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When a gravitational wave (GW) passes through a dc magnetic field, it couples to the conducting wires
carrying the currents which generate the magnetic field, causing them to oscillate at the GW frequency. The
oscillating currents then generate an ac component through which the GW can be detected—thus forming a
resonant mass detector or a nagnetic Weber bar. We quantify this claim and demonstrate that magnets can
have exceptional sensitivity to GWs over a frequency range demarcated by the mechanical and
electromagnetic resonant frequencies of the system; indeed, we outline why a magnetic readout strategy
can be considered an optimal Weber bar design. The concept is applicable to a broad class of magnets, but
can be particularly well exploited by the powerful magnets being deployed in search of axion dark matter,
for example, by DMRadio and ADMX-EFR. Explicitly, we demonstrate that the MRI magnet that is being
deployed for ADMX-EFR can achieve a broadband GW strain sensitivity of ∼10−20=

ffiffiffiffiffiffi
Hz

p
from a few kHz

to about 10 MHz, with a peak sensitivity down to ∼10−22=
ffiffiffiffiffiffi
Hz

p
at a kHz exploiting a mechanical

resonance.
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The universality of the gravitational coupling implies
there are many ways that a gravitational wave (GW) can
interact with matter and therefore many ways GWs could
be detected. Nevertheless, the search for GWs has been
historically dominated by considering the mechanical
coupling of the wave; this underpins the common inter-
pretation of Weber bars [1] and interferometers [2], where
the wave couples to a resonant mass or the interferometer
mirrors, respectively.
While exploring searches for GWs at higher frequencies

(f > 1 kHz), the full set of gravitational couplings is being
reconsidered, as partially reviewed in Ref. [3]. Two of the
leading approaches are to exploit the coupling of GWs to
electromagnetism [4–6] or to again rely on the traditional
mechanical coupling, but in setups optimized for short
wavelength GWs, such as bulk acoustic wave devices [7] or
a levitated sensor detector (LSD) [8,9]. An advantage of the
mechanical coupling is that the excitations in materials are
less stiff than those in electromagnetism—the speed of
sound is significantly smaller than the speed of light—
making it easier for a GW to mechanically deform or
displace objects than to induce an electromagnetic (EM)

field. A disadvantage, however, is that the induced
mechanical motion then typically needs to be read out
by an electromagnetic sensor, involving the need to trans-
duce the mechanical signal to an electromagnetic one.
In this Letter we put forward a proposal that combines

the best of these two worlds. We consider the mechanical
coupling of a GW to the support structure of a dc magnet,
and, in particular, to the conducting wires that generate the
magnetic field. Heuristically, the GW leads to an oscillation
of the wires with the GW frequency, resulting in a small ac
component to the magnetic field. Hence, despite the
coupling being mechanical, the generated signal is intrinsi-
cally electromagnetic, and can be read out through a
SQUID coupled to a pickup loop, with the possibility of
enhancing the signal by introducing a resonant LC circuit.
Compared to traditional Weber bar detectors, this greatly
improves the sensitivity off the mechanical resonance
frequency. For a related discussion in the context of
resonant cavities, see Ref. [10].
The expected sensitivity of this setup is shown in Fig. 1.

The dip around a kHz indicates a mechanical resonance of
the magnet with only a single mechanical resonance shown
for simplicity. At the resonance the device behaves almost
identically to a conventional Weber bar and, remarkably, in
this very narrow frequency regime, the achievable strain
sensitivity is comparable to that currently achieved by
interferometers [11,12] and can surpass the expected
broadband sensitivity of the proposed MAGO experiment
[10]. The solid projected reach curves assume a broadband
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readout, implying that the achievable signal-to-noise ratio
across the entire frequency range benefits from the full
instrument integration time. This makes the configuration
highly sensitive to transients at unknown frequencies and
even for persistent signals as we can exploit their duration.
This is in contrast to proposals operating in resonant mode
relying on a scanning strategy (dashed gray curves)
[6,9,10,13–15], which conventionally optimize their sensi-
tivity over a small frequency range for a short duration
before moving on. Supplementing our proposal by cou-
pling to a resonant circuit can improve the strain sensitivity
at the corresponding resonant frequency, as we show in
dashed teal.
Figure 1 further displays the strain sensitivity corre-

sponding to the cosmological bound on a stochastic
gravitational wave background, labelled BBN bound [18].
We emphasize that this comparison depends crucially on
how well a given detector is suited to search for stochastic
backgrounds. Ground-based interferometers, making use of
the cross-correlation across different detectors, currently
reach sensitivities about 2 orders of magnitude beyond this
limit. More generally, broadband detectors can rely on
templates (often simple power laws) for the expected signal
spectra to improve the sensitivity by a factor ðtintΔfÞ1=4,
with tint the integration time and Δf the minimum of the
signal and analysis bandwidths.
The goal of this Letter is to provide a careful analysis of

the claims made so far. We begin, however, with a sketch of
the essential idea.
Wiggling a dc magnet—Consider a dc solenoidal magnet

of length l made of N coils carrying current I.
Unperturbed, it generates a field B0 ∼ NI=l. Working in
the local inertial frame associated with an observer in the
laboratory, a passing GWof strain h imparts the equivalent

of a Newtonian force on the experiment, slightly deforming
its shape. The exact deformation depends on the material
properties and geometry of the solenoid. However, if we
consider a long thin solenoid and frequencies well above
the mechanical resonance, a GW orthogonal to the sym-
metry axis of the solenoid induces a deformation that is
approximately l → lþ hl. The solenoid now generates a
magnetic field of B ∼ B0ð1 − hÞ, implying the presence of
an ac contribution to the magnetic field oscillating at the
GW frequency.
To read out the signal we place a pickup loop of radius

Rp through which the GW induces an ac flux of
Φ ∼ hB0πR2

p. Imagining a broadband readout, we can
estimate our sensitivity by inductively coupling the pickup
loop to a SQUID. Taking a characteristic coupling of
κ ∼ 10−2 and noise of ΦSQ ∼ 10−21 Wb=

ffiffiffiffiffiffi
Hz

p
, the sensi-

tivity expressed as a noise spectral densities is ðSnoiseh Þ1=2 ∼
ΦSQ=ðκB0πR2

pÞ ∼ 10−20=
ffiffiffiffiffiffi
Hz

p
for Rp ∼ 0.4 m and

B0 ∼ 10 T, consistent with Fig. 1. For a persistent mono-
chromatic GW signal, the strain sensitivity of a ten day
observation would be h ∼ ðSnoiseh =TÞ1=2 ∼ 10−23, which
could probe GWs emitted by axion superradiance at around
0.1 MHz, an idea which has been broadly explored, see,
e.g., Refs. [8,9,19–31]. We validate the accuracy of these
heuristic estimates of the signal and noise in the following
sections.
Before doing so, let us briefly justify where our concept

improves over existing approaches. Comparing with tradi-
tional Weber bars, the main advantage lies in inherently
large EM energy in a magnetic readout, enabling an
efficient measurement of the mechanical deformation.
Comparing to a direct coupling of the GW to the EM
field, we profit from the reduced stiffness of the mechanical
deformations at frequencies below the EM resonance. Both
comparisons are discussed in greater detail in the
Supplemental Material [32], which includes Refs. [33–41].
Induced magnetic field—Throughout this Letter we work

in the proper detector frame, in which the GW acts by
exerting a Newtonian force

Fh
i =m ¼ 1

2
ḧTTij r

j; ð1Þ

acting on a test particle of mass m at position r, with hTTij
indicating the GW tensor evaluated in the transverse trace-
less frame, which depends on the amplitude for the two
polarizations hþ and h×. Explicitly, we decompose a GW
propagating along the x axis as hTTij ðtÞ ¼ hAeAije

−iωðt−xÞ,
where A ¼ þ;×, and eAij are the polarization tensors, with
explicit forms given in Supplemental Material [32]. We
consider the impact of this force on a solenoidal magnetic
field, generated by a current-carrying spool. In detail, the
force will perturb both the position and orientation of the
spool throughwhich the currents are running. Aswe show in

FIG. 1. The noise-equivalent strain power spectral density
(PSD) for two different experimental configurations with key
parameters given in the legend. The blue line corresponds
roughly to the ADMX-EFR magnet [16] with l ¼ 2 m, while
the teal curves correspond roughly to a magnet of the size
envisioned for DMRadio-GUT [17] with l ¼ 4 m. All solid and
dashed curves correspond to broadband and resonant readouts,
respectively. See text for details.
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Supplemental Material [32], applying the Biot-Savart law
yields

Bðr0Þ ¼
Z
V
d3r

jðrÞ × ½r0 − ξðrÞ�
4πjr0 − ξðrÞj3 : ð2Þ

The volume integral is performed over the unperturbed (flat
space) coordinates of the spool. The deformation of the
spool’s location by the GW is encoded in ξðrÞ ¼ rþ δrðrÞ
and we discuss how this is determined shortly. Henceforth
we leave the dependence on r implicit. The current density is
given by

j ¼ IN
lΔr

dξ
dϕ

���� dξdϕ
����
−1
; ð3Þ

with IN ¼ NI denoting the ampere turns of the current, Δr
the radial width of the spool, l its length, and the remaining
factors indicating the orientation of the current in the
presence of a GW.
Equation (2) demonstrates that the GW modifies the

magnetic field generated by the spool, adding an oscillatory
component at the GW frequency. We can read this out with
a pickup loop that is sensitive to the field at all positions r0
within its area. In computing this effect, one must account
for the fact the pickup loop itself is subject to the GW force.
In the following, we will assume the pickup loop to be
suspended, so that we can treat its motion as approximately
free-falling, i.e., the GW perturbs the flat space position r00
to r0 ¼ r00 þ δr0ff . We do not consider possible mechanical
resonances of the pickup loop, as with the geometry
envisioned, the dominant effect is well captured in this
approximation. In that limit, the deformation of the pickup
loop is simply given by the Newtonian force of Eq. (1),

δ̈r0ff;i ¼
1

2
ḧTTij r

0j
0 : ð4Þ

We note that the above treatment cannot be extended to
arbitrarily low frequencies. Once the GW frequency falls
below the restoring frequency of the suspensions system
employed for the pickup loop, the magnet and loop would
begin to move in concert, suppressing our sensitivity.
What remains is to determine the deformation of the

spool δr. We consider two approaches. Well above the
resonant frequencies of the spool, the GW acts as a driving
frequency the material cannot respond to in time, implying
we can take the free-falling limit with δr determined from
Eq. (4). This corresponds to the molecules of the spool
material responding individually to the GW. At lower
frequencies, we must account for the response of the
material to the imposed force. We do so using the
mechanical eigenmodes of the magnet parametrized by
dimensionless displacements umnpðrÞ, with ðm; n; pÞ

labeling the order of the modes in the polar, radial, and
longitudinal directions. Details of how these modes can be
approximated for a finite width cylinder are provided in
Supplemental Material [32]. The mechanical response of
the magnet to an incoming GW is parametrized in terms of
dimensionless overlap factors,

ηAmnp ¼ 1

2Vlη

Z
V
d3r eAijr

i½u�mnp�j; ð5Þ

normalized such that if we sent ½u�mnp�j → 1
2
eAijr

j=lη for
either polarization we obtain η ¼ 1. As an example to
demonstrate that Oð1Þ couplings are possible, consider a
mode that we expect to strongly couple to a GW traveling
along the z axis, u210 (the explicit form is given in
Supplemental Material [32]). If we take a spool of length
2 m and inner and outer radii of 0.6 and 0.65 m, we find a
coupling of ηþ;×

210 ≃ 0.95, with the þð×Þ polarization of the
GW coupling to the 210 mode with odd (even) azimuthal
dependence. A GW incident along the x axis will also
couple to this mode, albeit with a reduced coupling of
ηþ210 ≃ 0.41 and η×210 ≃ 0. The magnet dimensions are
inspired by the MRI magnet to be used for ADMX-EFR,
which has a peak magnetic field of B0 ≃ 10 T generated by
a current of ∼20 MA-turns. The eigenfrequency of this
mode is determined by the diameter of the spool, and for
the dimensions above is found to be at f ≃ 1.4 kHz for a
stainless steel cylinder. To compute the induced magnetic
field we insert δr ¼ η210u210lη into ξ, which can be
enhanced by the mechanical quality factor Qmech on
resonance, in Eq. (2) and otherwise proceed as in the
freely falling limit.
The precise magnitude of the signal depends on the

position and orientation of the pickup loop, and we provide
numerical results for different frequency regimes in
Supplemental Material [32]. For example, one can obtain
a large signal by placing a pickup loop close to an end cap
of the magnet, where the external magnetic field is still
rather strong but features a significant gradient. With a
suitable placement of the pickup loop, we expect induced
magnetic fields of OðhB0Þ at frequencies away from the
mechanical resonance andOðhQmechB0Þ on the mechanical
resonance. In a realistic setup, material simulations and
measurements will be needed to determine the precise
mechanical response of the system.
Signal-to-noise ratio (SNR)—The optimal SNR for the

strain h can be written as (As written, this SNR is quadratic
in h. For a signal whose waveform can be matched in the
time domain, an SNR that is linear in strain can be
constructed by performing a matched filtering analysis.
Doing so leads to an SNR that is identical to Eq. (6), only
with the frequency integral taken over the ratio of
unsquared PSDs.)
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SNR2 ≃ 2tint

Z
∞

0

df

�
SsigðfÞ
SnoiseðfÞ

�
2

: ð6Þ

As derived explicitly in Supplemental Material [32], the
signal power spectral density (PSD) enters in the form of a
PSD of the flux through the pickup loop. Explicitly,
SsigðfÞ ¼ B2

0A
2
pjGðf; xÞj2ShðfÞ, where Ap is the pickup

loop area, ShðfÞ is the GW PSD, whil Gðf; xÞ is a
dimensionless gain factor that depends on the GW fre-
quency as well as the position and orientation of the pickup
loop and which must be computed numerically. Lastly,
SnoiseðfÞ represents the PSD of various noise sources that
we enumerate in Supplemental Material [32].
The dimensionless gain factor arises from the two

contributions to the magnetic flux that traverses the pickup
loop, as discussed in the previous section. The first is the
coupling of the GW to the spool. Numerically, we
conservatively only include the gain generated from the
GW coupling to the 210 mode as discussed above; in
principle, there are contributions from all modes to which
the GW couples, although this mode will dominate for a
GW propagating along the z direction. The second con-
tribution comes from the relative motion of the freely
falling pickup loop with respect to the magnet.
Let us consider the expected behavior of the gain in three

limits around the lowest-lying mechanical resonance of the
spool fmin: 1. f ≪ fmin; 2. f ∼ fmin; and 3. f ≫ fmin. In
the first case, the low frequency limit, the mechanical
coupling to the spool is suppressed by ðf=fminÞ2, whereas
the coupling to the freely falling pickup loop is not.
Consequently, the latter dominates, leaving jGj2f≪fmin

≲ 1.
In this regime, the SQUID noise is likely to dominate in a
broadband setup. As a result, if both the signal and noise
PSDs can be approximated as flat in a bandwidth Δf, the
SNR for this regime can be obtained from Eq. (6) as

SNRf≪fmin
∼ ðtintΔfÞ1=2

ShðfÞB2
0A

2
p

SSQnoiseðfÞ
: ð7Þ

In the second regime, where the GW frequency matches
a mechanical resonance f ∼ fmin, the gain is dominated by
the mechanical quality factor moderating the response of
that mode. The gain again depends on the positioning of the
pickup loop (see Supplemental Material [32]), although
largest it can be is jGj2 ∼Q2

mech. In this case, thermal
mechanical noise in the magnet dominates for typical
parameter choices, in which case one would not gain
further with a resonant rather than broadband EM readout
(as seen in Fig. 1). (We note that thermal noise in the pickup
loop remains subdominant at all frequencies.) The resulting
SNR scales as

SNRmech res ∼ ðtintΔfÞ1=2
QmechShðfÞl2

hMω3
mech

2T
; ð8Þ

where M is the mass of the magnet, T its temperature, and
the characteristic scale of the deformations induced by the
GW is lh ¼ ηlη, written in terms of the overlap factor in
Eq. (5). (The reader should be cautioned that taking the
M → ∞ limit does not infinitely improve the SNR.
For a broadband readout, eventually SQUID noise again
becomes the dominant background and the SNR
saturates at Q2

mech × SNRf≪fmin
.) In this thermally limited

mechanically resonant scenario, the broadband SNR scales
as Qmech owing to the suppression of the thermal mechani-
cal noise by the mechanical resonance’s linewidth,
ωmech=Qmech.
Last, we turn to the limit where f ≫ fmin. Now we are in

the flexible regime discussed previously, and the gain is
approximately jGj2 ≲ 1. In this regime, the u210 mode
responds flexibly, and the sum over all modes would
approximate the free-falling magnet limit. SQUID noise
is expected to dominate, and the SNR is again approxi-
mated by Eq. (7).
In all three regimes discussed above, we have assumed

that the pickup loop is placed just outside the magnet. Flux
conservation through the superconducting magnet coils
implies that for f ≫ fmin there will be no signal through a
coaxial loop placed inside the magnet.
Note that the noise sources we consider here will

dominate as long as there is sufficient shielding against
ambient magnetic field noise. Given the anticipated mag-
netic field noise of BðfÞ ≲ 10−14 T=

ffiffiffiffiffiffi
Hz

p
at frequencies

f ≳ 100 Hz [42], the shielding requires a reduction of at
most 107 in the field amplitude. This could be achieved, for
example, with a 5 mm-thick iron-nickel alloy shield with
μr ¼ 75 × 103; σ ¼ 2 × 106 S=m [43].
Sensitivity—The expressions from the previous section

can be used to determine the sensitivity of a single detector
to both stochastic GW sources, where the bin width Δf
depends on the expected spectral shape of the GW signal,
and to coherent sources for which one should take
ShðfÞ ∼ h20=Δf. The information can also be used to
determine the expected sensitivity of the detector as
encoded in the noise-equivalent strain, which is shown
in Fig. 1. Formally, the noise-equivalent strain PSD is
defined as Snoiseh ðfÞ≡ SnoiseðfÞShðfÞ=SsigðfÞ. Detailed
expressions for each component are provided in
Supplemental Material [32].
We can already estimate the form of Snoiseh ðfÞ from the

details of the previous section. In particular, taking the form
for the signal PSD discussed below Eq. (6), we have
Snoiseh ðfÞ ∼ SnoiseðfÞ=B2

0A
2
pjGðf; xÞj2, exposing its various

dependencies. In Fig. 1 we assume a gain of jGj2 ¼ 5 away
from a mechanical resonance, whereas on the resonance we
directly compute the sensitivity by comparing the displace-
ment PSDs as detailed in Supplemental Material [32].
Combining these two approaches we find a slight degra-
dation in the sensitivity at the mechanical resonance. These
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specific sensitivities correspond to the values found for the
single mode studied in Supplemental Material [32], so it is
likely that a detailed numerical study including all modes
and optimising the loop placement can improve upon these.
In particular, we anticipate the possibility of improvement
around a mechanical resonance of a mode with a longi-
tudinal component. Of course, the additional modes would
also enhance the thermal noise at their respective locations,
which we have neglected in our projections.
Finally, coupling the pickup loop to an LC circuit with

EM quality factor QEM can improve the sensitivity in parts
of the parameter space at the cost of reducing the detector
bandwidth. As a simple estimate, on the mechanical
resonance the SNR would remain the same as in the
broadband case of Eq. (8) (and therefore again the
sensitivity slightly degrades), whereas above the mechani-
cal resonance, the SNR would improve from Eq. (7) by a
factor ∼105 × ðf=104 HzÞ assuming resonant LC circuit
parameters of TLC ¼ 10 mK and QEM ¼ 2 × 107, compa-
rable to DMRadio-GUT [17]. The intrinsic bandwidth of
the LC resonator ΔfLC can affect the determination of Δf
in the resulting expressions for the SNR. For more details,
see Supplemental Material [32].
In Fig. 1, we have taken two hypothetical magnet and

pickup loop configurations, inspired by the ADMX-EFR
and DMRadio-GUT magnets. The main parameters we
have chosen for both are described in the figure caption. For
the ADMX-EFR-inspired scenario, we computed the res-
onant frequency of the u210 mode, and assumed it has a
quality factor of Qmech ¼ 106. For the DMRadio-GUT-
inspired configuration, we assume Qmech ¼ 107 and a
resonance at fmin ¼ 1 kHz, justified by the large magnet
dimensions. For ADMX-EFR we assumed a similar magnet
temperature as achieved for AURIGA of 4 K, whereas for
DMRadio-GUT we adopted a more aggressive 0.02 K,
although this only impacts the sensitivity on the mechanical
resonance. We conservatively assume that both magnets
weigh M ¼ 40 tons (similar to previous resonant mass
experiments [44]), such that any increase in the DMRadio-
GUT magnet mass could be absorbed by an overestimate in
the mechanical quality factor. For simplicity we assume
persistent superconducting magnets, otherwise additional
noise associated with the external power supply must be
included. Two pickup loop configurations were employed:
A co-axial loop (off-resonance sensitivity) and a quarter-
circle loop (sensitivity on resonance), both placed close to
the endcap of the magnet. The sensitivity further assumes
seismic isolation of the apparatus through a dual suspen-
sion system assuming a quiet site [45], which is eventually
overcome leading to a loss in sensitivity at low frequencies.
Even in the case of full seismic isolation, the suspension
system is likely to contribute to a deterioration of the
sensitivity below f ≲ 100 Hz, a frequency associated to the
typical size of an experimental hall, and eventually gravity
gradient noise [46,47] will become relevant.

Conclusions—The focus of this Letter has been to
demonstrate that dc magnets can act as remarkably sensi-
tive GW detectors. The mechanical force exerted by a GW
on the magnet itself and on a pickup loop placed within
the magnetic field directly induces an ac magnetic flux
component through the pickup loop. Our estimate for the
resulting sensitivity is shown in Fig. 1; our projected noise-
equivalent strain with a broadband readout is stronger than
many projections achieve with a narrow band resonant
readout. Our more conservative estimate is based on the
magnet dimensions suggested for ADMX-EFR [16], and
can be easily generalized to other powerful magnets, such
as the GrAHal magnet [48] or the magnets envisioned for
DMRadio [17,49,50]. Away from the mechanical reso-
nance, our sensitivity could also be improved with the use
of a resonant EM readout.
Looking forward, the observations of this Letter will

impact GW searches relying on static magnetic fields. The
most obvious connection is to searches inspired by low-
mass axion haloscopes [6]. For toroidal magnets (as used
for ABRA-10 cm [51–53] or SHAFT [54]) the effect
discussed here is irrelevant as the pickup loop is typically
placed in a field free region. On the contrary, for solenoidal
magnets (as used in BASE [55], WISPLC [56], ADMX
SLIC [57], and proposed for DMRadio-m3 [49,50]), both
the contribution discussed here and the contribution from
the EM coupling [58] are present. The details depend on the
placement of the pickup loop, but as discussed, we expect
the mechanical signal to dominate below the EM resonant
frequency. As a general statement, our work is an explicit
realization of the fact that in the presence of a GW, any
laboratory magnetic field cannot be considered static. This
is particularly relevant at frequencies around the mechani-
cal resonances, where the magnet can be treated neither as
rigid (low frequency limit) or as free falling (high frequency
limit), see also Ref. [59].
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