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Abstract: The group theoretical description of the periodic system of elements in the framework
of the Rumer–Fet model is considered. We introduce the concept of a single quantum system, the
generating core of which is an abstract C∗-algebra. It is shown that various concrete implementations
of the operator algebra depend on the structure of the generators of the fundamental symmetry group
attached to the energy operator. In the case of the generators of the complex shell of a group algebra
of a conformal group, the spectrum of states of a single quantum system is given in the framework of
the basic representation of the Rumer–Fet group, which leads to a group-theoretic interpretation of
the Mendeleev’s periodic system of elements. A mass formula is introduced that allows giving the
termwise mass splitting for the main multiplet of the Rumer–Fet group. The masses of elements of
the Seaborg table (eight-periodic extension of the Mendeleev table) are calculated starting from the
atomic number Z = 3 and going to Z = 220. The continuation of the Seaborg homology between
lanthanides and actinides is established with the group of superactinides. A 10-periodic extension
of the periodic table is introduced in the framework of the group-theoretic approach. The multiplet
structure of the extended table’s periods is considered in detail. It is shown that the period lengths of
the system of elements are determined by the structure of the basic representation of the Rumer–Fet
group. The theoretical masses of the elements of 10th and 11th periods are calculated starting from
Z = 221 and going to to Z = 364. The concept of hypertwistor is introduced.

Keywords: periodic table; Bohr’s model; Rumer–Fet model; conformal group; single quantum
system; mass formulae; Seaborg table; homological series; twistors; symmetry doubling

1. Introduction

The year 2019 marks the 150th anniversary of the discovery of the periodic law of
chemical elements by Dmitry Ivanovich Mendeleev. Mendeleev’s periodic table sheds light
on a huge number of experimental facts and allows the prediction of the existence and basic
properties of new, previously unknown elements. However, the reasons (more precisely,
root causes) for periodicity, in particular, the reasons for the periodic recurrence of similar
electronic configurations of atoms, are still not clear. Furthermore, the limits of applicability
of the periodic law have not yet been delineated—the controversy regarding the specifics
of the nuclear and electronic properties of the atoms of heavy elements continues.

The now generally accepted structure of the periodic system, based on the Bohr model,
proceeds from the fact that the arrangement of elements in the system with increasing
atomic numbers is uniquely determined by the individual features of the electronic structure
of atoms described in the framework of one-electronic approximation (Hartree method),
and directly reflects the energy sequence of atomic orbitals of s, p, d, f -shells populated by
electrons with an increasing total number as the charge of the nucleus of the atom increases
in accordance with the principle of minimum energy. However, this is only possible in
the simplest version of Hartree approximation, but in the variant of the Hartree–Fock
approximation, the total energy of an atom is not equal to the sum of orbital energies, and
the electron configuration of an atom is determined by the minimum of its full energy. As
noted in the book [1], the traditional interpretation of the structure of the periodic system
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on the basis of the sequence of filling of electronic, atomic orbitals in accordance with their
relative energies εnl is very approximate and has, of course, a number of drawbacks and
has narrow limits of applicability. There is no universal sequence of orbital energies εnl ;
moreover, such a sequence does not completely determine the order of the atomic orbitals
settling by electrons since it is necessary to take into account the configuration interactions
(superposition of configurations in the multi-configuration approximation). Furthermore,
of course, periodicity is not only and not completely the orbital-energy effect. The reason
for the repetition of similar electronic configurations of atoms in their ground states escapes
us, and within one-electronic approximation can hardly be revealed at all. Moreover, it is
possible that the theory of periodicity, in general, awaits a fate somewhat reminiscent of the
fate of the theory of planetary retrogressions in the Ptolemaic system after the creation of
the Copernican system. It is quite possible that what we call the periodicity principle is the
result of the non-spatial symmetries of the atom (permutation and dynamical symmetries).

In 1971, academician V.A. Fock in his work [2], put the main question for the doctrine
of the principle of periodicity and the theory of the periodic system: “Do the properties of
atoms and their constituent parts fit into the framework of purely spatial representations,
or do we need to somehow expand the concepts of space and spatial symmetry to accom-
modate the inherent degrees of freedom of atoms and their constituent parts?” [2], p. 108.
As is known, Bohr’s model in its original formulation uses quantum numbers relating to
electrons in a field with spherical symmetry, which allowed Bohr to introduce the concept
of closed electron shells and bring this concept closer to the periods of the Mendeleev’s
table. Despite this success, the problem of explaining the periodic system was far from
solved. Moreover, for all the depth and radicality of these new ideas, they still fit into the
framework of conventional spatial representations. A further important step was associated
with the discovery of the internal, not spatial, degree of freedom of the electron—spin,
which is not a mechanical concept. The discovery of spin is closely related to the discovery
of the Pauli principle, which was formulated before quantum mechanics as requiring that
each orbit, characterized by certain quantum numbers, contains no more than two electrons.
At the end of the article [2], Fock himself answers his own question: “Purely spatial degrees
of freedom of the electron is not enough to describe the properties of the electron shell of the
atom and need to go beyond purely spatial concepts to express the laws that underlie the
periodic system. The new degree of freedom of the electron—its spin—allows us to describe
the properties of physical systems that are alien to classical concepts. This internal degree of
electron freedom is essential for the formulation of the properties of multi-electron systems,
thus for the theoretical justification of the Mendeleev’s periodic system” [2], p. 116.

The group-theoretic method of studying the periodic system was independently
proposed by several authors in the early 1970s. In 1971, an article by Rumer and Fet [3]
was published on the relationship between the group Spin(4) and Mendeleev’s table. In
1972, Asim Barut published his research on the group structure of the periodic system [4,5].
Simultaneously with these publications, articles by Octavio Navaro and co-authors [6,7]
on the Hamiltonian model of the periodic system appear. Already from the first works
in this direction, two different approaches are clearly manifested. The Navaro method
(atomic physics approach), further developed in the works of Ostrovsky and Demkov [8–10],
by analogy with atomic physics, relies on the search of a Hamiltonian model. On the
other hand, the Rumer–Fet-Barut method (elementary particle approach) relies on the analogy
with groups of dynamic (internal) symmetries of elementary particle physics, such as
SU(2) (isotopic spin), SU(3) and SU(6). An exhaustive historical overview of this topic is
presented in the work of Thyssen and Ceulemans [11].

In this paper, we consider the group theoretical description of the periodic system in
the framework of the Rumer–Fet model. Unlike Bohr’s model, in which spatial and internal
(spin) symmetries are combined on the basis of a classical composite system borrowed from
celestial mechanics, the Rumer–Fet group G describes non-spatial symmetries (it is obvious
that the visual-spatial image used in Bohr’s model is a vestige of classical representations.
Therefore, in the middle of the 19th century, numerous attempts were made to build
mechanical models of electromagnetic phenomena; even Maxwell’s treatise contains a
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large number of mechanical analogies. As time has shown, all mechanical models of
electromagnetism turned out to be nothing more than auxiliary scaffolding, which was later
discarded as unnecessary). However, group G also contains the Lorentz group (rotation
group of the Minkowski space-time) as a subgroup. Moreover, the Rumer–Fet model is
entirely based on the mathematical apparatus of quantum mechanics and group theory
without involving any classical analogies, such as the concept of a composite system. The
concept of a composite system, which directly follows from the principle of separability
(the basic principle of reductionism), is known to have limited application in quantum
mechanics, since in the microcosm, in contrast to the composite structure of the macrocosm,
the superposition structure prevails. Heisenberg argued that the concept of “consists of”
does not work in particle physics. On the other hand, the problem of “critical” elements of
Bohr’s model is also a consequence of visual-spatial representations. Feynmann’s solution,
representing the atomic nucleus as a point, leads to the Klein paradox for the element
Uts (Untriseptium), with atomic number Z = 137. Another spatial image, used in the
Greiner–Reinhardt solution, represents the atomic nucleus as a charged ball, resulting in a
loss of electroneutrality for atoms above the value Z = 173 (see Section 4).

The most important characteristic feature of the Rumer–Fet model is the representation
of the periodic table of elements as a single quantum system. While Bohr’s model considers
an atom of one element as a separate quantum system (and the atomic number is included
in the theory as a parameter, so that there are as many quantum systems as there are
elements), in the Rumer–Fet model, atoms of various elements are considered as states of a
single quantum system, connected to each other by the action of the symmetry group. A
peculiar feature of the Rumer–Fet model is that it “ignores” the atomic structure underlying
Bohr’s model. In contrast to Bohr’s model, which represents each atom as a composite
aggregate of protons, neutrons and electrons, the Rumer–Fet model is distracted from
the internal structure of every single atom, presenting the entire set of elements of the
periodic table as a single quantum system of structureless states (the notion of the atom as a
“structureless” state does not mean that there is no structure at all behind the concept. This
only means that this structure is of a different order, not imported from the outside, from the
“repertoire of classical physics”, but a structure that naturally follows from the mathematical
apparatus of quantum mechanics (state vectors, symmetry group, Hilbert space, tensor
products of Hilbert (K-Hilbert) spaces and so on)). In this paper, the single quantum system
U is defined by a C∗-algebra consisting of the energy operator H and the generators of the
fundamental symmetry group G f attached to H. The states of the system U are formed within
the framework of the Gelfand–Naimark–Segal construction (GNS) [12,13]; that is, as cyclic
representations of the operator algebra. Due to the generality of the task of the system U and
the flexibility of the GNS-construction for each particular implementation of the operator
algebra (the so-called “dressing” of the C∗-algebra), we obtain our (corresponding to this
implementation) spectrum of states of the system U (thus, in the case when the generators of
the fundamental symmetry group (G f = SO0(1, 3) is the Lorentz group) attached to H are
generators of the complex shell of the group algebra sl(2,C) (see Appendix A), we obtain a
linearly growing spectrum of state masses (“elementary particles”) [14]. In this case, the
“dressing” of the operator algebra and the construction of the cyclic representations of the
GNS-construction are carried out in the framework of spinor structure (charged, neutral,
truly neutral (Majorana) states and their discrete symmetries set through morphisms of the
spinor structure, see [15–20]). In [14] it is shown that the masses of “elementary particles”
are multiples of the mass of the electron with an accuracy of 0.41%. Here there is a direct
analogy with the electric charge. Any electric charge is a multiple of the charge of the
electron and a multiple of exactly. If any electric charge is absolutely a multiple of the
electron charge, then in the case of masses, this multiplicity takes place with an accuracy
of 0.41% (on average)). In Section 2 of this article, a conformal group is considered as a
fundamental symmetry group (G f = SO(2, 4)). In this case, the concrete implementation of
the operator C∗-algebra is given by means of the generators of the complex shell of the group
algebra so(2, 4) attached to H and the twistor structure associated with group SU(2, 2) (the
double covering of the conformal group). The complex shell of the algebra so(2, 4) leads to
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a representation F+
ss′ of the Rumer–Fet group, within which a group theoretical description

of the periodic system of elements is given (Section 2). At this point, atoms are considered
as states (discrete stationary states) of the matter spectrum (a term introduced by Heisenberg
in the book [21] with reference to particle physics), each atom is given by a state vector of
the physical Hilbert space, in which a symmetry group acts, translating some state vectors
into others (that is, a group that specifies quantum transitions between elements of the
periodic system). In Section 4, the Seaborg table (eight-periodic extension of the Mendeleev
table) is formulated in the framework of the basic representation of the Rumer–Fet group
for two different group chains, which specify the split of the main multiplet into smaller
multiplets. It also calculates the average mass of the multiplets included in the Seaborg
table (in addition to those multiplets that belong to the Mendeleev table with the exception
of the elements Uue and Ubn). In Section 4 the mass formula is introduced to allow a
termwise mass splitting for the basic representation of the Rumer–Fet group. The masses of
elements are calculated starting from the atomic number Z = 3 to Z = 220 (except for the
doublet containing hydrogen H and helium He). In Section 5 the 10-periodic extension of
the Mendeleev table is studied. The multiplet structure of the extended table is considered
in detail. It is shown that the period lengths of the system of elements are determined by
the structure of the basic representation of the Rumer–Fet group. The theoretical masses of
the elements of the 10th and 11th periods are calculated. In Section 6, quantum transitions
between state vectors of the physical Hilbert space, formed by the set of elements of the
periodic system, are considered.

It is possible to imagine an electron in any way: whether as a point (particle or
wave), a charged ball or as an electron cloud on an atomic orbital, all these mental images
only obscure the essence of the matter because they remain within the framework of
visual-spatial representations. However, there is a mathematical structure that is far from
visualization and yet accurately describes the electron: it is a two-component spinor, the
vector of the fundamental representation of the double covering SL(2,C) ' Spin+(1, 3) of
the Lorentz group. Similarly, apart from any visual representations of the atom, it can be
argued that the meaning is only the mathematical structure, which is directly derived from
the symmetry group of the periodic system. In Section 7, it is shown that such structure is a
hypertwistor acting in the K-Hilbert space H8 ⊗H∞.

Bohr’s model does not explain the periodicity but only approximates it within the
framework of one-electronic Hartree approximation. Apparently, the explanation of the
periodic law lies on the path indicated by Fock; that it is necessary to go beyond the classical
(space-time) representations in the description of the periodic system of elements. It is
obvious that the most suitable scheme of description in this way is the group-theoretic
approach.

2. Single Quantum System and Rumer–Fet Group

As already noted in the introduction, the starting point of the construction of the
group theoretical description of the periodic system of elements is the concept of a single
quantum system U. Following Heisenberg, we assume that at the fundamental level, the
definition of the system U is based on two concepts: energy and symmetry. Let us define a
single quantum system U by means of the following axioms:

A.I (Energy and fundamental symmetry) A single quantum system U at the fundamental
level is characterized by a C∗-algebra A with a unit consisting of the energy operator H and
the generators of the fundamental symmetry group G f attached to H, forming a common
system of eigenfunctions with H.

A.II (States and GNS construction) The physical state of a C∗-algebra A is determined by the
cyclic vector |Φ〉 of the representation π of a C∗-algebra in a separable Hilbert space H∞:

ωΦ(H) =
〈Φ | π(H)Φ〉
〈Φ | Φ〉 .
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The set PS(A) of all pure states of a C∗-algebra A coincides with the set of all states ωΦ(H)
associated with all irreducible cyclic representations π of an algebra A, |Φ〉 ∈ H∞ (Gelfand–
Naimark–Segal construction).

A.III (Physical Hilbert space) The set of all pure states ωΦ(H) under the condition ωΦ(H) ≥ 0
forms a physical Hilbert space Hphys (in general, the space Hphys is nonseparable). For each
state vector |Ψ〉 ∈ Hphys there is a unit ray Ψ = eiα|Ψ〉, where α runs through all real
numbers and

√
〈Ψ|Ψ〉 = 1. The ray space is a quotient-space Ĥ = Hphys/S1, that is, the

projective space of one-dimensional subspaces of Hphys. All states of a single quantum system
U are described by the unit rays.

A.IV (Axiom of spectrality) In Ĥ there is a complete system of states with non-negative energy.
A.V (Superposition principle) The basic correspondence between physical states and elements of

space Ĥ involves the superposition principle of quantum theory; that is, there is a set of basic
states such that arbitrary states can be constructed from them using linear superpositions.

We choose a conformal group as the fundamental symmetry. The conformal group
occurs in modern physics in a wide variety of situations and is essentially as universal
as the Lorentz group; there are many relativistic theories and, similarly, conformal ones
(moreover, as Segal showed [22], the Lie algebra of an inhomogeneous Lorentz group (that
is, a Poincaré group) can be obtained by the deformation of a conformal Lie algebra. In turn,
the conformal Lie algebra is “rigid”; that is, it cannot be obtained by deforming another Lie
algebra. Because of this property, the conformal algebra (the algebra of a non-compact real
pseudo-orthogonal group in a six-dimensional space with signature (−,−,−,−,+,+)) has
a unique (complete) character and occupies a special place among other algebras).

2.1. Rumer–Fet Group

In the previous section, we defined a conformal group as the fundamental symmetry.
The next logical step is to construct a concrete implementation of the operator algebra. We
begin this construction by defining a complex shell of a group algebra so(2, 4) that leads
to a basic representation F+

ss′ of the Rumer–Fet group (the first work in this direction is [3],
where a striking similarity between the structure of the system of chemical elements and
the structure of the energy spectrum of the hydrogen atom was noted. This similarity is
explained in [3] within the framework of the Fock representation F [23] for group Spin(4)
(the double covering of group SO(4)). However, the main drawback of the description
in [3] is the reducibility of the representation F, which did not allow the consideration of
the system as “elementary” in the sense of group mechanics. In 1972, Konopelchenko [24]
extended the Fock representation F to the representation F+ of the conformal group, thus
eliminating the above drawback. Further, based on the connection with the Madelung
numbering, Fet defines the F+

s and F+
ss′ representations (to define the F+

ss′ representation,
Madelung’s “lexicographic rule” had to be changed). After a rather long period of oblivion
(totally undeserved), interest in the Rumer–Fet model will resume (see Kibler [25])).

As is known [26], a system of fifteen generators of the conformal group SO0(2, 4)
satisfies the following commutativity relations:

[
Lαβ,Lγδ

]
= i
(

gαδLβγ + gβγLαδ − gαγLβδ − gβδLαγ

)
,

(α, β, γ, δ = 1, . . . , 6, α 6= β, γ 6= δ).

Generators Lαβ form a basis of the group algebra so(2, 4). In order to move to the
complex shell of the algebra so(2, 4), consider another system of generators proposed by
Tsu Yao [26,27]. Let

J1 = 1/2(L23 − L14), J2 = 1/2(L31 − L24), J3 = 1/2(L12 − L34),

K1 = 1/2(L23 + L14), K2 = 1/2(L31 + L24), K3 = 1/2(L12 + L34),

P1 = 1/2(−L35 − L16), P2 = 1/2(L45 − L36), P0 = 1/2(−L34 − L56),
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Q1 = 1/2(L35 − L46), Q2 = 1/2(L45 + L36), Q0 = 1/2(L34 − L56),

S1 = 1/2(−L15 + L26), S2 = 1/2(−L25 − L16), S0 = 1/2(L12 − L56),

T1 = 1/2(−L15 − L26), T2 = 1/2(L25 − L16), T0 = 1/2(−L12 − L56). (1)

This system of eighteen generators is tied by the three relations

J3 −K3 = P0 −Q0, J3 +K3 = S0 −T0, P0 +Q0 = S0 +T0. (2)

In virtue of the independence of the generators Lαβ (α < β), system (1) defines a
surplus system of generators of SO0(2, 4), from which we can obtain the basis of so(2, 4),
excluding three generators by means of (2).

Introducing the generators

J± = J1 ± iJ2, P± = P1 ± iP2, S± = S1 ± iS2,

K± = K1 ± iK2, Q± = Q1 ± iQ2, T± = T1 ± iT2, (3)

we come to the complex shell of the algebra so(2, 4).
Then

[J3, J+] = J+, [J3, J−] = −J−, [J+, J−] = 2J3,

[K3,K+] = K+, [K3,K−] = −K−, [K+,K−] = 2K3,

[P0,P+] = P+, [P0,P−] = −P−, [P+,P−] = −2P0,

[Q0,Q+] = Q+, [Q0,Q−] = −Q−, [Q+,Q−] = −2Q0,

[S0,S+] = S+, [S0,S−] = −S−, [S+,S−] = −2S0,

[T0,T+] = T+, [T0,T−] = −T−, [T+,T−] = −2T0,
[
Ji,Kj

]
= 0 (i, j = +,−, 3),

[J+,P+] = 0, [J+,P−] = −T−, [J+,P0] = −1/2J+,

[J−,P+] = T+, [J−,P−] = 0, [J−,P0] = 1/2J−,

[J3,P+] = 1/2P+, [J3,P−] = −1/2P−, [J3,P0] = 0,

[J+,Q+] = S+, [J+,Q−] = 0, [J+,Q0] = 1/2J+,

[J−,Q+] = 0, [J−,Q−] = −S−, [J−,Q0] = −1/2J−,

[J3,Q+] = −1/2Q+, [J3,Q−] = 1/2Q−, [J3,Q0] = 0,

[J+,S+] = 0, [J+,S−] = −Q−, [J+,S0] = −1/2J+,

[J−,S+] = Q+, [J−,S−] = 0, [J−,S0] = 1/2J−,

[J3,S+] = 1/2S+, [J3,Q−] = −1/2S−, [J3,S0] = 0,

[J+,T+] = P+, [J+,T−] = 0, [J+,T0] = 1/2J+,

[J−,T+] = 0, [J−,T−] = −P−, [J−,T0] = −1/2J−,

[J3,T+] = −1/2T+, [J3,T−] = 1/2T−, [J3,T0] = 0,

[K+,P+] = −S+, [K+,P−] = 0, [K+,P0] = 1/2K+,

[K−,P+] = 0, [K−,P−] = S−, [K−,P0] = −1/2K−,

[K3,P+] = −1/2P+, [K3,P−] = 1/2P−, [K3,P0] = 0,

[K+,Q+] = 0, [K+,Q−] = T−, [K+,Q0] = −1/2K+,

[K−,Q+] = −T+, [K−,Q−] = 0, [K−,Q0] = 1/2K−,
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[K3,Q+] = 1/2Q+, [K3,Q−] = −1/2Q−, [K3,Q0] = 0,

[K+,S+] = 0, [K+,S−] = P−, [K+,S0] = −1/2K+,

[K−,S+] = −P+, [K−,S−] = 0, [K−,S0] = 1/2K−,

[K3,S+] = 1/2S+, [K3,S−] = −1/2S−, [K3,S0] = 0,

[K+,T+] = −Q+, [K+,T−] = 0, [K+,T0] = 1/2K+,

[K−,T+] = 0, [K−,T−] = Q−, [K−,T0] = −1/2K−,

[K3,T+] = −1/2T+, [K3,T−] = 1/2T−, [K3,T0] = 0,
[
Pi,Qj

]
= 0 (i, j = +,−, 0),

[P+,S+] = 0, [P+,S−] = K−, [P+,S0] = −1/2P+,

[P−,S+] = −K+, [P−,S−] = 0, [P−,S0] = 1/2P−,

[P0,S+] = 1/2S+, [P0,S−] = −1/2S−, [P0,S0] = 0,

[P+,T+] = 0, [P+,T−] = −J+, [P+,T0] = −1/2P+,

[P−,T+] = J−, [P−,T−] = 0, [P−,T0] = 1/2P−,

[P0,T+] = 1/2T+, [P0,T−] = −1/2T−, [P0,T0] = 0,

[Q+,S+] = 0, [Q+,S−] = −J−, [Q+,S0] = −1/2Q+,

[Q−,S+] = J+, [Q−,S−] = 0, [Q−,S0] = 1/2Q−,

[Q0,S+] = 1/2S+, [Q0,S−] = −1/2S−, [Q0,S0] = 0,

[Q+,T+] = 0, [Q+,T−] = K+, [Q+,T0] = −1/2Q+,

[Q−,T+] = −K−, [Q−,T−] = 0, [Q−,T0] = 1/2Q−,

[Q0,T+] = 1/2T+, [Q0,T−] = −1/2T−, [Q0,T0] = 0,
[
Si,Tj

]
= 0 (i, j = +,−, 0).

Let us consider a special representation of the conformal group SO0(2, 4), which is
analogous to the van der Waerden representation (A5) for the Lorentz group SO0(1, 3)
(see Appendix A). This local representation of SO0(2, 4) is related immediately to the
Fock representation for group SO(4) (see Appendix B). In essence, this representation
is an extension of the Fock representation for SO(4) to the unitary representation of the
conformal group SO0(2, 4) in the Fock space F by the basis (A7). Using generators (3) of the
complex shell of the algebra so(2, 4), we obtain

J−|j, σ, τ〉 =
√
(j + σ)(j− σ + 1)|j, σ− 1, τ〉,

J+|j, σ, τ〉 =
√
(j− σ)(j + σ + 1)|j, σ + 1, τ〉,

J3|j, σ, τ〉 = σ|j, σ, τ〉,
K−|j, σ, τ〉 =

√
(j + τ)(j− τ + 1)|j, σ, τ − 1〉,

K+|j, σ, τ〉 =
√
(j− τ)(j + τ + 1)|j, σ, τ + 1〉,

K3|j, σ, τ〉 = τ|j, σ, τ〉,
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P−|j, σ, τ〉 = −i
√
(j + σ)(j− τ)

∣∣∣∣j−
1
2

, σ− 1
2

, τ +
1
2

〉
,

P+|j, σ, τ〉 = i
√
(j− τ + 1)(j + σ + 1)

∣∣∣∣j +
1
2

, σ +
1
2

, τ − 1
2

〉
,

P0|j, σ, τ〉 =
(

j +
σ− τ + 1

2

)
σ|j, σ, τ〉,

Q−|j, σ, τ〉 = i
√
(j + τ)(j− σ)

∣∣∣∣j−
1
2

, σ +
1
2

, τ − 1
2

〉
, (4)

Q+|j, σ, τ〉 = −i
√
(j− σ + 1)(j + τ + 1)

∣∣∣∣j +
1
2

, σ− 1
2

, τ +
1
2

〉
,

Q0|j, σ, τ〉 =
(

j− σ− τ − 1
2

)
|j, σ, τ〉,

S−|j, σ, τ〉 = i
√
(j + σ)(j + τ)

∣∣∣∣j−
1
2

, σ− 1
2

, τ − 1
2

〉
,

S+|j, σ, τ〉 = −i
√
(j + τ + 1)(j + σ + 1)

∣∣∣∣j +
1
2

, σ +
1
2

, τ +
1
2

〉
,

S0|j, σ, τ〉 =
(

j +
σ + τ + 1

2

)
σ|j, σ, τ〉,

T−|j, σ, τ〉 = −i
√
(j− τ)(j− σ)

∣∣∣∣j−
1
2

, σ +
1
2

, τ +
1
2

〉
,

T+|j, σ, τ〉 = i
√
(j− σ + 1)(j− τ + 1)

∣∣∣∣j +
1
2

, σ− 1
2

, τ − 1
2

〉
,

T0|j, σ, τ〉 =
(

j− σ + τ − 1
2

)
|j, σ, τ〉.

Formula (4) defines a unitary representation of the conformal group SO0(2, 4) in the
Fock space F. Formula (4) includes the formulas for Jk, Kk, giving representations of Φn
in subspaces Fn (see (A6), where j1 = j2 = j) and thus the Fock representation Φ on
the subgroup SO(4). Moreover, if we restrict SO0(2, 4) to a subgroup SO0(1, 3) (Lorentz
group), we obtain the van der Waerden representation (A5) given by the generators Xk, Yk,
which proves the similarity of the complex shells of the group algebras so(2, 4) and sl(2,C).
The representation, defined by (4), is called an extension F+ of the Fock representation on the
conformal group [26]. However, the representation F+ is insufficient for the description of
the periodic system of elements. With that end in view, it is necessary to include a fourth
Madelung number s (which is analogous to spin) that leads to a group (the first “doubling”)

SO(2, 4)⊗ SU(2). (5)

A representation F+
s = ϕ2 ⊗ F+ of the group (5), where ϕ2 is a unitary representation

of group SU(2) in space C(2), already satisfies this requirement (inclusion of the Madelung
number s). A basis of the space F2 = C(2)⊗ F of the representation F+

s has the form

|n, l, m, s〉, n = 1, 2, . . . ; l = 0, 1, . . . , n− 1;

m = −l,−l + 1, . . . , l − 1, l; s = −1/2, 1/2. (6)

Here n, l, m are quantum numbers of the conformal group.
Let τk be generators of the Lie algebra of SU(2); then a generator τ3 commutes with all

of the generators of the subgroup SO(2, 4)⊗ 1. For that reason, generators R0, L2, J3 +K3,
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τ3 commute with each other. Eigenvectors of the operators, representing these generators
in the space F2, have the form

∣∣∣∣n, l, m,
1
2

〉
=

[
Ψ1

nlm
0

]
,
∣∣∣∣n, l, m,−1

2

〉
=

[
0

Ψ2
nlm

]

with eigenvalues n, l(l + 1), m, 1
2 and n, l(l + 1), m, − 1

2 . An action of the operators,
representing generators τ+, τ−, τ3 in the space F2, is defined by the following formulas:

τ+

∣∣∣∣n, l, m,−1
2

〉
=

∣∣∣∣n, l, m,
1
2

〉
, τ−

∣∣∣∣n, l, m,
1
2

〉
=

∣∣∣∣n, l, m,−1
2

〉
,

τ3|n, l, m, s〉 = s|n, l, m, s〉.
In virtue of the Madelung numbering, the basis |n, l, m, s〉 stands in one-to-one corre-

spondence with the elements of the periodic system. A relationship between the arrange-
ment of the elements in the Mendeleev table and a number collection (n, l, m, s) is defined by
a so-called Madelung “lexicographic rule” Z ↔ (n, l, m, s) (Erwin Madelung was the first to
apply “hydrogen” quantum numbers n, l, m, s to the numbering of elements of the periodic
table. It should be noted that the numbers n, l, m, s are not quantum numbers in Bohr’s
model, because in this model, there is no single quantum-mechanical description of the
system of elements, the latter is assigned an atomic number Z, distinguishing rather than
combining individual quantum systems. The resulting classification of elements Madelung
called “empirical” because he could not connect it with the Bohr model. Apparently, it
was because of the lack of theoretical justification at the time (the 1920s), he published it
as a reference material in [28]. Theoretical justification (understanding of the nature of
Madelung numbers) was later given by Fet [26] from the position of group-theoretic vision.
The history of Madelung numbers was also developed in a slightly different direction in
the works of Kleczkowski [29], where the filling of the electronic levels of the atom was
considered according to the rule of the sequential filling of (n + l)-groups (the so-called
Madelung–Kleczkowski groups)):

(1) elements are arranged in increasing order of atomic number Z;
(2) collections (n, l, m, s) are arranged in increasing order of n + l; at the given n + l in

increasing order of n; at the given n + l, n in increasing order of m; at the given n + l,
n, m in increasing order of s;

(3) the Z-th element corresponds to Z-th collection.

In Madelung numbering, the sum n + l does not have a group sense: it is a sum of the
quantum number n (an eigenvalue of the operator R0 = −L56) and the number l, which
is not a quantum number. In this case, a quantum number is l(l + 1) (an eigenvalue of
the operator L2 = L2

12 + L2
23 + L2

31), and l only defines this quantum number. Therefore, in
accordance with the group theoretical viewpoint, the number n+ l should be excluded from
the formulation of the “lexicographic rule”. In [26], Fet introduced a new quantum number
ν, which is equal to ν = 1/2(n + l + 1) for the odd value of n + l and ν = 1/2(n + l) for
the even value of n + l. The introduction of the quantum number ν allows us to change
Madelung numbering, which leads to the following “lexicographic rule” (Fet rule):

(1) the elements are arranged in increasing order of atomic number Z;
(2) collections (ν, λ, µ, s, s′) are arranged in increasing order of ν; at the given ν in in-

creasing order of s′; at the given ν, s′ in decreasing order of λ; at the given ν, s′, λ in
increasing order of µ; at the given ν, s′, λ, µ in increasing order of s;

(3) the Z-th element corresponds to Z-th collection.

The introduction of the fifth quantum number leads to another (second) “doubling” of
the representation space. In this space, we have the Rumer–Fet group

SO(2, 4)⊗ SU(2)⊗ SU(2)′. (7)



Symmetry 2022, 14, 137 10 of 41

A representation F+
ss′ = ϕ′2 ⊗ F+

s of the group (7), where ϕ′2 is a unitary representation
of group SU(2)′ in the space C(2), satisfies the requirement of inclusion of the fifth quantum
number. A basis of the space F4 = C(2)⊗ F2 of the representation F+

ss′ has the form

|ν, λ, µ, s, s′〉, ν = 1, 2, . . . ; λ = 0, 1, . . . , ν− 1;

µ = −λ,−λ + 1, . . . , λ− 1, λ; s = −1/2, 1/2, s′ = −1/2, 1/2. (8)

Let τ′k be generators of the Lie algebra SU(2)′; then the generator τ′3 commutes
with the all generators of the subgroup SO(2, 4) ⊗ SU(2) ⊗ 1. Therefore, generators
R0 = −L56 = P0 + Q0 = S0 + T0, L2, J3 + K3, τ3, τ′3 commute with the each other.
Common eigenvectors of the operators, which represent these generators in the space F4,
have the form

∣∣∣∣ν, λ, µ, s,+
1
2

〉
=




Ψ1
νλ,µ

Ψ2
νλ,µ
0
0


,

∣∣∣∣ν, λ, µ, s,−1
2

〉
=




0
0

Ψ3
νλ,µ

Ψ4
νλ,µ




with eigenvalues ν, λ(λ + 1), µ, s, 1
2 and ν, λ(λ + 1), µ, s, − 1

2 .
An action of the operators, representing the generators τ+, τ−, τ3 and τ′+, τ′−, τ′3 in

the space F4, is defined by the following formulas:

τ+

∣∣∣∣ν, λ, µ,−1
2

, s′
〉

=

∣∣∣∣ν, λ, µ,
1
2

, s′
〉

, τ−

∣∣∣∣ν, λ, µ,
1
2

, s′
〉

=

∣∣∣∣ν, λ, µ,−1
2

, s′
〉

,

τ3
∣∣ν, λ, µ, s, s′

〉
= s
∣∣ν, λ, µ, s, s′

〉
.

τ′+

∣∣∣∣ν, λ, µ, s,−1
2

〉
=

∣∣∣∣ν, λ, µ, s,
1
2

〉
, τ′−

∣∣∣∣ν, λ, µ, s,
1
2

〉
=

∣∣∣∣ν, λ, µ, s,−1
2

〉
,

τ′3
∣∣ν, λ, µ, s, s′

〉
= s′

∣∣ν, λ, µ, s, s′
〉
.

The “addresses” of the elements (see Figure 1) are defined by a collection of quantum
numbers of the Rumer–Fet group (7), which are numbering basis vectors |ν, λ, µ, s, s′〉 of
the space F4. Generators of the Lie algebra of SO(2, 4) act on the quantum numbers ν, λ, µ
by means of formula (4), with a replacement of n, l, m via ν, λ, µ.

There is the following chain of groups:

G ⊃ G1 ⊃ G2 7−→ SO(2, 4)⊗ SU(2)⊗ SU(2) ⊃ SO(4)⊗ SU(2) ⊃ SO(3)⊗ SU(2). (9)

The reduction of the basic representation F+
ss′ of the Rumer–Fet group on the subgroups

is realized in accordance with the chain (9). Therefore, multiplets of a subgroup SO(3)⊗
SU(2) are represented by vertical rectangles in Figure 1, and their elements compose
well-known s, p, d and f -families (in particular, lanthanides and actinides are selected
as multiplets of the subgroup SO(3) ⊗ SU(2)). Each element occupies quite a definite
place, which is defined by its “address” in the table (ν, λ, µ, s, s′); that is, by corresponding
quantum numbers of the symmetry group. Thus, atoms of all possible elements stand in
one-to-one correspondence with the vectors of the basis (8).
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ν=1︷ ︸︸ ︷
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Figure 1. Mendeleev table in the form of the basic representation F+
ss′ of the Rumer-Fet group

SO(2, 4)⊗ SU(2)⊗ SU(2)′. The Periodic Table in this form first appeared in [3] with the exception
of elements typed in bold.

2.2. Mendeleev Table

In Figure 1 we mark by bold script the elements that had not yet been discovered or
received their official names during lifetime of Rumer and Fet. These elements belong the
last column of Figure 1 with the quantum numbers ν = 4 and s′ = 1/2: Db – Dubnium,

Figure 1. Mendeleev table in the form of the basic representation F+
ss′ of the Rumer–Fet group

SO(2, 4)⊗ SU(2)⊗ SU(2)′. The Periodic Table in this form first appeared in [3], with the exception of
elements typed in bold.

2.2. Mendeleev Table

In Figure 1, we mark the elements that had not yet been discovered or received their of-
ficial names during the lifetimes of Rumer and Fet in bold script. These elements belong to
the last column of Figure 1 with the quantum numbers ν = 4 and s′ = 1/2: Db—Dubnium,
Sg—Seaborgium, Bh—Bohrium, Hs—Hassium (eka-osmium), Mt—Meitnerium,
Ds—Darmstadtium, Rg—Roentgenium, Cn—Copernicium (eka-mercury). All these el-
ements belong to a multiplet with a quantum number λ = 2. A multiplet with λ = 1
(ν = 4, s′ = 1/2) consists of recently discovered elements: Nh—Nihonium (eka-thallium),
Fl—Flerovium (eka-lead), Mc—Moscovium (eka-bismuth), Lv—Livermorium (eka-
polonium), Ts—Tennessine (eka-astatine), Og—Oganesson (eka-radon). Further, a mul-
tiplet with a quantum number λ = 0 (ν = 4, s′ = 1/2) is formed by undetected yet
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hypothetical elements, Uue—Ununennium (eka-francium), with a supposed atomic mass
of 316 a.u. and Ubn—Unbinillium (eka-radium). All the enumerated elements accomplish
the filling of the Mendeleev table (from the 1st to 120th number), inclusive of the value of
quantum number ν = 4.

Let us calculate the masses of the hypothetical elements Uue and Ubn. Before we
proceed, we calculate the average masses of the multiplets belonging to the Mendeleev
table. With this aim in view, we use a mass formula proposed in [26]:

m = m0 + a
[

s′(2ν− 3)− 5ν +
11
2

+ 2(ν2 − 1)
]
− b · λ(λ + 1), (10)

where m0, a, b are the coefficients that are underivable from the theory. This formula is
analogous to a Gell-Mann–Okubo formula for the hadrons in SU(3)-theory [30,31], and
also to a Bég-Singh formula in SU(6)-theory [32]. The formula (10) is analogous to the
“first perturbation” in SU(3) and SU(6)-theories, which allows the calculation of an average
mass of the elements of the multiplet (an analog of the “second perturbation” for the
Rumer–Fet group, which leads to the mass splitting inside the multiplet, we will give in
Section 4). Table 1 contains the average masses of “heavy” multiplets (ν = 3, 4) calculated
according formula (10) at m0 = 1, a = 17, b = 5.5. From Table 1, we see that an accuracy
between experimental and theoretical masses rises with the growth of the “weight” of
the multiplet; therefore, formula (10) is asymptotic. An exception is the last multiplet
(ν = 4, s′ = 1/2, λ = 0), consisting of the hypothetical elements Uue and Ubn, which have
masses unconfirmed by experiments.

Table 1. Average masses of “heavy” multiplets.

Multiplet Mass (exp.) Mass (theor.) Approx. %

1. (ν = 3, s′ = −1/2, λ = 2) 55.31 53 −4.36
2. (ν = 3, s′ = −1/2, λ = 1) 76.65 75 −2.2
3. (ν = 3, s′ = −1/2, λ = 0) 86.54 86 −0.63
4. (ν = 3, s′ = 1/2, λ = 2) 99.76 104 4.07
5. (ν = 3, s′ = 1/2, λ = 1) 123.51 126 1.98
6. (ν = 3, s′ = 1/2, λ = 0) 135.12 137 1.37
7. (ν = 4, s′ = −1/2, λ = 3) 154.59 156 0.90
8. (ν = 4, s′ = −1/2, λ = 2) 187.96 189 0.55
9. (ν = 4, s′ = −1/2, λ = 1) 210.21 211 0.37

10. (ν = 4, s′ = −1/2, λ = 0) 224.52 222 −1.13
11. (ν = 4, s′ = 1/2, λ = 3) 244.56 241 −1.48
12. (ν = 4, s′ = 1/2, λ = 2) 273.10 274 0.33
13. (ν = 4, s′ = 1/2, λ = 1) 290.83 296 1.75
14. (ν = 4, s′ = 1/2, λ = 0) 318 * 307 −3.58 *

3. Implementation of the Operator Algebra

As is known, in the foundation of an algebraic formulation of quantum theory, we
have a Gelfand–Naimark–Segal (GNS) construction, which is defined by a canonical corre-
spondence ω ↔ πω between states and cyclic representations of the C∗-algebra [33–35].

Let us suppose that according to the axiom A.I (Section 2) generators of the conformal
group (a fundamental symmetry G f = SO(2, 4) in this context) are attached to the energy
operator H. Therefore, each eigensubspace HE of the energy operator is invariant with
respect to the operators of the representation F+ of the conformal group (it follows from a
similarity of the complex shells of the group algebras sl(2,C), so(4) and so(2, 4)). It allows
us to obtain a concrete implementation (“dressing”) of the operator algebra π(A)→ π(H),
where π ≡ F+. Thus, each possible value of energy (an energy level) is a vector state of the
form (axiom A.II):

ωΦ(H) =
〈Φ | π(H)Φ〉
〈Φ | Φ〉 =

〈Φ | F+(H)Φ〉
〈Φ | Φ〉 ,
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where |Φ〉 is a cyclic vector of the Hilbert space H∞.
Further, in virtue of an isomorphism SU(2, 2) ' Spin+(2, 4) (see Appendix C), we

will consider the universal covering G̃ f as a spinor group. It allows us to associate, in
addition, a twistor structure with each cyclic vector |Φ〉 ∈ H∞. Spintensor representations
of group G̃ f = Spin+(2, 4) form a substrate of finite-dimensional representations τk/2,r/2,
τk/2,r/2 of the conformal group realized in the spaces Sym(k,r) ⊂ S2k+r and Sym(k,r) ⊂ S2k+r ,
where S2k+r is a spinspace. Indeed, a twistor Zα = (sα, sα̇) is a vector of the fundamental
representation of group Spin+(2, 4), where α, α̇ = 0, 1 (see Appendix C). A vector of the
general spintensor representation of group Spin+(2, 4) is

Z =

[
S
S

]
, (11)

where S is a spintensor of the form

S = sα1α2 ...αk
α̇1α̇2 ...α̇r

= ∑ sα1 ⊗ sα2 ⊗ · · · ⊗ sαk ⊗ sα̇1 ⊗ sα̇2 ⊗ · · · ⊗ sα̇r , αi, α̇i = 0, 1; (12)

that is, the vector of the spinspace S2k+r = S2k ⊗ Ṡ2r , where Ṡ2r is a dual spinspace. S is
a spintensor from the conjugated spinspace S2k+r . Symmetrizing each spintensor S and
S in (11), we obtain the symmetric twisttensor Z. In turn, as is known [36], spinspace
is a minimal left ideal of the Clifford algebra C̀ p,q; that is, there is an isomorphism
S2m(K) ' Ip,q = C̀ p,q f , where f is a primitive idempotent of the algebra C̀ p,q, K = f C̀ p,q f
is a division ring for C̀ p,q, m = (p + q)/2. A complex spinspace S2m(C) is a complexifi-
cation C⊗ Ip,q of the minimal left ideal Ip,q of a real subalgebra C̀ p,q. Hence, S2k+r is a
minimal left ideal of the complex algebra C2k ⊗ Ċ2r ' C2(k+r) (for more details see [37,38]).

Now we are in a position that allows us to define a system of basic cyclic vectors
endowed with a complex twistor structure (these vectors correspond to the system of
finite-dimensional representations of the conformal group). Let

| C0, τ0,0(H)Φ〉;
| C2, τ1/2,0(H)Φ〉, | Ċ2, τ0,1/2(H)Φ〉;
| C2 ⊗C2, τ1,0(H)Φ〉, | C2 ⊗ Ċ2, τ1/2,1/2(H)Φ〉, | Ċ2 ⊗ Ċ2, τ0,1(H)Φ〉;
| C2 ⊗C2 ⊗C2, τ3/2,0(H)Φ〉, | C2 ⊗C2 ⊗ Ċ2, τ1,1/2(H)Φ〉,

| C2 ⊗ Ċ2 ⊗ Ċ2, τ1/2,1(H)Φ〉, | Ċ2 ⊗ Ċ2 ⊗ Ċ2, τ0,3/2(H)Φ〉;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

| C0, τ0,0(H)Φ〉;
| C2, τ1/2,0(H)Φ〉, | Ċ2, τ0,1/2(H)Φ〉;
| C2 ⊗C2, τ1,0(H)Φ〉, | C2 ⊗ Ċ2, τ1/2,1/2(H)Φ〉, | Ċ2 ⊗ Ċ2, τ0,1(H)Φ〉;
| C2 ⊗C2 ⊗C2, τ3/2,0(H)Φ〉, | C2 ⊗C2 ⊗ Ċ2, τ1,1/2(H)Φ〉,

| C2 ⊗ Ċ2 ⊗ Ċ2, τ1/2,1(H)Φ〉, | Ċ2 ⊗ Ċ2 ⊗ Ċ2, τ0,3/2(H)Φ〉;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Therefore, in accordance with GNS-construction (axiom A.II), we have complex vector
states of the form

ωc
Φ(H) =

〈Φ | C2(k+r), τk/2,r/2(H)Φ〉
〈Φ | Φ〉 ,

ωc
Φ(H) =

〈Φ | C2(k+r), τk/2,r/2(H)Φ〉
〈Φ | Φ〉 .
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According to (11), the pairs (ωc
Φ(H), ωc

Φ(H)) form neutral states. Further, at execu-
tion of the condition ωc

Φ(H) ≥ 0 (ωc
Φ(H) ≥ 0) a set of all pure states (ωc

Φ(H), ωc
Φ(H))

forms a physical Hilbert space Hphys (axiom A.III) and, correspondingly, a space of rays
Ĥ = Hphys/S1. All the pure states of the physical quantum system U are described by the
unit rays, and at this realization of the operator algebra, these states correspond to atoms of
the periodic system of elements. At this point, there is the superposition principle (axiom
A.V).

Following Heisenberg’s classification [39], all of the sets of symmetry groups G should
be divided into two classes: (1) groups of fundamental (primary) symmetries G f , which partic-
ipate in the construction of state vectors of the quantum system U; (2) groups of dynamic
(secondary) symmetries Gd, which describe approximate symmetries between state vectors
of U. Dynamic symmetries Gd relate different states (state vectors |Ψ〉 ∈ Hphys) between
the quantum system U. The symmetry Gd of the system U can be represented as a quantum
transition between its states (levels of state spectrum of U).

We now show that the Rumer–Fet group has dynamic symmetry. Indeed, group (7)
is equivalent to S̃O(2, 4) ⊗ SU(2) = SU(2, 2) ⊗ SU(2) (see [40]), since one “doubling”
in (7) already actually described by the two-sheeted covering SU(2, 2) of the conformal
group (throughout the article, the term “doubling” occurs many times. “Doubling” (or
Pauli’s “doubling and decreasing symmetry” [39]) is one of the leading principles of group-
theoretic description. Heisenberg notes [41] that all the real symmetries of nature arose as a
consequence of such doubling. “Symmetry decreasing” should be understood as group
reduction; that is, if there is a chain of nested groups G ⊃ G1 ⊃ G2 ⊃ . . . ⊃ Gk and an
irreducible unitary representation P of group G in space Hphys is given; then the reduction
G/G1 of the representation P of group G by subgroup G1 leads to the decomposition
of P into an orthogonal sum of the irreducible representations P

(1)
i of subgroup G1. In

turn, the reduction G1/G2 of the representation of group G1 over subgroup G2 leads to the
decomposition of the representations P(1)

i into irreducible representations P(2)
ij of group G2

and so on (see [42,43]). Thus there is a reduction (“symmetry decreasing” of Pauli) of group
G with high symmetry to lower symmetries of the subgroups). At this point, atoms of
different elements stand in one-to-one correspondence with the vectors belonging the basis
(8) of the space of the representation F+

ss′ . Here we have a direct analog with the physics of
“elementary particles”. According to [44], a quantum system, described by an irreducible
unitary representation of the Poincaré group P , is called an elementary particle. On the other
hand, in accordance with SU(3) and SU(6)-theories, an elementary particle is described
by a vector of an irreducible representation of group SU(3) (or SU(6)). Therefore, we have
two group theoretical interpretations of the elementary particle: as a representation of group
P (group of fundamental symmetry) and as a vector of the representation of the group of
dynamic symmetry SU(3) (or SU(6)). Moreover, the structure of the mass formula (10) for
the Rumer–Fet group is analogous to the Gell-Mann–Okubo and Bég-Singh mass formulas
for the groups SU(3) and SU(6). An action of group Gd = SU(2, 2)⊗ SU(2), which was
lifted into Hphys via a central extension (see, for example, [20,45]), moves state vectors
|Ψ〉 ∈ Hphys, corresponding to different atoms of the periodic system, into each other.

4. Seaborg Table

As is known, the Mendeleev table includes 118 elements, from which 118 elements
have been discovered (the last detected element Og—Oganesson (eka-radon) with the
atomic number Z = 118). Two, as yet undiscovered, hypothetical elements Uue—Ununennium
(eka-francium) with Z = 119 and Ubn—Unbinillium (eka-radium) with Z = 120, begin to
fill the eight period. According to the Bohr model, both elements belong to the s-shell. The
Mendeleev table contains seven periods (rows), including the s, p, d and f -families (shells).
The next (eight) period involves the construction of the g-shell. In 1969, Glenn Seaborg [46]
proposed an eight-periodic table containing the g-shell. The first element of the g-shell is
Ubu (Unbiunium), with the atomic number Z = 121 (superactinide group also starts with
this element). The full number of elements of the Seaborg table is equal to 218.
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No one knows how many elements can be in the periodic system. The Reserford–Bohr
structural model leads to the following restriction (so-called “Bohr model breakdown”) on
the number of physically possible elements. Therefore, for elements with atomic numbers
greater than 137, a “speed” of an electron in 1s orbital is given by

v = Zαc ≈ Zc
137, 036

,

where α is the fine structure constant. Under this approximation, any element with Z > 137
would require 1s electrons to be traveling faster than c. On the other hand, Feynman
pointed out that a relativistic Dirac equation also leads to problems with Z > 137, since
a ground state energy for the electron on the 1s-subshell is given by an expression E =
m0c2

√
1− Z2α2, where m0 is the rest of the mass of the electron. In the case of Z > 137,

an energy value becomes an imaginary number, and, therefore, the wave function of the
ground state is oscillatory; that is, there is no gap between the positive and negative energy
spectra, as in the Klein paradox. For that reason, the 137th element Uts (Untriseptium)
was proclaimed as the “end” of the periodic system; in honor of Feynman, this element
was called Feynmanium (symbol: Fy). As is known, Feynman derived this result with the
assumption that the atomic nucleus is point-like.

Further, the Greiner–Reinhardt solution [47], representing the atomic nucleus by a
charged ball of the radius R = 1, 2A1/3 f m, where A is the atomic mass, moves aside
the Feynman limit to the value Z = 173. For Z ≈ 173 under the action of the electric
field of the nucleus 1s-subshell “dives” into the negative continuum (Dirac sea), which
leads to the spontaneous emission of electron-positron pairs and, as a consequence, to the
absence of neutral atoms above the element Ust (Unsepttrium) with Z = 173. Atoms with
Z > Zcr ≈ 173 are called supercritical atoms. It is supposed that elements with Z > Zcr
could only exist as ions.

As shown earlier, the Seaborg table is an eight-periodic extension of the Mendeleev
table (from the 119th to the 218th element). The Seaborg table contains both “critical”
elements of the Bohr model: Uts (Untriseptium, Z = 137) and Ust (Unsepttrium, Z = 173).
According to the Bohr model, the filling of the g-shell (formation of g-family) begins with
the 121st element. In the Rumer–Fet model [26], the g-shell corresponds to quantum
numbers ν = 5 and λ = 4 of the symmetry group SO(2, 4)⊗ SU(2)⊗ SU(2)′. The Seaborg
table is presented in Figure 2 in the form of the basic representation F+

ss′ of the Rumer–Fet
group. The Mendeleev table (as part of the Seaborg table) is highlighted by a dotted border.
Within the eight-periodic extension (quantum numbers ν = 5, λ = 4), in addition to 20
multiplets of the Mendeleev table, we have 10 multiplets.
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limit to the value Z = 173. For Z ≈ 173 under action of the electric field of the nucleus
1s-subshell “dives” into the negative continuum (Dirac sea), that leads to spontaneous

Figure 2. Seaborg table in the form of the basic representation F+
ss′ of the Rumer–Fet group (basis

|ν, λ, µ, s, s′〉). The dashed frame indicates the Mendeleev table.

Let us calculate the average masses of these multiplets. With this aim in view, we use
mass formula (10). Formula (10) corresponds to the chain of groups (9), according to which
we have a reduction of the basic representation F+

ss′ on the subgroups of this chain; that is, a
partition of the basic multiplets into the lesser multiplets. As noted above, Formula (10)
is analogous to the “first perturbation” in SU(3) and SU(6)-theories, which allows us to
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calculate an average mass of the elements belonging to a given multiplet (therefore, in
SU(3)-theory we have a Gell-Mann–Okubo mass formula

m = m0 + α + βY + γ

[
I(I + 1)− 1

4
Y2
]
+ α′ − β′Q + γ′

[
U(U + 1)− 1

4
Q2
]

,

in which, according to SU(3)/ SU(2)-reduction, quantum numbers (isospin I, hypercharge
Y), standing in the first square bracket, define the “first perturbation” that leads to a so-
called hypercharge mass splitting; that is, a partition of the multiplet of SU(3) into the lesser
multiplets of the subgroup SU(2). A “second perturbation” is defined by the quantum
numbers, standing in the second square bracket (charge Q and isospin U, which, differently
from I, corresponds to other choices of the basis in the subgroup SU(2)), which leads to a
charge mass splitting inside the multiplets of SU(2)). At m0 = 1, a = 17, b = 5.5 from (10)
we obtain the average masses of multiplets (see Table 2).

Table 2. Average masses of multiplets of the Seaborg table.

Multiplet Mass (theor.)

1. (ν = 5, s′ = −1/2, λ = 4) 316
2. (ν = 5, s′ = −1/2, λ = 3) 360
3. (ν = 5, s′ = −1/2, λ = 2) 393
4. (ν = 5, s′ = −1/2, λ = 1) 415
5. (ν = 5, s′ = −1/2, λ = 0) 426
6. (ν = 5, s′ = 1/2, λ = 4) 435
7. (ν = 5, s′ = 1/2, λ = 3) 479
8. (ν = 5, s′ = 1/2, λ = 2) 512
9. (ν = 5, s′ = 1/2, λ = 1) 534

10. (ν = 5, s′ = 1/2, λ = 0) 545

With the aim of obtaining an analog of the “second perturbation”, which leads to
a mass splitting inside the multiplets of group G2 = SO(3) ⊗ SU(2), it needs to find a
subsequent lengthening of the group chain G ⊃ G1 ⊃ G2 (9). Therefore, we need to
find another subgroup G3. Then G2/G3-reduction gives a termwise mass splitting. As
is known, a representation {uO} of group SU(2) compares each rotation O from SO(3)
with the matrix uO from SU(2), and thereby the pair (O, uO); that is, the element of
G2. At the multiplication, (O, uO) give the pairs of the same form: (O1, uO1)(O2, uO2) =
(O1O2, uO1 uO2) = (O1O2, uO1O2), the reverse pairs are analogous: (O, uO)

−1 = (O−1, uO−1).
Therefore, such pairs form subgroup G3 in G2. The subgroup G3 is locally isomorphic to
SO(3). Following Fet, we will denote it via SO(3)c. Further, one-parameter subgroups of
group SO(3) have the form

{
e−iαAk

}
(k = 1, 2, 3); since the representation {uO} converts

them into one-parameter subgroups
{

e−iατk
}

of group SU(2); then the corresponding
one-parameter subgroups in SO(3)c have the form

(
e−iαAk , e−iατk

)
=
(

e−iαAk , 1
)(

1, e−iατk
)

.

Since the matrices A1, A2, A3 correspond to the rotations L23 = J1 + K1, L31 =
J2 +K2, L12 = J3 +K3 in group G (in the basic representation of group G, see Section 2),
the pair

(
e−iαAk , 1

)
is represented by the operator e−iα(Jk+Kk), and the pair

(
1, e−iατk

)

is represented by e−iατk . Thus, one-parameter subgroups of G3 = SO(3)c correspond
to subgroups of operators e−iα(Jk+Kk)e−iατk (k = 1, 2, 3). Irreducible representations of
group G2 = SO(3)⊗ SU(2) are numbered by the collections of quantum numbers (ν, s′, λ).
These representations form vertical rectangles in Figure 2. Each of them is defined by a
fundamental representation of SU(2) and (2λ + 1)-dimensional irreducible representation
of group SO(3). At G2/G3-reduction from such a representation, we obtain an irreducible
representation of the subgroup G3 = SO(3)c, for which a Clebsch–Gordan sequence
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|j1 − j2|, . . ., j1 + j2 with the values j1 = 1/2 and j2 = λ is reduced to two terms λ− 1/2,
λ + 1/2 at λ > 0 and to one term 1/2 at λ = 0. Therefore, at λ > 0, the representation
(ν, s′, λ) of group G2 is reduced to two irreducible representations of subgroup G3 with
dimensionality 2(λ− 1/2) + 1 = 2λ and 2(λ + 1/2) + 1 = 2λ + 2, and at λ = 0 to one
two-dimensional irreducible representation. Thus, at λ > 0, multiplets of subgroup G2
are reduced to two multiplets of subgroup G3. G2/G3-reduction leads to the following
(lengthened) chain of groups:

G ⊃ G1 ⊃ G2 ⊃ G3 7−→
SO(2, 4)⊗ SU(2)⊗ SU(2) ⊃ SO(4)⊗ SU(2) ⊃ SO(3)⊗ SU(2) ⊃ SO(3)c. (13)

The lengthening of the group chain requires the introduction of a new basis whose
vectors belong to the smallest multiplets of symmetry; that is, multiplets of the subgroup
G3. The vectors |ν, λ, µ, s, s′〉 of basis (8), corresponding to group chain (9), do not already
compose a chosen (well-defined) basis, since µ, s do not belong to quantum numbers of
the symmetry group; that is, these vectors do not belong to irreducible spaces of group
G3. The new basis is defined as follows. Since ν, s′, λ are related to the groups G, G1,
G2, they remain quantum numbers of chain (9), and instead, µ, s have new quantum
numbers related to G3. First, quantum number ιλ relates with the Casimir operator of the
subgroup G3, which is equal to ∑3

k=1(τk + Jk +Kk)
2. At this point, two multiplets of G3,

obtained at the G2/G3-reduction, correspond to ιλ = λ− 1/2 and ιλ = λ + 1/2, whence
2λ = 2ιλ + 1, 2λ + 2 = 2ιλ + 1. Another quantum number, κ, is an eigenvalue of the
operator q3 = τ3 + J3 +K3, which belongs to the Lie algebra of group G3 = SO(3)c. Thus,
the new basis, corresponding to the group chain (13), has the form

|ν, s′, λ, ιλ, κ〉, ν = 1, 2, . . . ; s′ = −1/2, 1/2 λ = 0, 1, . . . , ν− 1;

ιλ = λ− 1/2, λ + 1/2 κ = −ιλ,−ιλ + 1, . . . , ιλ − 1, ιλ. (14)

The Seaborg table recorded in basis (14), is shown in Figure 3.

Masses of Elements

The lengthened group chain G ⊃ G1 ⊃ G2 ⊃ G3 (13) allows us to provide a termwise
mass splitting of the basic representation F+

ss′ of the Rumer–Fet group. With this aim in
view, we introduce the following mass formula:

m = m0 + a
[

s′(2ν− 3)− 5ν +
11
2

+ 2(ν2 − 1)
]
− b · λ(λ + 1)+

+ a′
[
2κ − 0, 1666κ3 + 0, 0083κ5 − 0, 0001κ7

]
+
(
b′ιλ

)p − 1, (15)

where

p =

{
0, if ιλ = λ− 1/2;
1, if ιλ = λ + 1/2.

As the “first perturbation”, we have in (15), the Fet formula (10), corresponding to the
group chain (9), where the basic representation F+

ss′ is divided into the multiplets (ν, s′, λ)
with average masses of (ν, s′, λ). An analog of the “second perturbation” in formula (15) is
defined by quantum numbers ιλ, κ, which, according to chain (13), leads to a partition of
the multiplets (ν, s′, λ) into the pair of multiplets of subgroup G3 (G2/G3-reduction), and
thereby we have here a termwise mass splitting.
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Figure 3. The Seaborg table in the form of the basic representation F+
ss′ of the Rumer–Fet group (basis

|ν, s′, λ, ιλ, κ〉).

We now calculate the masses of the elements of the Seaborg table, including the masses
of the elements of the Mendeleev table, since the latter is part of the Seaborg table. For this
purpose, in addition to the average weights of heavy multiplets (see Table 1), we calculate
the average masses of the light multiplets of the Mendeleev table using the Fet formula (10)
for the values m0 = 8, 0, a = 16, 1, b = 5.0. The results are shown in Table 3.
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Table 3. Average masses of the light multiplets of the Mendeleev table.

Multiplet Mass (exp.) Mass (theor.) Approx. %

1. (ν = 1, s′ = −1/2, λ = 0) 2.505
2. (ν = 1, s′ = 1/2, λ = 0) 7.975 8.00 +0.31
3. (ν = 2, s′ = −1/2, λ = 1) 15.335 14.10 −8.05
4. (ν = 2, s′ = −1/2, λ = 0) 23.65 24.10 +1.90
5. (ν = 2, s′ = 1/2, λ = 1) 32.25 30.20 −6.35
6. (ν = 2, s′ = 1/2, λ = 0) 39.59 40.20 +1.54

The accuracy of the description is comparable to that obtained for hadron multiplets,
with the exception of the multiplet (ν = 1, s′ = −1/2, λ = 0) containing H and He.

The masses of the elements of the periodic system, starting from the atomic number
Z = 3 to Z = 20, are calculated according to mass formula (15) at values m0 = 8.0, a = 16.1,
b = 5.0, a′ = 2.15, b′ = 5.3 (light multiplets of the Mendeleev table) and at m0 = 1, a = 17,
b = 5.5, a′ = 1.1, b′ = 3.9 for heavy multiplets, starting from Z = 21 to Z = 120 (see
Table 4). The first column of Table 4 contains the atomic number of the element; in the
second column, we have a generally accepted (according to IUPAC—International Union
of Pure and Applied Chemistry) designation of the element; the third column contains the
quantum numbers of the element defining the vector |ν, s′, λ, ιλ, κ〉 of the basis (14) (recall,
that according to the group-theoretical description, each element of the periodic system
corresponds to the vector |ν, s′, λ, ιλ, κ〉 of the basis (14), thereby forming a single quantum
system); the fourth column shows the experimental mass of the element; the fifth column
contains the theoretical mass of the element calculated using Formula (15); the sixth column
contains the relative error between the experimental and the calculated values.

Table 4. The masses of elements of the Mendeleev table.

Z Element Vector |ν, s′, λ, ιλ, κ〉 Mass (exp.) Mass (theor.) Approx. %

1 H |1,−1/2, 0, 1/2,−1/2〉 1.01
2 He |1,−1/2, 0, 1/2, 1/2〉 4.00
3 Li |1, 1/2, 0, 1/2,−1/2〉 6.94 5.89 −15.19
4 Be |1, 1/2, 0, 1/2, 1/2〉 9.01 10.10 +12.09
5 B |2,−1/2, 1, 1/2,−1/2〉 10.81 11.89 +10.91
6 C |2,−1/2, 1, 1/2, 1/2〉 12.01 16.20 +34.89
7 N |2,−1/2, 1, 3/2,−3/2〉 14.01 15.67 +11.85
8 O |2,−1/2, 1, 3/2,−1/2〉 16.00 18.94 +18.37
9 F |2,−1/2, 1, 3/2, 1/2〉 19.00 23.15 +21.84

10 Ne |2,−1/2, 1, 3/2, 3/2〉 20.18 26.42 +30.92
11 Na |2,−1/2, 0, 1/2,−1/2〉 22.99 21.99 −4.35
12 Mg |2,−1/2, 0, 1/2, 1/2〉 24.31 26.20 +7.77
13 Al |2, 1/2, 1, 1/2,−1/2〉 26.98 28.09 +4.11
14 Si |2, 1/2, 1, 1/2, 1/2〉 28.09 32.30 +14.38
15 P |2, 1/2, 1, 3/2,−3/2〉 30.97 31.77 +2.58
16 S |2, 1/2, 1, 3/2,−1/2〉 32.06 35.04 +9.29
17 Cl |2, 1/2, 1, 3/2, 1/2〉 35.45 39.25 +10.72
18 Ar |2, 1/2, 1, 3/2,−3/2〉 39.95 42.52 +6.43
19 K |2, 1/2, 0, 1/2,−1/2〉 39.10 38.09 −2.58
20 Ca |2, 1/2, 0, 1/2, 1/2〉 40.08 42.30 +5.54
21 Sc |3,−1/2, 2, 3/2,−3/2〉 44.96 50.25 +11.76
22 Ti |3,−1/2, 2, 3/2,−1/2〉 47.90 51.92 +8.39
23 V |3,−1/2, 2, 3/2, 1/2〉 50.94 54.08 +6.16
24 Cr |3,−1/2, 2, 3/2, 3/2〉 52.00 55.75 +7.21
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Table 4. Cont.

Z Element Vector |ν, s′, λ, ιλ, κ〉 Mass (exp.) Mass (theor.) Approx. %

25 Mn |3,−1/2, 2, 5/2,−5/2〉 54.94 58.28 +6.08
26 Fe |3,−1/2, 2, 5/2,−3/2〉 55.85 59.00 +5.64
27 Co |3,−1/2, 2, 5/2,−1/2〉 58.93 60.67 +2.95
28 Ni |3,−1/2, 2, 5/2, 1/2〉 58.70 62.83 +7.03
29 Cu |3,−1/2, 2, 5/2, 3/2〉 63.55 64.49 +1.48
30 Zn |3,−1/2, 2, 5/2, 5/2〉 65.38 65.21 −0.26
31 Ga |3,−1/2, 1, 1/2,−1/2〉 69.72 73.92 +6.02
32 Ge |3,−1/2, 1, 1/2, 1/2〉 72.59 76.08 +4.81
33 As |3,−1/2, 1, 3/2,−3/2〉 74.92 77.10 +2.91
34 Se |3,−1/2, 1, 3/2,−1/2〉 78.96 78.77 −0.24
35 Br |3,−1/2, 1, 3/2, 1/2〉 79.90 80.93 +1.29
36 Kr |3,−1/2, 1, 3/2, 3/2〉 83.80 82.60 −1.43
37 Rb |3,−1/2, 0, 1/2,−1/2〉 85.47 84.92 −0.64
38 Sr |3,−1/2, 0, 1/2, 1/2〉 87.62 87.07 −0.63
39 Y |3, 1/2, 2, 3/2,−3/2〉 88.91 101.25 +13.88
40 Zr |3, 1/2, 2, 3/2,−1/2〉 91.22 102.92 +12.83
41 Nb |3, 1/2, 2, 3/2, 1/2〉 92.91 105.07 +13.09
42 Mo |3, 1/2, 2, 3/2, 3/2〉 95.94 106.75 +11.27
43 Tc |3, 1/2, 2, 5/2,−5/2〉 98.91 109.28 +10.48
44 Ru |3, 1/2, 2, 5/2,−3/2〉 101.07 110.00 +8.83
45 Rh |3, 1/2, 2, 5/2,−1/2〉 102.91 111.67 +8.51
46 Pd |3, 1/2, 2, 5/2, 1/2〉 106.42 113.83 +6.96
47 Ag |3, 1/2, 2, 5/2, 3/2〉 107.87 115.49 +7.06
48 Cd |3, 1/2, 2, 5/2, 5/2〉 112.41 116.21 +3.38
49 In |3, 1/2, 1, 1/2,−1/2〉 114.82 124.92 +8.79
50 Sn |3, 1/2, 1, 1/2, 1/2〉 118.69 127.07 +7.06
51 Sb |3, 1/2, 1, 3/2,−3/2〉 121.75 128.10 +5.21
52 Te |3, 1/2, 1, 3/2,−1/2〉 127.60 129.77 +1.77
53 I |3, 1/2, 1, 3/2, 1/2〉 126.90 131.02 +3.96
54 Xe |3, 1/2, 1, 3/2, 3/2〉 131.30 133.59 +1.74
55 Cs |3, 1/2, 0, 1/2,−1/2〉 132.91 135.92 +2.26
56 Ba |3, 1/2, 0, 1/2, 1/2〉 137.33 138.08 +0.55
57 La |4,−1/2, 3, 5/2,−5/2〉 138.91 152.53 +9.80
58 Ce |4,−1/2, 3, 5/2,−3/2〉 140.12 153.25 +9.37
59 Pr |4,−1/2, 3, 5/2,−1/2〉 140.91 154.92 +9.94
60 Nd |4,−1/2, 3, 5/2, 1/2〉 144.24 157.07 +8.89
61 Pm |4,−1/2, 3, 5/2, 3/2〉 [145] 158.75 +9.48
62 Sm |4,−1/2, 3, 5/2, 5/2〉 150.40 159.46 +6.02
63 Eu |4,−1/2, 3, 7/2,−7/2〉 151.96 164.72 +8.39
64 Gd |4,−1/2, 3, 7/2,−5/2〉 157.25 165.18 +5.04
65 Tb |4,−1/2, 3, 7/2,−3/2〉 158.93 165.90 +4.38
66 Dy |4,−1/2, 3, 7/2,−1/2〉 162.50 167.52 +3.09
67 Ho |4,−1/2, 3, 7/2, 1/2〉 164.93 169.72 +2.90
68 Er |4,−1/2, 3, 7/2, 3/2〉 167.26 171.39 +2.47
69 Tm |4,−1/2, 3, 7/2, 5/2〉 168.93 172.11 +1.88
70 Eu |4,−1/2, 3, 7/2, 7/2〉 173.04 172.58 −0.26
71 Lu |4,−1/2, 2, 3/2,−3/2〉 174.97 186.25 +6.45
72 Hf |4,−1/2, 2, 3/2,−1/2〉 178.49 187.92 +5.28
73 Ta |4,−1/2, 2, 3/2, 1/2〉 180.95 190.07 +5.04
74 W |4,−1/2, 2, 3/2, 3/2〉 183.85 191.75 +4.29
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Table 4. Cont.

Z Element Vector |ν, s′, λ, ιλ, κ〉 Mass (exp.) Mass (theor.) Approx. %

75 Re |4,−1/2, 2, 5/2,−5/2〉 186.21 194.28 +4.33
76 Os |4,−1/2, 2, 5/2,−3/2〉 190.20 195.00 +2.52
77 Ir |4,−1/2, 2, 5/2,−1/2〉 192.22 196.67 +2.31
78 Pt |4,−1/2, 2, 5/2, 1/2〉 195.09 198.82 +1.91
79 Au |4,−1/2, 2, 5/2, 3/2〉 196.97 200.49 +1.79
80 Hg |4,−1/2, 2, 5/2, 5/2〉 200.59 201.21 +0.30
81 Tl |4,−1/2, 1, 1/2,−1/2〉 204.37 209.92 +2.71
82 Pb |4,−1/2, 1, 1/2, 1/2〉 207.20 212.07 +2.35
83 Bi |4,−1/2, 1, 3/2,−3/2〉 208.98 213.10 +1.97
84 Po |4,−1/2, 1, 3/2,−1/2〉 208.98 214.77 +2.77
85 At |4,−1/2, 1, 3/2, 1/2〉 [210] 216.93 +3.30
86 Rn |4,−1/2, 1, 3/2, 3/2〉 222.08 218.60 −1.57
87 Fr |4,−1/2, 0, 1/2,−1/2〉 223.08 220.92 −0.97
88 Ra |4,−1/2, 0, 1/2, 1/2〉 226.03 223.07 −1.31
89 Ac |4, 1/2, 3, 5/2,−5/2〉 227.03 237.53 +4.62
90 Th |4, 1/2, 3, 5/2,−3/2〉 232.04 238.25 +2.67
91 Pa |4, 1/2, 3, 5/2,−1/2〉 231.04 239.92 +3.84
92 U |4, 1/2, 3, 5/2, 1/2〉 238.03 242.07 +1.69
93 Np |4, 1/2, 3, 5/2, 3/2〉 237.05 243.75 +2.82
94 Pu |4, 1/2, 3, 5/2, 5/2〉 244.06 244.46 +0.16
95 Am |4, 1/2, 3, 7/2,−7/2〉 [243] 249.72 +2.76
96 Cm |4, 1/2, 3, 7/2,−5/2〉 247.07 250.19 +1.26
97 Bk |4, 1/2, 3, 7/2,−3/2〉 247.07 250.90 +1.55
98 Cf |4, 1/2, 3, 7/2,−1/2〉 251.08 252.57 +0.59
99 Es |4, 1/2, 3, 7/2, 1/2〉 252.08 254.72 +1.08
100 Fm |4, 1/2, 3, 7/2, 3/2〉 257.09 256.40 −0.27
101 Md |4, 1/2, 3, 7/2, 5/2〉 258.10 257.11 −0.38
102 No |4, 1/2, 3, 7/2, 7/2〉 259.10 257.58 −0.59
103 Lr |4, 1/2, 2, 3/2,−3/2〉 [266] 271.25 +1.93
104 Rf |4, 1/2, 2, 3/2,−1/2〉 267 272.92 +2.22
105 Db |4, 1/2, 2, 3/2, 1/2〉 268 275.07 +2.64
106 Sg |4, 1/2, 2, 3/2, 3/2〉 [269] 276.75 +2.88
107 Bh |4, 1/2, 2, 5/2,−5/2〉 [267] 279.28 +4.60
108 Hs |4, 1/2, 2, 5/2,−3/2〉 [269] 280.00 +4.09
109 Mt |4, 1/2, 2, 5/2,−1/2〉 [278] 281.67 +1.32
110 Ds |4, 1/2, 2, 5/2, 1/2〉 [281] 283.83 +1.01
111 Rg |4, 1/2, 2, 5/2, 3/2〉 [282] 285.50 +1.24
112 Cn |4, 1/2, 2, 5/2, 5/2〉 [285] 286.21 +0.42
113 Nh |4, 1/2, 1, 1/2,−1/2〉 [286] 294.92 +3.12
114 Fl |4, 1/2, 1, 1/2, 1/2〉 [289] 297.08 +2.79
115 Mc |4, 1/2, 1, 3/2,−3/2〉 [290] 298.10 +2.79
116 Lv |4, 1/2, 1, 3/2,−1/2〉 [293] 299.77 +2.31
117 Ts |4, 1/2, 1, 3/2, 1/2〉 [294] 301.92 +2.69
118 Og |4, 1/2, 1, 3/2, 3/2〉 [294] 303.59 +3.26
119 Uue |4, 1/2, 0, 1/2,−1/2〉 305.92
120 Ubn |4, 1/2, 0, 1/2, 1/2〉 308.08

It follows from Table 4 that the masses of the elements are described by Formula (15),
meaning it is better the heavier the element; therefore, this formula can be considered
as asymptotic.

Further, the masses of the elements of the Seaborg table, starting from the atomic
number Z = 121 to Z = 220, are given in Table 5. As noted above, the Seaborg table is
an extension of the Mendeleev table, highlighted in Figure 3 by a dotted border. Table 5
shows the masses of the elements outside the dotted frame. Unlike Table 4, in which
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all elements (with the exception of Uue and Ubn) are actually observable objects (atoms)
with experimentally established mass values, all elements of Table 5 are hypothetical, the
theoretical masses of which are calculated according to mass formula (15) at the values
m0 = 1, a = 17, b = 5.5, a′ = 2.15, b′ = 5.3 (see Table 5).

Table 5. Masses of elements of the Seaborg table.

Z Element Vector |ν, s′, λ, ιλ, κ〉 Mass (theor.)

121 Ubu |5,−1/2, 4, 7/2,−7/2〉 312.07
122 Ubb |5,−1/2, 4, 7/2,−5/2〉 312.59
123 Ubt |5,−1/2, 4, 7/2,−3/2〉 313.25
124 Ubq |5,−1/2, 4, 7/2,−1/2〉 314.92
125 Ubp |5,−1/2, 4, 7/2, 1/2〉 317.07
126 Ubn |5,−1/2, 4, 7/2, 3/2〉 318.75
127 Ubs |5,−1/2, 4, 7/2, 5/2〉 319.46
128 Ubo |5,−1/2, 4, 7/2, 7/2〉 319.93
129 Ube |5,−1/2, 4, 9/2,−9/2〉 326.61
130 Utn |5,−1/2, 4, 9/2,−7/2〉 328.62
131 Utu |5,−1/2, 4, 9/2,−5/2〉 329.08
132 Utb |5,−1/2, 4, 9/2,−3/2〉 329.80
133 Utt |5,−1/2, 4, 9/2,−1/2〉 331.47
134 Utq |5,−1/2, 4, 9/2, 1/2〉 333.63
135 Utp |5,−1/2, 4, 9/2, 3/2〉 335.29
136 Uth |5,−1/2, 4, 9/2, 5/2〉 336.01
137 Uts |5,−1/2, 4, 9/2, 7/2〉 336.48
138 Uto |5,−1/2, 4, 9/2, 9/2〉 338.49
139 Ute |5,−1/2, 3, 5/2,−5/2〉 356.54
140 Uqn |5,−1/2, 3, 5/2,−3/2〉 357.25
141 Uqu |5,−1/2, 3, 5/2,−1/2〉 358.92
142 Uqb |5,−1/2, 3, 5/2, 1/2〉 361.07
143 Uqt |5,−1/2, 3, 5/2, 3/2〉 362.75
144 Uqq |5,−1/2, 3, 5/2, 5/2〉 363.46
145 Uqp |5,−1/2, 3, 7/2,−7/2〉 368.72
146 Uqh |5,−1/2, 3, 7/2,−5/2〉 369.19
147 Uqs |5,−1/2, 3, 7/2,−3/2〉 369.90
148 Uqo |5,−1/2, 3, 7/2,−1/2〉 371.57
149 Uqe |5,−1/2, 3, 7/2, 1/2〉 373.72
150 Upn |5,−1/2, 3, 7/2, 3/2〉 375.39
151 Upu |5,−1/2, 3, 7/2, 5/2〉 376.11
152 Uqb |5,−1/2, 3, 7/2, 7/2〉 376.58
153 Upt |5,−1/2, 2, 3/2,−3/2〉 390.25
154 Upq |5,−1/2, 2, 3/2,−1/2〉 391.92
155 Upp |5,−1/2, 2, 3/2, 1/2〉 394.08
156 Uph |5,−1/2, 2, 3/2, 3/2〉 395.75
157 Ups |5,−1/2, 2, 5/2,−5/2〉 398.28
158 Upo |5,−1/2, 2, 5/2,−3/2〉 399.00
159 Upe |5,−1/2, 2, 5/2,−1/2〉 400.67
160 Uhn |5,−1/2, 2, 5/2, 1/2〉 402.83
161 Uhu |5,−1/2, 2, 5/2, 3/2〉 404.50
162 Uhb |5,−1/2, 2, 5/2, 5/2〉 405.21
163 Uht |5,−1/2, 1, 1/2,−1/2〉 413.92
164 Uhq |5,−1/2, 1, 1/2, 1/2〉 416.07
165 Uhp |5,−1/2, 1, 3/2,−3/2〉 417.10
166 Uhn |5,−1/2, 1, 3/2,−1/2〉 418.77
167 Uhs |5,−1/2, 1, 3/2, 1/2〉 420.93
168 Uho |5,−1/2, 1, 3/2, 3/2〉 422.59
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Table 5. Cont.

Z Element Vector |ν, s′, λ, ιλ, κ〉 Mass (theor.)

169 Uhe |5,−1/2, 0, 1/2,−1/2〉 424.92
170 Usn |5,−1/2, 0, 1/2, 1/2〉 427.08
171 Usu |5, 1/2, 4, 7/2,−7/2〉 431.07
172 Usb |5, 1/2, 4, 7/2,−5/2〉 431.54
173 Ust |5, 1/2, 4, 7/2,−3/2〉 432.55
174 Usq |5, 1/2, 4, 7/2,−1/2〉 433.92
175 Usp |5, 1/2, 4, 7/2, 1/2〉 436.08
176 Ush |5, 1/2, 4, 7/2, 3/2〉 437.75
177 Uss |5, 1/2, 4, 7/2, 5/2〉 438.46
178 Uso |5, 1/2, 4, 7/2, 7/2〉 438.93
179 Use |5, 1/2, 4, 9/2,−9/2〉 445.61
180 Uon |5, 1/2, 4, 9/2,−7/2〉 447.62
181 Uou |5, 1/2, 4, 9/2,−5/2〉 448.09
182 Uob |5, 1/2, 4, 9/2,−3/2〉 448.80
183 Uot |5, 1/2, 4, 9/2,−1/2〉 450.47
184 Uoq |5, 1/2, 4, 9/2, 1/2〉 452.63
185 Uop |5, 1/2, 4, 9/2, 3/2〉 454.30
186 Uoh |5, 1/2, 4, 9/2, 5/2〉 455.01
187 Uos |5, 1/2, 4, 9/2, 7/2〉 455.48
188 Uoo |5, 1/2, 4, 9/2, 9/2〉 457.49
189 Uoe |5, 1/2, 3, 5/2,−5/2〉 475.54
190 Uen |5, 1/2, 3, 5/2,−3/2〉 476.25
191 Ueu |5, 1/2, 3, 5/2,−1/2〉 477.92
192 Ueb |5, 1/2, 3, 5/2, 1/2〉 480.07
193 Uet |5, 1/2, 3, 5/2, 3/2〉 481.75
194 Ueq |5, 1/2, 3, 5/2, 5/2〉 482.46
195 Uep |5, 1/2, 3, 7/2,−7/2〉 487.72
196 Ueh |5, 1/2, 3, 7/2,−5/2〉 488.19
197 Ues |5, 1/2, 3, 7/2,−3/2〉 488.90
198 Ueo |5, 1/2, 3, 7/2,−1/2〉 490.57
199 Uee |5, 1/2, 3, 7/2, 1/2〉 492.73
200 Bnn |5, 1/2, 3, 7/2, 3/2〉 494.40
201 Bnu |5, 1/2, 3, 7/2, 5/2〉 495.11
202 Bnb |5, 1/2, 3, 7/2, 7/2〉 495.58
203 Bnt |5, 1/2, 2, 3/2,−3/2〉 509.25
204 Bnq |5, 1/2, 2, 3/2,−1/2〉 510.92
205 Bnp |5, 1/2, 2, 3/2, 1/2〉 513.08
206 Bnh |5, 1/2, 2, 3/2, 3/2〉 514.75
207 Bns |5, 1/2, 2, 5/2,−5/2〉 517.29
208 Bno |5, 1/2, 2, 5/2,−3/2〉 518.00
209 Bne |5, 1/2, 2, 5/2,−1/2〉 519.67
210 Bun |5, 1/2, 2, 5/2, 1/2〉 521.83
211 Buu |5, 1/2, 2, 5/2, 3/2〉 523.50
212 Bub |5, 1/2, 2, 5/2, 5/2〉 524.21
213 But |5, 1/2, 1, 1/2,−1/2〉 532.92
214 Buq |5, 1/2, 1, 1/2, 1/2〉 535.08
215 Bup |5, 1/2, 1, 3/2,−3/2〉 536.10
216 Buh |5, 1/2, 1, 3/2,−1/2〉 537.77
217 Bus |5, 1/2, 1, 3/2, 1/2〉 539.93
218 Buo |5, 1/2, 1, 3/2, 3/2〉 541.60
219 Bue |5, 1/2, 0, 1/2,−1/2〉 543.92
220 Bbn |5, 1/2, 0, 1/2, 1/2〉 546.08
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5. 10-Periodic Extension

The structure of the symmetry group of the periodic system, which is essentially a
mathematical formulation of the Madelung rule (doubling periods), allows us to further
expand the Mendeleev table, inclusive of 10th and 11th periods, etc. All elements of this
extension are hypothetical. The main purpose of this section is to demonstrate that the
7 periods of the Mendeleev table are only the first steps of a broader mathematical structure.

Figure 4 shows a 10-periodic extension of the Mendeleev table in the form of the
basic representation F+

ss′ of the Rumer–Fet group G for the basis (14). The Mendeleev
and Seaborg tables are separated by dotted frames with the symbols M and S, respec-
tively. The first period of the Mendeleev table, including hydrogen H and helium He,
corresponds to the simplest multiplet (ν = 1, s′ = −1/2, λ = 0, ιλ = 1/2) of group
G. The second period consists of three multiplets: lithium Li and beryllium Be (ν = 1,
s′ = 1/2, λ = 0, ιλ = 1/2), boron B and carbon C (ν = 2, s′ = −1/2, λ = 0, ιλ = 1/2),
elements N, O, F, Ne form a quadruplet (ν = 2, s′ = −1/2, λ = 1, ιλ = 3/2). The
third period consists of three multiplets also (two doublets and one quadruplet): doublet
Na and Mg (ν = 2, s′ = −1/2, λ = 0, ιλ = 1/2), doublet Al and Si (ν = 2, s′ = 1/2,
λ = 1, ιλ = 1/2), quadruplet P, S, Cl, Ar (ν = 2, s′ = 1/2, λ = 1, ιλ = 3/2). The
fourth period includes five multiplets: doublets K, Ca (ν = 2, s′ = 1/2, λ = 0, ιλ = 1/2)
and Ga, Ge (ν = 3, s′ = −1/2, λ = 1, ιλ = 1/2), quadruplets As, Se, Br, Kr (ν = 3,
s′ = −1/2, λ = 1, ιλ = 3/2) and Sc, Ti, V, Cr (ν = 3, s′ = −1/2, λ = 2, ιλ = 3/2), and
also a sextet (ν = 3, s′ = −1/2, λ = 2, ιλ = 5/2) formed by the elements Mn, . . ., Zn.
This sextet and quadruplet (ν = 3, s′ = −1/2, λ = 2, ιλ = 3/2) form the first insertion
decade (transitional elements). The fifth period has an analogous structure: doublets Rb,
Sr (ν = 3, s′ = −1/2, λ = 0, ιλ = 1/2) and In, Sn (ν = 3, s′ = 1/2, λ = 1, ιλ = 1/2),
quadruplet Sb, Te, I, Xe (ν = 3, s′ = 1/2, λ = 1, ιλ = 3/2), quadruplet Y, Zr, Nb, Mo
(ν = 3, s′ = 1/2, λ = 2, ιλ = 3/2) and sextet Tc, . . ., Cd (ν = 3, s′ = 1/2, λ = 2, ιλ = 5/2)
(the second insertion decade). The sixth period consists of seven multiplets: doublets
Cs,Ba (ν = 3, s′ = 1/2, λ = 0, ιλ = 1/2) and Tl, Pb (ν = 4, s′ = −1/2, λ = 1, ιλ = 1/2),
quadruplets Bi, Po, At, Rn (ν = 4, s′ = −1/2, λ = 1, ιλ = 3/2) and Lu, Hf, Ta, W
(ν = 4, s′ = −1/2, λ = 2, ιλ = 3/2), sextets Re, . . ., Hg (ν = 4, s′ = −1/2, λ = 2,
ιλ = 5/2) and La, . . ., Sm (ν = 4, s′ = −1/2, λ = 3, ιλ = 5/2), octet Eu, . . ., Yb (ν = 4,
s′ = −1/2, λ = 3, ιλ = 7/2).
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Figure 4. 10-periodic extension of Mendeleev table in the form of the basic
representation F+

ss′ of the Rumer-Fet group (basis |ν, s′, λ, ιλ, κ〉). Dashed
frames with the symbols M and S denote the Mendeleev and Seaborg tables,
respectively.

The seventh period (the last period of the Mendeleev table) duplicates the structure of
the sixth period: doublets Fr, Ra (ν = 4, s′ = −1/2, λ = 0, ιλ = 1/2) and Nh, Fl (ν =
4, s′ = 1/2, λ = 1, ιλ = 1/2), quadruplets Mc, Lv, Ts, Og (ν = 4, s′ = 1/2, λ = 1, ιλ = 3/2)
and Lr, Rf, Db, Sg (ν = 4, s′ = 1/2, λ = 2, ιλ = 3/2), sextets Bh, . . ., Cn (ν = 4, s′ =

Figure 4. The 10-periodic extension of the Mendeleev table in the form of the basic representation F+
ss′

of the Rumer–Fet group (basis |ν, s′, λ, ιλ, κ〉). Dashed frames with the symbols M and S denote the
Mendeleev and Seaborg tables, respectively.

The seventh period (the last period of the Mendeleev table) duplicates the struc-
ture of the sixth period: doublets Fr, Ra (ν = 4, s′ = −1/2, λ = 0, ιλ = 1/2) and Nh,
Fl (ν = 4, s′ = 1/2, λ = 1, ιλ = 1/2), quadruplets Mc, Lv, Ts, Og (ν = 4, s′ = 1/2,
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λ = 1, ιλ = 3/2) and Lr, Rf, Db, Sg (ν = 4, s′ = 1/2, λ = 2, ιλ = 3/2), sextets Bh, . . .,
Cn (ν = 4, s′ = 1/2, λ = 2, ιλ = 5/2) and Ac, . . ., Pu (ν = 4, s′ = 1/2, λ = 3, ιλ = 5/2),
octet Am, . . ., No (ν = 4, s′ = 1/2, λ = 3, ιλ = 7/2). The eighth period (the domain
of hypothetical (undiscovered) elements of the periodic system begins with the eighth
period), forming an 8-periodic extension of the Mendeleev table (Seaborg table), consists
of nine multiplets: doublets Uue, Ubn (ν = 4, s′ = 1/2, λ = 0, ιλ = 1/2) and Uht, Uhq
(ν = 5, s′ = −1/2, λ = 1, ιλ = 1/2), quadruplets Uhp, . . ., Uho (ν = 5, s′ = −1/2,
λ = 1, ιλ = 3/2) and Upt, . . ., Uph (ν = 5, s′ = −1/2, λ = 2, ιλ = 3/2), sextets Ups, . . .,
Uhb (ν = 5, s′ = −1/2, λ = 2, ιλ = 5/2) and Ute, . . ., Uqq (ν = 5, s′ = −1/2, λ = 3,
ιλ = 5/2), octets Uqp, . . ., Upb (ν = 5, s′ = −1/2, λ = 3, ιλ = 7/2) and Ubu, . . ., Ubo
(ν = 5, s′ = −1/2, λ = 4, ιλ = 7/2), decuplet Ube, . . ., Uto (ν = 5, s′ = −1/2,
λ = 4, ιλ = 9/2). According to the Bohr model, filling of the g-shell is started with
the element Ubu (Unbiunium). An analog of the g-shell in the Rumer–Fet model is a
family of multiplets with quantum number λ = 4 of group G. The eighth period contains
50 elements. The ninth period, finishing the Seaborg table, also contains nine multiplets:
doublets Uhe, Usn (ν = 5, s′ = −1/2, λ = 0, ιλ = 1/2) and But, Buq (ν = 5, s′ = 1/2,
λ = 1, ιλ = 1/2), quadruplets Bup, . . ., Buo (ν = 5, s′ = 1/2, λ = 1, ιλ = 3/2) and
Bnt, . . ., Bnh (ν = 5, s′ = 1/2, λ = 2, ιλ = 3/2), sextets Bns, . . ., Bub (ν = 5, s′ = 1/2,
λ = 2, ιλ = 5/2) and Uoe, . . ., Ueq (ν = 5, s′ = 1/2, λ = 3, ιλ = 5/2), octets Uep, . . ., Bnb
(ν = 5, s′ = 1/2, λ = 3, ιλ = 7/2) and Usu, . . ., Uso (ν = 5, s′ = 1/2, λ = 4, ιλ = 7/2),
decuplet Use, . . ., Uoo (ν = 5, s′ = 1/2, λ = 4, ιλ = 9/2). The construction of a family
of multiplets with the quantum number λ = 5 of group G is started with the tenth pe-
riod (in the Bohr’s model it corresponds to the formation of h-shell). The tenth period
consists of 11 multiplets: doublets Bue, Bbn (ν = 5, s′ = 1/2, λ = 0, ιλ = 1/2) and Bop,
Boh (ν = 6, s′ = −1/2, λ = 1, ιλ = 1/2), quadruplets Bos, . . ., Ben (ν = 6, s′ = −1/2,
λ = 1, ιλ = 3/2) and Bsp, . . ., Bso (ν = 6, s′ = −1/2, λ = 2, ιλ = 3/2), sextets Bse, . . ., Boq
(ν = 6, s′ = −1/2, λ = 2, ιλ = 5/2) and Bhu, . . ., Bhh (ν = 6, s′ = −1/2, λ = 3, ιλ = 5/2),
octets Bhs, . . ., Bsq (ν = 6, s′ = −1/2, λ = 3, ιλ = 7/2) and Bqt, . . ., Bpn (ν = 6, s′ = −1/2,
λ = 4, ιλ = 7/2), decuplets Bpu, . . ., Bhn (ν = 6, s′ = −1/2, λ = 4, ιλ = 9/2) and Bbu,
. . ., Bth (ν = 6, s′ = −1/2, λ = 5, ιλ = 9/2), 12-plet Btu, . . ., Bqb (ν = 6, s′ = −1/2,
λ = 5, ιλ = 11/2). The eleventh period has an analogous structure: doublets Beu, Beb
(ν = 6, s′ = −1/2, λ = 0, ιλ = 1/2) and Tps, Tpo (ν = 6, s′ = 1/2, λ = 1, ιλ = 1/2),
quadruplets Tpe, . . ., Thb (ν = 6, s′ = 1/2, λ = 1, ιλ = 3/2) and Tqs, . . ., Tpn (ν = 6,
s′ = 1/2, λ = 2, ιλ = 3/2), sextets Tpu, . . ., Tph (ν = 6, s′ = 1/2, λ = 2, ιλ = 5/2) and
Ttt, . . ., Tto (ν = 6, s′ = 1/2, λ = 3, ιλ = 5/2), octets Tte, . . ., Tqh (ν = 6, s′ = 1/2,
λ = 3, ιλ = 7/2) and Tup, . . ., Tbb (ν = 6, s′ = 1/2, λ = 4, ιλ = 7/2), decuplets Tbt, . . .,
Ttb (ν = 6, s′ = 1/2, λ = 4, ιλ = 9/2) and Bet, . . ., Tnb (ν = 6, s′ = 1/2, λ = 5, ιλ = 9/2),
12-plet Tnt, . . ., Tuq (ν = 6, s′ = 1/2, λ = 5, ιλ = 11/2). The tenth and eleventh periods
each contain 72 elements. The lengths of periods form the following number sequence:

2, 8, 8, 18, 18, 32, 32, 50, 50, 72, 72, . . . (16)

The numbers of this sequence are defined by the famous Rydberg formula 2p2 (p is an
integer number). The Rydberg series

R = 2(12 + 12 + 22 + 22 + 32 + 32 + 42 + 42 + . . .)

contains a doubled first period, which is somewhat inconsistent with reality; that is, se-
quence (16).

Further, the 12th period begins with the elements Tht (Trihexitrium, Z = 363) and
Thq (Trihexiquadium, Z = 364), forming a doublet (ν = 6, s′ = 1/2, λ = 0, ιλ = 1/2).
This period, already beyond the table in Figure 4, contains 13 multiplets. The length of the
12th period is equal to 98 (in exact correspondence with sequence (16)). A new family of
multiplets with quantum number λ = 6 of group G starts from the 12th period. This family
corresponds to the i-shell filling. The 13th period has an analogous structure.
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Obviously, as the quantum number ν increases, we will see new “steps” (doubled
periods) and corresponding λ-families of multiplets (shells) in Figure 4.

Masses of Elements of 10th and 11th Periods

The table in Figure 4 corresponds to the reduction chain (13). Theoretical masses
of elements of 10th and 11th periods, starting from Z = 221 to Z = 364, are calculated
according to mass formula (15) at the values m0 = 1, a = 17, b = 5.5, a′ = 2.15, b′ = 5.3
(see Table 6).

Table 6. Masses of elements of 10th and 11th periods.

Z Element Vector |ν, s′, λ, ιλ, κ〉 Mass (theor.)

221 Bbu |6,−1/2, 5, 9/2,−9/2〉 527.06
222 Bbb |6,−1/2, 5, 9/2,−7/2〉 529.07
223 Bbt |6,−1/2, 5, 9/2,−5/2〉 529.54
224 Bbq |6,−1/2, 5, 9/2,−3/2〉 530.25
225 Bbp |6,−1/2, 5, 9/2,−1/2〉 531.92
226 Bbh |6,−1/2, 5, 9/2, 1/2〉 534.08
227 Bbs |6,−1/2, 5, 9/2, 3/2〉 535.75
228 Bbo |6,−1/2, 5, 9/2, 5/2〉 536.46
229 Bbe |6,−1/2, 5, 9/2, 7/2〉 536.93
230 Btn |6,−1/2, 5, 9/2, 9/2〉 536.93
231 Btu |6,−1/2, 5, 11/2,−11/2〉 542.64
232 Btb |6,−1/2, 5, 11/2,−9/2〉 547.51
233 Btt |6,−1/2, 5, 11/2,−7/2〉 549.52
234 Btq |6,−1/2, 5, 11/2,−5/2〉 549.99
235 Btp |6,−1/2, 5, 11/2,−3/2〉 550.70
236 Bth |6,−1/2, 5, 11/2,−1/2〉 552.37
237 Bts |6,−1/2, 5, 11/2, 1/2〉 554.53
238 Bto |6,−1/2, 5, 11/2, 3/2〉 556.20
239 Bte |6,−1/2, 5, 11/2, 5/2〉 556.91
240 Bqn |6,−1/2, 5, 11/2, 7/2〉 557.38
241 Bqu |6,−1/2, 5, 11/2, 9/2〉 559.39
242 Bqb |6,−1/2, 5, 11/2, 11/2〉 564.26
243 Bqt |6,−1/2, 4, 7/2,−7/2〉 584.07
244 Bqq |6,−1/2, 4, 7/2,−5/2〉 584.54
245 Bqp |6,−1/2, 4, 7/2,−3/2〉 585.25
246 Bqh |6,−1/2, 4, 7/2,−1/2〉 586.92
247 Bqs |6,−1/2, 4, 7/2, 1/2〉 589.08
248 Bqo |6,−1/2, 4, 7/2, 3/2〉 590.75
249 Bqe |6,−1/2, 4, 7/2, 5/2〉 591.46
250 Bpn |6,−1/2, 4, 7/2, 7/2〉 591.93
251 Bpu |6,−1/2, 4, 9/2,−9/2〉 598.61
252 Bpb |6,−1/2, 4, 9/2,−7/2〉 600.62
253 Bpt |6,−1/2, 4, 9/2,−5/2〉 601.09
254 Bpq |6,−1/2, 4, 9/2,−3/2〉 601.80
255 Bpp |6,−1/2, 4, 9/2,−1/2〉 603.47
256 Bph |6,−1/2, 4, 9/2, 1/2〉 605.63
257 Bps |6,−1/2, 4, 9/2, 3/2〉 607.30
258 Bpo |6,−1/2, 4, 9/2, 5/2〉 608.01
259 Bpe |6,−1/2, 4, 9/2, 7/2〉 608.48
260 Bhn |6,−1/2, 4, 9/2, 9/2〉 610.49
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Table 6. Cont.

Z Element Vector |ν, s′, λ, ιλ, κ〉 Mass (theor.)

261 Bhu |6,−1/2, 3, 5/2,−5/2〉 628.54
262 Bhb |6,−1/2, 3, 5/2,−3/2〉 629.25
263 Bht |6,−1/2, 3, 5/2,−1/2〉 630.92
264 Bhq |6,−1/2, 3, 5/2, 1/2〉 633.08
265 Bhp |6,−1/2, 3, 5/2, 3/2〉 634.75
266 Bhh |6,−1/2, 3, 5/2, 5/2〉 635.46
267 Bhs |6,−1/2, 3, 7/2,−7/2〉 640.72
268 Bho |6,−1/2, 3, 7/2,−5/2〉 641.19
269 Bhe |6,−1/2, 3, 7/2,−3/2〉 641.90
270 Bsn |6,−1/2, 3, 7/2,−1/2〉 643.57
271 Bsu |6,−1/2, 3, 7/2, 1/2〉 645.73
272 Bsb |6,−1/2, 3, 7/2, 3/2〉 647.40
273 Bst |6,−1/2, 3, 7/2, 5/2〉 648.11
274 Bsq |6,−1/2, 3, 7/2, 7/2〉 648.58
275 Bsp |6,−1/2, 2, 3/2,−3/2〉 662.25
276 Bsh |6,−1/2, 2, 3/2,−1/2〉 663.92
277 Bss |6,−1/2, 2, 3/2, 1/2〉 666.08
278 Bso |6,−1/2, 2, 3/2, 3/2〉 667.75
279 Bse |6,−1/2, 2, 5/2,−5/2〉 670.29
280 Bon |6,−1/2, 2, 5/2,−3/2〉 671.00
281 Bou |6,−1/2, 2, 5/2,−1/2〉 672.67
282 Bob |6,−1/2, 2, 5/2, 1/2〉 674.83
283 Bot |6,−1/2, 2, 5/2, 3/2〉 676.50
284 Boq |6,−1/2, 2, 5/2, 5/2〉 677.21
285 Bop |6,−1/2, 1, 1/2,−1/2〉 685.92
286 Boh |6,−1/2, 1, 1/2, 1/2〉 688.08
287 Bos |6,−1/2, 1, 3/2,−3/2〉 689.10
288 Boo |6,−1/2, 1, 3/2,−1/2〉 690.77
289 Boe |6,−1/2, 1, 3/2, 1/2〉 692.93
290 Ben |6,−1/2, 1, 3/2, 3/2〉 694.60
291 Beu |6,−1/2, 0, 1/2,−1/2〉 696.92
292 Beb |6,−1/2, 0, 1/2, 1/2〉 699.08
293 Bet |6, 1/2, 5, 9/2,−9/2〉 680.06
294 Beq |6, 1/2, 5, 9/2,−7/2〉 682.07
295 Bep |6, 1/2, 5, 9/2,−5/2〉 682.54
296 Beh |6, 1/2, 5, 9/2,−3/2〉 683.25
297 Bes |6, 1/2, 5, 9/2,−1/2〉 684.92
298 Beo |6, 1/2, 5, 9/2, 1/2〉 687.08
299 Bee |6, 1/2, 5, 9/2, 3/2〉 688.75
300 Tnn |6, 1/2, 5, 9/2, 5/2〉 689.46
301 Tnu |6, 1/2, 5, 9/2, 7/2〉 689.93
302 Tnb |6, 1/2, 5, 9/2, 9/2〉 691.94
303 Tnt |6, 1/2, 5, 11/2,−11/2〉 695.64
304 Tnq |6, 1/2, 5, 11/2,−9/2〉 700.51
305 Tnp |6, 1/2, 5, 11/2,−7/2〉 702.52
306 Tnh |6, 1/2, 5, 11/2,−5/2〉 702.59
307 Tns |6, 1/2, 5, 11/2,−3/2〉 703.70
308 Tno |6, 1/2, 5, 11/2,−1/2〉 705.37
309 Tne |6, 1/2, 5, 11/2, 1/2〉 707.53
310 Tun |6, 1/2, 5, 11/2, 3/2〉 709.20
311 Tuu |6, 1/2, 5, 11/2, 5/2〉 709.91
312 Tub |6, 1/2, 5, 11/2, 7/2〉 710.38
313 Tut |6, 1/2, 5, 11/2, 9/2〉 712.39
314 Tuq |6, 1/2, 5, 11/2, 11/2〉 717.26
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Table 6. Cont.

Z Element Vector |ν, s′, λ, ιλ, κ〉 Mass (theor.)

315 Tup |6, 1/2, 4, 7/2,−7/2〉 737.07
316 Tuh |6, 1/2, 4, 7/2,−5/2〉 737.54
317 Tus |6, 1/2, 4, 7/2,−3/2〉 738.25
318 Tuo |6, 1/2, 4, 7/2,−1/2〉 739.92
319 Tue |6, 1/2, 4, 7/2, 1/2〉 742.08
320 Tbn |6, 1/2, 4, 7/2, 3/2〉 743.75
321 Tbu |6, 1/2, 4, 7/2, 5/2〉 744.46
322 Tbb |6, 1/2, 4, 7/2, 7/2〉 744.93
323 Tbt |6, 1/2, 4, 9/2,−9/2〉 751.61
324 Tbq |6, 1/2, 4, 9/2,−7/2〉 753.62
325 Tbp |6, 1/2, 4, 9/2,−5/2〉 754.09
326 Tbh |6, 1/2, 4, 9/2,−3/2〉 754.80
327 Tbs |6, 1/2, 4, 9/2,−1/2〉 756.47
328 Tbo |6, 1/2, 4, 9/2, 1/2〉 758.63
329 Tbe |6, 1/2, 4, 9/2, 3/2〉 760.30
330 Ttn |6, 1/2, 4, 9/2, 5/2〉 761.01
331 Ttu |6, 1/2, 4, 9/2, 7/2〉 761.48
332 Ttb |6, 1/2, 4, 9/2, 9/2〉 763.49
333 Ttt |6, 1/2, 3, 5/2,−5/2〉 781.54
334 Ttq |6, 1/2, 3, 5/2,−3/2〉 782.25
335 Ttp |6, 1/2, 3, 5/2,−1/2〉 783.92
336 Tth |6, 1/2, 3, 5/2, 1/2〉 786.08
337 Tts |6, 1/2, 3, 5/2, 3/2〉 787.75
338 Tto |6, 1/2, 3, 5/2, 5/2〉 788.46
339 Tte |6, 1/2, 3, 7/2,−7/2〉 793.72
340 Tqn |6, 1/2, 3, 7/2,−5/2〉 794.19
341 Tqu |6, 1/2, 3, 7/2,−3/2〉 794.90
342 Tqb |6, 1/2, 3, 7/2,−1/2〉 796.57
343 Tqt |6, 1/2, 3, 7/2, 1/2〉 798.73
344 Tqq |6, 1/2, 3, 7/2, 3/2〉 800.34
345 Tqp |6, 1/2, 3, 7/2, 5/2〉 801.11
346 Tqh |6, 1/2, 3, 7/2, 7/2〉 801.58
347 Tqs |6, 1/2, 2, 3/2,−3/2〉 815.25
348 Tqo |6, 1/2, 2, 3/2,−1/2〉 816.92
349 Tqe |6, 1/2, 2, 3/2, 1/2〉 819.08
350 Tpn |6, 1/2, 2, 3/2, 3/2〉 820.75
351 Tpu |6, 1/2, 2, 5/2,−5/2〉 823.29
352 Tpb |6, 1/2, 2, 5/2,−3/2〉 824.00
353 Tpt |6, 1/2, 2, 5/2,−1/2〉 825.67
354 Tpq |6, 1/2, 2, 5/2, 1/2〉 827.83
355 Tpp |6, 1/2, 2, 5/2, 3/2〉 829.50
356 Tph |6, 1/2, 2, 5/2, 5/2〉 830.21
357 Tps |6, 1/2, 1, 1/2,−1/2〉 838.92
358 Tpo |6, 1/2, 1, 1/2, 1/2〉 841.08
359 Tpe |6, 1/2, 1, 3/2,−3/2〉 842.10
360 Thn |6, 1/2, 1, 3/2,−1/2〉 843.77
361 Thu |6, 1/2, 1, 3/2, 1/2〉 845.93
362 Thb |6, 1/2, 1, 3/2, 3/2〉 847.60
363 Tht |6, 1/2, 0, 1/2,−1/2〉 849.92
364 Thq |6, 1/2, 0, 1/2, 1/2〉 852.08

6. Homological Series

All elements of the extended table (see Figure 4), starting with hydrogen H (Z = 1)
and ending with Thq (Trihexiquadium, Z = 364), form a single quantum system. Each
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element of the periodic system corresponds to the basis vector |ν, s′, λ, ιλ, κ〉, where ν, s′, λ,
ιλ, κ are quantum numbers of the symmetry group G (Rumer–Fet group). Thus, we have
the following set of state vectors:

|H〉 =

∣∣∣∣1,−1
2

, 0,
1
2

,−1
2

〉
,

|He〉 =

∣∣∣∣1,−1
2

, 0,
1
2

,
1
2

〉
,

|Li〉 =

∣∣∣∣1,
1
2

, 0,
1
2

,−1
2

〉
, (17)

...

|Thq〉 =

∣∣∣∣6,
1
2

, 0,
1
2

,
1
2

〉
.

In accordance with quantum mechanical laws, in aggregate (17), which forms a Hilbert
space, we have linear superpositions of state vectors, as well as quantum transitions
between different state vectors; that is, transitions between elements of the periodic system.

Let us now consider the operators that determine quantum transitions between the
state vectors of the system (17):

Γ+ = P+ +Q+, Γ− = P− +Q−. (18)

Operators (18) connect subspaces Fn of the unitary representation F+ of the conformal
group SO(2, 4) in the Fock space F. Indeed, the action of these operators on the basis
vectors |j, σ, τ〉 of F has the form

Γ+|j, σ, τ〉 = i
√
(j + σ + 1)(j− τ + 1)

∣∣∣∣j +
1
2

, σ +
1
2

, τ − 1
2

〉
−

− i
√
(j− σ + 1)(j + τ + 1)

∣∣∣∣j +
1
2

, σ− 1
2

, τ +
1
2

〉
,

Γ−|j, σ, τ〉 = −i
√
(j + σ)(j− τ)

∣∣∣∣j−
1
2

, σ− 1
2

, τ +
1
2

〉
+

+ i
√
(j− σ)(j + τ)

∣∣∣∣j−
1
2

, σ +
1
2

, τ − 1
2

〉
.

Hence it follows that Γ+ transforms vectors of the subspace Fn into vectors of Fn+1,
since for the Fock representation Φn = D n−1

2 , n−1
2

in the subspace Fn, where j = n−1
2 ,

increasing the number j by 1/2 means increasing the number n by 1 (see Appendix B).
Analogously, the operator Γ− transforms vectors of the subspace Fn into vectors of Fn−1.
Operators Γ+, Γ− commute with the subgroup G2 = SO(3)⊗ SU(2) belonging to the group
chain (13). Indeed, in virtue of commutation relations of the conformal group SO(2, 4) (see
Section 2) it follows that

[P± +Q±, J+ +K+] = [P± +Q±, J− +K−] = [P± +Q±, J3 +K3] = 0.

Therefore, operators Γ+, Γ− save quantum number µ. Further, Γ+, Γ− commute
with a Casimir operator (J1 + K1)

2 + (J2 + K2)
2 + (J3 + K3)

2 of the subgroup SO(3),
and thereby save quantum number λ. It is easy to see that Γ+, Γ− commute with the
operators τk (k = 1, 2, 3) of the subgroup SU(2) and, therefore, they save quantum
number s. Since Γ+ and Γ− commute with Jk + Kk and τk separately, then they com-
mute with all of subgroup G2 = SO(3) ⊗ SU(2). Further, the operators Γ+, Γ− com-
mute with the subgroup SU(2)′, which defines the second “doubling”, and, therefore,
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they save quantum number s′. Since Γ+ transforms Fn into Fn+1, and Γ− transforms
Fn into Fn−1, then in the space F4 = C(2) ⊗ F2 = C(2) ⊗ [C(2) ⊗ F] of the represen-
tation F+

ss′ the operator Γ+, Γ− raises, and correspondingly, lowers quantum number ν
by 1. Thus, for basis (8), the operator Γ+ saves quantum numbers s′, λ, µ, s, raising ν
by the unit; therefore, Γ+|ν, s′, λ, µ, s〉 = η|ν + 1, s′, λ, µ, s〉, where η 6= 0. Analogously,
Γ−|ν, s′, λ, µ, s〉 = η′|ν− 1, s′, λ, µ, s〉, where η′ 6= 0. Since Γ+ (correspondingly Γ−) defines
an isomorphic mapping of the space of (ν, s′, λ) onto the space of (ν + 1, s′, λ) (corresp.
(ν− 1, s′, λ)), then η (corresp. η′) does not depend on quantum numbers µ, s. Therefore,
for the vectors |ν, s′, λ, ιλ, κ〉 of the basis of (14) we have

Γ+|ν, s′, λ, ιλ, κ〉 = η|ν + 1, s′, λ, ιλ, κ〉, (19)

Γ−|ν, s′, λ, ιλ, κ〉 = η′|ν− 1, s′, λ, ιλ, κ〉. (20)

Equality (20) holds at 0 ≤ λ ≤ ν− 2. A visual sense of the operators Γ+, Γ− is that
they move basic vectors, represented by cells in Figure 4, to the right, and correspondingly,
to the left through horizontal columns of the table. At this point, Γ+ always transfers the
basic vector of the column (ν, s′) into the basic vector of the same parity (ν + 1, s′) with
multiplication by some non-null factor η. In turn, the operator Γ− transfers the basis vector
of the column (ν, s′) into the basis vector of the same parity (ν− 1, s′) with multiplication
by a non-null factor η′ when the column (ν− 1, s′) contains a vector on the same horizontal,
(otherwise we have zero).

Further, operators τ′+ = τ′1 + iτ′2, τ′− = τ′1 − iτ′2 of the subgroup SU(2)′ also define
quantum transitions between state vectors (17). Since these operators commute with the
subgroup G1 = SO(4)⊗ SU(2), they save quantum numbers ν, λ, ιλ, κ, related with G1,
and change only quantum number s′:

τ′+
∣∣∣ν,− 1

2 , λ, ιλ, κ
〉

=
∣∣∣ν, 1

2 , λ, ιλ, κ
〉

, (21)

τ′−
∣∣∣ν, 1

2 , λ, ιλ, κ
〉

=
∣∣∣ν,− 1

2 , λ, ιλ, κ
〉

. (22)

A visual sense of the operators τ′+, τ′− is that τ′+ moves basis vectors of each odd
column (see Figure 4) horizontal into the basis vectors of the neighboring right column; in
turn, τ′− moves the basis vectors of each even column horizontal into basis vectors of the
neighboring left column. Thus, operators (19)–(22) define quantum transitions between
state vectors of the system (17).

It is easy to see that on the horizontals of Figure 4 we have Mendeleev homological series;
that is, families of elements with similar properties. Therefore, operators (19)–(22) define
quantum transitions between elements of homological series. For example,

Γ+|H〉 = Γ+

∣∣∣∣1,−1
2

, 0,
1
2

,−1
2

〉
= η1|Na〉 = η1

∣∣∣∣2,−1
2

, 0,
1
2

,− 1
2

〉
7−→

η1Γ+|Na〉 = η1η2|Rb〉 = η1η2

∣∣∣∣3,−1
2

, 0,
1
2

,−1
2

〉
7−→

η1η2Γ+|Rb〉 = η1η2η3|Fr〉 = η1η2η3

∣∣∣∣4,−1
2

, 0,
1
2

,−1
2

〉
7−→

η1η2η3Γ+|Fr〉 = η1η2η3η4|Uhe〉 = η1η2η3η4

∣∣∣∣5,−1
2

, 0,
1
2

,−1
2

〉
.

Further, operators τ′+, τ′− establish homology between lanthanides and actinides
(this homology was first discovered by Seaborg. It is obvious that Seaborg homology is a
particular case of the Mendeleev homology):

τ′+|La〉 = τ′+

∣∣∣∣4,−1
2

, 3,
5
2

,−5
2

〉
= |Ac〉 =

∣∣∣∣4,
1
2

, 3,
5
2

,−5
2

〉
,
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τ′+|Ce〉 = τ′+

∣∣∣∣4,−1
2

, 3,
5
2

,−3
2

〉
= |Th〉 =

∣∣∣∣4,
1
2

, 3,
5
2

,−3
2

〉
,

...

τ′+|Yb〉 = τ′+

∣∣∣∣4,−1
2

, 3,
7
2

,
7
2

〉
= |No〉 =

∣∣∣∣4,
1
2

, 3,
7
2

,
7
2

〉
,

By means of operators Γ+, Γ− we can continue the Seaborg homology to a superac-
tinide group:

Γ+|La〉 = Γ+

∣∣∣∣4,−1
2

, 3,
5
2

,−5
2

〉
= η|Ute〉 = η

∣∣∣∣5,−1
2

, 3,
5
2

,−5
2

〉
,

Γ+|Ce〉 = Γ+

∣∣∣∣4,−1
2

, 3,
5
2

,−3
2

〉
= η|Uqn〉 = η

∣∣∣∣5,−1
2

, 3,
5
2

,−3
2

〉
,

...

Γ+|Yb〉 = Γ+

∣∣∣∣4,−1
2

, 3,
7
2

,
7
2

〉
= η|Upb〉 = η

∣∣∣∣5,−1
2

, 3,
7
2

,
7
2

〉
.

Correspondingly,

Γ+|Ac〉 = Γ+

∣∣∣∣4,
1
2

, 3,
5
2

,−5
2

〉
= η|Uoe〉 = η

∣∣∣∣5,
1
2

, 3,
5
2

,−5
2

〉
,

Γ+|Th〉 = Γ+

∣∣∣∣4,
1
2

, 3,
5
2

,−3
2

〉
= η|Uen〉 = η

∣∣∣∣5,
1
2

, 3,
5
2

,−3
2

〉
,

...

Γ+|No〉 = Γ+

∣∣∣∣4,
1
2

, 3,
7
2

,
7
2

〉
= η|Bnb〉 = η

∣∣∣∣5,
1
2

, 3,
7
2

,
7
2

〉
.

In conclusion of this paragraph, we will say a few words about the principle of superpo-
sition in relation to the system (17). Apparently, the situation here is similar to Wigner’s
superselection principle [48] in particle physics, according to which not every superposition
of physically possible states leads again to a physically possible state. Wigner’s princi-
ple limits (superselection rules) the existence of superpositions of states. According to the
superselection rules, superpositions of physically possible states exist only in the coher-
ent subspaces of the physical Hilbert space. Thus, the problem of determining coherent
subspaces for the system of states (17) arises.

7. Hypertwistors

The Rumer–Fet group is constructed in many respects by analogy with the groups
of internal (dynamic) symmetries, such as SU(3) and SU(6). Using the quark model
and SU(3)-symmetry, we continue this analogy. As is known, quark is a vector of the
fundamental representation of group SU(3). Let us define a vector of “fundamental”
representation of the Rumer–Fet group.

The Rumer–Fet group
SO(2, 4)⊗ SU(2)⊗ SU(2)′

is equivalent to
S̃O(2, 4)⊗ SU(2) ' SU(2, 2)⊗ SU(2),

where SU(2, 2) is a double covering of the conformal group (the group of pseudo-unitary
unimodular 4× 4 matrices). Further, in virtue of the isomorphism (A11) (see Appendix C),
we will consider the double covering SU(2, 2) as a spinor group (the elements of group
Spin+(2, 4) are 15 bivectors eiej = eij, where i, j = 1, . . . , 6. The explicit form of all fifteen
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generators leads through Cartan decomposition for group SU(2, 2) to biquaternion angles;
that is, to the generalization of complex and quaternion angles for groups SL(2,C) and
Sp(1, 1), where Sp(1, 1) is a double covering of the de Sitter group [49–51]). Spintensor rep-
resentations of group Spin+(2, 4) form a substratum of finite-dimensional representations
τk/2,r/2, τk/2,r/2 of the conformal group, which are realized in the spaces Sym(k,r) ⊂ S2k+r

and Sym(k,r) ⊂ S2k+r , where S2k+r is a spinspace. Twistor Zα = (sα, sα̇)
T is a vector of

the fundamental representation of group Spin+(2, 4), where α, α̇ = 0, 1 and sα, sα̇ are
2-component mutually conjugated spinors. Hence it immediately follows that a doubled
twistor

Z =

[
Z+

Z−

]
, (23)

or hypertwistor, is a vector of fundamental representation of group SU(2, 2)⊗SU(2). Further,
the twistor Z = [S, S]T is a vector of general spintensor representation of group Spin+(2, 4),
where S is a spintensor of the form (12). Therefore, a general hypertwistor is defined by the
expression of the form (23), where Z+ = [S, S]T, Z− = [S, S]T.

Applying GNS-construction, we obtain vector states

ωΦ(H) =
〈Φ | π(H)Φ〉
〈Φ | Φ〉 =

〈Φ | F+
ss′(H)Φ〉
〈Φ | Φ〉 ,

where H is an energy operator and |Φ〉 is a cyclic vector of the Hilbert space H∞. A set of
all pure states ωΦ(H) forms a physical Hilbert space Hphys = H8 ⊗H∞ (at the restriction of
group G onto the Lorentz subgroup SO0(1, 3) and application of GNS-construction within
double covering SL(2,C) ' Spin+(1, 3), we obtain a spinor (vector of the fundamental
representation of group Spin+(1, 3)), acting in a doubled Hilbert space H2 ⊗H∞ (Pauli
space). Spinor is a particular case of hypertwistor) and, correspondingly, a space of rays
Ĥ = Hphys/S1.

Further, with the aim of observance of electroneutrality and inclusion of discrete
symmetries, it is necessary to expand the double covering SU(2, 2) ' Spin+(2, 4) up to
an universal covering Pin(2, 4). In general form (for arbitrary orthogonal groups), such
extension has been given in the works [16,18,20,52]. At this point, a pseudo-automorphism
A → A of the complex Clifford algebra Cn [53] plays a central role, where A is an arbitrary
element of the algebra Cn. Since the real spinor structure appears as a result of reduction
C2(k+r) → C̀ p,q, then, as a consequence, the charge conjugation C (pseudo-automorphism
A → A) for algebras C̀ p,q over the real number field F = R and the quaternion division
ring K ' H (types p− q ≡ 4, 6 (mod 8)) is reduced to a particle-antiparticle exchange C′. As
is known, there are two classes of neutral particles: (1) particles that have antiparticles,
such as neutrons and neutrinos; (2) particles that coincide with their antiparticles (for
example, photons and π0-mesons); that is, the so-called truly neutral particles. The first
class is described by neutral states ωr

Φ(H) with algebras C̀ p,q over the field F = R with
the rings K ' H and K ' H⊕H (types p− q ≡ 4, 6 (mod 8) and p− q ≡ 5 (mod 8)).
To describe the second class of neutral particles, we introduce truly neutral states ωr0

Φ (H)
with algebras C̀ p,q over the real number field F = R and real division rings K ' R and
K ' R⊕ R (types p − q ≡ 0, 2 (mod 8) and p − q ≡ 1 (mod 8)). In the case of states
ωr0

Φ (H), the pseudo-automorphism A → A is reduced to the identical transformation (the
particle coincides with its antiparticle).

Following [54], we define Hphys = H8 ⊗H∞ as a K-Hilbert space; that is, as a space
endowed with a ∗-ring structure, where ∗-ring is isomorphic to a division ring K = R,C,H.
Thus, the hypertwistor has a tensor structure (energy, mass) and a K-linear structure
(charge), and the connection of these two structures leads to a dynamic change in charge
and mass.
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8. Conclusions

As is known, Heisenberg repeatedly emphasized the primary role of symmetry in
describing atomic and subatomic phenomena. His statement is well known: “‘In the begin-
ning was symmetry” is certainly a better expression then Democritus “In the beginning
was the particle”. Elementary particles embody symmetries; they are their simplest rep-
resentations, and yet they are merely their consequence” [41], p. 240. Another important
principle, first proposed by Pauli, is the principle of symmetry doubling. The first spin theory
giving a correct mathematical formulation of the doublet structure of the spectrum of alkali
metals (the anomalous Zeeman effect) was proposed by Pauli in 1927 [55]. Avoiding the
construction of any visual kinematic models, Pauli introduced a doubled Hilbert space
H2 ⊗H∞ (the space of wave functions), whose vectors are two-component spinors. Thus,
for the first time in physics, two-component spinors and the first doubling appeared. The
subsequent doubling (bispinors, H4 ⊗H∞ space) was proposed by Dirac in 1928 [56]. In this
paper, the following doubling is proposed, leading to hypertwistors in the K-Hilbert space
H8 ⊗H∞. Hypertwistors are vectors of the fundamental representation of the Rumer–Fet
group SO(2, 4)⊗ SU(2)⊗ SU(2)′, which gives a group-theoretic interpretation of the peri-
odic system of elements. Spinors, bispinors and twistors are special cases of a hypertwistor,
which is expressed by the following chain of doublings:

H2 ⊗H∞ ⊂ H4 ⊗H∞ ⊂ H8 ⊗H∞

and the corresponding chain of group extensions

SU(2) ⊂ SL(2,C) ⊂ SU(2, 2)⊗ SU(2).

In this case, the periodic system is considered as a single quantum system U, whose
states (chemical elements) are given by cyclic vectors of the K-Hilbert space H8 ⊗H∞ by
means of the Gelfand–Naimark–Segal construction (algebraic quantization). The Rumer–
Fet group SU(2, 2) ⊗ SU(2) plays the role of dynamic symmetry that defines quantum
transitions between the states of the system U (levels of the spectrum of states). Quantum
transitions between states that are similar in their characteristics (related states) form
homological series (see Section 6).

One of the main objectives of this study was the desire to show that the currently
known 118 elements of the periodic table are only part of a broader mathematical structure.
The 8 and 10-periodic extensions (including a hypothetical island of stability) of the periodic
table are discussed in Sections 4 and 5. These extensions completely fit into the sequence of
doubling periods (16), which confirms the group-theoretic nature of the Madelung rule and
the fundamental nature of the principle of symmetry doubling. The theoretical masses of
elements of the periodic system are calculated, starting from Z = 3 to Z = 364, according
to the mass formula (15), which has an asymptotic character. Calculating the theoretical
masses of the first two elements H (hydrogen, Z = 1) and He (helium, Z = 2) requires the
determining of the exact mass formula (recall that the first period (H,He) is the only period
that does not double, and for this reason has a dedicated character), which is possible
using deeper mathematics (spintensor representations of the conformal group). This task is
beyond the scope of this article and will be investigated in future work.
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Appendix A. Lorentz Group and van der Waerden Representation

As it is known, a universal covering of the proper orthochronous Lorentz group
SO0(1, 3) (rotation group of the Minkowski space-time R1,3) is the spinor group

Spin+(1, 3) '
{(

α β
γ δ

)
∈ C2 : det

(
α β
γ δ

)
= 1

}
= SL(2,C).

Let g→ Tg be an arbitrary linear representation of the proper orthochronous Lorentz
group SO0(1, 3) and let Ai(t) = Tai(t) be an infinitesimal operator corresponding to the
rotation ai(t) ∈ SO0(1, 3). Analogously, let Bi(t) = Tbi(t), where bi(t) ∈ SO0(1, 3) is the
hyperbolic rotation. The elements Ai and Bi form a basis of the group algebra sl(2,C) and
satisfy the relations

[A1,A2] = A3, [A2,A3] = A1, [A3,A1] = A2,

[B1,B2] = −A3, [B2,B3] = −A1, [B3,B1] = −A2,

[A1,B1] = 0, [A2,B2] = 0, [A3,B3] = 0,

[A1,B2] = B3, [A1,B3] = −B2,

[A2,B3] = B1, [A2,B1] = −B3,

[A3,B1] = B2, [A3,B2] = −B1.





(A1)

Defining the operators

Xl =
1
2

i(Al + iBl), Yl =
1
2

i(Al − iBl), (A2)

(l = 1, 2, 3),

we come to a complex shell of the group algebra sl(2,C). Using relations (A1), we find

[Xk,Xl ] = iεklmXm, [Yl ,Ym] = iε lmnYn, [Xl ,Ym] = 0. (A3)

From relations (A3) it follows that each of the sets of infinitesimal operators X and Y
generates group SU(2) and these two groups commute with each other. Thus, from relations
(A3) it follows that the group algebra sl(2,C) (within the complex shell) is algebraically
isomorphic to the following direct sum (see [57], p. 28, the so-called Weyl’s unitary trick):

sl(2,C) ' sl(2,R)⊕ isl(2,R) ' su(2)⊕ isu(2).

Further, introducing operators of the form (“rising” and “lowering” operators of group
SL(2,C))

X+ = X1 + iX2, X− = X1 − iX2,

Y+ = Y1 + iY2, Y− = Y1 − iY2,

}
(A4)

we see that
[X3,X+] = X+, [X3,X−] = −X−, [X+,X−] = 2X3,

[Y3,Y+] = Y+, [Y3,Y−] = −Y−, [Y+,Y−] = 2Y3.

In virtue of commutativity of relations (A3), a space of an irreducible finite-dimensional
representation of group SL(2,C) can be spanned on the totality of (2l + 1)(2l̇ + 1) basis ket-
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vectors |l, m; l̇, ṁ〉 and basis bra-vectors 〈l, m; l̇, ṁ|, where l, m, l̇, ṁ are integer or half-integer
numbers, −l ≤ m ≤ l, −l̇ ≤ ṁ ≤ l̇. Therefore,

X−|l, m; l̇, ṁ〉 =
√
(l + m)(l −m + 1)|l, m− 1; l̇, ṁ〉 (m > −l),

X+|l, m; l̇, ṁ〉 =
√
(l −m)(l + m + 1)|l, m + 1; l̇, ṁ〉 (m < l),

X3|l, m; l̇, ṁ〉 = m|l, m; l̇, ṁ〉,
〈l, m; l̇, ṁ|Y− = 〈l, m; l̇, ṁ− 1|

√
(l̇ + ṁ)(l̇ − ṁ + 1) (ṁ > −l̇),

〈l, m; l̇, ṁ|Y+ = 〈l, m; l̇, ṁ + 1|
√
(l̇ − ṁ)(l̇ + ṁ + 1) (ṁ < l̇),

〈l, m; l̇, ṁ|Y3 = 〈l, m; l̇, ṁ|ṁ. (A5)

In contrast to the Gelfand–Naimark representation for the Lorentz group [58,59],
which does not find a wide application in physics, representation (A5) is most useful in
theoretical physics (see, for example, [60–62]). This representation for the Lorentz group
was first given by van der Waerden in his brilliant book [63]. It should be noted here
that the representation basis, defined by the formulae (A2)–(A5), has an evident physical
meaning. For example, in the case of (1, 0)⊕ (0, 1)-representation space, there is an analogy
with the photon spin states. Namely, the operators X and Y correspond to the right and left
polarization states of the photon. For that reason, we will call the canonical basis consisting
of the vectors | lm; l̇ṁ〉 as a helicity basis.

Thus, the complex shell of the group algebra sl(2,C), generating complex momentum,
leads to a duality that is mirrored in the appearance of two spaces: a space of ket-vectors
|l, m; l̇, ṁ〉 and a dual space of bra-vectors 〈l, m; l̇, ṁ|.

Appendix B. Group SO(4) and Fock Representation

As is known, group SO(4) is a maximal compact subgroup of the conformal group
SO0(2, 4). SO(4) corresponds to basis elements J = (J1, J2, J3) and K = (K1,K2,K3) of the
algebra so(2, 4) (see Section 2):

[Jk, Jl ] = iεklmJm, [Jk,Kl ] = iεklmKm, [Kk,Kl ] = iεklmJm.

Introducing linear combinations V = (J+K)/2 and V′ = (J−K)/2, we obtain

[Vk,Vl ] = iεklmVm,
[
V′k,V′l

]
= iεklmV

′
m.

Generators V and V′ form bases of the two independent algebras so(3). It means that
group SO(4) is isomorphic to the product SO(3)⊗ SO(3). Such state of affairs is explained
by the following definition: group SO(4) is locally decomposed into a direct product of
subgroups SO(3). On the whole (that is, without the supposition that all the matrices are
similar to the unit matrix), this decomposition is ambiguous. SO(4) is a unique group
(among all of the orthogonal groups SO(n)), which admits such local decomposition.

A universal covering of the rotation group SO(4) of the four-dimensional Euclidean
space R4 is a spinor group

Spin(4) '
{(

α β
γ δ

)
∈ H⊕H : det

(
α β
γ δ

)
= 1

}
= SU(2)⊗ SU(2).

Let SO(3)J and SO(3)K be the subgroups of SO(4) with the generators Jk and Kk
(k = 1, 2, 3), respectively. Then each irreducible representation T of group SO(4) has the
following structure: a space R of the representation T is a tensor product of spaces R1
and R2 in which we have irreducible representations Dj1 and Dj2 of the subgroups SO(3)J
and SO(3)K with dimension 2j1 + 1 and 2j2 + 1. Thus, a dimension of T is equal to
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(2j1 + 1)(2j2 + 1), where j1 and j2 are integer or half-integer numbers. An action of Jk, Kk
on the basis vectors is defined by the formulas

J−|σ, τ〉 =
√
(j1 + σ)(j1 − σ + 1)|σ− 1, τ〉,

J+|σ, τ〉 =
√
(j1 − σ)(j1 + σ + 1)|σ + 1, τ〉,

J3|σ, τ〉 = σ|σ, τ〉,
K−|σ, τ〉 =

√
(j2 + τ)(j2 − τ + 1)|σ, τ − 1〉,

K+|σ, τ〉 =
√
(j2 − τ)(j2 + τ + 1)|σ, τ + 1〉,

K3|σ, τ〉 = τ|σ, τ〉. (A6)

This representation of group SO(4), denoted via Dj1 j2 , is irreducible and unitary.
A structure of the Fock representation Φ of SO(4) is defined by the decomposition

into irreducible components Φn in the spaces Fn. As is known [26], at the reduction of the
subgroup SO(3), an irreducible representation Φn is decomposed into a sum of irreducible
representations of SO(3), with dimension 1, 3, . . . , 2n− 1. Taking into account the structure
of irreducible representations of group SO(4), we see that the smallest dimension of
1 should be equal to 2|j1 − j2| + 1, from which it follows that j1 = j2. Therefore, the
representation Φn has the form Dj1 j2 , and since for the biggest dimension should be 2n− 1 =
2(j1 + j2) + 1 = 4j + 1, then j = (n− 1)/2. Thus, for the Fock representation, we have the
following structure:

Φ = Φ1 ⊕Φ2 ⊕ . . .⊕Φn ⊕ . . . , where Φn = D n−1
2 , n−1

2
.

This means that in the each space Fn there is an orthonormal basis |j, σ, τ〉, where
j = (n− 1)/2. All these bases together form an orthonormal basis of the Fock space F:

|j, σ, τ〉 (j = 0, 1/2, 1, 3/2, . . . ;

σ = −j,−j + 1, . . . , j− 1, j; τ = −j,−j + 1, . . . , j− 1, j), (A7)

in which lie algebra of group SO(4) acts via the formulas (A6) with j1 = j2 = j.

Appendix C. Twistor Structure and Group SU(2, 2)

The main idea of the Penrose twistor program [64,65] consists of the representation of
classical space-time as some secondary construction obtained from more primary notions.
As more primary notions, we have two-component (complex) spinors, moreover, pairs of
two-component spinors. In the Penrose program, they are called twistors.

Therefore, a twistor Zα is defined by the pair of two-component spinors: spinor ωs

and covariant spinor π ṡ from a conjugated space; that is, Zα = (ωs, π ṡ). In twistor theory,
momentum (~ω) and impulse (~π) of the particle are constructed from the quantities ωs and
π ṡ. One of the most important aspects of this theory is a transition from twistors to coordinate
space-time. Penrose described this transition by means of the so-called basic relation of twistor
theory

ωs = ixsṙπ ṡ, (A8)

where xsṙ is a mixed spintensor of second rank. In more detailed records, this relation has
the form [

ω1
ω2

]
=

i√
2

[
x0 + x3 x1 + ix2

x1 + ix2 x0 − x3

][
π1̇
π2̇

]
.

From (A8) it immediately follows that points of space-time R1,3 are reconstructed
over the twistor space C4 (these points correspond to linear subspaces of the twistor space
C4). Therefore, points of R1,3 present secondary (derivative) construction with respect to
twistors.
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In fact, twistors can be defined as “reduced spinors” of pseudo-unitary group SO0(2, 4)
(conformal group) acting in a six-dimensional space with the signature (+,+,−,−,−,−).
These reduced spinors are derived as follows. General spinors are elements of the minimal
left ideal of a conformal algebra C̀ 2,4:

I2,4 = C̀ 2,4 f24 = C̀ 2,4
1
2
(1 + e15)

1
2
(1 + e26).

Reduced spinors (twistors) are formulated within an even subalgebra C̀ +
2,4 ' C̀ 4,1 (de

Sitter algebra). The minimal left ideal of the algebra C̀ 4,1 ' C4 is defined by the following
expression [37]:

I4,1 = C̀ 4,1 f4,1 = C̀ 4,1
1
2
(1 + e0)

1
2
(1 + ie12).

Therefore, after reduction I2,4 → I4,1, generated by the isomorphism C̀ +
2,4 ' C̀ 4,1, we

see that twistors Zα are elements of the ideal I4,1 which leads to the group
SU(2, 2) ' Spin+(2, 4) ∈ C̀ +

2,4 (see further (A9) and (A10)). Indeed, let us consider the alge-
bra C̀ 2,4 associated with a six-dimensional pseudo-Euclidean space R2,4. A double covering
Spin+(2, 4) of the rotation group SO0(2, 4) of the space R2,4 is described within the even
subalgebra C̀ +

2,4. The algebra C̀ 2,4 has the type p− q ≡ 6 (mod 8); therefore, according to
C̀ +

p,q ' C̀ q,p−1, we have C̀ +
2,4 ' C̀ 4,1, where C̀ 4,1 is the de Sitter algebra associated with the

space R4,1. In its turn, the algebra C̀ 4,1 has the type p− q ≡ 3 (mod 8) and, therefore, there
is an isomorphism C̀ 4,1 ' C4, where C4 is a Dirac algebra. Algebra C4 is a comlexification
of the space-time algebra: C4 ' C⊗ C̀ 1,3. Further, C̀ 1,3 admits the following factorization:
C̀ 1,3 ' C̀ 1,1 ⊗ C̀ 0,2. Hence it immediately follows that C4 ' C⊗ C̀ 1,1 ⊗ C̀ 0,2. Thus,

Spin+(2, 4) = {s ∈ C⊗ C̀ 1,1 ⊗ C̀ 0,2 | N(s) = 1}. (A9)

On the other hand, in virtue of C̀ 1,3 ' C̀ 1,1 ⊗ C̀ 0,2 a general element of the algebra
C̀ 1,3 can be written in the form

AC̀ 1,3 = C̀ 0
1,1e0 + C̀ 1

1,1φ + C̀ 2
1,1ψ + C̀ 3

1,1φψ,

where φ = e123 and ψ = e124 are quaternion units. Therefore,

Spin+(2, 4) =

{
s ∈

[
C⊗ C̀ 0

1,1 − iC⊗ C̀ 3
1,1 −C⊗ C̀ 1

1,1 + iC⊗ C̀ 2
1,1

C⊗ C̀ 1
1,1 + iC⊗ C̀ 2

1,1 C⊗ C̀ 0
1,1 + iC⊗ C̀ 3

1,1

]∣∣∣∣∣ N(s) = 1

}
. (A10)

Mappings of the space R1,3, generated by group SO0(2, 4), induce linear transfor-
mations of the twistor space C4 with preservation of the form ZαZα of the signature
(+,+,−,−). Hence it follows that a corresponding group in the twistor space is SU(2, 2)
(the group of pseudo-unitary unimodular 4× 4 matrices, see (A10)):

SU(2, 2) =
{[

A B
C D

]
∈ C4 : det

[
A B
C D

]
= 1

}
' Spin+(2, 4). (A11)
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