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A B S T R A C T 

We conduct the first case study towards developing optimal foreground mitigation strategies for neutral hydrogen (H I ) intensity 

mapping using radio interferometers at low redshifts. A pipeline for simulation, foreground mitigation, and power spectrum 

estimation is built, which can be used for ongoing and future surv e ys using MeerKAT and Square Kilometre Array Observatory. It 
simulates realistic sky signals to generate visibility data-given instrument and observation specifications, which is subsequently 

used to perform foreground mitigation and power spectrum estimation. A quadratic estimator formalism is developed to estimate 
the temperature power spectrum in visibility space. Using MeerKAT telescope specifications for observations in the redshift 
range, z ∼ 0.25–0.30, corresponding to the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) surv e y, 
we present a case study, where we compare different approaches of foreground mitigation. We find that component separation 

in visibility space provides a more accurate estimation of H I clustering when compared with foreground a v oidance, with the 
uncertainties being 30 per cent smaller. Power spectrum estimation from image is found to be less robust with larger bias and 

more information loss when compared with estimation in visibility. We conclude that for the considered sub-band of z ∼
0.25–0.30, the MIGHTEE surv e y will be capable of measuring the H I power spectrum from k ∼ 0 . 5 to k ∼ 10 Mpc −1 with 

signal-to-noise ratio being ∼3. We are the first to show that, at low redshift, component separation in visibility space suppresses 
foreground contamination at large line-of-sight scales, allowing measurement of H I power spectrum closer to the foreground 

wedge, crucial for data analysis towards future detections. 

Key w ords: ( cosmolo gy :) large-scale structure of Universe – radio lines: galaxies – techniques: interferometric. 
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 I N T RO D U C T I O N  

easuring the distribution of dark matter in the Universe and its
volution is one of the most important objectives of observational 
osmology. The clustering of dark matter on cosmological scales, 
.e. the cosmic large-scale structure, can shed light on the nature of
ark energy and dark matter (see e.g. Peebles 1980 ). A wide range
f tracers of dark matter, i.e. observables that trace the underlying 
ensity of dark matter, can be used in order to probe this distribution.
hese probes follow the clustering of dark matter linearly at large 
osmological scales. Such probes can be galaxies, such as galaxy 
umber count (e.g. Alam et al. 2021 ), weak lensing of galaxies
e.g. P ande y et al. 2022 ), and more. Alternatively, one can also
se a relatively new technique called intensity mapping (IM; e.g. 
attye, Davies & Weller 2004 ; Chang et al. 2008 ; Mao et al. 2008 ;
yithe & Loeb 2009 ; Battye et al. 2013 ; Ko v etz et al. 2017 ). It uses

he emission lines of elements that are abundant in the Universe as
racers of dark matter, most promisingly neutral hydrogen (H I ). H I

s initially the most abundant element in the Universe as predicted by
ig bang nucleosynthesis (see e.g. Dodelson 2003 ). The emission line 
aused by spin–flip transition of H I has a rest wavelength of around
 E-mail: zhaoting.chen@manchester.ac.uk 

H  

r  

m

2022 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. Th
ommons Attribution License ( http://cr eativecommons.or g/licenses/by/4.0/), whic
rovided the original work is properly cited. 
1 cm, and thus can be observed in the radio band with low risks
f line confusion. By mapping the distribution of the flux density
cross the sky, statistical inference on the underlying cosmology and 
strophysics of H I sources can be made (e.g. Bull et al. 2015 ; Chen
t al. 2021 ). 

H I IM surv e y with large surv e y volume and coarse angular
esolution can be used for cosmological measurements at low 

edshifts, such as baryon acoustic oscillations (Eisenstein & Hu 1998 )
nd redshift-space distortions (RSDs; Kaiser 1987 ). Single-dish 
elescopes and dish/cylinder arrays operating in single-dish mode 
an thus be powerful tools for H I IM, such as Five-Hundred-Meter
perture Spherical Radio Telescope (Hu et al. 2020 ), MeerKAT 

Santos et al. 2017 ), and future Square Kilometre Array Observatory
SKAO; Square Kilometre Array Cosmology Science Working 
roup et al. 2020 ). 
No detection of the autocorrelation of H I using single-dish mode

as been claimed but, using single-dish telescopes, such as the Green
ank Telescope ( GBT ), statistically significant detections have been 
ade by cross-correlation of the IM signal from H I with optical

alaxies from the WiggleZ surv e y (Masui et al. 2013 ; Switzer et al.
013 ). Results from cross-correlating the 2dF Galaxy Surv e y and
 I maps from the Parkes radio telescope are used to confirm the

elation between the star-forming properties of galaxies and its H I

ass (Anderson et al. 2018 ). Single-dish observations are capable 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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f providing precise measurements of H I properties beyond the
ocal Universe, as demonstrated by the results from cross-correlating
BOSS galaxies with GBT data (Wolz et al. 2022 ). Cross-correlation
sing the Canadian Hydrogen Intensity Mapping Experiment inter-
erometer has been claimed by stacking the IM signal using eBOSS
ptical galaxy catalogues (CHIME Collaboration 2022 ). 
Although single-dish observations are expected to be the primary
ethod for IM at low redshifts, interferometry can play an important

ole as well in probing smaller scales. Accessing non-linear scales
f clustering helps further extract cosmological information (e.g.
 admanabhan, Refre gier & Amara 2019 ; d’Amico et al. 2020 ), and

he scales typically smaller than the size of dark matter haloes can
ield information about astrophysics of H I galaxies (Wolz et al.
019 ; Chen et al. 2021 ; Schaan & White 2021 ). The combination of
osmological and astrophysical information in the non-linear scales
f H I clustering provides strong incentives to interferometric IM. 
Surv e ys using radio interferometers, such as the MeerKAT Inter-

ational GHz Tiered Extragalactic Exploration (MIGHTEE) surv e y
Jarvis et al. 2016 ), can be used to measure the H I power spectrum.
 or surv e ys like MIGHTEE, it is believed that H I clustering can be
easured with high precision across a range of redshifts (Paul et al.

021 ). 
H I can also be used to probe the epoch of reionization (EoR)

t z � 6. During this period, structures such as the first stars and
alaxies form and emit high-energy photons to ionize the H I inside
he intergalactic medium. The high-redshift and low-frequency range
f EoR naturally call for antenna array interferometers (Madau,
eiksin & Rees 1997 ), such as Precision Array for Probing the

poch of Reionization (Parsons et al. 2014 ), Murchison Widefield
rray (Barry et al. 2019 ), Low-Frequency Array (Patil et al. 2017 ),

nd Hydrogen Epoch of Reionization Array (DeBoer et al. 2017 ).
hese arrays hav e relativ ely wide field-of-view (FoV) to balance the
eed for deep observations and large surv e y volumes. 

Despite probing for very different scales and underlying signals,
nterferometric H I IM at low redshifts and H I observations of the
oR hav e v ery similar challenges. In the frequenc y range of the
bservation, the radio sky is dominated by the diffuse foreground
missions from our galaxy and the local Universe (Di Matteo et al.
002 ). The foreground radiation is smooth in frequency and can be
p to several orders of magnitude higher than the H I . The H I signal,
n the other hand, is discrete in frequency. Therefore, we can use the
moothness of foreground in frequency by Fourier transforming the
bserved visibilities along the frequency axis, commonly called the
delay transform’ (Morales & Hewitt 2004 ; Parsons et al. 2012a , b ). It
eparates smooth, large frequency structure of foreground and small
scillating frequency structure of H I . The smooth foreground mainly
esides on the large frequency-scale modes, creating the ‘foreground
edge’ (Liu, Parsons & Trott 2014a ) and an observation window
utside these modes. Measuring the H I power spectrum outside
he foreground wedge is, therefore, sometimes called foreground
 v oidance. 

Apart from a v oiding the foreground wedge, one can also try to
ubtract the foreground by using its smoothness in frequency and
urther extract information (e.g. Bowman, Morales & Hewitt 2009 ).
he specific approaches can be generally split into two types, the
arametric approaches that use polynomial fits to extract foreground
e.g. Santos, Cooray & Knox 2005 ; Bonaldi & Brown 2015 ) and
on-parametric approaches that use statistical methods to separate
oreground components. The most standard approach for component
eparation is Principle Component Analysis (PCA). More advanced
ethods can be built upon it, such as Fast Independent Compo-

ent Analysis (FastICA; e.g. Chapman et al. 2012 ), Generalized
NRAS 518, 2971–2990 (2023) 
orphological Component Analysis (e.g. Chapman et al. 2016 ),
nd Gaussian Process Regression (GPR; e.g. Mertens, Ghosh &
oopmans 2018 ). The success of a detection of H I signal in visibility
ata also relies heavily on mitigation of various systematics through
he calibration of the data (Barry et al. 2016 ). This requires a thorough
nderstanding of the instrument (e.g. Th yag arajan et al. 2016 ) and
he properties of the foreground (e.g. Nasirudin et al. 2020 ). 

To tackle the difficult problem of measuring H I clustering in
he post-ionization Universe at small angular scales, it is necessary
o create robust simulations for low-redshift IM using radio inter-
erometers and the data analysis pipeline for H I power spectrum
stimation. In this paper, we present an end-to-end simulation
ipeline for low-redshift interferometric IM that generates realistic
oreground and H I signal, simulates interferometric observations,
nd applies robust foreground mitigation strategies, which are crucial
or future detections for MeerKAT and SKAO. The visibility data
re used to calculate the brightness temperature power spectrum
sing a quadratic estimator formalism. We use the configurations
f MeerKAT telescope and observational specifications mimicking
 typical pointing of MIGHTEE surv e y to present a case study. A
etailed comparison of the effects of different foreground mitiga-
ion methods is conducted, including a direct comparison between
ore ground remo val in visibility data and in images. The aim of this
ipeline is to provide a detailed look into the topics of IM delay
ower spectrum that have been extensively discussed in the context
f EoR, but have not yet thoroughly quantified for observations of
he lo w-redshift Uni verse. It also allo ws more realistic simulations
hat will enable us to fully study the challenges of interferometric
M towards future detection. 

The paper is organized as follows: In Section 2 , the basics of
elay power spectrum in analytical formalism is re vie wed. The
uadratic estimator formalism for converting the visibility power
pectrum to the brightness temperature power spectrum is discussed
n Section 3 . We present the simulation of the sky signal input in
ection 4 . F ore ground mitigation in visibility space is discussed in
ection 5 . Power spectrum estimation using interferometric images is
resented in Section 6 . Comparison between different methods with
IGHTEE-like noise level is made in Section 7 . We conclude our

ndings in Section 8 . Throughout this paper, we assume the Lambda
old dark matter cosmology from Planck Collaboration VI ( 2020 ). 

 H  I CLUSTERI NG  F RO M  VISIBILITY  

n this section, we derive the connection between the visibility data
nd the power spectrum of cosmological H I . Note that for simplicity,
e do not consider RSDs (Kaiser 1987 ), which, in the scales of our

nterest, are dominated by effects from peculiar velocities of H I

alaxies (see e.g. Chung et al. 2021 ). The density of H I clustering is
ypically expressed as the brightness temperature T H I ( x ), 

 H I ( x ) = 

1 

V 

∑ 

i 

C H I ( z 
i ) M 

i 
H I δ

3 
D ( x − x i ) , (1) 

here V is the surv e y volume, M 

i 
H I is the H I mass of each sources

ithin the surv e y volume, z i is the redshift each source is at, δ3 
D is

he Dirac delta function in comoving space, and 

 H I ( z) = 

3 A 12 h P c 
3 (1 + z) 2 

32 πm H k B ν
2 
21 H ( z) 

(2) 

s the conversion factor from H I density to brightness temperature
ith h P the Planck constant, k B the Boltzmann constant, m H the mass
f the hydrogen atom, A 12 the emission coefficient of the 21-cm line
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ransmission, ν21 the rest frequency of the 21-cm emission, and H ( z)
he Hubble parameter at redshift z (Wolz et al. 2016 ). 

The power spectrum is measured in k space, which is the Fourier 
air of comoving space coordinate x . The F ourier conv ention used
or the brightness temperature field is 

˜ 
 H I ( k ) = 

∫ 
d 3 x 

V 

T H I ( x ) e −i k x , 

 H I ( x ) = 

V 

(2 π ) 3 

∫ 
d 3 k ˜ T H I ( k ) e i k x , (3) 

nd the corresponding convention for Dirac δD function is: ∫ 
d 3 x 

V 

δ3 
D ( x − x 0 ) f ( x ) = f ( x 0 ) , 

 

∫ 
d 3 k 

(2 π ) 3 
˜ δ3 
D ( k − k 0 ) ˜ f ( k ) = 

˜ f ( k 0 ) (4) 

or arbitrary function f ( x ) in comoving space and ˜ f ( k ) in Fourier
pace. 

Assuming homogeneity, the two-point correlation function can be 
ritten as 

( s ) = 〈 T H I ( x ) T H I ( x + s ) 〉 = 

∫ 
d 3 x 

V 

T H I ( x ) T H I ( x + s ) . (5) 

The brightness temperature power spectrum is the Fourier trans- 
orm of the two-point correlation function 

 21 ( k ) = 

∫ 
d 3 s ξ ( s ) e −i k s = 

∫ 
d 3 s 

d 3 x 

V 

T H I ( x ) T H I ( x + s ) e −i k s , (6) 

hich can be similarly written in Fourier space as 

V 〈 ̃  T ( k ) ̃  T ∗( k ′ ) 〉 = 

˜ δ3 
D ( k − k ′ ) P 21 ( k ) . (7) 

The distribution of the brightness temperature can be observed 
sing radio interferometers by measuring the radio sky through the 
orrelations of signals across different pairs of antennas. At any given 
ime, each pair measures the sky signal using the difference between 
he received signal phases determined by the position vector between 
he pair, i.e. the baseline. The length of the baseline in the units of
he observing wavelength, { u , v, w} , corresponds to the scale of
uctuations the baseline is measuring. For a set of baselines with u –v
oordinates { b α} = { ( u α, v α, w α) } c/f , where c is the speed of light
nd f is the observing frequency, the visibility V ( u , v, w, f ) generated
n each baseline is related to the sky intensity distribution I ( l , m , f )
Condon & Ransom 2016 ): 

 ( u, v, w, f ) = 

∫ 
d l d m √ 

1 − l 2 − m 

2 
I ( l, m, f ) A ( l, m, f ) 

×exp 
[ − 2 πi 

(
lu + mv + (1 − n ) w 

)]
, (8) 

here l , m are the sky coordinates on the celestial sphere, n =
 

1 − l 2 − m 

2 , and A ( l , m , f ) is the beam response. 
F or wide-F oV instruments used in EoR observation, the curved 

ky poses a challenge in power spectrum estimation (e.g. Thya- 
arajan et al. 2015b ). Here, we focus on IM in the low-redshift
niverse, which is typically done using small-FoV dish arrays such 

s MeerKAT and SKAO-mid. For MeerKAT L -band receivers which 
re simulated in this paper, the beamwidth is ∼1 deg (Asad et al.
021 ). Combined with the fact that beam properties of dish telescopes 
re relatively well-understood and yield more desirable features of 
oreground contamination (Th yag arajan et al. 2015a ), we expect 
pplying simple flat-sky approximation is good enough for IM at low 

edshifts. Using the flat-sky approximation and Fourier transforming 
he visibility along the frequency axis, we have 

˜ 
 ( u, v, η) ≈

∫ 
d l d m d f I ( l, m, f ) A ( l, m, f ) 

×exp 
[ − 2 πi 

(
lu + mv + f η

)]
, (9) 

here η is the Fourier pair of frequency f . 
In the flat-sky approximation, we can write down the transforma- 

ion between the sky and comoving space: 

 = 

r x 

D c 
, m = 

r y 

D c 
, f = 

f 21 

1 + z 
, (10) 

here we use r x , y to denote transverse scales. Note that the comoving
istance D c is the scale along the line-of-sight direction which we
lso denote as r z . 

The integral can be written as 

˜ 
 = 

∫ 
d 3 r 

−2 k B f 21 H ( z) 

D 

2 
c ( z) (1 + z) 2 cλ2 

[ AT ]( r ) exp 
[ − 2 πi 

(
lu + mv + f η

)]

= 

−2 k B 
λ3 

21 

∫ 
d 3 r 

H ( z) 

D 

2 
c ( z) 

[ AT ]( r ) exp 
[ − 2 πi 

(
lu + mv + f η

)]
, (11) 

here we use the Jacobian determinant to perform coordinate 
ransformation and write [ AT ]( r ) = A ( r ) T ( r ) as the product of
eam response and brightness temperature. 

The delay power spectrum P d = 〈| ̃  V ( u, v, η) | 2 〉 can be written as 

 d = 

(2 k B 
λ3 

21 

)2 
∫ 

d 3 r d 3 s 
H ( z r ) 

D 

2 
c ( z r ) 

H ( z r+ s ) 

D 

2 
c ( z r+ s ) 

〈 [ AT ]( r )[ AT ]( r + s ) 〉 

×exp 

[
− 2 πi 

(
u 

[ r x + s x 

D c ( z r+ s ) 
− r x 

D c ( z r ) 

] 

+ v 
[ r y + s y 

D c ( z r+ s ) 
− r y 

D c ( z r ) 

] 
+ η

[ f 21 

1 + z r+ s 

− f 21 

1 + z r 

] )]
. (12) 

rom the previous equation one can see that the matching between
he delay power spectrum and the H I brightness temperature power
pectrum is not exact. By assuming a narrow redshift range of
ntegration, we can ef fecti vely use one central redshift z 0 , so that 

f 21 

1 + z r+ s 

− f 21 

1 + z r 
≈ − f 21 
z s 

(1 + z 0 ) 2 
≈ −f 21 s z H ( z 0 ) 

(1 + z 0 ) 2 c 
. (13) 

To make the equations more compact, we denote X = D c ( z 0 ) and
 = λ21 (1 + z 0 ) 2 / H ( z 0 ) with H ( z 0 ) being the Hubble parameter at z 0 .
his results in 

k ⊥ 

= 

2 πu 

X 

, k ‖ = −2 πη

Y 

, (14) 

here k ⊥ 

is the scale on the angular plane, u = { u, v} is the visibility
pace coordinates, and k � is the scale along the line-of-sight. With
his notation, we can write 

 d = 

(2 k B 
λ2 

)2 1 

X 

4 Y 

2 

∫ 
d 3 r d 3 s 〈 [ AT ]( r )[ AT ]( r + s ) 〉 

×exp 

[
− i 

(
2 πu 

D c ( z 0 ) 
s x + 

2 πv 

D c ( z 0 ) 
s y − 2 πf 21 H ( z 0 ) η

(1 + z 0 ) 2 c 
s z 

)]

= 

(2 k B 
λ2 

)2 V 

4 

X 

4 Y 

2 

∫ 
d 3 k ′ 

(2 π ) 3 
d 3 k ′′ 

(2 π ) 3 
˜ A ( k − k ′ ) ˜ A 

∗( k − k ′′ ) 

×〈 ̃  T ( k ′ ) ̃  T ∗( k ′′ ) 〉 , (15) 

here k = { k ⊥ 

, k ‖ } is the three-dimensional (3D) wave vector and
˜ 
 is the Fourier transform of the beam response. 
Following equation ( 7 ), we can further simplify the previous

quation to 

P d ( u, v, η) = 

(2 k B 
λ2 

)2 V 

2 

X 

4 Y 

2 

∫ 
d 3 k ′ 

(2 π ) 3 
| ˜ A ( k − k ′ ) | 2 P T ( k ′ ) . (16) 
MNRAS 518, 2971–2990 (2023) 
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The previous equation not only imposes flat-sky approximation,
ut also requires the evolution along the light-cone to be negligible.
his assumption is reasonable for the simulation used in this paper.
e leave the treatment to wide frequency ranges for future work. 

 QUA D R A  TIC  ESTIMA  TO R  O F  

EMPER ATU R E  POWER  SPECTRUM  

n this section, we derive the implemented power spectrum estimator,
ith foreground mitigation and minimization of measurement un-

ertainties. In order to relate the foreground-dominated observations
o the brightness temperature power spectrum of H I , the sky signal
easured in visibility space will be processed through a data analysis

rame work. Such a frame work should allow estimations of the
rightness temperature power spectrum of H I clustering through
ppropriate means of statistics to mitigate foreground. These types
f power spectrum frameworks using interferometric data have been
 xtensiv ely studied in the context of cosmic microwave background
e.g. Tegmark 1997 ; Myers et al. 2003 ) and, more recently, EoR
e.g. Liu & Tegmark 2011 ; Choudhuri et al. 2014 ; Morales et al.
019 ) and high-redshift IM (e.g. Sarkar, Bharadwaj & Marthi 2018 ;
hatterjee, Bharadwaj & Marthi 2021 ). See Liu & Shaw ( 2020 )

or a re vie w. Here, we focus on interferometric low-redshift IM,
y constructing a quadratic estimator which explicitly includes the
peration of foreground mitigation and deconvolves the mode mixing
ntroduced by the primary beam attenuation. 

The visibility data consist of N bl × N ch × N steps elements, where
 bl is the number of baselines, N ch is the number of frequency
hannels, and N steps is the number of time-steps in the observations.
y averaging the visibility data into u –v grids, a data vector V with
 length of N ch × N u can be constructed, where N ch is the number
f frequency channels and N u is the number of grids on the u–v
lane. Note that V is a column vector that loops o v er both frequenc y
hannel and u–v grids. Its elements can be written as 

 

j = V ( u j , v j , f j ) , (17) 

ith V ( u j , v j , f j ) being the visibility data at the specific u–v coordinate
nd frequency the j th gridded baseline corresponds to. Similarly, we
an also define a delay-transformed data vector 

˜ 
 

k = 

˜ V ( u k , v k , ηk ) , (18) 

here η is the F ourier-inv erse of the observing frequencies. 
The visibility power spectrum of the 21-cm emission can be

iscretized into the summation of the bandpower 

 d ( u , η) = 

∑ 

α

χα( u , η) P d ( | u | α, ηα) = 

∑ 

α

χαp 

d 
α, (19) 

ith χα being the selection function, returning 1 if the baseline falls
nto the αth bin and 0 if not. We define p 

d 
α ≡ P d ( | u | α, ηα). 

Similarly the temperature bandpower is defined as 

 T ( k ) = 

∑ 

β

χβ ( k ) P T ( k β ) = 

∑ 

β

χβ ( k ) p 

T 
β . (20) 

The estimator of the bandpower ˆ p 

d 
α can be constructed as 

ˆ  d α = V 

† E 

d 
αV − ˆ b d α. (21) 

ere, V is the gridded visibility data vector, ˆ b d α is the correction term
or bias, and E 

d 
α is the power spectrum estimation matrix which we

ill derive explicitly. 
When estimating ˆ p 

d 
α , one can choose V to include all the visibility

ata. In our case, E 

d 
α is a block matrix of size N u × N u , with each
NRAS 518, 2971–2990 (2023) 
lement being a N ch × N ch matrix. 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

E 

1 
11 . . . E 

1 
1 N ch 

. . . 
. . . 

. . . . . . . . . 

E 

1 
N ch 

. . . E 

1 
N ch N ch 

. . . 
. . . 

. . . 
E 

N u 
11 . . . E 

N u 
1 N ch 

. . . . . . 
. . . 

. . . 
. . . 

E 

N u 
N ch 

. . . E 

N u 
N ch N ch 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

The resulting E 

d 
α is computationally difficult to deal with due

o its large size. Note that if different u–v grids do not correlate,
he off-diagonal blocks will be empty. The block elements of E 

d 
α

ill then only operate on the N ch data points in the corresponding
–v grid. Thus, we assume the off-diagonal part to be negligible
nd only construct the matrix for one u–v grid at a time, using an
nput data vector of size N ch (the number of frequency channels).
he beam mixes different u–v modes, whose correlation is present

n the non-block-diagonal part of E 

d 
α . Ho we ver, this approximation

ro vides massiv e speed-up for computational efficienc y. We leav e
he full treatment of E 

d 
α to future work. Under this assumption, the

ovariance matrix of the data vector can be written as (Dillon et al.
015 ) 

 u u ′ ff ′ ≈ δK 
u u ′ 

ˆ C ff ′ ( | k ⊥ 

| ) , (22) 

here δK is the Kronecker delta and ˆ C ff ′ ( | k ⊥ 

| ) is the estimated
ata covariance in each annulus | u | bin, which is calculated from
veraging the visibility covariance across the baselines that fall into
he particular | u | bin. 

For the data vector of one u–v grid, the conversion from frequency
o the delay time domain can be written as 

˜ 
 

k = δf 
∑ 

j 

e −2 πiηk f j V 

j = 

∑ 

j 

F 

k 
j V 

j , (23) 

here F 

k 
j is the discrete Fourier transform kernel and δf is the

hannel bandwidth. 
The covariance matrix of the data vector of one u–v grid can be

ritten as 

 ≡ 〈 VV 

† 〉 = C fg + N + 

∑ 

α

p 

d 
αC ,α, (24) 

ith C fg being the covariance matrix of the radio foreground in the
requency domain, N the noise covariance matrix, and 

∑ 

α p 

d 
αC ,α the

ignal cross-correlation 1 which we decompose into some bandpower
f visibility data p 

d 
α . 

The elements of the signal covariance matrix can be written as 

C s 

)
ij 

= 〈 V H I ( u, v, f i ) V 

∗
H I ( u, v, f j ) 〉 

= 

∫ 
d η1 d η2 exp 

[
2 πi( f i η1 − f j η2 ) 

]〈 ̃  V i 
˜ V 

∗
j 〉 

= 

∫ 
d η1 d η2 exp 

[
2 πi( f i η1 − f j η2 ) 

]
˜ δD ( η1 − η2 ) P d 

= 

1 

( N ch δf ) 2 
∑ 

α

exp 
[
2 πi( f i − f j ) ηα

]
p 

d 
α. (25) 
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herefore, we can write 

C ,α

)
ij 

= 

1 

( N ch δf ) 2 
exp 

[
2 πi( f i − f j ) ηα

]
. (26) 

If we aim to simply calculate the delay power of the visibility
ata instead of the temperature power and assume no foreground and 
oise contamination, the power spectrum estimation can be written 
s 

ˆ  d α| no fg , n = 

∑ 

i χα( u i , v i , ηi ) | ̃  V 

i | 2 ∑ 

i χα( u i , v i , ηi ) 
= 

∑ 

i 

( w α) i | ̃  V 

i | 2 , (27) 

here i loops o v er all F ourier-transformed u–v grids, χα is the
election function, and we express the normalized selection function 
s w α to make the expression more compact. With the previous 
xpression we can write 

ˆ  d α| no fg , n = V 

† F 

† diag ( w α) FV . (28) 

ere, diag ( w α) is a diagonal matrix with the i th diagonal element
eing ( w α) i . 
In the presence of thermal noise and foreground contamination, 

e can include some linear operation R in the estimator in order to
itigate the foreground. This operation R may include foreground 

emo val, inv erse co variance weighting, frequenc y tapering, etc. 
aking this operator into consideration we can rewrite the power 
pectrum estimation matrix E 

d 
α as 

 

d 
α = diag ( S α) R 

† F 

† diag ( w α) F R . (29) 

ere, S α is a normalization vector which we can solve for by taking
he expectation value of the power spectrum estimator 

 ̂  p 

d 
α〉 = 

∑ 

β

tr 
[
C ,βE α

]
p 

d 
β + tr 

[(
N + C fg 

)
E 

d 
α

] − ˆ b d α. (30) 

o solve for S α , we impose ∑ 

β

tr 
[
C ,βE α

] = 1 , (31) 

nd the covariance of the estimation is 

 αα′ = 〈 ̂  p 

d 
α ˆ p 

d 
α′ 〉 − 〈 ̂  p 

d 
α〉〈 ̂  p 

d 
α′ 〉 = 2 tr 

[
C E 

d 
αC E 

d 
α′ 
]
. (32) 

ote that here we choose S α as a vector, or ef fecti vely as a diagonal
ormalization matrix, as discussed in Hamilton ( 1997 ) and Tegmark 
 1997 ). This leads to the correlation of the variance of different
andpowers, as the previous matrix � αα′ will have non-diagonal 
omponents. To decorrelate the variance, one should choose the 
ormalization matrix to be F 

−1 / 2 where F is the bandpower Fisher
atrix (Tegmark 1998 ; Hamilton & Tegmark 2000 ). As mentioned 

arlier though, we calculate the bandpower of one u–v grid at a time
or computational efficiency. Thus, despite using a normalization 
ethod that results in correlation between variances of different 

andpowers, the non-diagonal part of � αα′ is not included in our 
alculation. See Dillon et al. ( 2014 ) for a discussion on o v ercoming
eal-world obstacles such as large data volume and error properties. 

In the ideal case where the foreground and noise covariance is
nown, one should al w ays choose ˆ b d α = tr 

[(
N + C fg 

)
E 

d 
α

]
and use

nv erse co variance weighting R = C 

−1 , so that we have an unbiased
stimation of the power spectrum with minimum uncertainty (i.e. 
he optimal estimator). In reality though, we only have a guess for
he true covariance of the foreground and noise, and therefore the 
stimator can be written as 

ˆ  d α = V 

† E 

d 
αV − tr 

[(
N 

psd + C 

psd 
fg 

)
E 

d 
α

]
, (33) 
ith a pseudo-covariance as our best guess of the true foreground
nd noise covariance. 

If no extra data processing is applied, R is simply the identity
atrix. Frequency tapering can be applied by choosing R to be a

iagonal matrix with the diagonal components being the frequency 
indow (see e.g. The HERA Collaboration 2022 ). For any fore-
round mitigation strategy R that perfectly removes the foreground 
omponents in the data vector, the resulting estimator should revert 
o the optimal case. Thus, we can decompose the operation matrix
nto 

 fg = ( C − C 

psd 
fg ) −1 A . (34) 

ere, A is the component separation matrix that should remo v e the
ontribution of the foregrounds. Since we believe the resulting data 
ector after the operation of A is free of foreground, a subsequent
nv erse co variance matrix is applied. See Kern & Liu ( 2021 ) for an
xample of this using GPR. 

Finally, after obtaining the estimation of the delay power spectrum 

n each u–v grid, we apply annulus bins in u–v space to ˆ p 

d 
α . The

emperature power spectrum can be estimated with the annulus- 
inned delay power spectrum via 

ˆ  T β = 

∑ 

α

(
M 

)−1 

βα
ˆ p 

d 
α. (35) 

ere, M is a conversion matrix derived from equation ( 16 ) (see
ppendix A for detailed deri v ation): 

M 

)
αβ

= 

(2 k B 
λ2 

)2 N ch δf 

Y 

∑ 

i χα( k i ) 

∑ 

i 

∫ 
d 2 k ⊥ 

(2 π ) 2 
χα( k i ) 

×
∣∣∣ ˜ A ⊥ 

(
k i ⊥ 

− k ⊥ 

)∣∣∣2 
χβ ( k ⊥ 

, k i ‖ ) , (36) 

here i loops o v er all F ourier-transformed u–v grids and ˜ A ⊥ 

is the
ourier-transformed beam response in the transverse plane defined in 
quation ( A3 ). The variance of the estimation can also be propagated
ssuming each bandpower is an independent measurement of the 
lustering. 

If we choose the same number of bins for | u | α and | k ⊥ 

| β , we can
alculate the previous square matrix and estimate the cylindrical 
emperature power spectrum 

[
ˆ P 

γ

21 

]
β

via a matrix inversion. The 
esulting cylindrical power spectrum can be further averaged into 
D { k i } bins: 

ˆ  1d 
i = 

∑ 

β w i ( k 
β
⊥ 

, k 
β
‖ ) ̂  p 

T 
β∑ 

β w i ( k 
β
⊥ 

, k 
β
‖ ) 

, (37) 

here w i is a combination of the selection function and wedge
riteria; w i returns 1 if ( k β⊥ 

, k 
β
‖ ) falls into the bin and is not a v oided

y the foreground wedge criteria. 

 SI MULATI ON  O F  T H E  R A D I O  SKY  

n this section, we describe the simulations of the sky signal and
he experimental set-up we use to generate visibility data consistent 
ith MeerKAT observations. The MeerKAT array consists of 64-dish 

elescope. It observes the sky in the L band and the UHF band. In
his paper, we are focusing on the L -band observations. The L -band
eceiv ers hav e 4096 frequenc y channels and observe the sky with
 time resolution of 8 s. Also, they have a frequency resolution of
08.984 kHz. Following Paul et al. ( 2021 ), we choose 220 frequency
hannels centred at 1115.14 MHz and set the pointing centre at the
osmic Evolution Surv e y (COSMOS) field (Scoville et al. 2007 ) at
A = 150.12 deg and Dec = 2.21 deg with an 11.2-h tracking. The
MNRAS 518, 2971–2990 (2023) 
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Figure 1. Top panel: The simulated synchrotron radiation around the 
pointing centre at RA = 150.12 deg and Dec = 2.21 deg, originally generated 
at 408 MHz and extrapolated to 1.4 GHz. Middle panel: The simulated free–
free emission around the pointing centre at 1.4 GHz. Bottom panel: The 
simulated extragalactic point sources around the pointing centre at 1.4 GHz. 
Values abo v e 10 −3 Jy per pix el are set to 10 −3 for better presentation. The 
pixel size of the images is set to 0 . 01 × 0 . 01 deg 2 . The size of the input sky 
image is 3 . 7 × 3 . 7 deg 2 . 
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requency range of the sub-band we choose co v ers a narrow redshift
in z ∼ 0.25–0.3. The size of the input sky image is 3 . 7 × 3 . 7 deg 2 ,
uch larger than the MeerKAT dish FoV to ensure completeness. 

.1 Simulation of Galactic for egr ounds 

he biggest challenge for simulating interferometric observations
s the extreme angular resolution, which is typically ∼arcsec. Note
hat we are only interested in the cosmological clustering and can
herefore ignore the scales corresponding to the longest baselines.
or k � 20 Mpc −1 , the point source assumption of H I sources breaks
own and the information within these small scales is beyond the
nterests of cosmology. Therefore, we simulate HEALPIX (G ́orski et al.
005 ; Zonca et al. 2019 ) N side = 8192 maps, which corresponds to
 pixel size of (0.43 arcmin) 2 and clustering scales of k ∼ 40 Mpc −1 

t z ∼ 0.25–0.3. 
At frequencies around 1 GHz, the dominant component of smooth

alactic foregrounds is the synchrotron radiation. The template we
se to generate the signal is the ‘Haslam map’ at 408 MHz (Haslam
t al. 1981 , 1982 ). We use the de-sourced, de-striped version of the
ap described in Remazeilles et al. ( 2015 ). The pixel size of the

riginal map is (6.87 arcmin) 2 corresponding to HEALPIX N side =
12. To reduce the pixel size of the template, we follow the method
n Remazeilles et al. ( 2015 ) and generate Gaussian random structure
o fill in the small scales. 

The spectral index of the emission can be extrapolated from
bservations of synchrotron-dominated radio sky at different wave-
engths (e.g. Spinelli et al. 2021 ). Here, we use the 1.4 and 2.3 GHz
aps from the Global Sky Model (Zheng et al. 2017 ), which are

ased on observations of Reich, Testori & Reich ( 2001 ) and Jonas,
aart & Nicolson ( 1998 ). The resulting input sky image at 1.4 GHz is
resented at the top panel of Fig. 1 . Note that upgrading the resolution
sing HEALPIX creates numerical artefacts at small scales seen in the
ap. As we show in Section 5.3 , the synchrotron component has a

rivial impact on power spectrum on small scales. 
Apart from the synchrotron radiation, the free–free emission is

nother important component of the smooth foregrounds (e.g. Lian
t al. 2020 ). It is believed to be well-approximated by a Gaussian
istribution (e.g. Alonso, Ferreira & Santos 2014 ). Alternatively, one
an also use existing H α templates (e.g. Oli v ari et al. 2018 ). We use
he H α template of Finkbeiner ( 2003 ) and the conversion factor from
nit Rayleigh to brightness temperature as in Dickinson, Davies &
avis ( 2003 ) assuming a constant spectral inde x e xtrapolated from
.326 and 1.420 GHz. We upgrade the pixel size of the map from
EALPIX N side = 1024 to HEALPIX N side = 8192. The input sky image
f the free–free emission at 1.4 GHz is shown in the middle panel of
ig. 1 . 

.2 Simulation of extragalactic for egr ound 

he discrete extragalactic radio sources dominate the power spectrum
f the total sky signal and are the biggest source of foreground
ontamination on small scales. Therefore, a realistic modelling of
he discrete radio sources is crucial to the accurate simulation of
he foregrounds (e.g. Liu, Tegmark & Zaldarriaga 2009 ). Three
pproaches have been used: Gaussian realizations from a given
ngular power spectrum (e.g. Santos et al. 2005 ), a point source
atalogue for the particular patch of the sky of interest (e.g. Paul
t al. 2021 ), or Poisson realizations using flux count statistics (e.g.
attye et al. 2013 ). We simulate the sky in a stochastic fashion and
hoose the flux count approach. 
NRAS 518, 2971–2990 (2023) 
Radio galaxies are the most important targets for observations
n the radio band, and the source counts are well studied by many
urv e ys, such as the NVSS surv e y (Condon et al. 1998 ), the VLA-
eep Field (Bondi et al. 2003 ), and more recently the MeerKAT
EEP2 field (Mauch et al. 2020 ) and the ongoing VLASS surv e y

Lacy et al. 2020 ). We follow the source count statistics at 1.4 GHz
escribed in Matthews et al. ( 2021 ), which uses NVSS and DEEP2 to
ccount for the bright and faint end of the distribution, respectively. 

art/stac3288_f1.eps
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Two assumptions are made for the simulation of extragalactic 
ources. First, they are treated as point sources. Although large radio 
nterferometers such as MeerKAT can resolve most of the sources 
bserved, the arcsec angular scales are not of cosmological interest. 
econd, we assume that point sources abo v e the flux density of 10 −3 

y can be efficiently remo v ed or a v oided. This is based on the fact
hat some of the fields that are being investigated, such as COSMOS
nd the DEEP2 field, bright radio sources are a v oided or modelled as
emonstrated in Paul et al. ( 2021 ). For other fields with more bright
ources, we can expect the source ‘peeling’ to be efficient abo v e
his flux cut given the sensitivity of the MIGHTEE surv e y (Jarvis
t al. 2016 ). Relaxing the flux cut can lead to the foreground power
aturating all k � scales of our interests. We leave a more careful
reatment to the effects of imperfect peeling for future work. 

The all-sky distribution of point sources is generated with the 
ollowing steps: 

(1) We grid the flux density range (10 −7 –10 −3 Jy) with 20 narrow,
ogarithmic bins. In each bin, a total number of sources is calculated
ased on the source count statistics. We find that using more bins has
ittle impact on the results. 

(2) For each bin, a random subsample of pixels is selected and each 
s assigned a source with the average flux density of the bin. Note
his is different from simulations of single-dish observations due to 
he angular resolution of the observations. For lower resolution, in a 
ux bin, each pixel will have multiple sources on av erage. F or each
ixel a source number will be Poisson sampled. Here, the number of
ixels will be larger than the number of sources, and therefore only
 sample of pixels is uniformly selected. 

(3) Follo wing Matthe ws et al. ( 2021 ), for each pixel a Gaussian
andom spectral index with an average of −0.7 and standard deviation 
f 0.2 is assigned. 

We present the simulated extragalactic foreground in the bottom 

anel of Fig. 1 . 
Note that the extragalactic point sources also cluster (e.g. Overzier 

t al. 2003 ; Hale et al. 2018 ; Siewert et al. 2020 ). It is straightforward
o generate Gaussian fluctuations based on input angular power spec- 
rum to account for the clustering component. It scales approximately 
s w( θ ) ∝ θ−0.8 (Peebles 1974 ) and is therefore negligible on small
cales of our interest. 

.3 Simulations of H I signal 

n this subsection, we describe the simulations of H I used in this
aper. The H I signal is intrinsically different to the foregrounds, since 
he foregrounds are smooth in frequency while the H I signal from
 particular frequency corresponds to specific cosmological redshift. 
s a consequence of this, simulating all-sky maps of H I at different

requencies are computationally e xpensiv e and difficult. Instead, we 
se 3D simulations of H I in cubic boxes of cosmological volumes.
hile more sophisticated simulations of H I can be found (e.g. Crain

t al. 2017 ; Villaescusa-Navarro et al. 2018 ), for our purpose we use
alo-model-based (Cooray & Sheth 2002 ) log-normal simulations 
ntroduced in Wolz et al. ( 2019 ) using POWERBOX (Murray 2018 ).
his formalism allows us to efficiently generate many realizations to 

est our pipeline. The simulation involves the following steps: 

(1) Assuming the halo mass function of Tinker et al. ( 2008 ) and
he halo bias of Tinker et al. ( 2010 ), we calculate the halo auto power
pectrum using HALOMOD (Murray et al. 2021 ) for a fixed redshift
t the centre of our redshift bin z ∼ 0.27. All steps before light-cone
onstruction assume this fixed redshift. The power spectrum is then 
sed as an input to generate log-normal discrete samples of halo
entres using POWERBOX in a 250 3 Mpc 3 box with 800 3 resolution,
orresponding to k min = 0 . 025 Mpc −1 and k max = 10 . 0 Mpc −1 . 

(2) Each halo is then randomly assigned a halo mass based on
he halo mass function of Tinker et al. ( 2008 ) using HMF (Murray,
ower & Robotham 2013 ). 
(3) Assuming the galaxy halo occupation distribution (HOD) of 

heng et al. ( 2005 ), a number of galaxies is assigned to each halo.
y Bernoulli sampling with p = 〈 N 

g 
cen 〉 , we determine whether each

alo has a central galaxy. For haloes with central galaxies, the number
f satellite galaxies is determined by a Poisson distribution with mean 
 N 

g 
sat 〉 . 
(4) The positions of central galaxies are assigned to the halo 

entres. For satellite galaxies, we assume the positions follow the 
robability distribution of a Navarro-Frenk-White (NFW) profile 
Navarro, Frenk & White 1996 ) and assign a random distance to the
alo centre following that distribution. The angular positions of the 
 alaxies with reg ard to the halo centres are then uniformly sampled
nd combined with the distance we can assign physical coordinates 
o the satellite galaxies. 

(5) Each galaxy is assigned an H I mass following log-normal dis-
ributions. The central and satellite H I mass of each halo is calculated
ased on the H I HOD 〈 M 

H I 
cen , sat 〉 following Spinelli et al. ( 2020 ). The

ean of the distribution is set to be M field = 〈 M 

H I 
cen , sat 〉 / 〈 N 

g 
cen , sat 〉 and

 standard deviation of 0.25 M field . 

The steps mentioned earlier generate a catalogue of H I galaxies
ith their positions and H I mass in the comoving space. To map it
nto the sky to construct the light-cone, we perform the following
teps: 

(1) The centre of the simulation box is assumed to be the pointing
entre and at the centre of the frequency range. Using that, we
an assign a position vector to the pointing centre X cen (sin θcos φ,
in θsin φ, cos φ) T relative to the observer, where X cen is the comoving
istance of the central redshift and ( θ , φ) is the sky coordinate of the
ointing centre. 
(2) The position vector of each H I galaxy can be solved for. The
odulus of each position vector is the comoving distance for each

ource. The comoving distances can be conversely used to assign 
edshifts and subsequently frequency channels to H I galaxies. 

(3) The i th galaxy is assigned a flux density following equa- 
ion ( B3 ) as discussed in Appendix B . 

The resulting H I simulation can be passed to the visibility
imulation described in the next subsection. 

.4 Simulation of instrument 

n this subsection, we outline the simulation of visibility data 
sing the sky input including foregrounds and H I . We use OSKAR

Mort et al. 2010 ) to generate visibility data. OSKAR is a C ++ -
ased simulation tool for radio interferometers, supporting GPU- 
ccelerated computation for efficiency. It takes in a sky model, 
bservation strategy and the telescope array specifications (including 
tation placement and primary beam), to simulate visibility data as a
easurement set file. 2 

We simulate observations by the 64-dish MeerKAT telescope array. 
e assume the beam of each dish is Gaussian with a full width

t half-maximum of 57.5 arcmin at 1.5 GHz (Mauch et al. 2020 ).
MNRAS 518, 2971–2990 (2023) 
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M

Figure 2. The u–v co v erage of simulated baselines. The u–v plane is cut 
to only show the scales of our interest corresponding to k � 20 Mpc −1 , and 
gridded with a pixel size of (20m) 2 for presentation. The colour map denotes 
the number of baselines in each pixel. 
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right foreground sources in sidelobes can have a non-trivial effect
n foreground cleaning. In interferometric observations, this can be
esolved by the secondary and position-dependent calibration steps
see e.g. section 2 of Heywood et al. 2022 ) and we leave the treatment
f beam sidelobes for future work. The pointing centre is set to be
A = 150.12 deg and Dec = 2.21 deg at the COSMOS field with
n 11.2-h tracking. The MeerKAT telescope has a time resolution
f 8 s, generating ∼10 7 instantaneous baselines in one tracking. For
omputational efficiency, we choose the time resolution to be δt =
0 s for the simulation and hav e v erified that there is no visible
ifference when compared with a full time-resolution simulation.
he simulated u–v co v erage of the 11.2-h tracking is presented in
ig. 2 . 
We generate thermal noise per baseline following the radiometer

quation (Condon & Ransom 2016 ) 

N = 

2 k B T sys 

A e 
√ 

δf δt 
, (38) 

here T sys is the temperature of the receiver system, A e is the ef fecti ve
perture of the dish, δf = 208.984 kHz is the channel bandwidth, and
t = 40 s is the time resolution as mentioned earlier. We use A e / T sys =
.22 m 

2 K 

−1 3 and generate random Gaussian noise for the complex
isibility. 
The noise level of a single pointing for a small range of 220

hannels at z ∼ 0.25–0.3 is quite high, with the amplitude of the
oise covariance comparable to the foregrounds. For the rest of the
tudy, we consider the following two thermal noise scenarios. In
rder to isolate the effects of foregrounds from the thermal noise,
e simulate visibility data with noise level scaled down by a factor
f 40. From now on, this simulation is referred to as the ‘low noise
evel’ case. Note that we do not use the results of the low-noise level
ase for realistic forecasts, but to showcase the effects of different
oreground mitigation strategies in Section 5 . 

For the second noise scenario, we aim to show the robustness
f the methods for the realistic thermal noise level matching the
orresponding sub-band of the MIGHTEE surv e y while simulating
bservations of one field for simplicity. The MIGHTEE surv e y
NRAS 518, 2971–2990 (2023) 
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m  
onsists of 52 pointings with a total observational time of ∼1920 h
Jarvis et al. 2016 ). To match the noise level of our simulation of
1.2 h to the entire surv e y, we first scale the thermal noise level
o wn di viding by a factor of 

√ 

(1920 / 52) / 11 . 2 , matching the total
ntegration time for a single pointing. In real observations, the scaling
f the thermal noise will be achieved through coherently averaging
cross different nights of visibility data (see e.g. Mertens et al.
020 ). We then further reduce the thermal noise le vel di viding by a
actor of 4 

√ 

52 , so that the thermal noise power spectrum matches the
ncoherent averaging of all 52 pointings. From now on, the simulation
ith MIGHTEE-like noise level for z ∼ 0.25–0.3 is referred to as

he ‘high-noise level’ case. 

 F O R E G RO U N D  MI TI GATI ON  IN  VISIBILITY  

PAC E  

n this section, we examine the effects of three different foreground
itigation strategies in visibility space on the power spectrum
easurement. First, we validate our power spectrum estimator using
 I -only simulations in Section 5.1 . We confirm the wedge structure
f the foreground power in our simulation in Section 5.2 . We then
pply foreground a v oidance in Section 5.3 . We further explore fore-
round subtraction by polynomial fitting the foreground covariance
n Section 5.4 . Component separation for the visibility data using
CA is presented in Section 5.5 . As mentioned in Section 4.4 , the
esults shown here are for the low-noise level case to isolate the
ffects of foregrounds from the thermal noise. 

.1 Validation of power spectrum estimator 

n this subsection, we validate the power spectrum estimator de-
cribed in Section 3 . We simulate visibility data with only H I input,
nd pass the output data to the estimator. We choose to grid the u–v
lane with 
 u = 
v = 10 from 0 to 6000. Here, we apply gridding
or computational efficiency, reducing the number of baselines from
 bl ∼ 2 × 10 6 to N bl ∼ 3 × 10 4 . The results from gridded visibility
ill be suboptimal (Liu et al. 2014a ); ho we ver, in the case of noise

ovariance being dominant, the effects on the uncertainties are small.
The power spectrum is computed in cylindrical space with band-

owers further averaged into {| u |} bins. We choose the edges of the u–
 annulus bins to be {| u | α} = [0 , 100 , 200 , ..., 6000] and {| k ⊥ 

| β} =
 π{| u | α} /X for the cylindrical power spectrum used in equations ( 35 )
nd ( 37 ). From now on, we refer to {| u | α} = [0 , 100 , 200 , ..., 6000]
s the ‘annulus {| u |} bins’ used in our simulation. For the 1D power
pectrum, we choose the edges of the k bins to have 
k = 0 . 5 Mpc −1 

rom 0.5 to 20 Mpc −1 . The delay power spectrum is calculated using
quation ( 28 ) and converted to the temperature power spectrum using
quations ( 35 ) and ( 37 ). 

We simulate 20 realizations with different dark matter halo and
 I content and show the mean and the standard deviation of the
ower spectrum results in the top panel of Fig. 3 . The blue line
hows the mean of input H I box es av eraged o v er the realizations
‘input’). The blue-shaded region represents the standard deviation
f the input power spectrum. The averaged output of the power
pectrum estimator is shown as the orange-dashed line. As one can
ee, the results from the estimator agree tightly with the input. The
tandard deviation of the output power spectrum is shown as the
range-shaded region. The large variance is due to the fact that the
nput H I box is much larger than the telescope FoV. At scales of 1-
alo correlation and shot noise, the variance of the power spectrum
s large for the small volume of one pointing. The number density of

assive H I galaxies in the telescope FoV fluctuates from one point
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Figure 3. Top panel: The brightness temperature power spectrum of input H I 

signal (‘Input’), compared with the results using the power spectrum estimator 
described in Section 3 , averaged over 20 different H I -only realizations 
(‘Visibility’). The shaded blue region shows the standard deviation of the input 
power spectrum. The shaded orange region shows the standard deviation of 
the output power spectrum. Note that for the power spectrum from simulated 
visibility, we cut the first | u | bin and consequently first k bin for reasons 
discussed in Section 5.3 . Therefore, the orange region starts at larger k than 
the input. The green, dotted line shows the result of one specific realization 
using the power spectrum estimator. The red, dash–dotted line shows the 
input H I power spectrum from the simulated light-cone within the telescope 
FoV from the same realization, corresponding to the power spectrum of the 
input image within the FoV (‘One Realization – Im’). Bottom panel: The 
variance of H I power spectrum due to the limited surv e y volume for 1, 2, and 
5 pointings as shown in the shaded regions compared with the average H I 

power spectrum of the entire box. 
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o another. To illustrate this variance, we calculate the variance of
he input power spectrum using bootstrapping by dividing the input 
 I box into sub-boxes matching the survey volume of 1, 2, and 5
ointings and present the results in the bottom panel of Fig. 3 . The
ariance from the volume of 1 pointing agrees well with the variance
f the output. The variance decreases as the surv e y volume goes
p. For the MIGHTEE survey with ∼50 pointings, the effect of this
ariance will be negligible. 

We have shown that the output power spectrum for one realization 
nd one pointing will not correspond to the input simulation box due
o small surv e y v olume, b ut agrees very well after being averaged
 v er multiple pointings. One may think that instead of the entire
 I box, the output power spectrum is the power spectrum of the
art of the box within the telescope FoV. We further clarify that the
utput H I power spectrum from one realization does not correspond 
xactly to ‘the input image’, i.e. the H I signal within the telescope
rimary-beam FoV as well. The H I sources outside the telescope 
oV, though being hea vily attenuated, still contrib ute to the visibility
ata, and therefore, the output from our estimator differs from ‘the 
nput image’. In the top panel of Fig. 3 , we show, for one realization,
he output power spectrum (‘One Realization – Vis’) against the 
ower spectrum of the H I signal within the telescope FoV (‘One
ealization – Im’). 
As discussed in Section 4.4 , we aim to forecast for the MIGHTEE
urv e y using one pointing. We choose the specific H I realization
hown in Fig. 3 , with the foreground signal and thermal noise added,
o present our results for the rest of this section. 

.2 For egr ound wedge 

n this subsection, we present the cylindrical delay power spectrum 

 d ( k ⊥ 

, k ‖ ) for each component of the simulation. P d ( k ⊥ 

, k ‖ ) contains
nformation on the clustering of H I on both the transverse plane and
long the frequency direction. Since H I is a cosmological signal,
here is no preferred direction for the H I power spectrum except for
he finger-of-god (FoG) effect. The foregrounds, on the other hand, 
re smooth in frequency. Therefore, the foreground power resides 
ostly in low- k � modes and decreases sharply as k � increases. It is

mportant to use simulations to understand which ( k ⊥ 

, k ‖ ) modes are
ontaminated by the foregrounds in order to extract information on 
 I . 
We use the simulated visibility data of different components 

ithout the thermal noise to visualize the ‘foreground wedge’ (Liu, 
arsons & Trott 2014b ). In this subsection, we calculate the delay
ower spectrum of different components using equation ( 33 ), with
niform weighting R = I to calculate E 

d 
α in equation ( 29 ). We do not

nclude frequency tapering, because as shown later the foreground 
ontamination in our case is severe, and we find that the tapering does
ot have significant effects on containing the foreground wedge. We 
lso do not perform inverse covariance weighting for this subsection, 
he reasons for which will be discussed in Section 5.3 . The cylindrical
ower spectra shown throughout this paper are the outputs of 
quation ( 33 ), with no k � filter applied as we only filter out small- k � 
cales when converting to 1D power as in equation ( 37 ). 

We present the cylindrical power spectrum for each component 
f the signal in Fig. 4 . The top panels, from left to right, show
he delay power spectra of point source, synchrotron and free–free 
missions, respectively. The sum of these three components is shown 
n the lower left panel. The foreground power is significantly larger
n low- k � modes than in high- k � modes. The dominant component
f the foregrounds is extragalactic radio sources, especially for 
arge | k ⊥ 

| > 1 Mpc −1 where it is at least 2 orders of magnitude
arger than synchrotron and the free–free emission. The point source 
ower spectrum increases and leaks more into high- k � modes when
onsidering smaller angular scales, while synchrotron and the free–
ree emission behave in the opposite way. On short baselines 
orresponding to | u | < 100 and | k ⊥ 

| � 0 . 5 Mpc −1 , the delay power
pectrum of foreground is exceptionally large when compared with 
ther | k ⊥ 

| bins. This is for several reasons. First, at the particular
ointing we are simulating which is close to the Galactic plane, the
ynchrotron radiation is bright at large scales; for | k ⊥ 

| � 0 . 5 Mpc −1 ,
he synchrotron radiation is at least an order of magnitude larger
han other components. Second, the first u–v bin, namely | u |
rom 0 to 100, contains contributions from the shortest baselines 
 u | ∼ 10 −100, co v ering an order of magnitude in angular scale.
he rapidly decreasing power spectrum at these scales means the 
 v erall contribution to the first | u | bin is o v erestimated. Finally, the
imulation of a limited patch of the sky introduces a windowing
f fect, leaking the po wer of the monopole into low- | k ⊥ 

| modes.
hen we convert the delay power spectrum to the temperature power

pectrum, the conversion matrix mixes angular modes that leads to 
urther o v erestimation for nearby | u | bins. Therefore, we discard the
rst | u | bin and start from | u | > 100. 
The bottom-centre panel of Fig. 4 shows the delay power spectrum

f H I . As expected, the H I power spectrum only depends on the
MNRAS 518, 2971–2990 (2023) 
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Figure 4. The cylindrical delay power spectrum for different components of the simulation. The delay time γ and the radius of annulus u–v bins | u | have been 
converted to k -space coordinates following equation ( 14 ). All delay power spectra are in Jy 2 Hz 2 . Top-left panel: The delay power spectrum of the extragalactic 
point sources. Top-centre panel: The synchrotron radiation. Top-right panel: The free–free emission. Lower left panel: The total foreground emission. Lower 
centre panel: The H I signal. Lower right panel: The ratio of the H I power spectrum and the total foreground power spectrum. Values below 1 are masked for 
clearer view of the foreground wedge. The black dashed line shows a schematic illustration of the foreground wedge. Note that this line is simply for illustration 
and the actual criteria used to a v oid foreground in cylindrical k -space are discussed in Section 5.3 . The colour bars for top three panels and the bottom-left panel 
are kept the same for direct comparison. 
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D wavenumber k = 

√ 

| k ⊥ 

| 2 + k 2 ‖ as we do not include RSDs.

omparing with the foreground power spectrum, H I can be orders
f magnitude larger for high- k � modes. We show the ratio of H I and
otal foreground power in the bottom-right panel. The ‘wedge’ where
oreground contamination is most severe is at low- k � scales and gets
arger at longer baselines where the power spectrum of point sources
ncreases. It leaves out a potential observation window for H I power
pectrum. At a given | k ⊥ 

| , we can filter out low- k � modes and only
ake the measurement of power spectrum at higher k � . This method
f e xcluding fore ground contaminated modes is called foreground
 v oidance, which we further explore in the next subsection. 

.3 For egr ound avoidance 

n this subsection, we include the contributions from foregrounds and
hermal noise and use a foreground a v oidance strategy to measure
he H I power spectrum from our simulation. The estimator described
n Section 3 applies foreground a v oidance in equation ( 37 ). Namely,
t includes w i ( k ⊥ 

, k ‖ ) to encode the wedge criteria (defined later),
hich has the impact that when k � is too small, w i is zero and

he foreground contaminated modes are filtered out. We can then
alculate the resulting 1D H I power spectrum. 

To estimate the temperature power spectrum from visibility data,
e follow equation ( 33 ). Since we do not analytically model the

ore ground co variance and simply a v oid contaminated modes, N 

psd +
 

psd 
fg in equation ( 33 ) is the noise covariance for a single u–v grid
oint p in our simulation 

 

p 

ij = δij σ
2 
N /N 

p 

i , (39) 
NRAS 518, 2971–2990 (2023) 
here N i is the number of baselines for the i th frequency channel
n the p th u–v grid. Throughout this paper, the data covariance C
s taken to be the empirical data covariance from visibility data
n each annulus | u | bin used to estimate the uncertainty following
quation ( 32 ). The empirical data covariance C is calculated from
he visibility data following equation ( 22 ) as discussed in Section 3 .
ote that here ˆ C ff ′ ( | k ⊥ 

| ) is calculated from the visibility data before
ridding. We then subtract the noise variance σ 2 

N and add the noise
ovariance of the gridded data following equation ( 39 ). Throughout
his paper, σ 2 

N is treated as a known quantity and, therefore, the noise
ovariance is also known. 

Real observations are likely to be noise dominated with the exact
osition of the foreground wedge also unknown. Assuming that we
re working blind, we start with the generic criteria to be used in
quation ( 37 ). The selection function w i ( k ⊥ 

, k ‖ ) returns 1 only if
 k ⊥ 

, k ‖ ) falls into the 1D k bin and satisfies 

 ‖ > c k k ⊥ 

, (40) 

here c k is a coefficient describing the position of the wedge. 
To determine the value of c k , we start with c k = 0 and increase

 k iteratively with a step size of 0.05. We find that for c k = 0.2 and
 k = 0.25, the difference in power spectrum estimation is within
 per cent. The convergence suggests that the foreground power is
argely a v oided. The H I power spectrum estimated using foreground
 v oidance with c k = 0.25 (‘Avoidance Uniform’) is shown in Fig. 5 .
ote that the standard ‘horizon criteria’ (see equation 13 of Liu et al.
014a ), assuming a maximum angular extent sin θ0 = 1, corresponds
o c k ∼ 0.232, suggesting that the foreground contamination is likely
o be the dominant constraint for MIGHTEE observations. 
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Figure 5. Top panel: The 1D brightness temperature power spectrum from 

H I -only visibility data (‘HI only’), low thermal noise simulation using fore- 
ground a v oidance method described in Section 5.3 (‘Avoidance Uniform’), 
and the same a v oidance method b ut with inverse noise covariance weighting 
(‘Avoidance I.N.C.’). Bottom panel: The fractional difference between the 
‘HI only’ and the ‘Avoidance Uniform’ results. 
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Figure 6. Top panel: The cylindrical delay power spectrum for the uniform 

weighting case, with noise covariance subtracted for the low-noise level 
case ( P 

delay 
TNs R = I ). Bottom panel: The cylindrical delay power spectrum for the 

inverse noise covariance weighting case, with noise covariance subtracted 
for the low-noise level case as described in Section 5.3 ( P 

delay 
TNs R = N −1 ). The 

empty (white) regions at high | k ⊥ | in the figure are for ne gativ e power 
due to thermal noise covariance subtraction. The red and orange regions 
( P 

delay 
TNs > 10 9 Jy 2 Hz 2 ) in the bottom panel are much larger than ones in the 

upper panel, suggesting much more severe foreground leakage into higher k � 
modes. 
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As seen by the fact that the estimated power is al w ays higher when
ompared with the input, the foreground power contamination is 
resent for all k modes and results in an o v erestimation of the power
pectrum by around 10 per cent. For wavenumbers k ∼ 1 Mpc −1 , 
he contamination is more severe because at larger angular scales 
ynchrotron and free–free emissions have a large effect on the delay 
ower spectrum as shown in Fig. 4 . The contamination is also more
evere for k > 5 Mpc −1 modes; since at higher k ⊥ 

, the power
pectrum of point sources is much larger and leaks more into the
indow. 
The noise level of a u–v grid point varies across frequencies 

ue to the change in observing wavelengths and therefore applying 
nv erse co v ariance weighting gi ves une v en weights across frequenc y
hannels, mixing different k � modes in the estimator. The mixture of
ifferent k � modes can lead to a spillo v er of the foreground power into
he observ ational windo w (see also Cheng et al. 2018 ). To illustrate
his, in Fig. 5 , we also show the power spectrum estimation made by
hoosing inverse noise covariance weighting R = N 

−1 (‘Avoidance 
.N.C.’), keeping everything else the same as the uniform weighting 
 = I case. 
Note that here we do not choose the inverse of the total data

ovariance, since in this low-thermal noise case foregrounds con- 
ribute a substantial fraction of the total covariance. In realistic 
bservations, on the other hand, the noise covariance is expected to 
ominate. Therefore, we choose R in equation ( 29 ) to be the inverse
oise covariance to illustrate the mode mixing. As one can see from
ig. 5 , when applying R = N 

−1 , the power spectrum is significantly
 v erestimated. Our claim that the foreground leakage into higher k � 
odes is responsible can be verified by investigating the cylindrical 

elay power spectrum, as we show in Fig. 6 . For R = I case in the
op panel, the foreground wedge is most visible at k ‖ � 0 . 3 Mpc −1 

s the red and orange regions, where it is 2–4 orders of magnitude
arger than the H I signal. For R = N 

−1 , on the other hand, the red and
range regions can be seen at k ‖ ∼ 0 . 5 Mpc −1 . In short, if foreground
ontamination is severe, additional weighting further mixes different 
 � modes, further contaminating high- k � modes which leads to the
 v erestimation in the H I power spectrum. 

.4 Subtracting for egr ound using fitted for egr ound co v ariance 

n this subsection, we explore polynomial fitting of the foreground 
ovariance in visibility space, utilizing the fact that the foreground 
mission is smooth in frequency. The polynomial fitting of the 
ovariance is similar to polynomial fitting of the signal along the
ine-of-sight direction in the image domain (e.g. Bowman et al. 2009 )
r in u–v space (e.g. Harker et al. 2010 ). The main difference is that
e perform the fitting on the empirical data covariance instead of
irectly on the visibility data. If the subtraction is perfect, i.e. the
esulting fit is the foreground covariance, there should be no increase
n the measurement errors. 

We split the visibility data into the same {| u | α} bins for the
ower spectrum estimation defined in Section 5.1 and calculate the 
mpirical data covariance using equation ( 22 ). Note that for most | u |
ins, the dominant foreground component is the point sources which 
re believed to be approximately Poisson distributed and assumed to 
e so in our simulation. In the limit of a narrow frequency range, the
ovariance matrix of the Poisson foreground should be real-valued 
MNRAS 518, 2971–2990 (2023) 
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Figure 7. Top panel: The real part of the 110 th row (the centre frequency 
row) of the empirical data covariance matrix in the 6 th | u | bin corresponding 
to k ⊥ ∼ 3.5 Mpc −1 (‘data’). The same row in the same bin of the covariance 
matrix for foreground component-only visibility is shown for comparison 
(‘FG’). The extracted smooth component using 6 th order polynomial fits is 
also sho wn (‘Fit’). Belo w it is the fractional difference between the real part 
of the fitted covariance and the actual foreground covariance on the 110 th row 

in the 6 th | u | bin. Bottom panel: The same with the top panel, except for the 
imaginary part of the covariance matrix. 
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Figure 8. The 1D brightness temperature power spectrum from the H I -only 
visibility data (‘HI Only’), the low-thermal noise simulation using foreground 
a v oidance method (‘Av oidance’), and the foreground subtraction method us- 
ing polynomial fitting of the empirical data covariance (‘Polynomial Fitting’). 
Shown also is the fractional difference among the ‘HI Only’, ‘Avoidance’, 
and ‘Polynomial Fitting’ results. While the a v oidance undersubtracts the 
foregrounds, the polynomial fitting oversubtracts on small scales. 
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see deri v ations in section 4 of Murray, Trott & Jordan 2017 ). We
erify that this is indeed the case for our visibility data, where the
eal part of the each element in the covariance matrix is at least an
rder of magnitude larger than the imaginary part. 
The resulting data covariance can then be processed to extract the

oreground by applying a k � filter to remo v e the rapidly oscillating
 I component. We do this by applying polynomial fitting to each

ow of the covariance matrix, aiming to extract the smoothly varying
art. We find that 6 th order fitting respectively for real and imaginary
art of the empirical covariance matrix, is sufficient, as showcased
n Fig. 7 . 

We take the fitting results as C 

psd 
fg and use equation ( 39 ) to calculate

he noise covariance to subtract noise and fore ground co variances
ia equation ( 33 ). We choose uniform weighting R = I with the
ame c k = 0.25 as in Section 5.3 and present our result in Fig. 8 .
s shown in the figure, when compared with the direct a v oidance,

ubtracting the fitted foreground covariance corrects the amplitude at
arge k � 1 Mpc −1 scales. Ho we v er, it o v ercleans on k � 2 Mpc −1 ,
hich results in a > 10-per cent signal loss. The o v ercleaning is due

o the fact that despite in most cases the fitted covariance matches
he fore ground co v ariance up to one-per cent le vel as sho wn in the
op panel of Fig. 7 , it still wrongly subtracts H I features. This can be
een in the bottom panel of Fig. 7 , where for the imaginary part of
NRAS 518, 2971–2990 (2023) 
he co variance, fore ground is relativ ely small. Comparing the fitted
ovariance with the actual foreground covariance, we can see that
ome additional structure o v er a large frequency range is mistaken to
e a contribution from the foregrounds. This results in o v ercleaning,
ypically in relatively low- k � modes. 

We also show the cylindrical delay power spectrum to further
erify this in Fig. 9 . Comparing with direct a v oidance in the upper
anel, the subtraction o v ercleans signal at lower k � , which results
n lower and even negati ve po wer as shown in the bottom panel of
ig. 9 . 

.5 For egr ound r emo v al with PCA 

n this section, we examine component separation in visibility data
o mitigate foreground contamination. From Section 5.3 , we see
hat to exclude the foreground power leakage into the observation
indow, a fore ground remo val method is required. We found that
irect subtraction is likely to result in signal loss on small scales
espite correcting the amplitude of the power spectrum well at large
cales. It highlights the need for component separation techniques. 

Here, we provide a case study of the most standard technique of
CA. PCA is pro v en to be v ery robust and works similarly well
omparing with methods such as FastICA (see e.g. Cunnington et al.
021 ). F or sk y maps/images, maps in different frequency channels
re mean-centred and then an empirical frequenc y–frequenc y co-
ariance matrix can be constructed for data analysis (e.g. Bigot-Sazy
t al. 2015 ). For visibility data on the other hand, each baseline
orresponds to a different Fourier mode and cannot be processed
n the same way. As discussed in Section 5.3 , we follow Dillon
t al. ( 2015 ) to calculate empirical covariance using equation ( 22 ) in
nnulus | u | bins and perform PCA in each bin independently. 

The first 20 eigenvalues of the empirical covariance matrices in
our different bins are presented in Fig. 10 . The largest component is
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Figure 9. Top panel: The cylindrical delay power spectrum with noise covari- 
ance subtracted using foreground a v oidance method ( P 

delay 
Avoid ). Bottom panel: 

The cylindrical delay power spectrum with noise covariance subtracted using 
polynomial fitting ( P 

delay 
Fitting ). The empty (white) regions indicate o v ercleaning, 

which results in ne gativ e power. 

Figure 10. The first 20 eigenvalues, ranked from the biggest to the smallest, 
of the empirical data covariance matrices for the k ⊥ ∼ 3 . 04, k ⊥ ∼ 5 . 81, 
k ⊥ ∼ 8 . 58, and k ⊥ ∼ 11 . 35 Mpc −1 bins. Note the significant drop-off in the 
first few bins and then the plateau beyond the fifth eigenvalue. 
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Figure 11. Top-left panel: The cylindrical delay power spectrum of total 
foreground in Jy 2 Hz 2 . Top-right panel: The cylindrical delay power spectrum 

of the remo v ed component by PCA for low thermal noise simulation. The 
colour bar is kept the same to the upper left panel for direct comparison. 
Bottom-left panel: The ratio of the cylindrical delay power spectrum of the 
H I component of visibility data and the power spectrum of the foregrounds. 
Bottom-right panel: The absolute value of ratio of the cylindrical delay power 
spectrum of the H I component of visibility data and the power spectrum of 
the residual of the foregrounds. Values below 1 are set to be 1 for better 
presentation in bottom-left and bottom-right panels. 
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ypically an order of magnitude higher than the second eigenvalue, 
nd the eigenvalues hit the plateau at about the fifth eigenvalue, 
uggesting there is a mixture of H I and foregrounds in these modes.
his is also supported by the fact that for higher k ⊥ 

the eigenvalues
it the plateau later, due to the more severe foreground contamination 
t higher k ⊥ 

we saw in Fig. 4 . We find that choosing N fg = 5 remo v es
oreground at small k � modes but overcleans the H I over a wide range
f scales, something that we would like to a v oid. We instead find
 fg = 2 suits our purpose best. It still leaves a supressed foreground
edge, which we can a v oid by applying a ‘loose wedge criterion’. 
PCA returns the source mixing matrix ˆ A , which extracts the fore-

round components. Note that following the framework of Section 3 ,
e should include ˆ A in R to construct our estimator. Ho we ver,

he component separation here is performed on the full visibility 
ata to ensure sufficient cleaning; whereas, for power spectrum, 
stimation is applied to the gridded visibilities for computational 
fficiency. Therefore, we do not include ˆ A in R . Here, the foreground
s subtracted before gridding and a new gridded data vector V 

′ with
ore ground components remo v ed is used, with the assumption that the
perations of gridding and foreground subtraction are commutable. 
We present the cylindrical delay power spectrum with uniform 

eighting R = I in Fig. 11 . For the N fg = 2 case we can see that
he reconstructed foreground matches the clustering of the actual 
oreground quite well by comparing the upper panels of Fig. 11 .
CA o v ercleans the fore grounds at low- k ⊥ 

, high- k � modes as seen
y comparing the top-left and top-right panels of Fig. 11 . Slight
 v ercleaning can be acceptable, as long as the residual does not leak
oo much ne gativ e power into the observation window. The amplitude 
f the ne gativ e residual power is orders of magnitude smaller than
 I , as shown in the lower right panel of Fig. 11 . Comparing the
ottom two panels, we see that PCA widens the observation window
t lower k ⊥ 

by efficiently cleaning the foreground power, while not
aving visible impro v ements on higher k ⊥ 

modes. Comparing with
oreground a v oidance, a loose selection criterion can be applied for
MNRAS 518, 2971–2990 (2023) 
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Figure 12. The 1D brightness temperature power spectrum from the H I - 
only visibility data (‘HI Only’), simulation with low-thermal noise level 
using foreground a v oidance method described in Section 5.3 (‘Avoidance’), 
simulation with low-thermal noise level using PCA fore ground remo val with 
uniform weighting (‘PCA Uniform’), and with inverse noise covariance 
weighting (‘PCA I.N.C.’). In addition, we have provided the fractional 
difference between the estimated 1D brightness temperature power spectrum 

and the H I -only simulation for low-thermal noise case. 
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Figure 13. Top panel: The cylindrical delay power spectrum with noise 
covariance subtracted using PCA and uniform weighting described in Sec- 
tion 5.5 for the low-thermal noise simulation ( P 

delay 
PCA R = I ). Bottom panel: The 

same with the top panel but with noise covariance subtracted using PCA 

and inverse noise covariance weighting for the low-thermal noise simulation 
( P 

delay 
PCA R = N −1 ). 
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mall k ⊥ 

. We find that the power spectrum converges on all scales
hen c k = 0.04 for k ⊥ 

< 5 Mpc −1 and c k = 0.3 for k ⊥ 

> 5 Mpc −1 .
We show the results for the 1D temperature power spectrum in

ig. 12 . F ore ground remo val using PCA accounts for the leakage
f the foreground power into the observation window and returns
 result which agrees relatively tightly with the H I -only case. Note
hat for k > 5 Mpc −1 , simple a v oidance results in a 10-per cent
ev el o v erestimation due to fore ground contamination; ho we ver,
or PCA the power spectrum estimation is relatively accurate up
o k ∼ 10 Mpc −1 . Moreo v er, as discussed in Section 5.3 , the fore-
round contamination prevents us from using the inverse covariance
eighting as it will further mixes different k � modes resulting in
ore contamination. For the PCA case where the foregrounds are

ufficiently remo v ed, we can re-apply inv erse co variance weight-
ng. We show the results with R = N 

−1 in Fig. 12 as well. The
ower spectrum for PCA method with inv erse co variance weighting
atches the H I -only case and produces smaller uncertainties. We

lso show the cylindrical delay power spectrum in Fig. 13 to verify
here is no visible foreground leakage into higher k � . Comparing
he top panel for uniform weighting and the bottom panel for inverse
oise covariance weighting, the mode mixing is most visible at higher
 ⊥ 

outside the observation window, whereas the difference at lower
 ⊥ 

is negligible. 

 F O R E G RO U N D  MITIGATION  IN  IMAG E  

PAC E  

n this section, we temporarily depart from visibility-only approach
nd inv estigate fore ground cleaning by applying PCA directly on
he image and perform power spectrum estimation in image space
imilar to Hothi et al. ( 2021 ) in order to compare with methods in
isibility space. We use CASA tclean (H ̈ogbom 1974 ; McMullin
NRAS 518, 2971–2990 (2023) 
t al. 2007 ) to produce the images. The pixel size of the images is set
o (25 . 37 arcsec ) 2 , corresponding to k ∼ 45 Mpc −1 with 192 × 192
tandard grids to match the size of the primary beam. Only dirty
mages are generated, since we find that iterative cleaning takes out
art of the H I signal. 
The dirty images are in the units of Jy per point spread function

PSF). We calculate the area of PSF around its centre to convert
ntensity to temperature unit. Starting with the centre and neighbour-
ng pixels, we iteratively expand the integration area until the PSF
rea decreases, suggesting that the effects of sidelobe structures are
tarting to dominate. We then rescale the images from Jy per PSF
o Jy per pixel using the PSF area calculated. The primary beam
ffect is then remo v ed by dividing by the beam attenuation term. The
rocessed dirty image is then converted to temperature unit and used
o calculate the temperature power spectrum. We do not deconvolve
he shape of the PSF, which leaves a scale-dependent attenuation
ffect in the power spectrum. Therefore, when investigating the
ffects of PCA, we compare the power spectrum results with the
irty images of H I and thermal noise simulation. We leave the full
reatment of the PSF for future work. 

We aim to present the imaging approach as a qualitative com-
arison to the visibility approach and do not derive in detail how
o subtract thermal noise covariance and estimate uncertainties. We
imulate a thermal noise-only image and use it to directly subtract
he thermal noise power spectrum. The uncertainties are estimated
sing the sampling variance in k bins. 

art/stac3288_f12.eps
art/stac3288_f13.eps


Interferometric IM 2985 

Figure 14. The power spectrum of input H I corresponding to the image size 
used in Section 6 (‘Input’), compared with the power spectrum of images 
using H I visibilities produced by natural weighting (‘Natural’), uniform 

weighting (‘Uniform’), and Briggs weighting with robustness parameter equal 
to 0.5 (‘Briggs’). 

Figure 15. Top-left panel: The input image of H I signal in the 20 th frequency 
bin around 1.096 GHz in Jy per pixel. The pixel size of the image is set to 
(100 arcsec) 2 to show clearly the position of the H I sources. Top-right panel: 
The output image of the simulation in the same frequency bin, with H I , 
foreground and thermal noise. Bottom-left panel: The output image for H I 

and thermal noise-only visibility simulation image without the foreground. 
Bottom-right panel: The image shown in the top-right panel after PCA 

cleaning. The image after PCA cleaning (bottom-right panel) matches the H I 

and thermal noise-only simulation well (bottom-left panel). In bottom panels, 
pixels brighter than 0.05 mJy per PSF are set to 0.05 mJy per PSF for better 
presentation. 
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Figure 16. Top-left panel: The cylindrical temperature power spectrum 

of the images of the total intensity with thermal noise subtracted. Values 
under 10 −7 K 

2 Mpc 3 are masked for better presentation. Top-right panel: 
The cylindrical temperature power spectrum of the images of the H I signal. 
Values under 10 −7 K 

2 Mpc 3 are masked. Bottom-left panel: The cylindrical 
temperature power spectrum of the images of total intensity after PCA 

cleaning with thermal noise subtracted. Values under 10 −7 K 

2 Mpc 3 are 
masked. Bottom-right panel: The ratio of H I and the residual foreground 
power spectrum. Values under 1 are set to 1 for better presentation. 
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We test our imaging and power spectrum estimation pipeline with 
 I and thermal noise-only visibility data and compare it with the

nput image within the telescope FoV. We find that the weighting of
aselines can have a major effect on the resulting power spectrum 

s shown in Fig. 14 . When uniform weighting in imaging is used,
he narrow PSF results in o v erestimation of the power spectrum
mplitude at small k . On the other hand, natural weighting achieves
aximum sensitivity but underestimates the power spectrum due to 
he large PSF confusing different sources. Using Briggs weighting 
Briggs 1995 ) and testing different robust parameters, we find that
hen the robustness parameter is set to 0.5, the resulting power

pectrum achieves a balance between accuracy and sensitivity. The 
ower spectrum of the image matches the input from k ‖ ∼ 0 . 5 up to
 ‖ ∼ 5 Mpc −1 , but suffers signal loss from the PSF convolution at
maller scales. 

We generate image cubes for the simulated visibilities. The image 
ube is then mean-centred and subsequently a PCA is performed. We
nd that in image space, the mixture of H I signal with the thermal
oise and foreground is more severe due to the convolution of the
SF and loss of information by gridding. More modes need to be
emo v ed for image space PCA when compared with the visibility
pace PCA in order to subtract the foreground at small k � and widen
he observation window. We find removing a total number of seven
CA modes gives the best result. We find that choosing more modes

eads to o v ercleaning in the high- k � modes while choosing less modes
oes not sufficiently remo v e the foregrounds at low k � . We show the
esults for the 10 th frequency bin in Fig. 15 . Comparing the lower
anels, one can see PCA remo v es most of the foreground signal.
he undercleaning of some foreground structure leaves residual 
ources, which are smooth in frequency. The cleaned images are 
hen converted from Jy per PSF to Jy per pixel and corrected for
rimary beam attenuation. 
We verify the frequency smoothness of residual foreground 

tructure by calculating the cylindrical temperature power spec- 
rum presented in Fig. 16 . Comparing the power spectrum of
mages of H I and images of total intensity after PCA cleaning,
he foreground residual mainly resides in low- k � ranges. We find
MNRAS 518, 2971–2990 (2023) 

art/stac3288_f14.eps
art/stac3288_f15.eps
art/stac3288_f16.eps


2986 Z. Chen, L. Wolz and R. Battye 

M

Figure 17. The power spectrum of input H I corresponding to the image size 
used in Section 6 (‘Input’), compared with the power spectrum of images 
using H I visibilities (‘H I only’) and power spectrum of total intensity images 
of simulation with low-thermal noise level after PCA cleaning (‘PCA’). 
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Figure 18. The 1D brightness temperature power spectrum from the H I - 
only visibility data (‘HI Only’), simulation with MIGHTEE-like noise using 
foreground a v oidance method described in Section 5.3 (‘Av oidance’), simu- 
lation using PCA in visibility space with inverse noise covariance weighting 
(‘PCA I.N.C.’), and simulation using PCA in image space (‘PCA Image’). 
In addition, the fractional difference between the estimated 1D brightness 
temperature power spectrum and the H I -only simulation is presented below. 
The centres of the k bins for ‘Avoidance’ and ‘PCA Image’ are misplaced 
by 5 per cent for better comparison. The signal-to-noise ratios of the power 
spectrum measurements are shown at the bottom. 
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hat the observation window probes the region k ‖ > 0 . 2 Mpc −1 

y checking the foreground wedge. We verify that raising this
hreshold does not have a significant impact on the resulting power 
pectrum. 

The 1D temperature power spectrum result is presented in Fig. 17 .
ompared with the H I -only power spectrum, the PCA results
 v erestimate the large k � 1 Mpc −1 scales. This suggests that large-
cale information is lost due to the excess gridding and imaging, as
e do not see such effects in Section 5.5 when we apply PCA to the
isibility data. Furthermore, scales k � 5 Mpc −1 are not reco v ered,
ue to the effects of weighting and PSF discussed previously. 
In conclusion, we find that power spectrum estimation in image

pace is sensitive to the choice of baseline weighting and subsequent
econvolution of PSF, which requires more careful treatment. Apply-
ng component separation to the image cube reco v ers H I clustering
t scales of roughly 1 −5 Mpc −1 . We compare it with PCA in the
isibility data in the next section. 

 C O M PA R I N G  F O R E G RO U N D  MITIGATIO N  

E T H O D S  WITH  MIGHTEE-LIKE  NOISE  

EVE L  

n this section, we present a direct comparison of the foreground
itigation methods for power spectrum estimation using our simula-

ion with realistic thermal noise level. As mentioned in Section 4.4 ,
e generate MIGHTEE-like thermal noise consistent with the noise

evel of the entire MIGHTEE survey of 52 pointings and 1920 h.
e then apply the foreground mitigation methods investigated in

he previous sections. The edges of the 1D k bins are set to be
ogarithmically distributed from 0.1 to 30 Mpc −1 with 14 bins due
o the lower signal-to-noise ratio. 

Based on the previous discussion, we adopt the foreground
 v oidance described in Section 5.3 , fore ground remo val using PCA
n visibility with R = N 

−1 described in Section 5.5 , and in image
pace described in Section 6 . The resulting projected power spectrum
eco v ery is shown in Fig. 18 . We find that for direct a v oidance
ethod, the foreground wedge criterion remains the same at c k =

.25. For PCA, the same n fg = 2 number of modes are remo v ed
nd we find that power spectrum result converges when c k = 0.1 for
 ⊥ 

< 5 Mpc −1 and c k = 0.25 for k ⊥ 

> 5 Mpc −1 , tighter than the
ow-thermal noise case in Section 5.5 . For the image output, we apply
he exact same process in Section 6 with n fg = 7 number of modes
emo v ed. Ov erall, the methods used are robust to a substantially
ncreased noise level. 
NRAS 518, 2971–2990 (2023) 
Comparing the results from a v oidance and the PCA method,
e find that PCA in visibility space provides less biased esti-
ation of the H I power spectrum with projected uncertainties

oughly 30 per cent smaller than direct a v oidance. This is due to
he larger observ ation windo w and the enabling of the inverse
ovariance weighting as discussed in Section 5 . Overall, PCA in
isibility space gives measurements of the H I power spectrum
ith signal-to-noise ratio � 3 from k ∼ 0 . 5 up to k ∼ 5 Mpc −1 with
k ∼ 0 . 5 Mpc −1 . 
Comparing the projected power spectrum using the image space

CA method in Fig. 18 and in Section 6 , there is further signal loss
n the presence of a higher thermal noise lev el. Ov erall, PCA in
mage space results in an o v erestimation of the H I power spectrum
t k < 1 . 0 Mpc −1 . Compared with the visibility space PCA case,
he measurement errors in the image space PCA case are ∼50 -
er cent larger and the signal-to-noise ratio is � 2 from k ∼ 0 . 5 up to
 ∼ 5 Mpc −1 . 

The fractional differences of the projected power spectrum mea-
urements and the input as shown in Fig. 18 provide a direct
omparison of the methods used. The visibility space PCA method
as least bias on all scales 0 . 5 Mpc −1 � k � 10 Mpc −1 and the true
ignal is within the 1 σ uncertainty. F ore ground a v oidance in visibility
pace and PCA in image space have larger bias in power spectrum
stimation. We find that the projected uncertainties for PCA in image
pace are 50 per cent to 2 times larger than PCA in visibility space.
his is due to three reasons. First, information is lost due to u–v
ridding and limited image size which does not use all the baselines.
econd, we weight the baselines with Briggs weighting robustness
qual to 0.5 for reasons discussed in Section 6 , which is far from
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ptimal sensitivity using natural weighting. Finally, the mixture of 
 I and foregrounds in principal components is more severe in image

pace due to the convolution of PSF, making foreground cleaning 
ess ef fecti ve. We also emphasize that the uncertainties for images
re estimated using sampling variance in k space while the ones for
isibilities are estimated using the quadratic estimator discussed in 
ection 3 , which may not be a fair comparison (see e.g. Tan et al.
021 ). 

 C O N C L U S I O N  

n this paper, we present an end-to-end pipeline of realistic signal 
odelling, observation simulation, and data analysis for low-redshift 
 I IM using radio interferometers. We have built a powerful 

imulation tool capable of generating input signal of H I , foregrounds
nd thermal noise for a given field of observation. The generated sky
ignal is used to simulate visibility data for any given observation 
trate gy. We hav e dev eloped a quadratic estimator for H I power spec-
rum estimation using visibility data. Multiple foreground mitigation 
trategies are examined. 

We generate simulations of visibility data mimicking a typical 
racking of MeerKAT for 220 frequency channels at z ∼ 0.25–0.30, 
onsistent with existing observations of deep fields such as COSMOS 

nd DEEP2 to validate our estimation pipeline. By calculating 
he cylindrical power spectrum and comparing the contribution of 
ifferent components, we find: 

(1) The Galactic foreground signal, including the synchrotron 
adiation and the free–free emission, mainly affects angular scales 
arger than ∼0.1 degree. Its power drops significantly at smaller 
ngular scales and is much smaller than the H I signal. 

(2) Extragalactic radio sources dominate the foreground signal 
n smaller angular scales and increase its leakage into higher k � 
odes. Comparing with the H I signal, the foreground contamination 

s severe and leaves a limited observation window for detection even 
or a deep field with sufficient source peeling. 

(3) For scales probed by interferometry at low redshifts, the 
oreground can be well described by the covariance. This is due to the
act that at the scales of our interest, it is dominated by contributions
rom Poisson point sources. 

(4) For observations of one field using small-FOV arrays such as 
eerKAT , the limited surv e y volume induces large variance in the
 I signal. We find that the variance due to surv e y volume becomes

rivial for volumes larger than that of 5 MIGHTEE-like fields for a
arrow frequency range, V ∼ 5 × 20 × 20 × 200 Mpc 3 . 

The foreground contamination calls for careful treatment of 
oreground mitigation methods. We compare, in detail, different 
ays to mitigate the impact of foregrounds using visibility data and 

onclude: 

(1) When bright point sources are sufficiently remo v ed, there 
xists an observ ation windo w at large k � in which we can directly
stimate the H I power spectrum. It provides biased estimation of the
ower spectrum, with an o v erestimation of 10 per cent. It is due to the
eakage of the foregrounds into large k � that cannot be completely 
xcluded. Furthermore, data analysis techniques, such as inverse 
ovariance weighting, become difficult as different k � modes further 
ix under a non-uniform weighting, leading to more foreground 

ontamination. 
(2) Fitting the empirical covariance to extract out the smooth part 

or different annulus | u | bins, we find that subtracting the foreground
ovariance corrects for the overestimation at large k < 1 Mpc −1 
cales. It o v ercleans the fore ground and results in signal loss at
maller scales. Extracting the smooth structure of data covariance 
alsely includes structure of H I covariance over large frequency 
anges, which leads to o v ercleaning at small k � . 

(3) By binning the visibility in annulus | u | bins and performing
CA in each bin, we find that the foreground contamination is
educed. The observation window widens due to impro v ed cleaning
f low- k � modes and this works better with short baselines up to k ∼
 Mpc −1 . It allows accurate estimation of H I power spectrum from
 ∼ 0 . 5 to k ∼ 10 Mpc −1 . The reduced contamination allows inverse
ovariance weighting with little extra spillover of the foregrounds. 
omparing with direct a v oidance, it does not have the o v erestimation
ias and has uncertainties that are ∼30-per cent smaller. 
(4) We find that foreground mitigation in visibility space is robust 

o high levels of thermal noise consistent with the noise level of
IGHTEE for all 52 pointings and a redshift bin of z ∼ 0.25–

.3. PCA in visibility space gives projected measurement of the 
ower spectrum with signal-to-noise ratio ∼3 up to k ∼ 5 Mpc −1 

nd possible detection up to k ∼ 10 Mpc −1 . Due to radio frequency
nterference (RFI) contaminations, data blocks from the MIGHTEE 

urv e y are usually divided into narrow-frequency sub-bands. There- 
ore, our results will likely apply to any sub-band from observations
n the L band. 

Our findings suggest the feasibility of using the visibility power 
pectrum and foreground extraction to measure the clustering of 
 I . At the angular scales of our interest ∼arcmin, the foreground

omponents are largely stochastic and therefore can be remo v ed
sing covariance-based methods such as PCA. Using surv e ys such as
IGHTEE, interferometric H I IM will be able to map the evolution

f H I clustering at inner halo scales. 
We have investigated the important question of choosing visibility 

pace or image space to measure the H I power spectrum by directly
omparing these two qualitatively. We generate image cubes of our 
isibility data to investigate power spectrum estimation in image 
pace. We find: 

(1) The power spectrum of the images relies heavily on the choice
f baseline weighting, with uniform weighting o v erestimating the 
ower spectrum and natural weighting causing signal loss due to the
arge PSF. 

(2) We find that using Briggs weighting and performing PCA 

or the image cube, we can reco v er the H I power spectrum from
 ∼ 1 to k ∼ 5 Mpc −1 . The component separation is less robust in
he presence of large thermal noise. 

(3) Due to the suboptimal weighting and information loss from 

isibility to image space, power spectrum estimation in image 
pace performs relatively poorly when compared with the visibility 
pproach, resulting in a more biased estimation with larger error bars.
omparing with PCA in visibility space, PCA in image space leads

o reconstructed uncertainties that are at least 50-per cent larger. 

Overall, we find that for future surveys, such as MIGHTEE, H I

M using visibility data is capable of measuring the H I power
pectrum across a wide range of scales with high accuracy in
arrow redshift bins, probing the redshift evolution of H I inside
ark matter haloes. We provide a proof of concept study for data
nalysis using interferometric IM. Results from our pipeline strongly 
a v our component separation and power spectrum estimation directly 
n visibility data without imaging. The pipeline can further include 
ealistic beam model, polarization leakage, calibration error, and 
ore. It will enable more studies in this topic towards future detection

nd constraints of cosmic H I in the near future. 
MNRAS 518, 2971–2990 (2023) 



2988 Z. Chen, L. Wolz and R. Battye 

M

A

W  

p  

L  

M  

a  

S  

C  

S  

o  

(  

D

D  

t

R

A
A
A
A
A
B  

B
B
B  

B
B
B
B
B
B
C  

C
C  

C
C
C
C
C  

C
C  

C  

C
C  

C
C  

d  

D
D
D
D
D
D

E
F
G  

H  

H
H
H
H
H  

H
H
H
H
H  

H
J  

 

J
K
K
K
L
L  

 

L
L
L
L
L
L
L
M  

 

 

M
M  

M
M  

M
M
M
M  

M
M  

M  

 

M
M
M
M  

M
N  

N
O  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/518/2/2971/6825493 by EM
BL user on 17 D

ecem
ber 2024
C K N OW L E D G E M E N T S  

e thank the anonymous referee for useful comments which im-
ro v ed our manuscript. We thank Steven Cunnington for discussions.
W is a UK Research and Innovation Future Leaders Fellow (grant
R/V026437/1). Apart from aforementioned packages, this work

lso uses PYTORCH (Paszke et al. 2019 ), NUMPY (Harris et al. 2020 ),
CIPY (Virtanen et al. 2020 ), ASTROPY (Astropy Collaboration 2018 ),
AMB (Lewis, Challinor & Lasenby 2000 ), NUMBA (Lam, Pitrou &
eibert 2015 ), and MATPLOTLIB (Hunter 2007 ). For the purpose of
pen access, the author has applied a Creative Commons Attribution
CC BY) licence to any Author Accepted Manuscript version arising.

ATA  AVA ILA BILITY  

ata underlying this paper will be shared on reasonable request to
he corresponding author. 

E FEREN C ES  

lam S. et al., 2021, Phys. Rev. D , 103, 083533 
lonso D., Ferreira P. G., Santos M. G., 2014, MNRAS , 444, 3183 
nderson C. J. et al., 2018, MNRAS , 476, 3382 
sad K. M. B. et al., 2021, MNRAS , 502, 2970 
stropy Collaboration, 2018, AJ , 156, 123 
arry N., Hazelton B., Sulli v an I., Morales M. F., Pober J. C., 2016, MNRAS ,

461, 3135 
arry N. et al., 2019, ApJ , 884, 1 
attye R. A., Davies R. D., Weller J., 2004, MNRAS , 355, 1339 
attye R. A., Browne I. W. A., Dickinson C., Heron G., Maffei B., Pourtsidou

A., 2013, MNRAS , 434, 1239 
igot-Sazy M. A. et al., 2015, MNRAS , 454, 3240 
onaldi A., Brown M. L., 2015, MNRAS , 447, 1973 
ondi M. et al., 2003, A&A , 403, 857 
owman J. D., Morales M. F., Hewitt J. N., 2009, ApJ , 695, 183 
riggs D. S., 1995, AAS Meeting Abstracts, 112.02 
ull P., Ferreira P. G., Patel P., Santos M. G., 2015, ApJ , 803, 21 
hang T.-C., Pen U.-L., Peterson J. B., McDonald P., 2008, Phys. Rev. Lett. ,

100, 091303 
hapman E. et al., 2012, MNRAS , 423, 2518 
hapman E., Zaroubi S., Abdalla F. B., Dulwich F., Jeli ́c V., Mort B., 2016,

MNRAS , 458, 2928 
hatterjee S., Bharadwaj S., Marthi V. R., 2021, MNRAS , 500, 4398 
hen Z., Wolz L., Spinelli M., Murray S. G., 2021, MNRAS , 502, 5259 
heng C. et al., 2018, ApJ , 868, 26 
HIME Collaboration, 2022, preprint ( arXiv:2202.01242 ) 
houdhuri S., Bharadwaj S., Ghosh A., Ali S. S., 2014, MNRAS , 445, 4351
hung D. T. et al., 2021, ApJ , 923, 188 
ondon J. J., Ransom S. M., 2016, Essential Radio Astronomy. Princeton

Univ. Press, Princeton, NJ 
ondon J. J., Cotton W . D., Greisen E. W ., Yin Q. F., Perley R. A., Taylor G.

B., Broderick J. J., 1998, AJ , 115, 1693 
ooray A., Sheth R., 2002, Phys. Rep. , 372, 1 
ornwell T. J., Golap K., Bhatnagar S., 2008, IEEE J. Sel. Top. Signal

Process. , 2, 647 
rain R. A. et al., 2017, MNRAS , 464, 4204 
unnington S., Irfan M. O., Carucci I. P., Pourtsidou A., Bobin J., 2021,

MNRAS , 504, 208 
’Amico G., Gleyzes J., Kokron N., Markovic K., Senatore L., Zhang P.,

Beutler F., Gil-Mar ́ın H., 2020, J. Cosmol. Astropart. Phys. , 2020, 005 
eBoer D. R. et al., 2017, PASP , 129, 045001 
i Matteo T., Perna R., Abel T., Rees M. J., 2002, ApJ , 564, 576 
ickinson C., Davies R. D., Davis R. J., 2003, MNRAS , 341, 369 
illon J. S. et al., 2014, Phys. Rev. D , 89, 023002 
illon J. S. et al., 2015, Phys. Rev. D , 91, 123011 
odelson S., 2003, Modern Cosmology. Academic Press, New York 
NRAS 518, 2971–2990 (2023) 
isenstein D. J., Hu W., 1998, ApJ , 496, 605 
inkbeiner D. P., 2003, ApJS , 146, 407 
 ́orski K. M., Hivon E., Banday A. J., Wandelt B. D., Hansen F. K., Reinecke

M., Bartelmann M., 2005, ApJ , 622, 759 
ale C. L., Jarvis M. J., Delvecchio I., Hatfield P. W., Novak M., Smol ̌ci ́c V.,

Zamorani G., 2018, MNRAS , 474, 4133 
amilton A. J. S., 1997, MNRAS , 289, 285 
amilton A. J. S., Tegmark M., 2000, MNRAS , 312, 285 
arker G. et al., 2010, MNRAS , 405, 2492 
arris C. R. et al., 2020, Nature , 585, 357 
aslam C. G. T., Klein U., Salter C. J., Stoffel H., Wilson W. E., Cleary M.

N., Cooke D. J., Thomasson P., 1981, A&A, 100, 209 
aslam C. G. T., Salter C. J., Stoffel H., Wilson W. E., 1982, A&AS, 47, 1 
eywood I. et al., 2022, MNRAS , 509, 2150 
 ̈ogbom J. A., 1974, A&AS, 15, 417 
othi I. et al., 2021, MNRAS , 500, 2264 
u W., Wang X., Wu F., Wang Y., Zhang P., Chen X., 2020, MNRAS , 493,

5854 
unter J. D., 2007, Comput. Sci. Eng. , 9, 90 

arvis M. et al., 2016, Proc. MeerKAT Science: On the Pathway to the
SKA, The MeerKAT International GHz Tiered Extragalactic Exploration
(MIGHTEE) Surv e y. p. 6 

onas J. L., Baart E. E., Nicolson G. D., 1998, MNRAS , 297, 977 
aiser N., 1987, MNRAS , 227, 1 
ern N. S., Liu A., 2021, MNRAS , 501, 1463 
o v etz E. D. et al., 2017, preprint ( arXiv:1709.09066 ) 
acy M. et al., 2020, PASP , 132, 035001 
am S. K., Pitrou A., Seibert S., 2015, Second Workshop on the LLVM

Compiler Infrastructure in HPC (LLVM’15), Numba: A LLVM-based
Python JIT Compiler. Assoc. Comput. Mach., NY, USA 

ewis A., Challinor A., Lasenby A., 2000, ApJ , 538, 473 
ian X., Xu H., Zhu Z., Hu D., 2020, MNRAS , 496, 1232 
iu A., Shaw J. R., 2020, PASP , 132, 062001 
iu A., Tegmark M., 2011, Phys. Rev. D , 83, 103006 
iu A., Tegmark M., Zaldarriaga M., 2009, MNRAS , 394, 1575 
iu A., Parsons A. R., Trott C. M., 2014a, Phys. Rev. D , 90, 023018 
iu A., Parsons A. R., Trott C. M., 2014b, Phys. Rev. D , 90, 023019 
cMullin J. P., Waters B., Schiebel D., Young W., Golap K., 2007, in Shaw

R. A., Hill F., Bell D. J., eds, ASP Conf. Ser. Vol. 376, Astronomical Data
Analysis Software and Systems XVI. Astron. Soc. Pac., San Francisco,
p. 127 

adau P., Meiksin A., Rees M. J., 1997, ApJ , 475, 429 
ao Y., Tegmark M., McQuinn M., Zaldarriaga M., Zahn O., 2008,

Phys. Rev. D , 78, 023529 
asui K. W. et al., 2013, ApJ , 763, L20 
atthews A. M., Condon J. J., Cotton W. D., Mauch T., 2021, ApJ , 909, 193
auch T. et al., 2020, ApJ , 888, 61 
ertens F. G., Ghosh A., Koopmans L. V. E., 2018, MNRAS , 478, 3640 
ertens F. G. et al., 2020, MNRAS , 493, 1662 
eyer M., Robotham A., Obreschkow D., Westmeier T., Duffy A. R.,

Stav ele y-Smith L., 2017, Publ. Astron. Soc. Aust. , 34, 52 
orales M. F., Hewitt J., 2004, ApJ , 615, 7 
orales M. F., Beardsley A., Pober J., Barry N., Hazelton B., Jacobs D.,

Sulli v an I., 2019, MNRAS , 483, 2207 
ort B. J., Dulwich F., Salvini S., Adami K. Z., Jones M. E., 2010, Proc.

2010 IEEE Int. Symp. Phased Array Systems and Technology. IEEE, NJ,
p. 690 

urray S. G., 2018, J. Open Source Softw. , 3, 850 
urray S. G., Power C., Robotham A. S. G., 2013, Astron. Comput. , 3, 23 
urray S. G., Trott C. M., Jordan C. H., 2017, ApJ , 845, 7 
urray S. G., Diemer B., Chen Z., Neuhold A. G., Schnapp M. A., Peruzzi

T., Blevins D., Engelman T., 2021, Astron. Comput., 36, 100487 
yers S. T. et al., 2003, ApJ , 591, 575 
asirudin A., Murray S. G., Trott C. M., Greig B., Joseph R. C., Power C.,

2020, ApJ , 893, 118 
avarro J. F., Frenk C. S., White S. D. M., 1996, ApJ , 462, 563 
li v ari L. C., Dickinson C., Battye R. A., Ma Y. Z., Costa A. A., Remazeilles

M., Harper S., 2018, MNRAS , 473, 4242 

http://dx.doi.org/10.1103/PhysRevD.103.083533
http://dx.doi.org/10.1093/mnras/stu1666
http://dx.doi.org/10.1093/mnras/sty346
http://dx.doi.org/10.1093/mnras/stab104
http://dx.doi.org/10.3847/1538-3881/aabc4f
http://dx.doi.org/10.1093/mnras/stw1380
http://dx.doi.org/10.3847/1538-4357/ab40a8
http://dx.doi.org/10.1111/j.1365-2966.2004.08416.x
http://dx.doi.org/10.1093/mnras/stt1082
http://dx.doi.org/10.1093/mnras/stv2153
http://dx.doi.org/10.1093/mnras/stu2601
http://dx.doi.org/10.1051/0004-6361:20030382
http://dx.doi.org/10.1088/0004-637X/695/1/183
http://dx.doi.org/10.1088/0004-637X/803/1/21
http://dx.doi.org/10.1103/PhysRevLett.100.091303
http://dx.doi.org/10.1111/j.1365-2966.2012.21065.x
http://dx.doi.org/10.1093/mnras/stw161
http://dx.doi.org/10.1093/mnras/staa3348
http://dx.doi.org/10.1093/mnras/stab386
http://dx.doi.org/10.3847/1538-4357/aae833
http://arxiv.org/abs/2202.01242
http://dx.doi.org/10.1093/mnras/stu2027
http://dx.doi.org/10.3847/1538-4357/ac2a35
http://dx.doi.org/10.1086/300337
http://dx.doi.org/10.1016/S0370-1573(02)00276-4
http://dx.doi.org/10.1109/JSTSP.2008.2005290
http://dx.doi.org/10.1093/mnras/stw2586
http://dx.doi.org/10.1093/mnras/stab856
http://dx.doi.org/10.1088/1475-7516/2020/05/005
http://dx.doi.org/10.1088/1538-3873/129/974/045001
http://dx.doi.org/10.1086/324293
http://dx.doi.org/10.1046/j.1365-8711.2003.06439.x
http://dx.doi.org/10.1103/PhysRevD.89.023002
http://dx.doi.org/10.1103/PhysRevD.91.123011
http://dx.doi.org/10.1086/305424
http://dx.doi.org/10.1086/374411
http://dx.doi.org/10.1086/427976
http://dx.doi.org/10.1093/mnras/stx2954
http://dx.doi.org/10.1093/mnras/289.2.285
http://dx.doi.org/10.1046/j.1365-8711.2000.03074.x
http://dx.doi.org/10.1111/j.1365-2966.2010.16628.x
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1093/mnras/stab3021
http://dx.doi.org/10.1093/mnras/staa3446
http://dx.doi.org/10.1093/mnras/staa650
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1046/j.1365-8711.1998.01367.x
http://dx.doi.org/10.1093/mnras/227.1.1
http://dx.doi.org/10.1093/mnras/staa3736
http://arxiv.org/abs/1709.09066
http://dx.doi.org/10.1088/1538-3873/ab63eb
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1093/mnras/staa1179
http://dx.doi.org/10.1088/1538-3873/ab5bfd
http://dx.doi.org/10.1103/PhysRevD.83.103006
http://dx.doi.org/10.1111/j.1365-2966.2009.14426.x
http://dx.doi.org/10.1103/PhysRevD.90.023018
http://dx.doi.org/10.1103/PhysRevD.90.023019
http://dx.doi.org/10.1086/303549
http://dx.doi.org/10.1103/PhysRevD.78.023529
http://dx.doi.org/10.1088/2041-8205/763/1/L20
http://dx.doi.org/10.3847/1538-4357/abdd37
http://dx.doi.org/10.3847/1538-4357/ab5d2d
http://dx.doi.org/10.1093/mnras/sty1207
http://dx.doi.org/10.1093/mnras/staa327
http://dx.doi.org/10.1017/pasa.2017.31
http://dx.doi.org/10.1086/424437
http://dx.doi.org/10.1093/mnras/sty2844
http://dx.doi.org/10.21105/joss.00850
http://dx.doi.org/10.1016/j.ascom.2013.11.001
http://dx.doi.org/10.3847/1538-4357/aa7d0a
http://dx.doi.org/10.1086/375509
http://dx.doi.org/10.3847/1538-4357/ab8003
http://dx.doi.org/10.1086/177173
http://dx.doi.org/10.1093/mnras/stx2621


Interferometric IM 2989 

O  

P
P
P  

P  

P
P  

 

P
P  

P
P  

P
R
R  

S
S  

S
S
S
S
S  

S  

S

S
T
T
T  

T
T
T
T  

T  

T  

T
V
V
W
W
W
W
Z
Z
Z  

A
P

I  

s  

a  

t




f  

s  

f
 

t  

q  

i  

D

S

f
 

w

A

 

i

P

V

w

P

 

d
a  

P  

d
(  

e  

s  

e
c

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/518/2/2971/6825493 by EM
BL user on 17 D

ecem
ber 2024
verzier R. A., R ̈ottgering H. J. A., Rengelink R. B., Wilman R. J., 2003,
A&A , 405, 53 

admanabhan H., Refregier A., Amara A., 2019, MNRAS , 485, 4060 
 ande y S. et al., 2022, Phys. Rev. D , 106, 043520 
arsons A., Pober J., McQuinn M., Jacobs D., Aguirre J., 2012a, ApJ , 753,

81 
arsons A. R., Pober J. C., Aguirre J. E., Carilli C. L., Jacobs D. C., Moore

D. F., 2012b, ApJ , 756, 165 
arsons A. R. et al., 2014, ApJ , 788, 106 
aszke A. et al., 2019, in Wallach H., Larochelle H., Beygelzimer A.,

d’Alch ́e-Buc F., Fox E., Garnett R., eds, Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., NY, USA, p. 8024 

atil A. H. et al., 2017, ApJ , 838, 65 
aul S., Santos M. G., Townsend J., Jarvis M. J., Maddox N., Collier J. D.,

Frank B. S., Taylor R., 2021, MNRAS , 505, 2039 
eebles P. J. E., 1974, ApJ , 189, L51 
eebles P. J. E., 1980, The Large-Scale Structure of the Universe. Princeton

Univ. Press, Princeton, NJ 
lanck Collaboration VI, 2020, A&A , 641, A6 
eich P., Testori J. C., Reich W., 2001, A&A , 376, 861 
emazeilles M., Dickinson C., Banday A. J., Bigot-Sazy M. A., Ghosh T.,

2015, MNRAS , 451, 4311 
antos M. G., Cooray A., Knox L., 2005, ApJ , 625, 575 
antos M. G. et al., 2017, Proc. Sci., MeerKAT Science: On the Pathway to

the SKA. PoS#32 
arkar A. K., Bharadwaj S., Marthi V. R., 2018, MNRAS , 473, 261 
chaan E., White M., 2021, J. Cosmol. Astropart. Phys., 2021, 068 
coville N. et al., 2007, ApJS , 172, 1 
iewert T. M. et al., 2020, A&A , 643, A100 
pinelli M., Zoldan A., De Lucia G., Xie L., Viel M., 2020, MNRAS , 493,

5434 
pinelli M., Bernardi G., Garsden H., Greenhill L. J., Fialkov A., Dowell J.,

Price D. C., 2021, MNRAS , 505, 1575 
quare Kilometre Array Cosmology Science Working Group et al., 2020, 

Publ. Astron. Soc. Aust. , 37, e007 
witzer E. R. et al., 2013, MNRAS , 434, L46 
an J. et al., 2021, ApJS , 255, 26 
egmark M., 1997, Phys. Rev. D , 55, 5895 
egmark M., 1998, in Olinto A. V., Frieman J. A., Schramm D. N., eds, Eigh-

teenth Texas Symposium on Relativistic Astrophysics and Cosmology. 
World Scientific, NJ, USA, p. 270 

he HERA Collaboration, 2022, ApJ , 925, 221 
h yag arajan N. et al., 2015a, ApJ , 804, 14 
h yag arajan N. et al., 2015b, ApJ , 807, L28 
h yag arajan N., Parsons A. R., DeBoer D. R., Bowman J. D., Ewall-Wice A.

M., Neben A. R., Patra N., 2016, ApJ , 825, 9 
inker J., Kravtsov A. V., Klypin A., Abazajian K., Warren M., Yepes G.,

Gottl ̈ober S., Holz D. E., 2008, ApJ , 688, 709 
inker J. L., Robertson B. E., Kravtsov A. V., Klypin A., Warren M. S., Yepes

G., Gottl ̈ober S., 2010, ApJ , 724, 878 
rott C. M. et al., 2016, ApJ , 818, 139 
illaescusa-Navarro F. et al., 2018, ApJ , 866, 135 
irtanen P. et al., 2020, Nature Methods , 17, 261 
olz L., Tonini C., Blake C., Wyithe J. S. B., 2016, MNRAS , 458, 3399 
olz L., Murray S. G., Blake C., Wyithe J. S., 2019, MNRAS , 484, 1007 
olz L. et al., 2022, MNRAS , 510, 3495 
yithe J. S. B., Loeb A., 2009, MNRAS , 397, 1926 

heng Z. et al., 2005, ApJ , 633, 791 
heng H. et al., 2017, MNRAS , 464, 3486 
onca A., Singer L., Lenz D., Reinecke M., Rosset C., Hivon E., Gorski K.,

2019, J. Open Source Softw. , 4, 1298 

PPEN D IX  A :  BRIGHTNESS  TEMPERATURE  

OWER  SPECTRUM  

n this section, we present a detailed deri v ation of equation ( 36 ). We
tart first with the Dirac δ function in comoving space for transverse
nd line-of-sight directions. We define Dirac δ function ˜ δD ( k ‖ ) along
he k � axis such that 

X 

∫ 
d k 

2 π
˜ δD ( k − k ‖ ) ˜ f ( k) = 

˜ f ( k ‖ ) (A1) 

or arbitrary function ˜ f , where 
 X is the line-of-sight length of the
urv e y volume and can be written as 
 X = Y δfN ch with δf being the
requency bandwidth and N ch the number of channels. 

The surv e y volume V can be written as V = S · 
X where S is
he surv e y area. As we will see later, both V and S are just abstract
uantities to account for the physical units, and will be cancelled out
n the final equation. We can then write down the definition for 2D
irac delta function 

 

∫ 
d 2 k ⊥ 

(2 π ) 2 
˜ δ2 
D ( k ⊥ 

− k ′ ⊥ 

) ˜ f ( k ⊥ 

) = 

˜ f ( k ′ ⊥ 

) (A2) 

or arbitrary function ˜ f ( k ⊥ 

). 
For a frequency-independent beam response A ( l , m , f ) ≡ A ( l , m ),

e can write its Fourier transform as 

˜ 
 ( k ) = 

X 

2 
X 

V 

˜ δD ( k ‖ ) ˜ A ⊥ 

(
k ⊥ 

)
. (A3) 

Using the previous equation we can express equation ( 15 ) as 2D
ntegrals: 
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The brightness power spectrum can be written as 
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Equation ( A6 ) shows that the delay power spectrum mixes
ifferent modes of P T through the beam response. For wide-FOV 

rrays, the large beam corresponds to a narrow Fourier pair ˜ A so that
 T can be extracted out of the inte gral. Alternativ ely, one can also
econvolve the beam response together with the w-projection kernel 
Cornwell, Golap & Bhatnagar 2008 ), as shown for example in Trott
t al. ( 2016 ). Here, we are dealing with dish arrays with narrow beams
o we take the mode-mixing effects of beam response into account
xplicitly later in this section while a v oiding the computationally 
onsuming deconvolution. 
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ec
igure A1. The mode-mixing matrix M αβ used in this paper calculated
ccording to equation ( 36 ) with the choice of annulus u–v bins mentioned
n Section 3 . Values below 10 10 Jy 2 Hz 2 K 

−2 Mpc −3 are masked for better
resentation. 

Recalling equation ( 27 ), we can substitute the | ̃  V 

i | 2 with P d in the
revious equation to get 

ˆ  d α = 

∑ 

i χα( u i , ηi ) | ̃  V 

i | 2 ∑ 

i χα( u i , ηi ) 
= 

(2 k B 
λ2 

)2 
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2 
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i χ
i 
α

×
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χi 
α
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d 2 k ⊥ 

(2 π ) 2 

∣∣∣∣ ˜ A ⊥ 

(
k i ⊥ 

− k ⊥ 

)∣∣∣∣
2 

P T ( k ⊥ 

, k i ‖ ) , (A7) 

here k i ⊥ 

= 2 πu i /X and i loops o v er all Fourier-transformed u–
 grids. Now recalling equation ( 20 ), we can further expand the
revious equation: 

ˆ  d α = 

(
2 k B 
λ2 

)2 

X 

Y 

2 
∑ 

i χ
i 
α

∑ 

i 

∫ 
d 2 k ⊥ 

(2 π ) 2 
χi 

α

∣∣∣∣ ˜ A ⊥ 

(
k i ⊥ 

− k ⊥ 

)∣∣∣∣
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×
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β

χi 
β

ˆ P T 

(
| k ⊥ 

| β, k i ‖ 
)

= 

( ∑ 

β

) 

M αβ ˆ p 

T 
β . (A8) 

inally, using 
 X = Y δfN ch , we show that 

M 

)
αβ

= 

(2 k B 
λ2 

)2 N ch δf 

Y 

∑ 

i χα( k i ) 

∑ 

i 

∫ 
d 2 k ⊥ 

(2 π ) 2 
χα( k i ) 

×
∣∣∣ ˜ A ⊥ 

(
k i ⊥ 

− k ⊥ 

)∣∣∣2 
χβ ( k ⊥ 

, k i ‖ ) , (A9) 
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hich is equation ( 36 ). Note that the previous equation depends on
he summation of each baseline i . It takes into account of the sampling
f u–v plane assuming equal data weights for each baseline, similar to
natural weighting’ in interferometric imaging. One can also define
he selection function χα, β differently to change the weighting.
herefore, the matrix formalism can ef fecti v ely deconvolv e the
rimary beam response and PSF simultaneously. 
As mentioned in Section 4 , we grid u–v plane into annulus bins

ith the edges of the bin being [0,100,200,...,6000]. The resulting
 αβ is shown in Fig. A1 . As shown, the mixture of different angular

odes due to the size of the beam mainly affects bins near the
iagonal, with the width of 
 | k ⊥ 

| ∼ 0 . 5 Mpc −1 . 

PPENDI X  B:  C O N V E RT I N G  H  I MASS  TO  

LUX  DENSITY  

n this section, we briefly derive the conversion between H I mass to
ux density for cosmological simulations. 
Suppose we grid the sky with equal area pixels, each with an area

f �pix (this area is purely pedagogical). In one frequency channel
ith comoving distance X and line-of-sight scale of 
 X , we have 

 

pix 
H I = 

∑ 

i 

C 

i 
HI M 

i 
H I 

V pix 
, V pix = X 

2 �pix 
X, (B1) 

here i loops o v er the H I sources within the pixel. 
The flux density from one pixel can then be calculated as 

 pix = 

∑ 

i 

C 

i 
HI M 

i 
H I 

X 

2 �pix 
X 

2 k B 
λ2 

i 

�pix = 

∑ 

i 

2 k B 
λ2 

i 

C 

i 
HI M 

i 
H I 

X 

2 
X 

, (B2) 

nd the flux density of each source is 

 i = 

2 k B 
λ2 

i 

C 

i 
HI M 

i 
H I 

X 

2 
X 

. (B3) 

In reality, the flux density of the sources depends on the peculiar
 elocity (see e.g. Me yer et al. 2017 ). Our result instead depends
n the bandwidth of the frequency channel. It is assumed that
he frequency displacement caused by peculiar velocity does not

isplace H I galaxies into other frequency bins and that the width of
he emission profile is negligible when compared with the frequency
hannel bandwidth. 
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