientes hadrónicas
vectoriales y axiales-vectoriales, basado en las Refs. [230] y [231]. Cuando el campo
magnético está presente, nuevas estructuras tensoriales covariantes de gauge se vuelven
disponibles. Hemos mostrado que, de hecho, pueden formarse cuatro cuadrivectores
independientes, lo que conduce a la existencia de cuatro factores de forma o constantes de
decaimiento; tres asociados a la corriente vectorial-axial, y uno a la corriente vectorial.
Estos factores están limitados por simetrías discretas. Como resultado, todos los factores
de forma son reales, y para los piones cargados son independientes del signo de la carga.
Además, en el caso del pión neutro, dichas simetrías impiden la aparición de un factor de
forma axial en particular.
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Escogiendo B⃗ orientado a lo largo del eje 3, hemos mostrado que los elementos
matriciales de las componentes paralelas (0- y 3-) de la corriente vectorial pueden expresarse
en términos de un único factor de forma real, f (V )

π0 o f (V )
π± , mientras que las componentes

perpendiculares (1- y 2-) desaparecen idénticamente. Para los elementos matriciales de la
corriente axial-vectorial, pueden denirse dos factores de forma reales f (A1)

π0 y f (A3)
π0 en el

caso del pión neutro. Alternativamente, estos pueden escribirse en términos de un factor
de forma paralelo y otro perpendicular, reejando la anistropía inducida por el campo
externo [170]. Para piones cargados, en cambio, se requieren en general tres factores
de forma f (A1)

π± , f (A2)
π± y f

(A3)
π± para parametrizar los elementos matriciales de la corriente

axial-vectorial. Mientras que f (A3)
π0 , f (V )

π± y f (A2)
π± ya eran conocidos en la literatura [170,

171], las constantes de decaimiento f (V )
π0 y f (A3)

π± son nuevas, denidas por primera vez
en [230].

Utilizando los resultados anteriores, hemos introducido un marco general, independiente
del modelo, para estudiar el decaimiento débil π− → l ν̄l en presencia de un campo
magnético externo uniforme. Para ello, describimos para cada partícula implicada la
forma especíca del campo, teniendo plenamente en cuenta el efecto del campo magnético
sobre las correspondientes autofunciones. Mediante la realización de cálculos en dos
gauges diferentes, Landau [230] y simétrico [231], hemos sido capaces de proporcionar una
prueba explícita de la independencia de gauge de nuestro resultado. Además, esto nos
ha permitido aclarar el comportamiento de los números cuánticos asociados. Para ambos
gauges, el momento en la dirección del campo junto con la energía se conservan. Los
números cuánticos restantes son el nivel de Landau y un último que depende del gauge
elegido. Para el gauge de Landau es el momento canónico a lo largo de la dirección 2,
mientras que para el gauge simétrico es el momento angular canónico total a lo largo de
la dirección 3. Aunque estas cantidades se conservan, al depender del gauge elegido no
corresponden a observables físicos.

Para el caso en que el pión que decae se encuentra en su estado de mínima energía (es
decir, en el nivel más bajo de Landau, con momento cero a lo largo de la dirección 3), hemos
obtenido una expresión explícita para el ancho de decaimiento magnetizado π− → l ν̄l en
la Ec. (3.71). Como era de esperar, esta expresión coincide para ambos gauges elegidos y
no depende de sus correspondientes números cuánticos dependientes del gauge. Además,
hemos revelado que la conservación del momento angular no implica, como se arma en
la Ref. [171], que el momento del antineutrino tenga que ser necesariamente paralelo al
campo magnético. Para campos magnéticos grandes, es decir eB > m2

π− −m2
l ∼ 0▷05 GeV2,

pero menores que la masa del leptón τ al cuadrado, esta expresión se reduce a la Ec. (3.73).
De hecho, se obtuvo un resultado novedoso para campos fuertes que también satisfacen
eB ≫ m2

l . Como se observa en la expresión simplicada de la Ec. (3.75), válida para
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campos magnéticos muy intensos, el ancho de decaimiento magnetizado no desaparece en el
límite quiral ml → 0, es decir, no muestra la supresión de helicidad encontrada en ausencia
del campo magnético externo. De hecho, la conservación de la helicidad sólo implica que
la proyección del momento del antineutrino en la dirección del campo magnético debe ser
antiparalela al campo magnético. Esto implica una distribución altamente anisotrópica de
los antineutrinos salientes, seĳalando una supresión signicativa en la dirección del campo
externo.

Para estimar cuantitativamente cómo las tasas de decaimiento débil de los piones carga-
dos se ven modicadas por el campo magnético, es necesario determinar el comportamiento
de los factores de forma del decaimiento y de las masas de los piones. En el capítulo 4,
estas y otras propiedades de los piones se han calculado en el marco del modelo NJL de
dos sabores (introducido en el capítulo 2), basado en las Refs. [233, 252]. Mientras que
para los piones neutros se puede tomar la base de momento habitual para diagonalizar las
funciones de polarización correspondientes, esto no es posible para los piones cargados,
debido a la presencia de contribuciones no nulas de las fases de Schwinger. En el capítulo 3
hemos demostrado que el método de autofunciones de Ritus presentado nos permite
tener plenamente en cuenta los efectos de ruptura traslacional inducidos por estas fases.
Los cálculos de las propiedades de los mesones cargados utilizando este método se han
realizado en [233, 252] por primera vez. En nuestros cálculos numéricos hemos utilizado
tres conjuntos de parametrización del modelo que describen satisfactoriamente no solo las
propiedades de los mesones en ausencia del campo magnético, sino también los resultados
de QCD en la red para el comportamiento de los condensados de quarks bajo un campo
magnético. Además, hemos explorado la posibilidad de considerar un acoplamiento G(B)
dependiente del campo magnético, con el n de incorporar el efecto de catálisis magnética
inversa. Debido a la no renormalizabilidad del modelo, los resultados divergentes se han
regulado utilizando un corte 3D en el esquema MFIR, que ha demostrado proporcionar
resultados más ables en comparación con otros esquemas de regularización dependientes
del campo magnético [212].

Hemos encontrado que, para un acoplamiento constante G, el campo magnético
disminuye ligeramente la masa del π0, de acuerdo con resultados previos obtenidos en
el modelo NJL [161, 248]. Sin embargo, el comportamiento encontrado de m0

π no es
monótono, en contraste con los resultados de LQCD [129, 258] y NJL no local [250, 251],
que muestran una disminución monótona de la masa con B. Para eB < 1 GeV2 esta
tendencia se recupera cuando se utiliza un acoplamiento magnético G(B) [161], que imita
la retroreacción del mar de quarks debida al campo externo. Mientras tanto, la constante
de acoplamiento pión-quark gπ0qq muestra cierto aumento si se incrementa B para un
G constante, en contraste con lo que ocurre para el caso G(B). Por otro lado, para
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ambos acoplamientos el índice de refracción direccional uπ0 decrece monótonamente con B,
permaneciendo siempre menor que uno (piones subluminales) incluso en el límite quiral,
de acuerdo con las Refs. [100, 217]. En cuanto a las constantes de decaimiento neutras,
en el modelo NJL f (A2)

π0 desaparece, como era de esperarse de las restricciones impuestas
por las simetrías discretas de la interacción. Para ambos acoplamientos f (A||)

π0 = f (A1)
π0

y f (V )
π0 aumentan con B, mientras que f (A⊥)

π0 = f (A1)
π0 − f (A3)

π0 se reduce. El uso de G(B)
conduce a un mejor acuerdo con algunos otros enfoques [243, 251, 258], que muestran un
comportamiento más pronunciado. Tamibén hemos observado que nuestros resultados
satisfacen bastante bien varias relaciones en límite quiral, como las conocidas ecuaciones
generalizadas de Goldberger-Treiman y Gell-Mann-Oakes-Renner para f

(A||)
π0 (véase por

ejemplo la Ref. [234]). Además, hemos demostrado que las relaciones f (A⊥)
π0 = u2

π0f
(A||)
π0 y

f
(V )
π0 = eB◁(8π2f

(A||)
π0 ) también se cumplen en el límite quiral. Mientras que la primera

puede deducirse de las Refs. [103, 170, 228], la segunda puede relacionarse con el lagrangiano
efectivo anómalo de Wess-Zumino-Witten, y – hasta donde sabemos – no se ha establecido
previamente en la literatura.

Pasando ahora al caso del pión cargado, remarcamos que los cálculos se han realizado
teniendo plenamente en cuenta las fases de Schwinger mediante el método de autofunciones
de Ritus. Hemos obtenido mπ− = mπ+, como era de esperar a partir de la invariancia de
carga. Además, se puede obtener una masa para cada nivel de Landau; nosotros hemos
considerado sólo la masa del nivel de Landau más bajo. Las masas de piones cargados
se obtuvieron utilizando este método por primera vez en la Ref. [233]. En particular,
hemos encontrado que la masa dependiente del campo magnético Eπ± (denida como su
estado de energía más bajo) aumenta constantemente con el campo magnético [menos
marcadamente para G(B)], permaneciendo siempre mayor que la de un pión puntual. Para
valores bajos de eB (digamos eB  0▷15 GeV2), los resultados para E2

π±(B)−E2
π±(0) están

en buen acuerdo con los cálculos de LQCD usando quarks ‘staggered’ con masas de piones
realistas [74, 258]. Para valores mayores de eB, nuestros resultados son consistentes con
simulaciones de LQCD que utilizan masas de piones mayores que las físicas [129]. Sin
embargo, los resultados de NJL no reproducen el comportamiento no monótono con valores
por debajo del caso puntual encontrado en [258], utilizando quarks ‘staggered’ altamente
mejorados con masas de piones cercanas a la física. En comparación con los resultados
obtenidos sin tener en cuenta las fases de Schwinger, como se hizo en trabajos anteriores,
estos últimos muestran un realzamiento aún más pronunciado con B, en mayor contraste
con los resultados de la red. Por otra parte, como en el caso neutro, gπ−qq muestra cierto
incremento si se aumenta B para un G constante, en contraste con lo que ocurre para el
caso G(B). En cuanto a las cuatro constantes de decaimiento cargadas, todas aumentan
con B – véase la Ref. [171] para algunos resultados de LQCD obtenidos en el espacio de
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Fourier. El uso de G(B) modera este aumento, excepto para f (A3)
π− donde se intensica.

Destacamos que algunas relaciones quirales, como GT y GMOR, se violan para eB  m2
π,

tanto para f (A||)
π− como para f (A⊥+)

π− . Sin embargo, para un acoplamiento constante G,
se satisfacen aproximadamente nuevas relaciones que implican a f (V )

π− o a la diferencia
f (A2)
π− − f (A3)

π− .
A partir de los resultados de NJL para estas propiedades piónicas, hemos obtenido una

estimación del efecto que un campo magnético uniforme externo tiene sobre la magnitud
de la tasa de decaimiento Γ(π− → l−ν̄l) y la distribución angular de los antineutrinos en el
estado nal, basándonos en la Ref. [253]. Nuestra estimación tuvo en cuenta la contribución
de los cuatro posibles factores de forma del decaimiento π−. También se consideró el
pión cargado en su estado de energía más bajo posible. Entonces, de las dos posibles
combinaciones de factores de forma f (A⊥±)

π− = f (A1)
π− ± f (A2)

π− − f (A3)
π− que parametrizan los

elementos matriciales de la corriente axial, sólo contribuye f (A⊥+)
π− . Nuestros resultados

muestran que la tasa de decaimiento total Γe + Γµ se incrementa fuertemente con respecto
a su valor B = 0, alcanzando el factor de incremento un valor de 1000 para eB ≃ 1 GeV2

cuando se utiliza un acoplamiento constante, aumentado hasta 1800 para G(B). Además,
debido a la presencia de las nuevas constantes de decaimiento y a las características de
la cinemática a B nito, se encontró que el ancho de decaimiento Γl no desaparece en el
límite ml = 0. Como consecuencia, para valores grandes de B la relación Γe◁Γµ cambia
drásticamente con respecto al valor de B = 0 (de aproximadamente 1, 2×10−4), alcanzando
una magnitud de ∼ 0, 5 a eB ≃ 1 GeV2. Esto podría ser interesante, por ejemplo, para
la composición de sabores esperada de los ujos de neutrinos procedentes de los núcleos
de magnetares y otros objetos estelares. Además, una reducción de la vida media del
pión disminuirá inevitablemente la pérdida de energía de radiación de los piones y dará
lugar a un espectro de neutrinos más duro. Por otro lado, se encontró que para grandes
B la distribución angular de los antineutrinos salientes se vuelve altamente anisotrópica,
mostrando una supresión signicativa en la dirección del campo externo. Además, la
mayoría de los antineutrinos salen con bajo momento en la dirección del campo, es decir,
en direcciones aproximadamente perpendiculares al campo magnético.

Cabe seĳalar que, para los tres conjuntos de parametrización utilizados, hemos com-
probado que todos los resultados mencionados son bastante insensibles a las variaciones
de la parametrización.

El método de autofunciones de Ritus presentado para el cálculo de las propiedades de
los piones cargados puede extenderse directamente para calcular las propiedades de todos
los mesones cargados del nonete pseudoescalar. Para ello, trabajamos con la versión de
tres sabores del modelo NJL, incluyendo la interacción ’t Hooft-Maekawa de seis fermiones
que rompe explícitamente la simetría axial U(1)A. Los resultados se basan en la Ref. [265].
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La bosonización se realiza utilizando la aproximación de fase estacionaria. Una vez más
consideramos un acoplamiento G(B) dependiente del campo magnético y regularizamos
los resultados divergentes utilizando un corte 3D en el esquema MFIR.

Para los mesones neutros, el campo magnético rompe la simetría de isospín, dando lugar
a una mezcla entre los tres estados π0−η−η′ [105], en contraste con el caso B = 0 donde π0

está desacoplado. Sus masas polares y anchos se obtienen como las raíces del determinante
inverso de la matriz de propagación de 3x3. Como es sabido, el mesón η′ sale en el
modelo como una resonancia o partícula inestable. A este respecto, hemos desarrollado
un nuevo formalismo para tratar los múltiples polos magnéticos complejos. Sin embargo,
los resultados para este mesón son menos ables, acercándose al límite de aplicabilidad
del modelo NJL debido a la falta de connamiento. De hecho, su ancho aumenta con B

y hemos encontrado que cuando se usa G(B) la fuerza del acoplamiento no es suciente
para formar una resonancia η′ para eB  0▷5 GeV2. Los resultados para la masa π0 son
bastante similares a los obtenidos en el caso de dos sabores, aunque los valores en SU(3)
son ligeramente superiores. Para G constante, la masa muestra un comportamiento no
monótono con B, mientras que el comportamiento monótono decreciente encontrado en
LQCD [129, 258] se reproduce usando G(B). Un comportamiento similar se encuentra
para las masas K0, K̄0 y η. A partir del comportamiento de las masas de mesones
pseudoescalares neutros, concluimos que la incorporación del efecto de catálisis magnética
inversa en el modelo NJL, como se hace por ejemplo en esta tesis a través del acoplamiento
G(B) dependiente del campo magnético, es fundamental para reproducir cualitativamente
los resultados de LQCD disponibles.

Con respecto a los mesones cargados, para sus energías más bajas EP±(B) (P = π,K)
se encontró un fuerte incremento con B, superando la energía asociada a un mesón cargado
puntual. Una vez más, los resultados de los piones son muy similares a los obtenidos en el
caso de dos sabores. Nuestros resultados en el modelo NJL para E2

P±(B)−E2
P±(0) están

razonablemente de acuerdo con los resultados de LQCD de la Ref. [129] dentro de las
barras de error para P = π, estando más cerca para el caso de acoplamiento constante.
Por otro lado, no se encontró ningún signo del comportamiento no monótono encontrado
en el cálculo de LQCD de la Ref. [258] para P = π,K.

Por último, se ha aplicado el método de autofunciones de Ritus al cálculo de las masas
de diquarks y nucleones, dentro del modelo NJL de dos sabores. Para dar cuenta de los
diquarks, se incluyeron interacciones escalares quark-quark de emparejamiento de color,
conducidas por un acoplamiento constante H. Hemos considerado valores de la razón entre
interacciones en el rango usualmente estudiado de 0, 75 ≤ H◁G ≤ 1, 2. La bosonización se
ha realizado utilizando el formalismo de Nambu-Gorkov.

Los diquarks pueden tratarse de forma muy similar a los piones cargados. Como antes,
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la regularización se ha realizado utilizando un corte 3D dentro del esquema MFIR. Para
B = 0, la masa (LLL) m∆ disminuye con H◁G. Inversamente, la energía de ligadura
2M −m∆ aumenta: mientras que para H◁G = 0, 75 el diquark escalar se encuentra apenas
ligado por 5 MeV, a H◁G = 1, 2 la energía de ligadura es de unos 200 MeV. A B ̸= 0, los
resultados para m∆ y el estado de menor energía E∆ muestran que, para valores bajos
de B, ambas curvas se sitúan por debajo de las correspondientes a un diquark puntual.
Esto se invierte para eB  0, 3− 0, 5 GeV2, donde el crecimiento se hace más pronunciado
en comparación con el caso puntual. De hecho, el aumento se hace aún más pronunciado
para valores más bajos de la relación H◁G.

En cuanto al análisis de los estados bariónicos, en nuestro marco los nucleones se han
construido como estados ligados quark-diquark siguiendo una aproximación relativista
de Fadeev. Dada la complejidad del problema, hemos considerado una aproximación
estática en la que se desprecia la dependencia del momento del quark intercambiado. Se ha
demostrado que esta aproximación conduce a una descripción adecuada de las propiedades
de los nucleones en ausencia de campos externos [278]. Además, hemos introducido un
parámetro modelo adicional ΛB para regularizar los lazos quark-diquark, que de otro modo
serían divergentes, para lo cual hemos elegido el esquema de regularización de tiempo
propio. Hemos encontrado que para valores de H◁G mayores que 1 ningún valor de ΛB es
compatible con un valor físico de la masa del nucleón a campo magnético externo cero.

Hemos obtenido resultados numéricos para la dependencia del campo magnético
de los estados nucleónicos de más baja energía, normalmente interpretados como las
masas nucleónicas. En general, se observa que las masas disminuyen inicialmente al
aumentar el campo magnético, mientras que muestran un crecimiento constante para
valores grandes de eB. En el caso del protón, los resultados dependen fuertemente de la
relación H◁G. También se observó que las pendientes negativas de las curvas de masa en
B = 0 conducen a signos fenomenológicamente correctos para los momentos magnéticos
de los nucleones. Además, existe un acuerdo cualitativo con los resultados de ChPT [268],
aunque las pendientes en nuestro modelo resultan ser algo menores. Esto conduce a valores
absolutos numéricos para los momentos magnéticos del protón y del neutrón que son
relativamente pequeĳos en comparación con los empíricos. Se espera obtener una mejora
en las predicciones de los momentos magnéticos de los nucleones incluyendo interacciones
axiales-vectoriales entre diquarks [282]. Además, un cálculo completo requeriría tener en
cuenta la dependencia del momento del quark intercambiado.

En esta tesis hemos introducido un método para tratar sistemas cargados uniformemente
magnetizados que tiene plenamente en cuenta el efecto de ruptura traslacional de las fases
de Schwinger, inducido por un campo magnético uniforme externo. El método se basa en
el uso de funciones propias de tipo Ritus, que permiten una diagonalización adecuada del
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sistema. Con respecto a las perspectivas futuras en esta área, está claro que el método
introducido en esta tesis puede utilizarse para proporcionar una determinación consistente
de otras propiedades de hadrones ligeros cargados. De hecho, los mesones vectoriales
y axiales-vectoriales cargados pueden ser fácilmente estudiados dentro del modelo NJL
usando este método, ver Ref. [283] para avances recientes en esta dirección. Además, el
rango de aplicabilidad puede extenderse para estudiar sistemas magnetizados en medios
densos y/o calientes, relevantes para diferentes escenarios físicos. En este sentido, una
mejora natural sería considerar campos magnéticos no homogéneos, como sugieren los
estudios de colisiones de iones pesados. Aunque en esta tesis hemos aplicado principalmente
el método de Ritus al caso particular del modelo efectivo NJL, otros enfoques podrían
beneciarse de los conocimientos obtenidos utilizando esta estrategia.
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A
Bosonization procedure

The starting point is the generating functional associated to the Euclidean NJL Lagrangian
given in Eq. (2.12). It reads

Z =
ˆ

Dψ̄Dψ e−
´

d4xE LE(ψ,ψ̄) ▷ (A.1)

We omit the Euclidean subscript E hereafter. Next, we rewrite the interactions in (2.12)
in terms of bosonic elds that will represent the scalar and pseudoscalar mesons σ(x) and
π⃗(x), respectively. The treatment for each interaction term is equivalent, so we will only
detail the one corresponding to the scalar case. Using the equality

f [js(x)] =
ˆ

Ds δ [s(x)− js(x)] f [s(x)] , (A.2)

we can rewrite the interaction term as follows

eG
´

d4x js(x)js(x) =
ˆ

Ds δ [s(x)− js(x)] eG
´

d4x s(x)s(x) , (A.3)

where s(x) is an auxiliary eld which will be later removed by integration and js(x) =
ψ̄(x)ψ(x) is the scalar quark current. Then, using

δ (s(x)− js(x)) = Ns

ˆ

Dσ e
´

d4xσ(x)[s(x)−js(x)] , (A.4)
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the contribution to the action from the scalar interaction term is re-expressed as

eG
´

d4x js(x)js(x) = Ns

ˆ

DsDσ e
´

d4x{σ(x)[s(x)−js(x)]+G s(x)2} , (A.5)

where Ns is a normalization factor. Repeating this procedure for the pseudoscalar eld
introduces a vector of elds p⃗(x) analogous to s(x), resulting in the partition function

Z = NsNp

ˆ

Dψ̄Dψ e−
´

d4x ψ̄(−i◁∂+m0)ψ ×
ˆ

DsDσ e
´

d4x{σ(x)[s(x)−js(x)]+G s(x)s(x)} ×
ˆ

Dp⃗Dπ⃗ e
´

d4x{π⃗(x)·[⃗p(x)−j⃗p(x)]+G p⃗(x)·⃗p(x)} , (A.6)

where j⃗p(x) = ψ̄ iγ5π⃗ ψ.
We can evaluate the integrals over s(x), p⃗(x), ψ(x) and ψ̄(x), leaving the action

expressed in terms of the bosonic degrees of freedom σ(x) and π⃗(x). To that end, we
rearrange the terms in (A.6) so as to factorize the integrals, which can be performed since
they are Gaussian. The Gaussian integral over continuous elds is written as

ˆ

Ds e− 1
2 sK s+σ s = N ′

s e
1
2σK

−1σ , (A.7)

where N ′
s is a factor that does not depend on σ and the eld product notation im-

plies sK s =
´

d4x d4x′s(x)K(x, x′)s(x′), with the inverse of K given by the relation
´

d4x′′K(x, x′′)K−1(x′′, x′) = δ(4)(x− x′). In our case, K(x, x′) = −2G δ(4)(x− x′). Then,
for the scalar eld we have

ˆ

Dσ e−
´

d4xσ(x)js(x)
ˆ

Ds e
´

d4x [G s(x)s(x)+σ(x)s(x)] =

ˆ

Dσ e−
´

d4xσ(x)js(x) N ′
s e

1
2
´

d4xd4x′ σ(x)

−δ(4)(x−x′)

2G


σ(x′) =

N ′
s

ˆ

Dσ e−
´

d4x [σ(x)σ(x)4G +σ(x)js(x)] ▷ (A.8)

Repeating this calculation for p⃗(x) we obtain the analogous expression

N ′
p

ˆ

Dπ⃗ e−
´

d4x [ π⃗(x)·π⃗(x)
4G +π⃗(x)·⃗jp(x)] ▷ (A.9)

After replacing these expressions, we can group all fermionic eld contributions to the
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actions under the single term

SF =
ˆ

d4x

ψ̄(x)(−i/∂ +m0)ψ(x) + σ(x)js(x) + π⃗(x) · j⃗p(x)


(A.10)

=
ˆ

d4x d4x′ ψ̄(x) D(x, x′) ψ(x′) , (A.11)

where we have dened the fermionic operator

D(x, x′) = δ(4)(x− x′)

−i◁∂ +m0 + σ(x) + iγ5τ⃗ · π⃗(x)


▷ (A.12)

Finally, the semibosonized generating functional reads

Z =
ˆ

DσDπ⃗

ˆ

Dψ̄Dψ e−SF e−
1
4G

´

d4x [σ(x)2+π⃗(x)2] , (A.13)

where we have omitted the unphysical normalization factors Ns, Np, N ′
s and N ′

p.
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B
Discrete symmetries

In the Landau gauge, the electromagnetic interaction term between the light quarks and
the external eld (chosen to be orientated along the z axis) is given by

L(x) = −


f

Qf B x1 ψ̄f(x) γ2 ψf(x) , (B.1)

where the sum extends over f = u, d, and Qf are the corresponding electric charges. As
can be checked, the action is separately invariant under P, CT and PCT , where P, C and
T stand for parity, charge conjugation and time reversal transformations acting on the
quark elds. Moreover, it can be seen that the Lagrangian density in Eq. (B.1) is invariant
under the transformation CR1, where R1 is a spatial rotation by angle π about the 1 axis
(i.e., a rotation that inverts the orientation of the magnetic eld B⃗).

The existence of these symmetries imposes constraints on the form factors of the
pion-to-vacuum hadronic matrix elements discussed in chapter 3. As in the case of no
external eld, parity is responsible for selecting which Lorentz structures in Eq. (3.42)
contribute to the matrix elements of the vector and axial-vector currents, as quoted in
Eqs. (3.43) and (3.47). Moreover, it is possible to use CT and CR1 symmetries to show
that the form factors are real and equal for both charged pions.

We start by using CT symmetry to show that the form factor f (V )
π0 in Eq. (3.45) is real.
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One has

⟨0|ψ̄f(x)γµψf(x)|π0(p⃗ )⟩ = ⟨0|(CT )†CT ψ̄f(x)γµψf(x) (CT )†CT |π0(p⃗ )⟩

= ηT ⟨0|C†C ψ̄f(−x̃)γµψf(−x̃) C†C|π0(−p⃗ )⟩∗

= ⟨0|ψ̄f(−x̃)γµψf(−x̃)|π0(−p⃗ )⟩∗ , (B.2)

where x̃µ = (x0,−x⃗ ), and the phase ηT , arising from the action of the time reversal
operator on the pion state, has been taken to be equal to −1 due to PCT invariance. From
Eqs. (3.45) and (B.2) it can be seen that f (V )

π0 is real. For example, from the denition of
H0,µ

V (x, p⃗ ), Eq. (B.2) implies H0,0
V (x, p⃗ ) = H0,0

V (−x̃,−p⃗ )∗, which according to the relation
in Eq. (3.45) leads to

−if (V )
π0 p3 e−ip·x =


−if (V )

π0

∗
(−p3) eip̃ ·(−x̃) , (B.3)

i.e. f (V )
π0 = f (V )

π0
∗. For matrix elements of the axial-vector current, a similar analysis leads

to f (Ai)
π0 = f (Ai)

π0
∗, for i = 1, 2, 3.

On the other hand, taking into account the invariance of the action under CR1 one has

H0,ϵ
⊥,A(x, p⃗ ) = ⟨0|(CR1)†CR1ψ̄f(x)(γ1 + iϵ γ2)γ5ψf(x)(CR1)†CR1|π0(p⃗ )⟩

= ⟨0|C†Cψ̄f(x′)(γ1 − iϵ γ2)γ5ψf(x′)C†C|π0(p⃗ ′)⟩

= ⟨0|ψ̄f(x′)(γ1 − iϵ γ2)γ5ψf(x′)|π0(p⃗ ′)⟩ = H0,−ϵ
⊥,A (x′, p⃗ ′) , (B.4)

where x′µ = (x0, x1,−x2,−x3) and p⃗ ′ = (p1,−p2,−p3). From Eqs. (3.43) and (3.44), this
hadronic amplitude reads

H0, ϵ
⊥,A(x, p⃗ ) = −i


f (A1)
π0 − ϵf (A2)

π0 − f (A3)
π0


(p1 + iϵ p2) e−ip·x ▷ (B.5)

Therefore Eq. (B.4) leads to

− i

f (A1)
π0 − ϵ f (A2)

π0 − f (A3)
π0


(p1 + iϵ p2) e−ip·x =

− i

f (A1)
π0 + ϵ f (A2)

π0 − f (A3)
π0


(p ′ 1 − iϵ p ′ 2) e−ip′·x′ , (B.6)

which implies f (A2)
π0 = 0.

We consider next matrix elements with charged pion initial states. Proceeding in a
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similar way as in the neutral case, from Eq. (3.47) we get

Hσ,µ
V (x, p̆) = ⟨0|(CT )†CT ψ̄(x)γµτ−σψ(x) (CT )†CT |πσ(p̆)⟩

= − ⟨0|C†C ψ̄(−x̃)γµτ−σψ(−x̃) C†C|πσ(p̆ ′)⟩∗

= ⟨0|ψ̄(−x̃)γµτσψ(−x̃)|π−σ(p̆ ′)⟩∗ = gµν H
−σ,ν
V (−x̃, p̆ ′)∗ , (B.7)

where we have used C|π±(p̆)⟩ = |π∓(p̆)⟩ and dened p̆ ′ = (ℓ,−p2,−p3). Since Bσ
p̄ (x) =

B−σ
p̄ ′ (−x̃)∗ for p̄ ′ = (Eπ−, p̆ ′), taking µ = 0 and σ = − one obtains [see Eq. (3.48)]

−if (V )
π− p3 B−

p̄ (x) =

−if (V )

π+ p ′ 3 B+
p̄ ′(−x̃)

∗
= −i f (V )

π+

∗
p3 B−

p̄ (x) , (B.8)

which leads to f (V )
π+

∗ = f (V )
π− . Now, from the invariance of the action under CR1 one has

Hσ,0
V (x, p̆) = ⟨0|(CR1)†CR1ψ̄(x)γ0τ−σψ(x)(CR1)†CR1|πσ(p̆)⟩

= ⟨0|C†Cψ̄(x′)γ0τ−σψ(x′)C†C|πσ(p̆ ′)⟩

= − ⟨0|ψ̄(x′)γ0τσψ(x′)|π−σ(p̆ ′)⟩ = −H−σ,0
V (x′, p̆ ′) ▷ (B.9)

Since Bσ
p̄ (x) = B−σ

p̄ ′ (x′), taking σ = − one obtains f (V )
π− = f (V )

π+ and then Im

f (V )
πσ


= 0.

For the matrix elements of the axial-vector current, the analysis of the zeroth and third
components of the pion-to-vacuum amplitude leads to f (A1)

π− = f (A1)
π+ and Im


f (A1)
πσ


= 0.

To constrain the form factors f (A2)
πσ and f (A3)

πσ one needs to study the rst and second
components. Taking into account the invariance under CT one has (ϵ = ±)

Hσ,ϵ
⊥,A(x, p̆) = ⟨0|(CT )†CT ψ̄(x)(γ1 + iϵγ2)γ5τ−σψ(x) (CT )†CT |πσ(p̆)⟩

= − ⟨0|C†C ψ̄(−x̃)(γ1 − iϵγ2)γ5τ−σψ(−x̃) C†C|πσ(p̆ ′)⟩∗

= + ⟨0|ψ̄(−x̃)(γ1 − iϵγ2)γ5τσψ(−x̃)|π−σ(p̆ ′)⟩∗

=

H−σ,1

A (−x̃, p̄ ′)− iϵH−σ,2
A (−x̃, p̆ ′)

∗
=

H−σ,−ϵ

⊥,A (−x̃, p̆ ′)
∗

▷ (B.10)

In this way, taking σ = − in Eqs. (3.48) and (B.10) one obtains


f (A1)
π− + ϵf (A2)

π− − f (A3)
π−


B−
p̄+ϵ(x) =


f (A1)
π+ + ϵf (A2)

π+ − f (A3)
π+

∗ B+
p̄ ′+ϵ(−x̃) ∗ , (B.11)

which implies f (A2)
π− = f (A2)

π+

∗ and f (A3)
π− = f (A3)

π+

∗ (we have used the fact that f (A1)
π− = f (A1)

π+

∗).
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Finally, considering CR1 transformations, one has

Hσ,ϵ
⊥,A(x, p̆) = ⟨0|(CR1)†CR1 ψ̄(x)(γ1 + iϵγ2)γ5τ−σψ(x) (CR1)†CR1|πσ(p̆)⟩

= ⟨0|C†C ψ̄(x′)(γ1 − iϵγ2)γ5τ−σψ(x′) C†C|πσ(p̆ ′)⟩

= ⟨0|ψ̄(x′)(γ1 − iϵγ2)γ5τσψ(x′)|π−σ(p̆ ′)⟩

=H−σ,1
A (x′, p̆ ′)− i ϵH−σ,2

A (x′, p̆ ′) = H−σ,−ϵ
⊥,A (x′, p̆ ′) , (B.12)

which leads to f (A2)
π− = f (A2)

π+ and f (A3)
π− = f (A3)

π+ , together with Im

f (A2)
πσ


= Im


f (A3)
πσ


= 0.

The calculation done in this Appendix was carried out in the Landau gauge. However,
taking into account the gauge invariance of the form factors, the same conclusions applied
for the symmetric gauge.
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C
Flavor polarization functions

C.1 Vacuum polarization function
The functions cvacff ′ appear in Eqs. (5.27) and (5.41). In their unregularized form they are
dened by the B = 0 contribution

c0ff ′(p2) = 2Nc

ˆ

q

TrD

S̄f,0(q−) γ5 S̄f ′,0(q+) γ5


, (C.1)

where S̄f,0(q) = ( ◁q +Mf)−1 is the usual vacuum propagator for a quark of mass Mf and
q± = q ± p◁2. We recall that all four-momenta are dened in Euclidean space. By taking
the trace and integrating over q one obtains

c0ff ′(p2) = Nc

2π2

ˆ ∞

0
dz

ˆ 1

0
dy e

−z


yM2

f+(1−y)M2
f ′+y(1−y)p2−iϵ


1
z


MfMf ′ + 2

z
− y(1− y)p2


▷

(C.2)
We have expressed this function in the proper time formalism. Through some algebraic

manipulation, it can also be written in the following standard form

c0ff ′(p2) = 2Nc


I01f + I01f ′

2 +

p2 + (Mf −Mf ′)2


I02ff ′(p2)


, (C.3)
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where the integrals I01f and I02ff ′ are dened by

I01f = 4
ˆ

q

1
q2 +M2

f

,

I02ff ′(p2) = −2
ˆ

q

1
(q2− +M2

f − iϵ)(q2+ +M2
f ′ − iϵ) ▷ (C.4)

In order to regularize the vacuum loop integrals we introduce a 3D cuto Λ. For I01f one
gets the regularized function of Eq. (2.52) by replacing M → Mf . For I02ff ′(p2) we note
that in order to determine meson masses, the external momenta p in the loop integrals has
to be extended to the region p2 < 0. Hence, we nd it convenient to introduce p2 = −p2m,
with pm > 0. In this case the function has several poles. To treat them, we go from
Euclidean to the original Minkowski space by taking q4 = −iq0 for the quarks momenta.
Then, by choosing appropriate contours the q0 integral can be calculated in the complex
plane to yield

Ivac2ff ′(p2) = − 1
8π2p2m

ˆ Λ

0
dq

q2

q2 − r − iϵ


p

2
m +M2

f −M2
f ′

q2 +M2
f

+
p2m −M2

f +M2
f ′

q2 +M2
f ′


 , (C.5)

where
r = 1

4p2m


(Mf −Mf ′)2 − p2m

 
(Mf +Mf ′)2 − p2m


▷ (C.6)

When Mf = Mf ′ and pm < 2Mf , this expression can be brought to the usual form of
Ivac2 (p2) in Eq. (2.53). In the general case, depending on the value of pm this expression
may still have a pole in a point of the integration line if r > 0. For those regions of pm
where a pole exists, we proceed by employing a generalized version of the Sokhotski-Plemelj
formula. Assuming there exists a function f(x) that has single poles at a set of values xj,
for which exist two other functions g(x) and h(x) such that g(xj) ̸= 0 and h(xj) ̸= 0, then

lim
ϵ→0+

ˆ b

a

dx
h(x)

f(x) + iϵg(x) = PV
ˆ b

a

dx
h(x)
f(x) − iπ



j

h(xj)
|f ′(xj)|

sign[g(xj)] , (C.7)

where PV denotes the Cauchy principal value of the integral. By using this property we
can fully calculate the complex function Ivac2ff ′ in the most general case. For the regularized
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real part we get

Re

Ivac2ff ′(−p2m)


= − 1

8π2p2m



(p

2
m +M2

f −M2
f ′)

arcsinh


Λ
Mf


− Ff


+

(p2m −M2
f +M2

f ′)

arcsinh


Λ
Mf ′


− Ff ′


 , (C.8)

where

Ff =





y+
M2

f + y2+
arctanh


 Λ
y+

M2
f + y2+

M2
f + Λ2


 for pm < p(0)m or pm > p(3)m

y+
M2

f + y2+
arccoth


 Λ
y+

M2
f + y2+

M2
f + Λ2


 for p

(02)
m < pm < p

(13)
m

y−
M2

f − y2−
arctan


 Λ
y−

M2
f − y2−

M2
f + Λ2


 for p(1)m < pm < p(2)m

▷ (C.9)

Here y± =
√±r, with r dened in Eq. (C.6), and

p
(03)
m =


M2

f +M2
f ′ + 2Λ2 ∓ 2


(Λ2 +M2

f )(Λ2 +M2
f ′)
1◁2

, p
(12)
m = |Mf∓Mf ′|▷ (C.10)

For the regularized imaginary part we get

Im

Ivac2ff ′(−p2m)


=





− y+
4πpm

for p(2)m < pm < p(3)m

0 otherwise
▷ (C.11)

Putting all together, the regularized version of the vacuum c0ff ′ function dened in Eq. (C.3)
is given by

cvacff ′(p2 = −p2m) = 2Nc


Ivac1f + Ivac1f ′

2 −

p2m − (Mf −Mf ′)2


Ivac2ff ′(−p2m)


▷ (C.12)

C.2 Neutral magnetic polarization function
The unregularized magnetic function cmag

ff ′ (p2⊥, p2||) was dened for the neutral case in (5.26).
The B → 0 limit of this expression c0ff ′ is given by Eq. (C.2). Then, the nite magnetic
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contribution is dened within the MFIR scheme as the dierence

cmag
ff ′ (p2⊥, p2∥) = cff ′(p2⊥, p2∥)− c0ff ′(p2)

= Nc

2π2

ˆ ∞

0
dz

ˆ 1

0
dy e

−z


yM2

f+(1−y)M2
f ′+y(1−y)p2||−iϵ


×


MfMf ′ + 1

z
− y(1− y)p2||




Bf e

−γf (y,z)
p2⊥
Bf

tanh(zBf)
− e−zy(1−y)p2⊥

z


 +

B2
f e

−γf (y,z)
p2⊥
Bf

sinh2(zBf)


1− γf(y, z)

p2⊥
Bf


−

e−zy(1−y)p2⊥

z2


1− zy(1− y)p2⊥

 
, (C.13)

where γf(y, z) is given in Eq. (4.28). Pole masses are calculated in the rest frame of the
meson, i.e. setting pµ = imP δµ,4, with mP > 0. Assuming that mP < Mf +Mf ′ , one can
integrate by parts to write this function in the form

cmag
ff ′ (0,−m2

P ) = 2Nc


Imag
1f + Imag

1f ′

2 −

m2

P − (Mf −Mf ′)2

Imag
2ff ′(−m2

P )


, (C.14)

where Imag
1f is dened in Eq. (2.79). On the other hand, Imag

2ff ′ is given by

Imag
2ff ′(−m2

P ) = − 1
8π2

ˆ 1

0
dy

ˆ ∞

0
dz e−2z(x̄ff ′−iϵ)


coth z − 1

z


(C.15)

with
xff ′ =

yM2
f + (1− y)M2

f ′ − y(1− y)m2
P

2Bf
▷ (C.16)

When mP < Mf +Mf ′ we always have that xff ′ > 0. In that case, the function Imag
2ff ′ as

given in Eq. (C.15) is well-dened and can alternatively written as

Imag
2ff ′(−m2

P ) = 1
8π2

ˆ 1

0
dy


ψ(x̄ff ′ − iϵ)− ln(x̄ff ′ − iϵ) + 1

2(x̄ff ′ − iϵ)


, (C.17)

where ψ(x) is the digamma function. Note that in this case one can safely take the ϵ → 0
limit, recovering expression (4.34) in the Mf = Mf ′ case.

On the other hand, if mP > Mf +Mf ′ then x̄ff ′ can be negative in the integration
domain. In this case, the integral in Eq. (C.15) is not convergent. However, one can still
proceed by considering the analytic extension of the form given in Eq. (C.17). Since x̄ff ′

175



C.2. Neutral magnetic polarization function

is a positive quadratic function of y, it is immediate to see that ψ(x̄ff ′) has N + 1 poles,
where

N = Floor


1
2Bf


1−

Mf −Mf ′

mP

2 m2
P

4 −

Mf +Mf ′

2

2
▷ (C.18)

To proceed we rst isolate the poles by using the digamma recurrence relation

ψ(x̄ff ′ − iϵ) = ψ(x̄ff ′ +N + 1)−
N

n=0

1
x̄ff ′ + n− iϵ

▷ (C.19)

Expressed this way, the rst term in the right-hand side is pole-free. Then

Imag
2ff ′(−m2

P ) = 1
8π2

ˆ 1

0
dy


ψ(x̄ff ′ +N + 1)− ln(x̄ff ′ − iϵ)− 1

2
N

n=0

gn
x̄ff ′ + n− iϵ


,

(C.20)

where gn = 2− δn,0. The complex logarithm is dened by taking the principal branch. For
the region where x̄ff ′ < 0 we have

lim
ϵ→0

ln(−|x̄ff ′|− iϵ) = ln(|x̄ff ′|)− iπ ▷ (C.21)

Lastly, the third term on the right-hand side of Eq. (C.20) contains two simple poles,
which once again can be handled using the generalization of the Sokhotski-Plemelj formula
presented in Eq. (C.7). After some algebra we nally obtain that for mP > Mf +Mf ′

Imag
2ff ′(p2∥ = −m2

P ) = − 1
8π2



 ln


(Mf)1−α (Mf ′)1+α

2Bf


+ β0

2 ln

α2 − (1 + β0)2
α2 − (1− β0)2



− 2 + Bf

m2
P

N

n=0

gn
βn

ln

α2 − (1− βn)2
α2 − (1 + βn)2




+ 1
8π2

ˆ 1

0
dy ψ(x̄ff ′ +N + 1) + i

8π


β0 −

2Bf

m2
P

N

n=0

gn
βn


, (C.22)

with

α =
M2

f ′ −M2
f

m2
P

, βn =



1−

Mf ′ −Mf

mP

2 
1−

Mf ′ +Mf

mP

2
− 8nBf

m2
P

▷ (C.23)

We remark that the calculation of Imag
2ff ′ was performed here within the proper time

formalism, which is well-dened for mP < Mf + Mf ′ and leads to Eq. (C.17). For
mP > Mf +Mf ′ we have taken the analytic continuation of this equation. As a consistency
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check, we have repeated the calculation using the Landau level representation for the
quark propagator in Minkowski space, which is well-dened for all mP , obtaining the same
nal result of Eq. (C.22).
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D
Diagonalization and B = 0 expansion
for nucleons

D.1 Diagonalization of D(p)
P̄ ,P̄ ′ in Ritus space

In this section of the appendix we briey sketch how to prove that the Dirac operator
D(p)

P̄ ,P̄ ′ in Eq. (6.41) is diagonal. Let us start by taking into account the integral Iλ,λ′
P̄ ,P̄ ′(p, r)

in Eq. (6.43). Denoting w = x1 − z1 and integrating over the remaining space variables, it
can be show that

Iλ,λ′
P̄ ,P̄ ′(p, r) = (2π)6 δ(2)(P|| − P ′

||) δ(P2 − P ′
2) δ(2)(p|| + r|| − P||) Gnλ,n

′
λ′(p⊥ + r⊥) , (D.1)

where

Gnλ,n
′
λ′(p⊥ + r⊥) = (−1)nλ+n′

λ′

Bp
Nnλ

Nn′
λ′

ˆ ∞

0
dw ei(p1+r1)w ×

Dnλ


sp


2
Bp

(p2 + r2)−

Bp

2 w


 ×

Dn′
λ′


sp


2
Bp

(p2 + r2) +

Bp

2 w


 ▷ (D.2)

The integral over w can be carried out using the property of Eq. (4.40) for the cylindrical
parabolic functions. Assuming that n′

λ′ ≥ nλ (the analysis is similar for the other case),
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P̄ ,P̄ ′ in Ritus space

one has

Gnλ,n
′
λ′(p⊥ + r⊥) = (−)n′

λ′
4π
Bp


nλ!
n′

λ′ !
e
− (p⊥+r⊥)2

Bp


i(p1 + r1) + sp(p2 + r2)

Bp◁2



n′

λ′−nλ

×

Ln′
λ′−nλ

nλ


2(p⊥ + r⊥)2

Bp


▷ (D.3)

We now use this result to carry out the integral over perpendicular momenta in
Eq. (6.41), which can be dened as

I⊥ =
ˆ

p⊥ r⊥



λ,λ′
Gnλ,n

′
λ′(p⊥ + r⊥) G̃∆(p⊥, p||)∆λ Su(r⊥, P|| − p||)∆λ′ ▷ (D.4)

Using the form of the quark propagator in Eq. (2.67), it can be seen that the product
∆λ Su(r⊥, P|| − p||)∆λ′ can be written as

∆λ Su(r⊥, P|| − p||)∆λ′ = A(r⊥, P|| − p||) δλ,λ′ ∆λ + B(r⊥, P|| − p||) r⊥ · γ⊥ δ−λ,λ′ ∆−λ , (D.5)

where A(r⊥, P|| − p||) and B(r⊥, P|| − p||) are functions of r2⊥. Then we get

I⊥ =
ˆ

p⊥ r⊥

G̃∆(p⊥, p||)


λ


Gnλ,n

′
λ
(p⊥ + r⊥)A(r⊥, P|| − p||)∆λ +

Gnλ,n
′
−λ
(p⊥ + r⊥)B(r⊥, P|| − p||) (r1 − iλ r2)γλ∆−λ


, (D.6)

where γλ = (γ1 + iλγ2)◁2. To carry out the angular integrals in Eq. (D.6) it is convenient
to use polar coordinates, namely p⊥ = (p̃⊥ cos θ, p̃⊥ sin θ) and r⊥ = (r̃⊥ cosφ, r̃⊥ sinφ).
Noticing that the diquark propagator depends only on the squared momenta p2|| and p2⊥
[see Eq. (6.27)], from Eq. (D.3) we get

I⊥ =
ˆ ∞

0

p̃⊥ dp̃⊥
(2π)2

ˆ ∞

0

r̃⊥ dr̃⊥
(2π)2 G̃∆(p̃⊥, p||)×



λ


A(r̃⊥, P|| − p||)∆λ

ˆ 2π

0
dφ e−isp(n′

λ−nλ)φ
ˆ 2π

0
dθFnλ,n

′
λ
(p̃⊥, r̃⊥, θ − φ) +

r̃⊥ B(r̃⊥, P|| − p||) γλ∆−λ

ˆ 2π

0
dφ e−i[sp(n′

−λ−nλ)+λ]φ
ˆ 2π

0
dθFnλ,n

′
−λ
(p̃⊥, r̃⊥, θ − φ)


,

(D.7)

where Fnλ,n
′
λ′ is a function that depends on θ−φ only through periodic functions sin(θ−φ),
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cos(θ − φ). Taking into account that

n′
λ − nλ = n′ − n , sp(n′−λ − nλ) + λ = sp(n′ − n) , (D.8)

and using the periodicity of the function Fnλ,n
′
λ′ , it is seen that

ˆ 2π

0
dφ e−isp(n′−n) = 2π δn,n′ , (D.9)

and therefore I⊥ ∝ 2π δn,n′. Together with the result of Eq. (D.1), this shows that D(p)
P̄ ,P̄ ′

is proportional to δ̂P̄ ,P̄ ′ .

D.2 Expansion around B = 0
In this section of the appendix we provide some hints for the expansions of the coecients
X̂ν

± and Ŷ ν
± in Eq. (6.53) around B = 0. These expansions allow us to obtain the expressions

for X̂ and Ŷ in Eqs. (6.54 - 6.55), as well as the slopes αN in Eq. (6.60).
The coecients X̂ν

± and Ŷ ν
± depend on B both explicitly and implicitly, through MN

and M . In fact, it can be seen that dM◁dB|B=0 = 0, hence the eective quark mass M
can be taken as a constant at the lowest order in an expansion in powers of |B|. In this
way, from Eq. (6.53) the slopes dMN◁d|B| at B = 0 are given by

αN =

∂X̂ν
λ

∂|B|

B=0

−mN
∂Ŷ ν

λ

∂|B|

B=0

Ŷ − ∂X̂

∂mN
+mN

∂Ŷ

∂mN

, (D.10)

where appropriate values of λ should be taken for N = p and N = n (see discussion in the
main text).

In particular, the partial derivatives in the numerator of the rhs of Eq. (D.10) have to
be calculated with some care due to the sums over Landau levels in Eqs. (6.57) and (6.58).
As an example, let us consider the expression for X̂(p)

sp in Eq. (6.57). The factors that
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depend explicitly on the magnetic eld can be expanded as

Greg
∆ (ℓ, p2||) = Gvac

∆ (p2|| + 2ℓB∆) + dGvac
∆ (p2)
dp2


p2=p2||+2ℓB∆

B∆ +O(B2, ℓB3) ,

Bu (1 + tu)
Bu + (Bp +B∆) tu

= 1 + τ

Λ2
B

(Bu −Bp −B∆) +O(B2) ,

B∆


Bu + (Bp −B∆)tu
Bu + (Bp +B∆)tu

ℓ
= B∆ e

− 2τℓB∆
Λ2

B


1 + 2τ 2ℓB∆Bp

Λ4
B

+O(B2, ℓB3)

▷ (D.11)

For the evaluation of the sum over Landau levels in the limit of low magnetic eld, one
can use the relation

B
∞

ℓ=0
e−α ℓB F (ℓB) =

ˆ ∞

0
dx e−αx F (x) + 1

2 F (0)B +O(B2) , (D.12)

which is valid for α > 0 if the function F (x) allows a Taylor expansion around x = 0 and
is well behaved at x → ∞. In this way, after an integration by parts one arrives at

B∆
Bu (1 + tu)

Bu + (Bp +B∆)
∞

ℓ= 0


Bu + (Bp −B∆)tu
Bu + (Bp +B∆)tu

ℓ
Greg
∆ (ℓ, p2||) =

1
2

ˆ ∞

0
dω e

−τ ω
Λ2

B Gvac
∆ (p2|| + ω)


1 + τ

Λ2
B

(Bu −Bp) +
ω τ 2Bp

Λ4
B

+O(B2)

▷ (D.13)

The variable ω can be identied with p2⊥ in the B → 0 limit. In addition, with the aid
of some properties of the Bessel functions one can prove the relations

ˆ ∞

0
dp̃||

ˆ ∞

0
dp̃⊥ J0(α p̃||) f(p̃2|| + p̃2⊥) = 4

α

ˆ ∞

0
dp̃⊥ p̃2⊥ J1(α p̃⊥) f(p̃2⊥) ,

ˆ ∞

0
dp̃||

ˆ ∞

0
dp̃⊥ p̃2⊥ J0(α p̃||) f(p̃2|| + p̃2⊥) = 8

α2

ˆ ∞

0
dp̃⊥ p̃3⊥ J2(α p̃⊥) f(p̃2⊥) , (D.14)

where p̃⊥ = |p⊥| and p̃|| = |p|||. Now, using Eqs. (D.13) and (D.14) it can be seen that

X̂(p)
sp


B=0

= X̂ ,
∂X̂(p)

sp

∂|B|


B=0

= (Qp −Qu)I1 −Qp I2 , (D.15)

where X̂ and Ik are given by Eqs. (6.54) and (6.62), respectively.
A similar procedure can be followed in order to obtain the expansions for Ŷ (p)

sp , X̂(n)
λ and

Ŷ (n)
λ . The evaluation of the derivatives in the denominator of Eq. (D.10) is straightforward,

leading to the nal expressions of αp and αn in Eq. (6.60).
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