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1 Introduction

For the physics program of the ATLAS experiment at the Large Hadron Collider (LHC), the identification
of jets initiated by b-quarks, or b-tagging, is a fundamental tool. Ensuring its optimal performance is
particularly important for the study of the Higgs boson and the top quark [1, 2], as well as many exotic
extensions of the Standard Model with resonances preferentially decaying to heavy quarks [3].

The characteristically long lifetime of hadrons containing b-quarks (b-hadrons) of the order of 1.5 ps [4]
leads to two classes of b-tagging algorithms: vertexing based algorithms which explicitly reconstruct a
production point, or vertex, of the b-hadron decay displaced from the primary interaction point, and impact
parameter (IP) based algorithms which exploit the displacement of the reconstructed charged particles
trajectories (tracks) produced in b-hadron decays from the primary interaction point.

This work builds on that of the RNNIP algorithm [5], which uses impact parameter information and
recurrent neural networks (RNNs) for b-tagging, and provides improvements over other IP-based algorithms
by accounting for the correlations between the track features, and the inclusion of additional discriminating
variables. Here a new algorithm is introduced, Deep Impact Parameter Sets (DIPS), based on the Deep
Sets architecture [6] and on the application of the Deep Sets formalism within particle physics known as
Energy / Particle Flow Networks [7]. DIPS solves the same task as RNNIP but treats the tracks in the
jet as an unordered, variable-sized set rather than as a sequence, avoiding the need to specify a sequence
ordering and the slow processing of RNNs. Given that the b-hadron decay products do not exhibit any
intrinsic sequential ordering, the Deep Sets architecture is also better physically motivated.

DIPS is demonstrated to be as performant as RNNIP but faster to train, decreasing evaluation time and
reducing turn-around time for optimization. Therefore, optimization studies of the track selection criteria
and new track features are also included. In addition, a discussion on how to measure the algorithm’s
efficiency in data, in particular for jets that do not contain a b or a c-hadron, is presented. Finally, one
avenue of research in deep learning models is exploring the interpretability of the models, or trying to
dissect what information the network is learning. Diagnostic studies from the machine learning literature
are presented to demonstrate the well known characteristics from b-quark fragmentation and hadronization
process that the network has gleaned.

This note is organized as follows: Section 2 describes the datasets and selections used to train and evaluate
the algorithms, while section 3 details impact parameter based taggers, the Deep Sets algorithm and our
specific implementation. Section 4 shows investigations of what the network has learned, results for the
timing metrics, discussion on calibrating the algorithm, and the optimization studies conducted. Finally,
section 5 summarizes the conclusions.

2 ATLAS detector and training datasets

The ATLAS detector [8] at the LHC covers nearly the entire solid angle around the collision point.! It
consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and

I ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and
the z-axis along the beam pipe. The x-axis points from the interaction point to the centre of the LHC ring, and the y-axis
points upwards. Cylindrical coordinates (7, ¢) are used in the transverse plane, ¢ being the azimuthal angle around the z-axis.
The pseudorapidity is defined in terms of the polar angle 6 as 5 = —Intan(6/2). Angular distance is measured in units of

AR = \(An)? + (Ag)2.



hadronic calorimeters, and a muon spectrometer incorporating three large superconducting toroidal magnets.
The inner detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle
tracking in the range |57| < 2.5. The high-granularity silicon pixel detector covers the vertex region and
typically provides four measurements per track, the first hit being normally in the insertable B-layer (IBL)
installed before Run 2 [9, 10]. It is followed by the silicon microstrip tracker (SCT) which usually provides
eight measurements per track. These silicon detectors are complemented by the transition radiation tracker
(TRT), which enables radially extended track reconstruction up to |n| = 2.0.

Algorithm training and evaluation is performed with simulated #7 events, produced by s = 13 TeV
proton-proton collisions, in which at least one of the W bosons, from the top quark decay, decays
leptonically. Events are generated using the PownecBox [11-14] v2 generator at next-to-leading order
with the NNPDF3.0NLO [15] parton set of distribution functions (PDF) and the Agamp parameter? set to
1.5 myop [16], with myp, = 172.5 GeV. The events are interfaced to PyThia 8.230 [17] to model the parton
shower, hadronisation, and underlying event, with parameters set according to the A14 tune [18] and using
the NNPDF2. 310 set of PDFs [19]. The decays of b and c-hadrons are performed by EvTGen v1.6.0 [20].
Particles are passed through the ATLAS detector simulation [21] based on GEANT4 [22].

Tracks are reconstructed from energy deposits, or hits, in the inner detector system and are required to pass
a quality selection: each track must have at least 7 hits in the silicon layers (pixel and SCT, where dead
sensors are not penalised), no more than two missing hits where expected in the silicon layers, no more than
one hit shared by multiple tracks, at least one hit in the pixel detector, and || < 2.5. The event’s selected
primary vertex (PV) is defined as the reconstructed primary vertex with largest ), p% of the associated
tracks.

Jets are reconstructed from particle flow objects [23] using the anti-k7 algorithm [24] with R = 0.4. The
jet energy scale is calibrated according to [25]. Jets used for training and evaluation have pt > 20 GeV,
|n| < 2.5, and are required not to overlap with a generator-level electron or muon from W boson decays.
Additionally, the contamination of jets from other interactions in the beam crossing (pile-up) is surpressed
by applying the jet vertex tagger [26] optimized for particle flow jets.

Tracks are associated to jets using a AR association cone which decreases as a function of jet pr, with a
maximum association AR(track, jet) of approximately 0.45 for a jet with pr = 20 GeV and AR(track, jet)
of approximately 0.25 when the jet pr = 200 GeV. If a track is within the association cones of more than
one jet, it is assigned to the jet which has a smaller AR(track, jet).

The impact parameter of the track characterises the point-of-closest approach of a track to the PV in the
longitudinal (zg sin §) and transverse (dp) planes. Of particular use in b-tagging is the IP significance
defined as the impact parameter divided by its uncertainty, sqo0 = do/0 a0 and s;0 = 79 sin 6/0,0sine. The
track’s IP and its significance are signed according to the track’s direction with respect to the jet axis and
the primary vertex [27]. A positive IP is expected to be consistent with a track produced from a displaced
vertex. This procedure is referred to as lifetime signing. The nominal track selection considered in the
algorithms to be described requires tracks with pt > 1 GeV, |dy| < 1 mm, and |79 sin 6| < 1.5 mm.

The jets are labelled as b-jets if they are matched to at least one b-hadron having pr > 5 GeV within
AR(b-hadron, jet)< 0.3 of the jet axis. If this condition is not satisfied, then c-hadrons and then 7 leptons
are searched for, with similar selection criteria. If a jet is matched to a c-hadron (7-lepton), it is labelled a
c-jet (T-jet). A jet that does not meet any of these conditions is called a light-flavour jet.

2 The hdamp parameter is a resummation damping factor and one of the parameters that controls the matching of Powheg matrix
elements to the parton shower and thus effectively regulates the high-py radiation against which the 77 system recoils.



3 Algorithm description

3.1 Current IP-based b-taggers

ATLAS employs several IP-based algorithms which are later combined with vertexing algorithms to
produce a "high-level" tagger for general use. The IP3D algorithm [28] assigns probabilities to tracks based
on two-dimensional likelihood templates, with the tracks’ zo sin 6 and dy lifetime signed significances, built
from simulated jets. These templates are obtained in 14 exclusive categories defined by the hit patterns
of the tracks, and separately for tracks in b-jets, c-jets and light-flavour jets. The inclusive distribution
of zpsin @ and dy lifetime signed significances for the different jet flavours are shown in Figure 1. By
assuming that the track probabilities inside a jet are independent, jet-level likelihoods can be constructed
by multiplying the individual probabilities. The IP3D b-tagging discriminants are therefore defined as:
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RNN based IP algorithms aim to overcome this overly simplistic assumption of independence, and offer
the possibility to employ more features than only the IP significance in the discriminant [5].
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Figure 1: Lifetime signed transverse (a) and longitudinal (b) significances for b-jets, c-jets and light-flavour jets.

RNNs operate on variable length sequences by iterating over the sequence elements, processing them with a
neural network, and using previously processed elements when processing new ones. It then outputs a fixed
size vector that can be used for classification. The RNNIP algorithm utilizes a Long Short Term Memory
(LSTM) cell for the RNN to preserve long range correlations between the elements of the sequence [29].
As shown in [5], the accounting for these correlations allows the RNN to be more performant than IP3D
even when trained on the same inputs. The use of neural networks instead of histograms allows one to
avoid the "curse of dimensionality" when using additional variables sensitive to the kinematics of the
b-hadron decay which significantly improve performance [5].

An implementation of the RNNIP algorithm is used as the baseline for comparison to DIPS, but has further
optimisations with respect to [5]. The RNNIP architecture comprises a 100 dimensional LSTM hidden state



and a dropout layer, with dropout fraction of 0.2, before a 20 unit fully connected layer for classification,
uses track IP significance, kinematics, and the number of hits in the silicon detectors as features (described
in Table 1), and orders the tracks by s4,.

3.2 Sets-based architectures

The Deep Sets architecture [6], which treats the elements as a set without any specific order, maintains
the benefits of the RNNIP algorithm, while avoiding the required element ordering (which for b-tagging
is empirically driven rather than strictly dictated by the inputs of the problem). This architecture was
first employed in particle physics in a phenomenological study on the identification of different types of
jets [7]. Adopting the formalism of [7], if p; is the vector representing the inputs associated with the i
track in the jet, then the Deep Sets architecture applies a neural network (NN) @ to each track, sums over
the tracks, and then applies additional processing on the summed representation with a feed forward NN F,
as described in equation 2,

O{p1,....pnH) = F : 2

Zn: @ (p;)
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where O ({p1, ..., pn}) represents the b-, c-, and light-flavour class probabilities derived from the inputs
for the n tracks in the jet. The architecture bifurcates the problem into operations over inputs and operations
over sets, where the track-network @ extracts the relevant track features, and the jet-network F accounts for
the correlations between the tracks. The permutation invariance of the set is encoded with the permutation
invariant sum operation, although other permutation invariant operations such as the max or average could
be used as well. The presence of this aggregation layer in the architecture encodes information about track
multiplicity inside the jet, which is a useful information for identifying b-jets.

This Deep Sets architecture offers the same advantages as RNNIP but encodes permutation invariance
between the tracks in the jet, giving a more natural representation of the data and allowing the algorithm to
be trained more efficiently with fewer parameters and less data [30]. In addition, Deep Sets offers a major
additional advantage over RNNs in that the operation of processing the tracks in the jet with the ® network
can be easily parallelised. This allows training and evaluation to make significantly more efficient use of
GPUs over the non-parallelisable iterative processing of the RNN. The timing performance comparison
between DIPS and RNNIP is further discussed in Section 4.2.

3.3 Implementation details

All algorithms are trained with a sample of simulated ¢7 events (described in Section 2) for multi-class
classification between b-jets, c-jets and light-flavour jets. To avoid classification based on the differing
kinematic spectra of the jet classes, the pr spectra for b-jets and c-jets is reweighted to the light-flavour jet
spectra, as described in reference [5].

The class probabilities predicted by the model outputs (pp, pc, and p;), are combined into a b-tagging

discriminant:
Pb

(1 = fe)pi + fepe
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where f. is a free parameter that balances between the rejection of light-flavour vs c-jets for a given
efficiency of selecting b-jets, and can be optimized post-training. A value of f. = 0.07 was used in these
studies as this is representative of the fraction of c-jets relative to non b-jets in ¢f events.

For the timing comparisons in Section 4.2, the same input features are used for both RNNIP and the DIPS.
The features used in each algorithm are described in Table 1. The track variables related to the track
reconstruction quality focus on the IBL and the next-to-innermost pixel layer (PIX1) due to their strong
impact on the IP significance distributions. In particular, the number of split hits, which are hits being
created by multiple charged particles [31], is used to help identify dense tracking environments, in which
distinguishing tracks from heavy flavour decays is generally more difficult.

Input ‘ Description

Sd0 do/oq0: Transverse IP significance

520 70 8in 8/0;0sme: Longitudinal IP significance

log p]Tcr“C log pirack) péet: Logarithm of fraction of the jet pt carried by the track
log AR Logarithm of opening angle between the track and the jet axis

IBL hits Number of hits in the IBL: could be { 0, 1, or 2 }

PIX1 hits Number of hits in the next-to-innermost pixel layer: could be { O, 1, or 2 }

shared IBL hits | Number of shared hits in the IBL.

split IBL hits Number of split hits in the IBL

nPixHits Combined number of hits in the pixel layers
shared pixel hits | Number of shared hits in the pixel layers
split pixel hits Number of split hits in the pixel layers
nSCTHits Combined number of hits in the SCT layers
shared SCT hits | Number of shared hits in the SCT layers

Table 1: Track features used as inputs for RNNIP and DIPS algorithms.

After applying the track selections described in Section 2, the tracks are ordered by decreasing s, and the
first 15 tracks are kept for processing. The ordering plays a limited role in the algorithm, since typical jets
in the topology investigated should have an average number of tracks that is smaller than the maximum
allowed number of tracks (see Table 4). Since the pémc and AR variables have a tail at larger values, the
natural log of the value for these variables is used as the feature in order to improve the convergence time
of the training. Variable normalisation to zero mean and unit variance is frequently used for preprocessing
of features in ML algorithms. As many of our input variables already have near zero mean, only a subset of
the track features are normalised: log pérac, log AR, nPixHits, nSCTHits, as well as dy and zq sin 6 for the
optimised DIPS training.

A simplified scheme of the DIPS architecture is shown in Figure 2, which is based on the architecture
in reference [7]. A grid search over the hyperparameters including the number of layers in the ® and F
networks, the number of nodes in the ® and F networks and the dimension of the track latent space revealed
similar performance for many different choices of these hyperparameters. Both batch normalisation [32]
and dropout [33] were tested, and it was found that batch normalisation was helpful for the DIPS b-tagging
performance while dropout was not.

The RNNIP and DIPS trainings were performed with 3 million jets, with 20% of these jets held out as a
validation set to determine when to stop the training. After 10 consecutive training epochs (or iterations
through the training dataset) without finding a new validation loss minimum, the training is terminated
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Figure 2: Architecture for the DIPS algorithm. The number of hidden units in the different neural network layers
correspond to the final optimized architecture.

and the model with the best validation loss was selected. Both the RNNIP and DIPS architectures were
implemented in Keras [34] and trained with the TensorFlow backend [35]. Algorithms were trained with
the Adam optimiser [36] with a learning rate of 1073 and a batch size of 256. The performance metrics
shown in the following sections are obtained with a statistically independent dataset of 3 million jets.

4 Results

4.1 Baseline Performance

The distribution of the DIPS discriminant D;, (defined in Equation 3) for each of the jet flavours is shown
in Figure 3. The peak at D, = —1.3 is due to jets without any selected tracks. Clear separation between the
distribution of b-jets and light-flavour jets can be seen, as well as a strong but smaller separation between
b-jet and c-jets as expected due the similarities between b-hadron and c-hadron decays.

The performance of taggers can be examined and compared through a Receiver Operator Characteristic
(ROC) curve: a scan is performed for a threshold 7 on D, and the efficiency for b-jets at each threshold
is computed as the fraction of b-jets with D, > 7, while the rejection of c-jets or light-flavour jets is
computed as one over the fraction of c-jets or light-flavour jets (inverse mistag efficiency), respectively,
with Dy, > 7. The b-jet efficiency and light-flavour (or ¢) jet rejection for the same 7 are then plotted. Each
model is trained five times and for a given b-jet efficiency, the mean of the rejections is used as the nominal
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Figure 3: Distributions of DIPS b-tagging discriminant, as defined in Equation 3, for b-jets, c-jets and light-flavour
jets.

value and the standard deviation of the rejections is used for the width of the curve. This ensemble of
trainings is known to assess the predictive uncertainty of machine learning-based algorithms [37].

The ROC curves for b-jet efficiency versus light-flavour jet rejection and for b-jet efficiency versus c-jet
rejection of the DIPS and RNNIP algorithms are shown in Figure 4. The lowest b-jet efficiency displayed
corresponds to the lowest efficiency benchmark used in physics analyses within the ATLAS experiment.
The DIPS algorithm provides up to a 15% additional light-flavour jet rejection and a 5% additional c-jet
rejection at a given b-jet efficiency over the RNNIP algorithm. Notably, as will be discussed in Section 4.2,
this similar performance comes with a significant decrease in training and evaluation time.
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Figure 4: Light-flavour jet rejection as a function of b-jet efficiency (a) and c-jet rejection as a function b-jet efficiency
(b) of the RNNIP (green) and DIPS (purple) algorithms. The central curves and error bands show the mean and
standard deviation, respectively, of the rejection at each b-jet efficiency for 5 trainings. The ratios are computed with
respect to the RNNIP ROC curve.



In order to explore what DIPS is learning in the correlations between features that aids the classification
performance, the average saliency map for b-jets with 8 associated tracks and failing a threshold
corresponding to 77% b-tagging efficiency is shown in Figure 5. The saliency map is computed as

oD, 1 oDy @
oxirt N = axl_(;;)’

and is the gradient of the discriminant value Dg) with respect to each track feature input xl.(]’;) , averaged over
jets (j) in a sample of N jets [38]. In this case, the feature inputs are normalized to zero mean and unit
variance, in a similar way to the training procedure. The saliency map gives a linearised view of how the
discriminant value is sensitive to changes in the inputs. Figure 5 thus shows how this sample of b-jets
which failed tagging could be modified to make them more b-jet like. One can see there is a reasonably
strong positive gradients for the significances (549 and s,¢) extending up to 5 tracks, which is the average
number of charged particle tracks in a b-hadron decay. Beyond 5 tracks, the gradients for all features are
either nearly zero or negative, indicating that either these tracks provide no further information or that
tracks with large feature values are more indicative of background. In addition, DIPS is highly sensitive

to the log pémc and log AR of the leading s4, track, which is consistent with the harder fragmentation of

b-quarks with respect to light-flavour and charm jets. Interestingly, this strong correlation with log pémc

and log AR for the highest s4, track also indicates that simply enlarging the IPs of a track in a jet would not
directly lead to a jet passing a tagging threshold, as the track must also be consistent with the kinematic
expectations from b-jet fragmentation. The gradients for the shared and split hits of the high s4¢ tracks are
strongly negative since tracks formed from random combinations of hits are more likely in highly dense
environments. It can also be seen that the correlation with the overall number of hits in the inner most pixel
layers, IBL and PIX1, is positive but small. Such features are of high importance to the estimate of the IP
and IP resolution. However such information is also encapsulated in the IP significance features which are
strongly correlated with the discriminant. We suspect these correlations are observed to be relatively small
due to the discriminator heavily relying on the IP significance for the first order estimate of the quality of
the track and the track’s utility for classification.

4.2 Time comparison

A further key comparison metric between the RNNIP and DIPS algorithms is the time needed for training
and evaluation. The training time limits the ability to critically perform optimisation tests and compare
model variants, while the evaluation time impacts ATLAS reconstruction time when deployed at scale
and the ability to use such algorithms in low-latency environments such as the trigger. The DIPS and
RNNIP models with comparable numbers of parameters are compared in terms of their speed of training
and evaluation in Tables 2 and 3, respectively. Training comparisons are done on an NVIDIA 2080 Ti
GPU, while evaluation comparisons are performed on an NVIDIA Titan X GPU. Five versions of each
model are trained and evaluated, and the mean and standard deviation of the training and evaluation time is
reported. A significant speed up of more than a factor of 2 for the DIPS algorithm over RNNIP is observed.
As training also involves the early stopping procedure, and thus each algorithm may train for a different
number of epochs, the training time per epoch is also reported and shows more than a factor of 3 faster
speed for DIPS over RNNIP. This is similar to evaluation time, where DIPS is seen to be nearly a factor of
4 faster than RNNIP.
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Sq,) are listed on the x-axis. The colors in each pixel represent the gradient defined in Equation 4.

Model ‘ Parameters ‘ Training time [min] ‘ Time / epoch [s]
RNNIP 47k 86 + 13 241 + 14
DIPS 49k 44 £ 4 78 +4

Table 2: Timing metrics for trainings performed on Nvidia 2080 Ti GPUs. The nominal value denotes the mean of
five independent trainings, while the error bar is the standard deviation.

Model ‘ Parameters ‘ GPU Evaluation time [s] ‘ CPU evaluation time [s]
RNNIP 47k 170 £ 2 685 + 84
DIPS 49k 46 +£2 206 + 98

Table 3: Timing metrics for the full test dataset (3 million jets) with GPU evaluations on an NVIDIA Titan X GPU.
The nominal value denotes the mean of five independent trainings, while the error bar is the standard deviation.
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4.3 Calibratability

While performance in simulation gives an important view of an algorithm’s performance, ultimately its
efficiency must be calibrated to data. This is done using control samples built with specific event selections
for each flavour of jet and comparing the observed and simulated efficiency. This is especially challenging
for light-flavour jets, as it is difficult to identify a highly pure sample of such jets after the b-tagging
requirement.

A large fraction of light-flavour jets are wrongly classified as b-jets due to tracks being on the tail of their
IP distribution and are thus mismeasured. This effect is mostly coming from sources, such as detector
resolution and pile-up collisions, which have equal probability for mismeasuring a track as having positive
or negative lifetime sign, leading to mostly symmetric IP distributions (as seen in Figure 1). As such, a data
augmentation procedure called flipping can be applied whereby the sign of track IPs (and that of secondary
vertices) is multiplied by -1, without affecting the overall light-flavour jets IP distributions [39]. The
tagger evaluated on flipped inputs, the flipped tagger, will then have an approximately equal performance
in light-flavour jets as the nominal tagger. However, for b-jets and c-jets with real large IP tracks, the
flipping will lead to large changes in their asymmetric IP distribution, with significantly fewer large IP
tracks, causing the flipped tagger to be inefficient for identifying these jets. Therefore, applying a b-tagging
requirement on the flipped tagger will generate a dataset with a higher fraction of light-flavour jets, when
compared to the dataset built with the nominal tagger, such that the light-flavour jet efficiency can be
obtained in data. In order for this to succeed, the b-tagging algorithms must uphold this approximate
flipping symmetry of the light-flavour jets in their prediction, while reducing b-jets and c-jets tagging
efficiencies.

The discriminant distributions of b-jets, c-jets and light-flavour jets with nominal and flipped inputs for the
RNNIP and DIPS algorithms are shown in Figure 6. The dashed vertical lines represent the discriminant
requirement for 85%, 77%, 70% and 60% inclusive b-jet efficiencies, corresponding to the efficiency
benchmarks used at analysis level. The desired properties are found for both DIPS and RNNIP, the flipped
distribution for light-flavour jets is nearly unchanged, while there is a significant decrease in flipped b-jets
and c-jets at high discriminant values. Using these distributions, the efficiencies of the different jet flavours
as a function of the RNNIP or DIPS discriminants can be examined, as in Figure 7. For both DIPS
and RNNIP, one can see the large reduction on the efficiency for selecting b-jets and c-jets for a fixed
light-flavour jet rejection as desired.

4.4 Track Selection Optimisation

A major benefit of the reduced training time for DIPS is that it facilitates critical optimisation studies which
require retraining the algorithm for each change one would like to examine. Two classes of optimisation are
presented here: 1) varying the selection of tracks given to DIPS for processing, and 2) providing additional
features per track.

The DIPS implementation described so far relies on the same track selection as the IP3D and RNNIP algo-
rithms. This selection, denoted nominal, selects tracks with pt > 1 GeV, |dy| < 1 mm, |zpsin 8| < 1.5 mm.
This is a relatively strict selection that is used to keep the number mismeasured and pile-up tracks low, as
the IP3D algorithm can be sensitive to such tracks. At the same time, this selection removes some of the
key tracks from heavy flavour decays that are vital for classification. With the larger expressive power of the
DIPS neural network over the IP3D model, DIPS will have more power to learn which tracks are useful for

11
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Figure 6: D, discriminant distributions for the nominal and flipped taggers. The vertical dashed lines correspond
to the discriminant requirements for 85%, 77%, 70% and 60% inclusive b-jet efficiencies, corresponding to the
efficiency benchmarks used at analysis level. Plots (a), (c) and (e) refer to the RNNIP performance, while (b), (d) and
(f) refer to DIPS. Plots (a) and (b), (c) and (d), (e) and (f) show light-flavour jets, c-jets and b-jets respectively.
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Figure 7: 1 - Cumulative efficiency as a function of b-tagging discriminant for RNNIP (a) and DIPS (b). In both
cases, the performance remains nearly unchanged for light-flavour jets when comparing nominal and flipped taggers,
while the b-jet and c-jet efficiencies drop.

tagging and thus will potentially be less sensitive to such tracks. As a result, a loose selection is examined,
defined as pr > 0.5 GeV, |dy| < 3.5 mm, |z sin 8] < 5 mm, which utilises a lower pr threshold and a wider
allowance on the impact parameter thresholds in order to capture more tracks from the heavy flavour decay.
In addition, DIPS with the loose selection examines up to the 25 highest s, tracks, rather than 15 tracks as
in the nominal selection, to further increase the ability to select tracks from heavy flavour decays.

The average number of tracks of different origin per jet is shown in Table 4 for the nominal and loose
selections, and is shown separately per jet flavour. The total number of tracks (7;,«), the number of tracks
from heavy flavour decays (nf;’ ,f ), the number of tracks from hadronisation, excluding those from heavy
flavour decays (nfr‘;cd’), and the number of tracks from mismeasurement, material interactions, and pile-up
(n;’r’]i‘”), are compared. The loose selection increases the average number of tracks per jet from heavy
flavour decay by ~ 15% over the nominal selection. However, for all flavours, the loose selection also
increases the number of fragmentation and other tracks per jet. As can be seen in the ROC curves in
Figure 8, DIPS with the loose selection (shown in pink) outperforms the nominal DIPS (shown in purple)
by up to = 40% for light-flavour jet and charm jet rejection.

Jet Flavour | Track selection Rirk nftf ni’r‘;cd’ n;’r‘,'c“”
b-jets nominal 59+27134+£18|20+£19|04+0.8
loose 81+32|139+18|25+21|1.7x1.7
c-jets nominal 50+£2511.7+£1.0]29+22|04+0.8
loose 7.1+3.1 | 18+1.0|3.6+24 | 1.7x1.7
Light-flavour nominal 46+2.6 - 41+25]05+09
jets loose 6.8+3.3 - 50+2.7 | 1.8+2.0
Table 4: The average per jet total number of tracks (n,,«), the number of tracks from heavy flavour decays (ng ,f ), the
number of tracks from hadronisation, excluding those from heavy flavour decays (n?jcd’), and the number of tracks

from mismeasurement, material interactions, and pile-up (nt”r’,’:”), are shown for the nominal and loose selections for
each jet flavour.
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Figure 8: Light-flavour jet rejection as a function of b-jet efficiency (a) and c-jet rejection as a function of b-jet
efficiency (b) of the nominal DIPS setup, DIPS with loose track selection, and Optimised DIPS with the loose
track selection and additional IP inputs. The central curves and error bands show the mean and standard deviation,
respectively, of the rejection at each b-jet efficiency for 5 trainings. The ratios are computed with respect to the DIPS
ROC curve.

4.5 Optimised DIPS Performance

Beyond the loose selection, the impact of adding more per-track features is also examined, namely the
impact parameters dp and zq sin 6. The DIPS with additional features and /oose track selection, denoted
Optimised DIPS, can be seen in orange in the ROC curves in Figure 8, compared to a reference of the
nominal DIPS or RNNIP trainings, respectively. For the following studies, Optimised DIPS is built with
the same architecture described in Section 3.3. The Optimised DIPS outperforms the nominal DIPS by up
to a factor of 2 in light-flavour jet rejection and a factor of 1.5 in the c-jet rejection.

While ROC curves give a global view of an algorithm’s performance, the behavior of the b-tagging
efficiency and the background rejection as a function of key kinematic variables is also vital to performance
within analyses. To explore this metric, a threshold defining an inclusive 77% b-tagging efficiency for each
algorithm is determined, and the b-jet efficiency and background rejections with this fixed threshold are
examined as a function of kinematic quantities. The b-jet efficiency as well as the c-jet and light-flavour jet
rejections versus jet pr and n are shown in Figure 9, for the RNNIP, DIPS, and Optimised DIPS algorithms.
The behavior of DIPS and RNNIP are nearly the same across the pr and 7 range, with DIPS providing a
slightly higher light-flavour jet rejection. The Optimised DIPS delivers a factor of 1.5 to 2.5 in additional
light-flavour jet rejection and up to = 33% additional charm jet rejection. Loosening the track requirements
for Optimised DIPS could potentially have the drawback of increasing the performance dependency on
pile-up. We therefore check the b-jet efficiency, c-jet and light-flavour jet rejection as a function of the
average number of proton-proton collisions per bunch crossing (), also shown in Figure 9. The Optimised
DIPS performance dependency on {u) is not found to be significantly stronger than the baseline DIPS or
RNNIP.

One challenge in comparing background rejections with a fixed threshold is that the b-tagging efficiency
is not the same for each algorithm in each kinematic region. As an alternative, the threshold on the
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Figure 9: Performance plots using a fixed cut with 77% b-jet efficiency. Plots (a), (b) and (c) show the b-jet efficiency
as a function of jet pr, n and average number of proton-proton collisions per bunch crossing (u). Plots (d), (e) and
(f) show the light-flavour rejection as a function of the same quantities, while plots (g), (h) and (i) show the c-jet
rejection.
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b-tagging discriminant can be tuned in each kinematic region to give a constant 77% b-tagging efficiency.
A comparison of the c-jet and light-flavour jet rejections as a function of p and n for the DIPS, RNNIP,
and Optimised DIPS algorithms with flat 77% b-tagging efficiency can be seen in Figure 10. While DIPS
and RNNIP are seen to be quite similar, DIPS provides up to ~ 20% additional light-flavour jet rejection in
some regions of jet pr. The Optimised DIPS shows more than a factor of 2 increase in light-flavour jet
rejection and up to = 50% additional charm jet rejection of the DIPS, for jets with pr between 50 and
300 GeV.
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5 Conclusion

DIPS, a new algorithm for identifying heavy flavour jets with impact parameter information and based on
the Deep Sets architecture, has been introduced and is shown to be comparable in performance and up to
a factor of 3 to 5 faster to train and evaluate over the baseline recurrent neural network based algorithm
RNNIP when using the same inputs. The large speed-up of the algorithm facilitates optimisation, and an
optimised DIPS with loosened track selections and additional per-track features was shown to improve
light-flavour jet rejection by up to a factor of 2.5 and c-jet rejection by up to a factor of 1.5 over the baseline
DIPS algorithm, which already outperforms the current RNNIP algorithm by up to 15%. As such, DIPS
represents a promising future direction for neural network-based flavour tagging algorithms. Moreover, the
parallelisability and increased speed of DIPS not only has the potential to reduce the computational load
of the ATLAS reconstruction, but also makes DIPS an excellent candidate for trigger applications where
extremely low latency is required.
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