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Abstract: The group theoretical description of the periodic system of elements in the framework
of the Rumer—Fet model is considered. We introduce the concept of a single quantum system, the
generating core of which is an abstract C*-algebra. It is shown that various concrete implementations
of the operator algebra depend on the structure of the generators of the fundamental symmetry group
attached to the energy operator. In the case of the generators of the complex shell of a group algebra
of a conformal group, the spectrum of states of a single quantum system is given in the framework of
the basic representation of the Rumer—Fet group, which leads to a group-theoretic interpretation of
the Mendeleev’s periodic system of elements. A mass formula is introduced that allows giving the
termwise mass splitting for the main multiplet of the Rumer-Fet group. The masses of elements of
the Seaborg table (eight-periodic extension of the Mendeleev table) are calculated starting from the
atomic number Z = 3 and going to Z = 220. The continuation of the Seaborg homology between
lanthanides and actinides is established with the group of superactinides. A 10-periodic extension
of the periodic table is introduced in the framework of the group-theoretic approach. The multiplet
structure of the extended table’s periods is considered in detail. It is shown that the period lengths of
the system of elements are determined by the structure of the basic representation of the Rumer-Fet
group. The theoretical masses of the elements of 10th and 11th periods are calculated starting from
Z = 221 and going to to Z = 364. The concept of hypertwistor is introduced.

Keywords: periodic table; Bohr’s model; Rumer-Fet model; conformal group; single quantum
system; mass formulae; Seaborg table; homological series; twistors; symmetry doubling

1. Introduction

The year 2019 marks the 150th anniversary of the discovery of the periodic law of
chemical elements by Dmitry Ivanovich Mendeleev. Mendeleev’s periodic table sheds light
on a huge number of experimental facts and allows the prediction of the existence and basic
properties of new, previously unknown elements. However, the reasons (more precisely,
root causes) for periodicity, in particular, the reasons for the periodic recurrence of similar
electronic configurations of atoms, are still not clear. Furthermore, the limits of applicability
of the periodic law have not yet been delineated—the controversy regarding the specifics
of the nuclear and electronic properties of the atoms of heavy elements continues.

The now generally accepted structure of the periodic system, based on the Bohr model,
proceeds from the fact that the arrangement of elements in the system with increasing
atomic numbers is uniquely determined by the individual features of the electronic structure
of atoms described in the framework of one-electronic approximation (Hartree method),
and directly reflects the energy sequence of atomic orbitals of s, p, d, f-shells populated by
electrons with an increasing total number as the charge of the nucleus of the atom increases
in accordance with the principle of minimum energy. However, this is only possible in
the simplest version of Hartree approximation, but in the variant of the Hartree—Fock
approximation, the total energy of an atom is not equal to the sum of orbital energies, and
the electron configuration of an atom is determined by the minimum of its full energy. As
noted in the book [1], the traditional interpretation of the structure of the periodic system
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on the basis of the sequence of filling of electronic, atomic orbitals in accordance with their
relative energies ¢, is very approximate and has, of course, a number of drawbacks and
has narrow limits of applicability. There is no universal sequence of orbital energies ¢,;;
moreover, such a sequence does not completely determine the order of the atomic orbitals
settling by electrons since it is necessary to take into account the configuration interactions
(superposition of configurations in the multi-configuration approximation). Furthermore,
of course, periodicity is not only and not completely the orbital-energy effect. The reason
for the repetition of similar electronic configurations of atoms in their ground states escapes
us, and within one-electronic approximation can hardly be revealed at all. Moreover, it is
possible that the theory of periodicity, in general, awaits a fate somewhat reminiscent of the
fate of the theory of planetary retrogressions in the Ptolemaic system after the creation of
the Copernican system. It is quite possible that what we call the periodicity principle is the
result of the non-spatial symmetries of the atom (permutation and dynamical symmetries).

In 1971, academician V.A. Fock in his work [2], put the main question for the doctrine
of the principle of periodicity and the theory of the periodic system: “Do the properties of
atoms and their constituent parts fit into the framework of purely spatial representations,
or do we need to somehow expand the concepts of space and spatial symmetry to accom-
modate the inherent degrees of freedom of atoms and their constituent parts?” [2], p. 108.
As is known, Bohr’s model in its original formulation uses quantum numbers relating to
electrons in a field with spherical symmetry, which allowed Bohr to introduce the concept
of closed electron shells and bring this concept closer to the periods of the Mendeleev’s
table. Despite this success, the problem of explaining the periodic system was far from
solved. Moreover, for all the depth and radicality of these new ideas, they still fit into the
framework of conventional spatial representations. A further important step was associated
with the discovery of the internal, not spatial, degree of freedom of the electron—spin,
which is not a mechanical concept. The discovery of spin is closely related to the discovery
of the Pauli principle, which was formulated before quantum mechanics as requiring that
each orbit, characterized by certain quantum numbers, contains no more than two electrons.
At the end of the article [2], Fock himself answers his own question: “Purely spatial degrees
of freedom of the electron is not enough to describe the properties of the electron shell of the
atom and need to go beyond purely spatial concepts to express the laws that underlie the
periodic system. The new degree of freedom of the electron—its spin—allows us to describe
the properties of physical systems that are alien to classical concepts. This internal degree of
electron freedom is essential for the formulation of the properties of multi-electron systems,
thus for the theoretical justification of the Mendeleev’s periodic system” [2], p. 116.

The group-theoretic method of studying the periodic system was independently
proposed by several authors in the early 1970s. In 1971, an article by Rumer and Fet [3]
was published on the relationship between the group Spin(4) and Mendeleev’s table. In
1972, Asim Barut published his research on the group structure of the periodic system [4,5].
Simultaneously with these publications, articles by Octavio Navaro and co-authors [6,7]
on the Hamiltonian model of the periodic system appear. Already from the first works
in this direction, two different approaches are clearly manifested. The Navaro method
(atomic physics approach), further developed in the works of Ostrovsky and Demkov [8-10],
by analogy with atomic physics, relies on the search of a Hamiltonian model. On the
other hand, the Rumer—Fet-Barut method (elementary particle approach) relies on the analogy
with groups of dynamic (internal) symmetries of elementary particle physics, such as
SU(2) (isotopic spin), SU(3) and SU(6). An exhaustive historical overview of this topic is
presented in the work of Thyssen and Ceulemans [11].

In this paper, we consider the group theoretical description of the periodic system in
the framework of the Rumer—Fet model. Unlike Bohr’s model, in which spatial and internal
(spin) symmetries are combined on the basis of a classical composite system borrowed from
celestial mechanics, the Rumer-Fet group G describes non-spatial symmetries (it is obvious
that the visual-spatial image used in Bohr’s model is a vestige of classical representations.
Therefore, in the middle of the 19th century, numerous attempts were made to build
mechanical models of electromagnetic phenomena; even Maxwell’s treatise contains a
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large number of mechanical analogies. As time has shown, all mechanical models of
electromagnetism turned out to be nothing more than auxiliary scaffolding, which was later
discarded as unnecessary). However, group G also contains the Lorentz group (rotation
group of the Minkowski space-time) as a subgroup. Moreover, the Rumer—Fet model is
entirely based on the mathematical apparatus of quantum mechanics and group theory
without involving any classical analogies, such as the concept of a composite system. The
concept of a composite system, which directly follows from the principle of separability
(the basic principle of reductionism), is known to have limited application in quantum
mechanics, since in the microcosm, in contrast to the composite structure of the macrocosm,
the superposition structure prevails. Heisenberg argued that the concept of “consists of”
does not work in particle physics. On the other hand, the problem of “critical” elements of
Bohr’s model is also a consequence of visual-spatial representations. Feynmann’s solution,
representing the atomic nucleus as a point, leads to the Klein paradox for the element
Uts (Untriseptium), with atomic number Z = 137. Another spatial image, used in the
Greiner-Reinhardt solution, represents the atomic nucleus as a charged ball, resulting in a
loss of electroneutrality for atoms above the value Z = 173 (see Section 4).

The most important characteristic feature of the Rumer—Fet model is the representation
of the periodic table of elements as a single quantum system. While Bohr’s model considers
an atom of one element as a separate quantum system (and the atomic number is included
in the theory as a parameter, so that there are as many quantum systems as there are
elements), in the Rumer-Fet model, atoms of various elements are considered as states of a
single quantum system, connected to each other by the action of the symmetry group. A
peculiar feature of the Rumer-Fet model is that it “ignores” the atomic structure underlying
Bohr’s model. In contrast to Bohr’s model, which represents each atom as a composite
aggregate of protons, neutrons and electrons, the Rumer-Fet model is distracted from
the internal structure of every single atom, presenting the entire set of elements of the
periodic table as a single quantum system of structureless states (the notion of the atom as a
“structureless” state does not mean that there is no structure at all behind the concept. This
only means that this structure is of a different order, not imported from the outside, from the
“repertoire of classical physics”, but a structure that naturally follows from the mathematical
apparatus of quantum mechanics (state vectors, symmetry group, Hilbert space, tensor
products of Hilbert (K-Hilbert) spaces and so on)). In this paper, the single quantum system
U is defined by a C*-algebra consisting of the enerqy operator H and the generators of the
fundamental symmetry group Gy attached to H. The states of the system U are formed within
the framework of the Gelfand-Naimark-Segal construction (GNS) [12,13]; that is, as cyclic
representations of the operator algebra. Due to the generality of the task of the system U and
the flexibility of the GNS-construction for each particular implementation of the operator
algebra (the so-called “dressing” of the C*-algebra), we obtain our (corresponding to this
implementation) spectrum of states of the system U (thus, in the case when the generators of
the fundamental symmetry group (G = SOy(1,3) is the Lorentz group) attached to H are
generators of the complex shell of the group algebra s[(2, C) (see Appendix A), we obtain a
linearly growing spectrum of state masses (“elementary particles”) [14]. In this case, the
“dressing” of the operator algebra and the construction of the cyclic representations of the
GNS-construction are carried out in the framework of spinor structure (charged, neutral,
truly neutral (Majorana) states and their discrete symmetries set through morphisms of the
spinor structure, see [15-20]). In [14] it is shown that the masses of “elementary particles”
are multiples of the mass of the electron with an accuracy of 0.41%. Here there is a direct
analogy with the electric charge. Any electric charge is a multiple of the charge of the
electron and a multiple of exactly. If any electric charge is absolutely a multiple of the
electron charge, then in the case of masses, this multiplicity takes place with an accuracy
of 0.41% (on average)). In Section 2 of this article, a conformal group is considered as a
fundamental symmetry group (G = SO(2,4)). In this case, the concrete implementation of
the operator C*-algebra is given by means of the generators of the complex shell of the group
algebra so0(2,4) attached to H and the twistor structure associated with group SU(2,2) (the
double covering of the conformal group). The complex shell of the algebra so(2,4) leads to
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a representation F ;Sr, of the Rumer—Fet group, within which a group theoretical description
of the periodic system of elements is given (Section 2). At this point, atoms are considered
as states (discrete stationary states) of the matter spectrum (a term introduced by Heisenberg
in the book [21] with reference to particle physics), each atom is given by a state vector of
the physical Hilbert space, in which a symmetry group acts, translating some state vectors
into others (that is, a group that specifies quantum transitions between elements of the
periodic system). In Section 4, the Seaborg table (eight-periodic extension of the Mendeleev
table) is formulated in the framework of the basic representation of the Rumer-Fet group
for two different group chains, which specify the split of the main multiplet into smaller
multiplets. It also calculates the average mass of the multiplets included in the Seaborg
table (in addition to those multiplets that belong to the Mendeleev table with the exception
of the elements Uue and Ubn). In Section 4 the mass formula is introduced to allow a
termwise mass splitting for the basic representation of the Rumer-Fet group. The masses of
elements are calculated starting from the atomic number Z = 3 to Z = 220 (except for the
doublet containing hydrogen H and helium He). In Section 5 the 10-periodic extension of
the Mendeleev table is studied. The multiplet structure of the extended table is considered
in detail. It is shown that the period lengths of the system of elements are determined by
the structure of the basic representation of the Rumer—Fet group. The theoretical masses of
the elements of the 10th and 11th periods are calculated. In Section 6, quantum transitions
between state vectors of the physical Hilbert space, formed by the set of elements of the
periodic system, are considered.

It is possible to imagine an electron in any way: whether as a point (particle or
wave), a charged ball or as an electron cloud on an atomic orbital, all these mental images
only obscure the essence of the matter because they remain within the framework of
visual-spatial representations. However, there is a mathematical structure that is far from
visualization and yet accurately describes the electron: it is a two-component spinor, the
vector of the fundamental representation of the double covering SL(2,C) ~ Spin_ (1,3) of
the Lorentz group. Similarly, apart from any visual representations of the atom, it can be
argued that the meaning is only the mathematical structure, which is directly derived from
the symmetry group of the periodic system. In Section 7, it is shown that such structure is a
hypertwistor acting in the K-Hilbert space Hg ® Heo.

Bohr’s model does not explain the periodicity but only approximates it within the
framework of one-electronic Hartree approximation. Apparently, the explanation of the
periodic law lies on the path indicated by Fock; that it is necessary to go beyond the classical
(space-time) representations in the description of the periodic system of elements. It is
obvious that the most suitable scheme of description in this way is the group-theoretic
approach.

2. Single Quantum System and Rumer-Fet Group

As already noted in the introduction, the starting point of the construction of the
group theoretical description of the periodic system of elements is the concept of a single
quantum system U. Following Heisenberg, we assume that at the fundamental level, the
definition of the system U is based on two concepts: energy and symmetry. Let us define a
single quantum system U by means of the following axioms:

Al (Energy and fundamental symmetry) A single quantum system U at the fundamental
level is characterized by a C*-algebra A with a unit consisting of the enerqy operator H and
the generators of the fundamental symmetry group Gy attached to H, forming a common
system of eigenfunctions with H.

AII (States and GNS construction) The physical state of a C*-algebra 2 is determined by the
cyclic vector |®) of the representation v of a C*-algebra in a separable Hilbert space Hoo:

(@] 7(H)®)

WCD(H) = <(D | CI)>
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The set PS(L) of all pure states of a C*-algebra 2 coincides with the set of all states we (H)
associated with all irreducible cyclic representations 7t of an algebra U, |®) € Hoo (Gelfand—
Naimark—Segal construction).

AIII (Physical Hilbert space) The set of all pure states we (H) under the condition we(H) > 0
forms a physical Hilbert space Hpnys (in general, the space Hypys is nonseparable). For each
state vector [Y) € Hpnys there is a unit ray ¥ = e®|¥), where a runs through all real
numbers and \/(¥[¥) = 1. The ray space is a quotient-space H = thys/Sl, that is, the
projective space of one-dimensional subspaces of H All states of a single quantum system
U are described by the unit rays.

AIV (Axiom of spectrality) In H there is a complete system of states with non-negative energy.

A.V  (Superposition principle) The basic correspondence between physical states and elements of
space H involves the superposition principle of quantum theory; that is, there is a set of basic
states such that arbitrary states can be constructed from them using linear superpositions.

phys-

We choose a conformal group as the fundamental symmetry. The conformal group
occurs in modern physics in a wide variety of situations and is essentially as universal
as the Lorentz group; there are many relativistic theories and, similarly, conformal ones
(moreover, as Segal showed [22], the Lie algebra of an inhomogeneous Lorentz group (that
is, a Poincaré group) can be obtained by the deformation of a conformal Lie algebra. In turn,
the conformal Lie algebra is “rigid”; that is, it cannot be obtained by deforming another Lie
algebra. Because of this property, the conformal algebra (the algebra of a non-compact real
pseudo-orthogonal group in a six-dimensional space with signature (—, —, —, —, +, +)) has
a unique (complete) character and occupies a special place among other algebras).

2.1. Rumer—Fet Group

In the previous section, we defined a conformal group as the fundamental symmetry.
The next logical step is to construct a concrete implementation of the operator algebra. We
begin this construction by defining a complex shell of a group algebra so0(2,4) that leads
to a basic representation F sﬁ, of the Rumer-Fet group (the first work in this direction is [3],
where a striking similarity between the structure of the system of chemical elements and
the structure of the energy spectrum of the hydrogen atom was noted. This similarity is
explained in [3] within the framework of the Fock representation F [23] for group Spin(4)
(the double covering of group SO(4)). However, the main drawback of the description
in [3] is the reducibility of the representation F, which did not allow the consideration of
the system as “elementary” in the sense of group mechanics. In 1972, Konopelchenko [24]
extended the Fock representation F to the representation F* of the conformal group, thus
eliminating the above drawback. Further, based on the connection with the Madelung
numbering, Fet defines the F;" and F, representations (to define the F st, representation,
Madelung’s “lexicographic rule” had to be changed). After a rather long period of oblivion
(totally undeserved), interest in the Rumer—Fet model will resume (see Kibler [25])).

As is known [26], a system of fifteen generators of the conformal group SOy (2,4)
satisfies the following commutativity relations:

[erﬁ/ L'yo‘} = i(gtxél-ﬁ'y + 8pyLas — Saylps — gﬁ(SLow)/

(0, B,v,6=1,...,6,0 #B, v #9).

Generators L,p form a basis of the group algebra s0(2,4). In order to move to the
complex shell of the algebra s0(2,4), consider another system of generators proposed by
Tsu Yao [26,27]. Let

J1 =1/2(Lyz — L), J2=1/2(L3; —Ly), J3=1/2(L12 —La),

Ki =1/2(Lys +L1g), Ko =1/2(Ls1 +Log), Kz =1/2(L12+Lay),
Py =1/2(—Lss —Lig), P2=1/2(Lss —Lss), Po=1/2(—Lss — Lss),
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Qi =1/2(Lss — Lsg), Q2 =1/2(Lss +Lzs), Qo =1/2(Las — Lse),
S1 =1/2(—Lis+Ly), S2=1/2(—Los —Lis), So=1/2(L12 — Lse),
T1=1/2(—Li5 —Ly), T2=1/2(Los —Lig), To=1/2(—L12— Lse). 1

This system of eighteen generators is tied by the three relations
J3 =Kz =Pp—Qo, J3+K3=S9—-To, Po+Qo=So+To. @)

In virtue of the independence of the generators Lys (¢ < f), system (1) defines a
surplus system of generators of SOy (2,4), from which we can obtain the basis of s0(2,4),
excluding three generators by means of (2).

Introducing the generators

Jr=J1+idy, PL=P;xiPy, S4 =85;+£iS,,

Ki =K £iKy, Qi =Q1xiQy, Ti=T;=£iTy, (3)
we come to the complex shell of the algebra so(2,4).
Then
D, di]=Jy, s d]=-d, [J,0]=2l

Ks, Ki] =Ky, [K3,K_]=-K_, [KiK_]=2Ks,

[Po,P] =Py, [Po,P |]=—P_, [P, P_]|=—2P,
[Qo,Q+] =Q+, [Q,Q-]=-Q-, [Q+,Q-]=-2Qo,

S0,S+] =S+, [S0,S_]=-S_, [S;,S_]=—2S
[To, T4 =T, [To,T-]=-T, [T4, T ]=-2T,

[, K] =0 (i,j=+-,3),

B+, Py] =0, [J4,P]=-T, [J,Po]=-1/2Jy,
B_,Pi]=T4, [_,P_]=0 [J_,Py=1/21_,
[J3,P]=1/2P,, [J3,P_|=—1/2P_, [J5,Pg] =0,
[+, Q4] =S+, [J+,Q-]=0, [J4+, Qo] =1/2J4,
-,Q+]=0 [J-,Q_]=-S_, [J,Q]=-1/2J_,
3,Q4] = -1/2Q+, [J3,Q_]=1/2Q_, [J;,Qo] =0,
[4+,S+]=0, [J+,S-]=-Q-, [J4,So] = —-1/2J4,
0_,S:]=Qs, [_,S_]=0, [J_,So]=1/2J_,
[J3,8:] =1/25,, [J5,Q_]=—-1/25_, [J5,So] =0,
e To] =Py, [Jp, T ]=0, [J4,To] =1/2)y4,
0., T =0, [J_, T |=-P_, [J_,To]=-1/2)_,

U3, T4]=-1/2T4, [J5,T_|=1/2T_, [J5 Ty =0,
[K.,Py]=-S,, [KiP.]=0, [Ky, Po]=1/2Ky,
[K_,P.]=0, [K_,P_]=S_, [K_,Po]=-1/2K_,
[Ks3,Py] = —1/2P,, [Ks,P_]=1/2P_, [Ks Po] =0,
K+, Q] =0, [Ky,Q]=T, [Ki, Qo] =-1/2Ky,
K-, Qi]=-Ty, [K,Q]=0, [K,Q=1/2K_,
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(K3, Q4] =1/2Q+, [K;Q-]=-1/2Q-, [K; Qo] =0,
[K,S4] =0, [Ky,S-]=P-, [Ky,So] =—1/2Ky,
[K_,S:]=—P,, [K_,5_]=0, [K_,So]=1/2K_,
[Ks,S4+]=1/28;, [K3S-]=-1/25_, [K3,So] =0,
K, Tol=—Qi, [Ki,T_]=0, [Ki Tol=1/2K,,
K., T4]=0, [K_T]=Q., [K_,To=-1/2K_,

K3, T4] =—-1/2T4, [K3, T_]=1/2T_, [K; To] =0,

P,Q]] =0 (i,j=+-,0),
[P+, S+]=0, [P4,S_]=K_, [P4,So]=-1/2Py4,
P.,S.]=-K,, [P.,S.]=0, [P_,So=1/2P_,

[Po,S.] =1/25,, [Po,S_]=—1/25_, [Py, So] =0,
Py, Tyl =0, [Py, T ]=—Jy, [Py, To]=-1/2Py,
P T.=J., [PLT]=0 [P_,To]=1/2P_
[Po, T+] =1/2T4, [Py, T_]=-1/2T_, [Py, To] =0,
[Q+,S+] =0, [Q+,S-]=-J-, [Q+ So]=-1/2Q4,
[Q-,S+]=J4+, [Q-,S-]=0, [Q-,So]=1/2Q_,
[Qo,S:]=1/2S,, [Qo,S_]=-1/25_, [Qo,So] =0,

QT4 =0, [Q+T-]=Ky, [Q Tol=-1/2Q4,
[Q—/ T-‘,—] - _K—/ [Q—/ T—] = O/ [Q—/TO] = 1/20—/
[QOI T+] = 1/2T+/ [QOr T*] = _1/2T77 [QO/ TO] = 0/
[Si,T]'] =0 (l,] =+, —,0).

Let us consider a special representation of the conformal group SOy(2,4), which is
analogous to the van der Waerden representation (A5) for the Lorentz group SOy(1,3)
(see Appendix A). This local representation of SOy(2,4) is related immediately to the
Fock representation for group SO(4) (see Appendix B). In essence, this representation
is an extension of the Fock representation for SO(4) to the unitary representation of the

conformal group SOy(2, 4) in the Fock space § by the basis (A7). Using generators (3) of the
complex shell of the algebra so0(2,4), we obtain

1oty =+ —c+ 1)l ~1,1),
Jiljo, 1) = /(- o) +o+1)ljo+1,1),
J3|j/ a, T> - U|]/ ag, T>/

K-[j,o,7) = /(i +7)( - T+ Dljo,t—1),

Kiljo,t) = /(- 1)+ T+ Do, T+1),
Kslj,o,T) = 7lj,0,7),
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) . . o1 1 1
Plio,t) =i+ G-~ 5057+ ),
) .. . .1 1 1
Polio ) =i/ T DG+ e+ D)+ 3o+ 573 )
. . o o—T1+1 .
PO|]’U’T> = (]+ 2 >U|]IU/T>/
Q |'0"L'>—l'\/('+T)('—(T)'—10'4-1‘[—1 4)
— ]/ 7 - ] ] ] 2/ 2/ 2 7

) . ; o1 1 1
Qlj,o,7) = z\/(]0+1)(]+r+1)‘]+2,0 2,T+2>,

. N
Qlje,m) = (7= 5= i)

. ./ . o1 1 1
S-1j.0,7) =i/ )G+ T)j - 30 573 )

) . . .1 1 1

. o o+T+1 .
SO|],U,T> = (]+2>U|]IU/T>/

) . ; .1 1 1
T_ljio,m) = =i/ == 0)]j - 50+ 5743 )

. . . . A | 1 1
Tulio,t=ifi-o 0=+ pe- g1,

: . o+T-1Y,,
Tolie, ) = (7= 5 i o).

Formula (4) defines a unitary representation of the conformal group SOy(2,4) in the
Fock space §. Formula (4) includes the formulas for Ji, Ky, giving representations of &,
in subspaces §;, (see (A6), where j; = j, = j) and thus the Fock representation ¢ on
the subgroup SO(4). Moreover, if we restrict SOy(2,4) to a subgroup SOy(1,3) (Lorentz
group), we obtain the van der Waerden representation (A5) given by the generators X, Y,
which proves the similarity of the complex shells of the group algebras s0(2,4) and s((2, C).
The representation, defined by (4), is called an extension F* of the Fock representation on the
conformal group [26]. However, the representation F is insufficient for the description of
the periodic system of elements. With that end in view, it is necessary to include a fourth
Madelung number s (which is analogous to spin) that leads to a group (the first “doubling”)

SO(2,4) ® SU(2). ®)

A representation F,” = ¢, ® FT of the group (5), where ¢; is a unitary representation
of group SU(2) in space C(2), already satisfies this requirement (inclusion of the Madelung
number s). A basis of the space > = C(2) ® § of the representation F;" has the form

|n,l,m,s), n=1,2,...;1=0,1,...,.n—1;
m=—1,—1+1,....1-1,1; s = -1/2,1/2. (6)

Here n, I, m are quantum numbers of the conformal group.
Let Ty be generators of the Lie algebra of SU(2); then a generator T3 commutes with all
of the generators of the subgroup SO(2,4) ® 1. For that reason, generators Ry, L2, J5 + K3,
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73 commute with each other. Eigenvectors of the operators, representing these generators
in the space 32, have the form
n,l,m Ly _ |0
ALY 2 - \{;2

1
n, l, m, 1> — I:T}’llm:| ,
2 0 nlm
1

with eigenvalues n, I(I +1), m,  and n, I(I + 1), m, —}. An action of the operators,
representing generators T, T—, T3 in the space 32, is defined by the following formulas:

nlm—l— 1 —nlm—1
IS Aded 2 - 2 - IS Aaded 2/

n, Z/ m, =

nlm1 T
rvr7 12/ -

T+

T3|n,l,m,s) = s|n,1,m,s).

In virtue of the Madelung numbering, the basis |1, 1, m, s) stands in one-to-one corre-
spondence with the elements of the periodic system. A relationship between the arrange-
ment of the elements in the Mendeleev table and a number collection (1,1, m, s) is defined by
a so-called Madelung “lexicographic rule” Z <+ (n,1,m,s) (Erwin Madelung was the first to
apply “hydrogen” quantum numbers #, [, m, s to the numbering of elements of the periodic
table. It should be noted that the numbers n, [, m, s are not quantum numbers in Bohr’s
model, because in this model, there is no single quantum-mechanical description of the
system of elements, the latter is assigned an atomic number Z, distinguishing rather than
combining individual quantum systems. The resulting classification of elements Madelung
called “empirical” because he could not connect it with the Bohr model. Apparently, it
was because of the lack of theoretical justification at the time (the 1920s), he published it
as a reference material in [28]. Theoretical justification (understanding of the nature of
Madelung numbers) was later given by Fet [26] from the position of group-theoretic vision.
The history of Madelung numbers was also developed in a slightly different direction in
the works of Kleczkowski [29], where the filling of the electronic levels of the atom was
considered according to the rule of the sequential filling of (1 + I)-groups (the so-called
Madelung—Kleczkowski groups)):

(1) elements are arranged in increasing order of atomic number Z;

(2) collections (n,1,m,s) are arranged in increasing order of n + [; at the given n + [ in
increasing order of n; at the given n + I, n in increasing order of m; at the given n + 1/,
n, m in increasing order of s;

(3) the Z-th element corresponds to Z-th collection.

In Madelung numbering, the sum 7 + I does not have a group sense: it is a sum of the
quantum number 7 (an eigenvalue of the operator Ry = —Lsg) and the number I, which
is not a quantum number. In this case, a quantum number is /(I 4+ 1) (an eigenvalue of
the operator L? = L%, + L%, + L%)), and I only defines this quantum number. Therefore, in
accordance with the group theoretical viewpoint, the number 7 + [ should be excluded from
the formulation of the “lexicographic rule”. In [26], Fet introduced a new quantum number
v, which is equal tov = 1/2(n + 1 + 1) for the odd value of n + ! and v = 1/2(n + 1) for
the even value of n 4 [. The introduction of the quantum number v allows us to change
Madelung numbering, which leads to the following “lexicographic rule” (Fet rule):

(1) the elements are arranged in increasing order of atomic number Z;

(2) collections (v, A, u,s,s’) are arranged in increasing order of v; at the given v in in-
creasing order of s'; at the given v, s’ in decreasing order of A; at the given v, s/, A in
increasing order of y; at the given v, s’, A, y in increasing order of s;

(3) the Z-th element corresponds to Z-th collection.

The introduction of the fifth quantum number leads to another (second) “doubling” of
the representation space. In this space, we have the Rumer-Fet group

SO(2,4) ®SU(2) ®SU(2)’. @)
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A representation F sﬁ = ¢ ® F;" of the group (7), where ¢} is a unitary representation
of group SU(2)’ in the space C(2), satisfies the requirement of inclusion of the fifth quantum
number. A basis of the space §* = C(2) @ §? of the representation F ;S“, has the form

v, A\, 8,8y, v=12,...;A=0,1,...,.v—1;
pu=—-A-A+1,...,A-1,A s=-1/2,1/2, s =-1/2,1/2. (8)

Let T} be generators of the Lie algebra SU(2)’; then the generator 75 commutes
with the all generators of the subgroup SO(2,4) ® SU(2) ® 1. Therefore, generators
Ry = —Lsg = Po+Qp = So+ Ty, L%, J3 +Ks, T3, T4 commute with the each other.
Common eigenvectors of the operators, which represent these generators in the space §*,
have the form

1
‘Fg A 8
1 b4 1
V/)\/ /Sl+7 - V/\/H 7 V//\/ /S/_> - 3
K 2 > 0 K 2 Tw\,y
0 LP?//\,y

with eigenvalues v, A(A + 1), i, s, % and v, A(A+1), 1,5, —%.
An action of the operators, representing the generators 7, T_, T3 and T/+, T, Té in
the space §*, is defined by the following formulas:

1
Ty v,)t,y,—z,s’> —

1 1 1
1//)\/,u/ 2/S/>/ T— 1//)t/]’l/ 2/S/> - 1///\/]’11_2/S/>/

T3|v, A 8,8 ) =s|v, A s, 8.

1
1//)L/]/l/512>/

1 1 . 1
Vr/\/]’lrslz> - U/A/]/l/s/ 2>/ T_ V//\/]/{/S/ 2> -

75

/
T+

!/ !
v, A 8,8 ) =s

v, A 8,80,

The “addresses” of the elements (see Figure 1) are defined by a collection of quantum
numbers of the Rumer-Fet group (7), which are numbering basis vectors |v, A, j1,s,5") of
the space §*. Generators of the Lie algebra of SO(2,4) act on the quantum numbers v, A, u
by means of formula (4), with a replacement of n, [, m via v, A, p.

There is the following chain of groups:

G D Gy D Gy —> SO(2,4) ®SU(2) ®SU(2) D SO(4) ® SU(2) D SO(3) ® SU(2).  (9)

The reduction of the basic representation F, ;Sr, of the Rumer—Fet group on the subgroups
is realized in accordance with the chain (9). Therefore, multiplets of a subgroup SO(3) ®
SU(2) are represented by vertical rectangles in Figure 1, and their elements compose
well-known s, p, d and f-families (in particular, lanthanides and actinides are selected
as multiplets of the subgroup SO(3) ® SU(2)). Each element occupies quite a definite
place, which is defined by its “address” in the table (v, A, 1, s,s"); that is, by corresponding
quantum numbers of the symmetry group. Thus, atoms of all possible elements stand in
one-to-one correspondence with the vectors of the basis (8).
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v=1 v=2 v=3 v=4

s'=—1/2 s'=1/2 s'=—1/2 s'=1/2 s'=—1/2 s'=1/2 s'=—1/2 s'=1/2

Ar=0 | H Li Na K Rb Cs Fr Uue |s=-1/2 —0
He Be Mg | | Ca Sr Ba Ra Ubn =12 (F7
B Al Ga In Tl Nh |s=-1/2( _ 1
C Si Ge || Sn || Pb || Fl [s=12 (T
_ N P As Sb Bi Mc |s=-1/2 |
A=l o ||s Se || T || Po || Lv |s-12 (F=0
F Cl Br I At Ts |s=—1/2(, _ 1
Ne | | Ar Kr || Xe | | Rn | | Og |s=1/2 (F7
Sc Y Lu Lr |s=—1/2 |  _ _9
Ti Zr | | HE | | Rf [s=12 (M7
\Y% Nb Ta Db |s=-1/2 | 1
Cr Mo W Sg |s=1/2 =
o Mn Tc Re Bh |s=—1/2 |
A=2 Fe Ru Os Hs [s=1/2 (F7 0
Co Rh Ir Mt |s=-1/2 | 1
Ni || Pd|| Pt || Ds [s=12 (M7
Cu Ag Au Rg |s=-12| _,
Zn Cd Hg Cn |s=12 (F7
La Ac |s=—1/2 |
Ce || Th |s=12 (FT73
Pr Pa |s=-1/2 .
Nd U |so1p2 (F=72
Pm Np |s=-1/2 1
Sm Pu |s=12 (F7
— Eu Am |s=-1/2 |  _
A=3 Gd Cm |s=1/2 H= 0
Tb Bk |s=-1/2 -1
Dy Cf [s=12 (M7
Ho Es |s=—1/2|
Er Fm [s=1/2 (F 7 2
Tm Md |s=-1/2 3
Yb No |s=1/2 (F7

Figure 1. Mendeleev table in the form of the basic representation F.!, of the Rumer—Fet group

SO(2,4) ® SU(2) ® SU(2)'. The Periodic Table in this form first appeared in [3], with the exception of
elements typed in bold.

2.2. Mendeleev Table

In Figure 1, we mark the elements that had not yet been discovered or received their of-
ficial names during the lifetimes of Rumer and Fet in bold script. These elements belong to
the last column of Figure 1 with the quantum numbers v = 4 and s’ = 1/2: Db—Dubnium,
Sg—Seaborgium, Bh—Bohrium, Hs—Hassium (eka-osmium), Mt—Meitnerium,
Ds—Darmstadtium, Rg—Roentgenium, Cn—Copernicium (eka-mercury). All these el-
ements belong to a multiplet with a quantum number A = 2. A multiplet with A =1
(v =4, =1/2) consists of recently discovered elements: Nh—Nihonium (eka-thallium),
Fl—Flerovium (eka-lead), Mc—Moscovium (eka-bismuth), Lv—Livermorium (eka-
polonium), Ts—Tennessine (eka-astatine), Og—Oganesson (eka-radon). Further, a mul-
tiplet with a quantum number A = 0 (v = 4, s’ = 1/2) is formed by undetected yet
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hypothetical elements, Uue—Ununennium (eka-francium), with a supposed atomic mass
of 316 a.u. and Ubn—Unbinillium (eka-radium). All the enumerated elements accomplish
the filling of the Mendeleev table (from the 1st to 120th number), inclusive of the value of
quantum number v = 4.

Let us calculate the masses of the hypothetical elements Uue and Ubn. Before we
proceed, we calculate the average masses of the multiplets belonging to the Mendeleev
table. With this aim in view, we use a mass formula proposed in [26]:

11
m=mg+a s’(2v—3)—5v+7+2(v2—1) —b-AA+1), (10)

where my, a, b are the coefficients that are underivable from the theory. This formula is
analogous to a Gell-Mann-Okubo formula for the hadrons in SU(3)-theory [30,31], and
also to a Bég-Singh formula in SU(6)-theory [32]. The formula (10) is analogous to the
“first perturbation” in SU(3) and SU(6)-theories, which allows the calculation of an average
mass of the elements of the multiplet (an analog of the “second perturbation” for the
Rumer—Fet group, which leads to the mass splitting inside the multiplet, we will give in
Section 4). Table 1 contains the average masses of “heavy” multiplets (v = 3, 4) calculated
according formula (10) at mg = 1, a = 17, b = 5.5. From Table 1, we see that an accuracy
between experimental and theoretical masses rises with the growth of the “weight” of
the multiplet; therefore, formula (10) is asymptotic. An exception is the last multiplet
(v=4,s' =1/2,A =0), consisting of the hypothetical elements Uue and Ubn, which have
masses unconfirmed by experiments.

Table 1. Average masses of “heavy” multiplets.

Multiplet Mass (exp.) Mass (theor.) Approx. %
1. (w=34¢5=-1/2,A=2) 55.31 53 —4.36
2. (v=3s5=-1/2,A=1) 76.65 75 —22
3. (v=3s=-1/2,A=0) 86.54 86 —0.63
4. (v=3,s=1/2,A=2) 99.76 104 4.07
5. (v=3,s=1/2,A=1) 123.51 126 1.98
6. (v=3,s=1/2,A=0) 135.12 137 1.37
7. (v=4,s=-1/2,A=3) 154.59 156 0.90
8. (v=4,/=-1/2,A=2) 187.96 189 0.55
9. (v=4,/=-1/2,A=1) 210.21 211 0.37
10. (v=4,s=-1/2,A=0) 224.52 222 —-1.13
11. (v=4,s =1/2,A=3) 244.56 241 —1.48
12. (v=4,d =1/2,A =2) 273.10 274 0.33
13. (v=4,d=1/2,A=1) 290.83 296 1.75
14. (v=4,¢d=1/2,A=0) 318* 307 —3.58*

3. Implementation of the Operator Algebra

As is known, in the foundation of an algebraic formulation of quantum theory, we
have a Gelfand—Naimark-Segal (GNS) construction, which is defined by a canonical corre-
spondence w < 71, between states and cyclic representations of the C*-algebra [33-35].

Let us suppose that according to the axiom A.I (Section 2) generators of the conformal
group (a fundamental symmetry G = SO(2,4) in this context) are attached to the energy
operator H. Therefore, each eigensubspace Hg of the energy operator is invariant with
respect to the operators of the representation F' of the conformal group (it follows from a
similarity of the complex shells of the group algebras s[(2, C), so(4) and s0(2,4)). It allows
us to obtain a concrete implementation (“dressing”) of the operator algebra () — 7(H),
where 71 = F*. Thus, each possible value of energy (an energy level) is a vector state of the

form (axiom A.II):
wo(i) _ (BLAI®) (@] FH()P)
(@] D) (@®) 7
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where |®) is a cyclic vector of the Hilbert space He.

Further, in virtue of an isomorphism SU(2,2) ~ Spin_ (2,4) (see Appendix C), we
will consider the universal covering G £ as a spinor group. It allows us to associate, in
addition, a twistor structure with each cyclic vector |®) € H. Spintensor representations
of group G ¢ = Spin  (2,4) form a substrate of finite-dimensional representations 7y 2,,/2,
Tk/2,/2 of the conformal group realized in the spaces Sym ;. ,) C Sy and %(k,r) C Sprtr,
where S,i, is a spinspace. Indeed, a twistor Z* = (s%, ss) is a vector of the fundamental
representation of group Spin, (2,4), where &, & = 0,1 (see Appendix C). A vector of the
general spintensor representation of group Spin , (2,4) is

z- [g] (1)

where S is a spintensor of the form

S = sziziz’; = Zs"‘l @@ @ RSy @Sy, Q- @8y, & =0,1; (12)

that is, the vector of the spinspace Sy.r = Sy ® Syr, where Syr is a dual spinspace. § is
a spintensor from the conjugated spinspace S,.,. Symmetrizing each spintensor S and
S in (11), we obtain the symmetric twisttensor Z. In turn, as is known [36], spinspace
is a minimal left ideal of the Clifford algebra (7, ,; that is, there is an isomorphism
Som(K) ~ Iy = Cpqf, where f is a primitive idempotent of the algebra &/, 4, K = f(/) 4 f
is a division ring for (/y, 5, m = (p +q)/2. A complex spinspace Syn(C) is a complexifi-
cation C ® I, ; of the minimal left ideal I, ; of a real subalgebra (7, ;. Hence, Sy, is a
minimal left ideal of the complex algebra Cy; @ Cp, =~ (Cz(k +7) (for more details see [37,38]).

Now we are in a position that allows us to define a system of basic cyclic vectors
endowed with a complex twistor structure (these vectors correspond to the system of
finite-dimensional representations of the conformal group). Let

| Co, To0(H)P);
| Co, T1/20(H)®), | Ca, Tg1/2(H)P);
| C2@Cy, T19(H)®), |Co®Cot1/21/2(H)®), | Co®Co, to1(H)P);
| C2®@Ca @ Cy, T3/20(H)®P), | Cr®Cyr®Cy,t11/2(H)P),
| Co0Co®@Co, T1/21(H)®), | Co®Co@Cy, to3/2(H)P);

| Co, Too(H)®);

| Co, T1/20(H)®), | Co, To1,2(H)®);

| C2@Co, T10(H)®), |Ca®Co,tiyn1/2(H)P), | Cr@Co7o1(H)P);

| C20Ca®Co, T3/20(H)®), |Co®Co®Co,T11/2(H)P),
|Co0Cr@Co, y/01(H)®), | Cr®Co®Cy,to3/2(H)P);

Therefore, in accordance with GNS-construction (axiom A.II), we have complex vector

states of the form
(@ | Cokgr)s Thy2,r/2(H)P)
(@] D) ’

(@ | Cogkgr)s Thy,r/2(H)P)
(@ | D)

we(H) =

wo(H) =
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According to (11), the pairs (w§,(H), Wy (H)) form neutral states. Further, at execu-
tion of the condition wg,(H) > 0 (wg(H) > 0) a set of all pure states (wg,(H), wg (H))
forms a physical Hilbert space Hppys (axiom A.III) and, correspondingly, a space of rays
A= Hphys/ S 1. All the pure states of the physical quantum system U are described by the
unit rays, and at this realization of the operator algebra, these states correspond to atoms of
the periodic system of elements. At this point, there is the superposition principle (axiom
AV).

Following Heisenberg’s classification [39], all of the sets of symmetry groups G should
be divided into two classes: (1) groups of fundamental (primary) symmetries Gy, which partic-
ipate in the construction of state vectors of the quantum system U; (2) groups of dynamic
(secondary) symmetries G;, which describe approximate symmetries between state vectors
of U. Dynamic symmetries G, relate different states (state vectors [¥) € Hppys) between
the quantum system U. The symmetry G; of the system U can be represented as a quantum
transition between its states (levels of state spectrum of U).

We now show that the Rumer—Fet group has dynamic symmetry. Indeed, group (7)
is equivalent to SO(2,4) ® SU(2) = SU(2,2) ® SU(2) (see [40]), since one “doubling”
in (7) already actually described by the two-sheeted covering SU(2,2) of the conformal
group (throughout the article, the term “doubling” occurs many times. “Doubling” (or
Pauli’s “doubling and decreasing symmetry” [39]) is one of the leading principles of group-
theoretic description. Heisenberg notes [41] that all the real symmetries of nature arose as a
consequence of such doubling. “Symmetry decreasing” should be understood as group
reduction; that is, if there is a chain of nested groups G D G; D Gy D ... D Gy and an
irreducible unitary representation 3 of group G in space Hppys is given; then the reduction
G/ G of the representation ‘B of group G by subgroup G; leads to the decomposition

of P into an orthogonal sum of the irreducible representations ‘131(1) of subgroup G;. In
turn, the reduction G1 /G, of the representation of group G; over subgroup G; leads to the
decomposition of the representations ‘431(1) into irreducible representations ‘,)318-2) of group Gp
and so on (see [42,43]). Thus there is a reduction (“symmetry decreasing” of Pauli) of group
G with high symmetry to lower symmetries of the subgroups). At this point, atoms of
different elements stand in one-to-one correspondence with the vectors belonging the basis
(8) of the space of the representation Fst,. Here we have a direct analog with the physics of
“elementary particles”. According to [44], a quantum system, described by an irreducible
unitary representation of the Poincaré group P, is called an elementary particle. On the other
hand, in accordance with SU(3) and SU(6)-theories, an elementary particle is described
by a vector of an irreducible representation of group SU(3) (or SU(6)). Therefore, we have
two group theoretical interpretations of the elementary particle: as a representation of group
P (group of fundamental symmetry) and as a vector of the representation of the group of
dynamic symmetry SU(3) (or SU(6)). Moreover, the structure of the mass formula (10) for
the Rumer—Fet group is analogous to the Gell-Mann-Okubo and Bég-Singh mass formulas
for the groups SU(3) and SU(6). An action of group G; = SU(2,2) ® SU(2), which was
lifted into thys via a central extension (see, for example, [20,45]), moves state vectors
|'¥) € Hpnys, corresponding to different atoms of the periodic system, into each other.

4. Seaborg Table

As is known, the Mendeleev table includes 118 elements, from which 118 elements
have been discovered (the last detected element Og—Oganesson (eka-radon) with the
atomic number Z = 118). Two, as yet undiscovered, hypothetical elements Uue—Ununennium
(eka-francium) with Z = 119 and Ubn—Unbinillium (eka-radium) with Z = 120, begin to
fill the eight period. According to the Bohr model, both elements belong to the s-shell. The
Mendeleev table contains seven periods (rows), including the s, p, d and f-families (shells).
The next (eight) period involves the construction of the g-shell. In 1969, Glenn Seaborg [46]
proposed an eight-periodic table containing the g-shell. The first element of the g-shell is
Ubu (Unbiunium), with the atomic number Z = 121 (superactinide group also starts with
this element). The full number of elements of the Seaborg table is equal to 218.
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No one knows how many elements can be in the periodic system. The Reserford-Bohr
structural model leads to the following restriction (so-called “Bohr model breakdown”) on
the number of physically possible elements. Therefore, for elements with atomic numbers
greater than 137, a “speed” of an electron in 1s orbital is given by

Zc

v:Zacmm,

where « is the fine structure constant. Under this approximation, any element with Z > 137
would require 1s electrons to be traveling faster than c. On the other hand, Feynman
pointed out that a relativistic Dirac equation also leads to problems with Z > 137, since
a ground state energy for the electron on the 1s-subshell is given by an expression E =
moc?y/1 — Z2a2, where my is the rest of the mass of the electron. In the case of Z > 137,
an energy value becomes an imaginary number, and, therefore, the wave function of the
ground state is oscillatory; that is, there is no gap between the positive and negative energy
spectra, as in the Klein paradox. For that reason, the 137th element Uts (Untriseptium)
was proclaimed as the “end” of the periodic system; in honor of Feynman, this element
was called Feynmanium (symbol: Fy). As is known, Feynman derived this result with the
assumption that the atomic nucleus is point-like.

Further, the Greiner—Reinhardt solution [47], representing the atomic nucleus by a
charged ball of the radius R = 1,2A1/3 fm, where A is the atomic mass, moves aside
the Feynman limit to the value Z = 173. For Z ~ 173 under the action of the electric
field of the nucleus 1s-subshell “dives” into the negative continuum (Dirac sea), which
leads to the spontaneous emission of electron-positron pairs and, as a consequence, to the
absence of neutral atoms above the element Ust (Unsepttrium) with Z = 173. Atoms with
Z > Z¢ ~ 173 are called supercritical atoms. It is supposed that elements with Z > Z,
could only exist as ions.

As shown earlier, the Seaborg table is an eight-periodic extension of the Mendeleev
table (from the 119th to the 218th element). The Seaborg table contains both “critical”
elements of the Bohr model: Uts (Untriseptium, Z = 137) and Ust (Unsepttrium, Z = 173).
According to the Bohr model, the filling of the g-shell (formation of g-family) begins with
the 121st element. In the Rumer—Fet model [26], the g-shell corresponds to quantum
numbers v = 5 and A = 4 of the symmetry group SO(2,4) ® SU(2) ® SU(2)'. The Seaborg
table is presented in Figure 2 in the form of the basic representation F!, of the Rumer—Fet
group. The Mendeleev table (as part of the Seaborg table) is highlighted by a dotted border.
Within the eight-periodic extension (quantum numbers v = 5, A = 4), in addition to 20
multiplets of the Mendeleev table, we have 10 multiplets.
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} Nd U | |Ugb | |[Ueb | s=1/2
} Pm Np || [Uqt Uet | s=-1/2 }y=—1
[ Sm Pu | 1 [Uqq Ueq | s=1/2
| |
- | Eu Am| . [Ugp Uep | s=-1/2 } -0
A=3 Gd| | Cm|! |Ugh| [Ueh|s=12 JF
: Tb Bk | | |Ugs Ues | s=-1/2 }le
| Dy Cf |1 [Uqgo Ueo | s=1/2
1 Ho Es | | Uqe Uee | s=—1/2 }PZZ
} Er Fm| | [Upn| [Bnn | s=1/2
} Tm Md| | [Upu| [Bnu | s=-1/2 }V::”
e M,,,,,,,,,,,}(P,,,,N?,J Upb | [Bnb | s=1/2
Ubu Usu | s=—1/2 }V:—4
Ubb Usb | s=1/2
Ubt | [Ust | s=—1/2 }}12_3
Ubq | |Usq | s=1/2
Ubp Usp | s=-1/2 };4:72
Ubn | |Ush | s=1/2
Ubs Uss | s=-1/2 }ﬂ:71
Ubo Uso | s=1/2
A=4 Ube | [Use | s=—1/2 }y:O
Utn Uon | s=1/2
Utu Uou | s=-1/2 }le
Utb Uob | s=1/2
Utt | [Uot | s=—1/2 };_2
Utq Uoq | s=1/2
Utp Uop | s=-1/2 }V:3
Uth Uoh | s=1/2
Uts Uos | s=-1/2 }]414
Uto Uoo | s=1/2

Figure 2. Seaborg table in the form of the basic representation F.\, of the Rumer—Fet group (basis
|v, A, u,8,5")). The dashed frame indicates the Mendeleev table.

Let us calculate the average masses of these multiplets. With this aim in view, we use
mass formula (10). Formula (10) corresponds to the chain of groups (9), according to which
we have a reduction of the basic representation F;Sr, on the subgroups of this chain; that is, a
partition of the basic multiplets into the lesser multiplets. As noted above, Formula (10)
is analogous to the “first perturbation” in SU(3) and SU(6)-theories, which allows us to
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calculate an average mass of the elements belonging to a given multiplet (therefore, in
SU(3)-theory we have a Gell-Mann-Okubo mass formula

1 1
m:m0+a+ﬁY+'y{I(l+1)—4Y2] +a —BQ+9 U(U+1)—;LQ2 ,

in which, according to SU(3) / SU(2)-reduction, quantum numbers (isospin I, hypercharge
Y), standing in the first square bracket, define the “first perturbation” that leads to a so-
called hypercharge mass splitting; that is, a partition of the multiplet of SU(3) into the lesser
multiplets of the subgroup SU(2). A “second perturbation” is defined by the quantum
numbers, standing in the second square bracket (charge Q and isospin U, which, differently
from I, corresponds to other choices of the basis in the subgroup SU(2)), which leads to a
charge mass splitting inside the multiplets of SU(2)). Atmy = 1,a = 17, b = 5.5 from (10)
we obtain the average masses of multiplets (see Table 2).

Table 2. Average masses of multiplets of the Seaborg table.

Multiplet Mass (theor.)
1. (v=5,s=-1/2,A =4) 316
2. (v=5,8 =-1/2,A =3) 360
3. (v="5s=—-1/2,A =2) 393
4, (v=>5,8=-1/2,A=1) 415
5. (v=5,8=-1/2,A=0) 426
6. (v=>5,8=1/2,A=4) 435
7. (v=>5,5 =1/2,A =3) 479
8. (v="5s=1/2,A =2) 512
9. (v=5,5 =1/2,A =1) 534
10. (v=>5,5 =1/2,A =0) 545

With the aim of obtaining an analog of the “second perturbation”, which leads to
a mass splitting inside the multiplets of group G, = SO(3) ® SU(2), it needs to find a
subsequent lengthening of the group chain G D G; D Gy (9). Therefore, we need to
find another subgroup Gs. Then G,/ Gs-reduction gives a termwise mass splitting. As
is known, a representation {up} of group SU(2) compares each rotation O from SO(3)
with the matrix up from SU(2), and thereby the pair (O, up); that is, the element of
Gy. At the multiplication, (O, up) give the pairs of the same form: (Oy, up, )(O2, up,) =
(0102, up,up,) = (0102, u0,0,), the reverse pairs are analogous: (O, uo) 1= (07 up).
Therefore, such pairs form subgroup G; in G,. The subgroup G; is locally isomorphic to
SO(3). Following Fet, we will denote it via SO(3),. Further, one-parameter subgroups of
group SO(3) have the form {e~ @4} (k = 1,2, 3); since the representation {10} converts
them into one-parameter subgroups {¢ "%} of group SU(2); then the corresponding
one-parameter subgroups in SO(3), have the form

(e—iaAk e—iark) — (e—ilXAk 1) (1 e—iark)'

Since the matrices A;, Ay, Az correspond to the rotations Lys = J; + Ky, L3; =
Jo + Ky, Lip = J3 + K3 in group G (in the basic representation of group G, see Section 2),
the pair (e~™4,1) is represented by the operator e~ *(J«*Kk) and the pair (1,e k)
is represented by e~*Tk. Thus, one-parameter subgroups of G3 = SO(3), correspond
to subgroups of operators e~ “UJktKi)e=iaTk (k = 1,2,3). Irreducible representations of
group Gy = SO(3) ® SU(2) are numbered by the collections of quantum numbers (v,s’, A).
These representations form vertical rectangles in Figure 2. Each of them is defined by a
fundamental representation of SU(2) and (2A + 1)-dimensional irreducible representation
of group SO(3). At G,/ Gs-reduction from such a representation, we obtain an irreducible
representation of the subgroup G3 = SO(3)., for which a Clebsch-Gordan sequence
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lji1 — j2|, .- ., j1 + jo with the values j; = 1/2 and j, = A is reduced to two terms A —1/2,
A+1/2atA > 0and to one term 1/2 at A = 0. Therefore, at A > 0, the representation
(v,s',A) of group G, is reduced to two irreducible representations of subgroup G; with
dimensionality 2(A —1/2) +1 = 2A and 2(A +1/2) +1 = 2A + 2, and at A = 0 to one
two-dimensional irreducible representation. Thus, at A > 0, multiplets of subgroup G,
are reduced to two multiplets of subgroup G3. G»/Gs-reduction leads to the following
(lengthened) chain of groups:

GDG; DGy DGy —
SO(2,4) ® SU(2) ® SU(2) D SO(4) ® SU(2) D SO(3) ® SU(2) D SO(3).. (13)

The lengthening of the group chain requires the introduction of a new basis whose
vectors belong to the smallest multiplets of symmetry; that is, multiplets of the subgroup
Gs. The vectors |v, A, 1, s,s") of basis (8), corresponding to group chain (9), do not already
compose a chosen (well-defined) basis, since y, s do not belong to quantum numbers of
the symmetry group; that is, these vectors do not belong to irreducible spaces of group
Gs. The new basis is defined as follows. Since v, s’, A are related to the groups G, Gy,
Gy, they remain quantum numbers of chain (9), and instead, y, s have new quantum
numbers related to Gs. First, quantum number 1, relates with the Casimir operator of the
subgroup Gj, which is equal to Y3_, (T + Jx + Ki)?. At this point, two multiplets of G3,
obtained at the G/ Gs-reduction, correspond to 1y = A —1/2and 1y = A +1/2, whence
2A = 21y +1, 24 +2 = 21y + 1. Another quantum number, %, is an eigenvalue of the
operator g3 = T3 + J3 + K3, which belongs to the Lie algebra of group Gz = SO(3).. Thus,
the new basis, corresponding to the group chain (13), has the form

lv,s, A p,%), v=1,2,...;8 =-1/2,1/2A=0,1,...,v—1;
NW=A=1/2A+1/2x=—1),—1)+1,...,00 —1,1,. (14)

The Seaborg table recorded in basis (14), is shown in Figure 3.

Masses of Elements

The lengthened group chain G O G; D Gy D Gz (13) allows us to provide a termwise
mass splitting of the basic representation F;sr, of the Rumer-Fet group. With this aim in
view, we introduce the following mass formula:

m—m0+u{s’(2v—3)—5v+121+2(v2—1)] —b-AA+1)+

+a [2x — 0,1666x> +0,0083x> — 0, 0001K7] + (V) =1, (15

where
B 0, ifiy=A-1/2;
Tl 1, ifn=A4+1/2

As the “first perturbation”, we have in (15), the Fet formula (10), corresponding to the
group chain (9), where the basic representation F ;sr, is divided into the multiplets (v,s’, A)
with average masses of (v,s’,A). An analog of the “second perturbation” in formula (15) is
defined by quantum numbers 1), x, which, according to chain (13), leads to a partition of
the multiplets (v,s’, A) into the pair of multiplets of subgroup Gs (G,/Gs-reduction), and
thereby we have here a termwise mass splitting.
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| v=1 v=2 v=3 v=4 I v=>5
[ — —— [P — I
| s'==1/25'=1/2 s'=-1/25'=1/2 d==1/25'=1/2  =-1/25=1/2 | I=-1/2 =172
A=0 !|H Li Na| |K Rb| [Cs| [Fr| [Uuel|[Uhe| [Bue K:_uz} 1=1/2
i | He Be Mg Ca Sr Ba Ra Ubn | | [Usn Bbn | x=1/2
l l
| |
; B Al Ga| | In Tl Nh|'|Uht | [But K;l/z} =1/2
| C Si Ge Sn Pb Fl |1 |Uhq| [Buq | x=1/2
A1 ! N P As| [ sb Bi Mc| i [Uhp| [Bup | x—3/2
- } @) S Se Te Po Lv || [Uhn Buh | x=-1/2 32
! F ca| [Br| [1 At| [T |![Uhs | [Bus | k12 (T
| Ne Ar Kr Xe Rn Og |1 [Uho | [Buo | x=3/2
| |
| |
} Sc Y Lu Lr || |Upt Bnt | x=-3/2
| Ti Zr Hf Rf |1 [Upq| [Bnq | x=-1/2 _32
| \% Nb Ta Db | ! Upp | [Bnp | x=1/2 =
: Cr Mo \4 Sg || [Uph Bnh | x=3/2
A=2 : Mn Tc Re Bh | | [Ups Bns | x=-5/2
- [ Fe Ru Os Hs | + [Upo Bno | x=-3/2
| Co Rh Ir Mt | | Upe Bne | x=-1/2
; Ni| | Pd]| | Pt Ds |![Uhn| [Bun | x-1/2 (4=5/2
} Cu Ag Au Rg || [Uhu Buu | x=3/2
I Zn Cd Hg Cn | 1 [Uhb Bub | x=5/2
| |
| |
} La Ac || |Ute Uoe | x=-5/2
| Ce Th | [Ugn | [Uen | x=-3/2
| |
I Pr Pa |1 |Uqu Ueu | x=-1/2 —5/2
! Nd| | U | |Ugb| [Ueb| 12 4=
} Pm Np | | |Uqt Uet | x=3/2
I Sm Pu | 1 [Uqq Ueq | x=5/2
A=3 | Eu Am| | Uqgp Uep | x=-7/2
- } Gd Cm| | [Ugh Ueh | x=-5/2
: Tb Bk | | [Ugs Ues | x=-3/2
| Dy Cf | 1 [Ugo Ueo | x=-1/2
| | I/\=7/2
I Ho Es |1 |Uge Uee | x=1/2
} Er Fm| | [Upn| [Bnn | x=3/2
: Tm Md| | {Upu Bnu | x=5/2
I M,,,,,,,,,,,,YP,,,,N?,J Upb | [Bnb | x=7/2
Ubu Usu | x=-7/2
Ubb | [Usb | x=-5/2
Ubt Ust k=—3/2
Ubq | |Usq | x=-1/2 L=7/2
Ubp Usp | x=1/2
Ubn | |Ush | x=3/2
Ubs Uss | x=5/2
Ubo Uso | «=7/2
A=4 Ube Use | x=-9/2
Utn Uon | x=-7/2
Utu Uou | x=-5/2
Utb Uob | x=-3/2
Utt Uot | x=-1/2
Utq Uoq | x=1/2 (=9/2
Utp Uop | x=3/2
Uth Uoh | x=5/2
Uts Uos | x=7/2
Uto Uoo | x=9/2

Figure 3. The Seaborg table in the form of the basic representation Fs'g, of the Rumer-Fet group (basis
lv,s", A, 1p, ).

We now calculate the masses of the elements of the Seaborg table, including the masses
of the elements of the Mendeleev table, since the latter is part of the Seaborg table. For this
purpose, in addition to the average weights of heavy multiplets (see Table 1), we calculate
the average masses of the light multiplets of the Mendeleev table using the Fet formula (10)
for the values my = 8,0, a4 = 16,1, b = 5.0. The results are shown in Table 3.
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Table 3. Average masses of the light multiplets of the Mendeleev table.

Multiplet Mass (exp.) Mass (theor.) Approx. %
1. (v=1¢=-1/2,A=0) 2.505
2. (v=1,s=1/2,A=0) 7.975 8.00 +0.31
3. (v=2,¢=-1/2,A=1) 15.335 14.10 —8.05
4. (v=2,5=-1/2,A=0) 23.65 24.10 +1.90
5. (v=2,¢=1/2,A=1) 32.25 30.20 —6.35
6. (v=2,s=1/2,A=0) 39.59 40.20 +1.54

The accuracy of the description is comparable to that obtained for hadron multiplets,
with the exception of the multiplet (v =1,s' = —1/2, A = 0) containing H and He.

The masses of the elements of the periodic system, starting from the atomic number
Z = 3to Z = 20, are calculated according to mass formula (15) at values my = 8.0,2 = 16.1,
b=>5.0,a"=215,b = 5.3 (light multiplets of the Mendeleev table) and at my = 1,2 = 17,
b =554 =11, = 3.9 for heavy multiplets, starting from Z = 21 to Z = 120 (see
Table 4). The first column of Table 4 contains the atomic number of the element; in the
second column, we have a generally accepted (according to IUPAC—International Union
of Pure and Applied Chemistry) designation of the element; the third column contains the
quantum numbers of the element defining the vector |v,s’, A, 15, k) of the basis (14) (recall,
that according to the group-theoretical description, each element of the periodic system
corresponds to the vector |v,s’, A, 1), k) of the basis (14), thereby forming a single quantum
system); the fourth column shows the experimental mass of the element; the fifth column
contains the theoretical mass of the element calculated using Formula (15); the sixth column
contains the relative error between the experimental and the calculated values.

Table 4. The masses of elements of the Mendeleev table.

Z Element Vector |v,s’, A, 13, x) Mass (exp.)  Mass (theor.)  Approx. %

1 H 11,-1/2,0,1/2,—1/2) 1.01

2 He 11,-1/2,0,1/2,1/2) 4.00

3 L 11,1/2,0,1/2,—1/2) 6.94 5.89 ~15.19
4  Be 11,1/2,0,1/2,1/2) 9.01 10.10 +12.09
5 B 12,-1/2,1,1/2,—1/2) 10.81 11.89 +10.91
6 C 2,-1/2,1,1/2,1/2) 12.01 16.20 +34.89
7 N 12,-1/2,1,3/2,-3/2) 14.01 15.67 +11.85
8 O 12,-1/2,1,3/2,—1/2) 16.00 18.94 +18.37
9 F 2,-1/2,1,3/2,1/2) 19.00 23.15 +21.84
10 Ne 2,-1/2,1,3/2,3/2) 20.18 26.42 +30.92
11 Na 12,-1/2,0,1/2,—1/2) 22.99 21.99 —435

12 Mg 2,-1/2,0,1/2,1/2) 2431 26.20 +7.77

13 Al 2,1/2,1,1/2,-1/2) 26.98 28.09 +4.11

14 Si 12,1/2,1,1/2,1/2) 28.09 32.30 +14.38
15 P 2,1/2,1,3/2,-3/2) 30.97 31.77 +2.58

16 S 2,1/2,1,3/2,—1/2) 32.06 35.04 +9.29

17 a 12,1/2,1,3/2,1/2) 35.45 39.25 +10.72
18 Ar 2,1/2,1,3/2,-3/2) 39.95 42,52 +6.43

19 K 2,1/2,0,1/2,—1/2) 39.10 38.09 —258

20 Ca 12,1/2,0,1/2,1/2) 40.08 42.30 +5.54

21 Sc 13,-1/2,2,3/2,—3/2) 44.96 50.25 +11.76
2 T 13,-1/2,2,3/2,—1/2) 47.90 51.92 +8.39

23 VvV 13,-1/2,2,3/2,1/2) 50.94 54.08 +6.16

24 Cr 13,—-1/2,2,3/2,3/2) 52.00 55.75 +7.21
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Table 4. Cont.

Z Element Vector |v,s’, A, 13, ) Mass (exp.)  Mass (theor)  Approx. %
25 Mn |3,—-1/2,2,5/2,-5/2) 54.94 58.28 +6.08
26 Fe 13,-1/2,2,5/2,-3/2) 55.85 59.00 +5.64
27 Co [3,—-1/2,2,5/2,—1/2) 58.93 60.67 +2.95
28 Ni 13,—-1/2,2,5/2,1/2) 58.70 62.83 +7.03
29  Cu 13,-1/2,2,5/2,3/2) 63.55 64.49 +1.48
30 Zn 13,—1/2,2,5/2,5/2) 65.38 65.21 —0.26
31 Ga |3,-1/2,1,1/2,-1/2) 69.72 73.92 +6.02
32 Ge 13,-1/2,1,1/2,1/2) 72.59 76.08 +4.81
33 As |3,—-1/2,1,3/2,-3/2) 74.92 77.10 +2.91
34 Se 13,-1/2,1,3/2,-1/2) 78.96 78.77 —0.24
35 Br 13,—-1/2,1,3/2,1/2) 79.90 80.93 +1.29
36 Kr 13,—-1/2,1,3/2,3/2) 83.80 82.60 —1.43
37 Rb 13,-1/2,0,1/2,-1/2) 85.47 84.92 —0.64
38 Sr 13,—1/2,0,1/2,1/2) 87.62 87.07 —0.63
39 Y 13,1/2,2,3/2,-3/2) 88.91 101.25 +13.88
40  Zr 13,1/2,2,3/2,-1/2) 91.22 102.92 +12.83
41 Nb 13,1/2,2,3/2,1/2) 92.91 105.07 +13.09
42 Mo 13,1/2,2,3/2,3/2) 95.94 106.75 +11.27
43 Tc 13,1/2,2,5/2,—5/2) 98.91 109.28 +10.48
44 Ru 13,1/2,2,5/2,-3/2) 101.07 110.00 +8.83
45 Rh 13,1/2,2,5/2,—1/2) 10291 111.67 +8.51
46 Pd 13,1/2,2,5/2,1/2) 106.42 113.83 +6.96
47 Ag 13,1/2,2,5/2,3/2) 107.87 115.49 +7.06
48 Cd 13,1/2,2,5/2,5/2) 112.41 116.21 +3.38
49 In 13,1/2,1,1/2,—-1/2) 114.82 124.92 +8.79
50 Sn 13,1/2,1,1/2,1/2) 118.69 127.07 +7.06
51 Sb 13,1/2,1,3/2,—-3/2) 121.75 128.10 +5.21
52 Te 13,1/2,1,3/2,—-1/2) 127.60 129.77 +1.77
53 I 13,1/2,1,3/2,1/2) 126.90 131.02 +3.96
54 Xe 13,1/2,1,3/2,3/2) 131.30 133.59 +1.74
55 Cs 13,1/2,0,1/2,-1/2) 13291 135.92 +2.26
56 Ba 13,1/2,0,1/2,1/2) 137.33 138.08 +0.55
57 La |4,—-1/2,3,5/2,-5/2) 138.91 152.53 +9.80
58 Ce |4,-1/2,3,5/2,-3/2) 140.12 153.25 +9.37
59 Pr |4,—-1/2,3,5/2,—1/2) 140.91 154.92 +9.94
60 Nd |4,—-1/2,3,5/2,1/2) 144.24 157.07 +8.89
61 Pm |4,—1/2,3,5/2,3/2) [145] 158.75 +9.48
62 Sm |4,—1/2,3,5/2,5/2) 150.40 159.46 +6.02
63 Eu |4,-1/2,3,7/2,-7/2) 151.96 164.72 +8.39
64 Gd |4,-1/2,3,7/2,-5/2) 157.25 165.18 +5.04
65 Tb |4,—-1/2,3,7/2,-3/2) 158.93 165.90 +4.38
66 Dy 14,-1/2,3,7/2,-1/2) 162.50 167.52 +3.09
67 Ho |4,—1/2,3,7/2,1/2) 164.93 169.72 +2.90
68 Er |4,-1/2,3,7/2,3/2) 167.26 171.39 +2.47
69 Tm |4,-1/2,3,7/2,5/2) 168.93 17211 +1.88
70 Eu |4,—-1/2,3,7/2,7/2) 173.04 172.58 —0.26
71 Lu |4,-1/2,2,3/2,-3/2) 174.97 186.25 +6.45
72 Hf |4,-1/2,2,3/2,-1/2) 178.49 187.92 +5.28
73 Ta |4,-1/2,2,3/2,1/2) 180.95 190.07 +5.04
74 W |4,-1/2,2,3/2,3/2) 183.85 191.75 +4.29
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Z Element  Vector |v,s’,A,1),%) Mass (exp.)  Mass (theor)  Approx. %

75  Re 14,-1/2,2,5/2,—5/2) 186.21 194.28 +4.33
76  Os 14,—1/2,2,5/2,—3/2) 190.20 195.00 +2.52
77 Ir 14,-1/2,2,5/2,—1/2) 192.22 196.67 +2.31
78 Pt 14,-1/2,2,5/2,1/2) 195.09 198.82 +1.91
79  Au 14,-1/2,2,5/2,3/2) 196.97 200.49 +1.79
80 Hg 14,-1/2,2,5/2,5/2) 200.59 201.21 +0.30
81 Tl 14,-1/2,1,1/2,—1/2) 204.37 209.92 +2.71
82 Pb 14,-1/2,1,1/2,1/2) 207.20 212.07 +2.35
83  Bi 14,-1/2,1,3/2,-3/2) 208.98 213.10 +1.97
84 Po 14,-1/2,1,3/2,-1/2) 208.98 214.77 +2.77
85 At 14,-1/2,1,3/2,1/2) [210] 216.93 +3.30
8 Rn 14,-1/2,1,3/2,3/2) 222.08 218.60 157
87  Fr 14,—1/2,0,1/2,—1/2) 223.08 220.92 —0.97
88 Ra 14,-1/2,0,1/2,1/2) 226.03 223.07 —-1.31
89  Ac 14,1/2,3,5/2,—5/2) 227.03 237.53 +4.62
90 Th 14,1/2,3,5/2,—3/2) 232.04 238.25 +2.67
91 Pa 14,1/2,3,5/2,—1/2) 231.04 239.92 +3.84
2 U 14,1/2,3,5/2,1/2) 238.03 242.07 +1.69
93 Np 14,1/2,3,5/2,3/2) 237.05 243.75 +2.82
94  Pu 14,1/2,3,5/2,5/2) 244.06 244.46 +0.16
95  Am 14,1/2,3,7/2,-7/2) [243] 249.72 +2.76
9% Cm 14,1/2,3,7/2,—5/2) 247.07 250.19 +1.26
97 Bk 14,1/2,3,7/2,—3/2) 247.07 250.90 +1.55
98  Cf 14,1/2,3,7/2,—1/2) 251.08 252.57 +0.59
99  Es 14,1/2,3,7/2,1/2) 252.08 254.72 +1.08
100 Fm 14,1/2,3,7/2,3/2) 257.09 256.40 —0.27
101  Md 14,1/2,3,7/2,5/2) 258.10 257.11 —0.38
102  No 14,1/2,3,7/2,7/2) 259.10 257.58 —0.59
103  Lr 14,1/2,2,3/2,-3/2) [266] 271.25 +1.93
104 Rf 14,1/2,2,3/2,—1/2) 267 272.92 +2.22
105 Db 14,1/2,2,3/2,1/2) 268 275.07 +2.64
106 Sg 14,1/2,2,3/2,3/2) [269] 276.75 +2.88
107 Bh 14,1/2,2,5/2,—5/2) [267] 279.28 +4.60
108 Hs 14,1/2,2,5/2,—3/2) [269] 280.00 +4.09
109 Mt 14,1/2,2,5/2,—1/2) [278] 281.67 +1.32
110 Ds 14,1/2,2,5/2,1/2) [281] 283.83 +1.01
111  Rg 14,1/2,2,5/2,3/2) [282] 285.50 +1.24
112 Cn 14,1/2,2,5/2,5/2) [285] 286.21 +0.42
113 Nh 14,1/2,1,1/2,—1/2) [286] 294.92 +3.12
114 F 14,1/2,1,1/2,1/2) [289] 297.08 +2.79
115 Mc 14,1/2,1,3/2,—3/2) [290] 298.10 +2.79
116 Lv 14,1/2,1,3/2,—1/2) [293] 299.77 +2.31
117 Ts 14,1/2,1,3/2,1/2) [294] 301.92 +2.69
118 Og 14,1/2,1,3/2,3/2) [294] 303.59 +3.26
119 Uue 14,1/2,0,1/2,—1/2) 305.92

120 Ubn 14,1/2,0,1/2,1/2) 308.08

It follows from Table 4 that the masses of the elements are described by Formula (15),
meaning it is better the heavier the element; therefore, this formula can be considered
as asymptotic.

Further, the masses of the elements of the Seaborg table, starting from the atomic
number Z = 121 to Z = 220, are given in Table 5. As noted above, the Seaborg table is
an extension of the Mendeleev table, highlighted in Figure 3 by a dotted border. Table 5
shows the masses of the elements outside the dotted frame. Unlike Table 4, in which
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all elements (with the exception of Uue and Ubn) are actually observable objects (atoms)
with experimentally established mass values, all elements of Table 5 are hypothetical, the
theoretical masses of which are calculated according to mass formula (15) at the values
mg=1,a=17,b=55,a" = 2.15,b" = 5.3 (see Table 5).

Table 5. Masses of elements of the Seaborg table.

V4 Element Vector |v,s’, A, 1y, k) Mass (theor.)
121 Ubu |5,—-1/2,4,7/2,-7/2) 312.07
122 Ubb |5,—-1/2,4,7/2,-5/2) 312.59
123 Ubt |5, -1/2,4,7/2,-3/2) 313.25
124 Ubgq |5,-1/2,4,7/2,—1/2) 314.92
125 Ubp I5,—~1/2,4,7/2,1/2) 317.07
126 Ubn |5,—1/2,4,7/2,3/2> 318.75
127 Ubs |5,—-1/2,4,7/2,5/2) 319.46
128 Ubo |5, —1/2,4,7/2,7/2) 319.93
129 Ube |5,—1/2,4,9/2,-9/2) 326.61
130 Utn I5,—1/2,4,9/2,—7/2) 328.62
131 Utu |5,—1/2,4,9/2,-5/2) 329.08
132 Utb I5,-1/2,4,9/2,~3/2) 329.80
133 Utt |5,—1/2,4,9/2,-1/2) 331.47
134 Utq I5,~1/2,4,9/2,1/2) 333.63
135 Utp I5,—-1/2,4,9/2,3/2) 335.29
136 Uth |5,—1/2,4,9/2,5/2) 336.01
137 Uts I5,-1/2,4,9/2,7/2) 336.48
138 Uto |5,—-1/2,4,9/2,9/2) 338.49
139 Ute |5,-1/2,3,5/2,-5/2) 356.54
140 Uqn I5,-1/2,3,5/2,-3/2) 357.25
141 Uqu |5,—1/2,3,5/2,—1/2) 358.92
142 Uqb I5,-1/2,3,5/2,1/2) 361.07
143 Uqt I5,~1/2,3,5/2,3/2) 362.75
144 Uqq I5,-1/2,3,5/2,5/2) 363.46
145 Uqp I5,-1/2,3,7/2,~7/2) 368.72
146 Uqh I5,—1/2,3,7/2,—5/2) 369.19
147 Uqgs I5,-1/2,3,7/2,—-3/2) 369.90
148 Uqo 5,-1/2,3,7/2,—~1/2) 37157
149 Uqe 15,-1/2,3,7/2,1/2) 373.72
150 Upn I5,-1/2,3,7/2,3/2) 37539
151 Upu I5,—-1/2,3,7/2,5/2) 376.11
152 Uqgb I5,—1/2,3,7/2,7/2) 376.58
153 Upt I5,-1/2,2,3/2,—3/2) 390.25
154 Upq 15,-1/2,2,3/2,-1/2) 391.92
155 Upp I5,~1/2,2,3/2,1/2) 394.08
156 Uph I5,-1/2,2,3/2,3/2) 395.75
157 Ups |5,—1/2,2,5/2,—5/2) 398.28
158 Upo I5,—1/2,2,5/2,-3/2) 399.00
159 Upe 15,-1/2,2,5/2,~1/2) 400.67
160 Uhn |5, -1/2,2,5/2,1/2) 402.83
161 Uhu |5,—-1/2,2,5/2,3/2) 404.50
162 Uhb I5,-1/2,2,5/2,5/2) 405.21
163 Uht |5,-1/2,1,1/2,~1/2) 413.92
164 Uhgq I5,-1/2,1,1/2,1/2) 416.07
165 Uhp |5,—1/2, 1,3/2,-3/2) 417.10
166 Uhn |5,—1/2, 1,3/2,—-1/2) 418.77
167 Uhs |5,—-1/2,1,3/2,1/2) 420.93
168 Uho I5,-1/2,1,3/2,3/2) 42259
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Table 5. Cont.

V4 Element Vector |v,s’, A, 1y, ) Mass (theor.)
169 Uhe |5,—-1/2,0,1/2,-1/2) 42492
170 Usn |5, -1/2,0,1/2,1/2) 427.08
171 Usu |5,1/2,4,7/2,—7/2) 431.07
172 Usb 15,1/2,4,7/2,—5/2) 431.54
173 Ust |5,1/2,4, 7/2, —3/2> 432.55
174 Usq 15,1/2,4,7/2,—1/2) 433.92
175 Usp 15,1/2,4,7/2,1/2) 436.08
176 Ush |5,1/2,4, 7/2,3/2> 437.75
177 Uss |5,1/2,4,7/2,5/2) 438.46
178 Uso |5,1/2,4,7/2,7/2) 438.93
179 Use 15,1/2,4,9/2,—9/2) 44561
180 Uon |5,1/2,4,9/2,—-7/2) 447 .62
181 Uou |5, 1/2,4,9/2,—-5/2) 448.09
182 Uob |5,1/2,4,9/2,-3/2) 448.80
183 Uot 15,1/2,4,9/2,—1/2) 450.47
184 Uoq 15,1/2,4,9/2,1/2) 452.63
185 Uop 15,1/2,4,9/2,3/2) 454.30
186 Uoh 15,1/2,4,9/2,5/2) 455.01
187 Uos |5,1/2,4,9/2,7/2) 455.48
188 Uoo 15,1/2,4,9/2,9/2) 457.49
189 Uoe 15,1/2,3,5/2,—5/2) 475.54
190 Uen 15,1/2,3,5/2, —3/2) 47625
191 Ueu |5,1/2,3,5/2,—1/2) 477.92
192 Ueb |5, 1/2,3,5/2,1 /2> 480.07
193 Uet |5,1/2,3,5/2,3/2) 481.75
194 Ueq 15,1/2,3,5/2,5/2) 482.46
195 Uep 15,1/2,3,7/2, —7/2) 487.72
196 Ueh |5,1/2,3,7/2,-5/2) 488.19
197 Ues |5,1/2,3,7/2,-3/2) 488.90
198 Ueo |5,1/2,3,7/2,—1/2) 490.57
199 Uee 15,1/2,3,7/2,1/2) 492.73
200 Bnn |5, 1/2,3,7/2, 3/2> 494.40
201 Bnu |5,1/2,3,7/2,5/2) 495.11
202 Bnb |5, 1/2,3,7/2, 7/2> 495.58
203 Bnt [5,1/2,2,3/2,—3/2) 509.25
204 Bnq 15,1/2,2,3/2,—1/2) 510.92
205 Bnp 15,1/2,2,3/2,1/2) 513.08
206 Bnh |5,1/2,2,3/2,3/2) 514.75
207 Bns |5,1/2,2,5/2,-5/2) 517.29
208 Bno |5,1/2, 2,5/2,-3/2) 518.00
209 Bne |5,1/2,2,5/2,—1/2) 519.67
210 Bun 15,1/2,2,5/2,1/2) 521.83
211 Buu |5,1/2, 2,5/2,3/2> 523.50
212 Bub |5,1/2,2,5/2,5/2) 524.21
213 But |5,1/2, 1,1/2,-1/2) 532.92
214 Buq 15,1/2,1,1/2,1/2) 535.08
215 Bup 15,1/2,1,3/2,—3/2) 536.10
216 Buh |5,1/2,1,3/2, —1/2> 537.77
217 Bus |5,1/2,1,3/2,1/2) 539.93
218 Buo |5,1/2, 1,3/2,3/2> 541.60
219 Bue [5,1/2,0,1/2,—1/2) 543.92
220 Bbn |5,1/2,0,1/2,1/2) 546.08
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5. 10-Periodic Extension

The structure of the symmetry group of the periodic system, which is essentially a
mathematical formulation of the Madelung rule (doubling periods), allows us to further
expand the Mendeleev table, inclusive of 10th and 11th periods, etc. All elements of this
extension are hypothetical. The main purpose of this section is to demonstrate that the
7 periods of the Mendeleev table are only the first steps of a broader mathematical structure.

Figure 4 shows a 10-periodic extension of the Mendeleev table in the form of the
basic representation F;g, of the Rumer-Fet group G for the basis (14). The Mendeleev
and Seaborg tables are separated by dotted frames with the symbols M and S, respec-
tively. The first period of the Mendeleev table, including hydrogen H and helium He,
corresponds to the simplest multiplet (v = 1,8/ = —1/2,A = 0,1, = 1/2) of group
G. The second period consists of three multiplets: lithium Li and beryllium Be (v = 1,
s =1/2,A = 0,1y = 1/2), boron B and carbon C (v = 2,s' = —1/2,A = 0,1, = 1/2),

elements N, O, F, Ne form a quadruplet (v = 2,5/ = —1/2,A = 1,1, = 3/2). The
third period consists of three multiplets also (two doublets and one quadruplet): doublet
Naand Mg (v = 2, = —1/2,A = 0,1, = 1/2), doublet Al and Si (v = 2,s' = 1/2,

A = 1,1, = 1/2), quadruplet P, S, Cl, Ar (v = 2,5/ = 1/2,A = 1,1, = 3/2). The
fourth period includes five multiplets: doublets K, Ca (v = 2,5’ =1/2,A = 0,1, = 1/2)
and Ga, Ge (v = 3,8/ = —=1/2,A = 1,1, = 1/2), quadruplets As, Se, Br, Kr (v = 3,
s =-1/2,A=1,1y =3/2)and S¢, Ti, V, Cr (v = 3,s' = =1/2,A = 2,1, = 3/2), and
also a sextet (v = 3,s' = —1/2,A = 2,1, = 5/2) formed by the elements Mn, ..., Zn.
This sextet and quadruplet (v = 3,8’ = —1/2,A = 2,1, = 3/2) form the first insertion
decade (transitional elements). The fifth period has an analogous structure: doublets Rb,
St (v =3, =—-1/2,A =0, =1/2)and In, Sn (v = 3,s' = 1/2,A = 1,1, = 1/2),
quadruplet Sb, Te, I, Xe (v = 3,8’ = 1/2,A = 1,1, = 3/2), quadruplet Y, Zr, Nb, Mo
(v=3,s =1/2,A =2,1,, =3/2) and sextet Tc, ..., Cd (v =3,s' =1/2,A = 2,1, =5/2)
(the second insertion decade). The sixth period consists of seven multiplets: doublets
CsBa(v=23s =1/2,A =0,y =1/2)and TL, Pb (v = 4,5’ = —1/2,A = 1,1, = 1/2),
quadruplets Bi, Po, At, Rn (v = 4,s' = —1/2,A = 1,1, = 3/2) and Lu, Hf, Ta, W
(v =4, = —-1/2,A = 2,1, = 3/2), sextets Re, ..., Hg (v = 4,5/ = —1/2,A = 2,
1y =5/2)and La, ..., Sm (v = 4,s' = —1/2,A = 3,1, = 5/2), octet Eu, ..., Yb (v = 4,
s'=—-1/2,A=3,1, =7/2).



Symmetry 2022, 14, 137

26 of 41
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Beu Tht k=—1/2
Beb | [Thq | x=1/2 } n=1/2

|
|
|
|
|
‘ 1/2
Uht But | I [Bop Tps K=— —
Uhq Buq | | [Boh Tpo k=1/2 } n=1/2
Uhp Bup : Bos Tpe k=-3/2
Uhn Buh | | |Boo Thn k=-1/2
Uhs Bus | | [Boe Thu k=1/2 l)‘73/2
Uho Buo | I [Ben Thb k=3/2
| 1
|
Upt Bnt | I |Bsp Tqgs k=-3/2
Upq Bnq | ! [Bsh Tqo k=—1/2
Upp Bnp : Bss Tqe k=1/2 l)‘73/2
Uph Bnh | [Bso Tpn k=3/2
Ups Bns | I |Bse Tpu k=-5/2
Upo Bno | I |Bon Tpb xk=—3/2
| —
Upe Bne Bou Tpt k=—1/2 _
Uhn | [Bun | | [Bob | |Tpq | x=1/2 11=5/2
Uhu Buu | I |Bot Tpp k=3/2
Uhb Bub | I [Boq Tph k=5/2
| =1
|
Ute Uoe | I [Bhu Ttt
Uqn Uen | | |Bhb Ttq
|
Uqu | [Ueu | [Bht Ttp _
Ugp | [Ueb : Bhq Tth xk=1/2 11=5/2
Uqt Uet | I [Bhp Tts k=3/2
Uqq Ueq | I [Bhh Tto k=5/2
Ugp Uep : Bhs Tte k==7/2
Ugh Ueh | | [Bho Tqn k=—5/2
Ugs Ues | | [Bhe Tqu k=-3/2
Uqo Ueo | I |Bsn Tqb k=—1/2
Uqe Uee : Bsu Tqt k=1/2 l)‘77/2
Upn Bon | [Bse Tqq k=3/2
Upu Bnu | I [Bst Tqp k=5/2
Upb Bnb | I [Bsq Tgh xk=7/2
= =1 =
|
Ubu Usu | | |Bqt Tup Kk=-7/2
Ubb Usb |1 [Bqq Tuh k=—5/2
Ubt Ust || [Bap | [Tus k=—3/2
Ubq Usq Bgh Tuo k=—1/2
! 12=7/2
Ubp Usp | | Bgs Tue k=1/2 A
Ubn Ush | I |Bqo Tbn
Ubs Uss : Bqe Tbu
Ubo Uso | Bpn Tbb
Ube Use | I (Bpu Tbt
Utn Uon | I [Bpb Tbq
Ut | [Uou | | [Bpt | [Tbp
Utb Uob | Bpq Tbh
Utt Uot | I [Bpp Tbs k=—1/2 _
Utq Uoq | | |Bph Tbo k=1/2 [)‘79/2
Utp Uop || [Bes The | x=3/2
Uth Uoh | | [Bpo Ttn k=5/2
Uts Uos | I [Bpe Ttu Kk=7/2
Uto Uoo | I [Bhn Ttb xk=9/2
,,,,,,,,,,,,,,,,,,, J
Bbu Bet
Bbb Beq
Bbt Bep
Bbq Beh
Bbp Bes —
Bbh | [Beo 1n=9/2
Bbs Bee
Bbo Tnn
Bbe Tnu
Bth Tnb
Btu Tnt
A=5 Btb Tnq
Btt Tnp
Btq Tnh
Btp Tns
Bth Tno
Bts Tne W= 11 / 2
Bto Tun
Bte Tuu
Bgn Tub
Bqu Tut
Bgb Tuq

Figure 4. The 10-periodic extension of the Mendeleev table in the form of the basic representation F;',
of the Rumer-Fet group (basis |v,s’, A, 1), «)). Dashed frames with the symbols M and S denote the
Mendeleev and Seaborg tables, respectively.

The seventh period (the last period of the Mendeleev table) duplicates the struc-
ture of the sixth period: doublets Fr, Ra (v = 4,5’ = —1/2,A = 0,1, = 1/2) and Nh,
Fl (v =4,s = 1/2,A = 1,1y = 1/2), quadruplets Mc, Lv, Ts, Og (v = 4,s' = 1/2,
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A =1,1y = 3/2) and Ly, Rf, Db, Sg (v = 4,s' = 1/2,A = 2,1y = 3/2), sextets Bh, ...,
Cn(v=4,s =1/2,A =2,1y =5/2)and Ac, ..., Pu (v =4, =1/2,A = 3,1, =5/2),
octet Am, ..., No (v = 4,8’ = 1/2,A = 3,1y = 7/2). The eighth period (the domain
of hypothetical (undiscovered) elements of the periodic system begins with the eighth
period), forming an 8-periodic extension of the Mendeleev table (Seaborg table), consists
of nine multiplets: doublets Uue, Ubn (v = 4,s' = 1/2,A = 0,1, = 1/2) and Uht, Uhq

(v =5 = -1/2,A = 1,1y = 1/2), quadruplets Uhp, ..., Uho (v = 5,s' = —1/2,
A=1,1y =3/2)and Upt, ..., Uph (v = 5,s' = —=1/2,A = 2,1, = 3/2), sextets Ups, ...,
Uhb (v = 5,8 = —1/2,A = 2,1, = 5/2) and Ute, ..., Uqq (v = 5,8 = —1/2,A = 3,
1y = 5/2), octets Uqp, ..., Upb (v = 5,8 = —1/2,A = 3,1y = 7/2) and Ubu, ..., Ubo
(v =55 = —-1/2,A = 4,1, = 7/2), decuplet Ube, ..., Uto (v = 5, = —1/2,

A = 4,1y = 9/2). According to the Bohr model, filling of the g-shell is started with
the element Ubu (Unbiunium). An analog of the g-shell in the Rumer—Fet model is a
family of multiplets with quantum number A = 4 of group G. The eighth period contains
50 elements. The ninth period, finishing the Seaborg table, also contains nine multiplets:
doublets Uhe, Usn (v = 5,8 = —1/2,A = 0,1y = 1/2) and But, Buq (v = 5,s' = 1/2,
A = 1,1y = 1/2), quadruplets Bup, ..., Buo (v = 5,5/ = 1/2,A = 1,1) = 3/2) and
Bnt, ..., Bnh (v = 5,5/ = 1/2,A = 2,1, = 3/2), sextets Bns, ..., Bub (v = 5,5/ = 1/2,
A =2,1, =5/2)and Uoe, ..., Ueq (v =5,s' =1/2,A = 3,1, =5/2), octets Uep, ..., Bnb
(v=5,8d =1/2,A =3,1,, =7/2)and Usu, ..., Uso (v = 5,s' = 1/2,A = 4,1, =7/2),
decuplet Use, ..., Uoo (v = 5,5 = 1/2,A = 4,1, = 9/2). The construction of a family
of multiplets with the quantum number A = 5 of group G is started with the tenth pe-
riod (in the Bohr’s model it corresponds to the formation of h-shell). The tenth period
consists of 11 multiplets: doublets Bue, Bbn (v = 5,5’ =1/2,A = 0,1, = 1/2) and Bop,
Boh (v = 6,5 = —1/2,A = 1,1y = 1/2), quadruplets Bos, ..., Ben (v = 6,5’ = —1/2,
A=1,1y =3/2)and Bsp, ..., Bso (v =6,s' = —1/2,A = 2,1, = 3/2), sextets Bse, . .., Boq
(v=6,s =-1/2,A=2,1y =5/2)and Bhu, ..., Bhh (v =6, = —=1/2,A = 3,1, =5/2),
octets Bhs, ..., Bsq (v =6,s' = —1/2,A =3,1y =7/2)and Bqt,...,Bpn (v = 6,s' = —1/2,
A =4,1, =7/2),decuplets Bpu, ..., Bhn (v = 6,5 = —1/2,A = 4,1, = 9/2) and Bbu,

..., Bth (v=26, = -1/2,A = 5,1, = 9/2), 12-plet Btu, ..., Bgb (v = 6,5’ = —1/2,
A = 5,1y = 11/2). The eleventh period has an analogous structure: doublets Beu, Beb
(v==6,s =—-1/2,A =0, = 1/2) and Tps, Tpo (v = 6,s' = 1/2,A = 1,1, = 1/2),

quadruplets Tpe, ..., Thb (v = 6,s' = 1/2,A = 1,1y = 3/2) and Tqs, ..., Tpn (v = 6,
s =1/2,A = 2,1y = 3/2), sextets Tpu, ..., Tph (v = 6,8 =1/2,A = 2,1, = 5/2) and
Ttt, ..., Tto (v = 6,8’ = 1/2,A = 3,1y = 5/2), octets Tte, ..., Tqh (v = 6, = 1/2,
A=3,1y=7/2)and Tup, ..., Tbb (v = 6,5’ = 1/2,A = 4,1y = 7/2), decuplets Tht, ...,
Ttb (v =6, =1/2,A =4,y =9/2)and Bet, ..., Tnb (v =6, =1/2,A =5,1y, =9/2),
12-plet Tnt, ..., Tuq (v = 6,5 = 1/2,A = 5,1, = 11/2). The tenth and eleventh periods
each contain 72 elements. The lengths of periods form the following number sequence:

2,8,8,18, 18,32, 32, 50, 50, 72, 72, ... (16)

The numbers of this sequence are defined by the famous Rydberg formula 2p? (p is an
integer number). The Rydberg series

R=2(12+12 422 +22 432432+ 42 +4>+..)

contains a doubled first period, which is somewhat inconsistent with reality; that is, se-
quence (16).

Further, the 12th period begins with the elements Tht (Trihexitrium, Z = 363) and
Thq (Trihexiquadium, Z = 364), forming a doublet (v = 6,s' = 1/2,A = 0,1, = 1/2).
This period, already beyond the table in Figure 4, contains 13 multiplets. The length of the
12th period is equal to 98 (in exact correspondence with sequence (16)). A new family of
multiplets with quantum number A = 6 of group G starts from the 12th period. This family
corresponds to the i-shell filling. The 13th period has an analogous structure.
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Obviously, as the quantum number v increases, we will see new “steps” (doubled
periods) and corresponding A-families of multiplets (shells) in Figure 4.

Masses of Elements of 10th and 11th Periods

The table in Figure 4 corresponds to the reduction chain (13). Theoretical masses
of elements of 10th and 11th periods, starting from Z = 221 to Z = 364, are calculated
according to mass formula (15) at the values mg = 1,a = 17, b = 5.5, a =215b =53
(see Table 6).

Table 6. Masses of elements of 10th and 11th periods.

V4 Element Vector |v,s’, A, 1y, ) Mass (theor.)
221 Bbu |6,—1/2,5,9/2,—9/2) 527.06
222 Bbb 6,-1/2,5,9/2,~7/2) 529.07
223 Bbt 6,—1/2,5,9/2,—5/2) 529.54
224 Bbq 16,—1/2,5,9/2,—3/2) 530.25
225 Bbp |6,—1/2,5,9/2,—1/2> 531.92
226 Bbh |6,—1/2,5,9/2,1/2) 534.08
227 Bbs 6,-1/2,5,9/2,3/2) 535.75
228 Bbo |6,—1/2,5,9/2,5/2) 536.46
229 Bbe |6,—1/2,5,9/2,7/2) 536.93
230 Btn |6,—1/2,5,9/2,9/2) 536.93
231 Btu |6,—1/2,5,11/2,—11/2) 542.64
232 Btb |6,—1/2,5,11/2,—9/2) 547.51
233 Bt 6,—1/2,5,11/2,~7/2) 549.52
234 Btq 6,—1/2,5,11/2,-5/2) 549.99
235 Btp 6,—1/2,5,11/2,—3/2) 550.70
236 Bth |6, -1/2,5,11/2,-1/2) 552.37
237 Bts |6,—1/2,5,11/2,1/2) 554.53
238 Bto 6,—1/2,5,11/2,3/2) 556.20
239 Bte |6,—1/2,5,11/2,5/2) 556.91
240 Bqn 6,-1/2,5,11/2,7/2) 557.38
241 Bqu 6,—1/2,5,11/2,9/2) 559.39
242 Bqgb |6,—-1/2,5,11/2,11/2) 564.26
243 Bqt 6,—1/2,4,7/2,-7/2) 584.07
244 Bqq 6,—1/2,4,7/2,-5/2) 584.54
245 Bqp 16,—1/2,4,7/2,—3/2) 585.25
246 Bgh |6,—1/2,4,7/2,—1/2) 586.92
247 Bgs 16,—1/2,4,7/2,1/2) 589.08
248 Bqo 6,-1/2,4,7/2,3/2) 590.75
249 Bqe 6,—1/2,4,7/2,5/2) 591.46
250 Bpn 6,—1/2,4,7/2,7/2) 591.93
251 Bpu 16,—1/2,4,9/2,—9/2) 598.61
252 Bpb |6, -1/2,4,9/2,-7/2) 600.62
253 Bpt 6,—1/2,4,9/2,—5/2) 601.09
254 Bpq 6,—1/2,4,9/2,—3/2) 601.80
255 Bpp 6,—1/2,4,9/2,—1/2) 603.47
256 Bph 16,—1/2,4,9/2,1/2) 605.63
257 Bps 16,—1/2,4,9/2,3/2) 607.30
258 Bpo 6,~1/2,4,9/2,5/2) 608.01
259 Bpe 6,-1/2,4,9/2,7/2) 608.48
260 Bhn |6,71/2,4,9/2,9/2> 610.49
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V4 Element Vector |v,s’, A, 13, ) Mass (theor.)
261 Bhu l6,-1/2,3,5/2, —5/2) 628.54
262 Bhb 6,—1/2,3,5/2,—3/2) 629.25
263 Bht l6,—1/2,3,5/2,—1/2) 630.92
264 Bhq 6,-1/2,3,5/2,1/2) 633.08
265 Bhp 6,—1/2,3,5/2,3/2) 634.75
266 Bhh 6,-1/2,3,5/2,5/2) 635.46
267 Bhs |6,—1/2,3,7/2,-7/2) 640.72
268 Bho |6,—1/2,3,7/2,—5/2) 641.19
269 Bhe |6,—1/2,3,7/2,-3/2) 641.90
270 Bsn l6,-1/2,3,7/2,~1/2) 643.57
271 Bsu |6,—1/2,3, 7/2,1/2> 645.73
272 Bsb |6,—1/2,3,7/2,3/2) 647.40
273 Bst |6,—l/2,3,7/2,5/2> 648.11
274 Bsq l6,-1/2,3,7/2,7/2) 648.58
275 Bsp 16,—1/2,2,3/2,—3/2) 662.25
276 Bsh 16,—-1/2,2,3/2,—1/2) 663.92
277 Bss |6,—1/2,2,3/2,1/2) 666.08
278 Bso |6, —1/2,2,3/2,3/2> 667.75
279 Bse |6,—1/2,2,5/2,—5/2) 670.29
280 Bon 16,—1/2,2,5/2,—3/2) 671.00
281 Bou 6,-1/2,2,5/2,—1/2) 672.67
282 Bob |6,—-1/2,2,5/2,1/2) 674.83
283 Bot |6,—-1/2,2,5/2,3/2) 676.50
284 Boq |6, —1/2, 2,5/2,5/2> 677.21
285 Bop 6,-1/2,1,1/2,—1/2) 685.92
286 Boh l6,—1/2,1,1/2,1/2) 688.08
287 Bos l6,—1/2,1,3/2,—3/2) 689.10
288 Boo l6,-1/2,1,3/2,~1/2) 690.77
289 Boe l6,—-1/2,1,3/2,1/2) 692.93
290 Ben l6,—-1/2,1,3/2,3/2) 694.60
291 Beu l6,—1/2,0,1/2,—1/2) 696.92
292 Beb |6,—1/2,0,1/2,1/2) 699.08
293 Bet |6,1/2,5,9/2,—9/2) 680.06
294 Beq 16,1/2,5,9/2,—7/2) 682.07
295 Bep 16,1/2,5,9/2,—5/2) 682.54
296 Beh 16,1/2,5,9/2,—3/2) 683.25
297 Bes 16,1/2,5,9/2,—1/2) 684.92
298 Beo |6,1/2,5,9/2,1/2) 687.08
299 Bee |6,1/2,5,9/2,3/2) 688.75
300 Tnn 16,1/2,5,9/2,5/2) 689.46
301 Tnu 16,1/2,5,9/2,7/2) 689.93
302 Tnb 16,1/2,5,9/2,9/2) 691.94
303 Tnt 6,1/2,5,11/2,—11/2) 695.64
304 Tnq 16,1/2,5,11/2,—9/2) 700.51
305 Tnp 16,1/2,5,11/2,—7/2) 702.52
306 Tnh |6,1/2,5,11/2,—5/2) 702.59
307 Tns 16,1/2,5,11/2, —3/2) 703.70
308 Tno 16,1/2,5,11/2, —1/2) 705.37
309 Tne |6,1/2,5,11/2,1/2) 707.53
310 Tun |6,1/2, 5,11/2,3/2> 709.20
311 Tuu |6,1/2,5,11/2,5/2) 709.91
312 Tub |6,1/2,5,11/2,7/2) 710.38
313 Tut |6,1/2,5,11/2,9/2> 712.39
314 Tuq 16,1/2,5,11/2,11/2) 717.26
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315 Tup 16,1/2,4,7/2,—7/2) 737.07
316 Tuh |6,1/2,4,7/2,—5/2) 737.54
317 Tus |6,1/2,4,7/2,—3/2) 738.25
318 Tuo 16,1/2,4,7/2,—1/2) 739.92
319 Tue 16,1/2,4,7/2,1/2) 742.08
320 Tbn |6,1/2,4,7/2,3/2) 743.75
321 Tbu |6,1/2,4,7/2,5/2) 744.46
322 Tbb |6,1/2,4,7/2,7/2) 744.93
323 Tbt |6,1/2,4,9/2,—9/2) 751.61
324 Thq 16,1/2,4,9/2,~7/2) 753.62
325 Tbp 16,1/2,4,9/2,—5/2) 754.09
326 Tbh |6,1/2,4,9/2,-3/2) 754.80
327 Tbs |6,1/2,4,9/2,—1/2) 756.47
328 Tbo 16,1/2,4,9/2,1/2) 758.63
329 Thbe 16,1/2,4,9/2,3/2) 760.30
330 Ttn 16,1/2,4,9/2,5/2) 761.01
331 Ttu 16,1/2,4,9/2,7/2) 761.48
332 Ttb 16,1/2,4,9/2,9/2) 763.49
333 Ttt |6,1/2,3,5/2,—5/2) 781.54
334 Ttq 16,1/2,3,5/2,—3/2) 782.25
335 Ttp 16,1/2,3,5/2,—1/2) 783.92
336 Tth 16,1/2,3,5/2,1/2) 786.08
337 Tts 16,1/2,3,5/2,3/2) 787.75
338 Tto |6,1/2,3,5/2,5/2) 788.46
339 Tte |6,1/2,3,7/2,—7/2) 793.72
340 Tqn 16,1/2,3,7/2,5/2) 794.19
341 Tqu 16,1/2,3,7/2,—3/2) 794.90
342 Tqb 16,1/2,3,7/2,—~1/2) 796.57
343 Tqt |6,1/2,3,7/2,1/2) 798.73
344 Tqq 16,1/2,3,7/2,3/2) 800.34
345 Tqp 16,1/2,3,7/2,5/2) 801.11
346 Tqh 16,1/2,3,7/2,7/2) 801.58
347 Tqs 16,1/2,2,3/2,—3/2) 815.25
348 Tqo 16,1/2,2,3/2,—~1/2) 816.92
349 Tqe 16,1/2,2,3/2,1/2) 819.08
350 Tpn 16,1/2,2,3/2,3/2) 820.75
351 Tpu 16,1/2,2,5/2,—5/2) 823.29
352 Tpb 16,1/2,2,5/2,—3/2) 824.00
353 Tpt 16,1/2,2,5/2,—1/2) 825.67
354 Tpq 16,1/2,2,5/2,1/2) 827.83
355 Tpp 16,1/2,2,5/2,3/2) 829.50
356 Tph 16,1/2,2,5/2,5/2) 830.21
357 Tps 16,1/2,1,1/2,—1/2) 838.92
358 Tpo 16,1/2,1,1/2,1/2) 841.08
359 Tpe 16,1/2,1,3/2,~3/2) 842.10
360 Thn |6,1/2,1,3/2,—1/2) 843.77
361 Thu 16,1/2,1,3/2,1/2) 845.93
362 Thb 6,1/2,1,3/2,3/2) 847.60
363 Tht |6,1/2,0,1/2,—1/2) 849.92
364 Thq 16,1/2,0,1/2,1/2) 852.08

6. Homological Series

All elements of the extended table (see Figure 4), starting with hydrogen H (Z = 1)
and ending with Thq (Trihexiquadium, Z = 364), form a single quantum system. Each
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element of the periodic system corresponds to the basis vector |v,s’, A, 1), k), where v, s', A,
1), ¥ are quantum numbers of the symmetry group G (Rumer—Fet group). Thus, we have
the following set of state vectors:

1 1 1

H = |1,-2,0,-, =

H) ~303-3 )
1 11

He) = |1,—-,0,-,-

He) ~3053)

. 1 1 1

|Ll> = 1/2/0/21_2>/ (17)
1 11

|Thq> = 6,2,0,2,2>.

In accordance with quantum mechanical laws, in aggregate (17), which forms a Hilbert
space, we have linear superpositions of state vectors, as well as quantum transitions
between different state vectors; that is, transitions between elements of the periodic system.

Let us now consider the operators that determine quantum transitions between the
state vectors of the system (17):

l"+ - P+ +Q+, l“, - P, —I—Q, (18)

Operators (18) connect subspaces §, of the unitary representation F' of the conformal
group SO(2,4) in the Fock space §. Indeed, the action of these operators on the basis
vectors |j, 0, T) of § has the form

. . . . | 1 1
iljo,t) =iy + e+ DG =T+ D]j+ 304 3,7 5 )=

.. ; o1 1 1
1\/(]0'+1)(]+T+1)‘]+2,0'2,T+ 2>,

. . . . B | 1 1
I_|jo,1)=—i (]+(T)(]—T)]—2,(7—2,T+2>+

) . | 1 1
G=0G+0|i-50+573)
Hence it follows that I' . transforms vectors of the subspace § into vectors of §,,11,
since for the Fock representation &, = D,7 101 in the subspace §,, where j = ”El,

increasing the number j by 1/2 means mcreasmg the number 7 by 1 (see Appendix B).
Analogously, the operator I' _ transforms vectors of the subspace §; into vectors of §,,_1.
Operators I, T commute with the subgroup G, = SO(3) ® SU(2) belonging to the group
chain (13). Indeed, in virtue of commutation relations of the conformal group SO(2,4) (see
Section 2) it follows that

P++Qs Jt +Ki] =[P+ +Q4,J-+K_| =[P+ +Q+,J3+K3] =0.

Therefore, operators I';, T save quantum number y. Further, I';, I commute
with a Casimir operator (J; + K1) + (J2 + K2)? + (J3 + K3)? of the subgroup SO(3),
and thereby save quantum number A. It is easy to see that I';, I~ commute with the
operators Ty (k = 1,2,3) of the subgroup SU(2) and, therefore, they save quantum
number s. Since I'y and I'_ commute with J; 4+ Ky and 7 separately, then they com-
mute with all of subgroup G, = SO(3) ® SU(2). Further, the operators I';, I'_ com-
mute with the subgroup SU(2)’, which defines the second “doubling”, and, therefore,
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they save quantum number s’. Since I'; transforms g, into §,1, and I'_ transforms
Fn into F,_1, then in the space §* = C(2) ® §2 = C(2) ® [C(2) ® F] of the represen-
tation P;g, the operator I';, I'_ raises, and correspondingly, lowers quantum number v
by 1. Thus, for basis (8), the operator I';. saves quantum numbers s’ A, U, s, raising v
by the unit; therefore, I'|v,s', A, 1,s) =n|v+1,5', A, u,s), where  # 0. Analogously,
T_|v,s,Au,s) =n'lv—1,5,A, u,s), where y # 0. Since I' . (correspondingly I'_) defines
an isomorphic mapping of the space of (v,s’,A) onto the space of (v +1,s', 1) (corresp.
(v—1,5, 1)), then 57 (corresp. 1) does not depend on quantum numbers y, s. Therefore,
for the vectors |v,s/, A, 1), k) of the basis of (14) we have

Ti|v,s,A00,x) = 7ylv+1,8,A,1,%), (19)
T_|v,s,A0,x) = 4'lv—1,5,A,15,%). (20)

Equality (20) holds at 0 < A < v —2. A visual sense of the operators I'y, I'_ is that
they move basic vectors, represented by cells in Figure 4, to the right, and correspondingly,
to the left through horizontal columns of the table. At this point, I' always transfers the
basic vector of the column (v, s’) into the basic vector of the same parity (v + 1,s') with
multiplication by some non-null factor #. In turn, the operator I' _ transfers the basis vector
of the column (v, s’) into the basis vector of the same parity (v — 1,s") with multiplication
by a non-null factor 7’ when the column (v — 1,s’) contains a vector on the same horizontal,
(otherwise we have zero).

Further, operators T/, = 7} +it), T = T} — iT}, of the subgroup SU(2)’ also define
quantum transitions between state vectors (17). Since these operators commute with the
subgroup G; = SO(4) ® SU(2), they save quantum numbers v, A, 1, k, related with Gy,
and change only quantum number s’:

/
T+

1
Vrfj/A/[)\rK> =

1
v, 2//\/[)\/1(> -

v, %/ )\/ Ly, K>/ (21)

v, _%/A‘/ Lrs K>' (22)

T/

A visual sense of the operators /,, T/_ is that T/, moves basis vectors of each odd

column (see Figure 4) horizontal into the basis vectors of the neighboring right column; in
turn, T"_ moves the basis vectors of each even column horizontal into basis vectors of the
neighboring left column. Thus, operators (19)—(22) define quantum transitions between
state vectors of the system (17).

It is easy to see that on the horizontals of Figure 4 we have Mendeleev homological series;
that is, families of elements with similar properties. Therefore, operators (19)—(22) define
quantum transitions between elements of homological series. For example,

1 1 1 1 1
r+|H> = r+ 11_5/0/ 2/_2> = 77]’N3> =1 21_5/0/ 21_%> —
I'y|Na) = |Rb) = 3_101_1 s
;71 + - 171’72 - ’71'72 7 2/ 7 2/ 2
1 1 1
mn2l+|Rb) = ni12m3|Fr) = n11721713|4, 505 2> —
1 1 1
11243 ¢ [Fr) = y117211314|Uhe) = m1m217314 5,—5,0, 5 —2>.

Further, operators 7/, T/ establish homology between lanthanides and actinides
(this homology was first discovered by Seaborg. It is obvious that Seaborg homology is a
particular case of the Mendeleev homology):

1.5 5
7/ |La) =7/ |4,-5,3,= —> = |Ac) =

27720 2 277720 2

b1a5-3)
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1
T/ |Ce) =7/ |4, —

1 .77

4,_5,3, 2,2> - ‘NO> =

By means of operators I';, I'_ we can continue the Seaborg homology to a superac-
tinide group:

7, [Yb) = 7,

177
4/5/3/ EI 2>/

1.5 5 1.5 5
r+|La> - r+ 41_513/ 21_2> - 17|Ute> =1 51_513/ 2/_2>/

1.5 3 1.5 3
r+|Ce> - r+ 41_5/3/ 2/_2> - U‘an> =7 51_2/3/21_2>/

1 77 1 77
Yoy =1t -1,377) — yiupb) = nfs, 3,32, 7).

Correspondingly,

1.5 5 1.5 5
r+|AC> - r+ 4/ 5/3/ 2/_2> - 71|UO€> =7 5/ 2/3/21_2>/

1.5 1
LTh) = T4, 5,3,5, -3 ) = nlUen) =5, 3,333 )

177
4,-,3

177
33 505) =B =53,5,5.7).

In conclusion of this paragraph, we will say a few words about the principle of superpo-
sition in relation to the system (17). Apparently, the situation here is similar to Wigner’s
superselection principle [48] in particle physics, according to which not every superposition
of physically possible states leads again to a physically possible state. Wigner’s princi-
ple limits (superselection rules) the existence of superpositions of states. According to the
superselection rules, superpositions of physically possible states exist only in the coher-
ent subspaces of the physical Hilbert space. Thus, the problem of determining coherent
subspaces for the system of states (17) arises.

I'[No) =T

7. Hypertwistors

The Rumer—Fet group is constructed in many respects by analogy with the groups
of internal (dynamic) symmetries, such as SU(3) and SU(6). Using the quark model
and SU(3)-symmetry, we continue this analogy. As is known, quark is a vector of the
fundamental representation of group SU(3). Let us define a vector of “fundamental”
representation of the Rumer—Fet group.

The Rumer—Fet group

SO(2,4) ®SU(2) ® SU(2)’

is equivalent to
SO(2,4) ®SU(2) ~SU(2,2) ® SU(2),

where SU(2,2) is a double covering of the conformal group (the group of pseudo-unitary
unimodular 4 x 4 matrices). Further, in virtue of the isomorphism (A11) (see Appendix C),
we will consider the double covering SU(2,2) as a spinor group (the elements of group
Spin (2,4) are 15 bivectors eej = ejj, wherei,j =1,...,6. The explicit form of all fifteen
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generators leads through Cartan decomposition for group SU(2,2) to biquaternion angles;
that is, to the generalization of complex and quaternion angles for groups SL(2,C) and
Sp(1,1), where Sp(1, 1) is a double covering of the de Sitter group [49-51]). Spintensor rep-
resentations of group Spin_ (2,4) form a substratum of finite-dimensional representations
Tk/2,r/2, Tk/2,r/2 Of the conformal group, which are realized in the spaces Sym ) C Sy
and Syim(krr) C Syksr, where Sy, is a spinspace. Twistor Z% = (S“,SQ)T is a vector of
the fundamental representation of group Spin +(2,4), where o, & = 0,1 and s%,s; are
2-component mutually conjugated spinors. Hence it immediately follows that a doubled
twistor

_ |4+

z- 7], @)
or hypertwistor, is a vector of fundamental representation of group SU(2,2) ® SU(2). Further,
the twistor Z = [S, S]T is a vector of general spintensor representation of group Spin +(2,4),
where § is a spintensor of the form (12). Therefore, a general hypertwistor is defined by the
expression of the form (23), where Z, = [S,S]T,Z_ =[S, S]T.

Applying GNS-construction, we obtain vector states
_ (@[ n(H)®) _ (P®]F

+ (H)®)
woll)="51a) = (@@

where H is an energy operator and |®) is a cyclic vector of the Hilbert space Heo. A set of
all pure states wq (H) forms a physical Hilbert space Hppys = Hg ® Heo (at the restriction of
group G onto the Lorentz subgroup SOy(1,3) and application of GNS-construction within
double covering SL(2,C) ~ Spin_ (1,3), we obtain a spinor (vector of the fundamental
representation of group Spin_ (1,3)), acting in a doubled Hilbert space Hy @ He (Pauli
space). Spinor is a particular case of hypertwistor) and, correspondingly, a space of rays
H = Hpphys/S".

Further, with the aim of observance of electroneutrality and inclusion of discrete
symmetries, it is necessary to expand the double covering SU(2,2) ~ Spin_ (2,4) up to
an universal covering Pin(2,4). In general form (for arbitrary orthogonal groups), such
extension has been given in the works [16,18,20,52]. At this point, a pseudo-automorphism
A — A of the complex Clifford algebra C,, [53] plays a central role, where A is an arbitrary
element of the algebra C,,. Since the real spinor structure appears as a result of reduction
Co(ksr) = Up,q, then, as a consequence, the charge conjugation C (pseudo-automorphism

A — A) for algebras (/,, ; over the real number field F = R and the quaternion division
ring K ~ H (types p — g = 4,6 (mod 8)) is reduced to a particle-antiparticle exchange C'. As
is known, there are two classes of neutral particles: (1) particles that have antiparticles,
such as neutrons and neutrinos; (2) particles that coincide with their antiparticles (for
example, photons and 71’-mesons); that is, the so-called truly neutral particles. The first
class is described by neutral states wj,(H) with algebras (7, ; over the field F = R with
therings K ¥ Hand K ~ H® H (types p —q = 4,6 (mod 8) and p —g = 5 (mod 8)).
To describe the second class of neutral particles, we introduce truly neutral states wg (H)
with algebras () ; over the real number field F = R and real division rings K ~ R and
K~R®R (typesp—q = 0,2 (mod 8) and p —q = 1 (mod 8)). In the case of states
wg (H), the pseudo-automorphism A — A is reduced to the identical transformation (the
particle coincides with its antiparticle).

Following [54], we define thys = Hg ® Hw as a K-Hilbert space; that is, as a space
endowed with a *-ring structure, where *-ring is isomorphic to a division ring K = R, C, H.
Thus, the hypertwistor has a tensor structure (energy, mass) and a K-linear structure
(charge), and the connection of these two structures leads to a dynamic change in charge
and mass.
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8. Conclusions

As is known, Heisenberg repeatedly emphasized the primary role of symmetry in
describing atomic and subatomic phenomena. His statement is well known: “’In the begin-
ning was symmetry” is certainly a better expression then Democritus “In the beginning
was the particle”. Elementary particles embody symmetries; they are their simplest rep-
resentations, and yet they are merely their consequence” [41], p. 240. Another important
principle, first proposed by Pauli, is the principle of symmetry doubling. The first spin theory
giving a correct mathematical formulation of the doublet structure of the spectrum of alkali
metals (the anomalous Zeeman effect) was proposed by Pauli in 1927 [55]. Avoiding the
construction of any visual kinematic models, Pauli introduced a doubled Hilbert space
H; ® Heo (the space of wave functions), whose vectors are two-component spinors. Thus,
for the first time in physics, two-component spinors and the first doubling appeared. The
subsequent doubling (bispinors, Hy ® He space) was proposed by Dirac in 1928 [56]. In this
paper, the following doubling is proposed, leading to hypertwistors in the K-Hilbert space
Hg ® Heo. Hypertwistors are vectors of the fundamental representation of the Rumer—Fet
group SO(2,4) ® SU(2) ® SU(2)’, which gives a group-theoretic interpretation of the peri-
odic system of elements. Spinors, bispinors and twistors are special cases of a hypertwistor,
which is expressed by the following chain of doublings:

H, ®Heo C Hi®Ho C Hg®Heo
and the corresponding chain of group extensions
SU(2) C SL(2,C) c SU(2,2) ®SU(2).

In this case, the periodic system is considered as a single quantum system U, whose
states (chemical elements) are given by cyclic vectors of the K-Hilbert space Hg ® Hoo by
means of the Gelfand-Naimark-Segal construction (algebraic quantization). The Rumer—
Fet group SU(2,2) ® SU(2) plays the role of dynamic symmetry that defines quantum
transitions between the states of the system U (levels of the spectrum of states). Quantum
transitions between states that are similar in their characteristics (related states) form
homological series (see Section 6).

One of the main objectives of this study was the desire to show that the currently
known 118 elements of the periodic table are only part of a broader mathematical structure.
The 8 and 10-periodic extensions (including a hypothetical island of stability) of the periodic
table are discussed in Sections 4 and 5. These extensions completely fit into the sequence of
doubling periods (16), which confirms the group-theoretic nature of the Madelung rule and
the fundamental nature of the principle of symmetry doubling. The theoretical masses of
elements of the periodic system are calculated, starting from Z = 3 to Z = 364, according
to the mass formula (15), which has an asymptotic character. Calculating the theoretical
masses of the first two elements H (hydrogen, Z = 1) and He (helium, Z = 2) requires the
determining of the exact mass formula (recall that the first period (H,He) is the only period
that does not double, and for this reason has a dedicated character), which is possible
using deeper mathematics (spintensor representations of the conformal group). This task is
beyond the scope of this article and will be investigated in future work.
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Appendix A. Lorentz Group and van der Waerden Representation

As it is known, a universal covering of the proper orthochronous Lorentz group
SOy (1,3) (rotation group of the Minkowski space-time R'?) is the spinor group

Spin, (1,3) ~ {<f’; g) €C: det<j'; g) = 1} =SL(2,C).

Let g — T4 be an arbitrary linear representation of the proper orthochronous Lorentz
group SOp(1,3) and let A;(t) = T,,(;) be an infinitesimal operator corresponding to the
rotation a;(t) € SOg(1,3). Analogously, let B;(t) = Ty, (;), where b;(t) € SOp(1,3) is the
hyperbolic rotation. The elements A; and B; form a basis of the group algebra s[(2, C) and
satisfy the relations

AL A =As,  [Ay A3l =A1,  [A3 A = Ay,
[B1,By] = —A3, [By, B3] = —A;, [B3,Bi] = —Ay,
Aq,B1] =0, Ar,By| =0, Az, B3| =0,
[A1,B1] [Az, By [As, B3] (A1)
[A1,By] = B3, [A1,Bs3] = =By,
[A2,Bs] =B1,  [Ay,Bi] = —B;s,
[A3,B1] =By,  [A3,By] = —B;
Defining the operators
1. . 1. .
Xp=Si(Ar+iBy), Y= Si(A = iBy), (A2)
(1=1,2,3),

we come to a complex shell of the group algebra sl(2, C). Using relations (A1), we find
X, Xi] = iekmXm, (Y1, Ym] = i€mnYn, (X1, Ym] = 0. (A3)

From relations (A3) it follows that each of the sets of infinitesimal operators X and Y
generates group SU(2) and these two groups commute with each other. Thus, from relations
(A3) it follows that the group algebra sl(2, C) (within the complex shell) is algebraically
isomorphic to the following direct sum (see [57], p. 28, the so-called Weyl’s unitary trick):

s1(2,C) ~ 5l(2,R) ®isl(2,R) ~ su(2) & isu(2).

Further, introducing operators of the form (“rising” and “lowering” operators of group

SL(2,C))

X =X +1iXy, X =Xy —iXy,
+ 1 ' 2 1 . 2 (A4)
Y+ = Y1 + le, Y_ = Y1 — le,
we see that
[X3/ X+] = X+/ [X3/X—] = _X—/ [X+/X—] = 2X3/
[Y3/Y+] =Yy, [Y3/Y7] =-Y_, [Y+/Y*] = 2Y3.

In virtue of commutativity of relations (A3), a space of an irreducible finite-dimensional
representation of group SL(2, C) can be spanned on the totality of (21 + 1)(2] + 1) basis ket-
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vectors |I, m; I, #ir) and basis bra-vectors (I, m; 1,1 |, where I, m, 1,11 are integer or half-integer
numbers, —] < m <[, —I < m < l. Therefore,

X_ |1, m; i) = /(14 m) (L= m + 1)L — 1 1,) (m > 1),

X |1, m; 1, it) = /(1 —m) (1 m V)|l m 4 L) (m < 1),
Xa|l, m;1,1i1) = m|l,m; 1, 1),

(L3l — = (s =13/ (i) (=i +1) (> =),

(sl = (L i+ 1y (= i) (4 41) O < D),
(L m; 1,75 = (1, m; [, vi|rin. (A5)

In contrast to the Gelfand-Naimark representation for the Lorentz group [58,59],
which does not find a wide application in physics, representation (A5) is most useful in
theoretical physics (see, for example, [60-62]). This representation for the Lorentz group
was first given by van der Waerden in his brilliant book [63]. It should be noted here
that the representation basis, defined by the formulae (A2)-(A5), has an evident physical
meaning. For example, in the case of (1,0) & (0, 1)-representation space, there is an analogy
with the photon spin states. Namely, the operators X and Y correspond to the right and left
polarization states of the photon. For that reason, we will call the canonical basis consisting
of the vectors | Im; [1i1) as a helicity basis.

Thus, the complex shell of the group algebra s((2, C), generating complex momentum,
leads to a duality that is mirrored in the appearance of two spaces: a space of ket-vectors
|1, m; [,71) and a dual space of bra-vectors (I, m; [, 1.

Appendix B. Group SO(4) and Fock Representation

As is known, group SO(4) is a maximal compact subgroup of the conformal group
SOy (2,4). SO(4) corresponds to basis elements J = (Jq,J»,J3) and K = (K1, Ky, K3) of the
algebra s0(2,4) (see Section 2):

[Jk, Jl] = ieklm-]m/ [Jk, Kl] = isklme/ [Kk, Kl] = ieklme.
Introducing linear combinations V = (J 4+ K)/2 and V' = (J — K) /2, we obtain
Vi, Vil = iegmVm, [V, Vi) = igkm Vi

Generators V and V' form bases of the two independent algebras so(3). It means that
group SO(4) is isomorphic to the product SO(3) ® SO(3). Such state of affairs is explained
by the following definition: group SO(4) is locally decomposed into a direct product of
subgroups SO(3). On the whole (that is, without the supposition that all the matrices are
similar to the unit matrix), this decomposition is ambiguous. SO(4) is a unique group
(among all of the orthogonal groups SO(#)), which admits such local decomposition.

A universal covering of the rotation group SO(4) of the four-dimensional Euclidean
space R* is a spinor group

Sﬁn@ﬁ:{@i?)eH@H:daC;?)_1}_ﬂﬂm®ﬂﬂm.

Let SO(3); and SO(3)k be the subgroups of SO(4) with the generators J; and Ky
(k =1,2,3), respectively. Then each irreducible representation T of group SO(4) has the
following structure: a space i of the representation T is a tensor product of spaces i
and Ry in which we have irreducible representations D;, and D, of the subgroups SO(3),
and SO(3)k with dimension 2j; + 1 and 2j, + 1. Thus, a dimension of T is equal to
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(2j1 +1)(2j2 + 1), where j; and j; are integer or half-integer numbers. An action of Ji, K
on the basis vectors is defined by the formulas

Jlo,t)y = /(i + o) (i o+ Do —1,7),
Jilo,t) = /(i )i+ o+ Do +1,7),
B3lo, 1) =00, T),

K_|o,7) = /(2 + D) (2 — T+ D)]o, T~ 1),

Keilo,7) = /(2 = )2 + T+ D)o, T+1),
Kslo, T) = Tlo, T). (A6)

This representation of group SO(4), denoted via Dj,j,, is irreducible and unitary.

A structure of the Fock representation ® of SO(4) is defined by the decomposition
into irreducible components ®,, in the spaces §,. As is known [26], at the reduction of the
subgroup SO(3), an irreducible representation ®,, is decomposed into a sum of irreducible
representations of SO(3), with dimension 1, 3, ..., 2n — 1. Taking into account the structure
of irreducible representations of group SO(4), we see that the smallest dimension of
1 should be equal to 2|j; — j»| + 1, from which it follows that j; = j,. Therefore, the
representation @, has the form D;, ;,, and since for the biggest dimension should be 2n —1 =
2(j1 +j2) +1=4j+1, then j = (n — 1) /2. Thus, for the Fock representation, we have the
following structure:

P=0,0D,p...69,%..., where d, = DnT—l n-1-.

72

This means that in the each space §, there is an orthonormal basis \ j,o, T), where
j = (n—1)/2. All these bases together form an orthonormal basis of the Fock space §:

lj,o,t) (j=0,1/2,1,3/2,...;
c=—j,—j+1,..,i—-LjiT=—j—j+1,...,i—1j), (A7)

in which lie algebra of group SO(4) acts via the formulas (A6) with j; = j, = j.

Appendix C. Twistor Structure and Group SU(2,2)

The main idea of the Penrose twistor program [64,65] consists of the representation of
classical space-time as some secondary construction obtained from more primary notions.
As more primary notions, we have two-component (complex) spinors, moreover, pairs of
two-component spinors. In the Penrose program, they are called twistors.

Therefore, a twistor Z* is defined by the pair of two-component spinors: spinor w®
and covariant spinor 7ts from a conjugated space; that is, Z* = (w?®, 7t5). In twistor theory,
momentum () and impulse (77) of the particle are constructed from the quantities w*® and
7t5. One of the most important aspects of this theory is a transition from twistors to coordinate
space-time. Penrose described this transition by means of the so-called basic relation of twistor
theory

w® = ix g, (A8)

where x' is a mixed spintensor of second rank. In more detailed records, this relation has

the form ‘
wi] _ i [0+ K i) [y
wr| 2|+t =23 |
From (A8) it immediately follows that points of space-time R!? are reconstructed
over the twistor space C* (these points correspond to linear subspaces of the twistor space

C*). Therefore, points of R13 present secondary (derivative) construction with respect to
twistors.
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(conformal group) acting in a six-dimensional space with the signature (4,4, —, —, —, —).
These reduced spinors are derived as follows. General spinors are elements of the minimal
left ideal of a conformal algebra C/; 4:

1 1
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