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Abstract

Spinfoam theories propose a well-defined path-integral formulation for quantum gravity,

and it is hoped that they will provide the dynamics of loop quantum gravity. However,

it is computationally hard to calculate spinfoam amplitudes. The well-studied Euclidean

Barrett–Crane model provides an excellent setting for testing analytical and numerical tools

to probe spinfoam models. We explore a data-driven approach to accelerating spinfoam

computations by showing that the vertex amplitude is an object that can be learned from

data using deep learning. We divide the learning process into a classification and a regres-

sion task: Two networks are independently engineered to decide whether the amplitude

is zero or not and to predict the precise numerical value, respectively. The trained net-

works are tested with several accuracy measures. The classifier in particular demonstrates

robust generalisation far outside the training domain, while the regressor demonstrates

high predictive accuracy in the domain it is trained on. We discuss limitations, possible

improvements, and implications for future work.

Keywords: loop quantum gravity; spinfoams; deep learning; numerical calculations

1. Introduction

Loop quantum gravity (LQG) is a canonical quantisation program for general relativity

(GR) that attempts to keep general covariance as manifest as possible [1–4]. In its kinemat-

ical sector, the theory is well-formulated: a Hilbert space Hkin spanned by spin-network

states—labelled by graphs whose oriented edges carry irreducible SU(2) representations

and whose vertices carry SU(2) invariant intertwiners [3]. The dynamics, however, are far

more elusive. It is encoded in constraints—operators imposing equations (or, in the Master

constraint approach [5–7], a single equation) on the physical states. Solutions are timeless a

priori. Finding solutions and giving them a spacetime interpretation remains a formidable

open problem despite various efforts (see, for example, [8–16]).

Path integral formulations of gravity have been considered for a long time since they

avoid the spacetime split inherent in the canonical approach. Spinfoam (SF) theories (for

example, see [17–26]), in particular, originated from the observation that gravity can be

obtained by breaking the symmetries of a topological gauge theory. These theories side-step

part of the difficulties of canonical LQG by constructing transition amplitudes between

spin-network states as a sum over (discrete quantum) histories.

To regularise the gravitational path integral, one triangulates the manifold by a sim-

plicial complex T and works on its dual 2-complex ∆∗. A spinfoam is precisely such a

2-complex whose faces f are labelled by irreps π f of the gauge group and whose edges e
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carry intertwiners ie between the irreps of the faces meeting in e. The regularised partition

function can be written in factorised form [19,20]

Z∆∗ = ∑
π f ,ie

∏
f

A f (π f )∏
e

Ae(ie)∏
v

Av(π f , ie), (1)

where v, e and f are dual to 4-simplices, tetrahedra and triangles of T, respectively. Mirror-

ing the role of a vertex in ordinary Feynman diagrams, the vertex amplitude Av encodes

the local dynamics of quantum geometry [27]. The precise nature of the gauge group, π f ,

ie and Av depends on the spacetime dimension, signature and theory.

A serious problem is that Z∆∗ is very hard to calculate in practice. The sum contains

infinitely many terms in principle. Moreover, even calculating the vertex amplitude Av

can be difficult, since it typically is a highly oscillatory function, which involves multidi-

mensional sums or integrals in its definition and depends on the data of the vertex-spin

network, i.e., the π f - and ie-label surrounding v.

The development of various numerical methods [28], each tailored to suit different

regimes, have played a pivotal role in driving advancements in spinfoam models. Highly

optimised, high-performance computing libraries such as sl2cfoam [29] and its successor

sl2cfoam-next [30,31] enable efficient evaluation of Engle–Pereira–Rovelli–Livine (EPRL)

amplitudes [27,32] and have been used to study various aspects of spinfoam models [33–35].

Monte Carlo methods, enhanced by Lefschetz thimble techniques to deform integration

contours, have also been utilised in the context of spinfoams [36]. Different sampling

methods of representation labels, such as importance sampling and random sampling

of the bulk spins, as well as utilising generative flow networks, have been utilised to

further enhance the convergence of spinfoam amplitudes involving several simplices or

efficiently computing expectation values of observables [37,38]. Monte Carlo methods were

also used to compute the vertex amplitude for a given set of coherent states as boundary

data [39]. Recently, tensor-network methods and techniques from many-body quantum

physics have been utilised to significantly reduce both the computational complexity and

memory requirements for computing vertex amplitudes for both SU(2) and EPRL spinfoam

vertex amplitudes [40].

On the large-spin or asymptotic regime, numerical programs such as the complex

critical points program [41–43] have been developed to identify semi-classical geometries

in the limit of large representations, while a hybrid program was proposed in [44] to bridge

between the quantum and semi-classical regimes. Numerical methods [45,46], based on

symmetry reductions, have also been employed in the study of the renormalisation aspects

of spinfoam models.

Despite this considerable effort in both analytical and numerical approaches (see

also [47–52]), the computation of vertex amplitudes remains a challenging problem. This

motivates the exploration of alternative approaches to address the inherent computational

complexity. The goal of the present work is to establish a new approach to accelerating

spinfoam computations by showing that the vertex amplitude is an object that can be

learned from the data using deep learning. In the simplest form, a trained neural net-

work would approximate Av by interpolating from training data. In a more ambitious

form, the neural network would learn to extrapolate much beyond its training domain in

certain spin regimes. Further, another aim of this work is to complement the numerical

implementations of exact analytical methods by helping identify dominant configura-

tions, guiding importance sampling and enabling efficient pre-selection in possibly large

parameter spaces.

While neural networks have been utilised in the context of spinfoam computations to

calculate expectation values of observables [38] by learning the boundary configurations
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which contribute large amplitudes, the current work, as far as we are aware, is the first of its

kind where the vertex amplitude itself is learned using a neural network. Consequently, we

aim for a proof-of-principle, not an application to state-of-the-art spinfoam models. To keep

things as non-technical as possible, we consider a very well-studied and non-trivial model,

the Euclidean Barrett–Crane model (BC model) [53–57]. While interesting, this model is

nowadays understood to be unphysical [58]. The action for the path integral for this theory

derives from the Plebanski (or BF-theory plus simplicity constraints) action [59]

SPlebanski[B, ω, λ] =
∫

tr[B ∧ F(ω) + λB ∧ B], (2)

where B is an so(4) -valued 2-form, ω is an so(4) connection, and λ is a matrix-valued

Lagrange multiplier enforcing the simplicity constraints that reduce topological BF-theory

to the familiar Palatini action [55,57].1

Exploiting Spin(4) ∼= SU(2)+ × SU(2)−, the BC model strongly imposes the simplicity

constraints, thereby restricting every face to a balanced representation (j+, j−) = (j, j).

While this drastic reduction yields a manageable state sum, it also freezes the intertwiner

degrees of freedom, eliminating physical degrees of freedom and effectively rendering

the model unphysical [58]. More refined models, such as the EPRL or Engle–Pereira–

Rovelli–Livine–Freidel–Krasnov (EPRL-FK) [60] models, impose the constraints weakly.

They reintroduce an SU(2) intertwiner label, depend non-trivially on the Barbero–Immirzi

parameter γ and reproduce the BC model (intertwiner) in the limits γ → ±∞ [25].

We will consider the BC model on a simplicial complex. Its vertex amplitude then

takes the characteristic and compact form [61]

Av(j f ) =

(

∏
f

(2j f + 1)k

)

{10j}, (3)

where {10j} denotes the Riemannian 10j symbol and k an integer, which parametrises the

choice of triangle weight in the measure.2 The Riemannian 10j symbol is a function of

10 spins obtained by evaluating the following closed SU(2) × SU(2) spin-network on a flat

connection [62]

j2

j3

j4

j5

j1

j7

j8 j9

j10

j6

(4)

where the vertices are labelled by Barrett–Crane intertwiners. One can also define a

modified 10j symbol using the modified Barrett–Crane intertwiners as the weighted sum

of SU(2) spin-networks [62]. Since the value of a disjoint union of spin-networks is simply

the product of their values, it follows that the modified 10j symbol is [62]
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j2

j3

j4

j5

j1

j7

j8 j9

j10

j6

= ∑
k1,...,k5

(

5

∏
i=1

(2ki + 1)

)





























k1

j1

k2

j2

k3

j3

k4

j4

k5

j5

j6

j10j7

j8 j9





























2

(5)

Given the choice of splitting shown above, the modified 10j symbol can be shown to be

always non-negative and is related to the 10j symbol by [62]

j2

j3

j4

j5

j1

j7

j8 j9

j10

j6

= (−1)2(j1+···+j10)

j2

j3

j4

j5

j1

j7

j8 j9

j10

j6

(6)

Given that {10j} is the vertex amplitude in this model, several algebraic and numerical

algorithms [63–65] for evaluating {10j}, as well as its large spin asymptotics, have been

extensively developed and studied, yet the computational cost still scales unfavourably

with the magnitudes of the spins.

In this work, we will explore a data-driven alternative: casting the evaluation of the 10j

symbol, and thus the vertex amplitude of the Barrett–Crane model, as a supervised learning

problem for deep neural networks. Concretely, we (i) generate a comprehensive training

set of exact 10j symbol values using an optimised algorithm, (ii) break down the learning

task into classification and regression tasks and (iii) quantify the fidelity and generalisation

of the learned amplitude on spins that lie outside the training domain. The goals of this

work are twofold. First, we demonstrate a proof-of-principle: (high dimensional) vertex

amplitudes of spinfoam models are amenable to modern deep learning techniques. Second,

we lay the groundwork for accelerating numerical investigations of more realistic models.

Because the EPRL/FK vertex reduces to its BC counterpart in specific limits, the aim is

for the models and tools used and developed in this work to be ported, with appropriate

modifications capturing the γ-dependence, to the state-of-the-art SF models.

The presentation of the work is as follows:

(i) In Section 2, we start by clearly stating the goals of the current work, as well as

presenting the methodology to be used.

(ii) In Section 2.1, we discuss the generation of training data and the pre-processing of the

produced datasets prior to the training process.

(iii) Section 2.2 discusses the specific architecture of the networks used in this work and

encoding schemes used to facilitate the learning process.

(iv) Section 2.3 concerns the training protocols for both the classification and regression

tasks conducted in this work, as well as the evaluation metrics to which we evaluate

the networks post-training.

(v) In Section 3, we present the results of the training for both classification and regres-

sion tasks.
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(vi) Lastly, in Section 4, we review the issues encountered in this work, the limitations of

the current work and how it relates to future models to be considered and present

some avenues for exploration of these problems.

2. Methodology

As mentioned, this study serves as a proof-of-principle to address the question of

whether or not a neural network can be utilised to learn the vertex amplitude of a given

spinfoam model, in this case, the Euclidean Barrett–Crane model. The approach we use is

one of supervised learning (SL). We approach the problem in terms of two tasks, which can

be roughly outlined as follows. First, a classification task where, given a data set {S, A(S)}

of spin configurations S and corresponding amplitudes A(S), we train a classifer C(S) to

determine whether the corresponding amplitude A(S) is zero or not. Next, a regression

task where, once again, given the dataset described above, we train a regressor R(S) to

predict the correct amplitude A(S) for the given spin configuration S. We then construct a

meta “Expert" network P(S), which combines both C(S) and R(S) to provide the correct

predicted amplitude for the given configuration S.

We will proceed by detailing the components of the implementation in natural order.

That is, we first briefly describe data acquisition and pre-processing, followed by the

network architectures and encoding schemes. Next, we outline the training protocol, hyper-

parameter choices and monitored metrics. Following that, for each task, we present the

results for the mentioned evaluation metrics. A discussion regarding limitations, technical

details and ablation studies is conducted in the Discussion (see Section 4).

2.1. Data Generation and Processing

The core component of the vertex amplitude in the Euclidean Barrett–Crane model is

the {10j}, which can be negative, positive or zero. To simplify our task, we will focus on

learning the square of the {10j} for both classification and regression. For classification, the

appropriate sign factor can be easily reconstructed from the given spin configuration. This

effectively allows us to reduce the complexity of the classification task while remaining able

to reconstruct the correct sign of the learned {10j}. For regression, the square root of the

prediction can be taken at inference. The tools and software used in this work are all Python

based. As such, to facilitate the training process, the algorithm presented in [63] and the

corresponding implementation in C provided therein3 has been rewritten in Python and

accelerated by utilising just-in-time compilation using numba [66] to obtain a comparatively

fast compile time compared to the C implementation.

For both tasks, we respectively train the networks within a specified spin cutoff.

That is, for a given cutoff spin jmax, then the spin configurations to be considered are

ones such that (j1, j2, · · · , j10) =: Sjmax ∈ (S(jmax))10, where S
(jmax) =

{

j ∈ 1
2Z|j ≤ jmax

}

,

|S(jmax)| = K := 2jmax + 1 and the superscript is explicitly stated in S(jmax) to indicate the

cutoff to which the configuration belongs. The following datasets are created:

(i) For classification: a dataset D
(jmax)
C

:=
{

S(jmax), σ(S(jmax))
}

containing pairs of spin

configurations S(jmax) and their corresponding {10j}2 signs denoted as σ(S(jmax)) :=

sgn({10j}(S(jmax)))2. Since ({10j}(S(jmax)))2 ∈ R≥0, then for any S(jmax), it follows

that σ(S(jmax)) ∈ [0, 1]. This dataset contains data points for all possible configurations

S(jmax) in a given cutoff.

(ii) For regression: another dataset D
(jmax)
R

:=
{

S(jmax), log10j(S(jmax))
}

, which then con-

tains pairs of spin configurations S(jmax) and their corresponding log10j(S(jmax)) :=

log
(

({10j}(S(jmax)))2 + ϵ
)

, where ϵ = 1 × 10−26 is a small correction factor. Unlike
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D
(jmax)
C

, this dataset contains data points for all configurations S(jmax) in a given cutoff,

which have a non-zero log10j(S(jmax)) value. Thus, |D
(jmax)
R

| < |D
(jmax)
C

| always.

For small enough cutoffs, such datasets can be obtained simply by full enumeration

of the space S
(jmax). To understand the distribution of the potential training data, one can

compare the number of non-zero log10j(S(jmax)) for all S(jmax) in different cutoffs.

It is immediately evident, then, as shown in Figure 1, that there is an imbalance

in the number of configurations, which yield a zero amplitude compared to non-zero

amplitudes. In fact, as the cutoff increases, the percentage of non-zero amplitude con-

figurations increases drastically, reaching over 60% already at jmax = 2.5. Further, the

value of ({10j}(S(jmax)))2 can vary by more than 22 orders of magnitude in even small

cutoffs as jmax = 2.0. This, therefore, poses the following hurdles: (i) a class imbalance for

classification and (ii) a very large range in the values of log10j(S(jmax)) for the regression.

Figure 1. Percentage of non-zero to zero vertex amplitudes at different cutoffs, with the total number

of states Ns shown for each cutoff.

2.2. Network Architecture and Encoding Schemes

As this study is a proof-of-principle, little emphasis was put on constructing a so-

phisticated network architecture for either task. Remarkably, as will be shown, simple

architectures suffice for both tasks. A multi-layer perceptron (MLP) [67,68] was used for

both the classification and regression tasks. For classification, the classifier C(S) consisted

of an MLP with one hidden layer (depth 1) and 128 hidden nodes (width 128). A rectified

linear unit (ReLU) activation function

ReLU(x) = max(0, x) (7)

was used to introduce the non-linearity. The input for the classifier C(S) was simply the

spin configuration S(jmax). The architecture for the classifier remained constant irrespective

of the training cutoff. The classifier maintained a number of trainable parameters Params(C)

of only 1537 parameters.

For the regressor R(S), an MLP was used as well. Unlike C(S), the depth and width

of R(S) varied depending on the jmax chosen during training. For example, at jmax = 1.0,

R(S) had a depth of 6 and a width of 256, while for jmax = 1.5, it had a depth of 5 and

a width of 512. Different activation functions were considered and tested. Ultimately, a

Gaussian error linear units activation function was used

GELU(x) = xΦ(x), (8)

where Φ(x) is the cumulative distribution function for the Gaussian distribution. Unlike

ReLU activation, the derivative of the GELU function is continuous at the origin. A
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smooth activation allows the optimiser to track higher-order curvature and avoids the

kinks that piece-wise linear units, such as ReLU, introduce. Further, while ReLU either

passes the signal unchanged (x) or blocks it (0), the GELU multiplies the input x by the

probability that a unit drawn from a standard Gaussian is below x. Small inputs are

only tempered, not annihilated, which preserves information carried by low-magnitude

features (inputs).

While the classifier C(S) takes as input the configuration S, the regressor R(S) does

not. The input for R(S) is encoded using an indexing function Ω. For a single j ∈ S
(jmax),

let i : S(jmax) → {0, 1, . . . , K − 1} such that i(j) = 2j. Let e⃗r ∈ RK be the standard r-th basis

vector such that (⃗er)q = δq,r. We define the one-hot encoding of a single spin to be the

map ω : S(jmax) → {0, 1}K ⊂ RK such that ω(j) = e⃗i(j), which places a 1 exactly at the

coordinate that corresponds to the value of j. The one-hot encoding for a configuration

Sjmax is then Ω : (S(jmax))10 → {0, 1}10K ⊂ R10K. Simply put, while the classifier takes as

input a configuration of 10 values in a given jmax, the regressor takes as input 10K values at

the same jmax.

The motive behind the encoding is driven by empirical observations during training.

Namely, the network performance was poor for un-encoded inputs due to it attempting

to associate the inputs in a purely arithmetic manner (e.g., the network prediction being

merely the mean of the inputs). Consequently, we convert every spin to a pure indicator

vector rather than feed its numeric value directly. While this may not always be an opti-

mal encoding depending on the problem, it is, nevertheless, sufficient for our case, as it

removes any potential artificial ordinality and avoids adding arbitrary distances, relations

or embeddings that the network might exploit as if they were physically meaningful, al-

lowing it to view the spin values merely as categorical symbols. The encoding nevertheless

provides compatibility with transfer learning across cutoffs. Thus, the chosen encoding

provides a minimal, symmetry-respecting4 representation that supports generalisation and

compatibility across cutoffs. Note that one can, in principle, choose any faithful encoding

map, not necessarily restricted to the one mentioned above, and this may play a crucial

role in the performance of the network. Other encodings, such as learned embeddings or

sinusoidal schemes, could be explored in future work depending on the target model and

computational constraints.

2.3. Training Protocol and Hyperparameter Choices

This work utilises PyTorch [69] for all neural network-related aspects. A non-

exhaustive preliminary assessment conducted via automatic hyperparameter tuning using

optuna [70] was carried out to determine an estimate for the best hyperparameters in this

work. The following parameters, shared for both tasks, were thus obtained. The networks

in both tasks were trained with a mini-batch AdamW optimiser [71] with a weight decay of

1× 10−6 and a 1-cycle learning rate schedule with a peak step size of 1× 10−3 for the case of

the regressor and 1 × 10−4 for the case of the classifier. The batch size for the classification

task was 8, while a batch size of 256 was chosen for the regression task. For both tasks,

training takes place in the low spin regime, as the behaviour of the network evaluations can

be extrapolated to further training on higher spins. In what follows, we outline task-specific

evaluation metrics and further training protocols.
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2.3.1. Classification Metrics and Protocol

In what follows, we often refer to the σ(S(jmax)) for a given S(jmax) as a label. In this

binary classification task, the label can either be 0 or 1. The binary classification task was

optimised with respect to a weighted binary cross-entropy loss function

BCELoss = −
1

N

N

∑
i=1

[ω1yi log pi + ω0(1 − yi) log(1 − pi)], (9)

as standard for such classification tasks, where yi denotes the actual binary label (0 or 1) of

the i-th observation, pi denotes the probability of the i-th observation to be in class 1 and N

is the total number of observations made. Note that ω0 and ω1 are class weights used to

neutralise the imbalance between zero and non-zero amplitudes. This is done by amplifying

the contribution of underrepresented classes during training. Such a weighted scheme is

one way to ensure that the network maintains strong performance across both precision

and recall, especially for higher cutoffs where the proportion of non-zero configurations

increases. As will be shown in the sections that follow, the evaluation metrics confirm that

this approach successfully mitigates the imbalance. Note that ω0 and ω1 can simply be

chosen to be inversely proportional to the respective class frequencies.

The training protocol is done cutoff-wise. First, a network is trained and evaluated at a

cutoff of 0.5. Since the network architecture is static between cutoffs, transfer learning was

utilised and the network was then retrained, starting with previously optimised parameters

from the preceding cutoff, on a cutoff of 1.0 and then once again evaluated. This protocol

continued until a cutoff of 2.0. The training dataset size starts at 75% of all available

configurations at a cutoff of 0.5. As transfer learning was conducted successively for higher

cutoffs, the training dataset size was decreased incrementally to establish a minimal dataset

size: the smallest dataset size required to achieve the highest evaluation metrics values.

Note that the datasets were collected blindly, and no active binning in terms of cutoffs was

employed. While this is possible, it has not been done intentionally to test the model’s

capacity to train from blind data.

Several metrics were evaluated after each cutoff training cycle as follows:

(i) Hard accuracy: this is defined as

AccHard =
1

N

N

∑
i=1

1 · {f(ŷi) = yi}, (10)

which essentially counts, on the test sample of size N, how many network predicted

labels ŷi exactly match the true labels yi. Here, f(ŷi) is a decision threshold function

which returns 1 if ŷi ≥ 0.5 and 0 otherwise.

(ii) Soft accuracy: this is defined as

AccSoft =
1

N

N

∑
i=1

(1 − |ŷi − yi|) (11)

which essentially computes how “far off” the network prediction was from the true

labels for a given test batch of size N.

(iii) Precision [72]: which is defined as

P =
TP

TP + FP
, (12)

where TP denotes true positives (data points with labels 1, which have been correctly

predicted by the network), and FP denotes false positives (data points with labels 0,

which have been incorrectly predicted by the network to have label 1), which conveys
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the fraction of all predicted non-zero states that are correct. Essentially, this metric

focuses on the quality of positive predictions, giving a measure of how trustworthy

the network’s prediction is when predicting non-zero labels.

(iv) Recall [72]: the ability to correctly predict all non-zero configurations, which is

defined as

R =
TP

TP + FN
, (13)

where FN denotes false negatives (data points with labels 1, which have been incor-

rectly predicted by the network to have a label 0). Having a high recall value indicates

that the network rarely fails to correctly label a non-zero configuration.

(v) F1 score [72]: defined as

F1 = 2
P · R

P + R
, (14)

is the harmonic mean of precision and recall, symmetrically representing both preci-

sion and recall in one metric. The highest obtainable F-1 score of 1.0 indicates perfect

precision and recall.

Additionally, for every cutoff training round, a confusion matrix, evaluated on the

entire configuration space, is computed. This gives a clear picture of the number of FN and

FP values for the network.

2.3.2. Regression Metrics and Protocol

Unlike the classification task, the regressor was trained on a single chosen cutoff. No

transfer learning was utilised. Therefore, a regressor R trained at a cutoff of 0.5 would only

be evaluated on states S(0.5). This is due to the dynamic nature of the network’s architecture

used in this task, which makes transfer learning, although not impossible, much harder. For

all cutoffs, the training data consisted of 85% of all available non-zero configurations S(jmax)

at the current cutoff. Since the labels in this task can have a rather large range, the training

dataset was not blindly collected. Rather, the entire space was first enumerated, after which

the amplitudes were binned according to their magnitude. The produced dataset of 85%

of all non-zero contributing data points was stratified according to those bins, ensuring

sufficient representation across all magnitudes available.

The loss function for this task was chosen to be the Huber loss [73]

HuberLoss(e) =







1
2 e2 , |e| < δ

δ(|e| − 1
2 δ) , |e| ≥ δ

(15)

where e := ̂log10j(S(jmax))− log10j(S(jmax)). For the case of δ = 1, this is equivalent to the

smooth L1 loss function. Here, ̂log10j(S(jmax)) denotes the network predicted log value of

the square of the {10j} symbol of the given configuration. For brevity, we will denote that

with ŷlog and denote the true value with ylog. For any training cutoff, the following metrics

were observed after training:

(i) Root mean squared error (RMSE) in log space: this is simply defined as RMSElog =
√

MSElog where

MSElog =
1

N

N

∑
i=1

(ŷlog − ylog)
2. (16)

Note that this metric may be sensitive to errors in large-valued labels. Applying it

in log space is due to the large possible label magnitudes, which span several orders.

This then ensures that large values do not disproportionately dominate the error.
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(ii) Median absolute deviation (MAD) in log space: defined as

MADlog = Median

(

{

|ŷ
(i)
log − y

(i)
log|
}N

i=1

)

(17)

is a measure of error also in the log space. Unlike the RMSElog, this metric is resilient

to outliers and better reflects the typical prediction deviation.

(iii) Mean absolute percentage error (MAPE): is given as

MAPE =
100

N

N

∑
i=1

∣

∣

∣

∣

∣

eŷlog − eylog

eylog

∣

∣

∣

∣

∣

, (18)

which can be interpreted in terms of the relative error of predictions over a test set of

size N. Note that this metric is not computed in log space.

(iv) Threshold accuracy: lastly, we measure the threshold accuracy, which is

Acc≤ϵ =
1

N

N

∑
i=1

1 ·
{

|eŷlog − eylog | ≤ ϵ|eylog |
}

(19)

which is an indicator of how many predictions in a test set of size N have a relative

error lower than a specified ϵ threshold. In this work, we take ϵ = 0.1, and thus, the

Accϵ will measure how many predictions fall within a 10% relative error to the true

value. Once again, this metric is not computed in log space.

Additionally, we also compute the R2 value, as well as a true vs. prediction plot, after

every cutoff training cycle.

3. Training Results

The two criteria being sought in this work for both tasks are (i) whether the networks

can perform well at the cutoff they are trained in and (ii) whether the networks can predict

on test samples from a cutoff they have not been trained on. All computations were carried

out on an Intel Xeon E3-1240 v5 with 4 cores at 3.5 GHz, and no distributed, parallelised or

GPU computations were utilised. We begin with the classification task. Carrying out the

protocol described in Section 2.3.1, the results shown in Table 1 were observed.

Table 1. The training and test loss for the classification task on different cutoffs is shown. Here, Ns

denotes the total number of possible configurations at the cutoff and Ntrain denotes the number of

samples used in the training process.

jmax Training Loss Test Loss Training Time (s) Ns Ntrain Ntrain/Ns

0.5 0.01772 0.15405 59.7 1024 768 0.75

1.0 8.5601 × 10−7 0.0362 2807.28 59,049 36,126 0.611

1.5 1.49516 × 10−7 0.01092 13,386.76 1,048,576 103,618 0.098

2.0 0.00236 0.02397 24,134.8 9,765,625 170,356 0.017

Table 1 shows the training and test loss for the classification task on different cutoffs. As

shown, the training dataset size starts at 75% of the total number of available configurations

at the cutoff Ns for jmax = 0.5. As transfer learning is applied and training proceeds to

higher cutoffs, the training dataset size decreases until 1.17% for jmax = 2.0. Despite that,

both training and test loss decrease steadily as the cutoff increases, indicating that the

learning process is carried out successfully. The increase in the test and training loss for

jmax = 2 is attributed to the relatively small training dataset size.
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After each training cycle, the trained network was tested on all configurations for

cutoffs jmax ∈ [0.5, 1.0, 1.5, 2.0, 2.5]. The following metrics in Table 2 were observed.

Table 2. Classification metrics for the classifier trained with transfer learning at different cutoffs.

Training jmax Test jmax AccSoft (%) AccHard (%) P R F1

0.5

0.5 96.7432 98.8281 0.9837 0.9773 0.9804

1.0 83.3652 83.9506 0.7197 0.8216 0.7672

1.5 81.0237 81.3578 0.6973 0.8139 0.7511

2.0 79.7331 79.9418 0.6951 0.7989 0.7433

2.5 78.8568 78.9951 0.6974 0.7844 0.7383

1.0

0.5 99.9996 100 1.0 1.0 1.0

1.0 99.9392 99.9395 0.9989 0.9989 0.9989

1.5 98.9591 98.9833 0.9780 0.9929 0.9853

2.0 96.3990 96.4228 0.9223 0.9845 0.9523

2.5 94.2651 94.2786 0.8823 0.8792 0.8792

1.5

0.5 99.9999 100 1.0 1.0 1.0

1.0 99.9719 99.9712 0.9996 0.9995 0.9995

1.5 99.9369 99.9382 0.9994 0.9988 0.9990

2.0 99.5092 99.5187 0.9908 0.9960 0.9933

2.5 98.2248 98.2348 0.9638 0.9905 0.9769

2.0

0.5 99.9994 100 1.0 1.0 1.0

1.0 99.9773 99.9762 0.9995 0.9997 0.9995

1.5 99.9666 99.9681 0.9996 0.9994 0.9994

2.0 99.8993 99.9028 0.9986 0.9988 0.9986

2.5 99.5982 99.6070 0.9966 0.9930 0.9947

As shown in Table 2, all classification metrics are within an excellent range for the

cutoff that the network has been trained on. However, one striking aspect is that the simple

classifier seems to be able to perform reasonably well when tested on higher cutoffs, which

it has not been trained on. Additionally, no catastrophic forgetting5 was observed. Further,

as the classifier is trained on a higher cutoff, using transfer learning, the metrics for test

cutoffs that fall above the training cutoff also improve drastically. For example, a classifier

trained at jmax = 0.5 and shows an F-1 score of 0.7383 when tested on jmax = 2.5, while the

same classifier retrained using transfer learning up to jmax = 2.0 has an F-1 score of 0.9947

for a test cutoff of jmax = 2.5. This can be further elucidated by looking at the confusion

matrices for the classifier at different training stages, as shown in Figure 2.

Figure 2 shows the confusion matrices for the classifier at different stages of training,

tested on different cutoffs at each stage. In a given confusion matrix, the top left quadrant

denotes the true negatives, the top right quadrant denotes the false negatives, the bottom

left quadrant denotes the false positives and the bottom right quadrant denotes the true

positives. It is evident that as the classifier progresses in the training stages, the number of

false predictions in either class becomes lower. This can be more easily shown by looking

at only the false negatives and false positives, as shown in Figure 3.
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Figure 2. The confusion matrices for the classifier at different stages of training, tested on different

cutoffs each time after each training round.

As can be seen in Figure 3, both the false positives and false negatives fall drastically.

Perhaps most interestingly, the number of false negatives and false positives is seen to

decrease even on cutoffs on which the classifier has not been trained on (see the trend-line

of jmax = 2.5 in both figures), as the classifier training progresses to higher cutoffs. The

takeaway here is that despite the simple architecture of the classifier and the extremely

small size of training datasets for higher cutoffs, the classifier is able to generalise well to

cutoffs beyond its training.

(a) False Positives (b) False Negatives

Figure 3. The number of false positives and false negatives for the classifier trained at different cutoffs

and tested on cutoffs from 0.5 to 2.5 is shown in (a) and (b), respectively.

As discussed in the protocol in Section 2.3.2, we approach the regression task differ-

ently from the classification. In what follows, we mainly focus on a regressor trained at

cutoffs of 1.0 and 1.5. In the discussion section (Section 4), we elaborate on higher cutoffs.

A regressor with a depth of 6 and width of 256 with a GELU activation was used for

training at jmax = 1.0, while for jmax = 1.5, the regressor had a depth and width of 5 and

512, respectively. In both cases, training was conducted over 200 epochs, and the training

dataset consisted of 85% of all configurations, which yield a non-zero {10j}2 (16,162 and
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308,086 data points for the cutoffs 1.0 and 1.5, respectively). No transfer learning was

applied. The figure below shows the training loss for both regressors.

As shown in Figure 4, no irrecoverable or sustained spikes were observed. The

regression metrics were observed to be as shown in Table 3.

Figure 4. The training loss during the regressor training at cutoffs of 1.0 and 1.5.

As shown in Table 3, all metrics fall within a good range for such regression tasks. The

regressor trained at a cutoff of 1.0 demonstrates excellent predictive accuracy, achieving a

MAPE of 2.7587% and a threshold accuracy Acc≤0.1 of 94.3045%, indicating that the vast

majority of predictions fall within a 10% relative error margin of the true values when

evaluating the model on all possible configurations, which yield non-zero labels at the

cutoff. Further, its RMSElog and MADlog values reflect a low dispersion of residuals and

highlight the consistency of the regressor’s output. The high R2 score implies that nearly

all variance in the target variable is captured by the regressor.

Table 3. Evaluation metrics on all non-zero configurations for the regressors trained at different

cutoffs.

Training
Cutoff

MAPE (%) Acc≤0.1 (%) RMSElog MADlog R2

1.0 2.7587 94.3045 0.0582 0.0215 0.9986

1.5 4.1735 83.6901 0.0851 0.0396 0.9999

In comparison, the model trained at jmax = 1.5 exhibited slightly less accurate perfor-

mance, but nevertheless, yielded promising results. The MAPE and Acc≤0.1 values indicate

that it maintains a good predictive fidelity. While the RMSElog and MADlog values are

comparatively higher, they are still within acceptable bounds. Notably, the R2 value for

this regressor is even higher, indicating a better fit for the data. To further elucidate upon

the performance of both regressors, a True vs. Prediction plot can be shown below.

Figure 5 shows the True vs. Prediction plots in log space for both regressors at the

cutoff of 1.0 and 1.5 on the left and right, respectively. The data points evaluated in the

plots constitute all data points at the cutoff which yield a non-zero label. As shown, most of

the predicted labels align well with the true labels in both cases, with only a few predictions

which fall far from the true label values. Overall, the regressors seem to be performing

relatively well. No minimal training dataset investigation or transfer learning was applied

in either case.
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(a) Cutoff 1.0 (b) Cutoff 1.5

Figure 5. True vs. Prediction plot in log space for the regressors trained at cutoffs (a) 1.0 and (b) 1.5.

The data points shown include all non-zero-labelled data at the respective cutoffs.. Note that the

dashed line indicates the region where the prediciton matches the true value exactly.

We also note that the trained regressors did not generalise well beyond their training

domain. This can be attributed to different reasons. For example, a regressor initially

trained on a dataset of some cutoff j1 and subsequently fine-tuned on a dataset from the

following cutoff j2 is effectively exposed to only a small fraction of the j1 data during

transfer learning. This is due to the fact that the dataset corresponding to j2 subsumes the

j1 dataset, but also includes an overwhelmingly larger volume of new samples, causing the

regressor to be prone to catastrophic forgetting, wherein knowledge acquired during the

initial training phase may be overwritten or degraded during fine-tuning.

This effect may also be caused, or at least exacerbated, by the use of one-hot encoding,

which treats each input category as orthogonal and independent. As new categories may be

introduced in the j2 dataset, the model may assign high importance to these new features,

diminishing the influence of earlier, sparsely repeated categories from the j1 dataset. In all

cases, such a behaviour is to be expected, as extrapolation is generally a non-trivial task

and is made more difficult by the nature of the vertex amplitude functions being highly

oscillatory in general.

Expert Network

So far, the task of computing the vertex amplitude using neural networks has been

divided into classification and regression tasks. Further, we have focused on learning the

sign of the ({10j}(S(jmax)))2 for the classification task and the value of log10j(S(jmax)) for

the regression task. To produce the correct amplitude value for a given spin configuration,

we need to:

(i) At inference time, exponentiate the regressor’s output to obtain ({10j}(S(jmax)))2

instead of log10j(S(jmax)) and then further take the square root to obtain the correct

{10j}(S(jmax)) value.

(ii) Insert the correct sign factor based on the spins in the given S(jmax), as shown in

Equation (6) to obtain the correct sign of the computed {10j}.

(iii) Insert the correct positive dimensionality multiplicative factor related to the spins in

the given S(jmax), as shown in Equation (3) to compute the complete vertex amplitude

of the BC model.

As such, the last piece of the work includes creating a meta network, denoted P(S), which

combines both the classifier and the regressor. The output of this meta network, which we

shall call an Expert, is merely the product of the outputs of C(S) and R(S), along with all

the relevant corrections mentioned above.
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The reason for this is not only aesthetic. The grouping of such networks into an Expert

P allows for having an ensemble of Experts for a given cutoff, each trained with different

seeds and therefore different datasets, in the hope of increasing the predictive accuracy of

the overall model and producing more precise error estimation. Further, one can combine

Experts in a Mixture of Experts (MoE) approach [74,75], which, in simple terms, houses

within it M experts (or M ensembles of N experts each), each trained at a different cutoff.

After appropriate training of the gating in such an MoE, this then results in one model that

can accept any configuration that falls within the range of cutoffs it has been trained on

and yield an accurate prediction based on the Experts it contains. This, however, will be

left for future work.

4. Discussion

One of the most, and perhaps the most, pressing inherent issues in this work is

the scarcity of data. Generally, SL is a greedy approach, and this only gets worse if the

objective we attempt to learn is complicated (e.g., very large range, highly non-uniform,

very sensitive to the inputs). This was already observed during the training of the regressor

in this simple toy model. Different training methods, including transfer learning, different

one-hot encoding and dataset processing, resulted in either catastrophic forgetting or low

predictive accuracy. This, however, can of course be due to the network architecture.

Nevertheless, the issue of the regression task being data greedy is expected to still persist.

In that case, one needs to tailor the networks such that they require as few data points

as possible. Further, data collection can be conducted by Reinforcement Learning (RL)

methods. During this work, we have also collected data points by training an agent with a

proximal policy optimisation algorithm (PPO) [76] to find the highest valued amplitudes

without exhaustive enumeration of all possible configurations. This can then cut down

on unnecessarily computing vertex amplitudes, which may be irrelevant to the desired

training process, while still being a computationally expensive process.

Spinfoam vertex amplitudes, for a given set of coherent states as boundary data, have

been computed using Monte Carlo methods [39]. One may be able to adapt the generative

flow networks approach [38] (initially used to compute expectation values of observables

by learning the regions in which the amplitude is large) to facilitate a similar computation,

as done in [39]. Such flow networks may also provide another “agent”-like approach for

data collection in the domain of direct learning of the vertex amplitude itself, as we have

carried out. How to exactly set it up is not clear at the current time, but an interesting

avenue to explore in future work.

Ultimately, we recognise that this work serves only as a proof-of-principle, and thus,

we refrained from exploring or utilising all possible avenues to identify, resolve or optimise

such issues and bottlenecks. This is left to be conducted for later work on more physically

relevant models, but we are aware that this is a persistent issue in the nature of this

approach. The resolution of this issue will also largely rely, in part, on utilising other

efficient numerical methods to generate a sufficient amount of data for training, as this sets

the bound of the amount of data available for training.

The next pressing issue is the regression problem. The learned data for the regressor

in this work spanned a very large range, which only grew with the cutoff. This is due to

the nature of the learned amplitude, as they are generally represented by highly oscillatory

functions. This poses several serious concerns. For example, assuming the data acquisition

process is not an issue (may already be not true for more realistic models such as the EPRL

model at high spin), devising a training set which has enough representatives from each

order of magnitude is a non-trivial task. This will also highly depend on the network

and loss function used, as different architectures and losses can be less sensitive to very
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large data, while others might require more large data representatives in the dataset. It is

therefore easy to see how this becomes a concern if one can not enumerate the entire space.

In the cutoffs presented in this work, the classifier maintained a static architecture,

which included a number of trainable parameters Params(C) of only 1537 parameters across

all training. Despite that, it was demonstrated that it excelled in learning whether the given

spin configuration would yield a non-zero squared {10j} or not. The regressors, on the

other hand, had a number of trainable parameters Params(R) of 350,093 and 1,091,725 for

jmax = 1.0 and 1.5, respectively. Compared to the total number of non-zero data points

available at the same cutoffs (19,015 and 362,455, respectively), one sees that this approach

is simply inefficient: with enough learnable parameters, one can fit any data. In this case, it

is much faster to simply create a table of all possible amplitude values for all spins in the

current cutoff. If a regressor trained on some cutoff ji can, to some degree of acceptable

evaluation metrics, predict on a higher cutoff jk > ji, then Params(R) being larger than the

number of the available states at the training cutoff can be overlooked. This, however, is

not the case in this work.

Nevertheless, that does not mean that it is not possible. Ablation studies (here dis-

cussed for mmax = 1.0) were conducted where different MLPs with different widths and

depths were tested. It was observed that one can get to moderately acceptable evaluation

metrics with MLPs of depth 3 and width 64 (Params(R) = 10, 685) and even MLPs with

depth 1 and width 256 (Params(R) = 8253). While in both cases Params(R) is less than

the total number of available data points, this does not immediately translate to all rele-

vant evaluation metrics being consistently high or the training process being conducted

smoothly. Further, different architectures, such as recurrent neural networks with gating6

were observed to be good candidates for the task. Lastly, given the graph-based nature of

the 10j symbol, graph neural networks (GNNs) [78] might also serve as a good candidate.

However, this work has not explored such an architecture. Lastly, the regressors in this

work did not produce satisfactory evaluation metrics when evaluated beyond the training

domain. This is unsurprising, as this is an inherent limitation to such tasks, which is further

made difficult by the objective function being learned, here the vertex amplitude, being of

a difficult nature.

This leads to the following conclusion: while the regressors used in this work are

inefficient, in principle, we believe that there are more efficient architectures to be explored

with Params(R) being less than the available training data. What they are, how well they

train and whether they, if at all possible, generalise for higher cutoffs or not were not tasks

of principal importance in this work. The reason being that it is unclear precisely how the

tools developed in this work would translate to physically relevant models such as the

EPRL model. The purpose of this work is to merely demonstrate a proof-of-principle, and

exhaustive studies will be left for later work.

5. Conclusions

Spinfoam theories provide dynamics for non-perturbative loop quantum gravity by

constructing transition amplitudes between spin-network states through a sum over their

histories. The quantisation procedure implements simplicity constraints at the quantum

level, resulting in a regularised partition function Z∆∗ on a spinfoam ∆∗. One of the main

components of Z∆∗ is the vertex amplitude Av, which, akin to QED, encodes the local

dynamics of quantum geometry. In this work, we investigated the feasibility, as a proof-of-

principle, of a data-driven approach, whereby the vertex amplitude ABC
v of the Euclidean

Barrett–Crane model is learned using deep neural networks, specifically the Riemannian

10j symbol, which is at the core of ABC
v in this model. The amplitude is learned through

a two-step process whereby first, a classifier C is trained to predict whether, for a given
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set of spin configurations S, the resulting ABC
v (S) is zero or not. Second, a regressor R is

trained to predict the exact numerical value of the {10j}2. As a last step, we construct a

meta network, which we denote as an Expert P, which utilises both C and R to construct

the correct amplitude ABC
v by inserting the relevant sign and dimensionality factors.

For the classification task, a small MLP was trained on several cutoffs ranging from 0.5

to 2.0, each time utilising transfer learning. Despite the relative training dataset size being

reduced from 75% to roughly 1% of all available states for cutoffs of 0.5 to 2.0, respectively,

the classifier C proved successful by being able to have high evaluation metrics (soft

accuracy, hard accuracy, precision, recall and F-1 score) both within and well above the

training cutoffs. The regression task proceeded with MLPs of dynamic architecture, which

depended on the training cutoff. Within the learned cutoff, the regressors showed high

evaluation metrics (RMSE, MAD in log space, MAPE and threshold accuracy with ϵ = 0.1)

in both cutoffs presented (1.0 and 1.5). Generalisation to cutoffs beyond the training regime

for the regressor case, however, was unsuccessful. This may, preliminarily, be attributed

to (i) catastrophic forgetting during transfer learning from one cutoff to the next, due to

the overwhelming volume of new data in subsequent cutoffs relative to the prior ones and

(ii) the use of one-hot encoding, which introduces sparsity and treats new categories (i.e.,

higher spins) as orthogonal, potentially amplifying the model’s focus on newly introduced

features at the expense of earlier ones. Therefore, the choice of encoding scheme may

significantly influence any potential generalisation performance of such regressors.

An Expert P was constructed to correctly output the full amplitude ABC
v . We also

discuss the limitations and hurdles encountered during this work, mainly the generali-

sation of the regressor to higher cutoffs and the training process with limited data. We

propose an ensemble approach to increase the accuracy for the trained cutoffs and a re-

inforcement learning-inspired approach to collect relevant training data, where an agent

is trained using a proximal policy optimisation algorithm to learn which configurations

S would yield amplitudes relevant to the training process at hand. We concluded this

work by elucidating different network architectures which may be better suited for the

regression task. However, as this work stands as a proof-of-principle, we refrain from

exploring all avenues to resolve the issues encountered in this work; this will be pursued

later for physically relevant models. Nevertheless, the current work stands as an addition

to existing numerical methods to compute the vertex amplitude of spinfoam models and

provides a proof-of-principle that vertex amplitudes of spinfoam models are amenable to

modern deep learning techniques. The aim of the surrogate models to be developed in this

data-driven approach is to complement the numerical implementations of exact analyti-

cal methods by helping identify dominant configurations, guiding importance sampling

and Monte Carlo approximations and enabling efficient pre-selection in possibly large

parameter spaces.
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Notes

1 For the Lorentzian signature, one replaces SO(4) with SO(1, 3) and must deal with non-compact representations. We confine

ourselves to the Euclidean sector throughout this work.
2 The SF formalism suggests using the measure that gives exactly a topologically invariant partition function before imposing the

constraints reducing BF-theory to GR, which amounts to choosing k = 2.
3 http://jdc.math.uwo.ca/spin-foams/10j-code/, (accessed 2 April 2025).
4 The chosen encoding should not, in principle, make it more difficult for the network to recognise symmetries of the underlying

learned objective, in this case, the symmetries of the spin-network the {10j} is defined on.
5 The classifier forgetting about previously learned cutoffs after being trained on a higher cutoff.
6 Networks with gated recurrent units (GRUcells) [77].
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