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ABSTRACT

We conduct the first case study towards developing optimal foreground mitigation strategies for neutral hydrogen (HT) intensity
mapping using radio interferometers at low redshifts. A pipeline for simulation, foreground mitigation, and power spectrum
estimation is built, which can be used for ongoing and future surveys using MeerKAT and Square Kilometre Array Observatory. It
simulates realistic sky signals to generate visibility data-given instrument and observation specifications, which is subsequently
used to perform foreground mitigation and power spectrum estimation. A quadratic estimator formalism is developed to estimate
the temperature power spectrum in visibility space. Using MeerKAT telescope specifications for observations in the redshift
range, z ~ 0.25-0.30, corresponding to the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) survey,
we present a case study, where we compare different approaches of foreground mitigation. We find that component separation
in visibility space provides a more accurate estimation of HT clustering when compared with foreground avoidance, with the
uncertainties being 30 per cent smaller. Power spectrum estimation from image is found to be less robust with larger bias and
more information loss when compared with estimation in visibility. We conclude that for the considered sub-band of z ~
0.25-0.30, the MIGHTEE survey will be capable of measuring the HI power spectrum from k ~ 0.5 to k ~ 10 Mpc~' with
signal-to-noise ratio being ~3. We are the first to show that, at low redshift, component separation in visibility space suppresses
foreground contamination at large line-of-sight scales, allowing measurement of HI power spectrum closer to the foreground

wedge, crucial for data analysis towards future detections.
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1 INTRODUCTION

Measuring the distribution of dark matter in the Universe and its
evolution is one of the most important objectives of observational
cosmology. The clustering of dark matter on cosmological scales,
i.e. the cosmic large-scale structure, can shed light on the nature of
dark energy and dark matter (see e.g. Peebles 1980). A wide range
of tracers of dark matter, i.e. observables that trace the underlying
density of dark matter, can be used in order to probe this distribution.
These probes follow the clustering of dark matter linearly at large
cosmological scales. Such probes can be galaxies, such as galaxy
number count (e.g. Alam et al. 2021), weak lensing of galaxies
(e.g. Pandey et al. 2022), and more. Alternatively, one can also
use a relatively new technique called intensity mapping (IM; e.g.
Battye, Davies & Weller 2004; Chang et al. 2008; Mao et al. 2008;
Wyithe & Loeb 2009; Battye et al. 2013; Kovetz et al. 2017). It uses
the emission lines of elements that are abundant in the Universe as
tracers of dark matter, most promisingly neutral hydrogen (H1). H1
is initially the most abundant element in the Universe as predicted by
big bang nucleosynthesis (see e.g. Dodelson 2003). The emission line
caused by spin—flip transition of HI has a rest wavelength of around
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21 cm, and thus can be observed in the radio band with low risks
of line confusion. By mapping the distribution of the flux density
across the sky, statistical inference on the underlying cosmology and
astrophysics of H1 sources can be made (e.g. Bull et al. 2015; Chen
et al. 2021).

H1 IM survey with large survey volume and coarse angular
resolution can be used for cosmological measurements at low
redshifts, such as baryon acoustic oscillations (Eisenstein & Hu 1998)
and redshift-space distortions (RSDs; Kaiser 1987). Single-dish
telescopes and dish/cylinder arrays operating in single-dish mode
can thus be powerful tools for H1 IM, such as Five-Hundred-Meter
Aperture Spherical Radio Telescope (Hu et al. 2020), MeerKAT
(Santos et al. 2017), and future Square Kilometre Array Observatory
(SKAO; Square Kilometre Array Cosmology Science Working
Group et al. 2020).

No detection of the autocorrelation of HT using single-dish mode
has been claimed but, using single-dish telescopes, such as the Green
Bank Telescope (GBT), statistically significant detections have been
made by cross-correlation of the IM signal from H1 with optical
galaxies from the WiggleZ survey (Masui et al. 2013; Switzer et al.
2013). Results from cross-correlating the 2dF Galaxy Survey and
H1 maps from the Parkes radio telescope are used to confirm the
relation between the star-forming properties of galaxies and its H1
mass (Anderson et al. 2018). Single-dish observations are capable
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of providing precise measurements of HI properties beyond the
local Universe, as demonstrated by the results from cross-correlating
eBOSS galaxies with GBT data (Wolz et al. 2022). Cross-correlation
using the Canadian Hydrogen Intensity Mapping Experiment inter-
ferometer has been claimed by stacking the IM signal using eBOSS
optical galaxy catalogues (CHIME Collaboration 2022).

Although single-dish observations are expected to be the primary
method for IM at low redshifts, interferometry can play an important
role as well in probing smaller scales. Accessing non-linear scales
of clustering helps further extract cosmological information (e.g.
Padmanabhan, Refregier & Amara 2019; d’ Amico et al. 2020), and
the scales typically smaller than the size of dark matter haloes can
yield information about astrophysics of H1 galaxies (Wolz et al.
2019; Chen et al. 2021; Schaan & White 2021). The combination of
cosmological and astrophysical information in the non-linear scales
of H1 clustering provides strong incentives to interferometric IM.

Surveys using radio interferometers, such as the MeerKAT Inter-
national GHz Tiered Extragalactic Exploration (MIGHTEE) survey
(Jarvis et al. 2016), can be used to measure the HI power spectrum.
For surveys like MIGHTEE, it is believed that HI clustering can be
measured with high precision across a range of redshifts (Paul et al.
2021).

H1 can also be used to probe the epoch of reionization (EoR)
at z 2 6. During this period, structures such as the first stars and
galaxies form and emit high-energy photons to ionize the H1 inside
the intergalactic medium. The high-redshift and low-frequency range
of EoR naturally call for antenna array interferometers (Madau,
Meiksin & Rees 1997), such as Precision Array for Probing the
Epoch of Reionization (Parsons et al. 2014), Murchison Widefield
Array (Barry et al. 2019), Low-Frequency Array (Patil et al. 2017),
and Hydrogen Epoch of Reionization Array (DeBoer et al. 2017).
These arrays have relatively wide field-of-view (FoV) to balance the
need for deep observations and large survey volumes.

Despite probing for very different scales and underlying signals,
interferometric HI IM at low redshifts and HI observations of the
EoR have very similar challenges. In the frequency range of the
observation, the radio sky is dominated by the diffuse foreground
emissions from our galaxy and the local Universe (Di Matteo et al.
2002). The foreground radiation is smooth in frequency and can be
up to several orders of magnitude higher than the H1. The H1 signal,
on the other hand, is discrete in frequency. Therefore, we can use the
smoothness of foreground in frequency by Fourier transforming the
observed visibilities along the frequency axis, commonly called the
‘delay transform’ (Morales & Hewitt 2004; Parsons et al. 2012a, b). It
separates smooth, large frequency structure of foreground and small
oscillating frequency structure of H I. The smooth foreground mainly
resides on the large frequency-scale modes, creating the ‘foreground
wedge’ (Liu, Parsons & Trott 2014a) and an observation window
outside these modes. Measuring the HI power spectrum outside
the foreground wedge is, therefore, sometimes called foreground
avoidance.

Apart from avoiding the foreground wedge, one can also try to
subtract the foreground by using its smoothness in frequency and
further extract information (e.g. Bowman, Morales & Hewitt 2009).
The specific approaches can be generally split into two types, the
parametric approaches that use polynomial fits to extract foreground
(e.g. Santos, Cooray & Knox 2005; Bonaldi & Brown 2015) and
non-parametric approaches that use statistical methods to separate
foreground components. The most standard approach for component
separation is Principle Component Analysis (PCA). More advanced
methods can be built upon it, such as Fast Independent Compo-
nent Analysis (FastICA; e.g. Chapman et al. 2012), Generalized
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Morphological Component Analysis (e.g. Chapman et al. 2016),
and Gaussian Process Regression (GPR; e.g. Mertens, Ghosh &
Koopmans 2018). The success of a detection of H1signal in visibility
data also relies heavily on mitigation of various systematics through
the calibration of the data (Barry et al. 2016). This requires a thorough
understanding of the instrument (e.g. Thyagarajan et al. 2016) and
the properties of the foreground (e.g. Nasirudin et al. 2020).

To tackle the difficult problem of measuring HI clustering in
the post-ionization Universe at small angular scales, it is necessary
to create robust simulations for low-redshift IM using radio inter-
ferometers and the data analysis pipeline for H1 power spectrum
estimation. In this paper, we present an end-to-end simulation
pipeline for low-redshift interferometric IM that generates realistic
foreground and HT signal, simulates interferometric observations,
and applies robust foreground mitigation strategies, which are crucial
for future detections for MeerKAT and SKAO. The visibility data
are used to calculate the brightness temperature power spectrum
using a quadratic estimator formalism. We use the configurations
of MeerKAT telescope and observational specifications mimicking
a typical pointing of MIGHTEE survey to present a case study. A
detailed comparison of the effects of different foreground mitiga-
tion methods is conducted, including a direct comparison between
foreground removal in visibility data and in images. The aim of this
pipeline is to provide a detailed look into the topics of IM delay
power spectrum that have been extensively discussed in the context
of EoR, but have not yet thoroughly quantified for observations of
the low-redshift Universe. It also allows more realistic simulations
that will enable us to fully study the challenges of interferometric
IM towards future detection.

The paper is organized as follows: In Section 2, the basics of
delay power spectrum in analytical formalism is reviewed. The
quadratic estimator formalism for converting the visibility power
spectrum to the brightness temperature power spectrum is discussed
in Section 3. We present the simulation of the sky signal input in
Section 4. Foreground mitigation in visibility space is discussed in
Section 5. Power spectrum estimation using interferometric images is
presented in Section 6. Comparison between different methods with
MIGHTEE-like noise level is made in Section 7. We conclude our
findings in Section 8. Throughout this paper, we assume the Lambda
cold dark matter cosmology from Planck Collaboration VI (2020).

2 Hi CLUSTERING FROM VISIBILITY

In this section, we derive the connection between the visibility data
and the power spectrum of cosmological H 1. Note that for simplicity,
we do not consider RSDs (Kaiser 1987), which, in the scales of our
interest, are dominated by effects from peculiar velocities of H1
galaxies (see e.g. Chung et al. 2021). The density of H1 clustering is
typically expressed as the brightness temperature 7y,(x),

1 L .
Tias(0) = 5 > Cu @My 8 (x — x°), (0

where V is the survey volume, M}, is the H1 mass of each sources
within the survey volume, z' is the redshift each source is at, 83 is
the Dirac delta function in comoving space, and

3A|2hp()3(l —+ Z)2

C =
M) = S ke H(2)

2
is the conversion factor from HT1 density to brightness temperature
with 4p the Planck constant, kg the Boltzmann constant, my the mass
of the hydrogen atom, A, the emission coefficient of the 21-cm line
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transmission, v,; the rest frequency of the 21-cm emission, and H(z)
the Hubble parameter at redshift z (Wolz et al. 2016).

The power spectrum is measured in k space, which is the Fourier
pair of comoving space coordinate x. The Fourier convention used
for the brightness temperature field is

- d3x .
Tui(k) = / VTHI<x>e*"”‘,

Tyi(x) =

\ . .
G / &Pk T (k) ™, 3)

and the corresponding convention for Dirac §p function is:

dx
/ v o = X0) f(x) = f(x0).

&$r ~ ~
\ Sp(k — ko) f(k) = f(k 4
/ S Dbtk — ko)) = k) @
for arbitrary function f(x) in comoving space and f(k) in Fourier
space.

Assuming homogeneity, the two-point correlation function can be
written as

d*x
§(s) = (Tmi () Tri(x + 8)) = / v [ Ti(x + ). (6))
The brightness temperature power spectrum is the Fourier trans-
form of the two-point correlation function

. d? )
Py (k) = / dsE(s)e™ = / d%Vme(x)Tm(x +s)e 'k, (6)
which can be similarly written in Fourier space as
V(T (k) T*(k")) = 55 (k — k') Py (k). (7

The distribution of the brightness temperature can be observed
using radio interferometers by measuring the radio sky through the
correlations of signals across different pairs of antennas. At any given
time, each pair measures the sky signal using the difference between
the received signal phases determined by the position vector between
the pair, i.e. the baseline. The length of the baseline in the units of
the observing wavelength, {u, v, w}, corresponds to the scale of
fluctuations the baseline is measuring. For a set of baselines with u—v
coordinates {by} = {(uq, Vs, we)}c/ f, Where c is the speed of light
and f'is the observing frequency, the visibility V(u, v, w, f) generated
on each baseline is related to the sky intensity distribution I(I, m, f)
(Condon & Ransom 2016):

drd
Vi, v, w, f) = \/ﬁ—m_mzl(l,m, DAL m, f)
xexp| — 27i (lu +mv + (1 —n)w)], (8)

where [, m are the sky coordinates on the celestial sphere, n =
A1 =12 —m?, and A(l, m, f) is the beam response.

For wide-FoV instruments used in EoR observation, the curved
sky poses a challenge in power spectrum estimation (e.g. Thya-
garajan et al. 2015b). Here, we focus on IM in the low-redshift
Universe, which is typically done using small-FoV dish arrays such
as MeerKAT and SKAO-mid. For MeerKAT L-band receivers which
are simulated in this paper, the beamwidth is ~1deg (Asad et al.
2021). Combined with the fact that beam properties of dish telescopes
are relatively well-understood and yield more desirable features of
foreground contamination (Thyagarajan et al. 2015a), we expect
applying simple flat-sky approximation is good enough for IM at low
redshifts. Using the flat-sky approximation and Fourier transforming
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the visibility along the frequency axis, we have
Vu,v,n) =~ /dl dmdf I(l,m, )AL, m, f)
xexp| — 2mi (lu +mv + fn)], )

where 7 is the Fourier pair of frequency f.
In the flat-sky approximation, we can write down the transforma-
tion between the sky and comoving space:

127’m=i7f= S ’
D, D, I+z
where we use r, , to denote transverse scales. Note that the comoving
distance D, is the scale along the line-of-sight direction which we
also denote as ;.
The integral can be written as

I'x

10)

% —2kg f21 H(2) ) .
V= Ot e ATIO e 2w ot 1)

_ —2kg 3 H(2) _ . i

= /d ng(Z)[AT](r)exp[ 27i (Tu +mv + f,’)], an

where we use the Jacobian determinant to perform coordinate
transformation and write [AT](r) = A(r)T(r) as the product of
beam response and brightness temperature.

The delay power spectrum Py = (| V(u, v, )|?) can be written as

Pd — (%)2/d3rd3s H(Zr) H(Zr+s)
231 D2(z;) DX(zrss)

{ . ( rX + SX rX
xexp| —2mwi| u [7 - }
De(zr45)  De(zr)

, sy
—|—U[” Sy o ry ]"H)[ fZl . f2l j|>:| (12)
De(zr1s)  De(zr) I+ 204 14z,
From the previous equation one can see that the matching between
the delay power spectrum and the HT brightness temperature power

spectrum is not exact. By assuming a narrow redshift range of
integration, we can effectively use one central redshift z, so that

o Az s H(zo)
Itz 14z (14202 (1 +z0)%c
To make the equations more compact, we denote X = D.(z¢) and

Y = A (1 + 20)*/H(zo) with H(z,) being the Hubble parameter at z.
This results in

([AT](N[AT](r + )

13)

2mu 27y
k), =—, k= ——, 14
L=k 1% (14)

where k| is the scale on the angular plane, u = {u, v} is the visibility
space coordinates, and k| is the scale along the line-of-sight. With
this notation, we can write

2kp\2 1
Py = (TZB) X4y2 /d3rd35([AT](Y)[AT](’“LS))

wex {_( 2mu N 2mv _27rf21H(z0)r) )]
LT\ Do) ™ T Do) ™ T (4202 ¢

_ (2kp\2 VA &er Bk - ,
= (7) X4y?2 / (2m)? (2n)3A(k_k)A (e = &5
x(T(KT*(k")), (15)

where k = {k, k} is the three-dimensional (3D) wave vector and
A is the Fourier transform of the beam response.

Following equation (7), we can further simplify the previous
equation to

2kp )2 V2

Sr 6
Pd(u,v,n)=(7 W/mmac—kn Pk, (16)
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The previous equation not only imposes flat-sky approximation,
but also requires the evolution along the light-cone to be negligible.
This assumption is reasonable for the simulation used in this paper.
We leave the treatment to wide frequency ranges for future work.

3 QUADRATIC ESTIMATOR OF
TEMPERATURE POWER SPECTRUM

In this section, we derive the implemented power spectrum estimator,
with foreground mitigation and minimization of measurement un-
certainties. In order to relate the foreground-dominated observations
to the brightness temperature power spectrum of H1I, the sky signal
measured in visibility space will be processed through a data analysis
framework. Such a framework should allow estimations of the
brightness temperature power spectrum of HI clustering through
appropriate means of statistics to mitigate foreground. These types
of power spectrum frameworks using interferometric data have been
extensively studied in the context of cosmic microwave background
(e.g. Tegmark 1997; Myers et al. 2003) and, more recently, EoR
(e.g. Liu & Tegmark 2011; Choudhuri et al. 2014; Morales et al.
2019) and high-redshift IM (e.g. Sarkar, Bharadwaj & Marthi 2018;
Chatterjee, Bharadwaj & Marthi 2021). See Liu & Shaw (2020)
for a review. Here, we focus on interferometric low-redshift IM,
by constructing a quadratic estimator which explicitly includes the
operation of foreground mitigation and deconvolves the mode mixing
introduced by the primary beam attenuation.

The visibility data consist of Ny X Nep X Ngeps €lements, where
Ny is the number of baselines, N, is the number of frequency
channels, and Ny is the number of time-steps in the observations.
By averaging the visibility data into u—v grids, a data vector V with
a length of N, x N, can be constructed, where N, is the number
of frequency channels and N, is the number of grids on the u—v
plane. Note that V is a column vector that loops over both frequency
channel and u—v grids. Its elements can be written as

V= V(u,,v;, i) 17)

with V(u;, vj, f;) being the visibility data at the specific u—v coordinate
and frequency the j" gridded baseline corresponds to. Similarly, we
can also define a delay-transformed data vector

Vi = V(”ks Uk, Mi)s (18)

where 7 is the Fourier-inverse of the observing frequencies.
The visibility power spectrum of the 21-cm emission can be
discretized into the summation of the bandpower

Po(u, ) =Y xatt, ) Pallttlas 1) = Y X P, (19)

with x“ being the selection function, returning 1 if the baseline falls
into the o™ bin and 0 if not. We define p¢ = Py(|ut|q, 7).
Similarly the temperature bandpower is defined as

Pr(k) =Y xp(k)Prikp) = > xp(k)pp. (20)
B B

The estimator of the bandpower p¢ can be constructed as
pd = VIELV — b, 1)

Here, V is the gridded visibility data vector, Z;S is the correction term
for bias, and E¢ is the power spectrum estimation matrix which we
will derive explicitly.

When estimating p¢, one can choose V to include all the visibility
data. In our case, Eg is a block matrix of size N, x N, with each
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element being a N, X N, matrix.

1 1
E;, ... Eiy,

1 1
ENch T ENcthh

Nu Nu
E\ ... EYy

Ex:h T Ex:thh

The resulting ES is computationally difficult to deal with due
to its large size. Note that if different u—v grids do not correlate,
the off-diagonal blocks will be empty. The block elements of E¢
will then only operate on the N, data points in the corresponding
u—v grid. Thus, we assume the off-diagonal part to be negligible
and only construct the matrix for one u—v grid at a time, using an
input data vector of size Ng, (the number of frequency channels).
The beam mixes different u—v modes, whose correlation is present
in the non-block-diagonal part of E¢. However, this approximation
provides massive speed-up for computational efficiency. We leave
the full treatment of EJ to future work. Under this assumption, the

covariance matrix of the data vector can be written as (Dillon et al.
2015)

Cuw g1 ™ S C (k1)) 22)

where §¥ is the Kronecker delta and éf_ﬂ('k 1]) is the estimated
data covariance in each annulus |u| bin, which is calculated from
averaging the visibility covariance across the baselines that fall into
the particular |u| bin.

For the data vector of one u—v grid, the conversion from frequency
to the delay time domain can be written as

VE=sf> e 2mhivi =3 F Vi, (23)
J J

where F¥ j is the discrete Fourier transform kernel and &f is the
channel bandwidth.

The covariance matrix of the data vector of one u—v grid can be
written as

C=(VWH=Cp+ N+ piC.. (24)

with Cy, being the covariance matrix of the radio foreground in the
frequency domain, N the noise covariance matrix, and Za ng,a the
signal cross-correlation! which we decompose into some bandpower
of visibility data pg.

The elements of the signal covariance matrix can be written as

(CS)U = (VHl(u7 v, fi)Vl-*II(u’ v, fl))
- /dmdﬂz CXP[Zﬂi(fim - f/’h)]“?ivj*)
= /dmdnz exp[2i(fim — fim2)]8p(mi — 12) Pa

1

- W Zexp [27ri(fi - fj)’?a}l’g. (25)

I'The signal cross-correlation is a linear combination of pg. Therefore, the
coefficient of the expansion C , = d C/d pg.
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Therefore, we can write

1
Co).. = ——=exp|2wi(fi — f; . 26
( ,u)z/ (Nch5f)2 p[ i(f; f/)na} (26)
If we aim to simply calculate the delay power of the visibility
data instead of the temperature power and assume no foreground and
noise contamination, the power spectrum estimation can be written
as

Ad
pa|nofg,n =

Zi Xa (Ui, vy, 77,')|‘7i|2 i
Z, Xﬂt(ui, Vi, 771') = Z(wa)ilv | ) (27)

where i loops over all Fourier-transformed u—v grids, x, is the
selection function, and we express the normalized selection function
as w, to make the expression more compact. With the previous
expression we can write

P lnoten = VIF diag(w,)FV. (28)

Here, diag(w,,) is a diagonal matrix with the /" diagonal element
being (Wg,);.

In the presence of thermal noise and foreground contamination,
we can include some linear operation R in the estimator in order to
mitigate the foreground. This operation R may include foreground
removal, inverse covariance weighting, frequency tapering, etc.
Taking this operator into consideration we can rewrite the power
spectrum estimation matrix E¢ as

E¢ = diag(S,)R'F'diag(w,)FR. (29)

Here, S, is a normalization vector which we can solve for by taking
the expectation value of the power spectrum estimator

(P2 = D u[CpE] pj + [ (N+ Cr) EG] - B (30)
B

To solve for S,, we impose
> w[ChE.] =1, €2
B

and the covariance of the estimation is
Sow = (PEPS) — (PINPS) = 2tr[CESCES ]. (32)

Note that here we choose S, as a vector, or effectively as a diagonal
normalization matrix, as discussed in Hamilton (1997) and Tegmark
(1997). This leads to the correlation of the variance of different
bandpowers, as the previous matrix X, will have non-diagonal
components. To decorrelate the variance, one should choose the
normalization matrix to be F~!/2 where F is the bandpower Fisher
matrix (Tegmark 1998; Hamilton & Tegmark 2000). As mentioned
earlier though, we calculate the bandpower of one u—v grid at a time
for computational efficiency. Thus, despite using a normalization
method that results in correlation between variances of different
bandpowers, the non-diagonal part of X, is not included in our
calculation. See Dillon et al. (2014) for a discussion on overcoming
real-world obstacles such as large data volume and error properties.
In the ideal case where the foreground and noise covariance is
known, one should always choose l;g = tr[(N + Cfg)Eg} and use
inverse covariance weighting R = C~!, so that we have an unbiased
estimation of the power spectrum with minimum uncertainty (i.e.
the optimal estimator). In reality though, we only have a guess for
the true covariance of the foreground and noise, and therefore the
estimator can be written as
pe = VIEZV — tr[ (NP 4+ CR)ES], (33)

fg
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with a pseudo-covariance as our best guess of the true foreground
and noise covariance.

If no extra data processing is applied, R is simply the identity
matrix. Frequency tapering can be applied by choosing R to be a
diagonal matrix with the diagonal components being the frequency
window (see e.g. The HERA Collaboration 2022). For any fore-
ground mitigation strategy R that perfectly removes the foreground
components in the data vector, the resulting estimator should revert
to the optimal case. Thus, we can decompose the operation matrix
into
R, = (C— CE)~'A. (34)
Here, A is the component separation matrix that should remove the
contribution of the foregrounds. Since we believe the resulting data
vector after the operation of A is free of foreground, a subsequent
inverse covariance matrix is applied. See Kern & Liu (2021) for an
example of this using GPR.

Finally, after obtaining the estimation of the delay power spectrum
on each u—v grid, we apply annulus bins in u—v space to pd. The
temperature power spectrum can be estimated with the annulus-
binned delay power spectrum via

pp=_ (M), B (35)

a

Here, M is a conversion matrix derived from equation (16) (see
Appendix A for detailed derivation):

_ (2ks\?> Nadf &k,
(M) = (7) Yy xa(k,»)z;/@n)”"(k")

x| A (K~ ky) ‘2 Xk, KD, (36)

where i loops over all Fourier-transformed u—v grids and A is the
Fourier-transformed beam response in the transverse plane defined in
equation (A3). The variance of the estimation can also be propagated
assuming each bandpower is an independent measurement of the
clustering.

If we choose the same number of bins for |u|, and |k |g, we can
calculate the previous square matrix and estimate the cylindrical
temperature power spectrum [f’{l] 5 via a matrix inversion. The
resulting cylindrical power spectrum can be further averaged into
1D {k;} bins:

o g wik kD -
' S wikh k)

where w; is a combination of the selection function and wedge

criteria; w; returns 1 if (kﬁ, kf) falls into the bin and is not avoided

by the foreground wedge criteria.

4 SIMULATION OF THE RADIO SKY

In this section, we describe the simulations of the sky signal and
the experimental set-up we use to generate visibility data consistent
with MeerKAT observations. The MeerKAT array consists of 64-dish
telescope. It observes the sky in the L band and the UHF band. In
this paper, we are focusing on the L-band observations. The L-band
receivers have 4096 frequency channels and observe the sky with
a time resolution of 8 s. Also, they have a frequency resolution of
208.984 kHz. Following Paul et al. (2021), we choose 220 frequency
channels centred at 1115.14 MHz and set the pointing centre at the
Cosmic Evolution Survey (COSMOS) field (Scoville et al. 2007) at
RA = 150.12 deg and Dec = 2.21 deg with an 11.2-h tracking. The
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frequency range of the sub-band we choose covers a narrow redshift
bin z ~ 0.25-0.3. The size of the input sky image is 3.7 x 3.7 deg’,
much larger than the MeerKAT dish FoV to ensure completeness.

4.1 Simulation of Galactic foregrounds

The biggest challenge for simulating interferometric observations
is the extreme angular resolution, which is typically ~arcsec. Note
that we are only interested in the cosmological clustering and can
therefore ignore the scales corresponding to the longest baselines.
For k 2 20 Mpc ™!, the point source assumption of H 1 sources breaks
down and the information within these small scales is beyond the
interests of cosmology. Therefore, we simulate HEALPIX (G6rski et al.
2005; Zonca et al. 2019) Ngge = 8192 maps, which corresponds to
a pixel size of (0.43 arcmin)? and clustering scales of k ~ 40 Mpc~!
at z ~ 0.25-0.3.

At frequencies around 1 GHz, the dominant component of smooth
Galactic foregrounds is the synchrotron radiation. The template we
use to generate the signal is the ‘Haslam map’ at 408 MHz (Haslam
et al. 1981, 1982). We use the de-sourced, de-striped version of the
map described in Remazeilles et al. (2015). The pixel size of the
original map is (6.87 arcmin)’ corresponding to HEALPIX N, =
512. To reduce the pixel size of the template, we follow the method
in Remazeilles et al. (2015) and generate Gaussian random structure
to fill in the small scales.

The spectral index of the emission can be extrapolated from
observations of synchrotron-dominated radio sky at different wave-
lengths (e.g. Spinelli et al. 2021). Here, we use the 1.4 and 2.3 GHz
maps from the Global Sky Model (Zheng et al. 2017), which are
based on observations of Reich, Testori & Reich (2001) and Jonas,
Baart & Nicolson (1998). The resulting input sky image at 1.4 GHz is
presented at the top panel of Fig. 1. Note that upgrading the resolution
using HEALPIX creates numerical artefacts at small scales seen in the
map. As we show in Section 5.3, the synchrotron component has a
trivial impact on power spectrum on small scales.

Apart from the synchrotron radiation, the free—free emission is
another important component of the smooth foregrounds (e.g. Lian
et al. 2020). It is believed to be well-approximated by a Gaussian
distribution (e.g. Alonso, Ferreira & Santos 2014). Alternatively, one
can also use existing H,, templates (e.g. Olivari et al. 2018). We use
the H,, template of Finkbeiner (2003) and the conversion factor from
unit Rayleigh to brightness temperature as in Dickinson, Davies &
Davis (2003) assuming a constant spectral index extrapolated from
2.326 and 1.420 GHz. We upgrade the pixel size of the map from
HEALPIX Ngge = 1024 to HEALPIX N4 = 8192. The input sky image
of the free—free emission at 1.4 GHz is shown in the middle panel of
Fig. 1.

4.2 Simulation of extragalactic foreground

The discrete extragalactic radio sources dominate the power spectrum
of the total sky signal and are the biggest source of foreground
contamination on small scales. Therefore, a realistic modelling of
the discrete radio sources is crucial to the accurate simulation of
the foregrounds (e.g. Liu, Tegmark & Zaldarriaga 2009). Three
approaches have been used: Gaussian realizations from a given
angular power spectrum (e.g. Santos et al. 2005), a point source
catalogue for the particular patch of the sky of interest (e.g. Paul
et al. 2021), or Poisson realizations using flux count statistics (e.g.
Battye et al. 2013). We simulate the sky in a stochastic fashion and
choose the flux count approach.
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Figure 1. Top panel: The simulated synchrotron radiation around the
pointing centre at RA = 150.12 deg and Dec = 2.21 deg, originally generated
at 408 MHz and extrapolated to 1.4 GHz. Middle panel: The simulated free—
free emission around the pointing centre at 1.4 GHz. Bottom panel: The
simulated extragalactic point sources around the pointing centre at 1.4 GHz.
Values above 1073 Jy per pixel are set to 1073 for better presentation. The
pixel size of the images is set to 0.01 x 0.01 deg®. The size of the input sky
image is 3.7 x 3.7 deg?.

Radio galaxies are the most important targets for observations
in the radio band, and the source counts are well studied by many
surveys, such as the NVSS survey (Condon et al. 1998), the VLA-
Deep Field (Bondi et al. 2003), and more recently the MeerKAT
DEEP2 field (Mauch et al. 2020) and the ongoing VLASS survey
(Lacy et al. 2020). We follow the source count statistics at 1.4 GHz
described in Matthews et al. (2021), which uses NVSS and DEEP2 to
account for the bright and faint end of the distribution, respectively.
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Two assumptions are made for the simulation of extragalactic
sources. First, they are treated as point sources. Although large radio
interferometers such as MeerKAT can resolve most of the sources
observed, the arcsec angular scales are not of cosmological interest.
Second, we assume that point sources above the flux density of 107>
Jy can be efficiently removed or avoided. This is based on the fact
that some of the fields that are being investigated, such as COSMOS
and the DEEP? field, bright radio sources are avoided or modelled as
demonstrated in Paul et al. (2021). For other fields with more bright
sources, we can expect the source ‘peeling’ to be efficient above
this flux cut given the sensitivity of the MIGHTEE survey (Jarvis
et al. 2016). Relaxing the flux cut can lead to the foreground power
saturating all k| scales of our interests. We leave a more careful
treatment to the effects of imperfect peeling for future work.

The all-sky distribution of point sources is generated with the
following steps:

(1) We grid the flux density range (10~7-1073 Jy) with 20 narrow,
logarithmic bins. In each bin, a total number of sources is calculated
based on the source count statistics. We find that using more bins has
little impact on the results.

(2) Foreach bin, arandom subsample of pixels is selected and each
is assigned a source with the average flux density of the bin. Note
this is different from simulations of single-dish observations due to
the angular resolution of the observations. For lower resolution, in a
flux bin, each pixel will have multiple sources on average. For each
pixel a source number will be Poisson sampled. Here, the number of
pixels will be larger than the number of sources, and therefore only
a sample of pixels is uniformly selected.

(3) Following Matthews et al. (2021), for each pixel a Gaussian
random spectral index with an average of —0.7 and standard deviation
of 0.2 is assigned.

We present the simulated extragalactic foreground in the bottom
panel of Fig. 1.

Note that the extragalactic point sources also cluster (e.g. Overzier
etal. 2003; Hale et al. 2018; Siewert et al. 2020). It is straightforward
to generate Gaussian fluctuations based on input angular power spec-
trum to account for the clustering component. It scales approximately
as w(B) o< 878 (Peebles 1974) and is therefore negligible on small
scales of our interest.

4.3 Simulations of H1 signal

In this subsection, we describe the simulations of HI used in this
paper. The H1signal is intrinsically different to the foregrounds, since
the foregrounds are smooth in frequency while the H1 signal from
a particular frequency corresponds to specific cosmological redshift.
As a consequence of this, simulating all-sky maps of H1 at different
frequencies are computationally expensive and difficult. Instead, we
use 3D simulations of HT in cubic boxes of cosmological volumes.
While more sophisticated simulations of H1 can be found (e.g. Crain
et al. 2017; Villaescusa-Navarro et al. 2018), for our purpose we use
halo-model-based (Cooray & Sheth 2002) log-normal simulations
introduced in Wolz et al. (2019) using POWERBOX (Murray 2018).
This formalism allows us to efficiently generate many realizations to
test our pipeline. The simulation involves the following steps:

(1) Assuming the halo mass function of Tinker et al. (2008) and
the halo bias of Tinker et al. (2010), we calculate the halo auto power
spectrum using HALOMOD (Murray et al. 2021) for a fixed redshift
at the centre of our redshift bin z ~ 0.27. All steps before light-cone
construction assume this fixed redshift. The power spectrum is then
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used as an input to generate log-normal discrete samples of halo
centres using POWERBOX in a 250° Mpc? box with 800° resolution,
corresponding to kp;, = 0.025 Mpc‘1 and kpa = 10.0Mpc~!.

(2) Each halo is then randomly assigned a halo mass based on
the halo mass function of Tinker et al. (2008) using HMF (Murray,
Power & Robotham 2013).

(3) Assuming the galaxy halo occupation distribution (HOD) of
Zheng et al. (2005), a number of galaxies is assigned to each halo.
By Bernoulli sampling with p = (N¢§,,), we determine whether each
halo has a central galaxy. For haloes with central galaxies, the number
of satellite galaxies is determined by a Poisson distribution with mean
(Ng)-

(4) The positions of central galaxies are assigned to the halo
centres. For satellite galaxies, we assume the positions follow the
probability distribution of a Navarro-Frenk-White (NFW) profile
(Navarro, Frenk & White 1996) and assign a random distance to the
halo centre following that distribution. The angular positions of the
galaxies with regard to the halo centres are then uniformly sampled
and combined with the distance we can assign physical coordinates
to the satellite galaxies.

(5) Each galaxy is assigned an H I mass following log-normal dis-
tributions. The central and satellite H I mass of each halo is calculated
based on the HI HOD (M} ) following Spinelli et al. (2020). The
mean of the distribution is set to be Mgeq = (Mcfi;’sm) / (Ncgen’sa[) and
a standard deviation of 0.25Mgq.

The steps mentioned earlier generate a catalogue of H1 galaxies
with their positions and H1 mass in the comoving space. To map it
onto the sky to construct the light-cone, we perform the following
steps:

(1) The centre of the simulation box is assumed to be the pointing
centre and at the centre of the frequency range. Using that, we
can assign a position vector to the pointing centre X..,(sindcos ¢,
sin@sin ¢, cos ¢)T relative to the observer, where X, is the comoving
distance of the central redshift and (6, ¢) is the sky coordinate of the
pointing centre.

(2) The position vector of each H1 galaxy can be solved for. The
modulus of each position vector is the comoving distance for each
source. The comoving distances can be conversely used to assign
redshifts and subsequently frequency channels to H1 galaxies.

(3) The i galaxy is assigned a flux density following equa-
tion (B3) as discussed in Appendix B.

The resulting HI simulation can be passed to the visibility
simulation described in the next subsection.

4.4 Simulation of instrument

In this subsection, we outline the simulation of visibility data
using the sky input including foregrounds and H1. We use OSKAR
(Mort et al. 2010) to generate visibility data. OSKAR is a C++-
based simulation tool for radio interferometers, supporting GPU-
accelerated computation for efficiency. It takes in a sky model,
observation strategy and the telescope array specifications (including
station placement and primary beam), to simulate visibility data as a
measurement set file.?

We simulate observations by the 64-dish MeerKAT telescope array.
We assume the beam of each dish is Gaussian with a full width
at half-maximum of 57.5 arcmin at 1.5 GHz (Mauch et al. 2020).

Zhttps://casadocs.readthedocs.io/en/latest/notebooks/casa- fundamentals.ht
ml
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Figure 2. The u—v coverage of simulated baselines. The u—v plane is cut
to only show the scales of our interest corresponding to k < 20Mpc~!, and
gridded with a pixel size of (20m)? for presentation. The colour map denotes
the number of baselines in each pixel.

Bright foreground sources in sidelobes can have a non-trivial effect
on foreground cleaning. In interferometric observations, this can be
resolved by the secondary and position-dependent calibration steps
(see e.g. section 2 of Heywood et al. 2022) and we leave the treatment
of beam sidelobes for future work. The pointing centre is set to be
RA = 150.12 deg and Dec = 2.21 deg at the COSMOS field with
an 11.2-h tracking. The MeerKAT telescope has a time resolution
of 8 s, generating ~107 instantaneous baselines in one tracking. For
computational efficiency, we choose the time resolution to be 6t =
40 s for the simulation and have verified that there is no visible
difference when compared with a full time-resolution simulation.
The simulated u—v coverage of the 11.2-h tracking is presented in
Fig. 2.

We generate thermal noise per baseline following the radiometer
equation (Condon & Ransom 2016)
_ 2kpTiys
VRV ET
where Ty, is the temperature of the receiver system, A, is the effective
aperture of the dish, §f = 208.984 kHz is the channel bandwidth, and
8t =40 s is the time resolution as mentioned earlier. We use Ac/Ty =
6.22 m?> K~'3 and generate random Gaussian noise for the complex
visibility.

The noise level of a single pointing for a small range of 220
channels at z ~ 0.25-0.3 is quite high, with the amplitude of the
noise covariance comparable to the foregrounds. For the rest of the
study, we consider the following two thermal noise scenarios. In
order to isolate the effects of foregrounds from the thermal noise,
we simulate visibility data with noise level scaled down by a factor
of 40. From now on, this simulation is referred to as the ‘low noise
level” case. Note that we do not use the results of the low-noise level
case for realistic forecasts, but to showcase the effects of different
foreground mitigation strategies in Section 5.

For the second noise scenario, we aim to show the robustness
of the methods for the realistic thermal noise level matching the
corresponding sub-band of the MIGHTEE survey while simulating
observations of one field for simplicity. The MIGHTEE survey

(3%)

OoN

3https://www.sarao.ac.za/science/meerkat/about-meerkat/
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consists of 52 pointings with a total observational time of ~1920 h
(Jarvis et al. 2016). To match the noise level of our simulation of
11.2 h to the entire survey, we first scale the thermal noise level
down dividing by a factor of /(1920/52)/11.2, matching the total
integration time for a single pointing. In real observations, the scaling
of the thermal noise will be achieved through coherently averaging
across different nights of visibility data (see e.g. Mertens et al.
2020). We then further reduce the thermal noise level dividing by a
factor of /52, so that the thermal noise power spectrum matches the
incoherent averaging of all 52 pointings. From now on, the simulation
with MIGHTEE-like noise level for z ~ 0.25-0.3 is referred to as
the ‘high-noise level” case.

5 FOREGROUND MITIGATION IN VISIBILITY
SPACE

In this section, we examine the effects of three different foreground
mitigation strategies in visibility space on the power spectrum
measurement. First, we validate our power spectrum estimator using
H1-only simulations in Section 5.1. We confirm the wedge structure
of the foreground power in our simulation in Section 5.2. We then
apply foreground avoidance in Section 5.3. We further explore fore-
ground subtraction by polynomial fitting the foreground covariance
in Section 5.4. Component separation for the visibility data using
PCA is presented in Section 5.5. As mentioned in Section 4.4, the
results shown here are for the low-noise level case to isolate the
effects of foregrounds from the thermal noise.

5.1 Validation of power spectrum estimator

In this subsection, we validate the power spectrum estimator de-
scribed in Section 3. We simulate visibility data with only H1 input,
and pass the output data to the estimator. We choose to grid the u—v
plane with Au = Av = 10 from 0 to 6000. Here, we apply gridding
for computational efficiency, reducing the number of baselines from
Npi ~ 2 x 10° to Ny ~ 3 x 10*. The results from gridded visibility
will be suboptimal (Liu et al. 2014a); however, in the case of noise
covariance being dominant, the effects on the uncertainties are small.

The power spectrum is computed in cylindrical space with band-
powers further averaged into {|u |} bins. We choose the edges of the u—
v annulus bins to be {|u|,} = [0, 100, 200, ..., 6000] and {|k |g} =
2 {|u|y}/ X forthe cylindrical power spectrum used in equations (35)
and (37). From now on, we refer to {|u|,} = [0, 100, 200, ..., 6000]
as the ‘annulus {|u|} bins’ used in our simulation. For the 1D power
spectrum, we choose the edges of the k bins to have Ak = 0.5 Mpc™!
from 0.5 to 20 Mpc~'. The delay power spectrum is calculated using
equation (28) and converted to the temperature power spectrum using
equations (35) and (37).

We simulate 20 realizations with different dark matter halo and
HI content and show the mean and the standard deviation of the
power spectrum results in the top panel of Fig. 3. The blue line
shows the mean of input HI boxes averaged over the realizations
(‘input’). The blue-shaded region represents the standard deviation
of the input power spectrum. The averaged output of the power
spectrum estimator is shown as the orange-dashed line. As one can
see, the results from the estimator agree tightly with the input. The
standard deviation of the output power spectrum is shown as the
orange-shaded region. The large variance is due to the fact that the
input H1 box is much larger than the telescope FoV. At scales of 1-
halo correlation and shot noise, the variance of the power spectrum
is large for the small volume of one pointing. The number density of
massive H 1 galaxies in the telescope FoV fluctuates from one point
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Figure 3. Top panel: The brightness temperature power spectrum of input H1
signal (‘Input’), compared with the results using the power spectrum estimator
described in Section 3, averaged over 20 different HI-only realizations
(“Visibility’). The shaded blue region shows the standard deviation of the input
power spectrum. The shaded orange region shows the standard deviation of
the output power spectrum. Note that for the power spectrum from simulated
visibility, we cut the first |u| bin and consequently first k£ bin for reasons
discussed in Section 5.3. Therefore, the orange region starts at larger k than
the input. The green, dotted line shows the result of one specific realization
using the power spectrum estimator. The red, dash—dotted line shows the
input HT power spectrum from the simulated light-cone within the telescope
FoV from the same realization, corresponding to the power spectrum of the
input image within the FoV (‘One Realization — Im’). Bottom panel: The
variance of H1 power spectrum due to the limited survey volume for 1, 2, and
5 pointings as shown in the shaded regions compared with the average H1
power spectrum of the entire box.

to another. To illustrate this variance, we calculate the variance of
the input power spectrum using bootstrapping by dividing the input
HT box into sub-boxes matching the survey volume of 1, 2, and 5
pointings and present the results in the bottom panel of Fig. 3. The
variance from the volume of 1 pointing agrees well with the variance
of the output. The variance decreases as the survey volume goes
up. For the MIGHTEE survey with ~50 pointings, the effect of this
variance will be negligible.

We have shown that the output power spectrum for one realization
and one pointing will not correspond to the input simulation box due
to small survey volume, but agrees very well after being averaged
over multiple pointings. One may think that instead of the entire
H1 box, the output power spectrum is the power spectrum of the
part of the box within the telescope FoV. We further clarify that the
output H1 power spectrum from one realization does not correspond
exactly to ‘the input image’, i.e. the H1 signal within the telescope
primary-beam FoV as well. The HT sources outside the telescope
FoV, though being heavily attenuated, still contribute to the visibility
data, and therefore, the output from our estimator differs from ‘the
input image’. In the top panel of Fig. 3, we show, for one realization,
the output power spectrum (‘One Realization — Vis’) against the
power spectrum of the H1 signal within the telescope FoV (‘One
Realization — Im’).
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As discussed in Section 4.4, we aim to forecast for the MIGHTEE
survey using one pointing. We choose the specific HI realization
shown in Fig. 3, with the foreground signal and thermal noise added,
to present our results for the rest of this section.

5.2 Foreground wedge

In this subsection, we present the cylindrical delay power spectrum
Py(k ., k) for each component of the simulation. Py(k |, k) contains
information on the clustering of H1 on both the transverse plane and
along the frequency direction. Since HI is a cosmological signal,
there is no preferred direction for the H1 power spectrum except for
the finger-of-god (FoG) effect. The foregrounds, on the other hand,
are smooth in frequency. Therefore, the foreground power resides
mostly in low-k| modes and decreases sharply as k| increases. It is
important to use simulations to understand which (k | , k) modes are
contaminated by the foregrounds in order to extract information on
HI

We use the simulated visibility data of different components
without the thermal noise to visualize the ‘foreground wedge’ (Liu,
Parsons & Trott 2014b). In this subsection, we calculate the delay
power spectrum of different components using equation (33), with
uniform weighting R = I to calculate E¢ in equation (29). We do not
include frequency tapering, because as shown later the foreground
contamination in our case is severe, and we find that the tapering does
not have significant effects on containing the foreground wedge. We
also do not perform inverse covariance weighting for this subsection,
the reasons for which will be discussed in Section 5.3. The cylindrical
power spectra shown throughout this paper are the outputs of
equation (33), with no k| filter applied as we only filter out small-k|
scales when converting to 1D power as in equation (37).

We present the cylindrical power spectrum for each component
of the signal in Fig. 4. The top panels, from left to right, show
the delay power spectra of point source, synchrotron and free—free
emissions, respectively. The sum of these three components is shown
in the lower left panel. The foreground power is significantly larger
in low-k| modes than in high-k| modes. The dominant component
of the foregrounds is extragalactic radio sources, especially for
large |k, | > 1 Mpc~! where it is at least 2 orders of magnitude
larger than synchrotron and the free—free emission. The point source
power spectrum increases and leaks more into high-k; modes when
considering smaller angular scales, while synchrotron and the free—
free emission behave in the opposite way. On short baselines
corresponding to |u| < 100and |k, | < 0.5Mpc™!, the delay power
spectrum of foreground is exceptionally large when compared with
other |k, | bins. This is for several reasons. First, at the particular
pointing we are simulating which is close to the Galactic plane, the
synchrotron radiation is bright at large scales; for [k, | < 0.5Mpc ™!,
the synchrotron radiation is at least an order of magnitude larger
than other components. Second, the first u—v bin, namely |u|
from O to 100, contains contributions from the shortest baselines
|u| ~ 10—100, covering an order of magnitude in angular scale.
The rapidly decreasing power spectrum at these scales means the
overall contribution to the first |u| bin is overestimated. Finally, the
simulation of a limited patch of the sky introduces a windowing
effect, leaking the power of the monopole into low-|k, | modes.
When we convert the delay power spectrum to the temperature power
spectrum, the conversion matrix mixes angular modes that leads to
further overestimation for nearby |u| bins. Therefore, we discard the
first |u| bin and start from |u| > 100.

The bottom-centre panel of Fig. 4 shows the delay power spectrum
of HI. As expected, the HI power spectrum only depends on the
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Figure 4. The cylindrical delay power spectrum for different components of the simulation. The delay time y and the radius of annulus u—v bins |u| have been
converted to k-space coordinates following equation (14). All delay power spectra are in Jy? Hz2. Top-left panel: The delay power spectrum of the extragalactic
point sources. Top-centre panel: The synchrotron radiation. Top-right panel: The free—free emission. Lower left panel: The total foreground emission. Lower
centre panel: The HI signal. Lower right panel: The ratio of the H1 power spectrum and the total foreground power spectrum. Values below 1 are masked for
clearer view of the foreground wedge. The black dashed line shows a schematic illustration of the foreground wedge. Note that this line is simply for illustration
and the actual criteria used to avoid foreground in cylindrical k-space are discussed in Section 5.3. The colour bars for top three panels and the bottom-left panel

are kept the same for direct comparison.

1D wavenumber k = ,/ |k |? +kﬁ as we do not include RSDs.

Comparing with the foreground power spectrum, HI can be orders
of magnitude larger for high-k; modes. We show the ratio of HI and
total foreground power in the bottom-right panel. The ‘wedge’ where
foreground contamination is most severe is at low-k| scales and gets
larger at longer baselines where the power spectrum of point sources
increases. It leaves out a potential observation window for H 1 power
spectrum. At a given |k |, we can filter out low-k; modes and only
take the measurement of power spectrum at higher k. This method
of excluding foreground contaminated modes is called foreground
avoidance, which we further explore in the next subsection.

5.3 Foreground avoidance

In this subsection, we include the contributions from foregrounds and
thermal noise and use a foreground avoidance strategy to measure
the H 1 power spectrum from our simulation. The estimator described
in Section 3 applies foreground avoidance in equation (37). Namely,
it includes w;(k,, k) to encode the wedge criteria (defined later),
which has the impact that when k) is too small, w; is zero and
the foreground contaminated modes are filtered out. We can then
calculate the resulting 1D H1 power spectrum.

To estimate the temperature power spectrum from visibility data,
we follow equation (33). Since we do not analytically model the
foreground covariance and simply avoid contaminated modes, NP*¢ +
C?" in equation (33) is the noise covariance for a single u—v grid

fg
point p in our simulation

NI = 8ijo5/N/. (39)
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where N; is the number of baselines for the i frequency channel
in the p" u—v grid. Throughout this paper, the data covariance C
is taken to be the empirical data covariance from visibility data
in each annulus || bin used to estimate the uncertainty following
equation (32). The empirical data covariance C is calculated from
the visibility data following equation (22) as discussed in Section 3.
Note that here € rp(lk L]) is calculated from the visibility data before
gridding. We then subtract the noise variance o and add the noise
covariance of the gridded data following equation (39). Throughout
this paper, oy is treated as a known quantity and, therefore, the noise
covariance is also known.

Real observations are likely to be noise dominated with the exact
position of the foreground wedge also unknown. Assuming that we
are working blind, we start with the generic criteria to be used in
equation (37). The selection function w;(k, k) returns 1 only if
(k 1, k) falls into the 1D k bin and satisfies

k“ > Ck kJ_, (40)

where ¢, is a coefficient describing the position of the wedge.

To determine the value of ¢, we start with ¢, = 0 and increase
¢y iteratively with a step size of 0.05. We find that for ¢, = 0.2 and
¢ = 0.25, the difference in power spectrum estimation is within
5 per cent. The convergence suggests that the foreground power is
largely avoided. The H 1 power spectrum estimated using foreground
avoidance with ¢; = 0.25 (‘Avoidance Uniform’) is shown in Fig. 5.
Note that the standard ‘horizon criteria’ (see equation 13 of Liu et al.
2014a), assuming a maximum angular extent sin 6y = 1, corresponds
to ¢ ~ 0.232, suggesting that the foreground contamination is likely
to be the dominant constraint for MIGHTEE observations.
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Figure 5. Top panel: The 1D brightness temperature power spectrum from
H1-only visibility data (‘HI only’), low thermal noise simulation using fore-
ground avoidance method described in Section 5.3 (‘Avoidance Uniform’),
and the same avoidance method but with inverse noise covariance weighting
(‘Avoidance I.N.C."). Bottom panel: The fractional difference between the
‘HI only’ and the ‘Avoidance Uniform’ results.

As seen by the fact that the estimated power is always higher when
compared with the input, the foreground power contamination is
present for all £ modes and results in an overestimation of the power
spectrum by around 10 percent. For wavenumbers k ~ 1 Mpc™!,
the contamination is more severe because at larger angular scales
synchrotron and free—free emissions have a large effect on the delay
power spectrum as shown in Fig. 4. The contamination is also more
severe for k > 5Mpc~! modes; since at higher k;, the power
spectrum of point sources is much larger and leaks more into the
window.

The noise level of a u—v grid point varies across frequencies
due to the change in observing wavelengths and therefore applying
inverse covariance weighting gives uneven weights across frequency
channels, mixing different k| modes in the estimator. The mixture of
different k| modes can lead to a spillover of the foreground power into
the observational window (see also Cheng et al. 2018). To illustrate
this, in Fig. 5, we also show the power spectrum estimation made by
choosing inverse noise covariance weighting R = N~! (‘Avoidance
LN.C."), keeping everything else the same as the uniform weighting
R =1Icase.

Note that here we do not choose the inverse of the total data
covariance, since in this low-thermal noise case foregrounds con-
tribute a substantial fraction of the total covariance. In realistic
observations, on the other hand, the noise covariance is expected to
dominate. Therefore, we choose R in equation (29) to be the inverse
noise covariance to illustrate the mode mixing. As one can see from
Fig. 5, when applying R = N~!, the power spectrum is significantly
overestimated. Our claim that the foreground leakage into higher k||
modes is responsible can be verified by investigating the cylindrical
delay power spectrum, as we show in Fig. 6. For R = I case in the
top panel, the foreground wedge is most visible at k; < 0.3 Mpc™!
as the red and orange regions, where it is 2—4 orders of magnitude
larger than the Hisignal. ForR = N =1 on the other hand, the red and
orange regions can be seen at kj ~ 0.5 Mpc ™. In short, if foreground
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Figure 6. Top panel: The cylindrical delay power spectrum for the uniform
weighting case, with noise covariance subtracted for the low-noise level
case (P-}jf\]l:ﬁzzl). Bottom panel: The cylindrical delay power spectrum for the
inverse noise covariance weighting case, with noise covariance subtracted
for the low-noise level case as described in Section 5.3 (P;i;l;‘f'R:Nfl ). The
empty (white) regions at high |k | in the figure are for negative power
due to thermal noise covariance subtraction. The red and orange regions
(P%f]l: ¥ > 10° Jy? Hz?) in the bottom panel are much larger than ones in the
upper panel, suggesting much more severe foreground leakage into higher k|,

modes.

contamination is severe, additional weighting further mixes different
k) modes, further contaminating high-k| modes which leads to the
overestimation in the HI power spectrum.

5.4 Subtracting foreground using fitted foreground covariance

In this subsection, we explore polynomial fitting of the foreground
covariance in visibility space, utilizing the fact that the foreground
emission is smooth in frequency. The polynomial fitting of the
covariance is similar to polynomial fitting of the signal along the
line-of-sight direction in the image domain (e.g. Bowman et al. 2009)
or in u—v space (e.g. Harker et al. 2010). The main difference is that
we perform the fitting on the empirical data covariance instead of
directly on the visibility data. If the subtraction is perfect, i.e. the
resulting fit is the foreground covariance, there should be no increase
in the measurement errors.

We split the visibility data into the same {|u|,} bins for the
power spectrum estimation defined in Section 5.1 and calculate the
empirical data covariance using equation (22). Note that for most ||
bins, the dominant foreground component is the point sources which
are believed to be approximately Poisson distributed and assumed to
be so in our simulation. In the limit of a narrow frequency range, the
covariance matrix of the Poisson foreground should be real-valued
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Figure 7. Top panel: The real part of the 110™ row (the centre frequency
row) of the empirical data covariance matrix in the 6 || bin corresponding
to k; ~ 3.5 Mpc~! (‘data’). The same row in the same bin of the covariance
matrix for foreground component-only visibility is shown for comparison
(‘FG’). The extracted smooth component using 6™ order polynomial fits is
also shown (‘Fit’). Below it is the fractional difference between the real part
of the fitted covariance and the actual foreground covariance on the 110" row
in the 6™ |u| bin. Bottom panel: The same with the top panel, except for the
imaginary part of the covariance matrix.

(see derivations in section 4 of Murray, Trott & Jordan 2017). We
verify that this is indeed the case for our visibility data, where the
real part of the each element in the covariance matrix is at least an
order of magnitude larger than the imaginary part.

The resulting data covariance can then be processed to extract the
foreground by applying a k| filter to remove the rapidly oscillating
H1 component. We do this by applying polynomial fitting to each
row of the covariance matrix, aiming to extract the smoothly varying
part. We find that 6" order fitting respectively for real and imaginary
part of the empirical covariance matrix, is sufficient, as showcased
in Fig. 7.

We take the fitting results as C't?ng and use equation (39) to calculate
the noise covariance to subtract noise and foreground covariances
via equation (33). We choose uniform weighting R =1 with the
same ¢, = 0.25 as in Section 5.3 and present our result in Fig. 8.
As shown in the figure, when compared with the direct avoidance,
subtracting the fitted foreground covariance corrects the amplitude at
large k < 1Mpc~! scales. However, it overcleans on k > 2Mpc™!,
which results in a > 10-per cent signal loss. The overcleaning is due
to the fact that despite in most cases the fitted covariance matches
the foreground covariance up to one-per cent level as shown in the
top panel of Fig. 7, it still wrongly subtracts H I features. This can be
seen in the bottom panel of Fig. 7, where for the imaginary part of
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Figure 8. The 1D brightness temperature power spectrum from the H 1-only
visibility data (‘HI Only’), the low-thermal noise simulation using foreground
avoidance method (‘Avoidance’), and the foreground subtraction method us-
ing polynomial fitting of the empirical data covariance (‘Polynomial Fitting’).
Shown also is the fractional difference among the ‘HI Only’, ‘Avoidance’,
and ‘Polynomial Fitting’ results. While the avoidance undersubtracts the
foregrounds, the polynomial fitting oversubtracts on small scales.

the covariance, foreground is relatively small. Comparing the fitted
covariance with the actual foreground covariance, we can see that
some additional structure over a large frequency range is mistaken to
be a contribution from the foregrounds. This results in overcleaning,
typically in relatively low-k; modes.

We also show the cylindrical delay power spectrum to further
verify this in Fig. 9. Comparing with direct avoidance in the upper
panel, the subtraction overcleans signal at lower k), which results
in lower and even negative power as shown in the bottom panel of
Fig. 9.

5.5 Foreground removal with PCA

In this section, we examine component separation in visibility data
to mitigate foreground contamination. From Section 5.3, we see
that to exclude the foreground power leakage into the observation
window, a foreground removal method is required. We found that
direct subtraction is likely to result in signal loss on small scales
despite correcting the amplitude of the power spectrum well at large
scales. It highlights the need for component separation techniques.

Here, we provide a case study of the most standard technique of
PCA. PCA is proven to be very robust and works similarly well
comparing with methods such as FastICA (see e.g. Cunnington et al.
2021). For sky maps/images, maps in different frequency channels
are mean-centred and then an empirical frequency—frequency co-
variance matrix can be constructed for data analysis (e.g. Bigot-Sazy
et al. 2015). For visibility data on the other hand, each baseline
corresponds to a different Fourier mode and cannot be processed
in the same way. As discussed in Section 5.3, we follow Dillon
et al. (2015) to calculate empirical covariance using equation (22) in
annulus |u#| bins and perform PCA in each bin independently.

The first 20 eigenvalues of the empirical covariance matrices in
four different bins are presented in Fig. 10. The largest component is
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Figure9. Top panel: The cylindrical delay power spectrum with noise covari-
ance subtracted using foreground avoidance method (P::L‘:ﬁ). Bottom panel:
The cylindrical delay power spectrum with noise covariance subtracted using
polynomial fitting (Pg;};yg). The empty (white) regions indicate overcleaning,

which results in negative power.
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Figure 10. The first 20 eigenvalues, ranked from the biggest to the smallest,
of the empirical data covariance matrices for the k; ~ 3.04, k; ~ 5.81,
ki ~8.58,and k; ~ 11.35Mpc~! bins. Note the significant drop-off in the
first few bins and then the plateau beyond the fifth eigenvalue.

typically an order of magnitude higher than the second eigenvalue,
and the eigenvalues hit the plateau at about the fifth eigenvalue,
suggesting there is a mixture of H I and foregrounds in these modes.
This is also supported by the fact that for higher k, the eigenvalues
hit the plateau later, due to the more severe foreground contamination
athigher k; we saw in Fig. 4. We find that choosing Ny, = 5 removes
foreground at small k| modes but overcleans the H1over a wide range
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Figure 11. Top-left panel: The cylindrical delay power spectrum of total
foreground in Jy? Hz2. Top-right panel: The cylindrical delay power spectrum
of the removed component by PCA for low thermal noise simulation. The
colour bar is kept the same to the upper left panel for direct comparison.
Bottom-left panel: The ratio of the cylindrical delay power spectrum of the
H1 component of visibility data and the power spectrum of the foregrounds.
Bottom-right panel: The absolute value of ratio of the cylindrical delay power
spectrum of the H1 component of visibility data and the power spectrum of
the residual of the foregrounds. Values below 1 are set to be 1 for better
presentation in bottom-left and bottom-right panels.

of scales, something that we would like to avoid. We instead find
Nty = 2 suits our purpose best. It still leaves a supressed foreground
wedge, which we can avoid by applying a ‘loose wedge criterion’.
PCA returns the source mixing matrix A, which extracts the fore-
ground components. Note that following the framework of Section 3,
we should include A in R to construct our estimator. However,
the component separation here is performed on the full visibility
data to ensure sufficient cleaning; whereas, for power spectrum,
estimation is applied to the gridded visibilities for computational
efficiency. Therefore, we do not include A in R. Here, the foreground
is subtracted before gridding and a new gridded data vector V' with
foreground components removed is used, with the assumption that the
operations of gridding and foreground subtraction are commutable.
We present the cylindrical delay power spectrum with uniform
weighting R =1 in Fig. 11. For the Ny = 2 case we can see that
the reconstructed foreground matches the clustering of the actual
foreground quite well by comparing the upper panels of Fig. 11.
PCA overcleans the foregrounds at low-k , high-k| modes as seen
by comparing the top-left and top-right panels of Fig. 11. Slight
overcleaning can be acceptable, as long as the residual does not leak
too much negative power into the observation window. The amplitude
of the negative residual power is orders of magnitude smaller than
H1, as shown in the lower right panel of Fig. 11. Comparing the
bottom two panels, we see that PCA widens the observation window
at lower k, by efficiently cleaning the foreground power, while not
having visible improvements on higher k; modes. Comparing with
foreground avoidance, a loose selection criterion can be applied for
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Figure 12. The 1D brightness temperature power spectrum from the HI-
only visibility data (‘HI Only’), simulation with low-thermal noise level
using foreground avoidance method described in Section 5.3 (‘Avoidance’),
simulation with low-thermal noise level using PCA foreground removal with
uniform weighting (‘PCA Uniform’), and with inverse noise covariance
weighting (‘PCA LN.C.”). In addition, we have provided the fractional
difference between the estimated 1D brightness temperature power spectrum
and the H1-only simulation for low-thermal noise case.

small k; . We find that the power spectrum converges on all scales
when ¢, =0.04 fork;, < 5Mpc~'andc, =0.3fork, > 5Mpc.

We show the results for the 1D temperature power spectrum in
Fig. 12. Foreground removal using PCA accounts for the leakage
of the foreground power into the observation window and returns
a result which agrees relatively tightly with the H1-only case. Note
that for k > 5Mpc~!, simple avoidance results in a 10-percent
level overestimation due to foreground contamination; however,
for PCA the power spectrum estimation is relatively accurate up
to k ~ 10 Mpc_'. Moreover, as discussed in Section 5.3, the fore-
ground contamination prevents us from using the inverse covariance
weighting as it will further mixes different k; modes resulting in
more contamination. For the PCA case where the foregrounds are
sufficiently removed, we can re-apply inverse covariance weight-
ing. We show the results with R = N~! in Fig. 12 as well. The
power spectrum for PCA method with inverse covariance weighting
matches the HI-only case and produces smaller uncertainties. We
also show the cylindrical delay power spectrum in Fig. 13 to verify
there is no visible foreground leakage into higher k. Comparing
the top panel for uniform weighting and the bottom panel for inverse
noise covariance weighting, the mode mixing is most visible at higher
k, outside the observation window, whereas the difference at lower
k, is negligible.

6 FOREGROUND MITIGATION IN IMAGE
SPACE

In this section, we temporarily depart from visibility-only approach
and investigate foreground cleaning by applying PCA directly on
the image and perform power spectrum estimation in image space
similar to Hothi et al. (2021) in order to compare with methods in
visibility space. We use CASA tclean (Hogbom 1974; McMullin
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Figure 13. Top panel: The cylindrical delay power spectrum with noise
covariance subtracted using PCA and uniform weighting described in Sec-
tion 5.5 for the low-thermal noise simulation ( PSS{?RZI). Bottom panel: The
same with the top panel but with noise covariance subtracted using PCA
and inverse noise covariance weighting for the low-thermal noise simulation

delay
(PPCA,R=N*1)'

et al. 2007) to produce the images. The pixel size of the images is set
to (25.37 arcsec)?, corresponding to k ~ 45Mpc~! with 192 x 192
standard grids to match the size of the primary beam. Only dirty
images are generated, since we find that iterative cleaning takes out
part of the H1 signal.

The dirty images are in the units of Jy per point spread function
(PSF). We calculate the area of PSF around its centre to convert
intensity to temperature unit. Starting with the centre and neighbour-
ing pixels, we iteratively expand the integration area until the PSF
area decreases, suggesting that the effects of sidelobe structures are
starting to dominate. We then rescale the images from Jy per PSF
to Jy per pixel using the PSF area calculated. The primary beam
effect is then removed by dividing by the beam attenuation term. The
processed dirty image is then converted to temperature unit and used
to calculate the temperature power spectrum. We do not deconvolve
the shape of the PSF, which leaves a scale-dependent attenuation
effect in the power spectrum. Therefore, when investigating the
effects of PCA, we compare the power spectrum results with the
dirty images of H1 and thermal noise simulation. We leave the full
treatment of the PSF for future work.

We aim to present the imaging approach as a qualitative com-
parison to the visibility approach and do not derive in detail how
to subtract thermal noise covariance and estimate uncertainties. We
simulate a thermal noise-only image and use it to directly subtract
the thermal noise power spectrum. The uncertainties are estimated
using the sampling variance in k bins.
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Figure 14. The power spectrum of input HT corresponding to the image size
used in Section 6 (‘Input’), compared with the power spectrum of images
using H1 visibilities produced by natural weighting (‘Natural’), uniform
weighting (‘Uniform’), and Briggs weighting with robustness parameter equal
to 0.5 (‘Briggs’).

0.00 I(gmg/pi)%

1 [mJWPSF]
_:|

2.5°

2.0°

Dec

2.5°

2.0°

150.5°  150.0° 149 5°150.5° 150.0° 149.5°
] m
0.000 0.025 0.050 0.000 0.025 0.050
I [m]y/PSF] I [mJy/PSF]

Figure 15. Top-left panel: The input image of H1signal in the 20 frequency
bin around 1.096 GHz in Jy per pixel. The pixel size of the image is set to
(100 arcsec)? to show clearly the position of the H I sources. Top-right panel:
The output image of the simulation in the same frequency bin, with HI,
foreground and thermal noise. Bottom-left panel: The output image for H1
and thermal noise-only visibility simulation image without the foreground.
Bottom-right panel: The image shown in the top-right panel after PCA
cleaning. The image after PCA cleaning (bottom-right panel) matches the H1
and thermal noise-only simulation well (bottom-left panel). In bottom panels,
pixels brighter than 0.05 mJy per PSF are set to 0.05 mJy per PSF for better
presentation.

We test our imaging and power spectrum estimation pipeline with
HT and thermal noise-only visibility data and compare it with the
input image within the telescope FoV. We find that the weighting of
baselines can have a major effect on the resulting power spectrum
as shown in Fig. 14. When uniform weighting in imaging is used,
the narrow PSF results in overestimation of the power spectrum
amplitude at small k. On the other hand, natural weighting achieves
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Figure 16. Top-left panel: The cylindrical temperature power spectrum
of the images of the total intensity with thermal noise subtracted. Values
under 1077 K> Mpc? are masked for better presentation. Top-right panel:
The cylindrical temperature power spectrum of the images of the H1 signal.
Values under 10~7 K2 Mpc? are masked. Bottom-left panel: The cylindrical
temperature power spectrum of the images of total intensity after PCA
cleaning with thermal noise subtracted. Values under 10~7 K> Mpc> are
masked. Bottom-right panel: The ratio of HI and the residual foreground
power spectrum. Values under 1 are set to 1 for better presentation.

maximum sensitivity but underestimates the power spectrum due to
the large PSF confusing different sources. Using Briggs weighting
(Briggs 1995) and testing different robust parameters, we find that
when the robustness parameter is set to 0.5, the resulting power
spectrum achieves a balance between accuracy and sensitivity. The
power spectrum of the image matches the input from k; ~ 0.5 up to
ky ~ 5Mpc!, but suffers signal loss from the PSF convolution at
smaller scales.

We generate image cubes for the simulated visibilities. The image
cube is then mean-centred and subsequently a PCA is performed. We
find that in image space, the mixture of HI signal with the thermal
noise and foreground is more severe due to the convolution of the
PSF and loss of information by gridding. More modes need to be
removed for image space PCA when compared with the visibility
space PCA in order to subtract the foreground at small k| and widen
the observation window. We find removing a total number of seven
PCA modes gives the best result. We find that choosing more modes
leads to overcleaning in the high-k modes while choosing less modes
does not sufficiently remove the foregrounds at low k. We show the
results for the 10" frequency bin in Fig. 15. Comparing the lower
panels, one can see PCA removes most of the foreground signal.
The undercleaning of some foreground structure leaves residual
sources, which are smooth in frequency. The cleaned images are
then converted from Jy per PSF to Jy per pixel and corrected for
primary beam attenuation.

We verify the frequency smoothness of residual foreground
structure by calculating the cylindrical temperature power spec-
trum presented in Fig. 16. Comparing the power spectrum of
images of HI and images of total intensity after PCA cleaning,
the foreground residual mainly resides in low-k ranges. We find
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Figure 17. The power spectrum of input HT corresponding to the image size
used in Section 6 (‘Input’), compared with the power spectrum of images
using H1 visibilities (‘H1only”) and power spectrum of total intensity images
of simulation with low-thermal noise level after PCA cleaning (‘PCA”).
that the observation window probes the region k; > 0.2Mpc™!
by checking the foreground wedge. We verify that raising this
threshold does not have a significant impact on the resulting power
spectrum.

The 1D temperature power spectrum result is presented in Fig. 17.
Compared with the Hi-only power spectrum, the PCA results
overestimate the large k < 1 Mpc~! scales. This suggests that large-
scale information is lost due to the excess gridding and imaging, as
we do not see such effects in Section 5.5 when we apply PCA to the
visibility data. Furthermore, scales k > 5Mpc~' are not recovered,
due to the effects of weighting and PSF discussed previously.

In conclusion, we find that power spectrum estimation in image
space is sensitive to the choice of baseline weighting and subsequent
deconvolution of PSF, which requires more careful treatment. Apply-
ing component separation to the image cube recovers HT clustering
at scales of roughly 1—5Mpc~!. We compare it with PCA in the
visibility data in the next section.

7 COMPARING FOREGROUND MITIGATION
METHODS WITH MIGHTEE-LIKE NOISE
LEVEL

In this section, we present a direct comparison of the foreground
mitigation methods for power spectrum estimation using our simula-
tion with realistic thermal noise level. As mentioned in Section 4.4,
we generate MIGHTEE-like thermal noise consistent with the noise
level of the entire MIGHTEE survey of 52 pointings and 1920 h.
We then apply the foreground mitigation methods investigated in
the previous sections. The edges of the 1D k bins are set to be
logarithmically distributed from 0.1 to 30 Mpc~' with 14 bins due
to the lower signal-to-noise ratio.

Based on the previous discussion, we adopt the foreground
avoidance described in Section 5.3, foreground removal using PCA
in visibility with R = N~! described in Section 5.5, and in image
space described in Section 6. The resulting projected power spectrum
recovery is shown in Fig. 18. We find that for direct avoidance
method, the foreground wedge criterion remains the same at ¢, =
0.25. For PCA, the same ng, = 2 number of modes are removed
and we find that power spectrum result converges when ¢, = 0.1 for
k; < 5Mpc! and ¢; = 0.25 for k; > 5Mpc~!, tighter than the
low-thermal noise case in Section 5.5. For the image output, we apply
the exact same process in Section 6 with ng, = 7 number of modes
removed. Overall, the methods used are robust to a substantially
increased noise level.
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Figure 18. The 1D brightness temperature power spectrum from the HI-
only visibility data (‘HI Only’), simulation with MIGHTEE-like noise using
foreground avoidance method described in Section 5.3 (‘Avoidance’), simu-
lation using PCA in visibility space with inverse noise covariance weighting
(‘PCA LN.C."), and simulation using PCA in image space (‘PCA Image’).
In addition, the fractional difference between the estimated 1D brightness
temperature power spectrum and the HI-only simulation is presented below.
The centres of the k bins for ‘Avoidance’ and ‘PCA Image’ are misplaced
by 5 per cent for better comparison. The signal-to-noise ratios of the power
spectrum measurements are shown at the bottom.

Comparing the results from avoidance and the PCA method,
we find that PCA in visibility space provides less biased esti-
mation of the HI power spectrum with projected uncertainties
roughly 30 percent smaller than direct avoidance. This is due to
the larger observation window and the enabling of the inverse
covariance weighting as discussed in Section 5. Overall, PCA in
visibility space gives measurements of the HI power spectrum
with signal-to-noise ratio <3 from k ~ 0.5 up to k ~ 5Mpc~! with
Ak ~ 0.5Mpc~.

Comparing the projected power spectrum using the image space
PCA method in Fig. 18 and in Section 6, there is further signal loss
in the presence of a higher thermal noise level. Overall, PCA in
image space results in an overestimation of the H1 power spectrum
at k < 1.0Mpc~'. Compared with the visibility space PCA case,
the measurement errors in the image space PCA case are ~50-
per cent larger and the signal-to-noise ratio is <2 from k ~ 0.5 up to
k ~ 5Mpc!.

The fractional differences of the projected power spectrum mea-
surements and the input as shown in Fig. 18 provide a direct
comparison of the methods used. The visibility space PCA method
has least bias on all scales 0.5Mpc™' < k < 10Mpc~' and the true
signal is within the 1o uncertainty. Foreground avoidance in visibility
space and PCA in image space have larger bias in power spectrum
estimation. We find that the projected uncertainties for PCA in image
space are 50 per cent to 2 times larger than PCA in visibility space.
This is due to three reasons. First, information is lost due to u—v
gridding and limited image size which does not use all the baselines.
Second, we weight the baselines with Briggs weighting robustness
equal to 0.5 for reasons discussed in Section 6, which is far from
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optimal sensitivity using natural weighting. Finally, the mixture of
H1and foregrounds in principal components is more severe in image
space due to the convolution of PSF, making foreground cleaning
less effective. We also emphasize that the uncertainties for images
are estimated using sampling variance in k space while the ones for
visibilities are estimated using the quadratic estimator discussed in
Section 3, which may not be a fair comparison (see e.g. Tan et al.
2021).

8§ CONCLUSION

In this paper, we present an end-to-end pipeline of realistic signal
modelling, observation simulation, and data analysis for low-redshift
H1 IM using radio interferometers. We have built a powerful
simulation tool capable of generating input signal of H 1, foregrounds
and thermal noise for a given field of observation. The generated sky
signal is used to simulate visibility data for any given observation
strategy. We have developed a quadratic estimator for H I power spec-
trum estimation using visibility data. Multiple foreground mitigation
strategies are examined.

We generate simulations of visibility data mimicking a typical
tracking of MeerKAT for 220 frequency channels at z ~ 0.25-0.30,
consistent with existing observations of deep fields such as COSMOS
and DEEP2 to validate our estimation pipeline. By calculating
the cylindrical power spectrum and comparing the contribution of
different components, we find:

(1) The Galactic foreground signal, including the synchrotron
radiation and the free—free emission, mainly affects angular scales
larger than ~0.1 degree. Its power drops significantly at smaller
angular scales and is much smaller than the H1 signal.

(2) Extragalactic radio sources dominate the foreground signal
on smaller angular scales and increase its leakage into higher k|
modes. Comparing with the H I signal, the foreground contamination
is severe and leaves a limited observation window for detection even
for a deep field with sufficient source peeling.

(3) For scales probed by interferometry at low redshifts, the
foreground can be well described by the covariance. This is due to the
fact that at the scales of our interest, it is dominated by contributions
from Poisson point sources.

(4) For observations of one field using small-FOV arrays such as
MeerKAT, the limited survey volume induces large variance in the
H1 signal. We find that the variance due to survey volume becomes
trivial for volumes larger than that of 5 MIGHTEE-like fields for a
narrow frequency range, V ~ 5 x 20 x 20 x 200 Mpc?.

The foreground contamination calls for careful treatment of
foreground mitigation methods. We compare, in detail, different
ways to mitigate the impact of foregrounds using visibility data and
conclude:

(1) When bright point sources are sufficiently removed, there
exists an observation window at large k| in which we can directly
estimate the H I power spectrum. It provides biased estimation of the
power spectrum, with an overestimation of 10 per cent. It is due to the
leakage of the foregrounds into large k| that cannot be completely
excluded. Furthermore, data analysis techniques, such as inverse
covariance weighting, become difficult as different k| modes further
mix under a non-uniform weighting, leading to more foreground
contamination.

(2) Fitting the empirical covariance to extract out the smooth part
for different annulus |u| bins, we find that subtracting the foreground
covariance corrects for the overestimation at large k < 1Mpc™!
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scales. It overcleans the foreground and results in signal loss at
smaller scales. Extracting the smooth structure of data covariance
falsely includes structure of HT covariance over large frequency
ranges, which leads to overcleaning at small k.

(3) By binning the visibility in annulus || bins and performing
PCA in each bin, we find that the foreground contamination is
reduced. The observation window widens due to improved cleaning
of low-k; modes and this works better with short baselines up to k ~
5Mpc~'. It allows accurate estimation of H1 power spectrum from
k ~ 0.5tok ~ 10 Mpc~'. The reduced contamination allows inverse
covariance weighting with little extra spillover of the foregrounds.
Comparing with direct avoidance, it does not have the overestimation
bias and has uncertainties that are ~30-per cent smaller.

(4) We find that foreground mitigation in visibility space is robust
to high levels of thermal noise consistent with the noise level of
MIGHTEE for all 52 pointings and a redshift bin of z ~ 0.25-
0.3. PCA in visibility space gives projected measurement of the
power spectrum with signal-to-noise ratio ~3 up to k ~ 5Mpc™!
and possible detection up to k ~ 10 Mpc~'. Due to radio frequency
interference (RFI) contaminations, data blocks from the MIGHTEE
survey are usually divided into narrow-frequency sub-bands. There-
fore, our results will likely apply to any sub-band from observations
in the L band.

Our findings suggest the feasibility of using the visibility power
spectrum and foreground extraction to measure the clustering of
H1. At the angular scales of our interest ~arcmin, the foreground
components are largely stochastic and therefore can be removed
using covariance-based methods such as PCA. Using surveys such as
MIGHTEE, interferometric H1IM will be able to map the evolution
of H1 clustering at inner halo scales.

We have investigated the important question of choosing visibility
space or image space to measure the H1 power spectrum by directly
comparing these two qualitatively. We generate image cubes of our
visibility data to investigate power spectrum estimation in image
space. We find:

(1) The power spectrum of the images relies heavily on the choice
of baseline weighting, with uniform weighting overestimating the
power spectrum and natural weighting causing signal loss due to the
large PSF.

(2) We find that using Briggs weighting and performing PCA
for the image cube, we can recover the H1 power spectrum from
k ~ 1 to k ~5Mpc~!. The component separation is less robust in
the presence of large thermal noise.

(3) Due to the suboptimal weighting and information loss from
visibility to image space, power spectrum estimation in image
space performs relatively poorly when compared with the visibility
approach, resulting in a more biased estimation with larger error bars.
Comparing with PCA in visibility space, PCA in image space leads
to reconstructed uncertainties that are at least 50-per cent larger.

Overall, we find that for future surveys, such as MIGHTEE, H1
IM using visibility data is capable of measuring the HI power
spectrum across a wide range of scales with high accuracy in
narrow redshift bins, probing the redshift evolution of HI inside
dark matter haloes. We provide a proof of concept study for data
analysis using interferometric IM. Results from our pipeline strongly
favour component separation and power spectrum estimation directly
in visibility data without imaging. The pipeline can further include
realistic beam model, polarization leakage, calibration error, and
more. [t will enable more studies in this topic towards future detection
and constraints of cosmic H1 in the near future.

MNRAS 518, 2971-2990 (2023)
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APPENDIX A: BRIGHTNESS TEMPERATURE
POWER SPECTRUM

In this section, we present a detailed derivation of equation (36). We
start first with the Dirac § function in comoving space for transverse
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and line-of-sight directions. We define Dirac § function §p(k;) along
the k|| axis such that

dk ~ ~
ax [ 3 otk =k f = Fik) (AD

for arbitrary function f, where AX is the line-of-sight length of the
survey volume and can be written as AX = Y§fN., with §f being the
frequency bandwidth and N, the number of channels.

The survey volume V can be written as V=S - AX where S is
the survey area. As we will see later, both V and S are just abstract
quantities to account for the physical units, and will be cancelled out
in the final equation. We can then write down the definition for 2D
Dirac delta function

d’k, - - o
5 / (zﬂ;éém— Dfte) = ) (A2)

for arbitrary function f (k).
For a frequency-independent beam response A(/, m, f) = A(l, m),
we can write its Fourier transform as

- X2AX ~
Ao = ==k AL (ko). (A3)

Using the previous equation we can express equation (15) as 2D
integrals:

Ak — KA*(k — k")

2kp\2 V4 ek Br”
e ()

22/ X4v? ) @) Qn)?
L 2kp\2 V2
(T = (33) 3

e

(T (K|, k)T*(K', ky)). (A4)

The brightness power spectrum can be written as
VAT (K, k)T (k' k) = S (K — kD) Pr(k' k), (A5)

which leads to

= () 5 [ Gt (e K0) s - 0)
x85(K' — K Pr(K', k) = (%)2%

a2k
@n)?
2kp\2AX [ A%k,
- (7) Y2 ) (2n)?

Al (ki - kl) 2PT(kL ki)

2
A (kL - k;) Prk, k). (A6)

Equation (A6) shows that the delay power spectrum mixes
different modes of Pr through the beam response. For wide-FOV
arrays, the large beam corresponds to a narrow Fourier pair A so that
Pr can be extracted out of the integral. Alternatively, one can also
deconvolve the beam response together with the w-projection kernel
(Cornwell, Golap & Bhatnagar 2008), as shown for example in Trott
etal. (2016). Here, we are dealing with dish arrays with narrow beams
so we take the mode-mixing effects of beam response into account
explicitly later in this section while avoiding the computationally
consuming deconvolution.
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Figure Al. The mode-mixing matrix Mg used in this paper calculated
according to equation (36) with the choice of annulus u—v bins mentioned
in Section 3. Values below 10'° Jy> Hz? K=2Mpc > are masked for better
presentation.

Recalling equation (27), we can substitute the |V?|? with Py in the
previous equation to get

i — i X IV (@)2 AX
¢ Z,‘ Xe (@i, mi) A2 Y2 Zi Xé
Py 2 .
% | o ;AL(k' — k)| Pres. k), (A7)

where ki, = 27u;/X and i loops over all Fourier-transformed u—
v grids. Now recalling equation (20), we can further expand the
previous equation:

() s
x> xi Pr (Ml ki) = (Z) Mag B (A8)
B B
Finally, using AX = Y3fN¢,, we show that
M= (G2 7y 2 e

< Au (K~ k) [ otk k), (A9)

2

k1 - kl)
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which is equation (36). Note that the previous equation depends on
the summation of each baseline i. It takes into account of the sampling
of u—v plane assuming equal data weights for each baseline, similar to
‘natural weighting’ in interferometric imaging. One can also define
the selection function y,, g differently to change the weighting.
Therefore, the matrix formalism can effectively deconvolve the
primary beam response and PSF simultaneously.

As mentioned in Section 4, we grid u—v plane into annulus bins
with the edges of the bin being [0,100,200.,...,6000]. The resulting
Mp is shown in Fig. Al. As shown, the mixture of different angular
modes due to the size of the beam mainly affects bins near the
diagonal, with the width of A|k,| ~ 0.5Mpc~!.

APPENDIX B: CONVERTING H1 MASS TO
FLUX DENSITY

In this section, we briefly derive the conversion between H I mass to
flux density for cosmological simulations.

Suppose we grid the sky with equal area pixels, each with an area
of Qpx (this area is purely pedagogical). In one frequency channel
with comoving distance X and line-of-sight scale of AX, we have

pi CI{HMIi-l 2
T = — o, Voix = X*Qpix AX, B
Hi ZZ Voo P P
where i loops over the HI sources within the pixel.
The flux density from one pixel can then be calculated as

CiyMiy, 2k 2kg CiyMj;,
b =2 aguax 2 25z xaaxt B

and the flux density of each source is

_ 2k CiyM
TOA2 X2AX

(B3)

In reality, the flux density of the sources depends on the peculiar
velocity (see e.g. Meyer et al. 2017). Our result instead depends
on the bandwidth of the frequency channel. It is assumed that
the frequency displacement caused by peculiar velocity does not
misplace H 1 galaxies into other frequency bins and that the width of
the emission profile is negligible when compared with the frequency
channel bandwidth.

This paper has been typeset from a TeX/I&TEX file prepared by the author.
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