
 

Electron EDM in the complex two-Higgs doublet model
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We present the first complete two loop calculation of the electron EDM in the complex two-Higgs
doublet model. We confirm gauge independence by demonstrating analytic cancellation of the gauge
parameter ξ in the background field gauge and the ’t Hooft Rξ gauge. We also investigate the behavior of
the electron EDM near the decoupling limit and determine the short- and long-distance contributions by
matching onto an effective field theory. Compared with earlier studies of the electron EDM in the complex
two-Higgs doublet model, we note disagreements in several places and provide diagnoses where possible.
We also provide expressions for EDMs of light quarks.
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I. INTRODUCTION

The discovery of a nonvanishing electric dipole moment
(EDM) of any fundamental particle in next generation
experiments would unambiguously signal the existence of
new sources of CP violation beyond the Standard Model
(SM) of particle physics. Indeed, many such models predict
EDMs of elementary particles that are within reach of
current experiments, with the SM contribution estimated
to lie several orders of magnitude lower [1–3]. Such a
discovery could supply a crucial ingredient towards solving
the long-standing problemof the origin of the cosmic baryon
asymmetry [4,5]. Currently, the most stringent limit on the
electron EDM is provided by the ACME Collaboration [6]
and reads de < 1.1 × 10−29 e cm at a 90% confidence level.
The collaboration expects an improvement in sensitivity by
an order of magnitude in the near future [6]. A further
significant improvement in sensitivity might come in the
future from the EDM3 experiment [7].
Two-Higgs doubletmodels (2HDMs) are among themost

popular extensions of the SMand can contain new sources of
CP violation. 2HDMs arise inmanywell-motivated theories
beyond the SM, such as in the minimal supersymmetric
standardmodel (MSSM). Themost general formof a 2HDM
allows for new sources of CP violation both in the scalar

potential and in the Higgs-Yukawa interactions. However, it
generically exhibits flavor changing neutral currents, which
are strongly constrained by experiments. By imposing a
softly broken Z2 symmetry [8] to yield the complex two-
Higgs doublet model (C2HDM), flavor changing neutral
currents at tree-level are naturally eliminated. The Z2

symmetric C2HDM still accommodates new sources of
CP violation in the scalar potential to generate EDMs of
fundamental particles.
Analyses of electric dipole moments in the C2HDM

have a long history, starting with the calculation of two loop
Barr-Zee diagrams [9], followed by several extensions, e.g.,
[10–12]. However, the results of these previous works only
include a subset of all two loop contributions and are not
gauge invariant. More recently, Ref. [13] employed the
pinch technique to calculate the Barr-Zee diagrams gauge
invariantly. Still, as indicated by the authors, not all
contributions to the electron EDM were included.
In this paper, we present for the first time the complete

calculation of the electron EDM by systematically account-
ing for all Feynman diagrams that contribute at a two loop
order. Due to the recurrent issue of gauge invariance, we
perform the calculation in both the background field gauge
and in the conventional ’t Hooft Rξ gauge keeping the
gauge parameter ξ arbitrary. We algebraically establish ξ
independence and reach agreement in both gauges provid-
ing strong validation for our results. Our final formula for
the electron EDM in the C2HDM is given in (43). This is
the main equation that should be used in the phenomeno-
logical exploration of the electron EDM. For convenience,
we provide a Mathematica notebook containing the neces-
sary formulas as an ancillary file [44].
The presentation of our work is organized as follows. In

Sec. II, we introduce the C2HDM, establishing the notation
we use in this paper. In Sec. III, we present the electron
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EDM in background field gauge. Our main results are
contained in this section. In Sec. IV, we reevaluate the EDM
in the conventional Feynman-’t Hooft gauge and explain
how we reach agreement with the background field
evaluation. In Sec. VI, we compare our results with the
recent evaluation of the electron EDM presented in [13].
We also introduce a set of benchmark parameters to carry
out a numerical exploration of the electron EDM. In Sec. V,
we explain how our results may be adapted to obtain EDMs
of light quarks. In Sec. VII, we present an asymptotic
expansion of the electron EDM near the decoupling limit
and discuss its relationship to the formula derived from an
effective field theory. Section VIII is reserved for our
conclusions. Finally, in the Appendix, we collect useful
equations on the 2HDM scalar potential.

II. FORMULATION OF THE C2HDM

The C2HDM is the most general CP-violating two-
Higgs doublet model that possesses a softly broken Z2

symmetry. In our discussion, we will closely follow the
notation of [14,15], to which we refer the reader for a
detailed description of its formulation.
The SM scalar sector is extended by an additional scalar

doublet with identical quantum numbers as the SM Higgs
boson. The scalar potential is

VðΦ1;Φ2Þ ¼ m2
11Φ

†
1Φ1 þm2

22Φ
†
2Φ2 − ðm2

12Φ
†
1Φ2 þ c:c:Þ

þ 1

2
λ1ðΦ†

1Φ1Þ2 þ
1

2
λ2ðΦ†

2Φ2Þ2

þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ
þ λ4ðΦ†

1Φ2ÞðΦ†
2Φ1Þ

þ
�
1

2
λ5ðΦ†

1Φ2Þ2 þ c:c:

�
: ð1Þ

Apart from the soft-breaking term proportional to m2
12, the

potential exhibits invariance under the Z2 transformation
Φ2 → −Φ2. Generally, both doublets may acquire a vac-
uum expectation value. Assuming the parameters are
chosen to respect Uð1ÞEM in the vacuum, they take the
form,

hΦ1i ¼
1ffiffiffi
2

p
�

0

v1

�
; hΦ2i ¼

1ffiffiffi
2

p
�

0

v2eiζ

�
; ð2Þ

where v≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
¼ 246 GeV, and ζ is a possible

relative phase between them. The values of v1, v2, and ζ
are given in terms of the potential parameters in the
Appendix. We use rephasing invariance to work in the
basis, where ζ ¼ 0 throughout the paper. It is convenient to
transform to the Higgs basis,

�Φ1

Φ2

�
¼

�
cos β − sin β

sin β cos β

��
H1

H2

�
; ð3Þ

with tan β ¼ v2=v1 so that the vacuum expectation value is
contained entirely in H1. In this new basis, the potential
reads

VðH1; H2Þ ¼ Y1H
†
1H1 þ Y2H

†
2H2 þ ðY3H

†
1H2 þ c:c:Þ

þ 1

2
Z1ðH†

1H1Þ2 þ
1

2
Z2ðH†

2H2Þ2

þ Z3ðH†
1H1ÞðH†

2H2Þ

þ Z4ðH†
1H2ÞðH†

2H1Þ þ
�
1

2
Z5ðH†

1H2Þ2

þ ðZ6H
†
1H1 þ Z7H

†
2H2ÞH†

1H2 þ c:c:

�
; ð4Þ

where the new parameters Yi, Zi are linear combinations of
the original parameters m2

ij, λi given in the Appendix.
Analysis of small fluctuations around the vacuum shows
that the components of the scalar fields in the Higgs basis
are given by

H1 ¼
� Gþ

1ffiffi
2

p ðvþ φ0
1 þ iG0Þ

�
H2 ¼

� Hþ

1ffiffi
2

p ðφ0
2 þ ia0Þ

�
;

where Gþ, G0 are the would-be Goldstone modes supply-
ing the longitudinal modes of the massive W, Z gauge
bosons, and Hþ is a physical charged Higgs boson,
of a mass squared m2

Hþ ¼ Y2 þ 1
2
Z3v2. The remaining

scalars—the CP even φ0
1 and φ0

2, and CP odd a0—mix,
with the Higgs squared-mass matrix M2 given by

M2

v2
¼

0
B@

Z1 ReðZ6Þ −ImðZ6Þ
Y2=v2 þ 1

2
Zþ
345 − 1

2
ImðZ5Þ

Y2=v2 þ 1
2
Z−
345

1
CA; ð5Þ

where Z�
345 ¼ Z3 þ Z4 � ReðZ5Þ. The mass matrix is

diagonalized by a special orthogonal matrix R,

RM2R⊤ ¼ diagðm2
1; m

2
2; m

2
3Þ ð6Þ

0
B@

h1
h2
h3

1
CA ¼ R

0
B@

φ0
1

φ0
2

a0

1
CA; ð7Þ

where we parametrize the elements of R as

R ¼

0
B@

q11 Reðq12Þ Imðq12Þ
q21 Reðq22Þ Imðq22Þ
q31 Reðq32Þ Imðq32Þ

1
CA: ð8Þ
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Elements of R are subject to orthonormality conditions,

X3
k¼1

q2k1 ¼
1

2

X3
k¼1

jqk2j2 ¼ 1; ð9Þ

X3
k¼1

q2k2 ¼
X3
k¼1

qk1qk2 ¼ 0; ð10Þ

which prove indispensable in the calculation of the electron
EDM. Inserting the linear combinations (7) into the scalar
potential (4) generates the interaction vertices in terms of
mass eigenstate fields, for which we point the reader to [14]
for a complete listing. For reference, we reproduce here the
three-point coupling of the neutral Higgs bosons with two
charged Higgs bosons,

where

λkHþH− ¼ qk1Z3 þ ReðZ7qk2Þ; ð11Þ

which appears in the final result for the EDM.
In the mass-eigenstate basis, the Yukawa Lagrangian

governing the coupling of Higgs fields hk and H� to the
SM fermions f is

LYuk¼−
mf

v

X
k

hkf̄½qk1−2Tf
3cfReðqk2Þþ icfImðqk2Þγ5�f

−
ffiffiffi
2

p �
Hþf̄0

�
mf0cf0

v
PLþ

mfcf
v

PR

�
Vf0ffþ c:c:

�
;

ð12Þ

where Tf
3 ¼ � 1

2
is the third component of weak isospin,

and Vf0f is a Cabibbo–Kobayashi–Maskawa (CKM) matrix
element for quarks and the Kronecker delta for leptons. The
coupling coefficients cf are controlled by the Z2 charges
assigned to the quarks and leptons. The possible assign-
ments yield the four 2HDM types,

Type I∶ cd ¼ cl ¼ cot β; ð13Þ

Type II∶ cd ¼ cl ¼ − tan β; ð14Þ

Lepton specific∶
�
cd ¼ cot β

cl ¼ − tan β;
ð15Þ

Flipped∶
�
cd ¼ − tan β

cl ¼ cot β;
ð16Þ

and cu ¼ − cot β for all types.

III. BACKGROUND FIELD EVALUATION

The electron EDM, de, is derived from the q2 ¼ 0 limit
of the CP-odd Pauli form factor in the electromagnetic
vertex function,

ð17Þ

The unsuppressed contributions to the electron EDM in the
C2HDM start at two loop order. In what follows, we
present the leading order behavior of the EDM in the
asymptotic limit me → 0, adopt a normalization that sets
the overall scale,

de
e
¼

ffiffiffi
2

p
αGFme

64π3
δe ≈ ð6.5 × 10−28 cmÞ × δe; ð18Þ

where we used αðmZÞ ≈ 1=129 and report our results in
terms of the dimensionless electric dipole moment, δe.
Before presenting the results of our calculation, we

briefly review relevant aspects of the background field
method. In the background field method, the electromag-
netic vector potential is shifted in the Lagrangian to its
background field value ĀμðxÞ corresponding to the classical
electric field coupled to the electron EDM. Terms linear in
the quantum field Aμ incurred by this shift are canceled by a
suitable choice for the source JμemðxÞ. In passing to the
quantum theory, we choose the background field gauge
condition [16],

L ¼ −
1

2ξ
½ð∂μAμÞ2 þ ð∂μZμ þ ξmZG0Þ2

þ 2jð∂μ þ ieĀμÞWþ
μ − iξmWGþj2�; ð19Þ

which generalizes the conventional ’t Hooft Rξ gauges [see
(44) below] bymaintaining covariancewith respect to gauge
transformations of the background field Āμ. Compared to the
conventional ’t HooftRξ gauges, the background field gauge
modifies the tree-level triple gauge vertex,

ð20Þ

includes a gauge-ghost four-point vertex,

ð21Þ

and features the absence of the Āμ-induced W gauge-
Goldstone transition, substantially reducing the number of
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contributing Feynman diagrams. For this reason, we provide
a detailed account of our results in the background field
gauge and only provide an outline of the calculation in the
conventional ’t Hooft Rξ gauge in Sec. IV.
With the help of FEYNARTS [17], we generated all possible

two loop diagrams for the electromagnetic vertex function.
Table I organizes the diagrams that contribute to the electron
EDM in the background field gauge. Groups of nonvanish-
ing diagrams that trivially sum to zero are not shown, but are
briefly mentioned in Sec. IV in the context of the Feynman-
’t Hooft gauge in which they do contribute. The Barr-Zee
diagrams in the first three rows form the largest class
and are defined by containing insertions of one-loop
three-point vertex functions inside the electron form factor.
Traditionally, these contributions have been classified
according to the kind of three-point function that enters
into the Barr-Zee diagram (rows of Table I). However,
considerations of gauge invariance and scaling in the
decoupling limit suggest that it is more natural to group
themby degrees of freedomentering in the loop, (columns of
Table I). The remaining diagrams (which we call “kite
diagrams”) are shown in the last two rows of Table I and
make up a smaller set of diagrams. Nevertheless, they
formally contribute at the same order, and their inclusion
is essential for gauge-independence of the final result.
In our calculations, we dimensionally regulated all

Feynman integrals and employed a naively anticommuting
definition of γ5 in the Dirac algebra. As the EDM is UV
finite to the order we work, no ambiguities associated with

this definition arise. We made extensive use of an in-house
version of PACKAGE-X [18] to automate the evaluation of
the two loop Feynman integrals. In the results below,
we express the contributions in terms of squared mass
ratios with respect to the kth neutral Higgs: rk ¼ m2

f=m
2
k,

wk ¼ m2
W=m

2
k, zk ¼ m2

Z=m
2
k, and hk ¼ m2

Hþ=m2
k. We also

make frequent use of the Davydychev-Tausk vacuum
integral function [19],

Φðx;yÞ¼Re

�
2ffiffiffi
λ

p
�
π2

6
−
1

2
lnx lny

þ ln

�
1þx−y−

ffiffiffi
λ

p

2

�
ln

�
1−xþy−

ffiffiffi
λ

p

2

�

−Li2

�
1þx−y−

ffiffiffi
λ

p

2

�
−Li2

�
1−xþy−

ffiffiffi
λ

p

2

���
;

ð22Þ

where λ ¼ ð1 − x − yÞ2 − 4xy is the Källén polynomial,
and Li2 is the dilogarithm function. The special equal-mass
case is given by

ΦðxÞ ¼ Φðx; xÞ

¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x

p
�
π2

6
þ ln2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x

p

2

�

−
ln2 x
2

− 2Li2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x

p

2

��
: ð23Þ

a. Fermion loop contributions. The contributions with a
fermion f in the loop are shown in Fig. 1 and give gauge-
independent results. The four electromagnetic Barr-Zee
diagrams were originally considered in [9] and are given by

δEMf ¼ −4Nf
CðQf

EMÞ2Ql
EM

×
X
k

Imðqk2Þfcfðqk1 − 2Tl
3clReðqk2ÞÞrkΦðrkÞ

þ ðqk1 − 2Tf
3cfReðqk2ÞÞ

× clrk½4þ 2 lnðrkÞ þ ð1 − 2rkÞΦðrkÞ�g; ð24Þ

TABLE I. Two loop contributions to the electron EDM at
OðαGFmeÞ in the C2HDM in the background field gauge,
organized by rows: couplings to the main lepton line and
columns: virtual particle in the loop. Numbers in parenthesis
indicate the equation number, where the corresponding expres-
sion may be found.

Barr-Zee
Fermion
loop

Charged Higgs
loop

Gauge boson
loop

Electromagnetic δEMf (24) δEMHþ (27) δEMW ðξÞ (30)

Neutral current δNCf (25) δNCHþ (28) δNCW ðξÞ (31)

Charged current � � � δCCHþ (29) δCCW ðξÞ (35)

Kite

Neutral current � � � � � � δNCkite (38)

Charged current � � � � � � δCCkiteðξÞ (39)

FIG. 1. Representative fermion loop contribution to electro-
magnetic δEMf (photon exchange) and neutral current δNCf
(Z exchange) Barr-Zee diagrams. The symbol “⊗” denotes the
background electromagnetic field Āμ. Additional diagrams are
obtained by reflections along the vertical axis or by exchanging
the γ=Z and hk lines attached to the external electron.
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whereNf
C ¼ 3 for quarks and Nf

C ¼ 1 for leptons, andQf
EM

and Tf
3 ¼ � 1

2
are the electric charge and third component

of weak isospin, respectively. The four neutral current
diagrams give

δNCf ¼−
Nf

CQ
f
EMQ

f
wQl

w

4c2ws2w

X
k

Imðqk2Þfcfðqk1−2Tl
3clReðqk2ÞÞ

×
rk

1−zk

�
ΦðrkÞ−Φ

�
rk
zk

��

þðqk1−2Tf
3cfReðqk2ÞÞcl

rk
1−zk

×

�
2 lnðzkÞþð1−2rkÞΦðrkÞ−

�
1−

2rk
zk

�
Φ
�
rk
zk

���
;

ð25Þ

where sw¼sinðθWÞ, cw¼cosðθWÞ, and Qf
w¼2Tf

3−4Qf
EMs

2
w

is the weak charge of fermion f.
All fermion species should be added to obtain the

complete contribution to the EDM. Practically, it suffices
to only include the third generation fermions t, b, and τ,
since other fermion contributions are suppressed by their
much smaller masses. For the lighter fermions, b and τ, it
may be more convenient to expand δEMf and δNCf in small
fermion masses, which can be obtained with the help of
the small-argument expansion of the Davydychev-Tausk
function (23),

ΦðxÞ ¼
�
ln2ðxÞ þ π2

3

�
þ 2x

�
ln2ðxÞ þ 2 lnðxÞ þ π2

3
− 2

�

þOðx2Þ: ð26Þ

b. Charged Higgs loop contributions. Representative
Feynman diagrams involving charged Higgs loops are
shown in Fig. 2. Like the fermion loop contributions, these
are all gauge-independent. For the electromagnetic Barr-
Zee diagrams, we find

δEMHþ ¼2Ql
EMs

2
w

πα
cl

×
X
k

Imðqk2ÞλkHþH−wk½2þ lnðhkÞ−hkΦðhkÞ�; ð27Þ

where λkHþH− is the triple Higgs coupling given (11). The
neutral current Barr-Zee diagrams give a result proportional
to Ql

w,

δNCHþ ¼ Ql
wc2w
4πα

cl
X
k

Imðqk2ÞλkHþH−

×
zk

1 − zk

�
lnðzkÞ − hkΦðhkÞ þ

hk
zk

Φ
�
hk
zk

��
; ð28Þ

where c2w ¼ cosð2θWÞ. Finally, for the charged current
Barr-Zee diagrams, we find

δCCHþ ¼ ð−2Tl
3Þ

4πα
cl
X
k

Imðqk2ÞλkHþH−

�
2 −

2

hk
þ 2 lnðhkÞ

hk
−
2 − 2hk þ wk

hk − wk
ln

�
hk
wk

�

−
1þ h2k − hkð2þ wkÞ

wkðhk − wkÞ
lnðhkÞ ln

�
hk
wk

�
−
2ðhk − 2h2k þ h3k þ wk − 2hkwkÞ

h2kwk
Li2

�
1 −

1

hk

�

þ wkð1 − 4hk þ 2h2kÞ
h2kðhk − wkÞ

ΦðhkÞ −
1 − h3k − wk þ h2kð3þ 2wkÞ − hkð3þ wk þ w2

kÞ
wkðhk − wkÞ

Φðhk; wkÞ
�
: ð29Þ

The overall sign −2Tl
3 arises from isospin ladder operators that assemble to form the commutator ½T−; Tþ� upon combining

each charged current diagram of Fig. 2 with its mirror image.
c. W boson loop contributions. The groups of Barr-Zee diagrams with W boson loop shown in Fig. 3 are the largest set

contributing to the electron EDM. The 36 electromagnetic and neutral current Barr-Zee diagrams yield the gauge-dependent
expressions,

FIG. 2. Representative charged Higgs contributions to left: electromagnetic δEMHþ and neutral current δNCHþ Barr-Zee diagrams, and right:
charged current δCCHþ Barr-Zee diagrams.
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δEMW ðξÞ ¼ δEMW þQl
EMcl

X
k

Imðqk2Þqk1½2 lnðξÞ þ FξðwkÞ�; ð30Þ

δNCW ðξÞ ¼ δNCW þ Ql
w

4s2w
cl
X
k

Imðqk2Þqk1½ξð1 − 2s2wÞΦðξc2wÞ þ FξðwkÞ�; ð31Þ

with

δEMW ¼ Ql
EMcl

X
k

Imðqk2Þqk1½4ð1þ 6wkÞ þ 2ð1þ 6wkÞ lnðwkÞ − ð3 − 16wk þ 12w2
kÞΦðwkÞ�; ð32Þ

δNCW ¼ Ql
w

4s2w
cl
X
k

Imðqk2Þqk1
�
−
3−16wkþ12w2

k

1− zk
ΦðwkÞþ

1−2s2wþ2ð5−6s2wÞwk

c2wð1− zkÞ
lnðzkÞ−

ð1þ8s2w−12s4wÞzk
1− zk

Φðc2wÞ
�
: ð33Þ

Gauge-dependence is contained within the mass-dependent function,

FξðwkÞ ¼ −ξ ln2ðξÞ − 2ð1 − ξÞ2wkLi2ð1 − ξÞ − ½3þ ξ − ð1 − ξÞ2wk� lnðξÞ lnðwkÞ
þ ξð1 − 2ξwkÞΦðξwkÞ þ ½3 − ξ − 2ð2 − ξ − ξ2Þwk þ ð1 − ξÞ3w2

k�Φðwk; ξwkÞ: ð34Þ

The result for the charged current Barr-Zee diagrams with theW boson in loop is more complicated because of the presence
of another mass scale from the charged Higgs. The 12 diagrams give

δCCW ðξÞ ¼ δCCW þ ð−2Tl
3Þ

4s2w
cl
X
k

Imðqk2Þqk1GξðwkÞ; ð35Þ

δCCW ¼ ð−2Tl
3Þ

4s2w
cl
X
k

Imðqk2Þqk1
�
2

wk
−
2ð1 − wkÞ2

hkwk
−
2ð1 − wkÞw2

k þ ð2þ wkÞh2k − hkð2 − wk − 7w2
kÞ

hkwkðhk − wkÞ
lnðwkÞ

þ h2k − 2ð1 − wkÞ2 þ hkð1þ 7wkÞ
hkðhk − wkÞ

lnðhkÞ −
ð1 − wkÞ3 − 3h2kwk − hkð1þ 3wk − 4w2

kÞ
h2kðhk − wkÞ

ln

�
hk
wk

�
lnðwkÞ

−
2wkð1 − wkÞ3 þ hkð2 − 8wk þ 6w3

kÞ
h2kw

2
k

Li2

�
1 −

1

wk

�
−
1 − 6wk þ 6w2

k þ 4w3
k

ðhk − wkÞw2
k

ΦðwkÞ

þ ð1 − wkÞ4 − 3h3kwk − hkð2þ 5wkÞð1 − wkÞ2 þ h2kð1þ 7w2
kÞ

h2kðhk − wkÞ
Φðhk; wkÞ

�
; ð36Þ

where

FIG. 3. RepresentativeW boson contributions to left: electromagnetic δEMW ðξÞ and neutral current δNCW ðξÞBarr-Zee diagrams, and right:
charged current δCCW ðξÞ Barr-Zee diagrams. Diagrams involving the three-point coupling of the background field Āμ to one W gauge
boson and one charged Goldstone boson are absent in the background field gauge. The third diagram with a ghost loop involving the
four-point coupling in Eq. (21) is specific to the background field gauge.
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GξðwkÞ ¼ −2ξð1þ lnðξÞÞ þ
�ð1 − ξwkÞ2

w2
k

− ξ

��
lnðξÞ lnðξwkÞ þ 2Li2

�
1 −

1

ξwk

��

−
�
ξð1 − 3ξÞ − 1 − ð1þ 3ξÞwk

w2
k

þ ð1 − ξÞ2ξwk

�
Φðwk; ξwkÞ ð37Þ

is another mass-dependent ξ-dependent function.
d. Kite contributions. Representative kite Feynman diagrams are shown in Fig. 4. The neutral current contribution does

not depend on the gauge parameter ξ, and in contrast to the neutral current Barr-Zee contributions, it is not suppressed by the
weak charge Ql

w. In agreement with [20], we find

δNCkite ¼ −Ql
EM

ðQl
wÞ2 − 1

8s2wc2w
cl
X
k

Imðqk2Þqk1
1

z3k

�
z2k þ

π2

6
ð1 − 4zkÞ − 2z2k lnðzkÞ þ

1 − 4zk
2

ln2ðzkÞ

þ 2ð1 − 4zk þ z2kÞLi2
�
1 −

1

zk

�
þ 1 − 6zk þ 8z2k

2
ΦðzkÞ

�

−Ql
EM

ðQl
wÞ2 þ 1

24s2wc2w
cl
X
k

Imðqk2Þqk1
1

zk

�
2zkð1 − 4zkÞ þ

π2

3
ð3z2k þ 4z3kÞ − 2zkð1þ 4zkÞ lnðzkÞ

þ 2ð1 − 3z2k − 4z3kÞLi2
�
1 −

1

zk

�
þ ð1 − 2zk − 8z2kÞΦðzkÞ

�
; ð38Þ

The charged current kite contribution is gauge-dependent and is given by

δCCkiteðξÞ ¼ δCCkite þ
ð−2Tl

3Þ
4s2w

cl
X
k

Imðqk2Þqk1½FξðwkÞ −GξðwkÞ þ ð1þQl
EMÞHξðwkÞ�; ð39Þ

with

δCCkite ¼
ð−2Tl

3Þ
4s2w

cl
X
k

Imðqk2Þqk1
�
2π2

9
wkð3þ 4wkÞ þ

2

3
ð5 − 8wkÞ −

16

3
ð1þ wkÞ lnðwkÞ

þ 2ð3þ 2wk − 6w3
k − 8w4

kÞ
3w2

k

Li2

�
1 −

1

wk

�
þ ð1þ 2wkÞð3 − 10wk þ w2

kÞ
3w2

k

ΦðwkÞ
�
: ð40Þ

In addition to depending on FξðwkÞ and GξðwkÞ that appear in the W-loop Barr-Zee diagrams, it also involves a third
ξ-dependent function HξðwkÞ, whose functional form is not needed since it drops out upon setting Ql

EM ¼ −1. This
completes the listing of contributions to the electron EDM.

FIG. 4. Representative contributions to left: neutral current kite δNCkite and right: charged current δCCkiteðξÞ kite diagrams.
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e. Assembling a gauge-independent result. Adding
together the contributions listed above, the electron EDM
is given by

de
e
¼

ffiffiffi
2

p
αGFme

64π3

×

�X
f

ðδEMf þδNCf ÞþðδEMHþ þδNCHþ þδCCHþÞ

þðδEMW ðξÞþδNCW ðξÞþδCCW ðξÞþδNCkiteþδCCkiteðξÞÞ
�
; ð41Þ

where we have grouped the various contributions based on
the columns of Table I, corresponding to the virtual particles
in the loop. Gauge dependence is contained within the Barr-
Zee W-loop contributions and charged current kite contri-
butions. See Fig. 11 below for a plot of these contributions as
a function of the gauge parameter. The sum of these gauge-
dependent terms yields

δEMW ðξÞ þ δNCW ðξÞ þ δCCW ðξÞ þ δCCkiteðξÞjξ-dep:
¼ 1

4s2w
cl
X
k

Imðqk2Þqk1½ðQl
w − 2Tl

3 þ 4Ql
EMs

2
wÞFξðwkÞ

− 2Tl
3ð1þQl

EMÞHξðwkÞ þ 8Ql
EMs

2
w lnðξÞ

þQl
wð1 − 2s2wÞΦðξc2wÞ�; ð42Þ

where the ξ-dependent function GξðwkÞ immediately can-
cels between the charged current Barr-Zee δCCW ðξÞ and kite
δCCkiteðξÞ contributions. Upon inserting the electroweak rela-
tion, Ql

w ¼ 2Tl
3 − 4Ql

EMs
2
w and Ql

EM ¼ −1, the first and
second terms in square brackets proportional to mass-
dependent functions FξðwkÞ and HξðwkÞ vanish. The
remaining mass-independent terms vanish after summing
over k, and using the orthogonality relation

P
k q1kq2k ¼ 0

in (10). Therefore, all gauge dependent terms in (41) may be
safely dropped so that our final result for the electronEDMis

de
e
¼

ffiffiffi
2

p
αGFme

64π3

×
�X

f

ðδEMf þ δNCf Þ þ ðδEMHþ þ δNCHþ þ δCCHþÞ

þ ðδEMW þ δNCW þ δCCW þ δNCkite þ δCCkiteÞ
�
; ð43Þ

with the individual contributions given in (24), (25), (27),
(28), (29), (32), (33), (36), (38), and (39). Despite their
appearance, we emphasize that one should not interpret each
component of the k sum in these expressions as literally the
individual contributions of the neutral Higgs boson to
the EDM since each one by itself is gauge dependent.
Only the sum is gauge independent.

IV. REEVALUATION IN THE
FEYNMAN-’t HOOFT GAUGE

Despite simplifications afforded by working in the
background field gauge, it is still common practice to
perform calculations of this kind in the conventional
’t Hooft Rξ gauge defined by

L ¼ −
1

2ξ
½ð∂μAμÞ2 þ ð∂μZμ þ ξmZG0Þ2

þ 2j∂μWþ
μ − iξmWGþj2�; ð44Þ

and with ξ ¼ 1 for simplicity. In order to facilitate
comparison with earlier calculations of the EDM [10,13]
and also to provide additional validation of our result, we
reevaluated the electron EDM in the ’t Hooft Rξ gauge
with ξ left arbitrary. In this section, we outline how the
calculation proceeds and the steps required to reach agree-
ment with the background field evaluation presented above.
The electromagnetic and neutral current Barr-Zee con-

tributions with a fermion loop δEMf , δNCf , or a charged Higgs
loop δEMHþ , δNCHþ , along with the neutral current kite δNCkite
contributions are unchanged relative to the background
field gauge. The differences are in the electromagnetic
and neutral current Barr-Zee contributions with a W loop,
δEMW ðξÞ, δNCW ðξÞ, and in the charged current contributions,
δCCHþ , δCCW ðξÞ and δCCkiteðξÞ.
Intermediate expressions are substantially more compli-

cated due to the presence of the γW�G∓ vertex, which
generates diagrams involving several new interaction ver-
tices from the scalar potential. Additionally, treatment of
tadpole diagrams require a multitude of sum rules to show
that they combine with other contributions to yield a UV
finite result in the end. To avoid a barrage of lengthy
expressions, we give only the parts of interest for the
specific case of the Feynman-’t Hooft gauge ξ ¼ 1.
We start with W loop contributions to the electromag-

netic Barr-Zee diagrams δEMW . Accounting for the presence
of the γW�G∓ vertex, there are 52 diagrams of the kinds
shown on the left of Fig. 3. Their total is UV finite and
exhibits an apparent logarithmic singularity in the limit of
vanishing electron mass,

δEMW ðF’tHÞ ¼ Ql
EMcl

X
k

Imðqk2Þqk1

×

�
ln

�
m2

W

m2
e

�
þ
	
regular as:
me→ 0


�
: ð45Þ

After performing the k sum and using the orthogonality
relations in (10), the singularity vanishes.
Next we consider the W loop neutral current Barr-Zee

contributions δNCW . There are 52 diagrams that sum to a UV
divergent expression with the pole part in d ¼ 4 − 2ϵ
dimensions given by
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Ql
w

4s2w
cl
X
k

Imðqk2Þqk1
4zk

ð1 − zkÞ2
ð1 − zk þ lnðzkÞÞ

1

ϵ
; ð46Þ

that cannot be removed by performing the k sum on
account of the nontrivial m2

k dependence. However, there
is another class of diagrams to consider, shown in Fig. 5,
involving the γ-Z transition function mediated by gauge
loops. We mention that, in the background field gauge,
individual diagrams in this group are nonvanishing but sum
to zero because of the property thatΠμν

ĀZ
ðq2Þ → 0 as q2 → 0

in this gauge [16]. In the ’t Hooft Rξ gauges this group does
not vanish, and importantly, it supplies a UV divergent
contribution equal and opposite to (46), yielding an overall
finite neutral current contribution δNCW ðF’tHÞ.
We now report on the charged current kite contribution.

There are a total of ten diagrams of the type shown in the
last three diagrams of Fig. 4, and four additional ones
involving the γW�G∓ vertex. Their total is nominally UV
divergent,

δCCkiteðF’tHÞ ¼
1

4s2w
cl
X
k

Imðqk2Þqk1
�
−

1

2ϵ
þ finite

�
: ð47Þ

But after performing the k sum, the UV divergent part
vanishes by orthogonality of the rotation vectors (10).
Despite their finiteness, none of the three contributions

δEMW ðF’tHÞ, δNCW ðF’tHÞ, nor δCCkiteðF’tHÞ so far considered
coincide with their background field gauge counterparts. To
find agreement, the charged current contributions δCCHþ and
δCCW need to be examined, which we now do.
The analysis of charged current contributions and their

separation into δCCHþ and δCCW appears at first obfuscated
by numerous diagrams that must be considered in addition
to those shown on the right of Figs. 2 and 3. A little
investigation shows that to recover the charged current
contributions, we only need to include the R-subtracted part
of the diagrams in Fig. 6 (and their mirror images). The R
subtractions contain the UV singular parts of these dia-
grams stemming from the sub-loop Goldstone-Higgs tran-
sition function. In d dimensions, these are given by

δR½Fig: 6ðaÞ� ¼ cl
ds2w

ΔðmW;mHþÞ
X
k

Imðqk2Þ

× v2λkHþH−ðA0ðmHþÞ −A0ðmkÞÞ; ð48Þ

and

δR½Fig: 6ðbÞ� ¼
cl
ds2w

ΔðmW;mHþÞ
X
k

Imðqk2Þ

× qk1ðm2
kA0ðmWÞ þ ðm2

Hþ −m2
kÞA0ðmkÞÞ;

ð49Þ

where A0ðmÞ and ΔðmW;mHþÞ are the one-loop tadpole
and triangle integrals defined by

A0ðmÞ ¼
Z

ðdkÞ 1

k2 −m2
;

ΔðmW;mHþÞ ¼
Z

ðdkÞ 1

ðk2 −m2
WÞ3ðk2 −m2

HþÞ : ð50Þ

Then upon adding the six Barr-Zee diagrams of the type
shown to the right of Fig. 2 to the R-subtracted form of
Fig. 6(a), we obtain a UV finite charged current charged
Higgs loop contribution that also agrees with the corre-
sponding background field gauge evaluation given in
Eq. (29),

δCCHþðF’tHÞ ¼ δCCHþ : ð51Þ

Similarly, by adding the 16 Barr-Zee diagrams of
the type shown on the right of Fig. 3 to the R-subtracted
forms of Fig. 6(b), we obtain a UV finite result for the
charged current W loop contribution δCCW ðF’tHÞ. Finally,
upon combining this to the electromagnetic, neutral current
Barr-Zee diagrams and the charged current kite contribu-
tions in the ’t Hooft Rξ gauge computed above, we obtain a
result precisely equal to the sum of corresponding con-
tributions in the background field gauge,

δEMW ðF’tHÞ þ δNCW ðF’tHÞ þ δCCW ðF’tHÞ þ δCCkiteðF’tHÞ
¼ δEMW ðξÞ þ δNCW ðξÞ þ δCCW ðξÞ þ δCCkiteðξÞ: ð52Þ

To confirm the equivalence analytically, and especially to
demonstrate ξ independence, we found it essential to
expand the ’t Hooft Rξ gauge results into partial fractions
with respect to m2

k and to perform the k-sum dispensing of

FIG. 5. Class of diagrams additionally contributing to W loop
neutral current Barr-Zee, δNCW , in the ’t Hooft Rξ gauge. FIG. 6. Additional charged current Barr-Zee diagrams in the

’t HooftRξ gauge. TheR-subtracted finite parts of diagrams (a) and
(b) contribute to δCCHþ and δCCW , respectively. The UV-singular R
subtractions cancel against the tadpole diagrams in Figs. 7 and 8.
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any parts that vanish by orthogonality of the rotation
vectors qk1 and qk2.
Finally, we turn to the remaining diagrams shown in

Figs. 7 and 8. We aim to demonstrate a cancellation
between these diagrams and the R subtractions of Fig. 6,
given by (48) and (49). Diagrams (a) and (b) of Fig. 7 are
unusual in that the neutral Higgs bosons are absent and
hence, do not involve a k sum. Furthermore, they depend on
four-point interaction vertices from the scalar potential,

and

that so far have not appeared in this calculation. To put
these contributions under a k sum so that they may be
brought together with other diagrams, we replace Z6 and Z7

by their sum rules,

Z6 ¼
1

v2
X
k

q�k2qk1m
2
k; ð53Þ

Z7 ¼
X
k

q�k2λkHþH− : ð54Þ

Respectively, these are derived by considering the double
contraction of the diagonalized neutral Higgs squared-mass

matrix ðRM2R⊤Þjk in (6) with q�k2qj1, and the contraction
of the triple Higgs coupling λkHþH− in (11) with q�k2. The
diagram in Fig. 7(c) involves the four-point coupling,

whose diagonal elements are given by

λkkHþG− ¼ qk1ðq�k2Z4 þ qk2Z5 þ qk1Z6Þ þ jqk2j2Z7: ð55Þ

Together, the diagrams of Fig. 7 yield

½Fig:7� ¼ −cl
ds2w

ΔðmW;mHþÞ
X
k

�
Imðqk2Þ

×

�
qk1m2

k

�
2A0ðmWÞ þ

1

2
A0ðmZÞ

�

þ 2v2λkHþH−A0ðmHþÞ
�

þ v2

2
ImðλkkHþG−ÞA0ðmkÞ

�
: ð56Þ

Next, we consider the tadpole diagrams of Fig. 8. In the
background field gauge, diagrams (a) and (b) cancel
tadpole-by-tadpole on account of the triple-gauge vertex
(20). In the Feynman-’t Hooft gauge, however, these
diagrams give the nonzero result,

½Fig:8 ða;bÞ� ¼ cl
ds2w

X
k

Imðqk2ÞTk

×

�
ΔðmW;mHþÞþð4−dÞð2−dÞA0ðmWÞ

m4
Wm

2
k

�
;

ð57Þ

where

Tk ¼ −4
X
f

Nf
Cðqk1 − 2Tf

3cfReðqk2ÞÞm2
fA0ðmfÞ

þ qk1ð2ðd − 1Þm2
W þm2

kÞA0ðmWÞ

þ qk1

�
ðd − 1Þm2

Z þ 1

2
m2

k

�
A0ðmZÞ

þ v2λkHþH−A0ðmHþÞ þ v2

2

X
j

λkjjA0ðmjÞ ð58Þ

is the tadpole function to which fermions, W, Z, ghosts,
G�, G0, H�, and hk contribute. Diagram (c) of Fig. 8
represents an EDM contribution derived from a one-loop
magnetic moment contribution induced by a CP-violating
shift in the residue of the electron propagator pole. When

(a) (b) (c)

FIG. 7. Diagrams involving the Goldstone-Higgs transition
function that contribute to the electron EDM in the ’t Hooft
Rξ gauge.

γ

W−
hk

H−

W−, G−

H−

γ

W−

γ

W− G−

hk

(a) (b) (c)

FIG. 8. Tadpole diagrams in the ’t Hooft Rξ gauge. Diagram
(c) represents a contribution due to a CP-violating shift in the
residue of the electron pole.
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added to diagrams (a) and (b), this contribution exactly
cancels the second term in square brackets of (57). Then,
after performing the k sum, all contributions to Tk propor-
tional to qk1 and qk2 but independent of m2

k drop out by
orthogonality, leaving just the Goldstones, charged Higgs
bosons, and neutral Higgs bosons,

½Fig:8 � ¼ cl
ds2w

ΔðmW;mHþÞ
X
k

Imðqk2Þ

×

�
qk1m2

k

�
A0ðmWÞþ

1

2
A0ðmZÞ

�

þv2λkHþH−A0ðmHþÞþv2

2

X
j

λkjjA0ðmjÞ
�
: ð59Þ

The neutral Higgs tadpole contribution is a double sum
involving the triple-Higgs vertex,

whose diagonal elements are given by

λkjj ¼ 3qk1q2j1Z1

þ ðqk1jqj2j2 þ 2Reðqj1qk2q�j2ÞÞðZ3 þ Z4Þ
þ Re½ðqk1q2j2 þ qj1qk2qj2ÞZ5

þ 3ðq2j1qk2 þ 2qj1qk1qj2ÞZ6

þ ðq�k2q2j2 þ 2qk2jqj2j2ÞZ7�: ð60Þ

To combine this result with (56), we perform the (outer) k
sum on the last term of (59) to exchange λkjj for λjjHþG−

with the help of the sum rule,

X
k

q�k2λkjj ¼ λjjHþG−

þ 2q�j2λjHþH− − 2q�j2qj1
m2

Hþ −m2
j

v2
; ð61Þ

which is explicitly verified by inserting the definitions (11),
(55), and (60), and applying the orthogonality relations.
Then, upon adding (59) to (56), Z-Goldstone contributions
and terms proportional to λkkHþG− cancel yielding

½Figs: 7þ 8� ¼ −cl
ds2w

ΔðmW;mHþÞ
X
k

Imðqk2Þ

× ½qk1ðm2
kA0ðmWÞ þ ðm2

Hþ −m2
kÞA0ðmkÞÞ

þ v2λkHþH−ðA0ðmHþÞ −A0ðmkÞÞ�; ð62Þ

which, in turn, completely cancels the R subtractions given
in (48) and (49). This completes our evaluation of the

electron EDM in the ’t HooftRξ gauge, thereby establishing
agreement with our result in the background field gauge.

V. LIGHT QUARK EDMs

In this section, we briefly digress to discuss how our
results can be adapted to obtain EDMs of light quarks.
Denoting q as a generic light quark flavor, we adopt the
normalization of the quark EDM dq as in (18), with the
replacement ml → mq. Then, our background field gauge
results (24)–(39) should be modified by replacing the
electron charges and couplings with the corresponding
ones for quarks,

fQl
EM; Q

l
w; Tl

3 ; clg → fQq
EM; Q

q
w; Tq

3; cqg: ð63Þ

Also, there are new charged current kite contributions
shown in Fig. 9. Including them, and putting Qu

EM ¼ þ2=3
and Qd

EM ¼ −1=3 in the formulas gives somewhat different
results for their gauge-independent parts. For EDMs of up
and charm quarks, the expression in (40) should be
replaced by

δCCkite ¼
ð−2Tu

3Þ
4s2w

cu
X
k

Imðqk2Þqk1
�
4π2

27
wkð3þ 4wkÞ

þ 2

9
ð13 − 16wkÞ −

4

9
ð11þ 8wkÞ lnðwkÞ

þ 2ð9þ 4wk − 12w3
k − 16w4

kÞ
9w2

k

Li2

�
1 −

1

wk

�

þ ð1þ 2wkÞð9 − 32wk þ 11w2
kÞ

9w2
k

ΦðwkÞ
�
; ð64Þ

and for down and strange quarks, (40) should be replaced by

δCCkite ¼
ð−2Td

3Þ
4s2w

cd
X
k

Imðqk2Þqk1
�
2π2

27
wkð3þ 4wkÞ

þ 2

9
ð11 − 8wkÞ −

8

9
ð5þ 2wkÞ lnðwkÞ

þ 2ð9þ 2wk − 6w3
k − 8w4

kÞ
9w2

k

Li2

�
1 −

1

wk

�

þ ð1þ 2wkÞð9 − 34wk þ 19w2
kÞ

9w2
k

ΦðwkÞ
�
: ð65Þ

FIG. 9. Charged current kite diagram that contributes to quark
EDMs in the background field gauge. Other diagrams do not
contribute at OðGFmqÞ.

ELECTRON EDM IN THE COMPLEX TWO-HIGGS DOUBLET … PHYS. REV. D 102, 115042 (2020)

115042-11



The total quark EDM is given by (43) with the replace-
ment me → mq.
The generalization to top and bottom quark EDMs

requires a separate treatment due to their large masses and
Yukawa couplings. In practice, this means the inclusion of
new classes of diagrams involving multiple Higgs exchange
that are suppressed for light quarks. Furthermore, since it is
not justified to expand the Feynman integrals in small top
quark mass, the calculation is technically more challenging.
For these reasons, we have not carried out the calculation.

VI. COMPARISON WITH LITERATURE

The electron EDM in the C2HDM has been the subject
of a long history of investigations by numerous authors,
consisting of efforts to identify and calculate the important
two loop contributions [9–12]. The original results of the
gauge boson loop contributions were understood not to
exhibit gauge invariance largely due to the omission of
contributions involving the charged Higgs boson or the
omission of kite diagrams. An effort was undertaken
relatively recently by Abe et al. [13] to rectify the short-
comings of the earlier analyses to obtain a gauge-invariant
result. Even though this work still does not constitute a
complete calculation of the electron EDM as emphasized
by the authors, their results have become a standard
reference for subsequent phenomenological studies involv-
ing the electron EDM in the C2HDM [21–25] (see also
[26–34] for recent related studies). Therefore, in this
section, we compare our results with Abe et al., and we
investigate the extent to which our complete two loop
result modifies predictions for the electron EDM relative to
theirs.
The work of Abe et al. focuses on calculating all Barr-

Zee contributions, with special attention to the off shell
three-point functions that enter them. They argue that in the
’t Hooft Rξ gauge (44), the W-loop Barr-Zee contributions
δEMW , δNCW , and δCCW are not gauge invariant because the three-
point functions fail to exhibit transversality with respect to
the off shell leg. To obtain transverse three-point functions,
they algebraically extract specific parts from the charged
current kite diagrams δCCkite using the electroweak pinch
technique [35–37] and add them to the Barr-Zee diagrams.
In this way, they achieve a gauge-invariant result for the
electron EDM insofar as the pinch technique leads to
gauge-invariant off shell Green functions. Since results
derived from the pinch technique coincide with those in the
background field gauge (19) with ξ ¼ 1 [38–40], we were
able to compare our results with theirs for each of the eight
contributions listed in the first three rows of Table I. After
careful comparison, we found exact agreement for all of
them. The remainder of the kite contributions were left
unevaluated.
We now explore how our inclusion of the kite contri-

butions numerically affects the prediction of the electron

EDM. To that end, we use the following input for the SM
parameters [41]:

mτ ¼ 1.777 GeV mW ¼ 80.34 GeV

mb ¼ 2.88 GeV mZ ¼ 91.19 GeV

mt ¼ 163.0 GeV mh ¼ 125 GeV

αðmZÞ ¼ 1=129 v ¼ 246 GeV; ð66Þ

with cw ¼ mW=mZ. Additionally, we fix the C2HDM
parameters to the following benchmark values:

mHþ ¼ 420 GeV Z3 ¼ 2.0

Imðλ5Þ ¼ 0.01 Z4 ¼ −0.45

ReðZ5Þ ¼ −1.25 ReðZ6Þ ¼ −0.001; ð67Þ

and investigate the electron EDM as a function of tan β.
Note that, as discussed in the Appendix, this set of seven
parameters completely fixes the Higgs potential of the
C2HDM. The mass spectrum at this benchmark point is
fm1;m2;m3;mHþg≈f125;350;450;420gGeV and depends
very mildly on tan β. Tree level vacuum stability is
satisfied, and all parameters remain perturbative at this
benchmark over the interval 0.5≲ tan β ≲ 40. Additionally,
it leads to a phenomenology that is generally in agreement
with experimental bounds [42]. We mention that larger
values of tan β for the type II model may already be
excluded by direct searches for heavy Higgs bosons at the
LHC based on the H → ττ channel [43,44]. These bounds
are relaxed in the type I, flipped, or lepton specific models.
Moreover, a charged Higgs boson mass in the few hundred
GeV mass range is liable to introduce sizable contributions
to the b → sγ transition. Reference [45] showed that for the
type II model, the lower limit on mHþ is around 800 GeV,
with mild dependence on tan β. But more recently, Ref. [46]
emphasized new significant theoretical uncertainties in the
determination of the b → sγ rate, leaving more room for
new physics contributions. The corresponding bound in the
flipped 2HDM will be similar. Type I and lepton specific
models will be less constrained by the b → sγ rate because
of the tan β suppression of the down quark Yukawa
couplings (13) and (15). The determination of the exact
bound on mHþ is beyond the scope of this paper.
Figure 10 shows how various contributions to the

electron EDM depend on tan β at the benchmark point
in type I (left panel) and type II (right panel) C2HDM.
The results for flipped and lepton specific models are
qualitatively similar to the ones for type I and type II
models, respectively, and therefore, we do not show them.
Over the domain of tan β shown, the CP-violating compo-
nent of the SM-like Higgs boson, h1, is in the range
10−4 ≲ jImðq12Þj ≲ 10−3. The colored lines are the sums of
all contributions within each column of Table I as labeled in
the figure. The black line shows the total contribution to the
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electron EDM. To compare with the predictions of Abe
et al. [13], we also show the result of omitting the charged
and neutral current kite diagrams as dashed lines.
In the type I C2HDM, all contributions to the electron

EDM are negative, and their magnitudes fall with increas-
ing tan β on account of the couplings in (13). On the other
hand, in the type II C2HDM, the electron coupling enters
with an opposite sign and rises with tan β according to the
couplings in (14). This causes the charged Higgs (green
curve) and gauge (blue curve) contributions to grow with
increasing tan β and to contribute to the EDM with a
positive sign. As a result, cancellations due to destructive
interference against the fermion contributions (red curve)
can cause the predicted EDM to drop below the current and
even future expected sensitivity of ACME in some regions.
At our benchmark point, cancellations occur around
tan β ≈ 1 and 25. These cancellations were first noticed
and emphasized in [22]. However, the cancellations they
found at larger tan β fall in regions of parameter space
outside the domain of perturbativity. Our findings show that
cancellations are still possible in the type II C2HDM even
when all couplings remain perturbative.
The inclusion of kite diagrams can lead to important

numerical shifts in the prediction for the electron EDM. This
effect is particularly pronounced in the type II model
wherein the gauge and the fermion contributions are of
comparable size but enter with an opposite sign. Including
the kite diagrams leads to substantial shifts of the cancella-
tion point in tan β. Furthermore, without the kite diagrams,
the remaining contributions are gauge dependent. In Fig. 11,
we plot the individual gauge-dependent contributions

δEMW ðξÞ, δNCW ðξÞ, δCCW ðξÞ, and δCCkiteðξÞ in the background field
gauge over a range of the gauge parameter ξ. The horizontal
black line is the gauge-independent EDM obtained by
including all contributions. The dashed black line is the
EDM without the kite contributions. It is remarkable that
without the kite contributions, even a mild variation in ξ

FIG. 11. Gauge-dependence of individual contributions to
the electron EDM listed in the last column of Table I in the
background field gauge for the type II model at the benchmark
point in (67) with tan β ¼ 5. The horizontal black line is the total
gauge-independent EDM in (43), and the dashed black curve is
the total excluding the charged current δCCkiteðξÞ and neutral current
δNCkite kite contributions.

FIG. 10. Predictions of the electron EDM in the left: type I, and right: type II C2HDM as a function of tan β for the benchmark point in
(67). The solid black line represents the full result in (43). The solid red, green, and blue curves are obtained by summing all
contributions within each column of Table I labeled “Fermion loop,” “Charged Higgs loop,” and “Gauge boson loop,” respectively. The
dashed lines are the corresponding contributions without the charged and neutral current kite diagrams in the background field Feynman
gauge, ξ ¼ 1. The shaded region corresponds to the 90% C.L. exclusion limit from the ACME collaboration. In the future, ACME is
expected to improve the bound by at least an order of magnitude. This is indicated by the horizontal dashed line.
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can flip the sign of the EDM, highlighting the importance of
a complete gauge-independent calculation.

VII. DECOUPLING LIMIT AND EFT ANALYSIS

In this section, we consider the possibility that the
new Higgs bosons of the C2HDM are very heavy
(m2;3; mHþ ≫ v) by investigating the asymptotic behavior
of electron EDM near the decoupling limit. We find that the
electron EDM exhibits a logarithmic dependence on the
heavy masses and that its dependence on the C2HDM
parameters is considerably simplified.
The decoupling limit is achieved by formally taking

Y2 → ∞, with all other parameters in the Higgs basis fixed
[47]. To determine the asymptotic behavior of the electron
EDM in this limit, we require the large Y2 behavior of the
mixing matrix elements qk1, qk2, the coupling λkHþH− , and
all the mass-dependent loop functions. In this section, we
rename Y2 ¼ M2 to emphasize its status as a large mass,
since in this limit the additional Higgs bosons of the
C2HDM collectively scale as

m2
2;3 ¼ m2

Hþ ¼ M2

�
1þO

�
v2

M2

��
: ð68Þ

The mass of the lightest Higgs boson scales as a constant,

m2
1 ¼ Z1v2

�
1þO

�
v2

M2

��
≡m2

h; ð69Þ

which we therefore identify as the SM Higgs mass
mh ¼ 125 GeV. To leading order, the elements of the
rotation vectors (8) scale as

qk1 ¼

0
B@

1

v2

M2ReðZ6e−iθ5=2Þ
− v2

M2 ImðZ6e−iθ5=2Þ

1
CA; qk2¼

0
B@

− v2

M2Z�
6

e−iθ5=2

ie−iθ5=2

1
CA; ð70Þ

where θ5 ¼ argðZ5Þ, and the components of the triple
Higgs coupling λkHþH− in (11) scale as

Imðqk2ÞλkHþH− jk¼1 ¼ O
�
v2

M2

�
; ð71Þ

X3
k¼2

Imðqk2ÞλkHþH− ¼ −ImðZ7Þ þO
�
v2

M2

�
: ð72Þ

To obtain the behavior of the loop functions near the
decoupling limit, the k ¼ 1 and k ¼ 2, 3 components of the
k sums over the neutral Higgs bosons need to be examined
separately. Loop functions independent of heavy masses
m2, m3, and mHþ are necessarily Oð1Þ, and offer no further
simplification. For loop functions containing heavy masses,
we obtain the leading asymptotic behavior by directly

expanding the original momentum-space Feynman inte-
grals by regions [48] and check the results by analytically
expanding the explicit expressions manually.
Ultimately, we find that the electron EDM is proportional

to ImðZ6;7Þ ¼ � sin β cos βImðλ5Þ and contains a logarith-
mically enhanced contribution near the decoupling limit
that arises from theW loop Barr-Zee diagrams, yielding the
leading logarithmic approximation,

δe ¼
−3
4c2w

v2

M2
cl sin β cos βImðλ5Þ ln

�
M2

m2
W

�
: ð73Þ

For TeV-scale Higgs masses, this logarithm is not particu-
larly large and may not dominate over the nonlogarithmic
contributions. In the following, we therefore provide the
complete asymptotic expansion of the electron EDM
through Oðv2=M2Þ. We find it convenient to classify each
contribution as either long distance, ΔIR, or short distance,
ΔUV, according to an effective field theory (EFT) analysis
(to be discussed shortly below) to write the EDM as

δe ¼
v2

M2
sin β cos βImðλ5Þ

×

�X
f

cfΔIR
fðPÞ þ cl

�X
f

ΔIR
fðSÞ þ ΔIR

NC kite þ ΔIR
W

�

þ clðΔUV
W þ ΔUV

HþÞ þO
�
v2

M2

��
: ð74Þ

In what follows, we express squared mass ratios with
respect to the mass of the SM Higgs boson r ¼ m2

f=m
2
h,

w ¼ m2
W=m

2
h, and z ¼ m2

Z=m
2
h. The contributions from

fermion loop Barr-Zee diagrams give

ΔIR
fðPÞ ¼ −4Nf

CðQf
EMÞ2Ql

EMrΦðrÞ

−
Nf

CQ
f
EMQ

f
wQl

w

4c2ws2w

r
1 − z

�
ΦðrÞ −Φ

�
r
z

��
; ð75Þ

and

ΔIR
fðSÞ ¼ −4Nf

CðQf
EMÞ2Ql

EMr½4þ 2 lnðrÞ þ ð1 − 2rÞΦðrÞ�

−
Nf

CQ
f
EMQ

f
wQl

w

4c2ws2w

r
1 − z

�
2 lnðzÞ

þ ð1 − 2rÞΦðrÞ −
�
1 −

2r
z

�
Φ
�
r
z

��
; ð76Þ

where “S” and “P” refer to the coupling of the Higgs boson
to fermion f in the loop. The leading behavior of the neutral
current kite contribution is

ALTMANNSHOFER, GORI, HAMER, and PATEL PHYS. REV. D 102, 115042 (2020)

115042-14



ΔIR
NC kite ¼ −Ql

EM
ðQl

wÞ2 − 1

8s2wc2wz3

�
z2 þ π2

6
ð1 − 4zÞ − 2z2 lnðzÞ þ 1 − 4z

2
ln2ðzÞ

þ 2ð1 − 4zþ z2ÞLi2
�
1 −

1

z

�
þ 1 − 6zþ 8z2

2
ΦðzÞ

�

−Ql
EM

ðQl
wÞ2 þ 1

24s2wc2wz

�
2zð1 − 4zÞ þ π2

3
ð3z2 þ 4z3Þ − 2zð1þ 4zÞ lnðzÞ

þ 2ð1 − 3z2 − 4z3ÞLi2
�
1 −

1

z

�
þ ð1 − 2z − 8z2ÞΦðzÞ

�
: ð77Þ

The sum of the long distance parts of the leading behavior of theW loop Barr-Zee and the charged current kite diagrams is

ΔIR
W ¼ −

3

4c2w

�
1

2ϵ
− γE þ lnð4πÞ þ ln

�
μ2

m2
W

�
þ 7

4

�

þ 1

4s2w

��
2π2

9
wð3þ 4wÞ þ 2ð3þ 5w − ð8þ 144s2wÞw2Þ

3w

−
2ð3þ 4ð2þ 3s2wÞwþ 8ð1þ 9s2wÞw2Þ

3w
lnðwÞ þ 2ð3þ 2w − 6w3 − 8w4Þ

3w2
Li2

�
1 −

1

w

�

þ
�ð3 − 16wþ 12w2Þð1 − 4s2wzÞ

1 − z
þ 3 − 4w − 19w2 þ 2w3

3w2

�
ΦðwÞ

�

þQl
w

c2w

�
1 − 2s2w þ 2ð5 − 6s2wÞw

ð1 − zÞ lnðzÞ þ ðc2w − s2wÞ lnðc2wÞ −
ð1þ 8s2w − 12s4wÞw

ð1 − zÞ Φðc2wÞ
��

; ð78Þ

whereas the short distance part is given by

ΔUV
W ¼ 3

4c2w

�
1

2ϵ
− γE þ lnð4πÞ þ ln

�
μ2

M2

�
þ 7

4

�
: ð79Þ

Finally, the leading behavior of the charged Higgs Barr-Zee
contributions is

ΔUV
Hþ ¼ 3

4c2w
ðΦð1Þ − 2Þ; ð80Þ

where Φð1Þ ≈ 2.344. Observe that when (78) and (79)
are added together, the parameters of dimensional regu-
larization 1=2ϵþ lnðμ2Þ and associated constants −γE þ
lnð4πÞ þ 7=4 cancel, and the leading logarithm of (73) is
recovered. These unphysical parameters are introduced as a
result of identifying and separating the long distance
contributions derived from the Standard Model EFT, which
we now discuss.
The Standard Model EFT contains higher-dimensional

effective operators that parametrize new physics above the
electroweak scale. In the context of the C2HDM, these
operators are generated by integrating out the heavy Higgs
bosons in the decoupling limit [49].Among theCP-violating
effective operators, the one relevant to the electron EDM at
Oðv2=M2Þ is the dimension-6 operator [50],

L6 ¼ −
yf
M2

cfZ6ðH†HÞðHf̄LÞfR þ c:c:; ð81Þ

that arises by integrating out H2 from the tree-level
interaction shown in Fig. 12. Here, yf ¼ ffiffiffi

2
p

mf=v is the
SM Yukawa coupling, H ≡H1 is the SM Higgs field, and
fL and fR are the left-handed isodoublet and right-handed
isosinglet fermions, respectively. From an agnostic bottom-
up point of view, the only unambiguous part of the electron
EDM that can be determined from the EFT in (81) is the
leading logarithm (73). However, since the value of the
logarithm is not particularly large unless M2 is far above
the TeV scale, it is interesting to explore the extent to
which the nonlogarithmic terms of the full asymptotic
behavior of the electron EDM can be reproduced in the
infrared.

FIG. 12. Generation of the CP-violating effective operator in
(81) by integrating out H2 at tree level.
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There are two classes of interactions derived from the
operator in (81) in the electroweak vacuum that contribute
to the electron EDM. The first class of interactions is the
pseudoscalar Yukawa interaction which is obtained by
setting two of the Higgs fields to their vacuum expectation
values,

L6 ⊃ −i
v2

M2
cf sin β cos βImðλ5Þ

mf

v
hf̄γ5f: ð82Þ

In the background field gauge, the diagrams involving
these interactions are essentially identical to those that
are considered for the full C2HDM, but with those
containing a charged Higgs boson omitted (Fig. 1, left
of Fig. 3, and Fig. 4). We find that these contributions
are UV finite as expected from power counting arguments,
but also gauge dependent. These contributions were
calculated in [20] in the background field Feynman
gauge, and we find agreement when we set ξ ¼ 1 in our
formulas.
Gauge independence is achieved when we include the

second class of interactions generated by (81) in the
electroweak vacuum. These are the four-point interactions
involving the charged Goldstone bosons obtained by
setting just one Higgs field to its vacuum expectation
value,

L6 ⊃ −
me

M2
cl sin β cos βImðλ5Þ

× ½iGþG−ēγ5eþ ði
ffiffiffi
2

p
hG−ēPLνþ c:c:Þ�: ð83Þ

These interactions generate new diagrams shown in Fig. 13
and are essential to obtain a gauge-independent result.
Furthermore, we find that they are UV divergent as
expected from power counting,

δe ¼
v2

M2
cl sin β cos βImðλ5Þ

�
−3
4c2w

�
1

2ϵ
− γE þ lnð4πÞ

þ ln
�
μ2

m2
W

�
þ 7

4

�
þ
	gauge dep:
non- log :


�
; ð84Þ

where the gauge-dependent nonlogarithmic terms have been
omitted for brevity. The appearance of a simple 1=ϵ pole
signals the two loop mixing of the dimension-6 operator in
(81) into the electron dipole moment operator. This mixing
effect was noted in [51] based on a model-independent
systematic analysis of CP-violating dimension-6 operators,
and the logarithm found there agrees with our explicit
calculation in the C2HDM.
Our final result of the EFT calculation in dimensional

regularization is the sum of both classes of diagrams, which
we identify as the IR part of (74) given by (75)–(78). The
appearance of the dimensional regularization parameters
and regularization-dependent constants in (78) are under-
stood to arise from the separation into the short distance and
long distance contributions based on the EFT computation
just outlined. The low energy constant associated with the
electron EDM operator in the C2HDM is then given by
short distance contributions ΔUV

W þ ΔUV
Hþ in (79), (80), and

serves as the counterterm for the EFT computation. With
respect to the full C2HDM calculation, it is interesting to
note that the bulk of the nonlogarithmic contributions are
captured in the infrared by the EFT. The only contributions
that are not reproduced are those arising from the numeri-
cally small charged Higgs Barr-Zee diagrams in (80) and
regulator-dependent constants in the W loop contributions
in (79).
Despite its complicated appearance, the electron EDM

near the decoupling limit (74) depends straightforwardly on
a few C2HDM parameters allowing us to provide simple
numerical expressions by inserting the known values of the
SM parameters (66),

Type I∶ de ¼ −1.06 × 10−27 e cm ×
�
1 TeV
M

�
2

Imðλ5Þcos2β
�
1þ 0.07 ln

�
M

1 TeV

��
; ð85Þ

Type II∶ de ¼ 0.47 × 10−27 e cm ×

�
1 TeV
M

�
2

Imðλ5Þ
�
sin2β½1þ 0.16 ln

�
M

1 TeV

��
− 1.26cos2β

�
; ð86Þ

FIG. 13. Diagrams involving the four-point interactions in (83)
that contain the leading logarithmic contribution to the
electron EDM.
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Lepton specific∶ de ¼ 0.47 × 10−27 e cm ×

�
1 TeV
M

�
2

Imðλ5Þ
�
sin2β½1þ 0.16 ln

�
M

1 TeV

��
− 1.25cos2β

�
; ð87Þ

Flipped∶ de ¼ −1.06 × 10−27 e cm ×

�
1 TeV
M

�
2

Imðλ5Þ
�
cos2β½1þ 0.07 ln

�
M

1 TeV

��
þ 0.002sin2β

�
: ð88Þ

The leading logarithmic contribution is suppressedby a small
coefficient, requiringM to be orders of magnitude above the
TeV scale before it can dominate the nonlogarithmic con-
tributions. The above expressions also reveal a numerical
cancellation near tan β ≈ 1 for type II and the lepton specific
models, which is evident in the right panel of Fig. 10.
We pause to comment on a similar EFT analysis that was

recently carried out in [50]. Their results differ from ours
due to the omission of the diagrams of Fig. 13 derived from
the interactions in (83). Consequently, their results are
gauge dependent and their formulas for the electron EDM
miss the leading logarithmic contribution. The numerical
effect is at the level of ∼25% for type I and ∼55% for
type II at mHþ ≈ 1 TeV.
In Fig. 14, we numerically compare various approxima-

tions to the electron EDM as a function of mHþ for the type
II C2HDM. All other parameters are fixed according to the
benchmark point in (67) with tan β ¼ 2. The black line
shows the result of the full two loop calculation (43). Its
approximation near the decoupling limit (86) is shown in

dashed red and asymptotically approaches the full result
(black curve) as mHþ → ∞. The solid red curve shows the
leading logarithmic approximation (73), and for the modest
values of mHþ displayed in the plot, only provides the
correct order of magnitude for the electron EDM. Its
approach to the black curve is slow, and good agreement
is not reached until mHþ is several orders of magnitude
above the electroweak scale. Finally, the EFT result in the
MS scheme given by the IR part of (74) with μ ¼ M is
shown in blue, with the shaded band obtained by varying
the scale between μ ¼ M=2 and μ ¼ 2M. Because of its
inability to capture the model-dependent nonlogarithmic
contributions in the UV, its approach to the black curve is as
slow as the leading logarithmic approximation (solid red).
However, its difference relative to the full two loop
calculation is smaller since it accounts for a significant
part of the nonlogarithmic contributions in the IR.
Before finishing this section, we would like to stress the

limitation of the “κ framework” often used in the literature to
parametrize the possible effects of aCP violating SMHiggs
boson on the EDMs [20,52,53]. As explained below (82), a
modified Higgs coupling of the form −κhēiγ5e by itself
leads to gauge-dependent contributions to the EDM and
needs to be supplemented by additional interactions of the
form in (83). However, the full gauge-independent result for
theEDMthat takes into account the additional interactions is
found to be logarithmically divergent. The finite part of the
necessary counterterm is scheme dependent, and any analy-
sis of the EDM in the EFT framework beyond the leading
logarithms is therefore model dependent.

VIII. SUMMARY

In this paper, we presented the first complete two loop
calculation of the electron EDM in the complex two-Higgs
doublet model. We calculated the EDM in two separate
classes of gauge and obtained identical gauge-independent
results. Our final formula is given in (43), which we
reproduce here for reference,

de
e
¼

ffiffiffi
2

p
αGFme

64π3

×

�X
f

ðδEMf þ δNCf Þ þ ðδEMHþ þ δNCHþ þ δCCHþÞ

þ ðδEMW þ δNCW þ δCCW þ δNCkite þ δCCkiteÞ
�
; ð89Þ

FIG. 14. Approximations to predictions of the electron EDM in
the type II C2HDM as a function of mHþ , at the benchmark point
(67) with tan β ¼ 2. The black line is the full two loop result in
the C2HDM (43). The dashed red line is its asymptotic
approximation near the decoupling limit through Oðv2=M2Þ
given in (86). The solid red curve is the leading logarithmic
approximation in (73) and the dashed blue curve is the EFT result
in the MS scheme given by the IR part of (74) with μ ¼ M.
The shaded blue region is obtained varying the scale between
μ ¼ M=2 and μ ¼ 2M.
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The individual contributions are given in (24), (25), (27),
(28), (29), (32), (33), (36), (38), and (39). We collect these
expressions in a Mathematica notebook that is provided as
ancillary material [44].
Compared with the most recent evaluation of the electron

EDM by Abe et al. [13], our calculation incorporated the
kite contributions in Fig. 4. Generically, these new con-
tributions lead to Oð1Þ corrections to the prediction of the
electron EDM (see, for example, Fig. 10), and they are
particularly relevant in the type II and lepton specific
CHDMs. In the type II and lepton specific C2HDMs, there
are regions in parameter space where the fermion and gauge
loop contributions interfere destructively causing the elec-
tron EDM to dip below current limits established by the
ACME Collaboration. We found that the inclusion of the
kite diagrams can significantly shift the location of these
cancellations.
In addition to the full result, we derived the leading order

asymptotic expansion of the electron EDM near the decou-
pling limit. The expressions for common types of C2HDMs
are provided in Eqs. (85)–(88). We find that the electron
EDM exhibits a logarithmic dependence on the heavy
masses. From the point of view of an EFT, the logarithm
indicates sensitivity to the UV scale implying that the precise
prediction of the EDM cannot be determined in a model
independent manner. However, for the case of the C2HDM,
we find that a large part of the electron EDM near the
decoupling limit is reproduced in the infrared.
Furthermore, we have emphasized that the analysis of

the electron EDM based on a simple phenomenological
parametrization of CP-violating electron Yukawa coupling
−κhēiγ5e requires caution since the resulting prediction of
the electron EDM is not gauge invariant.
As explained in Sec. V, the formulas for the electron EDM

are easily adaptable for EDMs of light quarks. It would be
interesting to have a calculation of EDMs for the heavier
bottom and top quarks, which require separate treatment.
Also, it would be interesting to perform a full calculation of
the electron EDM for other types of 2HDMswithout a softly
broken Z2 symmetry, or in which CP is spontaneously
broken. We leave these exercises to future work.
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APPENDIX: PARAMETERS OF THE
HIGGS POTENTIAL

In this Appendix, we collect useful equations on
the 2HDM scalar potential [54]. First, the conditions of
minimization of the potential in (1),

m2
11 ¼ Reðm2

12e
iζÞ v2

v1
−
1

2
½λ1v21 þ λ345v22�;

m2
22 ¼ Reðm2

12e
iζÞ v1

v2
−
1

2
½λ2v22 þ λ345v21�;

Imðm2
12e

iζÞ ¼ v1v2
2

Imðλ5e2iζÞ; ðA1Þ

can be used to determine v1, v2, and ζ, where λ345 ¼
λ3 þ λ4 þ Reðλ5e2iζÞ. Utilizing these minimization condi-
tions, we note that the C2HDM Higgs potential is fully
determined by nine independent free parameters, for
example, by the set tan β;Reðm2

12Þ; λ1; λ2; λ3; λ4;Reðλ5Þ;
Imðλ5Þ; vð¼246 GeVÞ.
The Higgs potential can also be expressed in the Higgs

basis defined in (4). The corresponding mass terms and
quartic interactions are linearly related to the λi, m2

ij,

Y1 ¼ m2
11c

2
β þm2

22s
2
β − Reðm2

12e
iζÞs2β

Y2 ¼ m2
11s

2
β þm2

22c
2
β þ Reðm2

12e
iζÞs2β

Y3eiζ ¼
1

2
ðm2

11 −m2
22Þs2β þ Reðm2

12e
iζÞc2β

þ iImðm2
12e

iζÞ ðA2Þ

Z1 ¼ λ1c4β þ λ2s4β þ
1

2
λ345s22β

Z2 ¼ λ1s4β þ λ2c4β þ
1

2
λ345s22β

Z3 ¼
1

4
s22βðλ1 þ λ2 − 2λ345Þ þ λ3

Z4 ¼
1

4
s22βðλ1 þ λ2 − 2λ345Þ þ λ4

Z5e2iζ ¼
1

4
s22βðλ1 þ λ2 − 2λ345Þ

þ Reðλ5e2iζÞ þ ic2βImðλ5e2iζÞ

Z6eiζ ¼ −
1

2
s2βðλ1c2β − λ2s2β − λ345c2β − iImðλ5e2iζÞÞ

Z7eiζ ¼ −
1

2
s2βðλ1s2β − λ2c2β þ λ345c2β þ iImðλ5e2iζÞÞ:

ðA3Þ
The set of nine independent parameters that we choose for
our numerics that determine the Higgs potential is given by
tan β; mHþ , Imðλ5e2iζÞ, Z3, Z4, ReðZ5e2iζÞ, ReðZ6eiζÞ, with
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ζ ¼ 0, after fixing m1 and v. For completeness, we provide
the remainder of the Zi in terms of our chosen set,
having set ζ ¼ 0. From the last three equations of (A3),
ImðZ5;6;7Þ are determined. Utilizing results in [15],
with a derivation given in the Supplemental Material,
a Mathematica notebook [55], the remaining quartic
couplings are given by

ReðZ7Þ ¼ ReðZ6Þ þ
ImðZ5ÞIm½Z�

6ðZ1 − Z3 − Z4 − Z5Þ�
2ImðZ6Þ2

;

Z2 ¼ Z1 þ ð2=t2βÞðZ6 þ Z7Þ; ðA4Þ

where Z1 is determined diagonalizing the mass matrix in
(5) and imposing mh ¼ 125 GeV.
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