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ABSTRACT

The method of constructing unitary S-matrices developed in a recent
paper is generalized and applied to two versions of the multiperipheral model.
In these models the standard perturbation expansion of the S-matrix diverges,
so an alternative expansion with improved convergence properties ié developed.
It is shown that the unitarity condition generates a new type of cut in the angular
momentum plane which is dynamical in origin in contrast to the essentially
kinematical Mandelstam cuts. This new type of cut insures that the Froissart
bound on the total cross section is obeyed. In an exactly solvable model it is
shown that the contribution of the multiregge region of phase space to the total
cross section always decreases as a power of the energy if the input Regge
trajectory is one or less. It is argued that the qualitative features of the models

discussed here will hold for a wide class of multiperipheral-like models.
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I. INTRODUCTION

In order to discuss diffraction scattering and particle production at high
energies it is essential to take into account the constrainst of multiparticle
unitary. In a recent paper1 a class of solvable models was constructed for
which the multiparticle S-matrix is exactly unitary at high energies. 2 As in
the multiperipheral model, it is assumed that particlies are produced and
absorbed from chains; however, in order to satisfy unitarity it is essential to
take into account diagrams, such as those shown in Figure 1, in which pro-
duction takes place from more than one chain. In I we considered a class of
models in which only one particle is created or destroyed on each chain. In
the present paper we generalize our results to include chains from which an

arbitrary number of particles can be created or destroyed.

The cla:ssic multiperipheral and multiregge models have well-known dif-
ficulties withunitarity which canlead to violations of the Froissartbound. 3 This
problem canbeovercomeby including production and absorptive effects in the pro-
duction amplitudes. 4 One then finds that the Froissartbound is saturated from
the multiregge region of phase space. This is unsatisfactory experimentally,
since particles produced at high energies tend to have rather low relative
energies. The region of large relative energies, the multiregge region, is
sparsely populated at best. We find that the unitarity condition, properly en-
forced, produces a new type of cut in the angular momentum place which pre-
serves the Froissart bound and decreases the importance of the multiregge

contribution. This unitarity cut is of a dynamical origin which is to be con-

trasted with the almost kinematical origin of the familiar Mandelstam5 and



AFS6 cuts. The Mandelstam cuts are also present here. The unitarity cut
actually forces the contribution of the multiregge region to decrease at large
energies except for rather narrow ranges of the parameters of the theory.

In Section II we present our procedure for constructing unitary models.
The input is the amplitude for the production of n particles from a single
chain, Wn’ shown in Figure 2. TFor a wide range of input functions it is
possible to construct a multiparticle S-matrix that is unitary for all physical
values of‘ the total energy.

The essential feature of our procedure is that production from more than
one chain is taken into account. Suppose the amplitude Wn is taken from the
multiperipheral model and that the elementary particle or Reggeon being ex-
changed has spin @. Then w, will have a high energy behavior of the form s?.
On the other hand, amplitudes corresponding to the exchange of N chains will

have asymptotic behavior of the form S1 +N(a-1)

, aside from logarithmic
factors. Clearly when @ = 1 as in the case of Pomeron exchange, multi-chain
exchange is important. As we shall see in specific models, even when « is
much less than one, multi-chain effects are important whenever the coupling
constant associated with particle production becomes large.

For the models discussed here the standard perturbation expansion of
the S-matrix diverges. In fact each S-matrix element has a branch point at
zero value of the coupling constant. This divergence is of a general nature and
is probably present in many field theories. 7 Nevertheless it is possible to

develop a convergent series expansion for the S-matrix whose form guarantees

that unitary is satisfied.



In Section II we consider a specific form for Wn which is based on the multi-
peripheral model, but which is simple enough so that every S-matrix element
can be written down in closed form. It has two parameters, the coupling
constant of the produced mesons and the position of the fixed pole which is ex-
changed along the multiperipheral chain. The most striking features of this
model can be seen by studying the elastic scattering amplitude. This ampli-
tude,haé contributions from ladder graphs shown in Figure 3a. As in the multi~
peripheral model, the leading singularity in the angular momentum plane
arising from these graphs is a pole. However, the elastic amplitude also has
terms arising from checkerboard diagrams of the form shown in Figure 3b.

If one sums over all checkerboard graphs with N vertical lines, the leading
{-plane singularity is again a pole. In addition, after summing over all N

one obtains a square root branch cut in the ¢-plane. It should be emphasizedb
that this singularity is of a completely different origin than the familiar

- Mandelstam cut. It arises only after a sum over an infinite number of exchanges. .
This cut has its origins in the divergence of the sum of the perturbation ex-
pansion mentioned above.

For small values of the coupling constant associated with particle pro-
duction the cut is far to the left of the {-plane, and the leading singularity is
the pole arising from the ladder graphs. As the coupling constant is increased
the dynamical poles move to the right; however, the branch point moves even
faster and overtakes them. As each pole collides with the branch point, it
moves through it onto an unphysical sheet. For large enough values of the

coupling constant all of the f-plane poles are to the right of one; however, no



pole reaches one before passing on to the unphysical sheet so there is no
violation of the Froissart bound. For most values of the parameters in the
model the branch point never reaches one. After colliding with the last pole
it turns baround and retreats towards minus infinity if the coupling constant
is increased indefinitely. Nevertheless, for a very restricted range of values
for the coupling constant, the leading singularity reaches the pointf£ =1. In
this case the Froissart bound is saturated. This occurs only if the input
pole is itself above 1.

In Section IV we test the generality of the cut mechanism by considering
a model in which Wn is essentially the amplitude of the multiperipheral model.
In this case the S—matrix elements cannot be written down in closed form.
However, after introducing 6-functions into W which guarantee that the sub-
energies along each chain are large, it is possible to write down an integral
equation that sums the checkerboard graphs with N vertical lines. It is then
shown that the square root branch cut found in the previous model is also
present here and that all singularities in the £-plane to the right of one are on
an unphysical sheet. It aippears that these properties are far more general
than the simple models that we have studied explicitly.

For the models discussed in Sections III and IV it is possible to write
down cross sections for particle production in both inclusive and exclusive
experiments. These results are also given in Sections III and IV.

In Section V we conclude by briefly summarizing our results.



II. CONSTRUCTION OF THE S-MATRIX

In the present work we shall discuss models with two types of particles.
Those whose momenta are labelled by 1 and Py will be referred to as nucleons
although we shall neglect spin and internal quantum numbers. All of the states
of interest will contain two nucleons which will be treated as non-identical
particles. The S-matrix will be taken to be unity when acting on states with
other than two nucleons. The second type of particle, whose momenta are
labelled by q;5 will be referred to as pions. The pions can be created and des-
troyed, and we shall consider states with arbitrary numbers of them. The
pions will be treated as identical particles. We take the beam direction to be
along the z axis, and write a general four vector q in terms of the transverse
momentum, g, which is a two-dimensional vector in the x-y plane; and the

longitudinal rapidity, -y, defined by
y = zin[@,+q,)/ @y-q,)] - (1)

Tet us start by considering the amplitude, Wn’ for the production of n
pions from a single chain. This amplitude is shown in Figure 2. A complete

set of variables for describing Wn is

= 2n(s/m2)
A= iR - Ty @
and
q..y i=1,2, n



Here m is the nucleon mass and s the square of the center of mass energy.
At high energies Y is the difference of rapidities of the incident nucleons.
From rotational invariance Wn can only depend on the scalar products of é
and the 4q;» so there are just the required 3n+ 2 independent variables.

By crossing symmetry W, also describes chains in which some or all of
the pions are incoming. It is convenient to introduce a single operator which
handles all possible processes described by Wn‘ ~To this end we introduce
creation and annihilation operators for the pions. In our normalization the

commutation relations are given by
+oond - 3.2 . ' 3
[2@@.v).2 (@,¥y")] = 2@m)"6%(g-q")é (y-y") . 3)

Recalling that under crossing q — -q and y — y, we can write the required

operator, Zn’ in the form

n
Zy = J' d4XJ. dp, dpy,dp; dmy, :L:"l-dqi g
(4)
Wy (o 239y Yy e G Vo) | B Va3 B b > < Bgo Vi Bpe |
n

- (P, ¥ Py =P~ Pp) 3 iq;-x -ig;x
a b i + i
2 : a(qi: yl) e +a (— ql, yi) e
=1 ~ ~

-e
Here | Dos ¥y pb, Y > is a two nucleon state, and Ei is the four-vector obtained
from q; by making the substitution 9; ~ -9 The Lorentz invariant phase
space volume is given by dq = dzqdy/Z (27r)3. We have normal ordered the

creation and annihilation operators of the pions so that a pion which is emitted

from the chain cannot be reabsorbed on it. The important poinf to notice is



that Zn is an hermitian operator provided Wn is real and is invariant under a
change of sign of all the transverse momenta. These are the two major re-
strictions which we place on the Wn' Since we wish to consider chains involving

an arbitrary number of pions it is convenient to introduce the hermitian operator

Z=ZZn. (5)

n=0

' 2
The unitarity of the S-matrix can now be guaranteed by writing L,

~ N
s=§:§-,-zN=elz. )
N=o N

What is being said in Eq. (6) is that all of the chains exchanged between the
nucleons are uncorrelated except for the constraints imposed by energy-
momentum conservation. This is certainly the simplest ansatz that one can
make. It is suggested by the relativistic eikonal modell; however, in this case
there is no requirement of straight line propagation for the nucleons.

Eq. (6) provides a convenient definition of the S-matrix when the model
is exactly solvable or when the matrix elements of the power series in Z con-
verge. An example is the model of production amplitudes discussed in I
However, in the models to be discussed below the matrix elements of ZN grow
like exp(ch), so the defining series for S diverges rather badly. In such cases
it is necessary to use an alternative construction procedure. We first intro-
duce the auxiliary operator g(z) defined by

. N N 2
S@ - 2 et o
N=0 7



and then write the S-matrix as

_ 1 2dx
- '—%- [ ze ) » (8)

where d is a parameter chosen so that the sum in Eq. (7) and the integral in
Eq. (8) converge. Whenever it is permissible to interchange the order of
integration and summation Egs. (7) and (8) reduce to Eq. (6). Even when this
interchange is not possible, Egs. (7) and (8) define an explicitly unitary S~

matrix. To see this notice that formally

0
2 .
S(Z) = ';Tl'i f due™ exp[izeIZldu] ’ G
2 - 00

SO

- _%foo ]odx'jo dujo du exp[iZ(GZd(X+iu)— e2d(x'- i“'))]. (10)

The right hand side of Eq. (10) has a power series expansion in Z that con-
verges magnificently. One easily sees that the coefficient of ZN vanishes
identically for N > 1 and that S+S = SS+ = 1. We realize that certain orders
of integration have been freely interchanged, but there is no doubt that this
new construction procedure is more general than the standard expansion.

Once the Wn are specified the S-matrix is completely determined by
Egs. (4), (5), (7) and (8). The model is clearly broad enough to allow us to in-
vestigate a wide range of production and absorption mechanisms. The major
problem is to extract the predictions of the model for a particular choice of Wn'

For the remainder of this paper we shall be concerned with a particularly
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simple class of Wn which is suggested by the relativistic eikonal model. As
was mentioned above, the only correlations between the chains are those im-
posed by energy momentum conservation. These can be greatly simplified
by introducing theta functions into the Wn which restrict the range of the pion
rapidities. Energy-momentum conservation requires that in the center of

mass

lyils $Y+C, (11)

where C is a constant which depends on mass ratios. We now introduce the

further requirement that the Wn vanish unless
linS%(l—e)Y, (12)

where € is an arbitrarily small positive number. At very high energies the
restriction of Eq. (12) forces the nucleons to have energies of order ﬁ/z,
and eqﬁal but opposite longitudinal momenta. 1 As long as the average multi-
plicity does not grow as fast as s% € , the pion variables can be dropped from

the energy and longitudinal momentum conservation delta functions. 1

It is convenient to introduce the variables

&)
i
ko)
+
U."d

and (13)
B =20, Ry)

and write the two nucleon state of definite total and relative transverse

momentum as | P, p; Yoo ¥y >+ EQ (4) now becomes
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1
Z Jdp d H dq, —
n pb (271,) i=1 9; 7
1 n
55 Wp(Y, 859,57 | P - ?qi,g';ya,yb > < By vy | (14)
n

I—[ [a(gi, yi) + a+(—si, yi)]: .

i=

- At this point it is useful to introduce the co-ordinate, B, conjugate to p.
B can be interpreted as the transverse distance between the nucleons. De-

fining the two nucleon state of definite B by

d2 —ig-g
l E’E’;ya’ Yp ~ ‘f(zmz e lg’ PiYgr ¥y o (15)

Eq. (14)-becomes

2 dy, dy, n
2 dP b
zZ, = fdb I aq, 5

@ )2 ar T4rm i=1

1 . 3

55 W (¥, B9 y) [ P-24,,Biy > < BoBiy,, v (16)
n

I [a@,y) + 2 a,y)|:

. i Yi Y| o

i=1

where
dzA iA-B

Wn(Y,E;qi, vy =J.(27r)2 e Wn(Y,é;gi,yi)- (17)

Clearly the S-matrix is diagonal in B.
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At this stage the only function of the two nucleon projection operator
is to give rise to the energy-momentum conservation delta function. We

factor this delta function out of the problem, and then introduce the reduced

operator
n n
Z (Y’B) = el_. ;.]; ( ﬂ dq_‘vxvr (Y’ B,q ‘7.}: W r\i q 17-) -+ a+l=q‘ 11.\-]. 118)
n't’ g 2s n!J PR e AP il~11 PSS V3t !

Operators Z(Y, B) and S(Y, B) can be obtained from Zn(Y, B) in direct analogy
with Egs. (), (7) and (8). It is also useful to introduce a scattering amplitude
operator defined by

-iA'B -iA-B

M(Y,4) = jd2B e M(Y,B) = 2is rdzB e T7[1 -S(Y,B)] . 19)
- Clearly these operators act in the Hilbert space spanned by the pion states.

The only reference t(; the nucleon states that remains is in the diagonal variables

Y and E This reduction of the Hilbert space can only take place exactly in |

eikonal models. It should be emphasized that although the restrictions of

Eq. (12) provide a simplification, they are by no means necessary for the con~

struction of unitary models.
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III. A SOLVABLE MODEL

In order to illustrate our ideas we now construct a solvable model.
Although this model is highly simplified, its solution contains most of the
gualitative features of the more sophisticated model discussed in Section IV.

In defining Wn we follow the spirit of the multiperipheral model to the
extent that we order the rapidities along the chain. We take the exchange
mechanism between adjacent particles on the chalin to be that of a fixed pole.
Working in &e center of mass we write

n n
a(y.~¥; 1)
1 . _ =Y i+1 _ .
e W (V. Bia,y) = e Li(B) if:loe 6(y,-Y;, ) J_Ijlggj>, (20)

1

where Vo = - Y. The crucial simplification which allows us to solve

In+1"
the model in closed form is the neglect of all correlations involving the trans-
vérse momenta of the pions. Of céurse this cannot be juétified experimentally.
However, we shall be primarily interested in the energy dependence of this
model. Since the transverse momenta are limited, a fact which we build info
the function g(g), it is hoped that their correlations do not play too strong a
role in determining the dependence of the amplitudes on the total energy. 8
From rotational invariance g(%) must be a function of %2. Then making
use of the symmetry of Wn as a function of the pion momenta, we find
z (¥.B) = 1) e® Y

1 (1-e)Y @1)

n 2
I jdgif > @[y o)
: gd)la@.,y. .,y.]:
i=1 (27r)2 -%(1—€)Y 4 2P Ta0 Y0 oY
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It is convenient to introduce the annihilation operator

11
2q  Fa-e

1
¢ =y [ —2 Y e@ya@y) 22)
[ ) (271_)2 J_% (1—€)Y 4T ~ ~
with 9
d'g
A, = L g@? = A/(1-¢€). 23)

Clearly c and et satisfy the usual harmonic oscillator commutation relations

[c,c+] = 1. 24)

The operator Z(Y, B) is given by
o0
Z(Y,B) = 5‘ Z. (Y, B)
i . n=0

. |
_ gmyel@ DY, (ADFe ) 25)

Il

£y o(@1 -1 A)Ye(zxY)%x '

In the last step we have introduced the hermitian 'coordinate' operator

iZ(Y, B)

X = L (c+ c+). The S-matrix operator S(Y,B) = e , is obviously

V2
diagonal in the coordinate representation.
Let us start by considering elastic scattering of the two nucleons where
the matrix element of S(Y, B) between states with no pions must be evaluated.

In the coordinate representation this is just familiar ground state wave function

of the harmonic oscillator:



~-15«

< 0lS(Y,B)l0>

i

Sy (Y. B)

Y(a-1-31) (2>\Y)% ]

- 71__ j? ”X exp [if(g)e

o (26)
;
= @AY)? { Y(l-a+3 }\)/27\] f%_
- exp [-—ﬂnr(l-a+—§->\)/7\ - (tnr) /2AY+if(B) r:\ .
We can study the ¢-plane structure of the elastic scattering amplitude by
making use of Eq. (19) and taking the Laplace transform with respect to Y:9
r 7Y
My, (8 B) = f dYe™ My, (Y, B)
0
1 1 1 1
5 1 (2/7\)2[(2—010)2— (l—ac)z]—l if(B)r
= 2im [ZA(Q-a)] 2 J drr (1—e ~ )
c. 0
1 1 1
0 @/0)2 [_ - ac)z ~(l-a )2 ] -1 if (B)r 27)
+ f drr ¢ (l-e ~ ) .
1
where
9 i-a 12
- -2
a, = 1-(l-a+3)7/2x = a- —F55— ,(28)
For the case a < 1 + 1), we have
1 1 1
2 -1 @/1)® [(1— Olc)2 -{- ozc)z]
M,, (%, B) = 2im 1/@-1) - [22\(2—%)} 2 [— if(B)]
(29)

T [(?Jx)é ((k-ac)% - (1- a(ﬁ)} +CE. B,

where C (¢, B) is an entire function of £ for all values of B. M22(!Z, B) clearly

has poles in the ¢-plane at
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@(N) = 1 + N(a-1) + 3ANN-1) N = 1,2,... (30)

with residues

B = -2’ [i1®)] /N 61)

Notice that each power of f(B) corresponds to the exchange of one chain.‘ The
N =1 pole arises from the exchange of a single fixed input pole. The N =2
pole arises from the ladder graphs and the poles with N= 3 from the checker-
board graphs with N vertical lines.

In addition to the poles there is a fixed square root branch point at
£ = o, The associated cut runs along the negative real axis from -« to @,
It is clear from Egq. (29) that the only poles on the physical sheet are those

for which ‘a(N) - ac> is positive. These are the poles for which
N= N = 1A-a+2r)/r, (32)

where N is the value of N which produces a minimum of d(N) as a function of N.
Let us imagine increasing A from zero to infinity for a fixed value of

o = 1. For small values of A the branch point is far to the left in the £-plane.

As A is increased all of the dynamical poles move to the right, but the branch

point moves to the right even faster. The left-most pole on the physical sheet

collides with the branch point whenever A is such that N is an integer since
— 1 2
@) = 1~ @ -a+3)/2r=a,. (33)

After colliding with the branch point the poles moves off onto the unphysical
sheets as A is increased further. At A =2(1- «), the branch point circles
around the pole at o(l) = @ and then starts to retreat down the negative real

axis. TFor A > 2(1- @), the branch point is the only singularity of M, on the
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physical sheet. Notice that for large values of A all of the dynamical poles
are to the right of £ = 1; however, any pole that reaches £ =1 is on the un-
physical sheet.

For a(2)= a, that is A < -g— (1 - @), the pole from the ladder graphs

controls the high energy behavior of the total cross section and

0p(6) —= /PO (peE’ 64

§ =» ®

However for o, > a(2), or A > —g— (1- @), one has

(s/m”) - (T/22)*
0 (S) — r
T s fﬂns/mzj% Si:lz 1- %%]I‘ 1+[(1- %%]
( ) LZ [( ac) 7\] J7 ( ac) }\]
(35)
(2. [(1-ap) _2?: i
d" B [£(B)]
Note that if the fixed input pole has spin o = 1+ 3A, the total cross section
goes to zero asymptotically. Inparticular, for @ =1, we have for all values of
the coupling constant
O (8) —— E/-I-n——— 2 ~3 5 dles[f(B)]z . (36)
s~ [m(s/m?)]?

Now let us consider what happens if o is increased for a fixed value of A.
As mentioned above, for @ > 1 -3\, the branch point at a, is the only singu-
larity on the physical sheet. a  reaches 1 when o =1 + £ . At this point the

-1
total cross section falls like [Bn(s/mz] 2 atlarge energies. As « circles

Nln-l

the point 1 + 2 A we move from the positive to the negative branch of (1 -« )
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The function C(¢, B) defined in Eq. (29) then develops a singularity. Returning
to Eq. (27), M22 (¢, B) can now be written in the form

1 1 1
i @/2)? [@-a)? + 1-a)?]
My, B) = 2im”@-1)7 [~ if(B)] ° “ s, 67

where the only singularity of C'({, B) is the branch point at £ = o,

It is instructive at this point to consider a particular choice for £(B).

Choésing £(B) = e_B/ R and taking the Fourier tfansform with respect to B
gives
e (T I ™ @)
where
R, = R(a-1-3)), (39)

and C" has only the branch point at £ = @, The first term in Eqg. (38) is just
the ¢-plane singularity corresponding to the scattering from a black disc of

radius RyY. It gives rise to a total cross section of the form2

ZWR% [,Qn(s/mz)]2 . (40)

0.:(5)

S = ©

The complex conjugate branch points of Eq. (38) enter the physical sheet
through the square root cut when o, = 1, i.e. whena =1 +37A. Asqais
increased further the radius of the black disc increases according to Eq. (39)
and @, decreases. It is amusing that the Froissart bound can only be saturated
for a rather limited range of the parameters. I « is now held fixed, and A is
increased, Ry shrinks to zero at A = 2(a~1). For A > 2(a-1) the branch

point at o, is again the only singularity of M,,. So, for A large enough the

total cross section always vanishes at infinite energy.
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In preparation for the more sophisticated model to be discussed in
Section IV, it is instructive to consider the series expansion of S(Y, B) in

powers of Z(Y,B). Since

N Y [N(a-1) + A N(N-1)]

<olzw.,pNo> = -1\% £(B) 41)

the series expansion for S(Y, B) given in Eq. (6) diverges. In fact if we write
f(B) = GI(B), the S-matrix has a branch point as a function of G at G = 0.
On the other hand, it is possible fo choose the parameter d so that the series

for 822 is well defined:

00 R N
~ if(B)] 2
<01S@Z)l0> = Z [—N:'"_ Y [N(e-1) +3ANN-1)1 -d N . 12)

n=0

1
The most convenient choice is d = (3AY)2. Then

Y(a-1-% x)]

<018(zZ)l0o> = exp[if(g) e , (43)

and Eq. (26) follows immediately from Eq. (8).
We conclude this section by briefly considering production processes.
The inclusive cross section for the production of a single pion by two incident

nucleons is
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00
zd" o 3 dZBE }‘ﬂ do; = 1< Q,¥39;,V5; gn,ynlS(Y,B)IOHZ
dqdy 2@m)° v n=0 " i=1 ~ Joros

S f @B < 01 (s, B), 2@, »][S(V. B), a@,y)] 1 0 >
2(2m) ~ ~ -

(44)

- L (&8 <oifzw. ), a @ y)ss [a@, v, 2+, B)]1 0 >

2@2m)

W

=2 g(q)zjdzB < 0l Z(Y,B)2|0>.

2(2m)

o

Thus the single particle inclusive distribution is determined by the ladder
graphs independent of whether the pole arising from these graphs is on the phy-
sical sheet or not. All contributions to the inclusive cross section arising from
the checkerboard graphs have cancelled. |

It Xs g-(l- @) the situation is more complicated. First consider the
case @ = ; The total cross section is now dominated at high energies by the

branch point at ¢ = o, From Egs. (35) and (41) we see that the average multi-

plicity is now given by

5 [2(a-1)+ A + (l—ac)]

n = C(s/m") [fzn(s/mz)] 3/2 , (46)

where C is a constant. In Section II we mentioned that the type of model pre-
sently being considered is internally consistent only if n grows less rapidly

1 .
5 € . . . .
than s? ~. Since € must lie between zero and one, A is restricted to

>
iA
ol

A
ot

[(4—3 o) + (7—601)%] , o 47
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The equality holds for ¢ =1 at which point AO is infinite. Thus, although
the effective coupling constant, A, is limited in range, the ""real' coupling
constant A ; can take on any value between zero and infinity.

For o > 1 and A < 2(a-1) the total cross section is given by Eq. (40)

and the multiplicity by

n = C (s/mz)zo"z”‘ [an(s/mz)]'l. (48)

Clearly we must require that « = 5/4 and A = 5/2-2q. Finally, for o > 1
and A= 2(a-1), n is again given by Eq. (46). The restriction of Eq. (47)
still holds with the further requirement that o = 9/8.

The restructions on A and « are rather artificial. They arise only be~
cause we have insisted on simplifying the model by dropping the pion variables
from the energy and ~longitudinal momentum conservation delta functions, as
discussed in Section II.

The exclusive cross section for the production of n pions is given by

n
- 3 2 .
Un(Y) Y d' B .H dq1 I < gli yia' «q

2
o . Nn’yn' Slo>1". (49)
1:

The production amplitude can be written in the form

n

<Gy GV, 810> = 1U1 g(a)A, (Y, B) , (50)

with
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o0 2 N
A (Y,B) = (2AY)'n/2—1— f dxe X H, (%) §(x)
Jrome (51)
00 9 1
= @ 2L [ axe™ H ) 8w @ TENY G x],

T =0

Hn(x) is the Hermite polynomial of order n and

1
S®) = exp [-Lf(NB) Jlla-1-3 MY + (ZAY)ZX]].

(52)
Clearly the pions are produced independently. Furthermore, the pro-
duction amplitude is independent of the rapidities of the pions, so that
_ 1 2 2 n
o (V) = 5 [ d"B 1A (Y.B)I"(AY)". (53)

For A = ‘723-(1-oz), the only important confributions to the high energy pro-
duction amplitudes come from diagrams in which all pions are produced from a

single chain. In this case one sees from Eq. (51) that

A (Y,B) ~ B’ @) (54)
and
0, (s) —= (s/m>)2 (@) [Mn(s/mz)]nﬁl—' J‘dzB[f(B)]2 . (55)
§ -0 : ~ T

Since these are the same graphs that are considered in the multiperipheral
model, the poisson distribution is hardly surprising.
For those values of a and A for which the square root branch point

dominates the total cross section the situation is more complicated. For
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A=< 2(1-a)andn << Y Eqgs. (54) and (55) still hold. On the other hand, for
A > 2(1-a) we see from Eq. (51) that

(a -1)Y

A (Y,B)~-e ¢ e ™2y

) ](1 +E5A - a)/A
n- .

1 1
(A-a)?Y? ] [-if®) Tr+a-1)

(56)

forn<< Yand @< 1+4A. Forn > Y the explicit expression for o is
rathér involved and we shall not write it down. It is clear, however, that the
pion distribution is not Poisson. Similarly, the pion distribution deviates
markedly from a Poisson distribution for the case of black disc scattering.

It is left as an exercise for the reader to show that for all values of A and «

the identity

2. o.(8) = 0.(s) (57)
n=0

follows directly from Egq. (51).
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IV. A MULTI-PERIPHERAL MODEL

In this section we shall discuss a form for Wn which is based on the multi-
peripheral or multiregge model. Ideally one would like to take Wn to be the
ordinary multi-peripheral amplitude and define the S-matrix via Egs. ¢), (7)
and (8). This program is technically difficult, but not impossible. We hope to
return to it at a later time. For the present we shall consider a slightly
sim_plified form for Wn which correctly reproduges the multi-peripheral
amplitude for large values of the sub-energies. This is an interesting region
since it is the large sub-energy tails that lead to difficulty with the Froissart
bound in the ordinary multi-peripheral model and saturate that bound in
improved treatments. 3 Our main aim here is to show how these terms can
add up to give a small, energy decreasing contribution to the total cross
section in the present model. We shall see that the cut mechanism discussed
in section III operatés here also.

We again impose the restriction on the pion rapidities given in Eq. (12).
This has the effect of guaranteeing that the first and last sub-energies along
each chain are large. It is convenient to introduce the variables (see figure 2)

3 6
Z

=i

(58)
X T Vi 7Yy
where
95 = By "By 9p+1 = Bp " Bp
and (59)
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We then write the amplitude Wn as

n+1
oz(ki)x1
WH(Y’é;gl’ y1;°"gn, yn) = 11 B(El) e Q(Xl)
i=1
A (60)
=1

a(k) and B(k) are the trajectory and reside functions of the Regge pole exchanged

between adjacent particles along the chain. 10

One factor of the vertex function
g is to be associated with the creation or destruction of each pion. As was
mentioned above, the amplitude for Wn coincides with the multiperipheral
amplitude only when all the sub-energies are large. Only then are all the
momentum transfers transverse and all the rapidities strongly ordered.
Expressions for the operators Z(Y, B) and M(Y, A) can now be read off
from Egs. (17)-(19). We start by considering the elastic scattering amplitude.

The first step is to calculate the matrix elements of ZN between states with no

pions. Let us define

2 TI&B N
Z (Y, 8) = fd Be <01Z(Y, BN 10> . (61)

Then the contribution from the exchange of a single chain is just the familiar

Regge pole amplitude,

oy Yia(a)-1]
Z,(Y,8) = @@m) B (62)
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The terms of second order in Z(Y, B) give rise to the ladder graphs of

figure 3a. We have

Z,(Y,8) = ) Z,(Y¥,8)

o0

-2 (3 -ia-B i
Z(Zs) deBe fII dqi

n=0 i=1.

Wn(Y:E;g,l’yl;'-.gn,yn) Wn(Y,E; gl’yl; o0 ,¥ )

~n n
- dXi R,
= Z(Zs)fﬂ ——-4w5(in-Y)
i1 @mn? 4r i=1
n+l1

X, [oz(k )+ oz(A+k )]
11 B(1§ )B(A+k e

i=1

n
k., k. A+k., A+k, 63
I gLJ ~]+1)g(N B &+K (63)

1)
=1

Eq. (63) is simplified by taking the Laplace transform with respect to Y:
722, A) = f dy e™*¥ 2%(v,4)
2 0 2

n+l1 dk.

= (Zmz)—zf It -(—2:!)—- ﬁ(lg )B(A +k)[!l oz(g) oz(A+k)+2]
i=1 &7

n
m @n)” (15 k)88, A+E (64)

Sy
=1
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The sum in Eq. (63) is the solution to an integral equation which is

completely analogous to the Lippman-Schwinger equation in two-dimensions. 1

To see this in detail, and for later use, the free Green's function for the

propagation of two Reggeons is defined by
<k' k! 1G,WMlk, k> =@n) 6l - k') 62(k, - ki)
81 8p 1 G l)i%y %o 173 2 " %2
[ak, )+ als,)-0-2]""
1 2 b H

and the potential between two Reggeons by

1 1 P 2 2 1 1
<k kplViplky by > = - @r) 07k + Ky - Ky - k)
1 -
. [B(s) B, B0 BGIE (4m) T g, ko) elk) s k).

The full Green's function, gz(ﬂ), satisfies the operator equation

g,() = Gyll) + GyO)V |5 8, ().

Now Zz(!Z, A) is obtained from gz(!l) via the equation

ot (a- 81 2,0,8) = - EmY) <Fya) 18,01 @A) >

where

<k, ks, IF@) > = @m) 85, +k, - 4) [8(s,) B(s,)] .

(65)

(66)

(67)

(68)

(69)

The analogy with the Lippman-Schwinger equations becomes exact if we take

the input trajectories to be linear:

ak) = o - a'gz.

(70)
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The ''"free Hamiltonian!" is then

H0=a*1~<?+a'g§. (71)

and the quantity Ezs—- -{+2(a - 1) plays the role of energy. Notice that as long
as the functions g(k) and g(k, k') have no zeroes, the potential is purely
attractive. As a result, for strong enough coupling there will always be bound
states, i.e., Regge poles.

As is well known, the integral equation for the ladder graphs simplifies
considerably if the vertex function, g, is taken to be a constant. In this case

the potential is separable and we have

2
Zo,8) = 30, &) 11 - & a8, (72)
where )
2
d’k 2 2 -1
3¢, A) =j 5 Bk + 30)B(k ~34) [ -2(a-1) + 207+ dara®) L,
(o)
(13)

As { increases from 2(a ~ 1) - %a'éz, J{, A) decreases monotonically. There
is obviously a single Regge pole to the right of the branch point at £ =2(a-1) -za gz.
Since the separable approximation does not appreciably simplify the general
checkerboard diagrams, we shall retain the dependence of the vertex functions
on the transverse momenta.

Integral equations for the checkerboard graphs with N vertical lines can
be written down in analogy with the one for the ladder graphs. There is one new
complication here. For N < 3 the fact that the rapidities are ordered along
each chain implies that the rapidities of all particles in the intermediate states

are ordered. This is not true for N > 4 as can be seen by considering the
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simple example shown in figure 4. Any diagram for which the rapidity order
is not completely determined can be written as a sum of terms, each of which
does have a definite rapidity ordering. If we consider each of these terms to
be a distinct diagram, then there is a one to one correspondence between our
diagrams and those of non-relativistic potential scattering. The rapidity
variables play a role analogous to that of the time variable in ordinary quantum
mechanics.

V Proceeding as in the case of the ladder graiahs , we introduce a free

Green's function for the propagation of N Reggeons,

N
e - 252
<kl BN IG@IK ko> = @) 60k ki)
i=1
(74)
N -1
[ > ak;)-24-N] ©.
i=1
The N-Reggeon potential is written as
N
Vo= YV 75
i<j
where
<kl ek V. Ik ,orr ko> = - T @n2eck  -k')
~1 ~N""ij' ~1’ ~N (vm ~m
m#i, j
2 2 t 1 1 1 %
) (27'-) 6 (1§1+,1§j’51'1~<j) [B@l)ﬁ(lf]) 3(151),3(1\{/])] (76)

-1
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The full Green's function gN(!Z) is determined from the integral equation

gyl = Gl) + GV 8 ) » (77)

and ZN(!Z, A) is given by

em6%(3-A)Zy @ ) = - @m)) N <P AN g @IFWa)> . (19)

where

2.2 o
<kystrr Bl Fp(8) > = @7y 8%( iglgiJfQ)

N 1
noBGk)® (79)
i=1

2.2 N
= (2m)76°( i‘;lsi +4) <k K lf(a) >,

Clearly, obtaining gN(ﬂ) is equivalent to solving the N -body Schroedinger
equation in two-dimensions. We are most interested in the leading behavior
of ZN(Y, A) for large Y, or, in other words, in the right-most singularity of
gN(ﬂ) in the £-plane. If there were no bound states, this singularity would be
the N-Reggeon Mandelstam cut. However, in general we expect discrete bound
state poles since the potential is attractive.

Using the linear trajectory defined in Eq. (70), we introduce the N-Reggeon

free Hamiltonian

N
H . = § k2 (80)
ON ~i

i=1
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The Green's function gN(l) will have poles for those values of ¢ for which there

are solutions to the eigenvalue equation

H 19 (8)> = [Hyo + Vil | ¥(8) > =E ¥ (8)>, (81)

with

Ey =-2+N@-1). (82)

The two-Reggeon potentials Vij are well behaved at the origin and at infinity.
We therefore expect that in the ground state of the N-Reggeon system, the
kinetic energy will increase like N and the potential energy will decrease like
~2N(N - 1), the number of pairwise Reggeon potentials. In the appendix we
obtain upper and lower bounds on the ground state energy E%. For a wide
class of input functions g(k) and g(k, k'), E(l)\I does indeed decrease -5 N(N-1)
for large N. Denoting the leading trajectory function arising from the checker-

board graphs with N vertical lines by ozN(zN_\.), we write12

@, (0) =a(N) - Nb + Noe = o (83)

N
The results of the appendix show that ¢ is a positive number and that
[a(N) - Nb]/N2 goes to zero for large N, If o has neither a branch point nor
an essential singularity at N = «, then b can be chosen so that a(N) goes to a
constant for large N.

Denoting the contribution to ZN(Y, A) arising from the leading Regge pole
by ZE(Y, A)we write

Y[ (A)-1]
ZEAY, A) = By(a)e T (84)
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In the appendix it is shown that for a wide range of inputs ’BN(é) is bounded by
Bl(;I/N, where ,80 is a constant. It is further argued that ozi\I(O) = ai\I goes to
a constant at large N, 13 Our final results do not depend strongly on the precise
form of BN(A).

The crucial result is Eq. (83). Since ZN(E, A) has poles arbitrarily far
to the right in the { -plane, it is clear that the series expansion for S(Y, B)
given in Eq. (6) can not converge. However, since S(Y, B) is unitary, SZZ(Y, B)
is bbunded by one for all Y and B. As a result, xall of the poles in ZN(Q, A) to
the right of £=0 must be on an unphysical sheet of the Q—plane.lz To see how the
branch cut arises in the present model, let us perform the sometimes risky

operation of summing the contributions of the leasing poles in ZN(Y,Q). First,

Eq. (84) will be rewritten in the form

2 2
_ Y[a(N) -bN+cN -a) A" -1]
Z3(Y,8) = (N + 1) C () 6y © N (©5)

where we have made a linear expansion in AZ for the trajectory function. The

results of the appendix imply that a (N), ai\l and CN(Q) all bounded by constants

for large N. 7
ZI:EI)(Y’ A) has contributions only from diagrams in which all N Reggeons

interact, in other words only from connected graphs. Now the elastic S-matrix

element, or rather its phase, is given by
. c
iX (Y’B) = [n [Szz(Y’ é,)] = [822(Y’E) = 1] ’ (86)

where the superscript ¢ means that S, is computed by including only connected

22

diagrams, From Egs. (7) and (8) we see that the contribution of the pole terms
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to X, using Egs. 8 and 85, is

P 1 - _Xz - i
X°(Y,4) = — dx e Z _(—N_T_Tiﬂ CN(é)
7 2 ) :
N=1
N z N
Yia(l) -1 -ala”] -bY 2(cY)*x
e BO e e
o0
2
= i f e wPx). (87)
T 2
—o0

DO

In writing Eq. (87) we have taken d = (cY)?.
The asymptotic behavior of ¥ P(Y, A) can be read off directly from Eq.

87). 8 The integrand has quite different behavior depending on whether x is
1
)

1
larger or smaller than X, =bY?%/2¢c For x < X, We can integrate the series

term by term. Writing

X o0
1 0 -x2 P D

I = —r f e iX“(x) = 2 L(N), (88)
i “oo N=1

we see that for large Y

N Yley(a) -1]

e Y(b/2e - Ny

[e(b/.?.c - N) - (89)

9 (cY)%(b/Zc*N) '

On the other hand for x> X, we can not integrate the series term by term. If

CN(Q), a(N) and ozi\I are analytic functions of N in the right half N-plane and do
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not have a branch point or essential singularity at infinity we have13’ 15

|-

~ 2
L= f ax e X ix Pix)

T XO

1
Yla()-1-a A7] 2 5P bY+2(c Y)%x
~ C (A)e -~ f dx e exp[iBOe 1
« 2 x
0
3
[iBOe—bY+2(cY) x -1
2 0
Yi{a(0)-1 —abé ] 1 _XZ
- Cyld)e —r f dx e (90)
~ 2
T X
0
1 —Yb2/4c Y[a(eo)-1- a(‘)o%z]
~Y %e [K_(A)e
2
Y[a(0)-1- abé 1
—Ko(é)e

In the present approximation, the elastic scattering amplitude is given by

,  -iA'B ix P(Y,g)
M,,(Y,4) =2is [d"Be [1-e 1. (91)

From Eq. (89)we see that as in the case of the solvable model there are only
a finite number of Regge poles on the physical sheet of the £-plane. One new
feature is that there are an infinite number of square root branch points with

QZ =0 intercepts at

o (N) =a(N) - b?/4c. (92)

In order to study the movement of the poles and branch points-in the £-plane,
it is convenient to introduce an effective pion coupling constant by writing

1
gk, k') = )\zg'(g, k'). Applying Feynman's theorem to the eigenvalues of
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Eq. (81) for large values of N, we see that ¢ is a monotonically increasing
function of A. Let us concentrate on the case of forward scattering. From the
results of the appendix we know that there exists an integer NO(M such that
ZN(!Z, 0) has a pole on the physical sheet for all N > NO(M’ As A is increased
from zero this pole can enter the physical sheet through the normal threshold
branch point associated with the scattering of N free Reggeons. This branch
point is located at £ = N(@ - 1). Alternatively the pole could enter the physical
sheet through a branch point associated with the‘scattering of compound
systems made up of a total of N-Reggeons, or through an anomalous threshold.
However, for small values of A, these branch points are arbitrarly close to

the point £ = N(w - 1 ). As a result,

¢c — 0
A—0
(93)

b — 1-¢«
A—0

Let us start by considering values of the input parameters for which
b > 0. For small values of A we see from Egs. (89) and (90) that the branch
points of Mzz(ﬂ, A) are arbitrarily far to the left. Those Regge poles for which
N < b/2c are on the physical sheet. As A is increased we know from Feynman's
theorem on derivatives of eigenvalues that the poles move to the right in the
L -plane. We also expect the branch points to move to the right. Whenever a
pole collides with its corresponding cut, the pole moves on to an unphysical
sheet. For large values of A we expect from our counting argument that the
potential energy decreases like -cN(N - 1). We therefore write b =b' +c.

Although we can really say nothing about the behavior of b', it would appear to
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be an accident if it approached the value -c for large A. We therefore expect
the branch points to turn around and retreat towards minus infinity if A is made
large enough. If b' does not grow as rapidly as ¢ with increasing A, then there
will be no poles on the physical sheet for sufficiently large values of A and the
total cross section will go to zero at high energies.

In the solvable model discussed earlier, a(N) = 1. In the present case we
can say nothing about the function a(N) without further calculation. In particular
we éan not rule out the possibility of a(N) becoming large enough so that
X P(ﬁ, A) has poles or cuts to the right of £ = 0. If this occurs then SZZ(Y’ B)
will vanish for B inside a disc whose radius grows like Qn(s/mz). As is well
known this behavior for SZZ(Y’ B) leads to a saturation of the Froissart bound.
The f-plane structure of the elastic amplitude is as given in Eq. (38).

Finally let us imagine varying the input parameters so that b decreases
through zero. For ﬁegative values of b the elastic scattering amplitude has no
poles on the physical sheet. If a(N) > 1 for any value of N, we again have
saturation of the Froissart bound when b = 0. However, if the magnitude of b
becomes sufficiently large, the complex conjugate branch points of Eq. (38)
will leave the physical sheet through a square root branch point as in the
solvable model. The total cross section will then go to zero once again. If
a(N) < 1 for all N then the square root branch points are the only singularities
on the physical sheet of the £-plane for negative values of b.

Consider the problem of including non-leading contributions to ZN(Y’é)'
The series for §22 will certainly converge with d =(cY)%. Furthermore, in the
integral over x from minus infinity to X,» One can again interchange the order of
integration and summation. The only change is to include lower order poles and

branch points in the {-plane. The real problem is to study the integral from X
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to infinity; this is difficult to do explicifly, but it is hard to see how the basic
structure of the amplitude could be altered.
The exclusive and inclusive single particle production cross sections

can be treated as in the solvable model. Using the relation

[a(,y), Z(Y, B)] = gZ(zY -y, 2B +h) Z(EFY +y, A =0). (94)
which holds if g(k,k') is a constant, it is a straightforward matter to write
down these cross sections. The rapidity distribution is particularly simple
in the inclusive case.
dg g—z— Z,zY -y, A=0)Z,(3Y+y, A=0 (95)‘
dy - 41 2(2 y, ) 2(2 ¥ - )'

which shows that the 1adder graphs determine the inclusive distribution just
as in the previous model, Eq. (44). The exclusive cross section is more
complicated because the precise form of the eigenvalue spectrum ozN(A) must

be used. The final result does not seem to be particularly illuminating.
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V. SUMMARY

The point we wish to emphasize is that the mechanism for avoiding viola-
tion and saturation of the Froissart bound discussed in these solvable models
is available in more general theories. In any unitary relativistic theory which
does not exhibit saturation of forces, that is, in which the binding in the exchange
channel grows faster than N¢nN, where N is the number of exchanged quanta,
the unitarity cut must develop. Since the amplitudes ZN(!l, A) then have poles
arbitrarily far to the right in the £-plane, this cut must arise to preserve
unitarity. In the models discussed here, the binding energy of the ground state
grows as N2, which follows from the fact that the number of pairwise inter-
actions grows as N(N - 1)/2. It is difficult to see how a similar result could
fail to hold in more sophisticated models where low sub-energy effects are
taken into account. _Since the S matrix is unitary, the elastic scattering
amplitude is forbidden to have any f-plane poles to the right of one on the
physical sheet. As a result it must have branch cuts in the {-plane which have
been exhibited in our models and which are of a different type than those dis-
cussed by Mandelstam.4 For the solvable model we find that if the input tra-
jectory is 1 or below, the multiregge region provides a contribution to the
total cross section which decreases as a power of the energy. Hence the
experimentally observed constant total cross sections must arise from other
sources, such as the fragmentation region or the low sub-energy pionization

region.
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APPENDIX

In this appendix we obtain the bounds on the trajectory and residue functions
that were employed in the text. We start by obtaining upper and lower bounds
on the ground state energy, E%, for the Hamiltonian of Eq. (81). An upper
bound is obtained from the Rayleigh-Ritz variational principle. We use a

separable trial function

N.
T
<k k> = 0O, (A-1)
i=1
where
~d%k )
J 5 i) 17 =1. (A-2)
(2m)
Then
Ex < NI- & NN-1)g (A-3)
with 9
d'k 2.2
1=f 117 K (A-4)
(2m)
and
P I S Ty,
=f 5 (M) 07y Ty - Ky - k)

en? @r’ @n’ @m
1
[B(s,) Bls,) B BIy)I 2 (4m L g (s, K etk k)

£, ) £, )45 () - (a-5)

We require that g(k) and g(k, k') have no zeroes and that gk, k') is a symmetric

function of its arguments. As a result, I and J are positive definite quantities.
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In order to obtain a lower bound on E(l)\I’ it is convenient to write the exact

wave function in the form

2.2
oyt W glA)> = @) 67k +8) ¥ (st K (A-6)
with z/)N normalized to
MR :
<z/)NI¢N>_=. 1I 5 2m)" 6 (El§i+A)lng(1§,1,"'1§N)l =1
. . (2m)
i=1
(A-T)
Then
o _
Eg = <szIHON+VNIng>
> <¢NIVN|¢N>=—;-N(N - 1) <Pl Vg o> (A-8)

In the last step we have used the fact that ¢N(,131’ cee KN) is a symmetric function
of its arguments.

Introducing the variables

(A-9)

~

k=305 - k)

. dx, d’x %k dK
Ey, > - sN(N-1) f I
N = ery @mn’ @’ @)’

N
2 .2
cenf et B Y kit MKk Ky, Bt kgt k)

. [B (3K +k) B(ZK-K) B(ZK +Kk') B(ZK~ k)]

(am™ g3K+k, 3K +K') gGK-k, 3K-K)). (A-10)
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Making use of the Schwartz inequality we see that

) dzlfi 2.2 &
E%>—%—N(N—1)/II 5 (27 67( 2 Kk, +4)
P = N]. ~
.. @) i=1
i=1
(A-11)
k., k1% LK
&y ) (K)
where
, d%  d’k
LK) =f—2-— —  BGEE+K)BEK-K)FEK+K)
@2m)"  (2m)
1 ' -2 21 1 1y o2 L 1 '
BEK-k') (4m) ~ g (zK+k, sK+k")g" (2K -k, 3K -k') (A-12)

The only requirements that we have made on 8 and g so far is that they have

no zeroes and that they are well enough behaved so that all the integrals
converge. We now impose the further requirement that there exists a finite

L such that L. > L(k) for all K. This is a very mild restriction. For example,
we certainly expect that g is bounded for all values of its argument. Denoting
its upper bound by g, Ve have

gmz ai
LK) < o J

5 BEK+k)BEK -k). (A-13)
(@m)

The right hand side of Eq. (A-13) can be bounded by a constant for a wide range

of B's. From Egs. (A-T) and (A-11) we now have

(0]

-3N(N - 1)J + NI > Eg

> -3N(N - 1)L. (A-14)

Eq. (83) now follows directly from Eqgs. (A-14) and (82).
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The slope of the leading trajectory is more difficult to estimate. If the
potential, VN’ were Galilean invariant, then the only dependence of gN(!Z) on
the total transverse momentum would be through the free Green's functions.

In that case we would have the exact result
@, (B) = Ay - a'AZ/N (A-15)
NY= N ~ )

However, VN can be Galilean invariant only if we choose 8 to be a constant and
také gk, k') =g(k~ k'), a rather unlikely paraméterization. In the general
case the slope of the trajectory function ozN(é) will be effected by the A
dependence of the potentials. Writing the momenta 151 in terms of A and
momenta relative to the center of mass, we see that A always enters the Vij in
the form A/N. From our simple counting argument we expect ozi\I(O) to go like
a constant at large N. This is the assumption made in the text. It is by no
means crucial to our argument.

Finally we obtain a bound on the residue function, BN(Q) , where

Bd) = I <uglty@)> 17, (A-16)

and lfN(é)> is defined in Eq. (79). Using the Schwartz inequality we see

that

BN(Q) < <fN(é)|fN(é)>

kg, N N
= Sn Shend T ren w e
i=1 (2m) i=]1 i=1

-iA'b
= fdzb[ﬁ(lg)]l(fe ” (A-17)
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where [?(p) is the two-dimensional Fourier transform of g(k). One easily

verifies that for most simple parameterizations of g(k), BN(Q) can be bounded

by a function of the form Blg/ N, where ,80 is a constant. For example, if we

2,2
write f(k) =B e ', then

2 g 2
<f () 1 (8)> = (4/Nu2)(ﬁoﬂu2)N ™A /N (A-18)
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Because of our normalization the poles in ZN(!Z,Q) are one unit to the left
of the corresponding poles in the elastic scattering amplitude, Mzz(!z,é).
We denote by ozN(é) the position of the poles in Mzz(ll,é).

In order to simplify our calculations we shall assume that aN(Q) and
BN(Q) are analytic in the right half N plane and do not have branch points
at N = - », However, in order to insure that the square root branch
points in the {-plane exist it is really sufficient to have ozN(é) increase
like N2 for large N. |

The interested reader can use the same technique to obtain the high
energy behavior of the solvable model discussed in section III.

""Studies on Divergent Series and Summability', W. B. Ford, Chelsea

Publishing Co., 1916, p. 263.
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FIGURE CAPTIONS

General Production Graph

Basic Form of Wn

Elastic Ladder (a) and Checkerboard (b) Graphs

Rapidity Orderings
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