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Abstract

We employ a variety of ideas from geometry and topology to perform three new instanton

computations in gauge theory and string theory.

First, we consider supersymmetric QCD with gauge group SU(Nc) and with Nf flavors.

In this theory, it is well known that instantons generate a superpotential if Nf = Nc − 1

and deform the moduli space of supersymmetric vacua if Nf = Nc. We extend these results

to supersymmetric QCD with Nf > Nc flavors, for which we show that instantons generate

a hierarchy of new, multi-fermion F -terms in the effective action.

Second, we revisit the question of which Calabi-Yau compactifications of the heterotic

string are stable under worldsheet instanton corrections to the effective space-time superpo-

tential. For instance, compactifications described by (0, 2) linear sigma models are believed

to be stable, suggesting a remarkable cancellation among the instanton effects in these the-

ories. We show that this cancellation follows directly from a residue theorem, whose proof

relies only upon the right-moving worldsheet supersymmetries and suitable compactness

properties of the (0, 2) linear sigma model. We also extend this residue theorem to a new

class of “half-linear” sigma models. Using these half-linear models, we show that heterotic

compactifications on the quintic hypersurface in CP4 for which the gauge bundle pulls back

from a bundle on CP4 are stable.

Third, we study Chern-Simons gauge theory on a Seifert manifold M (the total space of

a nontrivial circle bundle over a Riemann surface). When M is a Seifert manifold, Lawrence

and Rozansky have shown from the exact solution of Chern-Simons theory that the partition

function has a remarkably simple structure and can be rewritten entirely as a sum of local
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“instanton” contributions from the flat connections on M . We explain how this empirical

fact follows from the technique of non-abelian localization as applied to the Chern-Simons

path integral. In the process, we show that the partition function of Chern-Simons theory

on M admits a topological interpretation in terms of the equivariant cohomology of the

moduli space of flat connections on M .
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Chapter 1

Introduction

Perturbation theory is a useful tool to describe quantitatively the behavior of weakly-

coupled, interacting quantum systems. However, even at weak coupling, certain important

and intrinsically quantum phenomena cannot be seen in perturbation theory.

As a simple example, consider a single bosonic particle of unit mass which moves along

the real axis in the double-well potential U(x) in Figure 1.1. We assume that the potential

x− x+

U

x

Figure 1.1: Double-well potential

is invariant under the reflection x → −x, so that U(x) = U(−x), and in particular the

Taylor expansions of U(x) about the minima labelled x+ and x− in Figure 1.1 coincide,

U(δx±) =
1
2
ω2 δx2

± + · · · , δx± = ± (x− x±) . (1.0.1)

1
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If we treat the higher order terms which we have omitted from (1.0.1) as perturbations, then

to all orders in ~ the quantum mechanical system possesses a pair of degenerate groundstates

whose wavefunctions are localized in the respective wells of U(x). We denote this pair of

states by |Ω±〉.

On the other hand, one can prove by quite general arguments (see for instance Lecture

1 of [1]) that this quantum system actually has a unique groundstate |0〉, which must arise

from the symmetric, reflection-invariant combination |Ω+〉+ |Ω−〉. Consequently, effects

which are non-perturbative in ~ and which are associated to quantum tunneling between

the wells necessarily lift the degeneracy of the system, which is an important qualitative

effect that cannot be seen at any order in perturbation theory.

As was explained long ago by Polyakov [2] and later amplified by Coleman in Chap-

ter 7 of his beautiful lectures [3] (on which the following exposition is based), the non-

perturbative effects which lift the degeneracy between the states |Ω+〉 and |Ω−〉 can be

understood — and even computed — semi-classically as instanton effects. Such instanton

effects are broadly the subject of this thesis, and as we illustrate here with this toy model,

the corresponding semi-classical analysis of quantum systems can provide powerful insight

into otherwise intractable, non-perturbative phenomena. These semi-classical ideas become

particularly important in the context of string theory or M-theory, for which a complete,

non-perturbative definition of the theory is generally lacking.

1.1 What Is an Instanton?

The essential idea of any instanton computation is simply to apply the stationary phase

approximation (or the method of steepest descent) to compute the Feynman path integral

for a given quantum system in its semi-classical limit. Although at first glance one might not

expect to learn much by using such a crude description of the path integral, the stationary

phase approximation can actually capture quite non-trivial information about the quantum

system.

As a concrete example, let us continue to consider the toy model of a particle moving
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in the double-well potential of Figure 1.1. We wish to compute the splitting in energy

between the groundstate |0〉 and the first excited state |1〉 to leading order in ~. We denote

this splitting by ∆E = E1 − E0, and our goal is to show directly that ∆E is non-zero.

This computation turns out to be very illustrative of the general features of any instanton

computation, so we present it in detail. (The reader who wishes to proceed to matters more

immediately related to the thesis can skip to Section 2.)

Setting Up the Instanton Computation

We first recall how to extract the splitting ∆E from the Feynman path integral de-

scription of this quantum system. As is standard, we denote by |x′〉 the position eigenstate

associated to a given point x′ on the real axis. Then to extract the splitting ∆E from the

path integral, we consider the Euclidean Green’s function describing the propagation of the

particle from an initial point xi to a final point xf over a Euclidean time interval τ . This

propagator has the following path integral description,

〈xf | exp
(
−τ

~
H

)
|xi〉 =

∫ x(τ/2)=xf

x(−τ/2)=xi

Dx(t) exp
(
−1

~
SE

)
. (1.1.1)

Here H is the Hamiltonian associated to the potential U(x), SE is the Euclidean action,

SE =
∫ τ/2

−τ/2
dt

[
1
2
ẋ2 + U(x)

]
, (1.1.2)

and the path integral is formally defined as an integral over all paths x(t) starting at xi at

time t = − τ
2 and ending at xf at time t = τ

2 .

If we know the propagator in (1.1.1), then we can use its expansion over all eigenmodes

|n〉 of H to study the spectrum of energies En, since

〈xf | exp
(
−τ

~
H

)
|xi〉 =

∑
n≥0

exp
(
−τ

~
En

)
〈xf |n〉〈n|xi〉 . (1.1.3)

To extract the splitting ∆E = E1 − E0 from the expression in (1.1.3), we note that the

groundstate |0〉 arises from the reflection-symmetric linear combination of the two pertur-

bative states |Ω±〉, and hence the excited state |1〉 arises from the anti-symmetric linear

combination of these states. In particular, the anti-symmetric state |a〉,

|a〉 = |x+〉 − |x−〉 , (1.1.4)
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is orthogonal to |0〉 but not to |1〉. Similarly, the symmetric state |s〉,

|s〉 = |x+〉+ |x−〉 , (1.1.5)

is orthogonal to |1〉 but not to |0〉. So we see from (1.1.3) that when τ is large,

〈a| exp (−τH/~)|a〉
〈s| exp (−τH/~)|s〉

= c exp
(
−τ

~
∆E

)
+ · · · . (1.1.6)

Here c is an irrelevant constant that arises from the ratio |〈a|1〉|2 · |〈s|0〉|−2, and the ellipses

in (1.1.6) denote terms which are exponentially suppressed relative to the given term at

large τ .

Finally, since the system is reflection-invariant, we note that

〈x+| exp
(
−τ

~
H

)
|x+〉 = 〈x−| exp

(
−τ

~
H

)
|x−〉 ,

〈x+| exp
(
−τ

~
H

)
|x−〉 = 〈x−| exp

(
−τ

~
H

)
|x+〉 .

(1.1.7)

Also, as we will show next, the propagators from x+ to x− and vice versa in the second line

of (1.1.7) are exponentially suppressed at small ~ relative to the propagators from x+ and

from x− back to themselves in the first line of (1.1.7). With these facts, we can approximate

the left side of (1.1.6) as

〈a| exp (−τH/~)|a〉
〈s| exp (−τH/~)|s〉

= 1− 〈x+| exp (−τH/~)|x−〉
〈x−| exp (−τH/~)|x−〉

+ · · · , (1.1.8)

where we again drop terms exponentially suppressed at large τ relative to those appearing

explicitly in (1.1.8). From (1.1.6) and (1.1.8), we take logarithms to conclude that, to

leading order in τ ,
〈x+| exp (−τH/~)|x−〉
〈x−| exp (−τH/~)|x−〉

=
τ

~
∆E + O(τ0) . (1.1.9)

From the path integrals which represent the Green’s functions in (1.1.9), we extract ∆E.

So we set

Z+−(τ) = 〈x+| exp (−τH/~)|x−〉 =
∫ x(τ/2)=x+

x(−τ/2)=x−
Dx(t) exp

(
−1

~
SE

)
,

Z−−(τ) = 〈x−| exp (−τH/~)|x−〉 =
∫ x(τ/2)=x−

x(−τ/2)=x−
Dx(t) exp

(
−1

~
SE

)
.

(1.1.10)
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An Instanton Computation for the Double-Well Potential

So far, we have only described in (1.1.9) how to extract the splitting ∆E from the

propagators of the system. We now compute these propagators semi-classically from their

path integral description in (1.1.10). This computation serves as a canonical example of an

instanton computation.

As we have mentioned, the basic idea of the instanton computation is to apply the

method of steepest descent to compute semi-classically the path integrals appearing in

(1.1.10). In this approximation, the leading contributions to the path integral come from

critical points of the Euclidean action SE , which here correspond to trajectories that satisfy

0 =
δSE
δx

= −ẍ+
dU

dx
. (1.1.11)

This equation (1.1.11) is the equation of motion for a particle that moves in the inverted

potential −U(x) shown in Figure 1.2.

x
x+x−

−U

Figure 1.2: Inverted double-well potential

For instance, if we consider the path integral over trajectories x(t) that satisfy the trivial

boundary conditions x(−τ/2) = x(τ/2) = x−, then the leading semi-classical contribution

to the path integral Z−−(τ) in (1.1.10) comes from the constant trajectory x(t) = x−.

As a much more interesting case, we consider the path integral Z+−(τ) over paths with

the boundary conditions x(−τ/2) = x− and x(τ/2) = x+. Then the leading semi-classical
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contribution to Z+−(τ) comes from the obvious classical trajectory by which the particle

“rolls” from x− to x+ in Figure 1.2. When τ is very large, the energy E′ = 1
2 ẋ

2 − U(x) of

the particle moving in the potential −U(x) is nearly zero, and such trajectories appear as

in Figure 1.3.

x+

x−

t

x

x(t)

Figure 1.3: An instanton solution in the double-well potential

The important feature of the classical trajectory in Figure 1.3 is that it has a kink which

is localized in time. Analytically, this fact follows from the observation that a trajectory

with E′ = 1
2 ẋ

2 − U(x) = 0 satisfies

ẋ =
√

2U(x) , (1.1.12)

and near the minima x±, the potential is well-approximated by

U(δx±) ≈ 1
2
ω2 δx2

± , δx± = ± (x− x±) . (1.1.13)

Hence for x near x+, we see from (1.1.12) and (1.1.13) that the trajectory x(t) approaches

the fixed point x+ exponentially fast,

(x+ − x) ≈ exp (−ωt) , (1.1.14)

and similarly for x−. Because the kink is thus localized in an instant of time, with a width

∼ 1/ω much less than τ , this classical solution is an “instanton”.

Another very important distinguishing feature of the instanton solution is the following.

If we consider the trivial trajectory x(t) = x−, then we immediately see that SE = 0 for this
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classical solution, and hence it attains the absolute minimum of the (manifestly positive)

Euclidean action. In contrast, the instanton solution arises from a higher critical point

of SE with non-zero, finite action. More precisely, if we consider the solution depicted in

Figure 1.3 and we recall the relation (1.1.12), then we compute the Euclidean action I0 of

this instanton as

I0 ≈
∫ ∞

−∞
dt

[
1
2
ẋ2 + U(x)

]
=
∫ ∞

−∞
dt

(
dx

dt

)2

=
∫ x+

x−
dx
√

2U(x) . (1.1.15)

To explain why the finite action I0 of the instanton solution is an essential feature, let us

recall more precisely how we apply the method of steepest descent to approximate the path

integrals Z+−(τ) and Z−−(τ) in (1.1.10). For each classical trajectory x0(t), we parametrize

a neighborhood of this trajectory in the space of all paths as

x(t) = x0(t) +
∑
m

cm xm(t) . (1.1.16)

Here the fluctuating modes xm(t) are a complete set of orthonormal functions which satisfy

the boundary conditions xm(±τ/2) = 0, and the parameters cm are coefficients which specify

an arbitrary such fluctuation about the classical trajectory x0(t).

We now expand the action SE [x(t)] as a functional of the path x(t) to quadratic order

about x0(t), so that

SE [x(t)] ≈ SE [x0(t)] +
1
2

(
δ2SE [x0(t)]
δxmδxn

)
cmcn . (1.1.17)

Because x0(t) is a critical point of the functional SE [x], no linear term appears in (1.1.17).

To obtain the leading semi-classical behavior of the path integral, we just evaluate the

integral over fluctuations about x0(t) in the Gaussian approximation, so that

Z(τ)
∣∣∣
x0(t)

≈ Z0

∫ x(τ/2)=xf

x(−τ/2)=xi

[
dc√
2π~

]
exp

[
−1

~

(
SE [x0(t)] +

1
2

(
δ2SE [x0(t)]
δxmδxn

)
cmcn

)]
,

= Z0 exp
(
−1

~
SE [x0(t)]

) [
det

(
δ2SE [x0(t)]
δxmδxn

)]− 1
2

.

(1.1.18)

Here Z0 is a normalization constant that generally appears when we relate the path integral

measure Dx(t), which is defined implicity by the relation (1.1.1), to the natural measure
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that appears in the Gaussian integral above,[
dc√
2π~

]
≡
∏
m

(
dcm√
2π~

)
. (1.1.19)

So we see from (1.1.18) that the leading contribution from the classical trajectory x0(t)

to the path integral is just determined by its classical action SE [x0(t)], and at the next, one-

loop order, a determinant arises from the Gaussian integral over the variables cm parametriz-

ing the quantum fluctuations about x0(t). For simplicity in writing (1.1.18), we assume

here that the Hessian matrix of second derivatives of SE is positive-definite, implying that

x0(t) is an isolated, locally stable critical point of SE . In particular, since the trivial path

x0(t) = x− with SE = 0 makes the leading contribution to Z−−(τ), and since the non-trivial

instanton solution in Figure 1.3 with SE 6= 0 makes the leading contribution to Z+−(τ), we

immediately conclude that Z+−(τ) is exponentially suppressed relative to Z−−(τ) when ~

is small.

On the other hand, Z+−(τ) is non-zero, and this fact fundamentally leads to the presence

of the non-perturbative splitting ∆E. To prove this assertion, we just apply the semi-

classical result (1.1.18) to compute Z−−(τ) and Z+−(τ) and hence to compute ∆E.

First, from (1.1.18) we can immediately write a formula for Z−−(τ) to leading order in ~.

In this context, an interesting general observation to make is that, besides the contribution

from the constant solution, Z−−(τ) also receives semi-classical contributions from non-

trivial, multi-instanton solutions which appear as in Figure 1.4. In this figure, we consider

time scales τ much longer than the width ∼ 1/ω of a single instanton, so the individual

instantons appear as sharp jumps from one well to the other.

However, we only wish to compute here Z−−(τ) to leading order in ~. If the multi-

instanton solution has N instantons (or kinks), then clearly the classical action of this

solution is NI0, where I0 is the action for a single instanton in (1.1.15). Such multi-

instantons consequently make contributions to Z−−(τ) of order exp (−NI0/~), and these

contributions are exponentially suppressed relative to the contribution from the constant

trajectory x(t) = x− of vanishing action.

Thus, the leading contribution to Z−−(τ) comes from the constant trajectory, and to
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x+

x−

x

t

Figure 1.4: A multi-instanton solution

evaluate its contribution to the path integral we must consider the one-loop determinant

describing fluctuations about x(t) = x−. Expanding the potential U(x) to quadratic order

about x−, we can formally express this determinant as

det

(
δ2SE [x0]
δxmδxn

)
= det

(
− d2

dt2
+ ω2

)
. (1.1.20)

Hence, to leading order in ~,

Z−−(τ) = Z0

[
det

(
− d2

dt2
+ ω2

)]− 1
2

. (1.1.21)

Similarly, the leading semi-classical contribution to Z+−(τ) comes from the instanton

solution in Figure 1.3. However, unlike the constant solution which represents an isolated

critical point of SE , this instanton solution is actually a member of a one-parameter family

of critical points of SE . To explain this fact, we let x̃(t) denote the instanton solution in

Figure 1.3, which crosses the point x = 0 at time t = 0. Because the classical equation of

motion (1.1.11) is invariant under time-translation, when τ is large then for any constant

t0 we can define another instanton solution by x̃(t; t0) ≡ x̃(t− t0).

The parameter t0, which represents the “position” of the kink in time, is thus a collective

coordinate for the instanton solution, and when we compute the instanton contribution to

Z+−(τ) we must integrate over this coordinate t0. All instantons in this family make the
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same contribution to Z+−(τ), so the integral over t0 simply contributes the overall factor∫ τ/2

−τ/2

dt0√
2π~

=
τ√
2π~

. (1.1.22)

As is usual in soliton computations of this sort, the factor 1/
√

~ appears in the measure for

each collective coordinate. This factor arises directly from the corresponding factor in the

measure on the parameters cm in (1.1.19).

Another factor that we must also consider is the one-loop determinant associated to

quantum fluctuations about the instanton solution x̃(t). Formally, this one-loop determinant

is given by

det′
(
δ2SE [x̃(t)]
δxmδxn

)
= det′

− d2

dt2
+
d2U

dx2

∣∣∣∣∣
x̃(t)

 . (1.1.23)

Here the notation “det′” indicates that the zero-mode associated to the collective coordi-

nate t0 of the instanton is omitted from the determinant, since otherwise the determinant

vanishes.

As we indicate, the second derivative of the potential U(x) must be evaluated on the

instanton solution x̃(t) and hence is time-dependent. However, since τ is large, the solution

x̃(t) is essentially constant and equal to x− or x+ for the vast majority of the time. As a

result, the determinant in (1.1.23) for the non-trivial instanton solution essentially reduces

to the corresponding determinant for the trivial solution in (1.1.20), up to a multiplicative

correction to account for the small time interval containing the kink,

det′
(
δ2SE [x0]
δxmδxn

)
= K det

(
− d2

dt2
+ ω2

)
. (1.1.24)

This equation (1.1.24) defines the (dimensionful) constant K, which is independent of τ for

large τ .

Assembling these factors (1.1.22) and (1.1.24), we compute Z+−(τ) at leading order in

~ to be

Z+−(τ) = Z0
τ√

2π~K
exp

(
−I0

~

) [
det

(
− d2

dt2
+ ω2

)]− 1
2

. (1.1.25)

From (1.1.21) and (1.1.25), the ratio of Z+−(τ) to Z−−(τ) is given for small ~ and large τ

by
Z+−(τ)
Z−−(τ)

=
τ√

2π~K
exp

(
−I0

~

)
. (1.1.26)
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Hence from (1.1.9) and (1.1.10) we compute the splitting between the groundstate and the

first excited state to be

∆E =
√

~
2πK

exp
(
−I0

~

)
. (1.1.27)

In particular, ∆E is non-zero, and the leading contribution to the splitting arises semi-

classically from the instanton solution.

1.2 An Overview of the Thesis

In the rest of the thesis, we perform three new instanton computations in gauge theory and

string theory. The basic philosophy of an instanton computation in these quantum systems

with infinitely-many degrees of freedom is exactly the same as in the single-particle toy

model: we simply compute a path integral by summing over the semi-classical contributions

from suitable classical solutions.

More precisely, the three theories in which we perform instanton computations areN = 1

supersymmetric QCD, heterotic string theory compactified to four dimensions on a Calabi-

Yau threefold, and Chern-Simons gauge theory on a three-manifold. We devote Chapters

2, 3, and 4 of the thesis to the study of these theories respectively, and in each chapter we

provide an introduction to our work therein. However, we find it useful to include here a

brief overview of the main results in each chapter.

The material in Chapters 2, 3, and 4 of this thesis is based on joint work with Edward

Witten and has appeared in [4–6].

1.2.1 Instantons in Supersymmetric QCD

In Chapter 2, we consider supersymmetric QCD (or SQCD) with gauge group SU(Nc) and

with Nf flavors, each flavor being a massless chiral multiplet transforming in the direct sum

of the fundamental plus the anti-fundamental representations of the gauge group. Our main

result is to show that, in the regime Nf > Nc, supersymmetric instantons generate a hierar-

chy of new, multi-fermion F -terms in the low-energy effective action of this theory. Among
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other interactions, such F -terms describe effective vertices for 2(Nf −Nc)+4 fermions, and

hence the name.

These new instanton effects are quite subtle, as they do not change the classical geometry

of the moduli space of supersymmetric vacua and do not qualitatively alter the low-energy

physics. Nonetheless, they naturally generalize two famous and much more drastic instanton

effects which occur in SQCD with Nf = Nc − 1 and with Nf = Nc flavors. In the remainder

of this section, we briefly review these two basic examples.

The Affleck-Dine-Seiberg Superpotential

We begin by considering SQCD with Nf = Nc − 1 flavors. As shown by Affleck, Dine,

and Seiberg [7], supersymmetric instantons in this theory generate a superpotential which

completely lifts the moduli space and dynamically breaks supersymmetry. These instan-

tons in SQCD naturally generalize the self-dual or anti-self-dual solutions of pure Yang-Mills

theory first considered by Belavin, Polyakov, Schwartz, and Tyupkin [8], and the Affleck-

Dine-Seiberg computation is a supersymmetric extension of the foundational instanton com-

putation by ’t Hooft [9] in non-supersymmetric QCD.

We will not review the details of the Affleck-Dine-Seiberg instanton computation here.

However, we will review the most important feature of this computation, which is the fact

that the form of any superpotential term in SQCD with Nf < Nc flavors is completely

determined by the symmetries of the theory and holomorphy. We later apply this general

analysis to the multi-fermion F -terms we consider in Chapter 2.

We first introduce the notation Qia and Q̃ai to denote the quark and the anti-quark

chiral superfields in SQCD, where a = 1, . . . , Nc is a color index and i = 1, . . . , Nf is a

flavor index. In the regime Nf < Nc, all gauge-invariant chiral operators that can be made

from the superfields Qia and Q̃ai are functions of the composite meson superfields M i
j ,

M i
j = QiaQ̃

a
j . (1.2.1)

In particular, no chiral baryons or anti-baryons are present in SQCD in the regime Nf < Nc.

Any superpotential W that could be generated is consequently a function of the mesons
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M i
j .

Of course, the superpotential W cannot be an arbitrary function of M i
j but must respect

the global symmetries of SQCD. Besides the SU(Nc) gauge symmetry, SQCD with Nf

flavors has a large group of non-anomalous global symmetries, which is given by

SU(Nf )× SU(Nf )× U(1)B × U(1)R . (1.2.2)

Here U(1)B is a baryon number symmetry and U(1)R is anR-symmetry. The superpotential

W must be invariant under the subgroup SU(Nf )× SU(Nf )× U(1)B, and W must have

charge +2 under the R-symmetry. Furthermore, SQCD has an anomalous axial U(1)A

symmetry. This anomalous symmetry imposes an additional selection rule on the form

of W once we consider the standard holomorphic coupling scale Λ to transform under its

action. We summarize below the action of these symmetries on the fields Qia, Q̃
a
i , and the

coupling Λ.

SU(Nc) SU(Nf ) SU(Nf ) U(1)B U(1)A U(1)R

Qia Nc Nf 1 1 1 1− Nc
Nf

Q̃ai Nc 1 Nf −1 1 1− Nc
Nf

Λ3Nc−Nf 1 1 1 0 2Nf 0
(1.2.3)

The quantity Λ3Nc−Nf that appears in (1.2.3) is particularly natural, since it is precisely

the instanton counting parameter in SQCD with gauge group SU(Nc) and with Nf flavors.

That is, Λ3Nc−Nf plays a role analogous to the classical factor exp (−I0/~) in the toy model

we considered earlier.

To fix the form of W , we observe that the only SU(Nf )× SU(Nf ) invariant function

of M i
j is the determinant detM , or a power thereof. The condition that W have R-charge

+2 determines the power of detM that can appear, and the condition that W be invariant

under the axial symmetry determines the corresponding power of Λ. As a result, any

non-perturbative superpotential in SQCD with Nf < Nc flavors necessarily takes the form

W =

[
Λ3Nc−Nf

detM

] 1
Nc−Nf

. (1.2.4)
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In particular, for the case Nf = Nc − 1, the Affleck-Dine-Seiberg superpotential is

W =
Λ3Nc−Nf

detM
, Nf = Nc − 1 . (1.2.5)

We note that in precisely this case an integral power of the instanton-counting parameter

Λ3Nc−Nf appears in (1.2.4). Indeed, the superpotential (1.2.5) depends on a single power

of this parameter. Hence this superpotential can be generated by a single instanton, and

the main result of [7] is to show that a single instanton does make a non-zero contribution

to it.

By considering a general supersymmetric mass deformation of SQCD, one can also de-

duce that the superpotential for general Nf < Nc in (1.2.4) is generated non-perturbatively,

though not by simple instanton effects except in the special case Nf = Nc − 1. The super-

potential in (1.2.4) has a drastic effect on the infrared structure of SQCD with Nf < Nc

flavors. For any theory with global N = 1 supersymmetry, a supersymmetric vacuum must

be a critical point of W , at which dW = 0. Yet the Affleck-Dine-Seiberg superpotential in

(1.2.4) has no critical points away from M →∞. Thus, the superpotential lifts completely

the moduli space of supersymmetric vacua and dynamically breaks supersymmetry.

The Complex Structure Deformation of the Moduli Space

The non-perturbative superpotential in (1.2.4) is only generated in SQCD in the regime

Nf < Nc, and one can prove, again using symmetries and holomorphy, that no superpoten-

tial can be generated in SQCD when Nf ≥ Nc. For instance, if we consider the expression

for W in (1.2.4), then for Nf < Nc we see that this expression vanishes in the weak-coupling

limit Λ→ 0 as it must; for Nf ≥ Nc, this expression does not vanish as Λ→ 0 and hence

cannot be generated.

However, as observed by Seiberg [10] (see also [11] for a related analysis), a very in-

teresting and somewhat more subtle instanton effect still occurs in SQCD with Nf = Nc

flavors. In this case, the instanton does not generate a superpotential in the low-energy

effective action, but it does deform the complex structure of the classical moduli space of

supersymmetric vacua. This result is essential for our work in Chapter 2, so we briefly
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review it here.

To distinguish the classical from the quantum moduli space, we introduce the notation

Mcl for the classical moduli space of supersymmetric vacua, and we letM denote the exact,

quantum moduli space. In general, the classical moduli spaceMcl of SQCD is parametrized

by the expectation values of the chiral, composite meson and baryon operators in this theory.

However, these expectation values are not arbitrary but satisfy a set of classical constraints

that follow immediately from the definition of the composite mesons and baryons in terms

of the quarks Qia and the anti-quarks Q̃ai .

The classical moduli space of the theory with Nf = Nc flavors is particularly simple, as

it can be described with only a single constraint. Besides the mesons M i
j in (1.2.1), SQCD

with Nf = Nc flavors possesses a single baryon B and a single anti-baryon B̃, which are

given by

B = εi1···iNf
εa1···aNc Qi1a1

· · ·Q
iNf
aNc

, B̃ = ε
i1···iNf εa1···aNc

Q̃a1
i1
· · · Q̃aNc

iNf
. (1.2.6)

Here the ε-tensors denote the standard invariant, anti-symmetric tensors of the special

unitary group.

The expectation values of the mesons M i
j , the baryon B, and the anti-baryon B̃ are not

arbitrary but satisfy the obvious classical constraint,

detM −B B̃ = 0 . (1.2.7)

Hence the classical moduli space Mcl is a hypersurface parametrized by all expectation

values of M i
j , B, and B̃ consistent with the constraint (1.2.7).

As shown by Seiberg [10], the classical constraint (1.2.7) is modified in the full quantum

theory to become

detM −B B̃ = Λ2Nc . (1.2.8)

The form of this deformation is fixed completely by the global symmetries of SQCD and by

dimensional analysis. The deformation in (1.2.8) does not alter the asymptotic structure of

the moduli space far from the origin, where the theory is weakly-coupled, but it drastically
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alters the structure at the origin. In particular, the deformation (1.2.8) removes the conical

singularity at the origin ofMcl which is associated to the unbroken classical gauge symmetry

at that point, and the quantum moduli spaceM defined by the constraint (1.2.8) is smooth.

Physically, the disappearance of the singularity in the classical moduli space is associated

to confinement, since in a confining vacuum massless gluons cannot be seen.

Schematically, this deformation from Mcl to M appears as in Figure 1.5.

=⇒

Mcl M

Figure 1.5: Quantum deformation of the SQCD moduli space

As Seiberg noted, the deformation from Mcl to M can also be understood as a one-

instanton effect. This interpretation is suggested by the fact that the deformation in (1.2.8)

depends on precisely one power of the instanton-counting parameter Λ2Nc appropriate for

SQCD with Nf = Nc flavors. We check this fact directly in Chapter 2, where we actually

perform an instanton computation to demonstrate this quantum effect.

1.2.2 Worldsheet Instantons in Heterotic String Theory

In Chapter 3, we study heterotic string theory compactified to four-dimensional Minkowski

space on a Calabi-Yau threefold X, with a stable, holomorphic gauge bundle E over X.

With these conditions on X and E, the background preserves N = 1 supersymmetry in

four dimensions, and the worldsheet sigma model generically has (0, 2) supersymmetry.

Associated to the choices of X and E are various continuous parameters which describe
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the classical moduli space of the heterotic compactification. For instance, we must choose a

complex structure on X to specify it as a complex manifold, and we must choose a Kähler

class on X to fix its Ricci-flat metric. This Kähler class is naturally complexified once we

choose a background configuration for the heterotic B-field. Finally, we must choose the

complex structure on the bundle E. In the four-dimensional, low-energy effective action

that describes the heterotic compactification, these complex moduli associated to the pair

(X,E) are respresented by a set of light chiral superfields which are singlets under the

unbroken gauge group.

We have described the classical moduli space of this compactification, but as in the

example of SQCD with Nf < Nc flavors, quantum effects can drastically change the pic-

ture. Just as in SQCD, instantons can contribute to a superpotential for the singlet chiral

superfields that lifts flat directions on the moduli space and, in the case of a theory with

local N = 1 supersymmetry, generates a non-zero cosmological constant.

The instantons which we consider in Chapter 3 are worldsheet instantons, and one nice

feature of these instantons is that they can be studied perturbatively in the string genus ex-

pansion. As shown by Dine, Seiberg, Wen, and Witten [12], the supersymmetric worldsheet

instantons which can contribute to a superpotential are those described by (nontrivial)

holomorphic maps Φ : Σ −→ X from the string worldsheet Σ to the Calabi-Yau target

space X. More specifically, non-renormalization theorems imply that worldsheet instanton

contributions to the background superpotential can only arise at string tree level, meaning

that the string worldsheet Σ has genus zero. Thus, if X contains a genus zero holomorphic

curve C, worldsheet instantons which wrap C can potentially contribute to a superpotential

for the moduli of the compactification.

In the simplest case that C is a smooth, isolated, genus zero holomorphic curve, then

the leading instanton contribution from C to the background superpotential takes the form

W (C) = exp
(
−A(C)

2πα′
+ i

∫
C
B

)
× (1-Loop) , (1.2.9)

where A(C) denotes the area of C in the Calabi-Yau metric on X, B is the heterotic B-

field, and α′ is the string tension. The argument of the exponential in W (C) is just the
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classical Euclidean action of a string worldsheet which wraps once about C, and we have

not made the one-loop determinants that multiply this classical factor explicit. (We will

be quite explicit about these one-loop factors in Chapter 3.) The important feature of this

expression for W (C) is simply that such a contribution to the superpotential clearly induces

a potential for the Kähler modulus of X, since this Kähler modulus determines the area

of C appearing in (1.2.9). So if worldsheet instantons make a non-zero contribution to the

superpotential, that contribution has the drastic effect of lifting the Kähler modulus of the

compactification and destabilizing the model.

In this context, a natural question to ask is whether any N = 1 supersymmetric, Calabi-

Yau compactifications of the heterotic string are actually stable against worldsheet instan-

ton corrections. Certainly some more or less trivially stable examples are known. For

instance, if E = TX, then the worldsheet supersymmetry algebra is enhanced from (0, 2)

to (2, 2) supersymmetry, and the two extra left-moving supersymmetries cause the one-loop

determinants that appear in W (C) to vanish. Hence in such a model, the superpotential

contribution from each holomorphic curve C identically vanishes.

On the other hand, Silverstein and Witten [13] (and later Basu and Sethi [14]) have

argued that general compactifications described by (0, 2) linear sigma models are stable

against worldsheet instanton corrections. In such models, the Calabi-Yau threefold X has

many holomorphic curves which make contributions to the superpotential, and the result

of [13] implies that a miraculous cancellation must occur among all the contributions from

the individual curves.

Our main result in Chapter 3 is to directly explain this cancellation among instanton

effects as a consequence of a residue theorem, whose proof relies only upon the right-moving

worldsheet supersymmetries and suitable compactness properties of the (0, 2) linear sigma

model. We also extend our residue theorem to a new class of “half-linear” sigma models.

Using these half-linear models, we show for instance that heterotic compactifications on

the quintic hypersurface in CP4 for which the gauge bundle pulls back from a bundle on

CP4 are stable. Finally, we apply similar ideas to compute the superpotential contributions
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from families of membrane instantons in M-theory compactifications on manifolds of G2

holonomy.

1.2.3 Chern-Simons Theory and Localization

In Chapter 4, we study Chern-Simons gauge theory on a three-manifold M . This theory is

described by the following action for the gauge field A,

CS(A) =
k

4π

∫
M

Tr
(
A∧dA+

2
3
A∧A∧A

)
. (1.2.10)

Here k is an integer, the level of the theory, and Tr is a suitably normalized, negative-

definite, invariant quadratic form on the Lie algebra of the gauge group. The classical

solutions of this gauge theory are simply the flat connections on M , and the Chern-Simons

action is notable for the fact that, unlike the Yang-Mills action, no metric on M is necessary

to define it. Hence Chern-Simons gauge theory serves as a sterling example of a topological

quantum field theory.

A remarkable fact about Chern-Simons theory is that it is exactly solvable, as shown by

Witten in [15]. This solution relies on deep connections between Chern-Simons theory on

M and two-dimensional rational conformal field theory [16]. On the other hand, the exact

solution of Chern-Simons theory bears little apparent relation to the standard computational

techniques of perturbative field theory, and a long-standing mathematical puzzle has been

to understand how the exact solution of Chern-Simons theory is related to its perturbative

expansion.

One elegant result in this direction has recently been obtained by Lawrence and Rozan-

sky [17]. In the special case that the three-manifold M is a Seifert manifold (the total space

of a nontrivial circle bundle over a Riemann surface), these authors have shown from the

exact solution of Chern-Simons theory that the partition function has a remarkably simple

structure and can be rewritten entirely as a sum of local “instanton” contributions from the

flat connections on M .

In Chapter 4, we explain how this empirical fact follows from the semi-classical technique

of non-abelian localization as applied to the Chern-Simons path integral. In the process,
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we show that the partition function of Chern-Simons theory on M admits a topological

interpretation in terms of the equivariant cohomology of the moduli space of flat connections

on M .

Abelian Localization and the Duistermaat-Heckman Formula

In Chapter 4, we provide a self-contained review of non-abelian localization, a technique

introduced by Witten [18] to evaluate exactly a certain class of symplectic integrals. This

localization technique is essentially a sophisticated version of the stationary phase approxi-

mation, and in this sense we can rephrase our main result as the statement that, when M is

a Seifert manifold, the stationary phase approximation to the Chern-Simons path integral

is exact.

Before we delve into the technical analysis of Chapter 4, we pause to present here a simple

example of localization. As a model for the path integral, we consider a finite-dimensional

integral defined in terms of the following data. We let X be a compact symplectic manifold,

with symplectic form Ω. We assume that the group U(1) acts on X in a Hamiltonian

fashion, with Hamiltonian (or moment map) µ. Finally, we let V be a vector field on X

that generates the action of U(1). By definition, the Hamiltonian µ associated to V satisfies

ιV Ω = dµ , (1.2.11)

where ιV is the interior product operator which acts on forms by contraction with V .

Using this data, we consider the following symplectic integral over X,

Z(t) =
∫
X

exp (Ω − itµ) . (1.2.12)

Here t is a parameter, and the term exp (Ω) is to be interpreted by expanding the exponential

in series and picking out the term of proper degree to integrate over X. If X has dimension

2n, then this term will be Ωn/n!, the usual symplectic measure on X.

A classic result of Duistermaat and Heckman [19] states that the stationary phase ap-

proximation to Z(t) is exact. Thus all contributions to Z(t) arise from the critical points of

the Hamiltonian µ, at which dµ = 0. From the relation (1.2.11) and the non-degeneracy of
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Ω, we see that the generating vector field V vanishes at precisely these critical points, which

are the fixed points of the U(1) action on X. Thus, the Duistermaat-Heckman formula very

broadly asserts that Z(t) can be written as a sum over local contributions from the fixed

points of the U(1) action,

Z(t) =
∑
p

Zp(t) . (1.2.13)

For simplicity in writing (1.2.13), we assume that all the fixed points p are isolated, and the

sum is a finite sum over these points. By definition, Zp(t) is the local contribution to Z(t)

from the point p as evaluated in the stationary phase approximation. As beautifully ex-

plained by Atiyah and Bott [20], the result of Duistermaat and Heckman is best understood

as an example of abelian localization, since the formula (1.2.13) fundamentally asserts that

all contributions to Z(t) arise locally from fixed points of U(1).

To make the formula (1.2.13) more explicit, we need to evaluate the local quantities

Zp(t). This computation is a toy model for the more involved computations in Chapter 4,

so we find it useful to present here. Our exposition follows the very elegant discussion in §7

of [20].

We first consider the local action of U(1) near a given fixed point p, and to leading

order we need only consider the action on the tangent space T ≡ TpX at p. Since p is an

isolated fixed point, U(1) acts freely on the vector space T , which therefore decomposes

into two-dimensional, irreducible represenations of U(1). We write

T =
n⊕
j=1

Tj , (1.2.14)

where n = 1
2 dimX and where each Tj is an irreducible representation of U(1) associated

to an integer charge qj 6= 0.

Without loss, we assume that the generating vector field V takes the form

V =
n∑
j=1

qj

(
xj

∂

∂yj
− yj

∂

∂xj

)
. (1.2.15)

Here (xj , yj) are real coordinates on each representation Tj which are adapted to the action

of V as above. By exponentiation, these coordinates on Tj extend to coordinates on a

neighborhood of p in X.
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To evaluate Zp(t), we must determine local expressions for the symplectic form Ω and

the Hamiltonian µ at p. Because Ω is invariant under U(1), we can assume that the pairs

(xj , yj) determine canonical coordinates at p, and Ω takes the local form

Ω =
n∑
j=1

dxj∧dyj + · · · . (1.2.16)

Here we drop higher order terms in Ω which vanish at p; these terms are not relevant when

we evaluate the integral in the leading, Gaussian approximation. Given the local form of V

and of Ω at p, the Hamiltonian relation (1.2.11) then implies that µ takes the local form

µ = µ(p) −
n∑
j=1

qj

(
1
2
x2
j +

1
2
y2
j

)
+ · · · , (1.2.17)

where again we drop higher order terms in (xj , yj).

Thus, at leading order near p, we evaluate Zp(t) in the Gaussian approximation as

Zp(t) = exp [−itµ(p)]
n∏
j=1

∫
dxj∧dyj exp

[
itqj

(
1
2
x2
j +

1
2
y2
j

)]
,

= exp [−itµ(p)]
(

2π
it

)n 1
ep
, ep =

n∏
j=1

qj .

(1.2.18)

Hence if U(1) acts with isolated fixed points on X, we can explicitly evaluate Z(t) by

summing the local expression in (1.2.18) over the fixed points.

In Chapter 4, a large part of the analysis is devoted to performing a similar semi-classical

computation to evaluate the local contributions to the Chern-Simons path integral from flat

connections on M . In the example here, the interesting dependence of Zp(t) on the local

geometry near p is encoded in the one-loop factor ep. This factor has a very interesting

topological interpretation, as it is the equivariant Euler class of T interpreted as a U(1)-

equivariant bundle over p. We will explain this statement in Section 5.3 of Chapter 4, where

equivariant Euler classes also appear naturally in the non-abelian localization formula.

An Simple Example of the Duistermaat-Heckman Formula

Finally, we give a simple example of the Duistermaat-Heckman formula. In our example,

we take X to be CP1, which we endow with the standard angular coordinates (θ, φ), where θ
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runs from 0 to π and φ runs from 0 to 2π. We also choose the standard symplectic structure

on CP1, with symplectic form Ω = d(cos θ)∧dφ.

Finally, we consider the U(1) action on X which is generated by the vector field

V = ∂/∂φ. This U(1) action has two fixed points, at the poles θ = 0 and θ = π. Since

ιV Ω = −d(cos θ), we see that, up to an arbitrary additive constant, the Hamiltonian for

this action is

µ = − cos θ . (1.2.19)

The Duistermaat-Heckman integral Z(t) is thus given explicitly by

Z(t) =
∫
d(cos θ)∧dφ exp (it cos θ) ,

=
2π
it

[exp (it) − exp (−it)] .
(1.2.20)

Of course, this integral is an elementary integral, and we evaluate it directly in passing to

the second line of (1.2.20). As implied by the Duistermaat-Heckman formula, Z(t) is the

sum of two terms, each of the form in (1.2.18), which represent the local contributions from

the two fixed points at θ = 0 and θ = π. A relative sign arises between these contributions

because in one case the local U(1) action at the fixed point is right-handed with respect to

the orientation induced by Ω and in the other case it is left-handed.



Chapter 2

New Instanton Effects in

Supersymmetric QCD

2.1 Introduction

Supersymmetric QCD with gauge group SU(Nc) and with Nf massless flavors is among

the simplest and most studied of four dimensional N = 1 supersymmetric gauge theories.

In particular, due to holomorphy and the large amount of symmetry this theory possesses,

many properties of its low energy vacuum structure are amenable to exact analysis. Yet

the theory still displays a wealth of interesting non-perturbative phenomena, including

the generation of a superpotential [7,21–24], a deformation of the complex structure of the

moduli space of supersymmetric vacua [10] (see also [11] for a related analysis), and electric-

magnetic duality [25]. Although we briefly reviewed a few aspects of this story in Chapter

1, we refer the reader to [26,27] for a more complete account.

As we did explain in Chapter 1, some of these nonperturbative phenomena, such the

generation of a superpotential when Nf = Nc − 1 and the deformation of the moduli space

when Nf = Nc, can be understood semi-classically as instanton effects. On the other hand,

SQCD with Nf > Nc flavors possesses supersymmetric instantons in precise analogy to the

instantons for Nf = Nc − 1 and Nf = Nc, yet the instantons for Nf > Nc neither generate a

24
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superpotential nor deform the classical moduli space. As a result, one might ask, “So what

are these instantons good for?” In this chapter, our purpose is to answer this question. To

simplify the technical analysis, we focus on the case Nc = 2, but we believe that our results

generalize for arbitrary Nc.

Thus, in SU(Nc) SQCD with Nf > Nc flavors, we find that instantons generate a new

class of F -terms in the low-energy effective action of the theory. Among other interactions,

these F -terms generate vertices with 2(Nf −Nc) + 4 fermions, and for this reason we call

them “multi-fermion” F -terms. These new F -terms fit into a hierarchy which naturally

generalizes the superpotential that appears in the theory with Nf = Nc − 1 flavors and the

four-fermion (or two-derivative) F -term that describes the complex structure deformation

in the theory with Nf = Nc flavors. In fact, we were originally motivated to consider such

multi-fermion F -terms precisely as a means to describe systematically a general deformation

of the moduli space.

One reason that these instanton effects have gone unnoticed for so long is that for

Nf > Nc the multi-fermion F -terms have no effect on the classical geometry of the moduli

space and no qualitative effect on the physics. (However, if we turn on supersymmetric

bare masses for some of the flavors, then these F -terms induce the usual instanton effects

in the cases Nf = Nc and Nf = Nc − 1.) As a result, such F -terms have not been much

considered in the context of N = 1 supersymmetric theories in four dimensions. However,

despite the novelty of the multi-fermion F -terms in four dimensions, these F -terms are

closely related to well-known chiral operators that appear in the context of two-dimensional,

N = (2, 2) supersymmetric sigma models. In the two-dimensional context, these operators

are the generators of the (c, c) chiral ring, or equivalently the ring of local observables of

the topological B model.

Because the multi-fermion F -terms themselves are novel, we begin our discussion in

Section 2 with some general remarks on multi-fermion F -terms in N = 1 supersymmetric

effective actions.

We next specialize in Section 3 to the case of SQCD with gauge group SU(2). We
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show that the symmetries of SU(2) SQCD suffice to fix uniquely the possible form of any

multi-fermion F -term correction to the effective action. Here we exploit the fact that, in the

special case of SQCD with gauge group SU(2), the flavor symmetry is enhanced because

both the quarks and the anti-quarks transform in the fundamental representation of the

gauge group.

Finally, we show in Section 4 that these multi-fermion F -terms are indeed generated in

the effective action of SQCD. We do this in three ways, each of which casts a different light

on the origin of these unusual F -terms. First, we perform a direct instanton computation

as in [7] to show that the multi-fermion F -terms are generated. Second, in the special case

that Nc = 2, Nf = Nc + 1 = 3, we show that the multi-fermion F -terms arise from a tree-

level Feynman diagram computation in the Seiberg dual description of the theory. Third,

we consider the supersymmetric mass deformation of SQCD, and we show that the multi-

fermion F -terms give rise by renormalization group flow to the standard superpotential

in the theory with Nf = Nc − 1 flavors. As mentioned above, we believe these analyses

generalize from the case Nc = 2 to arbitrary Nc.

This chapter of the thesis is based on [4].

2.2 General Remarks on Multi-Fermion F -Terms

In this section, we describe the general structure of multi-fermion F -terms in N = 1 super-

symmetric effective actions. However, before discussing generalities, we motivate our study

of these interactions by considering a very specific and well-known example: the complex

structure deformation of the moduli space M of vacua that occurs in SU(2) SQCD with

two flavors. As in Chapter 1, we writeMcl for the classical moduli space of supersymmetric

vacua, and we write M for the exact quantum moduli space.

2.2.1 Example: SU(2) SQCD With Four Doublets

As we apply extensively later, for the gauge group SU(2) the fundamental and the anti-

fundamental representations coincide, so that SU(2) gauge theory with Nf = n flavors is
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described more symmetrically as a theory with 2n doublets, or equivalently with chiral

multiplets transforming as 2n copies of the two-dimensional representation 2. To avoid the

perhaps confusing terminology of “flavors” for SU(2), we just write the number of doublets

as 2n. (Because of a global anomaly, the number of chiral doublets in SU(2) gauge theory

must be even [28].)

To establish notation for the rest of the chapter, we combine the matter fields into one

chiral multiplet,

Qia = qia + θψia + · · · , (2.2.1)

with a = 1, 2 being the color index for the 2 of the SU(2) gauge symmetry, and i = 1, . . . , 2n

being the flavor index for the 2n of the global SU(2n) flavor symmetry. Of course, we have

indicated in (2.2.1) the component expansion of Qia, including a scalar field qia and a Weyl

fermion ψia.

We also introduce the gauge invariant, composite meson chiral superfield M ij , given by

M ij = εabQiaQ
j
b. (2.2.2)

The meson M ij is clearly anti-symmetric in the flavor indices i and j and so transforms in

the skew representation ∧2(2n) of SU(2n).

Using the mesons M ij , we can succinctly describe the classical moduli space Mcl of

supersymmetric vacua as being parametrized by arbitrary expectation values of M ij subject

to the constraint

M∧M = 0 , (2.2.3)

or more explicitly,

εi1j1i2j2···injn M
i1j1M i2j2 = 0 . (2.2.4)

This system of quadratic equations (2.2.3) simply enforces the condition that

rank(M) ≤ 2 , (2.2.5)

as follows from the definition (2.2.2) of M ij as the skew product of two quark superfields.
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Now, if the number of doublets is 2n = 4, the classical constraint (2.2.3) reduces to a

single quadratic equation

εi1j1i2j2M
i1j1M i2j2 = 0 (2.2.6)

which must be satisfied by M ij . Upon introducing suitable complex linear combinations

mI , I = 1, . . . , 6, of the six independent components M ij , i, j = 1, . . . , 4, so as to diagonalize

the nondegenerate quadratic form that appears on the left hand side of (2.2.6), the classical

equation (2.2.6) becomes
6∑
I=1

(
mI
)2

= 0 . (2.2.7)

The classical moduli space Mcl is thus smooth away from the origin. Its singularity at

the origin is a signal of the unbroken gauge symmetry. The mI transform in the vector

representation of the SU(4) or SO(6) flavor symmetry of the SU(2) gauge theory with four

doublets.

The classical moduli space Mcl whose structure we have just reviewed is deformed in

the quantum theory [10] and does not coincide with the quantum moduli space of vacuaM.

To describe this deformation, we introduce the usual holomorphic coupling scale Λ. Then,

in the quantum theory, the moduli space M is described by the modified constraint

M∧M = Λ4 , (2.2.8)

or equivalently, with ε ∼ Λ4,
6∑
I=1

(
mI
)2

= ε . (2.2.9)

Up to a multiplicative constant, the form of the deformation (2.2.8) is determined completely

by the SU(4) flavor symmetry and dimensional analysis. Of course, as a result of the

deformation, the singularity of Mcl at the origin is removed and M is a smooth complex

manifold.

Representing the Deformation in the Effective Action

But precisely how does the geometric deformation (2.2.8) appear physically as a quantum

correction to the effective action of SQCD?
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In this very simple example, one way to implement the quantum deformation in the low

energy effective theory is to introduce a massive field Σ and a superpotential W into the

effective action,

W = Σ
(
M∧M − Λ4

)
, (2.2.10)

which thus takes the form

S =
∫
d4x d4θ K

(
M,M ; Σ,Σ

)
+
∫
d4x d2θ W + c.c., (2.2.11)

where K is the Kähler potential. At a critical point of W , we find that Σ = 0 and

M ∧M = Λ4, so the quantum moduli space is reproduced by this model. In this descrip-

tion, the quantum correction to the effective action is clearly an F -term, being a correction

∆W = −Λ4Σ to the effective superpotential. In the weak-coupling limit Λ → 0, this term

vanishes and the constraint reduces to the classical one M ∧M = 0.

The description we have just given is useful for this particular example, but it is an

extrinsic rather than an intrinsic description of the deformation. In the extrinsic description

of the classical moduli space Mcl and its deformation M, we use a linear sigma model to

describe these spaces in terms of unconstrained linear fields Σ and mI , I = 1, . . . , 6, together

with a superpotential. However, as is usual for linear sigma models, not all of the linear

fields are massless at generic points (away from the origin). In this example, of the seven

total fields, we see that in the generic vacuum two, namely Σ and a linear combination of

the mI , are massive, while five components of mI are massless and parametrize intrinsically

the moduli space. Obviously, our deformation ∆W = −Λ4Σ involves the massive fields. In

an analogous but different example, the moduli space might not admit such a simple, linear

sigma model description. For this reason, we want to describe the deformation intrinsically

in a low-energy effective action constructed only from the massless fields.

To find such an intrinsic description, we could just integrate out the massive fields in the

linear sigma model to convert ∆W into an effective interaction for massless fields only. In

doing so, we work modulo D-terms and attempt to determine what F -terms are generated.

This computation is both simple and instructive and we will perform it, along with an

analogous computation in the theory with six doublets, in Section 4.2.
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However, we can alternatively use supersymmetry (and a bit of geometry) to determine

what F -terms are possible on Mcl. At least away from the origin of Mcl, the low-energy

effective action of this theory is intrinsically described as an N = 1 supersymmetric, nonlin-

ear sigma model governing maps φ : M4 −→Mcl from Minkowski space M4 toMcl. From

this perspective, the perturbative effective action is the usual sigma model action,

S =
∫
d4x d4θ K

(
Φi,Φi

)
. (2.2.12)

Here Φi and Φi are chiral and anti-chiral superfields whose lowest components φi and φi

are local holomorphic and anti-holomorphic coordinates onMcl, and K is again the Kähler

potential associated to some Kähler metric ds2 = gii dφ
idφi onMcl. (In this discussion, ‘i’

is not a flavor index but an index parametrizing local coordinates onMcl.) The reason that

we consider a sigma model whose target is Mcl is that this is the low energy structure in

perturbation theory. We want to know how this description may be modified by instantons,

in other words, what F -term onMcl may be induced by instantons.

Of course, we also know the quantum effective action: it is the same nonlinear sigma

model but with target spaceM, as opposed toMcl, and in this language the F -term must

describe the complex structure deformation of Mcl into M. So let us discuss what terms

in the effective action of an N = 1 sigma model with a given target (in our case, Mcl)

describe a deformation of the complex structure of the target. We have already described

this deformation extrinsically, as a modification of the algebraic equations which define the

target. To describe the deformation intrinsically, we instead consider it as a modification

of the ∂ operator of the target.

In general, a deformation of the complex structure on Mcl is described as a change in

the ∂ operator on Mcl of the form

∂j 7−→ ∂j + ωj
i ∂i . (2.2.13)

Here ωj
i is a representative of a Dolbeault cohomology class in H1(Mcl, TMcl), whose

elements parametrize infinitesimal deformations of Mcl. We use standard notation, with

TMcl and Ω1
Mcl

denoting the holomorphic tangent and cotangent bundles of Mcl.
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We can equally well represent the change (2.2.13) in the ∂ operator onMcl as a change

in the dual basis of holomorphic one-forms dφi,

dφi 7−→ dφi − ωj
i dφj . (2.2.14)

As a result, under the deformation, the metric on Mcl changes as

gii dφ
idφi 7−→ gii

(
dφi − ωj

i dφj
)
dφi , (2.2.15)

so that, upon deformingMcl, the metric picks up a component of type (0, 2) when written

in the original holomorphic and anti-holomorphic coordinates. (Of course, there is also a

complex conjugate term of type (2,0).)

Since we know how the metric on Mcl changes when Mcl is deformed, we can imme-

diately deduce that the corresponding correction to the sigma model action is generally of

the form

δS =
∫
d4x d2θ ωi j DΦi ·DΦj =

∫
d4x ωi j dφ

i dφj + · · · , (2.2.16)

with

ωi j =
1
2

(
gii ωj

i + gij ωi
i
)
. (2.2.17)

Here D ≡ Dα̇ is the usual spinor covariant derivative on superspace, and we have introduced

the shorthand notation “·” for the contraction of spinor indices (so for any two spinors η

and ζ, η · ζ is shorthand for ηα̇ζα̇). We have also performed the fermionic integral over θ in

(2.2.16), from which we see that the leading bosonic term reproduces the correction to the

metric in (2.2.15).

Of course, the most important property of δS — and the primary motivation for this

work — is the fact that δS is an F -term. But δS is not a correction to the superpotential

— it generates terms with two derivatives of bosons, or with four fermions. Because of the

latter contribution, δS is a special case of what we call a multi-fermion F -term.

In contrast to a superpotential interaction, a deformation of the complex structure (of a

smooth complex manifold, such asMcl with the origin removed) is trivial locally. So locally

on Mcl, it must be possible to write δS in the form
∫
d4θ(. . .). As will become clear, this
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cannot be done globally onMcl, and it cannot be done even locally in a way that respects

the SU(4) flavor symmetry. In that sense, δS is a non-trivial F -term.

We also note that this F -term is not manifestly supersymmetric, since the operator

Oω = ωi j DΦi ·DΦj is not manifestly chiral. Rather, the chirality of Oω in the on-shell

supersymmetry algebra determined by the unperturbed sigma model action S follows from

the fact that ωj
i is annihilated by ∂.

In Section 2.2, we discuss more systematically the basic properties of multi-fermion

F -terms such as δS.

Computing δS in SQCD

We have described in general what sort of term in the low energy effective action of an

N = 1 sigma model describes the deformation of the complex structure of the target. We

will now be more explicit for SU(2) gauge theory with four doublets.

For this purpose, we reconsider the extrinsic, algebraic description of the deformation

ofMcl, using the coordinates mI . Rather than considering the deformation as a change in

the classical constraint equation ∑
I

(mI)2 = 0 (2.2.18)

to a quantum constraint ∑
I

(mI)2 = ε, (2.2.19)

we want to provide a description in which the target space remains the same (away from

the origin and perturbatively in ε) but a new interaction is generated.

To obtain this description, we first make a non-holomorphic change of variables, such

that away from the origin the quantum constraint (2.2.19) is converted to the classical

constraint (2.2.18). Explicitly, when the old coordinates mI satisfy the quantum constraint

(2.2.19), the new coordinates

m̃I = mI − ε

2

δI
J
mJ

mm
(2.2.20)

obey the classical constraint (2.2.18) to first order in ε. (We could work beyond first order,

but this is not necessary.) Here mm =
∑6
I=1 |mI |2, and in describing m̃I we introduce
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the tensor δI
J

constructed from the SO(6) invariant tensors δIJ and δIJ ; in the language of

SU(4), these tensors would be respectively εijk l, ε
ijkl, and (δii δjj − δji δij).

Thus, when the original coordinates mI satisfy the quantum constraint, the new coor-

dinates m̃I satisfy the classical constraint, at least to leading order in ε,

6∑
I=1

(
m̃I
)2

= O(ε2) . (2.2.21)

The new coordinates m̃I are obviously not holomorphic in the old complex structure

onMcl, but we can find a new complex structure in which they are holomorphic. In other

words, we correct the ∂ operator as in (2.2.13) so that the new operator annihilates the new

coordinates m̃I . So we impose the condition(
∂

∂mJ
+ ωJ

I ∂

∂mI

)
m̃K = 0 . (2.2.22)

From this equation, we can directly solve for the tensor ωJ
I in terms of the components mI

of M . We find, again to leading order in ε, that

ωJ
I =

ε

2

(
δI
J

mm
−
mImJ

(mm)2
−
mImJ

(mm)2

)
, (2.2.23)

with indices raised and lowered with δIJ and δIJ as appropriate.

In this expression, only the first two terms in (2.2.23) arise directly from solving the

equation (2.2.22). In fact, the last term in the expression for ωJ
I dmJ ∂/∂mI vanishes

identically when we restrict to M, as onM we have the relation

0 =
6∑
I=1

mIdmI =
1
2
d

(∑
I

(mI)2
)
. (2.2.24)

We have included this trivial term in ωJ
I just so that, upon lowering one index with the

Kähler metric, the tensor ωI J is manifestly symmetric.

Of course, we do not actually know the Kähler metric g onMcl, as appears implicitly in

determining δS by converting the section ω of Ω1
Mcl
⊗TMcl to a section of Ω1

Mcl
⊗Ω1

Mcl
, as

in (2.2.16) and (2.2.17). By symmetry, we do know that this metric must equal the metric

onMcl induced from the Euclidean metric times a function of mm, and asymptotically for
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large mm the metric must reduce to the classical metric describing canonical kinetic terms

for underlying quarks in the ultraviolet regime of SQCD.

All of our expressions for the multi-fermion F -terms depend on the metric g. However,

this dependence is irrelevant in the sense that the fundamental holomorphic object ω which

represents a class in H1(M, TM) and determines the existence of the multi-fermion F term

does not depend on a choice of Kähler metric. Of course, the metric is known asymptotically,

near infinity on M, where it can be determined from the underlying classical field theory

and asymptotic freedom.

We will now give a concrete formula for δS. Because of the dependence on g, we can

present this formula in various ways. The most general approach, which also leads to the

simplest expressions, is simply to leave g implicit, absorbing it into the index structure of

ωI J as we did in (2.2.17). This means that we simply use an unknown Kähler metric in

raising and lowering indices. With this convention understood, from (2.2.16), (2.2.17), and

(2.2.23), we see that δS takes the form

δS =
∫
d4x d2θ

ε

2

(
δIJ

mm
− mI mJ

(mm)2
− mI mJ

(mm)2

)
DmI ·DmJ . (2.2.25)

Alternatively, this expression (2.2.25) is what results if we assume that g is the flat metric,

so that we simply raise and lower indices with the Kronecker delta.

On the other hand, because the mesons mI and mI most naturally (that is in the

classical theory) have dimension 2, the metric gII most naturally has dimension −2 (so

that ds2 = gIIdm
IdmI has dimension two). As a result, the dimensional analysis of our

expression in (2.2.25) is not transparent. Asymptotically on M, the Kähler potential is

known to be asymptotic to K =
√
mm. With this knowledge, we can make the asymptotic

form of the interaction more precise. In doing so, it is convenient to also make dimensional

analysis manifest by simply using the Kronecker delta δII to raise and lower indices on m

and m, while writing factors of
√
mm explicitly. In this case, all components of m and m

with indices up or down have dimension two. The asymptotic form of the interaction δS
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then becomes

δS =
∫
d4x d2θ

ε

2
√
mm

(
δIJ

mm
− mI mJ

(mm)2
− mI mJ

(mm)2

)
DmI ·DmJ . (2.2.26)

Recalling that ε ∼ Λ4, one can check directly that the naive dimensional analysis holds.

In the rest of the chapter, we will mainly follow the first convention, as in (2.2.25), so

that g appears only implicitly.

In terms of the components M ij of M written using SU(4) flavor indices, as we will use

in Section 3, the expression (2.2.25) becomes

δS =
∫
d4x d2θ Λ4

εi1j1i2j2
MM

− εi1j1klM i2j2 Mkl

2
(
MM

)2 − εi2j2klM i1j1 Mkl

2
(
MM

)2

 ×
× DM i1j1 ·DM i2j2 .

(2.2.27)

Here we take MM ≡ 1
2

∑
ij
M ijM

ij . (The factor of 1/2 is included so that if the only nonzero

components of M ij are M12 = −M21 = 1, then MM = 1. The factors of 1/2 in (2.2.27)

relative to (2.2.25) arise from this convention and lead to the simple formula below.)

For future reference, we observe that up to a constant factor the expression in (2.2.27)

can be written more compactly as

δS = Λ4
∫
d4x d2θ

(
MM

)−2
εi1j1i2j2 M i1j1

(
MklDM i2k ·DM lj2

)
. (2.2.28)

In Section 3, we will show that this form (2.2.28) of the F -term is completely determined

by symmetry and furthermore extends naturally to the case of SU(2) SQCD with n > 2

flavors.

2.2.2 Multi-Fermion F -terms

Our description of the complex structure deformation in SQCD by means of a multi-fermion

F -term may seem perverse, as the algebraic description of the deformation in (2.2.8) is so

much simpler than (2.2.28). However, by phrasing this deformation as a multi-fermion F -

term in an effective four-dimensional N = 1 supersymmetric sigma model, we can see an

immediate generalization to F -terms of even higher order.
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To introduce this generalization, we begin by recalling that a four-dimensional sigma

model withN = 1 supersymmetry can be dimensionally reduced to a two-dimensional sigma

model with N = (2, 2) supersymmetry. Under this reduction, chiral operators in one sigma

model map naturally to chiral operators in the other. As it turns out, the multi-fermion

F -terms that we introduce in four dimensions have better-known analogs in two dimensions.

In two dimensions, rings of chiral operators have been much studied [29–32] in the

context of string theory and correspond to the rings of local observables in the topological

A- and B-models. In fact — with the superpotential being a typical example — F -terms in

four dimensions reduce to chiral observables of the B-model in two dimensions. These chiral

operators in the B-model arise geometrically in one-to-one correspondence with elements

of the Dolbeault cohomology groups Hp(M,∧qTM).

Motivated by the general B-model observables, to construct multi-fermion F -terms we

begin with a section ω of the bundle Ωp
M⊗Ωp

M. (Lorentz-invariance imposes the requirement

that we consider only the B-model observables for p = q above.) In components, ω is given

by a tensor ωi1···ip j1···jp
that is antisymmetric in the ik and also in the jk. Given such a

tensor, we construct a possible term in the effective action that generalizes what we found

in (2.2.16):

δS =
∫
d4x d2θ ωi1···ip j1···jp

(
DΦi1 ·DΦj1

)
· · ·
(
DΦip ·DΦjp

)
,

≡
∫
d4x d2θ Oω .

(2.2.29)

To achieve Lorentz invariance, spinor indices are contracted here. To denote these contrac-

tions, we recall our abbreviation(
DΦi1 ·DΦj1

)
≡
(
Dα̇Φi1 D

α̇Φj1
)
. (2.2.30)

Furthermore, given the form of this operator, we can assume that ω is symmetric under the

overall exchange of i’s and j’s.

Supersymmetry of Oω

The interaction δS is not manifestly supersymmetric. For it to be supersymmetric, Oω

must be chiral, that is, annihilated by the anti-chiral supersymmetries Qα̇. And even if δS
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is supersymmetric, it may represent a trivial F -term. Though we write (2.2.29) in the form∫
d2θ(. . .), it may be that δS can be alternatively written

∫
d4θ(. . .), in other words as a

D-term. This will be so if it is possible to write Oω = {Qα̇, [Qα̇, V ]} for some V . In this

case, Oω is trivially chiral and δS =
∫
d4x d4θ V .

To describe the chirality condition on Oω, which will be no surprise from experience

with the two-dimensional B-model, we first note that we can use the Kähler metric gii on

M to raise either set of i or j indices on ω. The raised indices become holomorphic, so

upon raising the indices, ω becomes interpreted as a section of Ωp
M⊗∧pTM in two distinct

ways. By our assumption on the symmetry of ω, we find the same section of Ωp
M ⊗∧pTM

either way.

We now consider the action of the anti-chiral supercharges Qα̇ in the on-shell supersym-

metry algebra of the unperturbed sigma model, so that we consider for simplicity only the

linearized supersymmetry constraint on δS. Under the action of Qα̇, the component fields

φi and ψiβ of Φi and the component fields φi and ψi
β̇

of Φi transform as

δα̇φ
i = 0 ,

δα̇ψ
i
β = i ∂α̇βφ

i ,

δα̇φ
i = ψiα̇ ,

δα̇ψ
i
β̇

= −Γi
j k
ψjα̇ ψ

k
β̇
.

(2.2.31)

Here Γ is the connection associated to the Kähler metric gii onM. So long as we consider

only the action of a single supercharge, we can without loss set Γ to zero by a suitable

coordinate choice onM.

By using the metric to interpret each set of anti-chiral fermions ψi
β̇

for β̇ = 1, 2 as

alternatively anti-holomorphic one-forms dφi or holomorphic tangent vectors ∂/∂φi, we see

directly from (2.2.31) that the action of each of the two supercharges Qα̇ on Oω corresponds

to the action of ∂ on ω when ω is regarded as a section of Ωp
M ⊗ ∧pTM in either of the

two possible ways. Thus, the chirality constraint on Oω is simply the condition that ω be

annihilated by ∂. This result is familiar in the B-model.

Cohomology of Oω

We must also impose an equivalence relation on the space of operators Oω, such that

Oω is considered trivial if δS is equivalent to a D-term. The condition we will get is closely
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related to the reduction to ∂ cohomology in the B-model.

As a simple example, any perturbative correction δK to the Kähler form can be trivially

rewritten as an F -term correction upon performing half the integral over superspace:∫
d4x d4θ δK =

∫
d4x d2θ D

2
δK ,

=
∫
d4x d2θ ∇i∇jδK

(
DΦi ·DΦj

)
.

(2.2.32)

In the second line, we have introduced the covariant derivative ∇ associated to the connec-

tion Γ in (2.2.31), and we have explicitly rewritten the chiral integrand in the form of an

operator Oω, with

ωi j = ∇i∇jδK . (2.2.33)

Even more generally, we must consider possible corrections to the effective action which

involve integrals over three quarters of superspace and are of the form

δS =
∫
d4x d2θ dθα̇ ξi2···ip j1···jp

Dα̇Φj1
(
DΦi2 ·DΦj2

)
· · ·
(
DΦip ·DΦjp

)
,

≡
∫
d4x d2θ dθα̇ Oξα̇ ,

=
∫
d4x d2θ ∇i1ξi2···ip j1···jp

(
DΦi1 ·DΦj1

)
· · ·
(
DΦip ·DΦjp

)
.

(2.2.34)

Here ξ is a section of Ωp−1
M ⊗ Ωp

M. We do not know of any actual examples of operators of

this type that can be written as integrals over three quarters of superspace but not over all

of superspace, but we must still allow for this possibility.

Because the correction in (2.2.34) has the same form as the F -term in (2.2.29), we must

consider the chiral operators Oω as defined up to the equivalence

Oω ∼ Oω +
{
Qα̇,Oξα̇

}
. (2.2.35)

Mathematically, this equivalence becomes an equivalence relation on sections of Ωp
M⊗Ωp

M,

ωi1···ip j1···jp
∼ ωi1···ip j1···jp

+ ∇[i1
ξi2···ip] j1···jp

+
(
ik ↔ jk

)
. (2.2.36)

As we indicate, the term involving ξ is to be symmetrized like ω under the exchange of all

pairs ik ↔ jk.
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Because of this symmetrization, the equivalence relation implied by (2.2.36) on sections

of Ωp
M⊗∧pTM is not the same as the usual equivalence relation in Dolbeault cohomology.

Furthermore, since the corrections (2.2.34) arise from an integral only over three quarters of

superspace, they are not supersymmetric unless we impose the (nontrivial) condition that

Q2 annihilate the operator Oξα̇, which implies a corresponding constraint on the sections ξ

which appear in (2.2.34) and (2.2.36).

We are unaware of a more standard mathematical description of this sort of cohomology,

specific to the bundles Ωp
M ⊗ ∧pTM on an arbitrary Kähler manifold, and we will not

comment further on its general structure. Luckily, symmetries alone will suffice in Section 3

to show that the operators Oω which we consider for SQCD cannot be written as integrals

over three-fourths of superspace, much less all of it.

2.2.3 Adding a Superpotential to the Sigma Model

Although we are most interested in SQCD with massless flavors, a useful technique to

study this theory is to consider instead SQCD with massive flavors and to ask how various

observables depend upon the mass parameters. Because these mass parameters appear in a

superpotential, holomorphy serves as a powerful tool to constrain their appearance in the

effective action. In Section 4, we will apply exactly this technique as one way to compute

the multi-fermion F -terms in SQCD.

More generally, we can consider adding any background superpotential W to the basic

sigma model action,

S =
∫
d4x d4θ K(Φi,Φi) +

∫
d4x d2θ W (Φi) + c.c. (2.2.37)

Because of the superpotential, the on-shell supersymmetry algebra of the sigma model is

altered, and hence the chirality condition on Oω is also altered. This fact is fundamental

to our study of the mass deformation of SQCD in Section 4, so we pause to explain it here

in the general setting.

In the new action (2.2.37), the on-shell variations under Qα̇ of the component fields φi,
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φi, ψiβ, and ψi
β̇

are now given by

δα̇φ
i = 0 ,

δα̇ψ
i
β = i ∂α̇βφ

i ,

δα̇φ
i = ψiα̇ ,

δα̇ψ
i
β̇

= −Γi
j k
ψjα̇ ψ

k
β̇

+ εα̇β̇ g
ii∂iW .

(2.2.38)

Because of the appearance of the one-form dW in the variation of ψi
β̇

in (2.2.38), the action

of the supercharges Qα̇ on Oω is no longer given geometrically by the action of ∂ on ω.

Instead, when ψi
β̇

is interpreted as a holomorphic tangent vector ∂/∂φi, the term involving

W corresponds geometrically to the interior product of ∂/∂φi with the holomorphic one-

form dW . So the ∂ operator is now generalized to the operator

δ = ∂ + ιdW , (2.2.39)

acting on sections of Ωp
M ⊗∧pTM. Here ιdW denotes the operator on Ωp

M ⊗∧pTM which

acts by the interior product with the one-form dW . (In other words, ιdW acts by removing

ψ and replacing it with dW .) We note that because W is holomorphic, δ2 = 0. Thus, the

first order chirality condition on the operator Oω becomes the requirement that δ annihilate

ω.

A nice mathematical discussion of the cohomology theory associated to δ is given by

Liu in [33], and applications to string theory are discussed in Chapter 3 of the thesis.

When ω is a section of Ω1
M ⊗ TM, then the modified chirality condition has a very

direct geometric interpretation. In this case, the condition that δω = 0 implies that ω is

annihilated separately by both the operators ∂ and ιdW . The latter condition implies that

ωj
i ∂iW = 0 . (2.2.40)

Since W is holomorphic, this condition is then equivalent to the condition that

(
∂j + ωj

i ∂i
)
W = 0 , (2.2.41)

implying that the deformation of ∂ represented by ω must preserve the holomorphy of W .

More generally, if it is possible to modify W to a function W + ∆W that is holomorphic in

the deformed complex structure, then ω + ∆W is annihilated by δ.
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2.3 Multi-Fermion F -Terms in SU(2) SQCD

Up to this point, we have discussed general properties of multi-fermion F -terms in an

arbitrary N = 1 sigma model. We now specialize our analysis to the particular case of

SQCD. Our main goal in the rest of the chapter, concentrating mainly on the example of

gauge group SU(2), is to show that multi-fermion F -terms are generated in the effective

action of SQCD.

To this end, we begin in this section by analyzing the constraints imposed by symmetries

and holomorphy on the form of any multi-fermion F -term corrections in SU(2) SQCD. The

case of SQCD with gauge group SU(2) is particularly simple due to the enhancement of

the flavor symmetry. In this case, we fix the form of the operators Oω uniquely, and we

demonstrate that they are nontrivial in the cohomology of Qα̇.

In the general case of SQCD with gauge group SU(Nc) and Nf > Nc flavors, a similar

analysis to determine the form of the operatorsOω appears to be more complicated, since the

geometry of the moduli spaceM itself is more complicated. However, the direct instanton

computation of Section 4.1 shows that such interactions arise for all Nc and Nf ≥ Nc − 1.

The other derivations in Section 4 generalize in spirit.

In the case of SU(2) SQCD with Nf = n flavors, we have already described algebraically

the classical moduli space M as being parametrized by the mesons M ij , subject to the

system of quadratic equations M∧M = 0. This description of M has the virtue of being

very succinct. However, we now give another description of M which makes its symmetry

more apparent and consequently enables us to determine immediately the chiral operators

Oω which arise from cohomology classes on M.

2.3.1 More About the Geometry of M

Since symmetries are of the utmost importance, we first review the symmetries of SU(2)

SQCD with Nf = n flavors. Besides the SU(2) color and SU(2n) flavor symmetries, this

gauge theory also possesses a non-anomalous U(1) R-symmetry as well as an anomalous

U(1) axial symmetry. Under these symmetries, the quark superfields Qia, the mesons M ij ,
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and the holomorphic coupling scale Λ transform as follows:

SU(2)c SU(2n) U(1)A U(1)R

Qia 2 2n 1 1− 2
n

M ij 1 ∧2(2n) 2 2
(
1− 2

n

)
Λ6−n 1 1 2n 0 .

(2.3.1)

Here Λ6−n is the standard instanton counting parameter. (In this one place, we denote the

gauge group as SU(2)c, to distinguish it from an unbroken SU(2) flavor group that will

appear momentarily.)

We now describe M by considering the pattern of symmetry breaking around a fixed

supersymmetric vacuum. Up to the action of the symmetries, any solution of the usual

D-term equations takes the form

Qia =



v 0

0 v

0 0
...

...

0 0


≡ v δ̂ia , (2.3.2)

with v being an arbitrary complex number.

So long as v is non-zero, the expectation value of Qia in (2.3.2) breaks the symmetry

group in (2.3.1) down to a subgroup

SU(2)× SU(2n− 2)× U(1)′A × U(1)′R . (2.3.3)

The unbroken SU(2)×SU(2n− 2) factor arises in the obvious way, and the unbroken U(1)

axial and R-symmetries arise from linear combinations of the corresponding generators in

(2.3.1) with the diagonal flavor generator in the center of the subgroup

S(U(2)× U(2n− 2)) ⊂ SU(2n) . (2.3.4)

Of course, the gauge group is completely Higgsed, and the massless fluctuations of the

quarks Qia about the point (2.3.2) decompose into two irreducible representations of the
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unbroken symmetry group (2.3.3), with

SU(2) SU(2n− 2) U(1)′A U(1)′R

Φs
c 2 2n− 2 n

n−1
n−2
n−1

Φ 1 1 0 0

Λ6−n 1 1 2n 0 .

(2.3.5)

Here the singlet Φ describes a rescaling of M ; the other fluctuations transform as an irre-

ducible representation Φs
c of the unbroken symmetry, where c = 1, 2 is an index labelling

the 2 of the unbroken SU(2) and s = 3, . . . , 2n is now an index labelling the 2n− 2 of

SU(2n − 2). Throughout the chapter, we will apply the convention that c, d, e, f refer to

indices 1, 2 of the unbroken SU(2), that s, t, u, v refer to indices 3, . . . , 2n of the unbroken

SU(2n−2), and that i, j, k, l run over all indices 1, . . . , 2n of the full SU(2n) flavor symme-

try. These massless fluctuations Φ and Φs
c represent local coordinates on M, such as were

used in section 2. Finally, for future reference in Section 3.2 we have included in (2.3.5) the

charges of Λ6−n, which are identical to those in (2.3.1).

Because any solution of the D-term equations can be brought to the form (2.3.2) using

the SU(2) × SU(2n) symmetry of SQCD, we see that the SU(2n) flavor symmetry acts

transitively on the quotient of M minus the origin by the C∗ action which scales v. We

thus set M̃ =M−{0}, and we let B be this quotient of M̃ by C∗.

Furthermore, our description of the symmetry breaking pattern in (2.3.3) is equivalent to

the geometric observation that, at any non-zero v, the subgroup of SU(2n) which stabilizes

the point corresponding to Qia = v δ̂ia onM is S(U(2)×U(2n− 2)). Thus, we can describe

B as a homogeneous (and in fact symmetric) space,

B = SU(2n)/S(U(2)× U(2n− 2)) . (2.3.6)

To incorporate the value of v into our description of M, we observe that the C∗ action

which scales v is the complexification of the U(1)A symmetry in (2.3.1). This symmetry

corresponds to the action of the central U(1) which lies in the stabilizer subgroup S(U(2)×

U(2n − 2)) and whose generator mixes with the generator of U(1)A under the symmetry

breaking. Associated to this U(1) generator in S(U(2) × U(2n − 2)) is a corresponding
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homogeneous line bundle L — and hence a C∗ bundle — over B. To specify L, we simply

note that the singlet field Φ transforms as a section of L and has charge +2 under the

original U(1)A symmetry, as Φ describes the rescaling of M ij .

So, if we excise the singularity at the origin ofM, then M̃ can be globally described as

this C∗ bundle over the base B,

C∗ −→ M̃ π−→ B . (2.3.7)

A direct relationship now exists between the algebraic description of M in (2.2.3) and

the intrinsic description of M in (2.3.7). To describe this relation, we consider the mesons

M ij modulo overall scaling, corresponding to the C∗ action generated by U(1)A. Then the

equations M∧M = 0 are the classical Plücker relations [34] which describe the Grassman-

nian Gr(2, 2n) of complex two planes in C2n as an algebraic subvariety of the projective

space parametrized by M ij .

On the other hand, this Grassmannian can also be described as a quotient,

Gr(2, 2n) = U(2n)/(U(2)× U(2n− 2)) , (2.3.8)

which is equivalent to our description in (2.3.6) of the base B. Thus, the C∗ bundle over B

in (2.3.7) is simply the bundle associated to the affine cone over the Grassmannian Gr(2, 2n)

with its Plücker embedding in projective space. Equivalently, the line bundle L arises as

the pullback from the degree one bundle O(1) on projective space.

2.3.2 The New F -Terms

With our thorough discussion of the symmetries of SQCD, we can immediately derive the

form of any multi-fermion F -terms that might appear on M. We perform our analysis in

two steps: first locally, and then globally.

Local Analysis

Locally, we construct the chiral operator Oω from the massless fluctuations described

by Φs
c and Φ about the vacuum Qia = δ̂ia. Thus, in terms of the section ω of Ωp

M ⊗ ∧pTM,

we only consider ω as restricted to the tangent space ofM at this point.
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Now, the operator Oω must be invariant under the symmetries SU(2)× SU(2n− 2)×

U(1)′A and must have charge +2 under U(1)′R in (2.3.5). Furthermore, since we are only

considering the corresponding section ω as restricted to the tangent space of a point inM,

we must construct Oω completely from the fermionic fields Dα̇Φ and Dα̇Φc
s which represent

either one-forms or (by raising an index) tangent vectors to M. From (2.3.5) we see that

Dα̇Φ and Dα̇Φc
s have respective charges +1 and +1/(n− 1) under U(1)′R. So just to make

an operator of U(1)′R charge +2, we require that it contain either two copies of Dα̇Φ, or

one copy of Dα̇Φ and n− 1 copies of Dα̇Φc
s, or 2(n− 1) copies of Dα̇Φc

s.

We can immediately rule out the first possibility, necessarily of the form DΦ · DΦ,

since from (2.3.5) this operator is not charged under U(1)′A and hence is not multiplied by

any power of Λ, contradicting the fact that our operator must vanish in the appropriate

weak coupling limit as well as the fact that we expect it to be generated by instantons. (A

more detailed study shows that there are no non-trivial chiral operators of this type.) On

the other hand, since the only tensors of SU(2) × SU(2n − 2) which we can use to make

invariants out of the fields Dα̇Φc
s are the anti-symmetric tensors εcd and εs1t1···sptp with

p = n − 1, we cannot make an invariant operator from one copy of Dα̇Φ and only n − 1

copies of Dα̇Φc
s.

We are left to consider the operator Oω which is made from 2(n − 1) copies of Dα̇ Φc
s,

of the form

Λ6−n εs1t1···sptp εc1d1 · · · εcpdp

(
DΦc1

s1 ·DΦd1
t1

)
· · ·
(
DΦcp

sp
·DΦdp

tp

)
, p = n− 1 . (2.3.9)

This operator is invariant under SU(2)× SU(2n− 2) and carries charge +2 under U(1)′R.

The pattern of contractions of spinor indices is fixed by the fact that each expression in

parentheses must be antisymmetric under exchanges of both the pairs (c, d) and (s, t) and

must also obey Fermi statistics.

Also, we see from (2.3.5) that each fermion appearing in Oω carries charge −n/(n− 1)

under U(1)′A, so the fermionic part of Oω carries axial charge −2n. The fact that Oω must

be invariant under the axial symmetry then fixes the dependence on Λ. In particular, we

see that the operator in (2.3.9) involves a single power of the instanton counting parameter
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Λ6−n and so could arise as a one-instanton effect.

So the local form of Oω is fixed completely by the symmetries, and moreover Oω has

the correct dependence on Λ to be generated by instantons. Furthermore, in terms of the

section ω of Ωp
M ⊗ ∧pTM, we see that the parameter p is related to the number of flavors

n by p = n− 1. This fact is a special case of the relation p = Nf −Nc + 1 which must

hold in SU(Nc) SQCD with Nf flavors. In the direct instanton computation in Section

4, this relation follows most immediately by counting fermion zero modes in the instanton

background.

A Geometric Remark on Pullbacks From B

Because Oω only involves DΦc
s and not the singlet DΦ, the section ω has only compo-

nents along the base B, with no legs along the C∗ fiber. Naively, one might have concluded

that ω then arises as the pullback from a section of Ωn−1
B ⊗ ∧n−1TB on B. Actually, the

dependence of Oω on scaling of the quark superfields means that it is a pullback from a

section of Ωn−1
B ⊗ ∧n−1TB ⊗Lk for some k. (There is an irrelevant subtlety here. Because

of the nontrivial exact sequence 0 → TF → TM → TB → 0, where TF is the tangent

space to the fibers of M→ B, a section of TB cannot literally be pulled back to a section

ofM. However, our concern is really with cohomology, and because the cohomology of TF

is trivial, we can ignore this subtlety.)

In fact, the degree of the twist by L is fixed to be k = −n. Indeed, as we noted above,

the fermionic part of Oω carries U(1)′A charge −2n. As U(1)′A differs from U(1)A by a

generator of SU(2n) under which Oω is invariant, this means that, if we omit the factor

of Λ6−n from (2.3.9), then Oω has U(1)A charge −2n. Since the basic meson field M has

U(1)A charge 2, this means that Oω transforms as M−n and ω can be regarded as a section

of Ωn−1
B ⊗ ∧n−1TB ⊗ L−n.

Consider a general scaling M → λM , M → λM , for λ ∈ C∗. Under this scaling,

ω → λ−nλ0 ω = λ−nω. The fact that the exponent of λ is zero is implied by the fact that

∂ω = 0, and the fact that the exponent of λ is −n is equivalent to the fact that ω is a

section of Ωn−1
B ⊗ ∧n−1TB ⊗ L−n. We apply these observations when we write a global
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expression for Oω.

Chirality and Cohomology of Oω

Let us now check that Oω is chiral — annihilated by Qα̇ — and moreover represents a

nontrivial Qα̇ cohomology class. This check follows directly from symmetries.

We recall that the chirality condition on Oω is equivalent to the geometric condition

that ∂ annihilate ω. Because Oω is a pullback from B, we can consider just the action of

the ∂ operator along B on ω, considered as a section of Ωp
B ⊗ ∧pTB ⊗ L−n. Because both

the ∂ operator on B and ω are singlets under the action of SU(2)×SU(2n−2), the section

∂ω of Ωp+1
B ⊗ ∧pTB ⊗ L−n must also be a singlet. But no (nontrivial) invariant section

of Ωp+1
B ⊗ ∧pTB ⊗ L−n exists; such a section would be constructed from an SU(2) singlet

made from the tensor product of 2p+ 1 2’s. So the ∂ operator on B necessarily annihilates

ω.

A similar argument based upon symmetries also shows that Oω cannot be written in

the form {Qα̇,Oξα̇} in a way that respects the flavor symmetry. Indeed, invariant sections

of Ωp−1
B ⊗ ∧pTB ⊗ L−n and Ωp

B ⊗ ∧p−1TB ⊗ L−n do not exist, since one cannot make an

SU(2) invariant from 2p− 1 2’s.

Global Analysis

Our expression in (2.3.9) is only a local expression for Oω, but because the SU(2n)

flavor symmetry acts transitively onM, this local expression suffices to determine a global

expression for Oω. In order to write such an expression using the mesons M ij , we observe

that the local tensors εs1t1···sptp and εcd in (2.3.9) extend globally to tensors onM given by

εi1j1···injn M i1j1 and Mkl. Then Oω must take the global form

Oω = Λ6−n F (MM) εi1j1···injn M i1j1 Oi2j2 · · · Oinjn , (2.3.10)

with

Oij ≡ MklDM ik ·DM lj , MM ≡ 1
2
M ijM

ij . (2.3.11)

Of course, we employ the usual summation convention in writing MM as in (2.3.11), using

the Kähler metric g onM to raise and lower indices throughout.
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In writing Oω, we have also included as a prefactor an invariant function F (MM) onM

which is not directly determined by the local expression in (2.3.9). The function F (MM) is,

however, determined by dimensional analysis and also, as we will now discuss, by requiring

Oω to be chiral.

The chirality condition on Oω is most naturally expressed as the condition that the

corresponding section ω of Ωn−1
M ⊗ ∧n−1TM be annihilated by ∂. Explicitly, the section ω

which determines the operator Oω in (2.3.10) is given globally by

ω = F (MM) εi1j1···injnM i1j1

(
Mk2l2 dM i2k2

∂

∂M l2j2

)
· · ·
(
Mknln dM inkn

∂

∂M lnjn

)
.

(2.3.12)

In order that ω be annihilated by ∂, we have already observed that it must be invariant

under the scaling M → λM . Furthermore, in order that ω arise from a section of the

bundle Ωn−1 ⊗ ∧n−1TB ⊗ L−n, we have also observed that it must transform under the

scaling M → λM as ω → λ−nω.

However, if we ignore F (MM), we see that ω in (2.3.12) otherwise scales with degree n

in λ and with degree zero in λ. Thus, we set F (MM) = (MM)−n to ensure that ω scales

as M−n. So we must set

Oω = Λ6−n
(
MM

)−n
εi1j1···injn M i1j1 Oi2j2 · · · Oinjn . (2.3.13)

This expression directly generalizes our previous formula (2.2.28) in the special case n = 2.

Let us also make a remark about the global form of Oω, or equivalently ω in (2.3.12).

In this expression, the components M ij of M which appear are just affine coordinates on a

vector space in whichM is embedded, and it must be that only the components of ∂/∂M ij

and dM ij which represent tangent and cotangent vectors to M itself appear in (2.3.12).

To check this condition, we can without loss consider the point of M at which M ij = ε̂ij .

(We recall that the nonzero components of ε̂ are ε̂12 = −ε̂21 = 1.) Then the holomorphic

tangent space to M at this point is spanned by vectors ∂/∂M ij for which both i, j = 1, 2,

corresponding to the singlet Φ, or for which i = 1, 2 and j > 2, corresponding to Φs
c in the

representation (2,2n− 2).
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In particular, the vector ∂/∂M ij for which both i, j > 2 is not a tangent vector to M

at this point. So in order for (2.3.12) to be well defined as a section of Ωn−1
M ⊗ ∧n−1TM,

such components of dM ij and ∂/∂M ij with both i, j > 2 must not appear. However, upon

substituting M ij = ε̂ij into (2.3.12), we see that the factors of M i1j1 and Mkl ensure that

these unwanted components do not appear, and the expression in (2.3.12) is a section of

Ωn−1
M ⊗ ∧n−1TM as claimed.

Like (2.2.25), (2.3.13) is written in terms of an arbitrary unknown Kähler metric on

M. As in (2.2.26), we can make the asymptotic behavior more explicit, since we know the

asymptotic form of the Kähler metric. In writing this formula, just as in (2.2.26), we use

Kronecker deltas to raise and lower indices on M (so all components of M and M with

index up or down have dimension two), and write all factors of MM explicitly. With this

understood, the asymptotic form of the interaction is

Λ6−n
(
MM

)−(3n−1)/2
εi1j1···injn M i1j1 Oi2j2 · · · Oinjn . (2.3.14)

2.4 Computing The Multi-Fermion F -Terms

Although symmetries suffice to fix the form of the F -term correction in SQCD uniquely,

we must still check that it is actually generated. So in this section, we provide three

computations which show this.

2.4.1 A Direct Instanton Computation

Since instanton effects are the subject of this thesis, we first generate the F -terms directly

by a one-instanton computation which generalizes the classic one-instanton computation

[7,23,24] of the superpotential in the theory with Nf = Nc − 1 flavors.

The most basic, and most illuminating, feature of this instanton computation is that it

directly explains how the relation p = n−1 arises in the SU(2) theory with Nf = n flavors.

This relation arises from counting fermion zero modes in the instanton background, and the

same counting implies that, in the SU(Nc) theory, we must have p = Nf −Nc + 1.
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Very briefly, before we review the details of the instanton computation, we will explain

the counting of fermion zero modes that controls the structure of the F -term. We thus

recall that, in the one-instanton background, we find at leading order 2Nc gaugino zero

modes and 2Nf quark zero modes. However, beyond leading order, the Yukawa couplings

pair 2(Nc − 1) of the gaugino and quark zero modes, and these modes are lifted. As a

result, two gaugino zero modes and 2(Nf − Nc + 1) quark zero modes remain. The two

gaugino zero modes that remain are generated by exact global supersymmetries. Thus, if

we consider the general form of the multi-fermion F -term in (2.2.29), the two gaugino zero

modes are associated to the fermionic collective coordinates θα that appear in the integral

over superspace, and the 2(Nf −Nc + 1) quark zero modes must be absorbed by the chiral

operator Oω itself. So p = Nf −Nc + 1.

We now present the details of the instanton computation in the case of SU(2) SQCD. As

described above, this computation should generalize directly to the case of SU(Nc) SQCD,

though one must consider a more involved integral over the collective coordinates of the

instanton.

Following closely the computation of Affleck, Dine, and Seiberg [7], we work on the

Higgs branch of SQCD, under the assumption that the classical quark vacuum expectation

value, Qia = v δ̂ia, is large and the effective gauge coupling g2(v) is small. In this regime, the

approximate instanton equations are valid,

DµFµν = 0 , D2qia = 0 , (2.4.1)

where we recall that qia is the scalar component of Qia. In a one-instanton background, the

solution of (2.4.1) for qia with boundary condition fixed by its classical expectation value is

given by

qia =
σiµa x

µ v√
ρ2 + x2

. (2.4.2)

Here σµ = (1,−iσA), with σA the Pauli matrices, are the usual quaternion representatives.

Also, xµ is a coordinate on R4, and ρ is the scale of the instanton solution. The classical



51

action for this instanton background is

S0 =
1
g2

(
8π2 + 4π2ρ2|v|2

)
. (2.4.3)

When |v|2 6= 0, instantons of large size are exponentially suppressed by this classical action,

and the integral over the scale ρ will be convergent.

We must now consider what sort of correlation function to compute in order to probe for

the multi-fermion F -term determined by the operator Oω in (2.3.13). For this purpose, we

recall the chiral superfields Φ and Φs
c which we introduced in Section 3 to describe massless

fluctuations of the quark superfields around the Higgs vacuum. Introducing components for

these fields,

Φ = φ + θχ + . . . ,

Φs
c = φsc + θχsc + . . . ,

(2.4.4)

we see that among the various interactions which arise from the multi-fermion F -term is an

effective interaction for 2n fermions of the form

Λ6−n

v4 |v|2(n−1)

∫
d4x εs1t1···sptp εc1d1 · · · εcpdp χ · χ

(
χc1s1 · χ

d1
t1

)
· · ·
(
χcpsp
· χdp

tp

)
, p = n− 1 .

(2.4.5)

We have included the dependence of this interaction on v and v. This dependence can either

be checked directly, or it can be deduced from requirement that the interaction transforms

as λ−n under M → λM , M → λM , as discussed in Section 3.

To probe for the presence of the F -term, we thus compute in the instanton background

the correlation function 〈
χ · χ

(
χs1c1 · χ

t1
d1

)
· · ·
(
χsp
cp · χ

tp
dp

)〉
. (2.4.6)

(Because the correlator includes external legs with massless propagators, the fermions con-

jugate to those in the effective vertex appear.) This computation as usual has two pieces: a

one-loop integral over fluctuating modes in the instanton background and an integral over

zero modes. Because the instanton background is supersymmetric to leading order, the

one-loop integral over quantum fluctuations is trivial and contributes only a factor of unity.

So the important integral to consider is the integral over zero modes.
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Bosonic Zero Modes

As usual, in the instanton background we have eight bosonic zero modes. Four zero

modes are associated to the collective coordinate x0 for the location of the instanton in R4.

One zero mode is associated to the scale ρ of the instanton. Finally, three zero modes arise

from global SU(2) gauge transformations and are associated to a collective coordinate h on

SU(2).

Fermionic Zero Modes

Much more important than the bosonic zero modes are the fermionic zero modes. We

have already discussed the counting of these modes generally, but now we review the details.

First, we have two gaugino zero modes which arise from the action of the chiral super-

charges Qα and which take the form

λSS A [β]
α =

ρ2 σAβα
(ρ2 + x2)2

. (2.4.7)

Here SS stands for global supersymmetry, A labels the adjoint representation of SU(2), α

is a spinor index, and β simply labels the two zero modes. Since we will not try to compute

the absolute normalization of our interaction, we have not bothered to normalize the zero

modes.

Second, at leading order in g2, we have an additional 2n+ 2 fermion zero modes. Two

of these extra zero modes are gaugino zero modes associated to the action of the supercon-

formal generators xβ̇βQ
β , of the form

λSC A [β̇]
α =

ρ xβ̇β σ
Aβ
α

(ρ2 + x2)2
. (2.4.8)

The other 2n zero modes arise from the 2n fermion doublets and are of the form

ψiαa[j] =
ρ δij h

b
a εαb

(ρ2 + x2)3/2
. (2.4.9)

Again, j is just an index that labels the zero modes. We have also included explicitly

the dependence of these modes on the element hba of SU(2) parametrizing global gauge

transformations. We could also have included this collective coordinate in (2.4.7) and
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(2.4.8), but any dependence of the gaugino zero modes on h will drop out immediately in

our computation.

These 2n zero modes transform in the representation 2n of the flavor group SU(2n).

After giving expectations to the quark superfields, SU(2n) is broken to SU(2)×SU(2n−2)

(where in an instanton field, SU(2) must be combined with a rotation). Under the subgroup,

the zero modes of ψ transform as (2,1) ⊕ (1,2n− 2). The superconformal zero modes

similarly transform as (2,1).

Yukawa Interactions

The zero modes in (2.4.7), (2.4.8), and (2.4.9) are simply zero modes of the /D operator

in the instanton background. However, to perform the instanton computation, we must

go beyond leading order and consider the effect of the Yukawa couplings in SQCD. These

couplings of course take the form

∫
d4x qai

(
ψib · λba

)
. (2.4.10)

On the Higgs branch, with q satisfying (2.4.2), this interaction pairs the two supercon-

formal zero modes λSC with the two zero modes of the quarks that transform the same

way, which are those with i = 1, 2 in (2.4.9) (and which we have denoted χ in (2.4.4)). As a

result, when we compute the correlator (2.4.6), these fermion zero-modes can be absorbed

by pulling down two copies of the Yukawa interaction (2.4.10) from the SQCD action, which

contributes a factor proportional to v2 to the correlator.

We are then left with the two gaugino zero modes λSS and the other 2n− 2 quark zero

modes appearing in (2.4.9). Of course, these 2n−2 quark zero modes are absorbed directly

by the massless fermions χsc appearing in the correlator (2.4.6). But what of the zero modes

λSS?

To answer this question, we recall that another very important, qualitative effect of

the Yukawa coupling (2.4.10) is that it alters the form of the zero modes λSS to include

components also involving the fermion χ. Specifically, to first order in ρv, the relevant
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equations of motion are

/Dλ = 0 , /Dψ =
√

2 q · λ , (2.4.11)

which have solution

λ = λSS , ψ
i [β]
α̇ a =

1
4π

/D
[β]

α̇ qia , (2.4.12)

with q as in (2.4.2). Simply by symmetry, the massless components of ψi [β]
α̇ a which mix with

λSS must correspond to the singlet χ. Thus, the two supersymmetric zero modes λSS are

absorbed by the two fermions χ which appear in the correlator (2.4.6).

The classical wavefunction of χ can be explicitly evaluated in the instanton background

from (2.4.12), and far from the instanton location x0 the wavefunction takes the form

χ
[β]
α̇ (x) = vρ2Sβα̇(x, x0) , (2.4.13)

where Sβα̇(x, x0) is the free fermion propagator.

Computing the Correlator

We are now prepared to compute the fermion correlator (2.4.6) in the instanton back-

ground. Using the classical wavefunctions (2.4.9) and (2.4.13) for the fermion zero modes,

we see that〈
χ · χ

(
χs1c1 · χ

t1
d1

)
· · ·
(
χsp
cp · χ

tp
dp

)〉
=

v4 Λ6−n
∫
d4x0 dρ dµ ρ

2n+5 exp(−4π2ρ2|v|2/g2) εs1t1···sptp
(
he1c1h

f1
d1
εe1f1

)
· · ·
(
hep
cph

fp

dp
εepfp

)
×

× (S(y1 − x0) · S(y2 − x0)) · · · (S(y2n−1 − x0) · S(y2n − x0)) .
(2.4.14)

In this expression, y1, . . . , y2n are the positions of the 2n fermions in R4, which are

assumed to be far from the position x0 of the instanton. We then make use of the fact that, in

this limit, the classical wavefunctions (2.4.9) of the fermions χsc have the correct asymptotic

behavior so that the correlator can be written using the free fermion propagator S. In

computing the amputated vertex, we would simply drop these factors and the integration

over the position x0 of the instanton.
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Besides the factor d4x0, the bosonic measure also includes a factor dρ ρ2n+5 and a factor

dµ, which represents the invariant Haar measure on SU(2). We have determined the power

of ρ that appears simply by dimensional analysis.

Thus, since a prefactor of v4 appears from the fermion zero modes, the Gaussian integral

over ρ then produces the correct dependence on v and v as in (2.4.5). We have not been

careful about factors of the gauge coupling g2 which also appear in the integration measure

and upon performing the Gaussian integral. By holomorphy, any explicit dependence of

the correlator on g2 should be absorbed into a wavefunction renormalization of the external

legs.

The only integral left to consider is the group integral over SU(2), which takes the form

I
d1 d2··· d2p
c1 c2··· c2p =

∫
dµ hd1c1 h

d2
c2 · · ·h

d2p
c2p . (2.4.15)

This integral is manifestly non-zero. The SU(2)× SU(2) symmetry implies that

I
d1 d2··· d2p
c1 c2··· c2p ∝ εd1d2 εc1c2 · · · εd2p−1d2p εc2p−1c2p + (permutations) . (2.4.16)

Here the first term on the right hand side must be symmetrized under the exchanges of

indices corresponding to exchanges between the factors of h in (2.4.15). These symmetries

arise in the effective interaction (2.4.5) from the permutation symmetries of the fermions.

Thus, upon substituting (2.4.16) into (2.4.14), we produce the effective interaction which

arises from the multi-fermion F -term.

2.4.2 A Computation in the Seiberg Dual With Six Doublets

In many examples of duality, non-perturbative effects in the direct theory become classical

effects in the dual theory. In this section we show, at least in the SU(2) theory with 2n = 6

doublets, how the multi-fermion F -term which we have now computed non-perturbatively

in the direct description of SQCD can also be computed classically, at tree-level, in the

Seiberg dual [10,25] description.

As promised in Section 2, we also revisit here the deformation of complex structure that

occurs in the theory with four doublets. In particular, we reproduce the effective interaction
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in (2.2.28) by integrating out the massive fields in the linear sigma model with superpotential

W = Σ(M∧M − Λ4) which describes the deformation. Since this computation is exactly

the same in spirit as our classical computation in the Seiberg dual of the theory with six

doublets, we describe both computations together.

The Seiberg dual of SU(2) SQCD with six doublets is distinguished by the fact that

the dual gauge group is trivial, and hence this theory is especially simple. In particular,

the elementary degrees of freedom in the dual theory are described entirely by the mesonic

fields M ij , with Wess-Zumino action

S =
1
µ2

∫
d4x d4θ MM +

∫
d4x d2θ Λ−3M∧M∧M + c.c. (2.4.17)

We have included the canonical kinetic terms in S, with an arbitrary scale µ that appears

so that, by convention, M has dimension two. Using a different kinetic term for M would

not affect the computation of F -terms.

The cubic superpotential plays an interesting role in this theory. As shown by Seiberg

[10], this potential appears nonperturbatively in the electric theory, but in the dual theory

it arises at tree level. In either case, the F -term equations which follow from this super-

potential are simply the classical Plücker relations M∧M = 0 that enforce the condition

rank(M) ≤ 2, which is necessary to describe M.

In the special case n = 3, the multi-fermion F -term in (2.3.13) takes the explicit form

δS =
1
µ4

∫
d4x d2θ Λ3 (MM)−3 εi1j1i2j2i3j3 M i1j1 ×

×
(
MklDM i2k ·DM lj2

) (
Mk′l′ DM i3k′ ·DM l′j3

)
.

(2.4.18)

We will generate this effective interaction in the most naive way possible. We simply

observe that, when we expand the Wess-Zumino model around a generic point on M, the

cubic superpotential induces a mass for some components of M . We then integrate out

these massive modes at tree level in a Feynman diagram computation to generate (2.4.18).

At this point, one might immediately protest that we are making the quixotic proposal

to generate an F -term in perturbation theory and in blatant violation of standard non-

renormalization theorems. However, these non-renormalization theorems have only been
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considered for conventional F -terms which describe superpotentials, and the multi-fermion

F -terms we consider evade them in an interesting way.

The essential point here is that the multi-fermion F -terms arise from cohomology classes

onM. Whenever we perform a perturbative computation around some vacuum onM, we

are only working in a small neighborhood of that point, and in that neighborhood any

operator Oω which represents a positive degree cohomology class of Qα̇ becomes Qα̇-trivial.

As a result, though globally onM the multi-fermion F -terms cannot be written as D-terms,

they can be written as D-terms if we expand in fluctuations around a given vacuum. These

D-terms can then be directly generated in perturbation theory.

As a simple and highly relevant example, we consider the F -term at hand in (2.4.18).

We expand (2.4.18) around some point with 〈M ij〉 6= 0. With no loss of generality, we

can assume that the only nonzero component of 〈M ij〉 is 〈M12〉. In expanding around this

particular vacuum, we apply our standard convention that c, d, e, f refer to indices 1, 2,

s, t, u, v refer to indices 3, . . . , 6, and i, j, k, l run over all indices 1, . . . , 6. From (2.4.18), we

generate a series of interactions among the fluctuating fields δM , one interaction being

δS =
1
µ4

∫
d4x d2θ Λ3 〈MM〉−3 〈M12〉×

× εs1t1s2t2
(
δM cdD δM s1c ·D δMdt1

) (
δM ef D δM s2e ·D δMft2

)
.

(2.4.19)

Of course, the effective fermion interaction (2.4.5) which we considered in the instanton

computation is one of the terms that arises from (2.4.19).

By definition, if δM ij is massless, then the basic equation of motion (2.2.38) for δM ij

takes the form D
2
δM ij = O(δM2). Since only massless fluctuations appear in the effective

interaction (2.4.19), we can immediately integrate this F -term into a D-term at leading

order,

δS =
1
µ4

∫
d4x d4θ Λ3 〈MM〉−3 〈M12〉×

× εs1t1s2t2
(
δM cd δM s1c δMdt1

) (
δM ef D δM s2e ·D δMft2

)
.

(2.4.20)

We have used the fact that to this order, two D’s cannot act on the same δM , and none

can act on δM .
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In the case of the theory with n = 2, the same observations imply that the analogous

part of the F -term in (2.2.28) can be rewritten locally as the simple D-term below,

δS =
1
µ2

∫
d4x d4θ Λ4 〈MM〉−1 εcdεst δM scδMdt . (2.4.21)

Here again we expand around a vacuum in which the nonvanishing part of 〈M〉 is 〈M12〉,

and c, d = 1, 2 while s, t = 3, 4.

Thus, the appearance of these unusual F -terms is signaled by the perturbative appear-

ance of the D-terms in (2.4.20) and (2.4.21), which we must now compute. As in the

instanton computation, we could compute some particular component of this superspace

interaction. However, we are in a situation perfectly suited for a manifestly supersymmetric

computation using the formalism of super Feynman diagrams.

Evaluating a Super Feynman Diagram

We will not review here the basic derivation of Feynman rules in superspace, for which

we recommend Section 6.3 of [35]. In general, superspace Feynman rules can be derived by

standard path integral manipulations just as for ordinary Feynman rules, and for the sake

of brevity we will only state the super Feynman rules that we need for our very simple,

tree-level computations.

In the case of the theory with 2n = 6, we begin by expanding the tree-level Wess-Zumino

action in fluctuations δM about the vacuum, so that

S =
1
µ2

∫
d4x d4θ δMδM +

∫
d4x d2θ (3λ 〈M〉∧δM∧δM + λ δM∧δM∧δM) + c.c.,

(2.4.22)

where for convenience we introduce the abbreviation

λ ≡ Λ−3 . (2.4.23)

We will not be concerned with constants here, and we simply absorb the numerical factor

of 3 in (2.4.22) into 〈M〉. We will also suppress the appearance of the mass scale µ in all

expressions that follow, since its appearance is trivially fixed at the end of the computation

by dimensional analysis.
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Of course, we similarly expand the sigma model action in the theory with n = 2,

S =
1
µ2

∫
d4x d4θ δMδM +

∫
d4x d2θ (2 〈M〉∧δM δΣ + δM∧δM δΣ − ε δΣ)+ c.c. + · · · ,

(2.4.24)

where the ellipses indicate kinetic terms and a mass term for the fluctuations of the auxiliary

field Σ. As above, we ignore constants, and we abbreviate

ε ≡ Λ4 . (2.4.25)

The most important terms in (2.4.24) for our computation are simply the linear source term

for δΣ which represents the deformation as well as the mass term mixing δM and δΣ.

Propagators

In the vacuum with only 〈M12〉 6= 0, we want to get an effective interaction for the

massless fields by integrating out the massive fields M st, s, t = 3, . . . , 2n.

These fields have standard superspace propagators, which may be either chiral or non-

chiral. We indicate these propagators below, in the theory with n = 3,

δM st ————— δMuv = δuvst /
(
p2 + λλ〈MM〉

)
,

δM st D2

– – – – – – δMuv = λ 〈M12〉 εstuvD2 / p2
(
p2 + λλ〈MM〉

)
,

δM st
D

2

– – – – – – δMuv = λ 〈M12〉 εstuvD
2
/ p2

(
p2 + λλ〈MM〉

)
.

(2.4.26)

In writing the non-chiral propagator, we use the standard notation δuvst = δus δ
v
t − δut δvs . We

have also suppressed a superspace delta function δ4(θ − θ′) which accompanies these prop-

agators. Finally, we note the superspace derivatives D2 and D2 which appear in the chiral

and anti-chiral propagators. These factors arise ubiquitously in supergraph computations

when chiral integrals over half of superspace are rewritten as non-chiral integrals over the

full superspace.

In the theory with n = 2, similar propagators appear for the appropriate linear combi-

nations of δΣ and δM , for which the mass squared is again proportional to 〈MM〉. (If a



60

separate mass term mΣ2 for Σ is also present, this statement remains true in the classical

limit that 〈MM〉 is large.)

Vertices

In the theory with n = 3, the cubic superpotential gives rise to cubic vertices for chiral

and anti-chiral interactions, as we distinguish in Figure 2.1. We have written these inter-

actions in an SU(6) symmetric fashion, though of course each chiral and anti-chiral vertex

decomposes under the unbroken SU(2)× SU(4) symmetry to give various interactions be-

tween the massive and massless components of M , which we leave implicit. Each superspace

vertex comes with a factor of
∫
d4θ, and the delta functions from the propagators simply

ensure that the overall diagram has precisely one factor of
∫
d4θ, as we expect.

i j k l

m n

= λ εijklmn ,

i j k l

m n

= λ εijklmn .

Figure 2.1: Vertices for n = 3

In the corresponding theory with n = 2, we require a similar cubic vertex arising from

the interaction δM∧δM δΣ as well as the chiral source term ε δΣ, as shown in Figure 2.2.

Again, we leave the obvious decomposition under SU(2)× SU(2) implicit.

k li j

δΣ

= εijkl ,

δΣ = ε .

Figure 2.2: Vertices for n = 2
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Last, we recall the rule that if a chiral vertex has N internal legs (external legs don’t

count), then N−1 of those legs appear with a factor of D2 attached. Briefly, if J(x, θ) is the

chiral source introduced as usual to derive Feynman rules, then the functional derivative of

J satisfies δJ(x, θ)/δJ(x′, θ′) = D2 δ4(x − x′) δ4(θ − θ′). So N factors of D2 appear from

these derivatives, but one factor of D2 is used to write
∫
d2θ D2 =

∫
d4θ, as mentioned

above.

With these rules in hand, we can immediately generate the interactions in (2.4.20) and

(2.4.21). First, in the simpler case of n = 2, we immediately evaluate the simple diagram

in Figure 2.3 at zero momentum to produce the effective interaction

∫
d4x d4θ εcdεst δM scδMdt

ε

〈MM〉
, (2.4.27)

as in (2.4.21).

εδΣ

s c

t d

Figure 2.3: Two-point super Feynman diagram

For the theory with n = 3, we consider the slightly more involved diagram in Figure 2.4.

We note that the D2 operator in this diagram arises from the central chiral propagator, and

the two D2 operators arise from the two chiral vertices.

At first sight, one might worry about the spurious pole at zero momentum that appears

to arise from the extra factor of p2 appearing in the central chiral propagator, as in (2.4.26).

Physically, since we only integrate out massive fields, we do not expect to find any pole at

zero momentum.

However, we can integrate by parts to move one of the D2 operators onto the central

chiral propagator to form D2D2. Since D2D2 = p2 when acting on a chiral field, this factor

of D2D2 cancels against the extra factor of p2 in the denominator of the chiral propagator.



62

D2

D2D2

1t d1

t d22

11 2 2e ef f
s c

cs2 2

1 1

Figure 2.4: Six-point super Feynman diagram

Thus, the diagram is well defined in the limit of zero momentum, and we evaluate it in

this limit to reproduce the D-term (2.4.20). We also note that once we cancel the factor

of D2D2, we are left with only one factor of D2, which acts on the external anti-chiral legs

just as in the interaction (2.4.20).

So at zero momentum, the remainder of our computation is a trivial matter of algebra.

We find that this diagram produces the effective interaction∫
d4x d4θ δM s1c1 δM s2c2

(
DδM t1d1 ·DδM t2d2

)
δM e1f1 δM e2f2×

× λ εc1c2εs1s2uv

λλ 〈MM〉
· λ εuvu′v′εe1f1 ·

λ εu
′v′wx〈M12〉
λλ 〈MM〉

· λ εwxw′x′εe2f2 ·
λ εw

′x′t1t2εd1d2

λλ 〈MM〉
.

(2.4.28)

The tensor on the second line of (2.4.28) is then proportional to

λ−1 〈MM〉−3 〈M12〉 δc1c2e1f1
δd1d2e2f2

εs1s2t1t2 , (2.4.29)

which has precisely the form required to produce the F -term. The λ’s have happily canceled,

ensuring the requisite holomorphy.

N. Seiberg has pointed out the following interpretation of the 1/λ factor. As the meson

superfield M has dimension two in the classical theory, the dependence on Λ of the super-

potential interaction in the Wess-Zumino model (2.4.17) is fixed by dimensional analysis

to be
∫
d4x d2θΛ−3M ∧ M ∧ M . Thus, the abstract coupling λ is a multiple of Λ−3 in

SQCD, as in (2.4.23), and the multi-fermion F -term interaction, being proportional to λ−1

in the Seiberg dual description, is proportional to Λ3 in the original SQCD description. But
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Λ3 is the standard instanton factor for SU(2) with six doublets, and the direct instanton

computation of Section 4.1 did, accordingly, give a result proportional to Λ3.

2.4.3 Mass Deformation And Renormalization Group Flow

For our final computation, we perturb SU(2) SQCD with 2n massless doublets by adding

a tree-level superpotential which gives a mass to some of the n flavors,

W = mijM
ij . (2.4.30)

As usual, we assign charges to the mass parametersmij under the symmetries of the massless

theory so that W is formally invariant,

SU(2) SU(2n) U(1)A U(1)R

mij 1 ∧2
(
2n
)

−2 −2
(
1− 2

n

)
.

(2.4.31)

The whole computation will be performed on B.

As we observed in general in Section 2.3, the tree-level superpotential alters the on-shell

supersymmetry algebra of the theory. Consequently, the operator Oω ≡ O(n)
ω in (2.3.13)

which is chiral in SQCD with 2n massless doublets is no longer chiral when some of those

doublets become massive.

Physically, we expect that there is instead some deformation Õω of this operator, de-

pending holomorphically on mij , which is chiral in the massive theory and which reduces

to O(n)
ω upon setting mij to zero.

On the other hand, if we give very large masses to k of the flavors and integrate them

out, we also expect that Õω must reduce to the operator O(n−k)
ω appropriate for the massless

theory with n− k flavors. In particular, upon integrating out all but one flavor, Õω should

reproduce the well known nonperturbative superpotential,

W =
Λ5

M
. (2.4.32)

Here M = M12 is the only independent component of the 2× 2 antisymmetric matrix M ij .

We now compute Õω, which will be uniquely determined from O(n)
ω by supersymmetry

and will have the properties above. Since we know already from the work of [7] that the
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superpotential (2.4.32) is generated, we will thus show that the F -term involving O(n)
ω is

generated in the massless theory with n flavors. Finally, we remark that this sort of analysis

extends, at least in spirit, directly to the general case of SU(Nc) SQCD withNf > Nc flavors

and might be successfully applied there.

As before, we use M to denote the moduli space of the massless theory, and we recall

thatM is a complex cone over the Grassmannian B = SU(2n)/S(U(2)×U(2n−2)). Then

our problem of constructing Õω is equivalent to the geometric problem of finding a tensor

ω̃, which is generally an inhomogeneous sum of sections of Ωp
M⊗∧pTM for various p, such

that ω̃ satisfies the supersymmetry condition,

(
∂ + ιdW

)
ω̃ = 0 , (2.4.33)

and in the massless limit reduces to our former tensor ω.

Preliminaries

As in Section 3, the important analysis of ω̃ is the local analysis on B near the point

corresponding to M ij = ε̂ij . However, we first find it useful to revisit our construction of

the simpler tensor ω in greater detail and in a manner which immediately generalizes to the

construction of ω̃.

Let us recall our construction of ω in Section 3. We begin by picking a point P on B, for

concreteness corresponding to the point M ij = ε̂ij onM. By an overall scaling of the M ij ,

we can set M12 = 1, and then we take complex coordinates on B (in a neighborhood of the

point P ) to be simply the off-diagonal matrix elements φsc = εcdM
sd, c = 1, 2, s = 3, . . . , 2n.

These complex coordinates are the usual complex coordinates on the Grassmannian, and

they transform as in (2.3.5) under the action of the unbroken S(U(2)×U(2n−2)) symmetry

group at P . The matrix elements M ij , i, j > 2, are determined implicitly in terms of the φsc

by the equation M ∧M = 0. We will not need the explicit form of these matrix elements;

because we work locally at P , the only important fact is that they are of order (φsc)
2.

In (2.3.13), we determined the form of the multi-fermion F -term:

Oω = Λ6−n
(
MM

)−n
εi1j1···injn M i1j1 Oi2j2 · · · Oinjn , (2.4.34)
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where

Oij ≡ MklDM ik ·DM lj , MM =
1
2
M ijM

ij . (2.4.35)

In that discussion, we used an argument based on symmetries to prove that ∂ω = 0. As

a prelude to including the superpotential deformation, we will here demonstrate this more

explicitly.

Since ω is invariant under the action of SU(2n) on the homogeneous space B, it suffices

to show that ∂ω = 0 at the point P . Furthermore, to evaluate this derivative at P we need

only describe ω up to terms of order φ2. Once we recognize this fact, we can immediately

see why ω is annihilated by ∂. Thus, we note that MM = 1 + O(φ2), so working up to

terms of order φ2 allows us to set MM = 1 in (2.4.34). Furthermore, examining (2.4.34)

and (2.4.35), we see that up to terms of order φ2, we can replace the explicit factor of M i1j1

in (2.4.34) by ε̂i1j1 , so that all factors of Oikjk have ik, jk > 2. (We also observed this fact

at the end of Section 3.2.) Further, for ik, jk > 2, we can take Oikjk = εcdDM ikc ·DMdjk ,

again up to terms of order φ2. So, up to terms vanishing to second order at P , ω takes the

particularly simple form

ω = εs1t1s2t2...sntn

(
εc1d1dφ

c1
s1

∂

∂φt1d1

)
· · ·
(
εcndndφ

cn
sn

∂

∂φtndn

)
. (2.4.36)

Now the fact that ∂ω = 0 at P is manifest: all terms in ω have constant coefficients and

are trivially annihilated by ∂.

The benefit of this approach is that we can now conveniently understand the gener-

alization with the superpotential turned on. We claim that the generalization of Oω is

simply

Õω = Λ6−n
(
MM

)−n
εi1j1···injn M i1j1 Õi2j2 · · · Õinjn ,

Õij ≡ MklDM ik ·DM lj −
(
MM

)
mij .

(2.4.37)

This certainly reduces to Oω at m = 0; we just have to prove that it is chiral. In other

words, we need to show that the object ω̃, obtained from ω by replacing each Oij by Õij , is

annihilated by ∂+ ιdW . It suffices to do the computation at the point P ∈ B with M ij = ε̂ij

since, as we will make no particular assumption about the form of the mass matrix mij , the

computation would proceed in the same way at any other point.



66

So as before, we want to write out a simple formula for ω̃ that is valid near P to order

φ2. To this order, the explicit factors of M i1j1 in Õω and of Mkl in Õij can be replaced by

ε̂i1j1 and ε̂kl. Since in Õij , the indices i, j are then in the range 3, . . . , 2n the mass matrix

mij can be replaced by µij , its orthogonal projection onto the part with i, j > 2. We write

Π for the projector onto components of mij with i, j > 2 and will describe Π more explicitly

momentarily.

The net result is that up to terms of order φ2, ω̃ is described near P by a simple

generalization of (2.4.36),

ω̃ = εs1t1···sptp ω̃s1t1 · · · ω̃sptp , p = n− 1 ,

ω̃st = εcd

(
dφcs

∂

∂φtd
+

∂

∂φsc
dφdt

)
− µst .

(2.4.38)

The virtue of factorizing ω̃ in this way is as we will see each factor ω̃siti is separately

annihilated by ∂ + ιdW . Also, in the expression for ω̃st in the second line of (2.4.38), we

have explicitly indicated the two terms that arise from the contraction of spinor indices on

Dα̇ in (2.4.37), since we will try to be careful about factors of two in the following.

Let us first evaluate ιdW (ω̃st). The contraction operator ιdW trivially annihilates µst

(because the latter is a zero-form). As W = mijM
ij , we have dW = mijdM

ij . So the effect

of contraction with dW is just to map ∂/∂φsc to µcs, the projection of the mass matrix m to

terms that transform like ∂/∂φsc (in other words, as (2,2n− 2)) under the subgroup of the

symmetry group that leaves fixed the point P ∈ B. Hence we have

ιdW ω̃st = εcd
(
dφcs µ

d
t + µcs dφ

d
t

)
. (2.4.39)

It remains to evaluate ∂(−µst). This is nonzero because of the projection in the definition

of µst. As we will show,

∂µst = εcd
(
dφcs µ

d
t + µcs dφ

d
t

)
. (2.4.40)

From (2.4.39) and (2.4.40), we then see directly that ∂ + ιdW annihilates ω̃st and hence ω̃

at the point P on B.

To derive the formula (2.4.40) for ∂µst, we begin by considering the projection Π of the

mass matrix m onto its components which transform in the representation ∧2
(
2n− 2

)
. We
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can directly write a global formula for this projection,

Π(m)ij = mij +
(
MM

)−1 (
mikM

klM lj −mjkM
klM li

)
+

+
(
MM

)−2 (
M ikM

klmlpM
pqM qj

)
.

(2.4.41)

Upon substituting M ij = ε̂ij and using repeatedly that ε̂klε̂lj = −δ̂kj (explaining the signs

above), one can check that the second and third terms of (2.4.41) subtract the components

of m transforming in the representations 1 and (2,2n− 2) under SU(2)×SU(2n−2) at P ,

leaving only the components in ∧2
(
2n− 2

)
. Since the formula (2.4.41) for Π is invariant,

it is correct globally on B.

Because the action of ∂ commutes with pullback, we can now act with ∂ directly on

(2.4.41) as an unconstrained expression in the ambient vector space (or projective space)

parametrized by M ij . We then pull this expression back toM by dropping all terms which

involve the one-forms dM ij with both indices i, j > 2.

To evaluate ∂µ at φ = 0, we can discard all terms proportional to φ, and in particular

to components M ij or M ij with i or j bigger than 2. Terms that survive at φ = 0 only

arise from the action of ∂ on the second term of (2.4.41), with the expression(
MM

)−1 (
mikM

kldM lj −mjkM
kldM li

)
, i, j > 2 . (2.4.42)

From this global expression (2.4.42) we immediately deduce the local formula (2.4.40) upon

setting M ij = ε̂ij and identifying mikM
kldM lj as representing locally εcd µcs dφ

d
t at P . We

remark that the relative sign between the two terms in (2.4.40) and (2.4.42) arises from a

rearrangement of flavor indices in passing from (2.4.42) to (2.4.40).

Finally, although we have thus far only considered the special case that W = mijM
ij ,

if we now consider the case of a general superpotential deformation of SQCD, then our

construction of ω̃ immediately generalizes upon substituting everywhere ∂W/∂M ij for mij .

The only important property of m which we used was the fact that it is annihilated by ∂,

which is always true for dW .

Renormalization Group Flow

To conclude, we consider how Õω in (2.4.37) behaves under renormalization group flow.
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If we expand Õω as a polynomial in m, then the term of degree k in m is given by

O(n−k)
ω = (−1)k

(
n− 1
k

)
Λ6−n

(
MM

)−(n−k)
εi1j1···injn×

× M i1j1 mi2j2 · · ·mik+1jk+1
Oik+2jk+2

· · · Oinjn ,

Oij ≡ MklDM ik ·DM lj .

(2.4.43)

This operator O(n−k)
ω has the same form as the operator in (2.3.13) which appears in the

theory with n− k massless flavors.

We consider the limit in which k flavors have masses m � Λ. To integrate out these

flavors, we restrict to the sublocus of M describing supersymmetric vacua in the massive

theory, so that mikM
kj = 0 for all i, j (as follows from the F -term equations), and we

simply omit from the operator Õω any terms which involve the heavy quarks. The operator

to which Õω flows in the infrared is thus O(n−k)
ω in (2.4.43).

In particular, we can consider flowing to the theory with only one flavor. The operator

to which Õω flows is then given by

O(1)
ω = (−1)(n−1) Λ6−n

(
MM

)−1
εi1j1···injn M i1j1 mi2j2 · · ·minjn . (2.4.44)

As we see, O(1)
ω involves no fermions at all and represents a function onM. Of course, this

function is not holomorphic on all ofM.

However, if we restrict O(1)
ω to the sublocus ofM describing supersymmetric vacua, then

O(1)
ω is holomorphic. Indeed, this locus can be described by a single massless meson M , so

the matrix structure disappears and M cancels out. On this locus, O(1)
ω can be written in

terms of M as

O(1)
ω = (−1)(n−1) Λ6−n εi1j1···in−1jn−1 mi1j1 · · ·min−1jn−1

2
M

. (2.4.45)

In this expression, the Pfaffian of the rank 2(n−1) minor of m appears, and an extra factor

of two arises from the contraction of indices of M i1j1 . So, once ultraviolet and infrared

scales are matched, O(1)
ω reproduces the nonperturbative superpotential in (2.4.32).



Chapter 3

Residues and Worldsheet

Instantons

3.1 Introduction

String theory backgrounds which preserve only N = 1 supersymmetry in four dimensions

are of great interest both from a theoretical and a phenomenological perspective. A textbook

way to obtain such a background is to compactify either the E8×E8 or Spin(32)/Z2 heterotic

string on a Calabi-Yau threefold X with a stable, holomorphic gauge bundle E. One

might suppose that these compactifications, which admit a completely perturbative string

description, would be a natural starting point from which to study the moduli space of

N = 1 backgrounds of string theory.

However, in fact we know very little about which pairs (X,E) give rise to consistent

heterotic backgrounds, even in string perturbation theory. The issue, of course, is that

models described by generic X and E, even though they may satisfy the classical equations

of motion to all orders in α′, are destabilized non-perturbatively by world-sheet instantons

[12]. These instantons, arising from world-sheets which wrap rational (i.e. holomorphic,

genus zero) curves in X, can each contribute to a background superpotential W which lifts

the Kähler moduli of X and generates a cosmological constant. So one might think that

69
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the only stable N = 1 heterotic compactifications would arise from very special choices of

X and E — for instance corresponding to world-sheet theories with (2, 2) supersymmetry

or the (0, 2) models studied by Distler and Greene [36,37] — for which each world-sheet

instanton simply cannot contribute to W .

In this light, the result of [13] that there are no non-perturbative contributions toW that

destabilize compactifications described by (0, 2) linear sigma models [38,39] is somewhat

surprising. This result does not rely upon any consideration of world-sheet instantons and

instead follows from simple facts about the linear sigma model. One simply observes that

W must always be a holomorphic section of a complex line-bundle of strictly negative

curvature over the moduli space of the low-energy effective theory, which is naturally a

compact Kähler manifold in the case of a linear sigma model. The compactness of the

moduli space implies that W must have a pole somewhere on the moduli space or else vanish

identically. However, the linear sigma model, being a two-dimensional, super-renormalizable

gauge theory, can only become singular when the target space becomes non-compact, as

some bosonic field develops a dangerous, unsuppressed zero-mode. In computing the linear

sigma model correlators which describe the couplings of gauge-singlet fields in the effective

theory and so probe for a background W , one finds that, after suitably twisting the model,

no boson has a dangerous zero-mode. So W has no poles on the moduli space and thus

vanishes.

Now, Calabi-Yau compactifications which are described by (0, 2) linear sigma models are

certainly not generic — but nor are they so special that each world-sheet instanton simply

does not contribute to W . So from the world-sheet perspective, the stability of (0, 2)

linear sigma models implies in these compactifications a remarkable cancellation among

the contributions to W from world-sheet instantons wrapped on rational curves in each

homology class of X.

For instance, the analysis of [13] was applied in most detail to the simple case that X is a

quintic hypersurface in CP4 and E is a deformation of the holomorphic tangent bundle TX,

corresponding to a deformation off the locus of (2, 2) supersymmetric world-sheet theories.
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In this case, the linear sigma model result implies that, contrary to one’s naive expectation,

the world-sheet instanton contributions to W from the 2875 lines on the generic quintic

sum to zero.

Our main goal in this chapter of the thesis is to understand, from the world-sheet per-

spective, the source of this remarkable cancellation among instantons. In the process, we

will introduce a new (0, 2) “half-linear” sigma model and show that heterotic compactifi-

cations described by these models form another class of stable N = 1 string backgrounds.

For instance, using the half-linear model we show that heterotic compactifications on the

quintic hypersurface in CP4 for which the gauge bundle pulls back from a bundle on CP4

are stable.

More generally, just as for the linear models, the half-linear models can be used to

describe compactification on any Calabi-Yau threefold X which is a complete-intersection

in a compact toric variety Y . However, in the half-linear models the bundle E on X is

now any stable, holomorphic bundle which pulls back from a bundle on Y . In particular, E

need not be a “monad” bundle on X, the sort most naturally described in the linear sigma

model. (Technically, a monad bundle is one which admits a description as the cohomology

of a complex A→ B → C of three bundles A, B, and C on X.) Conversely, however, there

are also monad bundles on X (including obvious ones such as its tangent bundle) that do

not pull back (at least in any obvious way) from a holomorphic bundle on Y . So we will also

develop a version of the vanishing argument adapted to linear models and monad bundles

on X.

3.1.1 A Brief Sketch of the Idea

Our essential idea can be motivated by considering the actual form of the instanton contri-

butions to W in the simple case that the string world-sheet wraps once about an isolated

rational curve C embedded in X. Actually, the most direct and elegant way [40,41] in this

case to derive the instanton contribution to W is to evaluate the partition function of the

worldvolume theory on a single D1-brane wrapped on C in the Type I theory, which is the
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dual description [42] of a world-sheet instanton in the Spin(32)/Z2 heterotic theory. (As

explained in [41], the derivation of W from the Type I theory most directly applies to the

Spin(32)/Z2 heterotic theory, but holomorphy and gauge-invariance allow us to interpret

the answer for the E8×E8 heterotic theory as well.) Holomorphy allows us to evaluate this

partition function at one-loop, so the instanton contribution to W from C is just

W (C) = exp
(
−A(C)

2πα′
+ i

∫
C
B

)
Pfaff′(DF )√

det′(DB)
. (3.1.1)

Here the exponential factor in W (C) represents the classical action of the D1-brane.

We have written this action in heterotic units, so that A(C) is the area of C in the heterotic

string metric on X, α′ is the heterotic string tension, and B is the heterotic B-field.

The other factor in W (C) arises from the one-loop integral over the fluctuations of the

bosons and fermions living on the worldvolume of the D1-brane. DB and DF are thus

the respective kinetic operators of the worldvolume bosons and fermions, and the “prime”

in det′(DB) and Pfaff′(DF ) indicates that these expressions are to be evaluated only after

omitting the zero-modes associated to the bulk symmetries which are broken by the D1-

brane. Four bosonic zero-modes associated to the broken translational symmetries in R4

and two right-moving fermionic zero-modes associated to the broken supersymmetries arise

in this fashion.

The complex structure moduli of X and E are described by chiral superfields in the

low-energy, effective N = 1 theory, and W (C) must depend holomorphically on these fields.

Unfortunately, our simple expression (3.1.1) for W (C) is not manifestly holomorphic. To

get a manifestly holomorphic expression for W (C), we must use the fact that the two super-

symmetries left unbroken by the D1-brane imply a cancellation between the contributions

of the right-moving fermionic modes to Pfaff′(DF ) and the contributions of the right-moving

bosonic modes to det′(DB).

To make this cancellation explicit, we write W (C) solely in terms of the left-moving

bosonic and fermionic modes. By convention, the kinetic operator of a left-moving fermion

on C will be a ∂ operator, while the kinetic operator for a right-moving fermion will be a

∂ operator. Thus, since the left-moving worldvolume fermions transform as sections of the
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left-moving spin bundle S− = O(−1) on C tensored with the gauge bundle E as restricted

to C, their contribution to Pfaff′(DF ) is just the Pfaffian of the ∂ operator coupled to

E ⊗ O(−1) ≡ E(−1), which we denote ∂E(−1). Here O(n) is the usual notation for the

complex line-bundle of degree n on projective space. In particular, O is the trivial complex

bundle of rank one.

Similarly, in the formula (3.1.1) for W (C), we have written the boson kinetic operator

DB as a real operator acting on the eight real bosons representing the normal directions to

C in R4×X. Since C, X, and R4 all have complex structures, we can equally well group the

eight real bosons into four complex bosons taking values in the complex normal bundle N

to C in R4×X. When C is isolated in X, N is isomorphic to O⊕O⊕O(−1)⊕O(−1), the

first two summands representing the normal directions in R4 and the last two summands

representing the normal directions in X. Thus, the contribution of the non-zero left-moving

bosonic modes to det′(DB) just arises from the ∂ operator on C coupled to the normal

bundle N .

So, cancelling out the right-moving modes from W (C) in (3.1.1), we have

W (C) = exp
(
−A(C)

2πα′
+ i

∫
C
B

) Pfaff
(
∂E(−1)(C)

)
(
det′ ∂O

)2 (
det ∂O(−1)(C)

)2 . (3.1.2)

This expression for W (C) is now manifestly holomorphic. Specifying a ∂ operator on either

X or E is equivalent to specifying its complex structure, so the operators ∂E(−1)(C) and

∂O(−1)(C) themselves depend holomorphically on the complex structure moduli of X and

E. We have also emphasized in (3.1.2) that the way in which the complex structure moduli

of X and E appear in these ∂ operators itself depends upon which curve C in X that

the instanton wraps. In fact, at least when X is elliptically fibered, one can derive very

explicit expressions in given examples for the dependence of W (C) on the moduli of E and

X [43,44], although we will not be needing such detailed expressions here.

Thus, in the case that X is a generic quintic in CP4 and E is a deformation of TX, the
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vanishing of W implies as a corollary that, summing W (C) over the 2875 lines on X,

2875∑
i=1

exp
(
i
∫
Ci
B
)

Pfaff
(
∂E(−1)(Ci)

)
(
det ∂O(−1)(Ci)

)2 = 0 . (3.1.3)

In this expression, we have dropped from W (C) an overall factor of exp
(
−A(C)
2πα′

)
, which

is constant for curves on X of given degree, and a factor of (det′ ∂O)−2, which is simply

constant.

One is very much also tempted to drop from (3.1.3) the factor of exp (i
∫
Ci
B), which

is at least “morally” constant on curves of given degree. However, as reviewed in [41],

because only the product of exp (i
∫
Ci
B) and the fermion Pfaffian is even well-defined, we

must technically include in (3.1.3) this factor involving B so that the full expression makes

sense. Nevertheless, our interest in (3.1.3) resides in the holomorphic dependence of this

formula on the complex structure moduli of X and E, and we will not dwell here on the

subtleties of the heterotic B-field.

At first sight, the formula (3.1.3) might seem like an exotic mathematical prediction

derived only indirectly from the underlying (0, 2) linear sigma model. But in fact, this sort

of formula has a clear precedent from algebraic geometry, in the form of a residue theorem.

To derive the simplest example of such a residue theorem, suppose that ω is a mero-

morphic one-form on CP1 with simple poles at points Pi, i = 1, . . . , N . Letting z be a

holomorphic coordinate on CP1, we can express ω as

ω =
g(z)dz
f(z)

, (3.1.4)

where f and g are polynomials in z, f having non-degenerate zeroes at the points P1, . . . , PN .

Without loss, we assume that ω does not have a pole at z = ∞, so that the degrees of f

and g satisfy

deg g ≤ deg f − 2 . (3.1.5)

As usual, we then define the residue of ω at each point Pi, denoted ResPi(ω), by inte-

grating ω over a small contour γi about the point Pi,

ResPi(ω) =
1

2πi

∮
γi

ω =
g(Pi)

∂f/∂z(Pi)
. (3.1.6)
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We now obtain a residue theorem simply by considering the sum of contours

Γ = γ1 + · · ·+ γN . (3.1.7)

Since Γ is contractible, we have

0 =
1

2πi

∮
Γ
ω =

N∑
i=1

ResPi(ω) =
N∑
i=1

g(Pi)
∂f/∂z(Pi)

. (3.1.8)

So the residue theorem simply states that the sum of the residues of ω is zero.

Comparing (3.1.3) to (3.1.8), we can already see a vague similarity between these two

formulae, with the Pfaffian in (3.1.3) being a holomorphic function analogous to g in (3.1.8),

and the bosonic determinant in (3.1.3) being analogous to ∂f/∂z in (3.1.8). Our main goal

in this chapter is to make the correspondence between these formulae precise, showing

directly that the instanton contributions to W vanish in suitable models due to an infinite-

dimensional generalization of the simple one-dimensional residue theorem above.

3.1.2 The Plan of the Chapter

Our plan for this chapter is as follows. In Section 2, we start by generalizing the one-

dimensional residue theorem to finitely many dimensions. Although standard mathematical

approaches exist for studying multi-dimensional residues, as for instance in [34,45], we will

take a more physical approach by studying a certain supersymmetric, finite-dimensional

integral. This integral is a natural abstraction of the path-integral over the right-moving

world-sheet fields on the heterotic string, and from it we easily prove a very general, multi-

dimensional residue theorem.

At the end of Section 2, we also describe precisely how the partition function of the

worldvolume theory on a supersymmetric D1-brane can be interpreted as a residue. Un-

fortunately, although the D1-brane formalism provides a very elegant description of the

superpotential contribution from any single instanton, the world-sheet description of the

heterotic string turns out to be better for proving vanishing results for the sums of these

instanton contributions.
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So in Section 3, we apply our analysis from Section 2 to the heterotic world-sheet

theory itself. This analysis most directly generalizes to the “half-linear” class of heterotic

compactifications, for which X is a complete-intersection in a compact toric variety Y and

the gauge bundle E on X pulls back from a bundle on Y . For these compactifications, the

vanishing of the instanton contributions to W follows from essentially the same argument

as we use in Section 2 to deduce the multi-dimensional residue theorems. We also show how

this argument can be applied to the (0, 2) linear sigma models to prove directly formulae

such as (3.1.3).

Very recently, Basu and Sethi [14] have also given another argument for the stability of

(0, 2) linear sigma models. Their argument focuses on showing the absence of corrections

to the world-sheet superpotential.

Finally, in Section 4 we consider the N = 1 compactification of M-theory on a manifold

X of G2 holonomy. Using ideas very similar to those in Sections 2 and 3, we extend the

results of [46] by computing the superpotential contribution from membranes which wrap

a continuous family of supersymmetric three-cycles in X.

This chapter of the thesis is based on [5].

3.2 Residues and Supersymmetry

Rather than trying to generalize immediately from the one-dimensional residue theorem to

an infinite-dimensional residue theorem which is applicable to the heterotic string, we will

warm up with the simpler generalization to residue theorems in only a finite number of

dimensions. Our strategy is to consider a finite-dimensional, supersymmetric integral on

an arbitrary compact, complex manifold M . The finite-dimensional residue theorem then

follows from the supersymmetry, which allows us to localize the integral to a sum of terms

generalizing the one-dimensional residues, and from the compactness of M , which leads

to the vanishing of the integral and hence the sum. After we obtain this result, we will

indicate some easy generalizations of it which also have relevance to the heterotic models

we introduce in Section 3. Finally, we describe precisely how the partition function of the
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worldvolume theory on supersymmetric D1-brane can be interpreted as a residue.

Standard mathematical approaches to multi-dimensional residues and residue theorems

can be found in [34] and [45]. Mathematical discussions somewhat more related to our

approach via supersymmetry are given in [47], [48], and [49].

3.2.1 A Finite-Dimensional Integral

We now introduce the finite-dimensional, supersymmetric integral that is central to our

study of residues and which serves as a model for the path-integral over the world-sheet

fields of the heterotic string. Since the supersymmetry in our integral is essential, we will

begin by specifying how it acts on the variables of integration.

As mentioned above, we perform the integral over a compact, complex manifold M ,

having (complex) dimension n. So the bosonic variables of integration will be the local

holomorphic and anti-holomorphic coordinates zi and zi ≡ zi on M .

We also introduce a set of anti-commuting, fermionic coordinates θi and χα. Here the

fermions θi transform as coordinates on the anti-holomorphic tangent bundle TM , and the

fermions χα transform as coordinates on a holomorphic vector bundle V , of rank r, over

M . The bundle V is completely arbitrary and should be considered, like M , as part of the

defining data for our integral.

Besides specifying V itself, we must now also choose a global holomorphic section s of

V . We need this section s simply to define an interesting supersymmetry transformation

for the fermions χα, since none of the other variables of integration have anything to do

with V . So under the supersymmetry δ, the bosonic and fermionic variables transform as

δzi = 0 ,

δχα = sα ,

δzi = θi ,

δθi = 0 .
(3.2.1)

Note that since s is holomorphic, δ2 = 0, the most important property of δ.

The supersymmetric integral which we consider takes the general form

Z =
∫
M
g dµ exp (−t S) , (3.2.2)
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where t is a positive real parameter representing the “coupling constant” for Z, S is a

finite-dimensional “action” which we will soon present, and

g dµ ≡ g(z) dnz dnz dnθ drχ (3.2.3)

is the measure. Locally, g is a function which represents the particular choice of measure

for Z, and to ensure that the measure respects the supersymmetry, g must be holomorphic.

The fact that we have to worry about the measure for Z may seem slightly odd, since

in many supersymmetric integrals, one can make a canonical choice of measure (up to

normalization). The point is that, under any change of variables, the resulting Jacobians

for the bosonic variables are cancelled by the fermionic Jacobians for their superpartners.

In the case of dµ above, such a cancellation occurs between the anti-holomorphic bosons

zi and their superpartners θi. So the factor dnz dnθ appearing in dµ indeed represents a

canonical choice of measure for these variables.

On the other hand, the bosonic variables zi and the fermionic variables χα are unre-

lated by supersymmetry, which means that we really must choose the factor g(z) dnz drχ

appearing in (3.2.3). Globally, g is not a function but transforms as a holomorphic section

of the line-bundle Ωn
M ⊗ ∧rV on M , where Ωn

M denotes as usual the canonical bundle of

holomorphic n-forms on M and ∧rV is the top exterior power of V . Since we generally have

no preferred choice of such a section, we must interpret our choice of g as another part of

the input data needed to specify Z.

We must, of course, also specify the action S for the integrand of Z. We first choose a

positive-definite, hermitian metric hαα on V . Then we consider a δ-trivial action,

S = δ
(
hαα s

αχα
)
, (3.2.4)

or expanding,

S = hααs
αsα + hααDjs

α θjχα . (3.2.5)

Here Dj is the covariant derivative associated to the canonical connection arising from the

metric hαα on V . Recall that the canonical connection [34] is the unique connection on V
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for which hαα is covariantly constant and for which Dj = ∂j when acting on a holomorphic

frame of V .

One easy consequence of the fact that S is δ-trivial is that S is obviously supersymmetric,

δS = 0. A deeper consequence of the fact that S is δ-trivial is that the integral Z is formally

independent of the real parameter t and the metric hαα on V which we introduced. For

instance, the invariance of Z under changes in t is derived by first observing that

dZ

dt
= −

∫
M
g dµS exp (−t S) = −〈S〉 . (3.2.6)

However, if O is any function of the variables zi, zi, χα, and θi, then

〈δO〉 =
∫
M
g dµ δO exp (−t S) = 0 , (3.2.7)

which in the language of topological field theory is the decoupling of BRST-trivial observ-

ables [50,51]. Since the action S is of the form δO, we deduce immediately that dZ/dt = 0.

The invariance of Z under deformations of the metric hαα follows by the same argument.

Finally, we observe that S is invariant under a ghost number symmetry, under which

the anti-commuting variables χα and θi carry charges −1 and +1 respectively, and δ itself

carries charge +1. Since the measure dµ thus carries ghost number

dimM − rank V = n− r , (3.2.8)

Z vanishes identically unless n = r. So, if we wish to use Z to prove a residue theorem, we

must assume that dimM = rank V .

3.2.2 A Residue Theorem

As is familiar from the study of other topological models, we can prove an interesting

theorem by using the fact that Z is independent of t and then evaluating Z for t→∞ and

t = 0. Sometimes, a formal statement such as “Z is independent of t” could fail to hold

if the convergence of Z were sufficiently poor. See [13] for a nice demonstration of such a

failure in the context of the linear sigma model. However, because here Z is an integral
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over a compact manifold M , the convergence of Z is assured, even when t = 0, and there

are no difficulties with the formal statements above.

Evaluating Z when t = 0 is easy. Then

Z =
∫
M
g dµ 1 = 0 , (3.2.9)

since neither χα nor θi appear in the integrand above.

Evaluating Z for t → ∞, we see from the action S in (3.2.5) that only points in a

neighborhood of the vanishing locus L of the section s contribute to Z. In general, L will

consist of several disconnected components C, and Z must have an expression

Z =
∑
C⊂L

Z(C) , (3.2.10)

where Z(C) denotes the local contribution to Z from the component C. So (3.2.9) and

(3.2.10) imply as a very general vanishing theorem that

∑
C⊂L

Z(C) = 0 . (3.2.11)

The power of this approach is that the vanishing theorem (3.2.11) does not rely on any

specific behavior of the section s of V . In the simplest case, s has simple zeroes on a set of

isolated points of M . But we can equally well consider the case that s has degenerate zeroes

at some points, or even that s vanishes over some components of positive dimension. In

order to translate (3.2.11) into a more explicit formula, along the lines of the one-dimensional

residue theorem (3.1.8), we must simply evaluate the expression Z(C) for each case.

Multi-dimensional residues

To make contact with the one-dimensional residue theorem (3.1.8), we will consider at

first only the easiest case that s vanishes in a non-degenerate fasion on a set of isolated

points P of M .

Recall that the requirement that s vanish non-degenerately at a point P is simply the

condition that the Jacobian det (ds) be non-vanishing at P ,

det (ds)(P ) = det
(∂(s1, · · · , sn)
∂(z1, · · · , zn)

)
(P ) 6= 0. (3.2.12)
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In this case, the contribution Z(P ) from P can be evaluated exactly using the Gaussian

approximation to Z near this point, and we easily see that

Z(P ) =
g(P )

det (ds)(P )
. (3.2.13)

In this expression, we suppress overall factors of π that arise from the Gaussian integration.

Thus, the vanishing result (3.2.11) becomes

∑
P∈L

g(P )
det (ds)(P )

= 0 . (3.2.14)

This expression represents a natural generalization of the one-dimensional residue theorem

(3.1.8).

To sharpen the correspondence between the formula (3.2.14) and a multi-dimensional

residue theorem, we consider the particular case that the bundle V is a direct sum of n line

bundles,

V = O(D1)⊕ · · · ⊕ O(Dn) , (3.2.15)

which are associated to n irreducible, effective divisors D1, . . . , Dn intersecting transversely

at isolated points P in M .

To describe the appropriate section s of V for this case, we note that each divisor Di

is determined as the vanishing locus of a holomorphic section si of the line-bundle O(Di).

Then we simply take s to be the direct sum of the si, so that s has components

s = (s1, . . . , sn) . (3.2.16)

We note that the section s vanishes non-degenerately at each point P ∈ D1 ∩ · · · ∩Dn, so

our simple expression for Z(P ) in (3.2.13) is valid.

In this case, we can now give a very nice geometric interpretation of the local contribution

Z(P ) from each point P ∈ D1 ∩ · · · ∩ Dn. Near P , we can trivialize all the line bundles

O(Di) as well as the canonical bundle of M . Upon doing so, we can regard g as an ordinary

holomorphic function that is nonzero at P , and the si as holomorphic functions that vanish

on Di. Now we can define a meromorphic n-form ω that generalizes the one-dimensional
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expression (3.1.4),

ω =
g dz1∧ · · · ∧dzn

s1 · · · sn
. (3.2.17)

Given the meromorphic n-form ω, and a real n-cycle γ that links in a suitable way the

locus of its poles, we can naturally define an n-dimensional residue ResP (ω) = (1/2πi)n
∫
γ ω

that will generalize the usual one-dimensional residue. We let γ be the real n-cycle deter-

mined by

|si| = ε , i = 1, . . . , n , (3.2.18)

where ε is a small parameter. Technically, we must also orient γ, which we do by the

condition d(arg s1)∧ · · · ∧d(arg sn) ≥ 0.

On γ, ω is holomorphic, so we can define

ResP (ω) =
(

1
2πi

)n ∫
γ
ω . (3.2.19)

Since dω = 0 on a neighborhood of γ, this definition only depends on the homology class

of γ and in particular does not depend the parameter ε above.

The residue ResP (ω) can be then be evaluated by a change of variables and the iterative

application of Cauchy’s theorem. We find

ResP (ω) =
g(P )

det (ds)(P )
, (3.2.20)

generalizing the one-dimensional expression in (3.1.6). Of course, ResP (ω) agrees precisely

with Z(P ) for the special choices of V and s above, so our main result (3.2.11) is properly

interpreted as a generalized, multi-dimensional residue theorem.

A quick example

Before proceeding further, we will give a quick example of the residue theorem.

For our example, we take M = CP2 and V = TM , the holomorphic tangent bundle. If

we let [X0 : X1 : X2] be homogeneous coordinates on M , then any holomorphic section s

of V takes the form

s = a0X0
∂

∂X0
+ a1X1

∂

∂X1
+ a2X2

∂

∂X2
, (3.2.21)
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where (a0, a1, a2) are complex coefficients parametrizing s. Because [X0 : X1 : X2] are only

homogeneous coordinates, the coefficients (a0, a1, a2) are only defined up to the addition of

a multiple of (1, 1, 1), which describes the zero section of V . If (a0, a1, a2) are generic coeffi-

cients, then s vanishes non-degenerately at the three points P1 = [1 : 0 : 0], P2 = [0 : 1 : 0],

and P3 = [0 : 0 : 1] of M .

Since V = TM , the measure dµ is a section of the trivial bundle O = Ωn
M ⊗ ∧nTM .

Consequently, in this example we do have a canonical measure for Z and g is a constant.

Now in the patch where X0 6= 0, with local coordinates (z1, z2), s takes the form

s = (a1 − a0) z1 ∂

∂z1
+ (a2 − a0) z2 ∂

∂z2
, (3.2.22)

and so the residual contribution from P1 to Z is

Z(P1) =
1

(a1 − a0)(a2 − a0)
. (3.2.23)

Similar contributions from the points P2 and P3 are

Z(P2) =
1

(a0 − a1)(a2 − a1)
, Z(P3) =

1
(a0 − a2)(a1 − a2)

. (3.2.24)

The residue theorem then simply states that Z(P1) +Z(P2) +Z(P3) = 0, as one can verify

directly.

3.2.3 Generalizations

The ghost number symmetry preserved by S implies that Z trivially vanishes unless the

condition rank V = dimM holds. So if we wish to study bundles V such that rank V 6=

dimM , we should consider not Z itself but expectation values 〈O〉,

〈O〉 =
∫
M
g dµO exp (−tS) , (3.2.25)

where O is any function of zi, zi, χα, and θi which satisfies δO = 0. Of course, O must also

have ghost number n− r if 〈O〉 is to be any more interesting that Z itself.

Globally, functions O of zi, zi, χα, and θi are elements of the complex

⊕
(p,q)

A(0,q)(M)⊗ ∧pV ∗ . (3.2.26)
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Here A(0,q)(M) is the bundle of smooth (0, q) forms on M , and V ∗ is the holomorphic

bundle dual to V . A function homogeneous and qth order in θi is a (0, q)-form on M , while

a function homogeneous and pth order in χα is a section of ∧pV ∗. We will often refer to an

element of A(0,q)(M)⊗ ∧pV ∗ for fixed (p, q) as having “type” (p, q).

The supersymmetry transformation δ acts on elements of this complex as

D = θi
∂

∂zi
+ sα

∂

∂χα
. (3.2.27)

More intrinsically, we can identify D with the operator

D = ∂ + ιs , (3.2.28)

where ∂ is the usual Dolbeault operator on M and ιs acts on sections of ∧pV ∗ by the interior

product with s. The action of D on this complex has certainly been considered before in

the mathematical literature, for instance in [47,48,49], though mostly for the case V = TM .

Since 〈δO〉 = 0 for any O, the interesting observables O correspond to nontrivial ele-

ments of the cohomology of D. In general, what can we say about this cohomology?

Without placing additional conditions on M , V , and s, in fact we cannot say much.

(However, see [49] for a nice discussion of the easiest case that V = TM and s has zeroes

at isolated points. In this case, the cohomology of D is isomorphic to H0(M,O/I), where

I is the ideal sheaf associated to s.) Nonetheless, we do have a systematic procedure to

compute the D-cohomology, using a spectral sequence (see [52] for a clear introduction to

spectral sequences).

In physical terms, we want to solve the equation δO = 0, and the spectral sequence is

essentially a perturbative way to do this, really by following one’s nose. So to construct an

O which satisfies δO = 0, we start with an “order-zero” trial solution O(0), of type (p, q),

which satisfies ∂O(0) = 0. (If we wished, we could equally well start with O(0) satsifying

ιsO(0) = 0 and reverse the roles of ∂ and ιs above. We find it convenient to do this in Section

3.) If O(0) also happens to satisfy ιsO(0) = 0, then O = O(0), but generally ιsO(0) 6= 0.

To correct for this discrepancy, we then try to solve

ιsO(0) + ∂O(1) = 0 , (3.2.29)
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to determine the “first-order” correction O(1). We consider O(1) as a correction to O(0) in a

very definite sense, since although O(0) is of type (p, q), O(1) is of type (p− 1, q− 1). Thus,

if we continue to solve iteratively

ιsO(n) + ∂O(n+1) = 0 , (3.2.30)

we will either find an obstruction, or the procedure will terminate after a finite number of

steps with O = O(0) +O(1) + · · · satisfying δO = 0. We will find this little procedure useful

when constructing heterotic models in Section 3.

What sort of results, analogous to the generalized residue theorem (3.2.11), do we then

obtain by considering the expectations 〈O〉 of nontrivial observables O? Evaluating 〈O〉 at

t = 0 now yields

〈O〉 =
∫
M
g dµO , (3.2.31)

which need not vanish if O carries the proper ghost number. Evaluating 〈O〉 in the limit

t → ∞, we again see that 〈O〉 can be expressed as a sum of local contributions from each

of the components C of the vanishing locus L of s,

〈O〉 =
∑
C⊂L
〈O〉(C) . (3.2.32)

So for instance, again in the case that s vanishes non-degenerately over isolated points

P of M and O has ghost number zero,

∫
M
g dµO =

∑
P∈L

g(P )O(P )
det (ds)(P )

. (3.2.33)

In the above expression, we must interpret the integral over M as picking out the component

of O of type (n, n) and the evaluation at P as picking out the component of O of type (0, 0).

We can also consider the under-determined case, for which rank V < dimM , as well

as the over-determined case, for which rank V > dimM . In the under-determined case,

the components C of L will generically be complex submanifolds of dimension n− r in M .

We assume that s vanishes in a non-degenerate fashion on each C, which means that the

Jacobian det (ds|N ) of s with respect to the normal directions to C in M is non-vanishing
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along C. Then the local contribution of C to 〈O〉 is

〈O〉(C) =
∫
C

g dµO
det (ds|N )

. (3.2.34)

In the above, g dµ / det (ds|N ) determines an element of Ωn−r on C, and thus only the

component of O of type (0, n− r) now contributes to the integral over C.

As we shall see in Section 3, the case of direct relevance to the heterotic string is actually

the over-determined case, rank V > dimM . In this case, generically s 6= 0, and upon taking

t→∞ we immediately conclude that 〈O〉 = 0 for all O.

However, if s is not generic, then the locus s = 0 need not be empty, and we can get a

non-trivial result with a non-trivial O, which in the simplest case has degree (r−n, 0). This

situation actually occurs in the half-twisted heterotic string, for which O is the exponential

of a fermion bilinear and r−n is infinite. If such an O is present, then the section s cannot

vary freely, since the supersymmetry condition (∂ + ιs)O = 0 must be preserved. Hence

for a suitable O, it can be natural to consider a section s having zeroes with non-trivial

residues. For instance, if s again vanishes non-degenerately at an isolated point P of M ,

now meaning that the matrix ds =
(
∂sα/∂zi

)
has full rank at P , then the local contribution

from P to 〈O〉 is

〈O〉(P ) =
(
g dµO
ds

)
(P ) ≡

(
g εi1···iqε

α1···αp Oαq+1···αp

∂i1s
α1 · · · ∂iqsαq

)
(P ) . (3.2.35)

Evidently, in such an example with isolated zeroes of s, only the component of type (r−n, 0)

of O contributes to 〈O〉(P ).

3.2.4 The D1-brane Partition Function as a Residue

Our discussion of multi-dimensional residues now allows us to make precise the manner in

which the partition function of a supersymmetric D1-brane can be interpreted as a residue.

We have already seen in the introduction a strong formal similarity between expressions

such as (3.1.3) and (3.1.8) which suggests this interpretation. To check this idea, though,

we must examine to what extent the worldvolume theory on a supersymmetric D1-brane

actually generalizes our finite-dimensional model which produces the residues.
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At first glance, one might be worried by the following fact. If we consider the bosonic

action for a D1-brane which wraps an arbitrary, not necessarily holomorphic, surface Σ in

the Calabi-Yau threefold X, then this action is just the area A[Σ] of the surface. So if

the D1-brane action were literally to be the obvious generalization of the action (3.2.5) of

the finite-dimensional model, then A[Σ] would have to admit a representation as the norm-

squared of a suitable holomorphic section s over the space M of immersed surfaces in X.

But A[Σ] presumably does not admit such a representation, and it is not even obvious that

the spaceM, which should play the role of the complex manifoldM in the finite-dimensional

model, admits a complex structure.

Thus, as far as we know, the full D1-brane worldvolume action does not fit into the

simple structure of the finite-dimensional model. As a result, we cannot hope to use the

D1-brane formalism to prove vanishing results such as (3.1.3). Physically, the difficulty in

using the D1-brane formalism to prove the vanishing results is that the D1-brane world-

volume description becomes more complicated when the brane is “off-shell”, i.e. not super-

symmetric. We do not believe that these off-shell complications are really essential, but we

also do not know how to eliminate them in the D1-brane framework. (We remark paren-

thetically that D5-branes can be put in a gauge-invariant version of this framework.) When

we deduce these vanishing results in Section 3, we will use instead approaches based on

linear and half-linear sigma models, which are more closely related to the finite-dimensional

model.

Yet to discuss the superpotential contribution from a D1-brane which wraps an isolated

holomorphic curve C in X requires considerably less than the full worldvolume action. Since

we evaluate the partition function at one-loop, we only need to discuss fluctuations about

the holomorphic curve up to quadratic order in the action. Considering the worldvolume

theory only to this order, we can nicely fit it into the framework of the finite-dimensional

model. In particular, the second variation of A[Σ] away from a minimum corresponding to

a holomorphic curve indeed appears as the norm-squared of a suitable section s and the

contribution to the superpotential is indeed a residue.
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Geometrically, the approach of working only to quadratic order in the supersymmetric

D1-brane action corresponds to linearizing the space M over the point corresponding to

the given holomorphic curve C in X. The linearization possesses the requisite complex

structure.

We now give a thorough discussion of how this approximation to the D1-brane action fits

into the framework of the finite-dimensional model. As we have indicated, our identification

of the supersymmetric D1-brane partition function as a residue is of more conceptual than

practical interest here, not only because of the off-shell complications but also because of

the lack of compactness in the D1-brane approach. However, in Section 4 we will apply sim-

ilar ideas to study the superpotential contributions from continuous families of membrane

instantons in M-theory compactifications on manifolds of G2 holonomy.

To proceed, we begin with the general observation [53] that whenever a brane wraps a

supersymmetric cycle, then the worldvolume theory on the brane is automatically twisted,

implying the existence of at least one scalar supercharge. The existence of a scalar super-

charge on the D1-brane worldvolume is crucial if we are to interpret the worldvolume theory

in analogy to the finite-dimensional model, with its scalar supersymmetry generator δ.

We focus our attention on the sector of the D1-brane worldvolume theory describing

fluctuations of the brane in X, as opposed to the trivial sector describing fluctuations in R4.

When the D1-brane wraps a holomorphic curve C in X, the worldvolume bosons xi and xi

which describe fluctuations of the brane in X transform as coordinates on the holomorphic

normal bundle N and anti-holomorphic normal bundle N of C in X. The worldvolume

theory also possesses fermions ψα̇,i which transform as right-moving Weyl fermions on R4,

as indicated by the α̇ index, and as coordinates on the dual bundle N∗ of N . Equivalently,

using the hermitian metric gii on X, we can regard these fermions as transforming in

the anti-holomorphic normal bundle N . The twisted model has two scalar supercharges,

described in detail later, which relate the worldvolume fields (xi, ψiα̇).

Now, in the finite-dimensional model, the supersymmetry transformations as well as

the form of the action are determined by the holomorphic section s of V . So what are the
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analogues of s and V for the D1-brane?

As has already been observed in [54,55], for a variety of supersymmetric compactifica-

tions of string and M-theory, the supersymmetric brane configurations can be characterized

as the critical points of a “superpotential” Ψ, suitably interpreted as a function on the space

of arbitrary brane configurations. (This idea has also been discussed lately in a mathemat-

ical context in [56].) For the D1-brane, if δ is the exterior derivative on the space M of

brane configurations, then δΨ is a one-form that vanishes at the point corresponding to a

holomorphic curve C, and moreover δΨ is holomorphic once we linearize in a neighborhood

of C. So a natural guess is to take V to be the holomorphic cotangent bundle T ∗M and

s = δΨ.

To check that this identification is correct, we must describe Ψ explicitly. For argument’s

sake, we start by defining Ψ on surfaces Σ which are homologically trivial in X — although

we note that any holomorphic surface, being calibrated by the Kähler form on X, actually

resides in a nontrivial homology class. In any case, Ψ(Σ) is defined for a homologically

trivial surface Σ by

Ψ(Σ) =
1
6

∫
B

Ω , (3.2.36)

where B is a bounding three-cycle for Σ and Ω is the holomorphic three-form on X. The

factor of 1
6 is simply to cancel some constants that would otherwise appear in later formulae.

If H3(X,Z) 6= 0, as is always the case when X has complex structure moduli, then Ψ(Σ)

generally depends on the class of B and is defined only up to an additive constant.

Now, if Σ is a surface representing a nontrivial homology class in X, then a bounding

three-cycle B does not exist. To define Ψ(Σ) in this case, for each class in H2(X,Z) we

choose a particular representative Σ0. Then, if Σ lies in the same class as Σ0, a bounding

three-cycle B exists for Σ − Σ0. That is, the boundary of B has two components, one of

which is Σ and the other is Σ0, considered with opposite orientation. So now we set

Ψ(Σ)−Ψ(Σ0) =
1
6

∫
B

Ω . (3.2.37)

In this case, the additive constant in Ψ also depends on the representative Σ0 as well as the

class of B.
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The fact that Ψ is only defined up to an additive constant does not concern us, as this

constant does not affect the location of the critical points, for which δΨ = 0. Explicitly, in

terms of holomorphic coordinates xi on X,

δΨ(Σ) =
1
2

∫
Σ

Ωijk δx
i dxj∧dxk . (3.2.38)

So δΨ = 0 precisely for those surfaces Σ on which the (2, 0)-form Ωijk dx
j∧dxk is equal to

zero. If Σ is holomorphic in X, then any (2, 0)-form vanishes when restricted to Σ, so δΨ

vanishes when Σ is a holomorphic curve C. Because Ωijk is everywhere nonzero, holomorphy

of Σ is necessary as well as sufficient for vanishing of δΨ.

While δΨ vanishes at the point corresponding to C, we also need the linear behavior

near this point. For this, we pick local complex coordinates on X consisting of a parameter

z that is a local complex coordinate on C as well as two local coordinates yi of the normal

bundle N . We write εij for Ωzij . In (3.2.38), we take δxi to be a displacement of one of

the yi, since otherwise we are not moving Σ away from C at all. So we will write δyi for

δxi. Evaluated on Σ, we have dxj∧dxk = dz ∧dz (∂zxj ∂zxk − ∂zxj∂zxk). Because of the

antisymmetry in j and k (or because ∂zz = 0), we cannot set both xj and xk equal to z.

To linearize δΨ around C, we set one of them, say xj , to z, and the other to yk. So we get

δΨ =
∫
C
εij δy

i∂yj + . . . , (3.2.39)

where the ellipses indicate that higher order terms have been dropped. From this, we can

also deduce that to quadratic order,

Ψ = c+
1
2

∫
C
εij y

i∂yj , (3.2.40)

where c is an integration constant.

In particular, we see from (3.2.40) that when evaluated on C,

δ2Ψ
δyj(z)δyi(z′)

∣∣∣
C

= εij ∂zδ(z, z′) , (3.2.41)

where, more intrinsically, ∂z represents the ∂ operator acting on sections of N .
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Since Ψ functions like a superpotential, the unbroken worldvolume supersymmetries

in the linearized theory can be very simply expressed in terms of Ψ. Under the twisted

supercharges Qα̇, the transformations of the fields yi, yi, and ψα̇,i take the usual form

δα̇y
i = 0 , δα̇y

i = ψiα̇ ,

δα̇ψβ̇,i = εα̇β̇
δΨ
δyi

.
(3.2.42)

Since Ψ is holomorphic, in the sense that δΨ/δyi = 0, these supersymmetry transforma-

tions satisfy {δα̇, δβ̇} = 0 as required. Obviously these worldvolume supersymmetries are

unbroken when δΨ/δyi = 0, which we have already observed is the proper condition for the

D1-brane to be supersymmetric. Further, taking s = δΨ, we see that (3.2.42) represents an

N = 2 generalization of the supersymmetry transformations (3.2.1) in the finite-dimensional

model.

The worldvolume action which describes to leading order the fluctuations of a D1-brane

which wraps a holomorphic curve C in X takes a very simple form when written in terms

of Ψ. Just as for the finite-dimensional action (3.2.4),

S =
1
4

∫
C
εα̇β̇ δβ̇

(
ω gii

δΨ
δyi

ψα̇,i

)

=
∫
C
ω

(
1
2
gii
δΨ
δyi

δΨ
δyi

+
1
4
εα̇β̇gii

D2Ψ
DyjDyi

ψj
β̇
ψα̇,i

)
.

(3.2.43)

Here D is the covariant derivative with respect to the metric gii on X, and ω is the Kähler

form on X which restricts to the volume form on C. We also note from (3.2.38) that

δΨ/δyi is actually a two-form on C, and we have implicitly used the induced metric to

dualize δΨ/δyi to a scalar on C.

The action S is to be interpreted by expanding to quadratic order in the normal fluctu-

ations yi and yi about the given holomorphic curve C, so that

S =
∫
C
ω

(
1
2
gii

D2Ψ
DyjDyi

D2Ψ
DyiDyj

yjyj +
1
4
εα̇β̇gii

D2Ψ
DyjDyi

ψj
β̇
ψα̇,i

)
. (3.2.44)

Using (3.2.41), we can write S more explicitly as

S =
1
2

∫
C
ω

(
gii ∂zy

i ∂zy
i +

1
2
εα̇β̇εij ψ

j

β̇
∂zψ

i
α̇

)
. (3.2.45)
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In the above, we have assumed that Ω is normalized on X so that gjjεjiεji = gii. This

action is just the free action for fluctuations which we implicitly used in the Introduction

when we evaluated the partition function.

More geometrically, we can identify the complex linear spaceM describing fluctuations

of the D1-brane about C with the space of sections of N . Our formula for S simply reflects

the classic fact [57,58] that, given a section yi, the second derivative of the area functional

A[Σt] along the one-parameter family of surfaces Σt determined by yi, evaluated at Σ0 = C,

is just
d2

dt2
A[Σt]

∣∣∣
t=0

=
1
2

∫
C
ω
∣∣∣∂zyi∣∣∣2 , (3.2.46)

which appears as the bosonic term in (3.2.45). This formula indicates that holomorphic

curves are always area-minimizing in X, and only holomorphic deformations of a holomor-

phic curve can preserve its area.

Finally, to make contact with the finite-dimensional model, we can evaluate the partition

function Z(C) of a D1-brane wrapped on C exactly as we evaluated the contribution to the

finite-dimensional integral from an isolated, non-degenerate zero of s in (3.2.13). We find

that
Z(C) =

∫
M

Pfaff
(
∂E(−1)

)
dµ e−S ,

=
Pfaff

(
∂E(−1)

)
(C)

det (δ2Ψ/δyjδyi)(C)
.

(3.2.47)

Here dµ = DyiDyi εα̇β̇ Dψj
β̇
Dψα̇,j is the naive path-integral measure, and the Pfaffian factor

produced by the left-moving bundle fermions is directly analogous to the section g, since

both are required for the path-integral measure to be well-defined. Recalling from (3.2.41)

that δ2Ψ/δyjδyi represents the ∂ operator acting on sections of N = O(−1) ⊕ O(−1), we

see that Z(C) indeed agrees with the summand in the expression (3.1.3).

3.3 A Residue Theorem for the Heterotic String

We now extend our investigation of residues in Section 2 to the heterotic string itself.

(Because the left-moving world-sheet fermions play only an auxiliary role in our analysis,
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we will not need to distinguish between the E8×E8 and Spin(32)/Z2 heterotic strings.) Our

goal is to prove a residue theorem, precisely analogous to the theorems we derived in Section

2, for the vanishing of world-sheet instanton contributions to W . A very useful tool in our

analysis is the twisted version of the heterotic world-sheet theory, as it is the twisted theory

that directly generalizes the finite-dimensional model we introduced in Section 2. Thus,

we begin this section with a short reminder of what it means to twist [59-62] the heterotic

world-sheet theory, and we explain how this theory is related to the finite-dimensional model

of Section 2.

3.3.1 Preliminary Remarks on Twisting

The twisted heterotic world-sheet theory is simply a version of the physical (untwisted)

heterotic theory in which the right-moving world-sheet fermions are assigned unconventional

spins. To describe the twisting, we first recall that the world-sheet theory contains complex

bosons φi and φi ≡ φi which describe sigma model maps Φ : Σ → X from the world-sheet

Σ to a Kähler target space X. In the physical theory, the superpartners of φi and φi are

right-moving fermions ψi and ψi, which transform as sections of the bundles K
1
2 ⊗Φ∗(TX)

and K
1
2 ⊗ Φ∗(TX) respectively. Here, TX denotes the holomorphic tangent bundle of X,

and K denotes the anti-canonical bundle of Σ. The anti-canonical bundle can be explicitly

described as the line-bundle of (0, 1) forms on Σ, and from this description we see that

K
1
2 is a right-moving spin-bundle on Σ. Then in the twisted theory, we simply take ψi to

transform as a section of K ⊗ Φ∗(TX) and ψi to transform as a section of Φ∗(TX).

One way to interpret the twist is that we shift the right-moving world-sheet stress tensor

Tzz by

Tzz → T̃zz = Tzz +
1
2
∂zjz , (3.3.1)

where jz is the world-sheet U(1) current present in the right-moving N = 2 algebra. Upon

twisting, one of the two right-moving world-sheet supersymmetry generators becomes a

nilpotent scalar Q, which we interpret as a BRST -operator on the world-sheet. The de-

coupling of Q-trivial states from the correlation functions of Q-invariant operators then
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greatly simplifies the twisted theory. In particular, though the twisted heterotic theory is

not topological, all correlation functions of Q-invariant operators in the twisted theory vary

holomorphically on the world-sheet, because the twisted stress-tensor T̃zz is Q-trivial.

We now explain how the general framework of Section 2 applies to the twisted world-

sheet theory. Instead of performing an integral over a finite-dimensional complex manifold

M , we now perform a path-integral over the infinite-dimensional complex manifoldM which

is the space of all sigma model maps Φ : Σ → X. The world-sheet bosons φi themselves

provide local holomorphic coordinates on M and play the same role as the holomorphic

coordinates zi on M . In addition, the fermions ψi, as sections of Φ∗(TM), are coordinates

on TM and correspond to the anti-commuting coordinates θi in Section 2. Finally, we

interpret the fermions ψiz, whichtransform as sections of K ⊗ Φ∗(TX), as anti-commuting

coordinates on a holomorphic bundle V over M, so that these fermions play the same role

as the fermionic coordinates χα on V in Section 2. (We have slightly changed notation

ψi → ψiz to remind ourselves that ψiz now transforms as a (0, 1) form on Σ.) In particular,

on world-sheets for whichK is trivial, we can identify the bundle V onM as the holomorphic

tangent bundle TM.

Under Q, the world-sheet fields transform as

δφi = 0 ,

δψiz = ∂zφ
i ,

δφi = ψi ,

δψi = 0 .
(3.3.2)

Comparing (3.3.2) to (3.2.1), we see that the action of Q is precisely analogous to the

supersymmetry transformation in the finite-dimensional model. Further, we see that ∂zφi

is the holomorphic section of V corresponding to the section s of V in Section 2.

The sigma model action for the world-sheet fields can now be written as

S =
∫
Σ
d2z δ

(
gii ∂zφ

i ψiz

)
+ · · · , (3.3.3)

where gii is the Kähler metric onX. The Q-trivial expression above is a direct generalization

of the action (3.2.4) which we considered in Section 2. Just as the finite-dimensional integral

localizes on the set where s = 0, so the twisted path-integral localizes on sigma model maps
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satisfying ∂zφi = 0. Such maps, being holomorphic, are either constant or represent world-

sheet instantons.

The “· · ·” appearing in S represents the additional terms in the sigma model action

which are not Q-trivial (but of course are Q-closed). More precisely, these additional terms

arise either from a purely topological expression which is the integral of the complexified

Kähler class of X over Σ or from the kinetic terms of the left-moving bundle fermions.

Both of these sorts of terms admit an easy interpretation in light of the results of Section

2. First, if we restrict the world-sheet path-integral to the sector describing maps whose

images lie in a fixed homology class of X, the topological term in S is constant and can

be ignored. Second, if we also only consider world-sheet correlation functions which do not

involving the left-moving bundle fermions, then at least for isolated world-sheet instantons,

the only role of the bundle fermions is to produce the Pfaffian factor that appears in the

Introduction. As we have already observed in the contex of the D1-brane, like the section g

in the finite-dimensional model, this Pfaffian factor can be interpreted as defining a suitable

measure for the path-integral over the modes of φi, φi, ψiz, and ψi.

Finally we remark that, although the physical and twisted theories are generally very

different, some quantities in the physical theory can be computed using the twisted theory.

In particular, as long as K is the trivial bundle on Σ, correlation functions computed on Σ

in the twisted theory agree with those computed on Σ in the physical theory. For instance,

if Σ is a cylinder with Ramond sector ground-states at each end, then correlation functions

on Σ compute the Yukawa couplings arising from the superpotential W in the low-energy

effective theory. In this fashion we can use the twisted theory to probe for a background

W .

3.3.2 The Half-Linear Heterotic String

Our proof of the residue theorem in Section 2 only relies upon the fact that the integral

Z is invariant under a nilpotent supersymmetry and the fact that the space M over which

we integrate is compact. We wish to generalize this residue theorem to apply to world-
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sheet correlators in the twisted heterotic theory, so we must consider models for which both

of these crucial facts hold. Since the action of the BRST-operator Q on the world-sheet

naturally generalizes the supersymmetry transformation of Section 2, the first fact holds

for an arbitrary (0, 2) compactification. However, as regards the second fact, the space M

of sigma model maps is certainly not compact, and so to generalize the finite-dimensional

residue theorem from Section 2 to a vanishing result for W of the form (3.1.3), we must

look for heterotic models with some special sort of compactness.

The vanishing result of [13] naturally suggests that we start by considering the linear

sigma models. Indeed, the compactness of the moduli spaces of X and E is an essential

ingredient in the analysis of [13].

Moreover, the linear sigma models possess another sort of compactness not present

in an arbitrary heterotic compactification. As discussed extensively in [63] and [64], in

compactifications for which continuous families of world-sheet instantons exist, the instanton

moduli spaces of the linear sigma model provide natural compactifications of the instanton

moduli spaces of the corresponding nonlinear sigma model. The compactness of these

instanton moduli spaces turns out to be the essential ingredient in our proof of a residue

theorem for the heterotic string.

However, we do not really have to consider the linear sigma models themselves to exploit

the fact that the instanton moduli spaces of the corresponding nonlinear sigma models have

natural compactifications. We find it technically simpler, in fact, to discuss a class of half-

linear heterotic models. These models are like the linear models in that X is a complete-

intersection Calabi-Yau in a compact toric variety Y . Unlike the linear models, the gauge

bundle E on X is any bundle which satisfies the usual consistency conditions on X and also

pulls back from a bundle on Y . Thus E must generally be described in a nonlinear fashion.

So in the remainder of this section, we first introduce the half-linear models and demon-

strate that the finite-dimensional residue theorems of Section 2 naturally generalize to for-

mulae of the form (3.1.3). We then return to the linear sigma models themselves and

give a direct proof of the vanishing of instanton contributions to W . For concreteness, we
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shall throughout this section consider only the case that X is the quintic hypersurface in

Y = CP4.

Half-linear fields

We start by specifying the field content of the half-linear model. The world-sheet bosons

and the right-moving world-sheet fermions are the usual fields which describe twisted non-

linear sigma model maps Φ : Σ → Y . For the case Y = CP4, the model has four complex

bosons φi and φi which represent local holomorphic and anti-holomorphic coordinates on

Y (as opposed to the global homogeneous coordinates on Y that would appear in the cor-

responding linear sigma model). Since the half-linear model is twisted, the right-moving

supersymmetry associates to the bosons φi and φi corresponding fermions ψiz and ψi, trans-

forming on Σ as sections of K ⊗ Φ∗(TY ) and Φ∗(TY ) respectively.

As for the left-moving sector of the world-sheet, the bundle E on Y is represented in

the usual nonlinear fashion by a set of thirty-two left-moving fermions λa coupled to the

pull back of E to Σ. We assume that E satisfies the standard topological conditions for

anomaly-cancellation and stability on X. Thus, E satisfies p1(E)/2 = c2(TX) (and, if the

structure group of E reduces to a subgroup with U(1) factors, there are restrictions on the

corresponding first Chern classes).

However, the field content of the half-linear model, as it stands, cannot be correct. As in

the linear sigma model, to localize the half-linear model from Y onto X, we must introduce

a potential J(φi) on the world-sheet. Geometrically, J transforms as a holomorphic section

of the line-bundle O(5) on Y . Supersymmetry requires that J couple to the right-moving

fermions as well as the bosons, but we currently have no way to couple J to these fermions.

A more fundamental problem is that, although we choose the bundle E so as to can-

cel sigma model anomalies on X, the half-linear model on Y is currently anomalous as

p1(E)/2 6= c2(TY ).

We can elegantly fix both of these problems by adding a pair of left-moving fermions

to the model. These fermions, which we denote by χz and χ, transform on the world-sheet

as sections of K ⊗ Φ∗(O(−5)) and Φ∗(O(5)). Thus we can directly include the required
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Yukawa terms for J in the model.

As for the anomalies, since χz and χ are also “twisted” in the sense of having non-

standard world-sheet spins, they cancel the excess left-moving central charge from the new

boson. Also, upon adding χz and χ to the left-moving sector of the model, we cancel the

sigma model anomalies, since near X, the adjunction formula implies that TY splits as a

smooth bundle into the sum TX ⊕ O(5). Explicitly, relative to the model on X, the half-

linear model on Y has an additional pair of twisted, right-moving fermions which arise from

the directions in the normal bundle O(5) to X in Y . These fermions transform as sections

of K ⊗ Φ∗(O(5)) and Φ∗(O(−5)). Since χz and χ transform as the complex conjugates of

these two fermions, they cancel the corresponding anomalies.

Half-linear supersymmetry

In the half-linear model, the action of the scalar supercharge Q slightly generalizes

(3.3.2), due to the transformations of the left-moving fermions χz and χ — the other left-

moving fermions are invariant. So Q acts as

δφi = 0 ,

δψiz = ∂zφ
i ,

δχ = J(φi) ,

δχz = 0 .

δφi = ψi ,

δψi = 0 ,
(3.3.4)

As we have mentioned, J is locally a quintic polynomial in the holomorphic coordinates φi

and globally a holomorphic section of O(5) on Y . Of course, J represents the data needed

to determine X as a hypersurface in Y .

We see from the action of Q that the fermions ψiz, χ, and χz in the half-linear model

can all be identified as the analogues of the fermions χα in the finite-dimensional model.

In this basis, s = (∂zφi, J(φi), 0). So, if we construct an action for the half-linear model

analogous to (3.2.4) in the finite-dimensional model, the half-linear model will localize on

sigma model maps Φ satisfying

∂zφ
i = J(φi) = 0 . (3.3.5)

The first condition requires that Φ be holomorphic, and the second condition requires that
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the image of Φ lie in the subset J = 0 of Y , which can be identified with X. So the

half-linear model localizes on world-sheet instantons in X.

The half-linear action

To complete our description of the half-linear model, we must finally specify its world-

sheet action S.

First, in complete analogy to the action of the finite-dimensional integral, S includes

the terms
S0 = t

∫
Σ
d2z δ

(
gii ∂zφ

iψiz + J χ
)

= t

∫
Σ
d2z

(
gii ∂zφ

i ∂zφ
i + giiDzψ

i ψiz + JJ + ψiDiJ χ
)
.

(3.3.6)

Here t is a coupling parameter as in Section 2, and gii is a Kähler metric on Y . Because

S0 is Q-exact, quantities which we compute in the half-linear model are unchanged under

deformations of t, gii, and J . We also observe parenthetically that, since the expression

J χ transforms as a smooth section of the trivial bundle on Y , we do not actually need to

specify a hermitian bundle metric on O(5) to make sense of this expression.

The action SE for the left-moving fermions λa which describe E is the standard action,

which we record for completeness below,

SE =
∫
Σ
d2z

(
λaDzλ

a + F a
iib
λaλ

bψiψiz

)
, (3.3.7)

where

λaDzλ
a = λa∂zλ

a + λa ∂zφ
iA a

ib λ
b . (3.3.8)

In the above, A a
ib is a holomorphic connection on E, having components only of type (1, 0)

on Y , and F a
iib

is the curvature of this connection. Since SE is the usual action for the left-

moving bundle fermions, and since Q acts in the usual way (3.3.2) on the fields appearing

in SE , this action is clearly Q-invariant.

A more nontrivial fact is that we can also write a Q-invariant action for the fermions

χz and χ. Abstractly, the presence of χz and χ in the half-linear model implies that we

are dealing with the over-determined case dimM < rank V discussed in Section 2.3. So
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we must add some Q-invariant observable O involving χz and χ to the action if we wish to

compute something nontrivial in the half-linear model.

Physically, this Q-invariant observable O must introduce a kinetic term Dzχχz for χz

and χ. To find a Q-invariant extension of this kinetic term, we follow the philosophy of

Section 2.3 and attempt to solve δO = 0 perturbatively. We begin by noting that the

expression O(0),

O(0) = Dzχχz − ψizDiJ χz

=
(
∂z + ∂zφ

iAi
)
χχz − ψiz (∂i +Ai)J χz ,

(3.3.9)

is trivially invariant under the variations of χ and ψiz. That is, in analogy to the finite-

dimensional model, ιsO(0) = 0.

In the expression for O(0) above, we have introduced the canonical holomorphic connec-

tion Ai on the line-bundle O(5) on Y . Because Ai depends on φi as well as φi, we have

that

δO(0) = ∂O(0) 6= 0 . (3.3.10)

Rather,

∂O(0) = Fii ψ
i ∂zφ

i χχz − Fii ψ
iψiz J χz , (3.3.11)

where Fii is the curvature of Ai. However, introducing O(1),

O(1) = Fii ψ
iψiz χχz , (3.3.12)

we easily see that

∂O(0) + ιsO(1) = 0 . (3.3.13)

Because Ai is a holomorphic connection on O(5), the curvature satisfies ∂Fii = 0, so that

∂O(1) = 0. Consequently, O = O(0) +O(1) is Q-invariant (but not Q-trivial).

Thus, we can add kinetic terms for χz and χ to the action S by including

Sχ =
∫
Σ
d2zO =

∫
Σ
d2z

(
O(0) +O(1)

)
=
∫
Σ
d2z

(
Dzχχz − ψizDiJ χz + Fii ψ

iψiz χχz
)
.

(3.3.14)
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Finally, we include in S the purely topological term which describes the action of the

world-sheet instanton itself,

Stop =
∫
Σ

Φ∗(ωC) , (3.3.15)

where ωC is the complexified Kähler class of Y . This term simply reproduces the exponential

factor in (3.1.2), but we include it for completeness.

Thus, the action for the half-linear model is

S = S0 + SE + Sχ + Stop . (3.3.16)

3.3.3 A Half-Linear Residue Theorem

We now show in the half-linear model that world-sheet instanton contributions to the su-

perpotential W vanish by a residue theorem precisely analogous to the finite-dimensional

residue theorem of Section 2.

Before we discuss a residue theorem for the half-linear model, though, we must first

demonstrate the general fact that the half-linear model on Y is equivalent to the usual

twisted non-linear sigma model on X. Only then does the residue theorem for the half-

linear model imply the vanishing of the instanton contributions to W in the non-linear

sigma model.

Relative to the non-linear model on X, the half-linear model on Y possesses additional

world-sheet degrees of freedom described by the left-moving fermions χz, χ, and the com-

plex boson and associated right-moving fermions describing fluctuations of the world-sheet

normal to X in Y . We will denote these normal fields simply by φ, φ, ψz, and ψ, suppressing

indices associated to the tangent bundle TY .

The additional world-sheet fields present in the half-linear model on Y relative to the

non-linear model on X are all massive due to the terms in the action involving J and J .

For instance, the normal bosons φ and φ gain a mass from the JJ term that appears in the

Q-trivial action S0,

t

∫
Σ
d2z δ

(
Jχ
)

= t

∫
Σ
d2z

(
JJ + ψiDiJ χ

)
. (3.3.17)
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Similarly, the fermions ψz, ψ, χz, and χ all gain masses from the DJ term in (3.3.17) and

the conjugate term appearing in Sχ in (3.3.14).

The mass terms for φ, φ, ψz, ψ, χz, and χ thus appear in the half-linear action as

∫
Σ
d2z

(
φDJDJ φ+ ψDJ χ− ψzDJ χz

)
, (3.3.18)

where DJ is the (holomorphic) normal derivative of J along X, and we have absorbed

the coupling t in (3.3.17) into J . Because we assume that X is a non-singular quintic

hypersurface, DJ is everywhere non-vanishing on X and consequently transforms in the

trivial line-bundle on X. Also, because J is holomorphic and vanishes on X, the ∂ operator

of X acts on DJ as ∂DJ = [∂,D]J = 0, so that DJ is holomorphic on X. As such, once

we choose a non-vanishing holomorphic section of the trivial bundle on X, a choice which

we must make in defining the fermionic measure of the path-integral, we can regard DJ as

merely a constant mass parameter for the normal modes.

As we have already remarked, since J only appears in the half-linear model through

the Q-trivial terms in (3.3.17), the half-linear model is invariant under deformations of

J . Scaling J by a large constant, the massive world-volume fields in (3.3.18) all acquire

arbitrarily large masses. As such, we can integrate out these massive world-sheet fields at

one-loop with arbitrary precision. From (3.3.18), we see that the one-loop contributions

from the massive modes of φ, φ, ψz, ψ, χz, and χ all cancel but for a finite, anomalous

factor associated to the index of the ∂ operator acting on the pull back of the normal bundle

N to the world-sheet. This one-loop contribution can be absorbed into a renormalization of

the string coupling constant and the Kähler class of X and is not relevant for the vanishing

argument. Finally, upon integrating out the massive fields, we set them to zero in the

half-linear action and in all observables, so that the half-linear model on Y clearly localizes

to the non-linear model on X.

For completeness, we give in this paragraph a brief description of the renormalization.

Massive modes with nonzero momentum cancel in the path integral, so the renormalization
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comes from the constant modes. The constant modes contribute a factor

1
(DJDJ)n1

DJ
n2 DJn3 , (3.3.19)

where n1 formally denotes the number of modes of φ, n2 the number of modes of χ, and

n3 the number of modes of χz. Since φ and χ both transform in the pull back Φ∗(N) of

the normal bundle N = O(5) to the world-sheet, n1 equals n2. However, χz transforms

in the bundle K ⊗ Φ∗(N∗), and thus the difference n1 − n3 is equal to the index of the ∂

operator on the world-sheet acting on the bundle Φ∗(N). If the world-sheet is a Riemann

surface Σ of genus g and Φ is a map of degree d into X, then the index theorem (or simply

the Riemann-Roch theorem) implies that n1 − n3 = 5d+ 1− g. Thus, in this situation the

one-loop contribution of the massive modes is a factor (1/DJ)(5d+1−g). In the non-linear

model on X, this one-loop contribution can be written as(
1
DJ

)(5d+1−g)
= exp

[
− 1

2π

∫
Σ
log (DJ)

(
5Φ∗(ω) +

1
2
R

)]
, (3.3.20)

where Φ∗(ω) is the pull back of the Kähler class from X, which we assume is normalized to

satisfy
∫
Σ Φ∗(ω) = 2πd, and R is the world-sheet curvature, which satisfies

∫
ΣR = 4π(1−g).

The expression in (3.3.20) manifestly represents the renormalization of the Kähler class of

X and the string coupling constant upon integrating out the massive modes.

Having shown that the half-linear model on Y is equivalent to the non-linear sigma

model on X, we now establish a residue theorem for the half-linear model which implies the

vanishing of world-sheet instanton contributions to the superpotential W .

The half-linear model is a closer cousin to the usual world-sheet CFT description of

the heterotic string than to the dual D1-brane description which we explored in Section

2.4. As such, in neither the world-sheet CFT nor the half-linear model can we compute W

directly. Rather, because of the presence of three right-moving fermion zero-modes arising

from fluctuations tangent to the world-sheet, we must indirectly probe for W by computing

a cubic correlator of vertex operators on the world-sheet. In the terminology of Section

2.3, the half-linear model describes the over-determined case rank V > dimM, due to the

presence of the fermions χz and χ in the model, but the section s = (∂zφi, J(φi), 0) still
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vanishes over a locus on M of complex dimension three, due to the SL(2,C) action on

the world-sheet. So we must insert a suitable observable O, the cubic correlator of vertex

operators, to compute something non-trivial.

The easiest way to probe for W is to compute the correlator 〈RRR〉, where R is the

vertex operator for the (unique) Kähler modulus of Y . Explicitly,

R = ωii∂zφ
iψi , (3.3.21)

where ωii is a harmonic representative of the Kähler class of Y , implying that R is Q-

invariant. Since the half-linear model arises from a sigma model on Y (and only restricts

to X when J is large), we must consider operators such as R which are actually defined on

Y . Note as claimed that each of the three right-moving fermion zero-modes from SL(2,C)

can be soaked up with the fermion ψi that appears in R.

Of course, the Kähler class of Y determines by restriction the Kähler class of X and

thus the radius of the compactification. The only dependence of W on this Kähler modulus

is through the exponential factor exp (−
∫
Σ Φ∗(ω)) arising from the classical action of the

instanton itself. If we let R be the N = 1 chiral field in the low-energy effective theory

associated to the Kähler modulus, then the correlator 〈RRR〉 computes the third derivative

∂3
RW of W with respect to R. Thus, given the simple exponential dependence of W on R,

the vanishing of W is equivalent to the vanishing of the correlator 〈RRR〉.

In the case of the finite-dimensional model in Section 2, we deduced a residue theorem

by taking t = 0. Although we have already interpreted the half-linear model as being

formally analogous to the finite-dimensional model, unlike the case of the finite-dimensional

model, we cannot simply take t = 0 in the half-linear model to deduce that 〈RRR〉 vanishes.

Clearly with no exponential suppression of the fluctuating modes in the half-linear model,

the half-linear path-integral ceases to be defined.

However, in localizing the half-linear model on Y to the non-linear model on X, we have

already used the fact that the BRST -invariance of the half-linear model implies that the

model is formally independent of J as well as t. So rather than taking t = 0, we consider

taking J = 0 instead.
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When J = 0, the half-linear model no longer localizes on instantons contained in X.

Instead, after integrating out at weak coupling all fluctuating modes of the fields, the half-

linear model localizes onto the moduli space of instantons in Y .

If we restrict attention to a given instanton sector of degree d holomorphic maps Φ from

Σ = CP1 to Y , then the moduli space of these instantons has a natural compactification

to CP5d+4. Because of this compactness, the half-linear path-integral over each instanton

sector can be defined even when J = 0. Thus, the correlator 〈RRR〉 can be computed either

at large J , where it is proportional to W as computed in the non-linear model on X, or it

can be computed at J = 0, where we will easily see that it vanishes order by order in d.

Morally speaking, the vanishing of the instanton contribution to the superpotential follows

by applying the residue theorem of section 2 to the compact manifold CP5d+4. Rather than

invoking this theorem (which could lead one to worry about singularities in CP5d+4), we

will imitate its proof and just look at what happens at J = 0.

We now review in detail how CP5d+4 arises as a compactification of the moduli space of

degree d instantons in Y , following [38,63,64]. In fact, even though we focus here on the

case Y = CP4, the existence of such a compactification generalizes whenever Y is a compact

toric variety, as already applied in [63,64].

We first introduce homogeneous coordinates [Φ0 : · · · : Φ4] on Y and homogeneous co-

ordinates [U : V ] on Σ. In terms of the homogeneous coordinates, any degree d holo-

morphic map Φ : Σ → Y is specified by a set of homogeneous, degree d polynomials

{p0(U, V ), . . . , p4(U, V )},

Φ0 = p0(U, V ) = a0
0 U

d + a0
1 U

d−1V + · · ·+ a0
d V

d ,

...

Φ4 = p4(U, V ) = a4
0 U

d + a4
1 U

d−1V + · · ·+ a4
d V

d .

(3.3.22)

Each polynomial pi is determined by its d + 1 coefficients (ai0, . . . , a
i
d), and the space

of polynomials {p0, . . . , p4} can be parametrized by these coefficients as C5(d+1). Since the

coordinates [Φ0 : · · · : Φ4] are merely homogeneous coordinates on Y , defined only up to

scaling, an overall scaling of {p0, . . . , p4} does not affect the map Φ. Subtracting from
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C5(d+1) the point at the origin which does not describe an actual map into Y and then

taking the quotient by the overall scaling, we find the projective space CP5d+4.

The only subtlety in this example is that, as just observed, Φ0 = · · · = Φ4 = 0 does not

correspond to any point in Y , so that the moduli space of instantons of degree d on Y

is actually the subset of the parameter space CP5d+4 for which the polynomials p0, . . . , p4

have no common zeroes on Σ. The polynomials which do have at least one common zero

appear as an algebraic locus of codimension four in CP5d+4, since we must tune one complex

parameter in any four of p0, . . . , p4 to reach this locus. Thus, the moduli space of “true”

instantons in Y is a complicated but nonetheless dense, open subset of CP5d+4. In particular,

CP5d+4 gives a natural compactification of the true moduli space.

We now consider evaluating the correlator 〈RRR〉 in the half-linear model with J = 0.

In this case, if we consider the contribution to the correlator from the topological sector of

degree d world-sheet maps, we must integrate over the moduli space of degree d instantons

in Y described globally above.

This integral over the instanton moduli space is actually a supersymmetric integral just

as in Section 2, since both the world-sheet bosons and fermions possess zero-modes when

J = 0. As our global discussion above implies, the bosons φi, φi, and their superpartners

ψi all have 5d+ 4 zero-modes. Of these 5d+ 4 zero-modes, three zero-modes arise from the

SL(2, C) action on CP1 and are immediately soaked up by the cubic correlator. The other

5d+ 1 zero-modes represent the non-trivial holomorphic deformations of degree d rational

curves in Y . The left-moving fermion χ also has 5d + 1 zero-modes, which arise from

holomorphic sections of the bundle Φ∗ (O(5)) = O(5d). Neither the right-moving fermions

ψiz nor the left-moving fermion χz have any zero-modes in the instanton background.

When J is non-vanishing, these 5d+ 1 interesting modes of φi, φi, ψi, and χ enter the

half-linear model action through the Q-trivial terms involving J in (3.3.17) and through

the four-fermion interactions in (3.3.7) and (3.3.14). In the weak coupling limit t → ∞,

the four-fermion interactions are irrelevant, since they always involve the fermions ψiz which

have no zero-modes. So the only way to absorb the zero-modes of ψi and χ is through the
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quadratic mass terms that arise from J .

In fact, if we consider integrating out all of the fluctuating modes at weak coupling,

to reduce the half-linear path-integral to a finite-dimensional supersymmetric integral over

these 5d+1 modes, then the Q-trivial terms involving J in (3.3.17) implicitly represent the

same finite-dimensional action (3.2.5) which we considered in Section 2. In this case, the

modes of ψi represent the fermionic coordinates θi, the modes of χ represent the bundle

fermions χα, and J implicitly determines a holomorphic section s of a rank 5d + 1 bundle

over the moduli space of instantons in Y which vanishes precisely over those instantons

contained in X.

Just as in Section 2, once we set J to zero, then the 5d + 1 fermion zero-modes of ψi

and χ cannot be absorbed when computing the correlator 〈RRR〉. Hence, 〈RRR〉 vanishes

order by order for each sector of degree d maps. Finally, since our vanishing result follows

exactly as the residue theorem in Section 2, we naturally interpret it as a residue theorem

for instanton contributions to W .

3.3.4 Extension to the Linear Sigma Model

Just as in the finite-dimensional case, the argument for the vanishing of the instanton

contributions to W in the half-linear model relies only upon the right-moving world-sheet

supersymmetries and suitable compactness. These ingredients are also present in the (0, 2)

linear sigma models themselves, so we should also be able to give a similar, direct argument

for the vanishing of instanton contributions to W in these models. The reason for doing

so is that the linear sigma model version of the argument applies to a somewhat different

class of models — bundles constructed in a simple way from polynomials, but which do not

necessarily extend over Y = CP4.

We now present just such an argument. Although the gist of the vanishing argument for

the linear sigma model is exactly the same as for the half-linear model, we must present the

details of the argument in a slightly different way, since the specifics of the linear model and

the half-linear model are very different. Nonetheless, the fact that the general argument
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does extend from the half-linear to the linear model, despite the obvious differences between

these world-sheet theories, indicates that this argument is robust.

As in the previous section, we once more focus on the case that X is a quintic hypersur-

face in Y = CP4. However, we now assume that the bundle E on X is a deformation of the

holomorphic tangent bundle TX, which corresponds in the linear sigma model to a deforma-

tion away from the locus of theories with (2, 2) world-sheet supersymmetry. Since neither

TX nor E pulls back (in any obvious way) from any bundle on Y , the compactifications

cannot necessarily be described by the half-linear model.

Background

We must recall a few facts about the (0, 2) linear sigma model which describes heterotic

compactification on X with gauge bundle E. Useful background can be found in [13], [38],

and [39]. We will be rather brief in our description of the linear sigma model, both because

this material is well-known and also because the vanishing argument which we present does

not rely on many details of the model.

We first recall the field content for this model. (We ignore the decoupled current algebra

degrees of freedom which represent the unbroken space-time gauge group.) On the (2, 2)

locus itself, the linear sigma model which describes a quintic X in CP4 is a two-dimensional

U(1) gauge theory with five chiral superfields Si, i = 1, . . . , 5, of charge +1 and one chiral

superfield P of charge −5.

Once this model is deformed away from the (2, 2) locus, the (2, 2) gauge multiplet

decomposes into a (0, 2) gauge multiplet and a neutral (0, 2) chiral multiplet. Similarly,

each (2, 2) chiral multiplet decomposes into a (0, 2) chiral multiplet and a (0, 2) Fermi

multiplet. We denote again by Si and P the corresponding (0, 2) chiral superfields, with

components (si, ψi+) and (p, ψ0
+), and by Ψi

− and Ψ0 the associated Fermi superfields, with

components ψi− and ψ0
−.

The action of the (0, 2) model contains many interactions, but the only interactions

relevant to our vanishing argument arise from the (0, 2) superpotential. Recall that these
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interactions can be written as integrals over half of (0, 2) superspace, in the form

SJ =
1√
2

∫
Σ
dθ+

(
Ψi
−Ji + Ψ0

−J0

)
+ h.c. (3.3.23)

In general, Ji and J0 are holomorphic functions of the chiral fields Si and P . More specifi-

cally, Ji and J0 take the form

Ji = P
( ∂F
∂Si

+ Fi
)
, i = 1, . . . , 5 ,

J0 = F ,

(3.3.24)

where F = F (Si) is a quintic polynomial in the Si which determines X as a hypersurface

in Y , and the Fi are quartic polynomials in the Si that are assumed to satisfy SiFi = 0 and

which determine E as a deformation of TX.

In terms of the component fields, the (0, 2) superpotential (3.3.23) leads to a bosonic

potential U ,

U =
5∑
i=0

|Ji|2 , (3.3.25)

and Yukawa interactions of the form

ψi−ψ
j
+

∂Ji
∂Sj

+ ψi−ψ
0
+

∂Ji
∂P

+ h.c. (3.3.26)

The superpotential (3.3.23) also preserves a right-moving U(1) R-symmetry, under

which the lowest components of Si and Ψi
− carry charge +1

5 , and the lowest components of

P and Ψ0
− are neutral.

The vanishing theorem

The first step in our vanishing argument is to twist the (0, 2) linear sigma model so that

the supersymmetry generator usually denoted Q+ becomes a scalar, exactly as described in

[13]. Under this twisting, the world-sheet spin of each field is shifted by −1
2JR+ 1

10Q, where

JR is the R-symmetry generator and Q is the gauge-symmetry generator. Since the gauge

current corresponding to Q is of the form {Q+, . . .}, the fact that 1
10Q appears in the twist

is irrelevant and is merely for convenience, so that upon twisting all fields have integral or

half-integral world-sheet spins.
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Upon twisting the model, the spins of the bosons si are unaffected, but the boson p

now has spin −1
2 and transforms as a section of K

1
2 ⊗ L−5 on Σ = CP1. Here K is the

canonical bundle on Σ as earlier, and L = O(d) is the line-bundle on Σ associated to a

degree d instanton configuration in the gauge field. Also, just as in the half-twisted model,

the fermions ψi+ and ψi+, for i = 1, . . . , 5, now have spins +1 and 0 and transform as sections

of K⊗L and L. Finally, the left-moving fermions ψi− and ψi− are unaffected by the twisting

and transform as sections of K
1
2 ⊗ L and K

1
2 ⊗ L.

To proceed with the argument, we must compute the linear sigma model correlator

analogous to 〈RRR〉 in the half-linear model. As explained in [13], the linear sigma model

representative of the vertex operator R describing deformations of the Kähler class of Y

(hence alsoX) is λ−, the left-moving gaugino. This fact can be motivated by observing that,

since the Kähler class of Y is represented in the linear model by a Fayet-Iliopolous D-term,

the linear sigma model representative for R must come from the (0, 2) gauge multiplet. The

supersymmetry and R-symmetry then determine this representative to be λ−. So we must

compute the instanton contributions to 〈λ−λ−λ−〉 in the linear sigma model.

As in the half-linear model, the twisted linear model is formally invariant under de-

formations of J i, i = 0, . . . , 5, so we consider taking J i = 0. At first glance, one might

worry that this deformation would be singular in the linear model, since at least in the un-

twisted theory, the boson p has an unbounded zero-mode which only receives a mass from

the potential term U in (3.3.25). However, because p has spin −1
2 in the twisted theory,

this dangerous zero-mode is not present. This observation was also central to the vanishing

argument of [13], so we certainly expect it to play a role in our argument as well. Thus, we

can compute 〈λ−λ−λ−〉 in the theory with J i = 0, provided we perform the twist.

In the half-linear model, once we performed the analogous deformation by taking J = 0,

we easily saw that the correlator 〈RRR〉 vanished due to the presence of excess fermion

zero-modes which could no longer be absorbed through world-sheet interactions. We will

now argue that the correlator 〈λ−λ−λ−〉 vanishes when J i = 0 in the linear sigma model,

again due to excess fermion zero-modes.
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The relevant zero-modes arise from the fermions ψi+ and ψi−, for i = 1, . . . , 5. In the

background of a degree d instanton, each fermion ψi+ has d+1 zero-modes, and each fermion

ψi− has d zero-modes (and the conjugate partners of these fermions have no zero-modes).

To show that these fermion zero-modes cannot be absorbed in computing the correlator

〈λ−λ−λ−〉 with J i = 0, we first make a few general remarks about the computation of

〈λ−λ−λ−〉 even when the J i are not assumed to vanish. First, since all kinetic terms in the

linear model are Q+-trivial, we can by a field rescaling assume that the couplings appearing

in Ji and J i are arbitrarily small. Hence we can compute 〈λ−λ−λ−〉 perturbatively in Ji

and J i.

As a special case of our vanishing result, we now observe that 〈λ−λ−λ−〉 trivially vanishes

when Ji = J i = 0. In this case, the model with no superpotential describes, instead of X,

the total space of the line-bundle O(−5) over CP4. As such, the model possesses a classical

global symmetry which rotates the fiber of this space leaving fixed the base. Under this

symmetry, the superfields Si and Ψi
−, for i = 1, . . . , 5, transform with charge +1 while all

other fields are uncharged. In particular, the gaugino λ− is uncharged, which distinguishes

this global symmetry from the R-symmetry.

The fermion zero-modes we discussed above are relevant precisely because they cause

this classical symmetry to be anomalous. Due to these zero-modes, regardless of the degree

d, the path-integral measure transforms with net charge +5 under this symmetry. This

anomaly immediately implies that 〈λ−λ−λ−〉 vanishes in the theory with no superpotential.

For instance, computing 〈λ−λ−λ−〉 perturbatively at weak coupling, all interactions respect

the classical symmetry and so there is no way to absorb the fermion zero-modes by pulling

down fermion interaction terms from the action. This fact is why the detailed structure of

the linear model is largely irrelevant for our argument.

We now consider the general case that Ji and J i are non-zero. Since the superpotential

breaks the classical symmetry we used above, the fermion Yukawa terms involving Ji and

J i in (3.3.26) are candidates to soak up the zero-modes of ψi+ and ψi− above. However,

whatever interaction terms we bring down from the action to soak up the fermion zero-
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modes, the anomaly implies that these terms must carry net charge −5 to cancel the charge

of the measure. We now observe from (3.3.26) that the interactions involving Ji all carry

charge +5 and those involving J i carry charge −5.

Thus, when J i vanishes, the zero-modes of the fermions ψi+ and ψi− cannot be absorbed,

since perturbation theory in the Ji can only bring down interactions of positive charge.

This observation merely reflects the fact that the twisted fermions ψi+, which give rise

to the anomaly, appear in the Yukawa couplings involving J i, not Ji, in (3.3.26). Thus

〈λ−λ−λ−〉 vanishes in an arbitrary degree d instanton background, and instantons in the

linear sigma model do not contribute to the space-time superpotential.

Of course, when J i is non-zero, the linear model sums over individual instantons in X,

and the contribution of each instanton should generically be non-zero. Our argument is

consistent with this fact, since insertions of the Yukawa couplings involving both Ji and J i

can carry the proper charge to absorb the zero-modes.

This vanishing argument is at its heart very similar to the vanishing argument of [13]

that we reviewed in the Introduction. A key fact there is that W transforms as a section of

a line-bundle of strictly negative curvature on the moduli space of the low-energy effective

theory. Now in the context of the present argument, the complex coefficients which define

the quintic polynomial F and the quartic polynomials Fi, and thus appear as couplings

in the Ji, can be considered as projective coordinates on the moduli space of complex

structures of X and E.

Our perturbative argument above can be rephrased as a selection rule for the dependence

of the correlator 〈λ−λ−λ−〉 on these coefficients. This selection rule follows from formally

assigning the complex coefficients appearing in F and Fi charge −5 under the anomalous

symmetry, so that formally the Ji are uncharged. The anomaly implies that the correlator

〈λ−λ−λ−〉, as a function of these coefficients, transforms homogeneously with charge +5.

As a result, the selection rule implies that 〈λ−λ−λ−〉 (and hence W ) must transform as

a section of a line-bundle of strictly negative curvature over the complex structure moduli

space which these coefficients parametrize. In this language, our vanishing theorem follows
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simply because, when J i vanishes, a perturbative calculation of 〈λ−λ−λ−〉 in terms of the Ji

can only produce a polynomial in the complex coefficients, which has negative charge under

the anomalous symmetry and does not have the required pole on the complex structure

moduli space.

3.4 Families of Membrane Instantons

The vanishing result which we derived for world-sheet instanton contributions to the super-

potential is a manifestation of the rigidity inherent in holomorphic objects. As an interesting

contrast to this result, we now consider how M-theory membranes which wrap a continu-

ous family of supersymmetric three-cycles in a manifold X of G2 holonomy contribute to

the superpotential. The approach which we take here is very similar to our discussion of

D1-brane contributions to the superpotential at the end of Section 2. We note that the

superpotential contribution from an isolated membrane in X has already been thoroughly

discussed in [46].

Just as in the case of a D1-brane which wraps a holomorphic curve, the worldvolume

theory on a membrane which wraps a supersymmetric three-cycle on X is naturally twisted.

Unlike the case of the D1-brane though, in the case of a supersymmetric membrane, the

sector of the worldvolume theory describing fluctuations in X is topological, as opposed to

holomorphic, in character. This fact could hardly be otherwise, since X is not a complex

manifold, but it represents a key distinction between D1-brane and membrane instantons.

Thus, if C represents a continuous family of supersymmetric membrane configurations

within the space M of all membrane configurations in X, then the contribution to the

superpotential from the family C only depends upon topological data associated to C. Our

main result here is to show that the contribution of the family C to the superpotential is

proportional to the Euler character χ(C) of C.

Our analysis ignores singularities. We suspect that it remains valid even if some of the

membrane instantons parametrized by C are singular, as long as C itself is smooth.
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The membrane worldvolume theory

Just as in the Introduction, the most elegant way to determine the superpotential con-

tribution from a membrane instanton (or a family of such instantons) is to compute the par-

tition function of the membrane worldvolume theory. The structure of this theory is largely

determined by supersymmetry. More specifically, it is determined by the requirement that

only supersymmetric membrane configurations contribute to the partition function. So we

begin by recalling a few facts about supersymmetric three-cycles in X.

To describe which three-cycles in X are supersymmetric, we first recall that X, as a

manifold of G2 holonomy, possesses a canonical, covariantly constant three-form φ. Then, as

emphasized generally in [65], the supersymmetric three-cycles are those which are calibrated

by φ and hence are of minimal volume within each homology class. That is, if Σ is a

supersymmetric three-cycle, then the calibration condition states that on Σ,

φ|Σ = vol|Σ , (3.4.1)

where vol = 1
7φ∧?φ is the volume form associated to the metric on X.

Just as for supersymmetric D1-brane configurations, the supersymmetric membrane

configurations inX can be characterized as the critical points of a superpotential Ψ onM. Ψ

is defined in a manner precisely analogous to the superpotential for D1-brane configurations

in a Calabi-Yau threefold. Thus, we define Ψ(Σ) for any three-cycle Σ by

Ψ(Σ)−Ψ(Σ0) =
1
12

∫
B
?φ . (3.4.2)

Here ?φ is the four-form on X dual to φ, Σ0 is a fixed representative in the homology class

of Σ, and B is a four-cycle bounding Σ−Σ0. Again, Ψ(Σ) is defined only up to an additive

constant, depending on the choices of Σ0 and B.

But again, the fact that Ψ is only defined up to an additive constant does not concern

us, as this constant does not affect the location of the critical points, for which δΨ = 0. In

terms of local coordinates xi, i = 1, . . . , 7, on X,

δΨ(Σ) =
1
3

∫
Σ
?φijkl δx

i dxj∧dxk∧dxl . (3.4.3)
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Thus, δΨ(Σ) = 0 when ?φijkl dx
j∧dxk∧dxl = 0 on Σ. As observed in [66], this condition

is equivalent to the condition (3.4.1) that Σ be calibrated by φ. So the critical points of Ψ

correspond to supersymmetric three-cycles in X.

Thus, δΨ is a one-form on the space M of arbitrary membrane configurations in X

which vanishes precisely over the supersymmetric configurations. So in this sense, δΨ plays

much the same role as the section s we introduced in Section 2, and we expect the action

of the worldvolume theory on a supersymmetric membrane to be expressed in terms of δΨ,

much as the action (3.2.5) is expressed in terms of s.

Unlike s, though, δΨ is not holomorphic, and the spaceM of membrane configurations is

not even complex, even on-shell. As a result, the supersymmetry algebra on the membrane

worldvolume takes a form slightly different from the supersymmetry (3.2.1) considered in

Section 2.

We focus on the sector of the worldvolume theory which describes fluctuations of the

membrane in X. As explicitly demonstrated in [46], this sector is automatically twisted

when the membrane wraps a supersymmetric cycle Σ. Normal fluctuations of the membrane

in X are described on the worldvolume by four real bosons yi, i = 1, . . . , 4, taking values in

the (real) normal bundle N of Σ in X. Associated to these four bosons are four fermions ψiα̇

also taking values in N and transforming as right-moving Weyl fermions in R4, as indicated

by the α̇ index.

The worldvolume theory on the supersymmetric membrane then possesses two scalar

supercharges Qα̇. The action of these supercharges on the worldvolume fields can be neatly

summarized by introducing (0|2) superfields Y i, where

Y i = yi + θα̇ψiα̇ +
1
2
εα̇β̇θ

α̇θβ̇F i . (3.4.4)

In defining the superfield Y i, we have introduced an auxiliary boson F i taking values in N .

Even though the membrane worldvolume is three-dimensional, the appropriate superspace

is only the (0|2) superspace because, just as for the D1-brane, we regard the bosonic fields

yi as being an infinite set of tangential coordinates to the membrane configuration space

M at the point corresponding to a given supersymmetric membrane configuration.
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In the (0|2) superspace, the action of the supercharges Qα̇ is exceedingly simple. Namely,

the supercharges Qα̇ act as the fermionic derivatives ∂α̇, corresponding to the component

transformations

δα̇y
i = ψiα̇ , δα̇ψ

i
β̇

= εα̇β̇F
i , δα̇F

i = 0 . (3.4.5)

We note that {Qα̇, Qβ̇} trivially vanishes.

The supersymmetry algebra, along with the requirement that the membrane partition

function localize on configurations for which δΨ = 0, determines the form of the world-

volume action on a supersymmetric membrane. As for the D1-brane, this action is really

the leading order action for fluctuations around a supersymmetric configuration — but

given the topological nature of the membrane worldvolume theory, the leading order action

certainly suffices to determine the partition function.

When written in terms of the (0|2) superspace, the membrane worldvolume action thus

appears as

S =
∫
Σ
d2θ φ

(
1
2
gij(Y ) εα̇β̇∂β̇Y

i∂α̇Y
j + Ψ(Y )

)
=
∫
Σ
φ

(
1
2
gij

δΨ
δyi

δΨ
δyj

+ 2
D2Ψ

DyiDyj
(ψiψj) +Rikjl(ψiψj)(ψkψl)

)
.

(3.4.6)

In this expression, gij is the metric on X, Rikjl is the curvature, and the canonical three-

form φ appears simply to represent the volume-form on the supersymmetric three-cycle

Σ. We also note from (3.4.3) that δΨ/δyi is actually a three-form on Σ, and so we have

implicitly used the induced metric to dualize δΨ/δyi to a scalar above. Finally, we have

used the shorthand (ψiψj) to indicate the SU(2) singlet combination 1
2ε
α̇β̇ψi

β̇
ψjα̇, and in

passing to the second line of (3.4.6) we integrated out the auxiliary bosons F i.

The membrane worldvolume action (3.4.6) has a very familiar look. Formally, we can

interpret this action as the reduction to 0 + 0 dimensions of the standard supersymmetric

quantum mechanics [67] on the membrane configuration space M, with Morse function

Ψ. As is well known, the partition function of supersymmetric quantum mechanics on a

finite-dimensional Riemannian manifold M computes the Euler class χ(M) of M . Thus,

our claim that the membrane partition function is proportional to the Euler class χ(C) of
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the family C follows almost immediately now, though we still discuss this result in detail

below.

We can also compare the form of the membrane worldvolume theory to the form of the

D1-brane worldvolume theory (or more generally to the holomorphic models we considered

in Section 2). Upon integrating out the auxiliary bosons F i, the supersymmetries on the

membrane worldvolume act as

δα̇ y
i = ψiα̇ ,

δα̇ ψ
i
β̇

= −Γijkψ
j
α̇ψ

k
β̇

+
1
2
εα̇β̇g

ij δΨ
δyj

.
(3.4.7)

In the above, Γijk is the usual torsion-free affine connection associated to the metric gij

on X; this connection must appear so that the fermions ψiα̇ transform covariantly under

reparametrizations of the yi. Comparing the supersymmetries (3.4.7) and action (3.4.6) of

the membrane worldvolume theory to the general supersymmetry (3.2.1) and action (3.2.5)

from Section 2, we see that the membrane worldvolume theory is just a real, N = 2 version

of the holomorphic models relevant for world-sheet instantons which we considered earlier.

Clearly the one-form δΨ on M plays exactly the same role as the holomorphic section s

on the complex manifold M , and from (3.4.6) we see that at weak coupling the membrane

partition function localizes on the zeroes of δΨ. We also note that theN = 2 supersymmetry

present in the membrane worldvolume theory determines a canonical choice for the measure

of the membrane partition function, as all bosons are paired by supersymmetry with all

fermions in (3.4.5). So there is no analogue here of the section g which was necessary to

define a measure for the holomorphic models.

The membrane partition function

Our simple description of the membrane worldvolume theory allows us to easily evaluate

the membrane partition function, even in the degenerate case that the membranes wrap a

continuous family of supersymmetric three-cycles in X.

We first observe that, because Qα̇ = ∂α̇, the worldvolume action (3.4.6) is evidently Qα̇-

trivial. As a result, the membrane partition function Z is clearly topological in character.
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In particular, Z is unchanged if we multiply φ → t φ, so that taking t to be large we can

evaluate Z at weak coupling. Furthermore, Z is unchanged under deformations of the metric

gjk and even the one-form δΨ. This latter observation is in clear contrast to the holomorphic

models in Section 2, which were unchanged under deformations of s but certainly depended

upon s.

Thus, we suppose that X contains a continuous family of supersymmetric three-cycles.

Then the vanishing locus of δΨ on M contains a component C of positive dimension rep-

resenting this continuous family. To evaluate Z for membranes which wrap three-cycles in

C, we simply make a generic deformation of δΨ, which is small in the sense that δΨ still

grows sufficiently fast away from C so that Z is defined. Under such a deformation, we lift

the degeneracy of δΨ, which now has a finite set of isolated zeroes on C.

At weak coupling, we can directly evaluate the contribution to Z from each non-

degenerate zero of δΨ as a one-loop integral over the fluctuating bosons and fermions.

Generally speaking, if P is such a zero, then the contribution to Z from P takes the form

ZP = Z(N ) · Z(C)P , (3.4.8)

where Z(N ) represents the one-loop integral over modes normal to C, and Z(C)P represents

the one-loop integral over the finite number of modes tangent to C at P . Because of the

topological invariance of Z, the factor Z(N ) in (3.4.8) does not depend on P , so that

Z = Z(N ) ·
∑
P

Z(C)P . (3.4.9)

Clearly the second factor in (3.4.9) captures the interesting dependence of the superpo-

tential on C. In the Gaussian approximation, we can express the contribution Z(C)P from

each point P as

Z(C)P =
detC (∂i∂jΨ) (P )∣∣∣ detC (∂i∂jΨ) (P )

∣∣∣ = ±1 , (3.4.10)

where the subscript C indicates that the determinants are only evaluated over the modes

tangent to C. Geometrically, we recognize the expression (3.4.10) as the index of the vector
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field ∇Ψ (projected onto TC) at the point P , where it vanishes. Thus,

∑
P

Z(C)P = χ(C) , (3.4.11)

and Z is proportional to the Euler character χ(C) of C as claimed. We could also derive

this result, without explicitly deforming δΨ to lift its degeneracy, by using the four-fermion

interaction in (3.4.6) to absorb the fermion zero-modes tangent to C, producing the Chern-

Weil representation of the Euler character.

Finally, we remark that the factor Z(N ), studied in [46] for the case of an isolated

membrane instanton, is simply the formal generalization of (3.4.10) from the phase of a

determinant on the tangential directions of C to the normal directions. Z(N ) can thus be

expressed as the sign of the Dirac operator acting on the membrane worldvolume spinors

multiplied by a factor coming from the C-field.



Chapter 4

Non-Abelian Localization For

Chern-Simons Theory

4.1 Introduction

Chern-Simons gauge theory is remarkable for the deep connections it bears to an array

of otherwise disparate topics in mathematics and physics. For instance, Chern-Simons

theory is intimately related to the theory of knot invariants and the topology of three-

manifolds [15,68], to two-dimensional rational conformal field theory [16] via a holographic

correspondence, to three-dimensional quantum gravity [69–71], to the open string field

theory of the topological A-model [72], and via a large N duality to the Gromov-Witten

theory of non-compact Calabi-Yau threefolds [73–77].

Of course, Chern-Simons theory is also a topological gauge theory, though of a very

exotic sort. In the case of a more conventional topological gauge theory such as topological

Yang-Mills theory on a Riemann surface or on a four-manifold (for a review of both topics,

see [51]), the theory can be fundamentally interpreted in terms of the cohomology ring of

some classical moduli space of connections. In this sense, such gauge theories are themselves

essentially classical. In contrast, Chern-Simons theory is intrinsically a quantum theory,

and it is exotic precisely because it does not admit a general mathematical interpretation

120
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in terms of the cohomology of some classical moduli space of connections.

Yet if we consider Chern-Simons theory not on a general three-manifold M but only on

three-manifolds which are of a simple sort and which perhaps carry additional geometric

structure, then we might expect Chern-Simons theory itself to simplify. In particular, we

might hope that the theory in this case admits a more conventional mathematical interpre-

tation in terms of the cohomology of some classical moduli space of connections.

For instance, in the very special case that M is just the product of S1 and a Riemann

surface Σ, so that M = S1×Σ, then the partition function Z of Chern-Simons theory on M

does have a well-known topological interpretation. In this case, Z is the dimension of the

Chern-Simons Hilbert space, obtained from canonical quantization on R× Σ. In turn, this

Hilbert space can be interpreted geometrically as the space of global holomorphic sections

of a certain line bundle over the moduli space M0 of flat connections on Σ.

If we consider for simplicity Chern-Simons theory with gauge group G = SU(r + 1) at

level k, then the relevant line bundle overM0 is the k-th power of a universal determinant

line L on M0. Of course, the moduli space M0 is singular at the points corresponding

to the reducible flat connections on Σ. However, suitably interpreted, the index theorem

in combination with the Kodaira vanishing theorem for the higher cohomology of Lk still

yields a topological expression for Z,

Z(k) = dimH0(M0,Lk) = χ(M0,Lk) =
∫
M0

exp
(
kΩ′

)
Td(M0) , (4.1.1)

where Ω′ = c1(L) is the first Chern class of L and Td(M0) is the Todd class ofM0.

In this chapter, we show that the Chern-Simons partition function has an analogous

topological interpretation on a related but much broader class of three-manifolds. Specif-

ically, we consider the case that M is a Seifert manifold, so that M can be succinctly

described as the total space of a nontrivial circle bundle over a Riemann surface Σ,

S1 −→M
π−→ Σ , (4.1.2)

where, as we later explain, Σ is generally allowed to have orbifold points and the circle

bundle is allowed to be a corresponding orbifold bundle.
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In this case, our fundamental result is to reinterpret the Chern-Simons partition function

as a topological quantity determined entirely by a suitable equivariant cohomology ring on

the moduli space of flat connections on M . Because the moduli space of flat connections on

M is directly related to the moduli space of solutions of the Yang-Mills equation on Σ, our re-

sult implies that Chern-Simons theory on M can be also be interpreted as a two-dimensional

topological theory on Σ akin, in a way which we make precise, to two-dimensional Yang-

Mills theory. This two-dimensional interpretation of Chern-Simons theory on M has also

been noted recently by Aganagic and collaborators in [78], where the theory is identified

with a q-deformed version of two-dimensional Yang-Mills theory.

Of course, physical Yang-Mills theory on a Riemann surface Σ also has a well-known

topological interpretation in terms of intersection theory on the moduli space M0 of flat

connections on Σ. This interpretation follows from the technique of non-abelian localization,

as applied to the Yang-Mills path integral [18]. In an analogous fashion, we arrrive at our

new interpretation of Chern-Simons theory by applying non-abelian localization to the

Chern-Simons path integral,

Z(k) =
∫
DA exp

[
i
k

4π

∫
M

Tr
(
A∧dA+

2
3
A∧A∧A

)]
. (4.1.3)

As we recall in Section 4, non-abelian localization provides a method for computing

symplectic integrals of the canonical form

Z(ε) =
∫
X

exp
[
Ω− 1

2ε
(µ, µ)

]
. (4.1.4)

Here X is an arbitrary symplectic manifold with symplectic form Ω. We assume that a Lie

group H acts on X in a Hamiltonian fashion, with moment map µ : X → h∗, where h∗ is

the dual of the Lie algebra h of H. Finally, (·, ·) is an invariant quadratic form on h and

dually on h∗ which we use to define the action S = 1
2(µ, µ), and ε is a coupling parameter.

As we briefly review in Section 2, the path integral of Yang-Mills theory on a Riemann

surface immediately takes the canonical form in (4.1.4), where the affine space of all con-

nections on a fixed principal bundle plays the role of X and where the group of gauge

transformations plays the role of H. In contrast, the path integral (4.1.3) of Chern-Simons
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theory on a Seifert manifold is not manifestly of this required form. Nonetheless, in Section

3 we show that this path integral can be cast into the form (4.1.4) for which non-abelian

localization applies. More abstractly, we show that Chern-Simons theory on a Seifert man-

ifold has a symplectic interpretation generalizing the classic interpretation due to Atiyah

and Bott [79] of two-dimensional Yang-Mills theory.

Because the path integral of Chern-Simons theory on a Seifert manifold M assumes the

canonical form (4.1.4), we deduce as an immediate corollary that the path integral localizes

on critical points of the Chern-Simons action, which are the flat connections on M . In fact,

this observation has been made previously by Lawrence and Rozansky [17,80] (and later

generalized by Mariño in [81]) as an entirely empirical statement deduced from the known

formula for the exact partition function.

Considering SU(2) Chern-Simons theory on a Seifert homology sphere M , Lawrence

and Rozansky managed to recast the known formula for Z(k), which initially involves an

unwieldy sum over the integrable representations of an SU(2) WZW model at level k, into

a simple sum of contour integrals and residues which can be formally identified with the

contributions from the flat connections on M in the stationary phase approximation to the

path integral.

A very simple example of a Seifert manifold is S3, by virtue of the Hopf fibration over

CP1. The result of Lawrence and Rozansky in the case of SU(2) Chern-Simons theory on

S3 then amounts to rewriting the well-known expression for Z(k) as below,

Z(k) =

√
2

k + 2
sin
(

π

k + 2

)
=

1
2πi

e−
iπ

k+2

∫ +∞

−∞
dx sinh2

(
1
2
e

iπ
4 x

)
exp

(
−(k + 2)

8π
x2
)
.

(4.1.5)

We note that, when the hyperbolic sine is expressed as a sum of exponentials, the integral

in (4.1.5) becomes a sum of elementary Gaussian integrals which conspire to produce the

standard expression for Z(k). Because the only flat connection on S3 is the trivial connec-

tion, the integral over x in (4.1.5) is to be identified with the stationary phase contribution

from the trivial connection to the path integral.

So one immediate application of our work here is to provide an underlying mathematical
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explanation for the phenomenological results in [17,80,81]. In fact, we will apply localization

to the Chern-Simons path integral to derive directly the expression of Lawrence and Rozan-

sky in (4.1.5) for the partition function on S3. One amusing aspect of this computation is

that we will see the famous shift in the level k → k + 2.

In order to perform concrete computations in Chern-Simons theory using localization,

we must have a thorough understanding of the local symplectic geometry near each flat

connection. As we will see, this local geometry shares important features with the local ge-

ometry near the higher, unstable critical points of Yang-Mills theory on a Riemann surface.

Thus, as a warmup for our computations in Chern-Simons theory, we begin in Section

4 by discussing localization for Yang-Mills theory. We first review the computation in [18]

of the contribution to the path integral from flat Yang-Mills connections, corresponding

to the stable minima of the Yang-Mills action, and then we extend this result to compute

precisely the contributions from the higher, unstable critical points as well. Localization at

the unstable critical points of Yang-Mills theory has been studied previously in the physics

literature by Blau and Thompson [82] and (most recently) in the mathematics literature by

Woodward [83], but we find it useful to supplement these references with another discussion

more along the lines of [18]. Of course, the roots of our work on localization trace back to the

beautiful equivariant interpretation by Atiyah and Bott [20] of the Duistermaat-Heckman

formula [19].

In Section 5 we then apply localization to perform path integral computations in Chern-

Simons theory on a Seifert manifold. As mentioned above, these computations depend on

the nature of the local symplectic geometry near each critical point, and for illustration we

consider two extreme cases.

First, we consider localization at the trivial connection on a Seifert homology sphere. In

this case, the first homology group of M is zero, H1(M,Z) = 0, and the trivial connection

is an isolated flat connection. On the other hand, all constant gauge transformations on M

fix the trivial connection, and this large isotropy group, isomorphic to the gauge group G

itself, plays an important role in the localization. Here we directly derive a formula found
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by Lawrence and Rozansky in [17] and generalized by Mariño in [81].

Second, we consider localization on a smooth component of the moduli space of flat

connections. Such a component consists of irreducible connections, for which the isotropy

group arises solely from the center of G. In this case, we derive a formula originally obtained

by Rozansky in [80] by again working empirically from the known formula for the partition

function.

Finally, although we will not elaborate on this perspective here, one of the original mo-

tivations for our study of localization in Chern-Simons theory was to place computations

in this theory into a theoretical framework analogous to the framework of abelian localiza-

tion in the topological A-model of open and closed strings (see Chapter 9 of [84] for a nice

mathematical review of abelian localization in the closed string A-model).

This chapter of the thesis is based on [6].

4.2 The Symplectic Geometry of Yang-Mills Theory on a

Riemann Surface

A central theme of this chapter is the close relationship between Chern-Simons theory on a

Seifert manifold M and Yang-Mills theory on the associated Riemann surface Σ. Thus, as

a prelude to our discussion of the path integral of Chern-Simons theory on M , we begin by

recalling how the path integral of Yang-Mills theory on Σ can be understood as a symplectic

integral of the canonical form (4.1.4).

In fact, we start by considering the path integral of Yang-Mills theory on a compact

Riemannian manifold Σ of arbitrary dimension, so that

Z(ε) =
1

Vol(G(P ))

(
1

2πε

)∆G(P )/2
∫
A(P )
DA exp

[
1
2ε

∫
Σ
Tr (FA∧?FA)

]
,

∆G(P ) = dimG(P ) .

(4.2.1)

Here FA = dA+A∧A is the curvature of the connection A. We assume that the Yang-

Mills gauge group G is compact, connected, and simple. If G = SU(r + 1), then “Tr” in

(4.2.1) denotes the trace in the fundamental representation. With our conventions, A is
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an anti-hermitian element of the Lie algebra of SU(r + 1), so that the trace determines a

negative-definite quadratic form. For more general G, “Tr” denotes the unique invariant,

negative-definite quadratic form on the Lie algebra g of G which is normalized so that, for

simply-connected G, the Chern-Simons level k in (4.1.3) obeys the conventional integral

quantization. Of course, the parameter ε is related to the Yang-Mills coupling g via ε = g2.

In order to define Z formally, we fix a principal G-bundle P over Σ. Then the space

A(P ) over which we integrate is the space of connections on P . The group G(P ) of gauge

transformations acts on A(P ), and we have normalized Z in (4.2.1) by dividing by the

volume of G(P ) and a formal power of ε. As we review in Section 4, this normalization

of Z is the natural normalization when Σ is a Riemann surface and we apply non-abelian

localization to compute Z.

The space A(P ) is an affine space, which means that, if we choose a particular basepoint

A0 in A(P ), then we can identify A(P ) with its tangent space at A0. This tangent space is

the vector space of sections of the bundle Ω1
Σ ⊗ ad(P ) of one-forms on Σ taking values in

the adjoint bundle associated to P . In other words, an arbitrary connection A on P can be

written as A = A0 + η for some section η of Ω1
Σ ⊗ ad(P ).

Of course, to discuss an integral over A(P ) even formally, we must also discuss the

measure DA that appears in (4.2.1). Because the space A(P ) is affine, we can define DA up

to an overall multiplicative constant by taking any translation-invariant measure on A(P ).

In general, the Yang-Mills action is only defined once we choose a metric on Σ, which

induces a corresponding duality operator ?, as appears in (4.2.1). This duality operator ?

induces a metric on A(P ) such that if η is any tangent vector to A(P ), then the norm of η

is defined by

(η, η) = −
∫
Σ
Tr (η∧?η) . (4.2.2)

Thus, a convenient way to represent the path integral measure and to fix its normalization

is to take DA to be the Riemannian measure induced by the metric (4.2.2) on A(P ). We also

use the operator ? to define a similar invariant metric on G(P ), which formally determines

the volume of G(P ).
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Although we generally require a metric on Σ to define physical Yang-Mills theory, when

Σ is a Riemann surface we actually need much less geometric structure to define the theory.

In this case, to define the Yang-Mills action in (4.2.1) we only require a duality operator ?

which relates the zero-forms and the two-forms on Σ. In turn, to define such an operator

we require only a symplectic structure with associated symplectic form ω on Σ, so that ? is

defined by ?1 = ω.

The symplectic form ω is invariant under all area-preserving diffeomorphisms of Σ, and

this large group acts as a symmetry of two-dimensional Yang-Mills theory. More precisely,

this symmetry group is “large” in the sense that its complexification is the full group of

orientation-preserving diffeomorphisms of Σ [85]. This fact is fundamentally responsible for

the topological nature of two-dimensional Yang-Mills theory.

Furthermore, when Σ is a Riemann surface, the affine space A(P ) acquires additional

geometric structure. First, A(P ) has a natural symplectic form Ω. If η and ξ are any two

tangent vectors to A(P ), then Ω is defined by

Ω(η, ξ) = −
∫
Σ

Tr (η∧ξ) . (4.2.3)

Clearly Ω is closed and non-degenerate. Second, A(P ) has a natural complex structure.

This complex structure is associated to the duality operator ? itself, since ?2 = −1 when

acting on the tangent space of A(P ). Finally, the metric on A(P ) is manifestly Kahler with

respect to this symplectic form and complex structure, since we see that the metric defined

by (4.2.2) can be rewritten as Ω( · , ? · ).

An important consequence of the fact that the metric on A(P ) is Kahler when Σ is

a Riemann surface is that the Riemannian measure DA on A(P ) is actually the same as

the symplectic measure defined by Ω. If X is a symplectic manifold of dimension 2n with

symplectic form Ω, then the symplectic measure on X is given by the top-form Ωn/n!.

This measure can be represented uniformly for X of arbitrary dimension by the expression

exp (Ω), where we implicitly pick out from the series expansion of the exponential the term

which is of top degree on X. Consequently, because the Riemannian and the symplectic

measures on A(P ) agree, we can formally replace DA in the Yang-Mills path integral (4.2.1)
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by the expression exp (Ω), as in the canonical symplectic integal (4.1.4). This natural

symplectic measure on A(P ) makes no reference to the metric on Σ.

The Yang-Mills Action as the Square of the Moment Map

Of course, as an affine space, A(P ) is pretty boring. What makes Yang-Mills theory

interesting is the fact that A(P ) is acted on by the group G(P ) of gauge transformations.

In fact, another special consequence of considering Yang-Mills theory on a Riemann surface

is that the action of G(P ) on A(P ) is Hamiltonian with respect to the symplectic form Ω.

To recall what the Hamiltonian condition implies, we consider the general situation that

a connected Lie group H with Lie algebra h acts on a symplectic manifold X preserving

the symplectic form Ω. The action of H on X is then Hamiltonian when there exists an

algebra homomorphism from h to the algebra of functions on X under the Poisson bracket.

The Poisson bracket of functions f and g on X is given by {f, g} = −Vf (g), where Vf is

the Hamiltonian vector field associated to f . This vector field is determined by the relation

df = ιVf
Ω, where ιVf

is the interior product with Vf . More explicitly, in local canonical

coordinates onX, the components of Vf are determined by f as V m
f = −(Ω−1)mn ∂nf , where

Ω−1 is an “inverse” to Ω that arises by considering the symplectic form as an isomorphism

Ω : TM → T ∗M with inverse Ω−1 : T ∗M → TM . In coordinates, Ω−1 is defined by

(Ω−1)lm Ωmn = δln, and {f, g} = ΩmnV
m
f V n

g . The algebra homomorphism from the Lie

algebra h to the algebra of functions on X under the Poisson bracket is then specified by a

moment map µ : X −→ h∗, under which an element φ of h is sent to the function 〈µ, φ〉 on

X, where 〈·, ·〉 is the dual pairing between h and h∗.

The moment map by definition satisfies the relation

d〈µ, φ〉 = ιV (φ)Ω , (4.2.4)

where V (φ) is the vector field on X which is generated by the infinitesimal action of φ. In

terms of µ, the Hamiltonian condition then becomes the condition that µ also satisfy

{〈µ, φ〉, 〈µ, ψ〉} = 〈µ, [φ, ψ]〉 . (4.2.5)
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Geometrically, the equation (4.2.5) is an infinitesimal expression of the condition that the

moment map µ commute with the action of H on X and the coadjoint action of H on h∗.

Returning from this abstract discussion to the case of Yang-Mills theory on Σ, we first

consider the moment map for the action of G(P ) on A(P ), as originally discussed in [79].

Elements of the Lie algebra of G(P ) are represented by sections of the adjoint bundle ad(P )

on Σ, so if φ is such a section then the corresponding vector field V (φ) on A(P ) is given as

usual by

V (φ) = dAφ = dφ+ [A,φ] . (4.2.6)

We then compute directly using (4.2.3),

ιV (φ)Ω = −
∫
Σ

Tr (dAφ∧δA) =
∫
Σ

Tr (φ dAδA) = δ

∫
Σ

Tr (FAφ) . (4.2.7)

Here we write δ for the exterior derivative acting on A(P ), so that, for instance, δA is

regarded as a one form on A(P ). Thus, the relation (4.2.4) determines, up to an additive

constant, that the moment map µ for the action of G(P ) on A(P ) is

µ = FA . (4.2.8)

Here we regard FA, being a section of Ω2
Σ ⊗ ad(P ), as an element of the dual of the Lie

algebra of G(P ).

One can then check directly that µ in (4.2.8) satisfies the condition (4.2.5) that it arise

from a Lie algebra homomorphism, and this condition fixes the arbitrary additive constant

that could otherwise appear in µ to be zero. Thus, G(P ) acts in a Hamiltonian fashion

on A(P ) with moment map given by µ = FA. In particular, if we introduce the obvious

positive-definite, invariant quadratic form on the Lie algebra of G(P ), defined by

(φ, φ) = −
∫
Σ
Tr (φ∧?φ) , (4.2.9)

then the Yang-Mills action S is proportional to the square of the moment map,

S = −1
2

∫
Σ
Tr (FA∧?FA) =

1
2

(µ, µ) . (4.2.10)
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As a result, the path integral of Yang-Mills theory on Σ can be recast completely in terms

of the symplectic data associated to the Hamiltonian action of G(P ) on A(P ),

Z(ε) =
1

Vol(G(P ))

(
1

2πε

)∆G(P )/2
∫
A(P )

exp
[
Ω− 1

2ε
(µ, µ)

]
, (4.2.11)

precisely as in (4.1.4).

4.3 The Symplectic Geometry of Chern-Simons Theory on

a Seifert Manifold

In this section, we explain how the path integral of Chern-Simons theory on a Seifert

manifold can be recast as a symplectic integral of the canonical form (4.1.4) which is suitable

for non-abelian localization. More generally, we explain some beautiful facts about the

symplectic geometry of Chern-Simons theory on a Seifert manifold.

To set up notation, we consider Chern-Simons theory on a three-manifold M with com-

pact, connected, simply-connected, and simple gauge group G. With these assumptions,

any principal G-bundle P on M is necessarily trivial, and we denote by A the affine space

of connections on the trivial bundle. We denote by G the group of gauge transformations

acting on A.

We begin with the Chern-Simons path integral,

Z(ε) =
1

Vol(G)

(
1

2πε

)∆G ∫
A
DA exp

[
i

2ε

∫
M

Tr
(
A∧dA+

2
3
A∧A∧A

)]
,

ε =
2π
k
, ∆G = dimG .

(4.3.1)

We have introduced a coupling parameter ε by analogy to the canonical integral in

(4.1.4), and we have included a number of formal factors in Z. First, we have the measure

DA on A, which we define up to norm as a translation-invariant measure on A. As is

standard, we have also divided the path integral by the volume of the gauge group G.

Finally, to be fastidious, we have normalized Z by a formal power of ε which, as in (4.2.1),

will be natural in defining Z by localization.
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4.3.1 A New Formulation of Chern-Simons Theory

At the moment, we make no assumption about the three-manifold M . However, if M is

an S1 bundle over a Riemann surface Σ, or an orbifold thereof, then to reduce Chern-

Simons theory on M to a topological theory on Σ we must eventually decouple one of the

three components of the gauge field A. This observation motivates the following general

reformulation of Chern-Simons theory, which proves to be key to the rest of the chapter.

In order to decouple one of the components of A, we begin by choosing a one-dimensional

subbundle of the cotangent bundle T ∗M of M . Locally on M , this choice can be represented

by the choice of an everywhere non-zero one-form κ, so that the subbundle of T ∗M consists

of all one-forms proportional to κ. However, if t is any non-zero function, then clearly κ and

t κ generate the same subbundle in T ∗M . Thus, our choice of a one-dimensional subbundle

of T ∗M corresponds locally to the choice of an equivalence class of one-forms under the

relation

κ ∼ t κ . (4.3.2)

We note that the representative one-form κ which generates the subbundle need only be

defined locally on M . Globally, the subbundle might or might not be generated by a non-

zero one-form which is defined everywhere on M ; this condition depends upon whether

the sign of κ can be consistently defined under (4.3.2) and thus whether the subbundle is

orientable or not.

We now attempt to decouple one of the three components of A. Specifically, our goal is

to reformulate Chern-Simons theory on M as a theory which respects a new local symmetry

under which A varies as

δA = σκ . (4.3.3)

Here σ is an arbitrary section of the bundle Ω0
M ⊗ g of Lie algebra-valued functions on M .

The Chern-Simons action certainly does not respect the local “shift” symmetry in

(4.3.3). However, we can trivially introduce this shift symmetry into Chern-Simons the-

ory if we simultaneously introduce a new scalar field Φ on M which transforms like A in
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the adjoint representation of the gauge group. Under the shift symmetry, Φ transforms as

δΦ = σ . (4.3.4)

Now, if κ in (4.3.3) is scaled by a non-zero function t so that κ→ t κ, then this rescaling

can be absorbed into the arbitrary section σ which also appears in (4.3.3) so that the

transformation law for A is well-defined. However, from the transformation (4.3.4) of Φ

under the same symmetry, we see that because we absorb t into σ we must postulate an

inverse scaling of Φ, so that Φ → t−1Φ. As a result, although κ is only locally defined up

to scale, the product κΦ is well-defined on M .

The only extension of the Chern-Simons action which now incorporates both Φ and the

shift symmetry is the Chern-Simons functional CS( · ) of the shift invariant combination

A− κΦ. Thus, we consider the theory with action

S(A,Φ) = CS(A− κΦ) , (4.3.5)

or more explicitly,

S(A,Φ) = CS(A)−
∫
M

[
2κ∧Tr(ΦFA)− κ∧dκTr(Φ2)

]
. (4.3.6)

To proceed, we play the usual game used to derive field theory dualities by path integral

manipulations, as for T -duality in two dimensions [86,87] or abelian S-duality in four di-

mensions [88]. We have introduced a new degree of freedom, namely Φ, into Chern-Simons

theory, and we have simultaneously enlarged the symmetry group of the theory so that

this degree of freedom is completely gauge trivial. As a result, we can either use the shift

symmetry (4.3.4) to gauge Φ away, in which case we recover the usual description of Chern-

Simons theory, or we can integrate Φ out, in which case we obtain a new description of

Chern-Simons theory which respects the action of the shift symmetry (4.3.3) on A.

A Contact Structure on M

Hitherto, we have supposed that the one-dimensional subbundle of T ∗M represented

by κ is arbitrary, but at this point we must impose an important geometric condition on
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this subbundle. From the action S(A,Φ) in (4.3.6), we see that the term quadratic in Φ is

multiplied by the local three-form κ∧dκ. In order for this quadratic term to be everywhere

non-degenerate on M , so that we can easily perform the path integral over Φ, we require

that κ∧dκ is also everywhere non-zero on M .

Although κ itself is only defined locally and up to rescaling by a non-zero function t,

the condition that κ∧dκ 6= 0 pointwise on M is a globally well-defined condition on the

subbundle generated by κ. For when κ scales as κ → t κ for any non-zero function t, we

easily see that κ∧dκ also scales as κ∧dκ→ t2 κ∧dκ. Thus, the condition that κ∧dκ 6= 0 is

preserved under arbitrary rescalings of κ.

The structure which we thus introduce onM is the choice of a one-dimensional subbundle

of T ∗M for which any local generator κ satisfies κ∧dκ 6= 0 at each point of M . This

geometric structure, which appears so naturally here, is known as a contact structure [89–

91]. More generally, on an arbitrary manifoldM of odd dimension 2n+1, a contact structure

on M is defined as a one-dimensional subbundle of T ∗M for which the local generator κ

satisfies κ∧(dκ)n 6= 0 everywhere on M .

In many ways, a contact structure is the analogue of a symplectic structure for manifolds

of odd dimension. The fact that we must choose a contact structure on M for our refor-

mulation of Chern-Simons theory is thus closely related to the fact, mentioned previously,

that we must choose a symplectic structure on the Riemann surface Σ in order to define

Yang-Mills theory on Σ.

We will say a bit more about contact structures on Seifert manifolds later, but for now,

we just observe that, by a classic theorem of Martinet [92], any compact, orientable three-

manifold possesses a contact structure. (We note that, because κ∧dκ → t2 κ∧dκ under a

local rescaling of κ and because t2 is always positive, the sign of the local three-form κ∧dκ

is well-defined. So any three-manifold with a contact structure is necessarily orientable.)

Path Integral Manipulations

Thus, we choose a contact structure on the three-manifold M , and we consider the
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theory defined by the path integral

Z(ε) =
1

Vol(G)
1

Vol(S)

(
1

2πε

)∆G
×

×
∫
DADΦ exp

[
i

2ε

(
CS (A)−

∫
M

2κ∧Tr (ΦFA) +
∫
M
κ∧dκTr

(
Φ2
))]

.

(4.3.7)

Here the measure DΦ is defined independently of any metric on M by the invariant, positive-

definite quadratic form

(Φ,Φ) = −
∫
M
κ∧dκTr

(
Φ2
)
, (4.3.8)

which is invariant under the scaling κ→ t κ, Φ→ t−1 Φ. We similarly use this quadratic

form to define formally the volume of the group S of shift symmetries, as appears in the

normalization of (4.3.7).

Using the shift symmetry (4.3.4), we can fix Φ = 0 trivially, with unit Jacobian, and the

resulting group integral over S produces a factor of Vol(S) to cancel the corresponding factor

in the normalization of Z(ε). Hence, the new theory defined by (4.3.7) is fully equivalent

to Chern-Simons theory.

On the other hand, because the field Φ appears only quadratically in the action (4.3.6),

we can also perform the path integral over Φ directly. Upon integrating out Φ, the new

action S(A) for the gauge field becomes

S(A) =
∫
M

Tr
(
A∧dA+

2
3
A∧A∧A

)
−
∫
M

1
κ∧dκ

Tr
[
(κ∧FA)2

]
. (4.3.9)

We find it convenient to abuse notation slightly by writing “1/κ∧dκ” in (4.3.9). To

explain this notation precisely, we observe that, as κ∧dκ is nonvanishing, we can always

write κ∧FA = ϕκ∧dκ for some function ϕ on M taking values in the Lie algebra g. Thus,

we set κ∧FA/κ∧dκ = ϕ, and the second term in S(A) becomes
∫
M κ∧Tr (FAϕ). As our

notation in (4.3.9) suggests, this term is invariant under the transformation κ→ t κ, since

ϕ transforms as ϕ→ t−1 ϕ.

By construction, the new action S(A) in (4.3.9) is invariant under the action of the shift

symmetry (4.3.3) on A. We can directly check this invariance once we note that, under the

shift symmetry, the expression κ∧FA transforms as

κ∧FA −→ κ∧FA + σ κ∧dκ . (4.3.10)
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The partition function Z(ε) now takes the form

Z(ε) =
1

Vol(G)
1

Vol(S)

( −i
2πε

)∆G/2

×

×
∫
A
DA exp

[
i

2ε

(∫
M

Tr
(
A∧dA+

2
3
A∧A∧A

)
−
∫
M

1
κ∧dκ

Tr
[
(κ∧FA)2

])]
,

(4.3.11)

where the Gaussian integral over Φ cancels some factors of 2πε in the normalization of

Z. As is standard, in integrating over Φ we assume that the integration contour has been

slightly rotated off the real axis, effectively giving ε a small imaginary part, to regulate the

oscillatory Gaussian integral. Thus, the theory described by the path integral (4.3.11) is

fully equivalent to Chern-Simons theory, but now one component of A manifestly decouples.

4.3.2 Contact Structures on Seifert Manifolds

Our reformulation of Chern-Simons theory in (4.3.11) applies to any three-manifold M

with a specified contact structure. However, in order to apply non-abelian localization to

Chern-Simons theory on M , we require that M has additional symmetry.

Specifically, we require that M admits a locally-free U(1) action, which means that

the generating vector field on M associated to the infinitesimal action of U(1) is nowhere

vanishing. A free U(1) action on M clearly satisfies this condition, but more generally it

is satisfied by any U(1) action such that no point on M is fixed by all of U(1) (at such

a point the generating vector field would vanish). Such an action need not be free, since

some points on M could be fixed by a cyclic subgroup of U(1). The class of three-manifolds

which admit a U(1) action of this sort are precisely the Seifert manifolds [93].

To proceed further to a symplectic description of Chern-Simons theory, we now restrict

attention to the case that M is a Seifert manifold. We first review a few basic facts about

such manifolds, for which a complete reference is [93].

M Admits a Free U(1) Action

For simplicity, we begin by assuming that the three-manifold M admits a free U(1)
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action. In this case, M is the total space of a circle bundle over a Riemann surface Σ,

S1 −→M
π−→ Σ , (4.3.12)

and the free U(1) action simply arises from rotations in the fiber of (4.3.12). The topology of

M is completely determined by the genus g of Σ and the degree n of the bundle. Assuming

that the bundle is nontrivial, we can always arrange by a suitable choice of orientation for

M that n ≥ 1.

At this point, one might wonder why we restrict attention to the case of nontrivial

bundles over Σ. As we now explain, in this case M admits a natural contact structure

which is invariant under the action of U(1). As a result, our reformulation of Chern-Simons

theory in (4.3.11) still respects this crucial symmetry of M .

To describe this U(1) invariant contact structure on M , we simply exhibit an invariant

one-form κ, defined globally on M , which satisfies the contact condition that κ∧dκ is

nowhere vanishing. To describe κ, we begin by choosing a symplectic form ω on Σ which is

normalized so that ∫
Σ
ω = 1 . (4.3.13)

Regarding M as the total space of a principal U(1)-bundle, we take κ to be a connection

on this bundle (and hence a real-valued one-form on M) whose curvature satisfies

dκ = nπ∗ω , (4.3.14)

where we recall that n ≥ 1 is the degree of the bundle. For a nice, explicit description of κ

in this situation, see the description of the angular form in §6 of [52].

We let R (for “rotation”) be the non-vanishing vector field on M which generates the

U(1) action and which is normalized so that its orbits have unit period. By the fundamental

properties of a connection, κ is invariant under the U(1) action and satisfies 〈κ,R〉 = 1.

Here we use 〈 · , · 〉 generally to denote the canonical dual pairing. Thus, κ pulls back to a

non-zero one-form which generates the integral cohomology of each S1 fiber of M , and we

immediately see from (4.3.14) that κ∧dκ is everywhere non-vanishing on M so long as the

bundle is nontrivial.



137

For future reference, we note that the integral of κ∧dκ over M is determined as follows.

Because κ satisfies 〈κ,R〉 = 1, where R is the generator of the U(1) action whose orbits

correspond to the S1 fibers over Σ in (4.3.12), the integral of κ over any such fiber is given

by ∫
S1
κ = 1 . (4.3.15)

Upon integrating over the S1 fiber of M , we see from (4.3.13), (4.3.14), and (4.3.15) that

∫
M
κ∧dκ = n

∫
M
κ∧π∗ω = n

∫
Σ
ω = n . (4.3.16)

Orbifold Generalization

Of course, in the above construction we have assumed that M admits a free U(1) action,

which is a more stringent requirement than the condition that no point of M is completely

fixed by the U(1) action. However, an arbitrary Seifert manifold does admit an orbifold

description precisely analogous to the description of M as a principal U(1)-bundle over a

Riemann surface. This point of view is taken in a nice paper by Furuta and Steer [94] for

an application somewhat related to ours, and we follow their basic exposition below.

To generalize our previous discussion to the case of an arbitrary Seifert manifold, we

simply replace the Riemann surface Σ with an orbifold, and we replace the principal U(1)-

bundle over Σ with its orbifold counterpart. Concretely, the orbifold base Σ̂ of M is now

described by a Riemann surface of genus g with N marked points pj , j = 1, . . . , N , at which

the coordinate neighborhoods are modeled not on C but on C/Zαj for some cyclic group

Zαj , which acts on the local coordinate z at pj as

z 7→ ζ · z , ζ = e 2πi/αj . (4.3.17)

The choice of the particular orbifold points pj is topologically irrelevant, and the orbifold

base Σ̂ can be completely specified by the genus g and the set of integers {α1, . . . , αN}.

We now consider a line V -bundle over Σ̂. Such an object is precisely analogous to a

complex line bundle, except that the local trivialization over each orbifold point pj of Σ̂ is

now modeled on C× C/Zαj , where Zαj acts on the local coordinates (z, s) of the base and
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fiber as

z 7→ ζ · z , s 7→ ζβj · s , ζ = e 2πi/αj , (4.3.18)

for some integers 0 ≤ βj < αj .

Given such a line V -bundle over Σ̂, an arbitrary Seifert manifold M can be described as

the total space of the associated S1 fibration. Of course, we require that M itself is smooth.

This condition implies that each pair of integers (αj , βj) above must be relatively prime so

that the local action (4.3.18) of the orbifold group Zαj on C× S1 is free (in particular, we

require βj 6= 0 above).

The U(1) action on M again arises from rotations in the fibers over Σ̂, but this action

is no longer free. Rather, the points in the S1 fiber over each ramification point pj of Σ̂ are

fixed by the cyclic subgroup Zαj of U(1), due to the orbifold identification in (4.3.18).

Once the integers {β1, . . . , βN} are fixed, the topological isomorphism class of a line

V -bundle on Σ̂ is specified by a single integer n, the degree. Thus, in total, the description

of an arbitrary Seifert manifold M is given by the Seifert invariants

[
g;n; (α1, β1), . . . , (αN , βN )

]
, gcd(αj , βj) = 1 . (4.3.19)

Because the basic notions of bundles, connections, curvatures, and (rational) character-

istic classes generalize immediately from smooth manifolds to orbifolds [95,96], our previous

construction of an invariant contact form κ as a connection on a principal U(1)-bundle im-

mediately generalizes to the orbifold situation here. In this case, if L̂ denotes the line

V -bundle over Σ̂ which describes M , with Seifert invariants (4.3.19), then L̂ is nontrivial

so long as its Chern class is non-zero (and positive by convention),

c1(L̂) = n+
N∑
j=1

βj
αj

> 0 , (4.3.20)

which generalizes our previous condition that n ≥ 1. In particular, n can now be any integer

such that the expression in (4.3.20) is positive.

In the Chern-Weil description of the Chern class, c1(L̂) is represented by smooth curva-

ture in the bulk of the orbifold Σ̂. In contrast, the degree n receives contributions from both
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the bulk curvature in Σ̂ and from local, delta-function curvatures at the orbifold points of Σ̂.

That is why n is an integer but the orbifold first Chern class c1(L̂) is not. The delta-function

contributions to n are cancelled by the rational numbers βj/αj appearing explicitly in the

formula (4.3.20) for c1(L̂).

From (4.3.20), to define a contact structure on M we choose the connection κ so that

its curvature is given by

dκ =

n+
N∑
j=1

βj
αj

π∗ω̂ , (4.3.21)

where ω̂ is a symplectic form on Σ̂ of unit volume, as in (4.3.13). Then, exactly as in

(4.3.16), the integral of κ∧dκ over M is determined by the Chern class of L̂,∫
M
κ∧dκ = n+

N∑
j=1

βj
αj

. (4.3.22)

For future reference, we also note that the Riemann-Roch formula for a line bundle on

a Riemann surface has a direct generalization to the case of a line V -bundle on an orbifold

[97], so that

χ(L̂) = dimC H
0(Σ̂, L̂)− dimC H

1(Σ̂, L̂) = n+ 1− g , (4.3.23)

which justifies calling n the degree of L̂.

In this discussion, we have used the notation Σ̂ and L̂ to distinguish these orbifold

quantities from their smooth counterparts Σ and L. In the future, we will not make this

artificial distinction, and in our discussion of Chern-Simons theory we will use Σ and L to

denote general orbifold quantities.

4.3.3 A Symplectic Structure For Chern-Simons Theory

We now specialize to the case of Chern-Simons theory on a Seifert manifoldM , which carries

a distinguished U(1) action and an invariant contact form κ. Initially, the path integral of

Chern-Simons theory on M is an integral over the affine space A of all connections on M .

Unlike the case of two-dimensional Yang-Mills theory, A is not naturally symplectic and

cannot play the role of the symplectic manifold X that appears in the canonical symplectic

integral (4.1.4).
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However, we now reap the reward of our reformulation of Chern-Simons theory to de-

couple one component of A. Specifically, we consider the following two-form Ω on A. If η

and ξ are any two tangent vectors to A, and hence are represented by sections of the bundle

Ω1
M ⊗ g on M , then we define Ω by

Ω(η, ξ) = −
∫
M
κ∧Tr (η∧ξ) . (4.3.24)

Because κ is a globally-defined one-form on M , this expression is well-defined. Further,

Ω is closed and invariant under all the symmetries. In particular, Ω is invariant under the

group S of shift symmetries, and by virture of this shift invariance Ω is degenerate along

tangent vectors to A of the form σκ, where σ is an arbitrary section of Ω0
M ⊗ g. However,

unlike the gauge symmetry G, which acts nonlinearly on A, the shift symmetry S acts in a

simple, linear fashion on A. Thus, we can trivially take the quotient of A by the action of

S, which we denote as A,

A = A/S . (4.3.25)

Under this quotient, the presymplectic form Ω on A descends immediately to a symplectic

form on A, which becomes a symplectic space naturally associated to Chern-Simons theory

on M . In the following, A plays the role of the abstract symplectic manifold X in (4.1.4).

More About the Path Integral Measure

Our reformulation of the Chern-Simons action S(A) in (4.3.9) is invariant under the shift

symmetry S, so S(A) descends to the quotient A of A by S. But we should also think (at

least formally) about the path integral measure DA. As in Yang-Mills theory, we define DA

up to norm as a translation-invariant measure on A, and a convenient way both to describe

DA and to fix its normalization is to consider this measure as induced from a Riemannian

metric on A. In turn, we describe this metric on A as induced from a corresponding metric

on M , so that a tangent vector η to A has norm

(η, η) = −
∫
M

Tr(η∧?η) . (4.3.26)

We normalize the volume of G in (4.3.1) using the similarly induced, invariant metric on G.
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We assume that U(1) acts on M by isometries, so that the metric on M associated to

the operator ? in (4.3.26) takes the form

ds2M = π∗ds2Σ + κ⊗ κ . (4.3.27)

Here ds2Σ represents any Kahler metric on Σ which is normalized so that the corresponding

Kahler form pulls back to dκ. As a result of this normalization convention, the duality

operator ? defined by the metric (4.3.27) satisfies ?1 = κ∧dκ.

Tangent vectors to the orbits of the shift symmetry S are described by sections of

Ω1
M ⊗g which take the form σκ, where σ is any function taking values in g on M . Similarly,

tangent vectors to the quotient A are naturally represented by sections of Ω1
M ⊗ g which

are annihilated by the interior product ιR with the vector field R, the generator of the U(1)

action on M . When the metric on M takes the form in (4.3.27), the one-forms annihilated

by ιR are orthogonal to the one-forms proportional to κ. Thus, the tangent space to S is

orthogonal to the tangent space to A in the corresponding metric (4.3.26) on A.

We can exhibit the orthogonal decomposition of the metric in (4.3.26) explicitly as

(η, η) = −
∫
M
κ∧dκTr

[
(ιRη)

2
]
−
∫
M
κ∧Tr

[
Π(η)∧?2Π(η)

]
. (4.3.28)

The first term in (4.3.28) describes the metric on S which we have already introduced in

(4.3.8), and the second term describes the induced metric on A. The form of the first term

follows immediately from the fact that ?κ = dκ.

In the second term of (4.3.28), we have introduced two natural operators. First, we

introduce the the operator Π which projects from the tangent space of A to the tangent

space of A, so that Π is given by

Π(η) = η − (ιRη)κ . (4.3.29)

Trivially, ιR ◦Π = 0.

Second, we introduce an effective “two-dimensional” duality operator ?2 on M which

induces a corresponding complex structure on A. This operator is defined globally on M

by

?2 = −ιR ◦ ? . (4.3.30)
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Using that ?κ = dκ and ?1 = κ∧dκ, we see immediately that ?2 κ = ?2 (κ∧dκ) = 0 and that

?2 1 = −dκ. Also, one can easily check (for instance by considering local coordinates) that

?2 satisfies (?2)2 = −1 when acting on one-forms in the image of Π, representing tangent

vectors to A. This latter property is important, since it implies that ?2 defines a complex

structure on A exactly as in two-dimensional Yang-Mills theory.

With this notation in place, the form of the second term in (4.3.28) follows immediately

from the simple computation below,

Π(η)∧?Π(η) = ιR
(
κ∧Π(η)

)
∧?Π(η) ,

= −κ∧Π(η)∧ ιR
(
?Π(η)

)
,

= κ∧Π(η)∧?2Π(η) .

(4.3.31)

In passing from the first to the second line of (4.3.31), we have “integrated by parts” with

respect to the operator ιR, as ιR (κ∧Π(η)∧?Π(η)) is trivially zero on the three-manifold M

by dimensional reasons.

We thus see from the second term in (4.3.28) that the induced metric on A is Kahler

with respect to the symplectic form Ω in (4.3.24) and the complex structure ?2. Hence

the Riemannian measure induced on A from (4.3.28) is identical to the symplectic measure

induced by Ω.

Finally, because the measure along the orbits of S in A is the same as the invariant

measure (4.3.8) which we defined on S itself, we can trivially integrate over these orbits,

which simply contribute a factor of the volume Vol(S) to the path integral. Consequently,

the Chern-Simons path integral in (4.3.11) reduces to an integral over A with its symplectic

measure,

Z(ε) =
1

Vol(G)

( −i
2πε

)∆G/2 ∫
A

exp
[
Ω +

i

2ε
S (A)

]
,

S(A) =
∫
M

Tr
(
A∧dA+

2
3
A∧A∧A

)
−
∫
M

1
κ∧dκ

Tr
[
(κ∧FA)2

]
.

(4.3.32)

4.3.4 Hamiltonian Symmetries of Chern-Simons Theory

To complete our symplectic description of the Chern-Simons path integral on M , we must

show that the action S(A) in (4.3.32) is the square of a moment map µ for the Hamiltonian
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action of some symmetry group H on the symplectic space A.

By analogy to the case of Yang-Mills theory on Σ, one might naively guess that the

relevant symmetry group for Chern-Simons theory would also be the group G of gauge

transformations. One can easily check that the action of G on A descends under the quotient

to a well-defined action on A, and clearly the symplectic form Ω on A is invariant under G.

However, one interesting aspect of non-abelian localization for Chern-Simons theory is the

fact that the group H which we use for localization must be somewhat more complicated

than G itself.

A trivial objection to using G for localization is that, by construction, the square of the

moment map µ for any Hamiltonian action on A defines an invariant function on A, but

the action S(A) is not invariant under the group G. Instead, the action S(A) is the sum

of a manifestly gauge invariant term and the usual Chern-Simons action, and the Chern-

Simons action shifts by integer multiples of 2π under “large” gauge transformations, those

not continuously connected to the identity in G.

This trivial objection is easily overcome. We consider not the disconnected group G of

all gauge transformations but only the identity component G0 of this group, under which

S(A) is invariant.

We now consider the action of G0 on A, and our first task is to determine the corre-

sponding moment map µ. If φ is an element of the Lie algebra of G0, described by a section

of the bundle Ω0
M ⊗ g on M , then the corresponding vector field V (φ) generated by φ on A

is given by V (φ) = dAφ. Thus, from our expression for the symplectic form Ω in (4.3.24)

we see that

ιV (φ)Ω = −
∫
M
κ∧Tr (dAφ∧δA) . (4.3.33)

Integrating by parts with respect to dA, we can rewrite (4.3.33) in the form δ〈µ, φ〉, where

〈µ, φ〉 =
∫
M
κ∧Tr

(
φFA

)
−
∫
M
dκ∧Tr

(
φ(A−A0)

)
. (4.3.34)

Here A0 is an arbitrary connection, corresponding to a basepoint in A, which we must

choose so that the second term in (4.3.34) can be honestly interpreted as the integral of
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a differential form on M . Geometrically, the choice of A0 corresponds to the choice of

a trivialization for the principal G-bundle over M . We will say more about this choice

momentarily, but we first observe that the expression for µ in (4.3.34) is invariant under

the shift symmetry and immediately descends to a moment map for the action of G on A.

The fact that we must choose a basepoint A0 in A to define the moment map is very

important in the following, and it is fundamentally a reflection of the affine structure of

A. In general, an affine space is a space which can be identified with a vector space only

after some basepoint is chosen to represent the origin. In the case at hand, once A0 is

chosen, we can identify A with the vector space of sections η of the bundle Ω1
M ⊗ g on M ,

via A = A0 + η, as we used in (4.3.34). However, A is not naturally itself a vector space,

since A does not intrinsically possess a distinguished origin. This statement corresponds to

the geometric statement that, though our principal G-bundle on M is trivial, it does not

possess a canonical trivialization.

In terms of the moment map µ, the choice of A0 simply represents the possibility of

adding an arbitrary constant to µ. In general, our ability to add a constant to µ means

that µ need not determine a Hamiltonian action of G0 on A. Indeed, as we show below, the

action of G0 on A is not Hamiltonian and we cannot simply use G0 to perform localization.

In order not to clutter the expressions below, we assume henceforth that we have fixed

a trivialization of the G-bundle on M and we simply set A0 = 0.

To determine whether the action of G0 on A is Hamiltonian, we must check the condition

(4.2.5) that µ determine a homomorphism from the Lie algebra of G0 to the algebra of

functions on A under the Poisson bracket. So we directly compute{
〈µ, φ〉, 〈µ, ψ〉

}
= Ω

(
dAφ, dAψ

)
= −

∫
M
κ∧Tr (dAφ∧dAψ) ,

=
∫
M
κ∧Tr

(
[φ, ψ]FA

)
−
∫
M
dκ∧Tr

(
φdAψ

)
,

= 〈µ, [φ, ψ]〉 −
∫
M
dκTr

(
φdψ

)
.

(4.3.35)

Thus, the failure of µ to determine an algebra homomorphism is measured by the coho-
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mology class of the Lie algebra cocycle

c(φ, ψ) =
{
〈µ, φ〉, 〈µ, ψ〉

}
− 〈µ, [φ, ψ]〉 ,

= −
∫
M
dκ∧Tr

(
φdψ

)
= −

∫
M
κ∧dκTr

(
φ£Rψ

)
.

(4.3.36)

In the second line of (4.3.36), we have rewritten the cocycle more suggestively by using the

Lie derivative £R along the vector field R on M which generates the U(1) action. The class

of this cocycle is not zero, and no Hamiltonian action on A exists for the group G0.

Some Facts About Loop Groups

The cocycle appearing in (4.3.36) has a very close relationship to a similar cocycle that

arises in the theory of loop groups, and some well-known loop group constructions feature

heavily in our study of Chern-Simons theory. We briefly review these ideas, for which a

general reference is [98].

When G is a finite-dimensional Lie group, we recall that the loop group LG is defined as

the group of smooth maps Map(S1, G) from S1 to G. Similarly, the Lie algebra Lg of LG is

the algebra Map(S1, g) of smooth maps from S1 to g. When g is simple, then the Lie algebra

Lg admits a unique, G-invariant cocycle up to scale, and this cocycle is directly analogous

to the cocycle we discovered in (4.3.36). If φ and ψ are elements in the Lie algebra Lg, then

this cocycle is defined by

c(φ, ψ) = −
∫
S1

Tr
(
φdψ

)
= −

∫
S1
dtTr

(
φ£Rψ

)
. (4.3.37)

In passing to the last expression, we have by analogy to (4.3.36) introduced a unit-length

parameter t on S1, so that
∫
S1 dt = 1, and we have introduced the dual vector field R = ∂/∂t

which generates rotations of S1.

In general, if g is any Lie algebra and c is a nontrivial cocycle, then c determines a

corresponding central extension g̃ of g,

R −→ g̃ −→ g . (4.3.38)

As a vector space, g̃ = g⊕ R, and the Lie algebra of g̃ is given by the bracket[
(φ, a), (ψ, b)

]
=
(
[φ, ψ], c(φ, ψ)

)
, (4.3.39)
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where φ and ψ are elements of g, and a and b are elements of R.

In the case of the Lie algebra Lg, the cocycle c appearing in (4.3.37) consequently

determines a central extension L̃g of Lg. When G is simply connected, the extension

determined by c or any integral multiple of c lifts to a corresponding extension of LG by

U(1),

U(1) −→ L̃G −→ LG . (4.3.40)

Topologically, the extension L̃G is the total space of the S1 bundle over LG whose Euler

class is represented by the cocyle of the extension, interpreted as an invariant two-form on

LG. The fact that the Euler class must be integral is responsible for the corresponding

quantization condition on the cocycle of the extension.

When g is simple, the algebra Lg has a non-degenerate, invariant inner product which

is unique up to scale and is given by

(φ, ψ) = −
∫
S1
dtTr (φψ) . (4.3.41)

On the other hand, the corresponding extension L̃g does not possess a non-degenerate,

invariant inner product, since any element of L̃g can be expressed as a commutator, so that

[L̃g, L̃g] = L̃g, and the center of L̃g is necessarily orthogonal to every commutator under an

invariant inner product.

However, we can also consider the semidirect product U(1) n L̃G. Here, the rigid U(1)

action on S1 induces a natural U(1) action on L̃G by which we define the product, and

the important observation about this group U(1) n L̃G is that it does admit an invariant,

non-degenerate inner product on its Lie algebra.

Explicitly, the Lie algebra of S1 n L̃G is identified with R⊕ L̃g = R⊕Lg⊕R as a vector

space, and the Lie algebra is given by the bracket[
(p, φ, a), (q, ψ, b)

]
=
(
0, [φ, ψ] + p£Rψ − q£Rφ, c(φ, ψ)

)
, (4.3.42)

where £R is the Lie derivative with respect to the vector field R generating rotations of S1.

We then consider the manifestly non-degenerate inner product on R⊕ L̃g which is given by(
(p, φ, a), (q, ψ, b)

)
= −

∫
M
dtTr(φψ)− pb− qa . (4.3.43)
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One can directly check that this inner product is invariant under the adjoint action deter-

mined by (4.3.42). We note that although this inner product is non-degenerate, it is not

positive-definite because of the last two terms in (4.3.43).

Extension To Chern-Simons Theory

We now return to our original problem, which is to find a Hamiltonian action of a group

H on A to use for localization. The natural guess to consider the identity component G0 of

the gauge group does not work, because the cocycle c in (4.3.36) obstructs the action of G0

on A from being Hamiltonian.

However, motivated by the loop group constructions, we consider now the central ex-

tension G̃0 of G0 by U(1) which is determined by the cocycle c in (4.3.36),

U(1) −→ G̃0 −→ G0 . (4.3.44)

We assume that the central U(1) subgroup of G̃0 acts trivially on A, so that the moment

map for the central generator (0, a) of the Lie algebra is constant. Then, by construction,

we see from (4.3.36) and (4.3.39) that the new moment map for the action of G̃0 on A,

which is given by

〈µ, (φ, a)〉 =
∫
M
κ∧Tr (φFA)−

∫
M
dκ∧Tr (φA) + a , (4.3.45)

satisfies the Hamiltonian condition

{
〈µ, (φ, a)〉, 〈µ, (ψ, b)〉

}
=
〈
µ, [(φ, a), (ψ, b)]

〉
. (4.3.46)

The action of the extended group G̃0 on A is thus Hamiltonian with moment map in (4.3.45).

But G̃0 is still not the group H which we must use to perform non-abelian localization

in Chern-Simons theory! In order to realize the action S(A) as the square of the moment

map µ for some Hamiltonian group action on A, the Lie algebra of the group must first

possess a non-degenerate, invariant inner product. Just as for the loop group extension L̃G,

the group G̃0 does not possess such an inner product.

However, we can elegantly remedy this problem, just as it was remedied for the loop

group, by also considering the action of U(1) on M . The U(1) action on M induces an
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action of U(1) on G̃0, so we consider the associated semidirect product U(1) n G̃0. Then a

non-degenerate, invariant inner product on the Lie algebra of U(1) n G̃0 is given by

(
(p, φ, a), (q, ψ, b)

)
= −

∫
M
κ∧dκTr(φψ)− pb− qa , (4.3.47)

in direct correspondence with (4.3.43). As for the loop group, this quadratic form is of

indefinite signature, due to the hyperbolic form of the last two terms in (4.3.47).

Finally, the U(1) action on M immediately induces a corresponding U(1) action on

A. Since the contact form κ is invariant under this action, the induced U(1) action on A

descends to a corresponding action on the quotient A. In general, the vector field upstairs

on A which is generated by an arbitrary element (p, φ, a) of the Lie algebra of U(1) n G̃0 is

then given by

δA = dAφ+ p£RA , (4.3.48)

where R is the vector field on M generating the action of U(1). Clearly the moment for the

new generator (p, 0, 0) is given by

〈
µ, (p, 0, 0)

〉
= −1

2
p

∫
M
κ∧Tr (£RA∧A) . (4.3.49)

This moment is manifestly invariant under the shift symmetry and descends to A.

In fact, the action of U(1) n G̃0 on A is Hamiltonian, with moment map

〈
µ, (p, φ, a)

〉
= −1

2
p

∫
M
κ∧Tr (£RA∧A) +

∫
M
κ∧Tr (φFA)−

∫
M
dκ∧Tr (φA) + a . (4.3.50)

To check this statement, it suffices to compute
{
〈µ, (p, 0, 0)〉, 〈µ, (0, ψ, 0)〉

}
, which is the

only nontrivial Poisson bracket that we have not already computed. Thus,{
〈µ, (p, 0, 0)〉, 〈µ, (0, ψ, 0)〉

}
= Ω

(
p£RA, dAψ

)
= −p

∫
M
κ∧Tr (£RA∧dAψ) ,

= p

∫
M
κ∧Tr (£Rψ FA)− p

∫
M
dκ∧Tr (£RψA) ,

=
〈
µ, (0, p£Rψ, 0)

〉
,

(4.3.51)

as required by the Lie bracket (4.3.42).

Thus, we identify H = U(1)n G̃0 as the relevant group of Hamiltonian symmetries which

we use for localization in Chern-Simons theory.
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4.3.5 The Action S(A) as the Square of the Moment Map

By construction, the square (µ, µ) of the moment map µ in (4.3.50) for the Hamiltonian

action of H on A is a function on A invariant under H. The new Chern-Simons action S(A)

in (4.3.9) is also a function on A invariant under H. Given the high degree of symmetry,

we certainly expect that (µ, µ) and S(A) agree up to normalization. We now check this fact

directly and fix the relative normalization.

We first observe that, in terms of the invariant form (·, ·) in (4.3.47) on the Lie algebra

of H, we can express the moment map dually as determined by the inner product with

the vector
(
−1, − (κ∧FA − dκ∧A) /κ∧dκ, 1

2

∫
M κ∧Tr(£RA∧A)

)
in the Lie algebra of H, so

that〈
µ, (p, φ, a)

〉
=
((
−1,−

(
κ∧FA − dκ∧A

κ∧dκ

)
,
1
2

∫
M
κ∧Tr(£RA∧A)

)
, (p, φ, a)

)
. (4.3.52)

Thus, by duality, the square of µ is determined to be

(µ, µ) =
〈
µ,

(
−1,−

(
κ∧FA − dκ∧A

κ∧dκ

)
,
1
2

∫
M
κ∧Tr(£RA∧A)

)〉
,

=
∫
M
κ∧Tr

(
£RA∧A

)
−
∫
M
κ∧dκTr

(
(
κ∧FA − dκ∧A

κ∧dκ
)2
)
.

(4.3.53)

To simplify the first term of (4.3.53), we use the fact that the Lie derivative £R can be

expressed as an anti-commutator £R = {ιR, d}, so that∫
M
κ∧Tr

(
£RA∧A

)
=
∫
M
κ∧Tr

(
{ιR, d}A∧A

)
. (4.3.54)

We now observe that ιRA can be expressed as

ιRA =
A∧dκ
κ∧dκ

. (4.3.55)

Using this fact and integrating by parts with respect to the outermost operator d or ιR in

both of the two terms from the anti-commutator (4.3.54), we find that∫
M
κ∧Tr

(
£RA∧A

)
=
∫
M

[
ιRκ∧Tr (dA∧A) − κ∧Tr (dA ιRA) +

+ dκ∧Tr (ιRA A)− κ∧Tr (ιRA dA)
]
,

=
∫
M

[
Tr (A∧dA) − 2κ∧Tr

(
dκ∧A
κ∧dκ

dA

)
+

+ dκ∧Tr
(
dκ∧A
κ∧dκ

A

)]
.

(4.3.56)
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(We observe that trivially ιR (κ∧Tr (dA∧A)) = 0.)

Consequently, after some algebra, we find that (4.3.53) becomes

(µ, µ) = −
∫
M

1
κ∧dκ

Tr
(
(κ∧FA)2

)
+
∫
M

Tr
(
A∧dA

)
+ 2

∫
M
κ∧Tr

(
(ιRA)A∧A

)
. (4.3.57)

In arriving at (4.3.57), we have observed that the terms involving κ in (4.3.56) are cancelled

by corresponding terms from the second term in (4.3.53), arising from the perfect square

((κ∧FA − dκ∧A) /κ∧dκ)2, after expanding FA = dA + A ∧ A. The last term in (4.3.57),

cubic in A, arises from the cross-term in this perfect square when we express FA = dA+A∧A

and we apply the identity (4.3.55).

To simplify the last term of (4.3.57), we observe that

0 = ιR
(
κ∧Tr(A∧A∧A)

)
= −3κ∧Tr

(
(ιRA)A∧A

)
+ Tr

(
A∧A∧A

)
, (4.3.58)

so that

(µ, µ) = −
∫
M

1
κ∧dκ

Tr
(
(κ∧FA)2

)
+
∫
M

Tr
(
A∧dA+

2
3
A∧A∧A

)
. (4.3.59)

We thus find the beautiful result,

S(A) = (µ, µ) . (4.3.60)

We finally write the Chern-Simons path integral as a symplectic integral over A of the

canonical form,

Z(ε) =
1

Vol(G)

( −i
2πε

)∆G/2 ∫
A

exp
[
Ω +

i

2ε
(µ, µ)

]
. (4.3.61)

4.4 Non-Abelian Localization and Two-Dimensional Yang-

Mills Theory

In this section, we recall following [18] how the technique of non-abelian localization can be

generally applied to study a symplectic integral of the canonical form

Z(ε) =
1

Vol(H)

(
1

2πε

)∆H/2 ∫
X

exp
[
Ω− 1

2ε
(µ, µ)

]
, ∆H = dimH . (4.4.1)
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Here X is a symplectic manifold with symplectic form Ω, and H is a Lie group which acts

on X in a Hamiltonian fashion with moment map µ. Finally, ( · , · ) is an invariant, positive-

definite quadratic form on the Lie algebra h of H and dually on h∗ which we use to define

the “action” S = 1
2(µ, µ) and the volume Vol(H) of H that appear in (4.4.1).

In the case of Chern-Simons theory, the corresponding quadratic form (4.3.47) on h

has indefinite signature, due to the hyperbolic summand associated to the two extra U(1)

generators of H relative to the group of gauge transformations G0. Also, invariance under

large gauge transformations requires the Chern-Simons symplectic integral (4.3.61) to be

oscillatory, instead of exponentially damped. These features do not essentially change our

discussion of localization below, and we reserve further comment until Section 5.

Later in this section, we also review and extend the ideas of [18] to apply non-abelian

localization to Yang-Mills theory on a Riemann surface.

4.4.1 General Aspects of Non-Abelian Localization

To apply non-abelian localization to an integral of the form (4.4.1), we first observe that

Z(ε) can be rewritten as

Z(ε) =
1

Vol(H)

∫
h×X

[
dφ

2π

]
exp

[
Ω− i 〈µ, φ〉 − ε

2
(φ, φ)

]
. (4.4.2)

Here φ is an element of the Lie algebra h of H, and [dφ] is the Euclidean measure on h that

is determined by the same invariant form ( ·, ·) which we use to define the volume Vol(H) of

H. The Gaussian integral over φ in (4.4.2) leads immediately to the expression in (4.4.1).

The measure [dφ/2π] includes a factor of 1/2π for each real component of φ.

A BRST Symmetry

The advantage of writing Z in the form (4.4.2) is that, once we introduce φ, then Z

becomes invariant under a BRST symmetry, and this BRST symmetry leads directly to a

localization formula for (4.4.2).

To describe this BRST symmetry, we recall that the moment map satisfies

d〈µ, φ〉 = ιV (φ)Ω , (4.4.3)
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where V (φ) is the vector field on X associated to the infinitesimal action of φ. Because of

the relation (4.4.3), the argument of the exponential in (4.4.2) is immediately annihilated

by the BRST operator D defined by

D = d+ i ιV (φ) . (4.4.4)

To exhibit the action of D locally, we choose a basis φa for h, and we introduce local

coordinates xm on X. We also introduce the notation χm ≡ dxm for the corresponding

basis of local one-forms on X, and we expand the vector field V (φ) into components as

V (φ) = φa V m
a ∂/∂xm. Then the action of D in (4.4.4) is described in terms of these local

coordinates by

Dxm = χm ,

Dχm = i φa V m
a ,

Dφa = 0 .

(4.4.5)

From this local description (4.4.5), we see that the action of D preserves a ghost number,

or grading, under which x carries charge 0, χ carries charge +1, φ carries charge +2, and

D itself carries charge +1.

The most important property of a BRST operator is that it squares to zero. In this

case, either from (4.4.4) or from (4.4.5), we see that D squares to the Lie derivative along

the vector field V (φ),

D2 = i {d, ιV (φ)} = i£V (φ) . (4.4.6)

Thus, D2 = 0 exactly when D acts on the subspace of H-invariant functions O(x, χ, φ) of

x, χ, and φ.

For simplicity, we restrict attention to functions O(x, χ, φ) which are polynomial in φ.

Then an arbitrary function of this form can be expanded as a sum of terms

O(x)m1...mp a1...aq χ
m1 · · ·χmp φa1 · · ·φaq , (4.4.7)

for some 0 ≤ p ≤ dimX and q ≥ 0. (The restriction on p arises from the fact that χ satisfies

Fermi statistics, whereas φ satisfies Bose statistics.)



153

More globally, each term of the form (4.4.7) is specified by a section of the bundle

Ωp
X ⊗ Symq(h∗) of p-forms on X which take values in the q-th symmetric tensor product of

the dual h∗ of the Lie algebra of H. Thus, if we consider the complex (Ω∗X ⊗ Sym∗ (h∗))H of

all H-invariant differential forms on X which take values in the ring of polynomial functions

on h, then we see that D defines a cohomology theory associated to the action of H on X.

This cohomology theory is known as the Cartan model of the H-equivariant cohomology

of X. With the exception of the last computation in Section 5.3, our applications will

not require a greater familiarity with equivariant cohomology than what we have described

here. However, in Section 5.3 we will need to use a few additional properties of equivariant

cohomology that we discuss in Appendix C, and we recommend [20,99] as basic references.

Localization for Z

Because the argument of the exponential in (4.4.2) is annihilated by D and because

this argument is manifestly invariant under H, the integrand of the symplectic integral Z

determines an equivariant cohomology class on X. Furthermore, by the usual arguments,

Z is formally unchanged by the addition of any D-exact invariant form to its integrand.

This formal statement can fail if X is not compact and Z suffers from divergences, as we

analyze in great detail in Appendix A, but for the moment we ignore this issue and assume

X is compact. Thus, Z depends only on the equivariant cohomology class of its integrand.

We now explain how this fact leads immediately to a localization formula for Z. We

first observe that we can add to the argument of the exponential in (4.4.2) an arbitrary

term of the form tDλ, where λ is any H-invariant one-form on X and t is a real parameter,

so that

Z(ε) =
1

Vol(H)

∫
h×X

[
dφ

2π

]
exp

[
Ω− i 〈µ, φ〉 − ε

2
(φ, φ) + tDλ

]
. (4.4.8)

This deformation of the integrand of (4.4.2) isD-exact and does not change Z. In particular,

Z does not depend on t.

By definition, Dλ is given explicitly by

Dλ = dλ+ i 〈λ, V (φ)〉 . (4.4.9)
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As before, 〈 · , · 〉 denotes the canonical dual pairing, so that in components the last term of

(4.4.9) is given by λmV m
a φa.

Thus, apart from a polynomial in t that arises from expanding the term exp (t dλ), all

of the dependence on t in the integrand of Z arises from the factor exp [i t 〈λ, V (φ)〉] that

now appears in (4.4.8). So if we consider the limit t → ∞, then the stationary phase

approximation to the integral is valid, and all contributions to Z localize around the critical

points of the function 〈λ, V (φ)〉.

We expand this function in the basis φa for h which we introduced previously,

〈λ, V (φ)〉 = φa 〈λ, Va〉 . (4.4.10)

Thus, the critical points of 〈λ, V (φ)〉 arise from the simultaneous solutions in h×X of the

equations

〈λ, Va〉 = 0 ,

φa d〈λ, Va〉 = 0 .
(4.4.11)

The first equation in (4.4.11) implies that Z necessarily localizes on points in h × X for

which 〈λ, Va〉 vanishes. As for the second equation in (4.4.11), we see that it is invariant

under an overall scaling of φ in the vector space h. Consequently, upon integrating over φ

in (4.4.8), we see that the critical locus of the function 〈λ, V (φ)〉 in h×X projects onto the

vanishing locus of 〈λ, Va〉 in X. So Z localizes on the subset of X where 〈λ, Va〉 = 0.

By making a specific choice of the one-form λ, we can describe the localization of Z

more precisely. In particular, we now show that Z localizes on the set of critical points of

the function S = 1
2(µ, µ) on X.

We begin by choosing an almost complex structure J on X. That is, J : TX → TX is a

linear map from TX to itself such that J2 = −1. We assume that J is compatible with the

symplectic form Ω in the sense that Ω is of type (1, 1) with respect to J and the associated

metric G(·, ·) = Ω(·, J ·) on X is positive-definite. Such an almost complex structure always

exists.

Using J and S, we now introduce the invariant one-form

λ = J dS = (µ, J dµ) . (4.4.12)
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In components, λ = dxmJnm∂nS = dxmµaJnm∂nµa.

The integral Z now localizes on the subset of X where 〈λ, Va〉 = 0. Comparing to

(4.4.12), we see that this subset certainly includes all critical points of S, since by definition

dS = 0 at these points.

Conversely, we now show that if 〈λ, Va〉 = 0 at some point on X, then this point is

a critical point of S. To prove this assertion, we use the inverse Ω−1 to Ω, which arises

by considering the symplectic form as an isomorphism Ω : TM → T ∗M with inverse

Ω−1 : T ∗M → TM . In components, Ω−1 is defined by (Ω−1)lm Ωmn = δln.

In terms of Ω−1, the moment map equation (4.4.3) is equivalent to the relation

V = Ω−1 dµ , (4.4.13)

or V m
a = (Ω−1)mn ∂nµa. Thus,

Ω−1 dS =
(
µ, Ω−1dµ

)
= (µ, V ) , (4.4.14)

or (Ω−1)mn ∂nS = µaV m
a .

In particular, the condition that 〈λ, Va〉 = 0 implies that

0 = (µ, 〈λ, V 〉) = 〈λ, Ω−1dS〉 = 〈J dS, Ω−1dS〉 , (4.4.15)

or more explicitly, 0 = µaλmV
m
a = λm (Ω−1)mn ∂nS = (Ω−1)mnJ lm ∂lS ∂nS. We recognize

the last expression in (4.4.15) as the norm of the one-form dS with respect to the metric

G on X. As G is positive-definite, we conclude that the condition 〈λ, Va〉 = 0 implies the

vanishing of dS. Thus, the symplectic integral Z localizes precisely on the critical set of S.

4.4.2 Non-Abelian Localization For Yang-Mills Theory, Part I

In the rest of this section, we apply non-abelian localization to perform path integral com-

putations in two-dimensional Yang-Mills theory on a smooth Riemann surface Σ. These

computations are an essential warmup for our later computations in Chern-Simons theory.

As we discussed in Section 2, the Yang-Mills path integral is naturally a symplectic

integral of the canonical form (4.4.1), where the abstract symplectic manifold X is now the
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affine space A(P ) of connections on a fixed principal G-bundle P over Σ, and where the

abstract group H is now the group G(P ) of gauge transformations. Also, the moment map

for the action of G(P ) on A(P ) is simply the curvature of the connection, µ = FA.

As a result of our general discussion above, the Yang-Mills path integral localizes on

critical points of the Yang-Mills action. These critical points fall into two qualitatively

different sorts. Because the action S = 1
2(µ, µ) is quadratic in the moment map µ, so that

dS = (µ, dµ), we see that the critical locus of S includes all points where µ vanishes, as well

as other points where µ is generally non-zero. The points at which µ = 0 are clearly stable

minima of S, and any other critical points at which µ 6= 0 are higher extrema of S, which

in our applications are unstable. In the case of Yang-Mills theory, the stable minima of the

action are the flat connections on Σ, and the higher extrema are connections with non-zero

curvature which represent classical solutions of Yang-Mills theory, so that dA?FA = 0 with

FA 6= 0.

For our application to Chern-Simons theory, we must understand localization at both

the flat and the non-flat solutions of classical Yang-Mills theory. So in the rest of Section

4.2, we review following [18] how non-abelian localization works for flat connections, and

then in Section 4.3 we discuss the generalization for solutions of Yang-Mills theory with

curvature.

Localization on a Smooth Component of the Moduli Space of Flat Connections

We assume thatM0 is a smooth component of the moduli space of flat connections on

Σ. For ease of future notation, we make the identifications

X = A(P ) ,

H = G(P ) ,

µ = FA .

(4.4.16)

We now identify M0 abstractly as a symplectic quotient of the zero locus µ−1(0) ⊂ X by

the free action of the group H, so that M0 = µ−1(0)/H.

The fundamental result of [18], whose derivation we now recall, is that the local contri-
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bution Z(ε)|M0 to the path integral from M0 is given by the topological expression

Z(ε)|M0 =
∫
M0

exp (Ω + εΘ) . (4.4.17)

Here Ω is the symplectic form onM0 induced from the corresponding symplectic form on X

(also denoted previously by Ω), and Θ is a characteristic class of degree four onM0 which

appears explicitly as part of the derivation of (4.4.17). In particular, when the coupling ε

is zero, then Z(0)|M0 is the symplectic volume ofM0.

To derive (4.4.17) by localization, we start by considering the local geometry of the zero

set µ−1(0) in X. Thus, we let N be a small open neighborhood of µ−1(0) in X, so that

µ−1(0) ⊂ N ⊂ X. We assume that this neighborhood is chosen so that N is preserved

by the action of H and so that N retracts equivariantly onto µ−1(0). By composing this

retraction with the quotient by the action of H, we define a projection pr : N →M0. Thus,

denoting the fiber of pr by F , we have the following equivariant bundle

F −→ N
pr−→M0 . (4.4.18)

The symplectic integral which describes the local contribution ofM0 to Z is now given

by

Z(ε)|M0 =
1

Vol(H)

∫
h×N

[
dφ

2π

]
exp

[
Ω− i 〈µ, φ〉 − ε

2
(φ, φ) + tDλ

]
, (4.4.19)

where λ is the invariant one-form that we introduced in (4.4.12) to localize Z. Because N

is noncompact, this integral in (4.4.19) is only defined by localization, so that we require

t 6= 0.

As explained in detail in [18], because N retracts equivariantly onto M0 and because

the action of H is free near µ−1(0), the equivariant cohomology class of degree two repre-

sented by the expression Ω− i 〈µ, φ〉 in (4.4.19) is simply the pullback by pr of the induced

symplectic form on M0. (We recall that φ carries degree +2 with respect to equivariant

cohomology.) Similarly, the equivariant cohomology class of degree four represented by

−1
2(φ, φ) in (4.4.19) is the pullback by pr of an ordinary cohomology class Θ of degree four

on M0. Since H acts freely on µ−1(0), Θ represents a degree four characteristic class of

µ−1(0) regarded as a principal H-bundle overM0.
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Thus, as the only term appearing in the argument of the exponential in (4.4.19) which

does not pull back from M0 is tDλ itself, to derive (4.4.17) from (4.4.19) we must only

show that the integral of exp (tDλ) over the fiber F of (4.4.18) produces a trivial factor of

1,
1

Vol(H)

∫
h×F

[
dφ

2π

]
exp [tDλ] = 1 . (4.4.20)

This computation is what we must essentially generalize to discuss localization at non-flat

Yang-mills solutions, so we review it in detail.

A Local Model For F From Hodge Theory

In order to perform the direct computation of the integral in (4.4.20), we first identify

the correct local model for the geometry of F . By assumption, the group H acts freely on

F , so F must contain a copy of H. Since F must also be symplectic, the simplest local

model for F is just the cotangent bundle T ∗H of H, with its canonical symplectic structure.

In fact, the simple guess that F = T ∗H is precisely correct, and it has an important

infinite-dimensional interpretation in the context of Yang-Mills theory. To explain this

interpretation, we consider the tangent space to A(P ) at a point corresponding to a flat

connection A. As we have discussed, the tangent space to A(P ) at A can be identified

with the space of smooth sections Γ(Σ,Ω1
Σ⊗ ad(P )) of the bundle of one-forms on Σ taking

values in the adjoint bundle ad(P ).

By definition, the flatness of A implies that the covariant derivative dA satisfies d2
A = 0.

Because of this fact, dA has many of the same properties as the de Rham exterior derivative

d, and the usual Hodge decomposition for d has an immediate analogue for dA.

In the case of the covariant derivative dA, the Hodge decomposition implies that the

vector space Γ(Σ,Ω1
Σ ⊗ ad(P )) decomposes into three subspaces, orthogonal with respect

to the metric induced by ? on A(P ), of the form

Γ(Σ,Ω1
Σ ⊗ ad(P )) = H1 ⊕ Im(dA)⊕ Im(d†A) . (4.4.21)

Here d†A = −? dA ? is the standard adjoint to dA with respect to the metric on A(P ).

Also, H1 denotes the finite-dimensional subspace of harmonic one-forms taking values in



159

ad(P ), so that elements ofH1 are annihilated by the Laplacian ∆A = dAd
†
A + d†AdA. Finally,

Im(dA) and Im(d†A) denote the images of dA and d†A when these operators act respectively

on sections of the bundles ad(P ) and Ω2
Σ ⊗ ad(P ) on Σ.

Concretely, the Hodge decomposition implies that, if η is any section of Ω1
Σ ⊗ ad(P ),

then η can be uniquely written as a sum of three terms, all orthogonal,

η = ξ + dAφ + d†AΨ , (4.4.22)

where ξ satisfies ∆Aξ = 0 and where φ and Ψ are respectively sections of the bundles ad(P )

and Ω2
Σ ⊗ ad(P ).

To interpret the Hodge decomposition (4.4.21) as a geometric statement, we note that

the finite-dimensional vector space H1 of harmonic one-forms can be identified with the

tangent space to the moduli spaceM0 of flat connections at A. For instance, since d2
A = 0,

we can consider the cohomology of dA. As usual, we identify the harmonic forms in H1 as

representatives of cohomology classes in H1(Σ, ad (P )). These cohomology classes describe

infinitesimal deformations of the flat connection A.

On the other hand, since we assume that the gauge group G(P ) acts freely at A, dA has

no kernel when acting on sections of ad(P ). Otherwise, if a section φ of ad(P ) did satisfy

dAφ = 0, then the gauge transformation generated by φ would fix A. Equivalently, we have

that H0(Σ, ad (P )) = 0.

Because dA has no kernel when acting on sections of ad(P ), dA can be formally inverted

and the image of dA in Γ(Σ,Ω1
Σ ⊗ ad(P )) identified with the space of sections of ad(P )

itself. Of course, a section φ of ad(P ), as appears in (4.4.22), is interpreted geometrically

as a tangent vector to the gauge group G(P ).

Similarly, we can also identify the image of the adjoint d†A with the space of sections of

the bundle Ω2
Σ ⊗ ad(P ). Such a section Ψ, as in (4.4.22), is interpreted geometrically as a

cotangent vector to the gauge group G(P ).

Furthermore, if we recall the natural symplectic form Ω on A(P ) in (4.2.3), we see that

Im(dA) is isotropic with respect to Ω. For if φ and ψ are any two sections of the bundle
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ad(P ) on Σ, then

Ω(dAφ, dAψ) = −
∫
Σ

Tr(dAφ∧dAψ) =
∫
Σ

Tr(φd2
Aψ) = 0 . (4.4.23)

This fact crucially relies on the flatness of A, since we use that d2
A = 0 in deducing the

last equality of (4.4.23). Of course, the fact that Im(dA) is isotropic with respect to Ω is

mirrored by the fact that H is a Lagrangian submanifold of T ∗H.

Thus, the Hodge decomposition (4.4.21) applied to Γ(Σ,Ω1
Σ ⊗ ad(P )) locally reflects

the geometric statement that F is modeled on the cotangent bundle T ∗H. In this ex-

ample, it may seem perverse to translate the simple statement that F = T ∗H into the

infinite-dimensional statement of the Hodge decomposition. However, when we consider

the corresponding local geometry for higher critical points, this infinite-dimensional per-

spective allows us to deduce directly how the simple symplectic model based on T ∗H must

be modified to describe higher critical points of Yang-Mills theory.

Computing a Symplectic Integral on T ∗H

Having identified the symplectic model for F as the cotangent bundle T ∗H, we compute

in the remainder of this subsection the symplectic integral

1
Vol(H)

∫
h×T ∗H

[
dφ

2π

]
exp [tDλ] . (4.4.24)

We review this short computation from [18] simply because we must generalize it to discuss

localization at non-flat Yang-Mills connections.

Thus, we consider the symplectic manifold T ∗H with its canonical symplectic structure.

By convention, the action of H on T ∗H is induced from the right action of H on itself. By

passing to a basis of right-invariant one-forms and using the invariant metric (·, ·) on H, we

identify T ∗H ∼= H × h. Under this identification, we introduce coordinates (g, γ) on H × h.

In these coordinates, the canonical right-invariant one-form on H which takes values in

h is given by

θ = dgg−1 . (4.4.25)



161

In terms of θ, the canonical symplectic structure on T ∗H is given by the invariant two-form

Ω = d(γ, θ) = (dγ, θ) + (γ, dθ) ,

=
(
dγ +

1
2
[γ, θ], θ

)
,

(4.4.26)

where in passing to the second line of (4.4.26) we recall that dθ = θ∧θ = 1
2 [θ, θ]. Also, if φ

is an element of h, then the corresponding vector field V (φ) on T ∗H which is generated by

the infinitesimal right-action of φ is given by

δg = −gφ , δγ = 0 . (4.4.27)

To proceed, we require an explicit formula for the invariant one-form λ appearing in

(4.4.24). Abstractly, λ = (µ, J dµ) is determined by the moment map µ for the H-action

on T ∗H and an almost complex structure J compatible with Ω in (4.4.26), both of which

are easy to determine. A convenient formula for λ was obtained in [18]. In brief, one has

〈µ, φ〉 = −(γ, gφg−1), and one defines a G-invariant almost complex structure compatible

with Ω by

J(θ) = −
(
dγ +

1
2
[γ, θ]

)
, J

(
dγ +

1
2
[γ, θ]

)
= θ . (4.4.28)

One then finds that (µ, J dµ) = (γ, θ) after using the fact that [γ, γ] = 0. So finally

λ = (µ, J dµ) = (γ, θ) . (4.4.29)

Thus, from (4.4.27), (4.4.29), and the definition of D in (4.4.4), we see that

Dλ = Ω− i
(
γ, gφg−1

)
. (4.4.30)

Without loss, we set t = 1 in (4.4.24) and we change variables from φ to gφg−1, under which

the measure [dφ] on h is invariant. Then the symplectic integral takes the simple form

1
Vol(H)

∫
h×T ∗H

[
dφ

2π

]
exp

[
Ω− i (γ, φ)

]
. (4.4.31)

The integral over γ can be done using the fact that∫ +∞

−∞
dy exp (−ixy) = 2π δ(x) , (4.4.32)
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and the resulting multi-dimensional delta function can be used to perform the integral over

φ. We note that the factors of 2π from (4.4.32) nicely cancel the factors of 2π in the

measure for φ. Finally, the remaining integral over g in H produces a factor of the volume

Vol(H) which cancels the prefactor in (4.4.31). Thus, assuming T ∗H is suitably oriented,

the symplectic integral over T ∗H is indeed 1, as claimed in (4.4.20).

4.4.3 Non-Abelian Localization For Yang-Mills Theory, Part II

We now study localization at the higher, unstable critical points of the Yang-Mills action,

which correspond to non-flat connections which solve the Yang-Mills equation on Σ. We

begin with some generalities about these connections.

We first introduce the notation f for the section of ad(P ) dual to the curvature FA,

f = ?FA . (4.4.33)

Then, by definition, any Yang-Mills solution on Σ satisfies the classical equation of motion

dAf = 0 . (4.4.34)

This equation simply expresses the geometric condition that f be a covariantly constant

section of ad(P ), and we can consequently regard f as an element of the Lie algebra g of G.

Because f is constant, f yields a reduction of the structure group G of the bundle to the

subgroup Gf ⊂ G which commutes with f . In physical terms, the background curvature

breaks the gauge group from G to Gf .

As a result of the reduction from G to Gf , any non-flat Yang-Mills solution for gauge

group G can be succinctly described as a flat connection for gauge group Gf which is twisted

by a constant curvature line bundle associated to the U(1) subgroup of G generated by f .

In general, we denote byMf the moduli space of Yang-Mills connections whose curva-

ture lies in the conjugacy class of f . We have already discussed localization on the moduli

space M0 of flat connections, for which G0 = G. At the opposite extreme, f breaks G to

a maximal torus Gf commuting with f . We refer to such a Yang-Mills solution as “maxi-

mally reducible,” and one basic goal in this section is to obtain an explicit formula, as in
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(4.4.17), for the contribution to the path integral from the corresponding moduli spaceMf

of maximally reducible Yang-Mills solutions. Of course, we could also consider the local

contributions from Yang-Mills solutions between the extremes of the flat and maximally

reducible connections, but this further generalization is not necessary for our discussion of

Chern-Simons theory.

Because f is constant, the adjoint action of f determines a bundle map from ad(P ) to

itself, and a good idea is to decompose ad(P ) under this action. With our conventions, f

is anti-hermitian, so following [79] we introduce a hermitian operator Λ,

Λ = i [f, · ] , (4.4.35)

which acts on a section φ of ad(P ) as Λφ = i [f, φ].

When we consider the action of Λ, it is natural to work with complex, as opposed to

real, quantities. So we now consider in place of the real bundle ad(P ) the complex bundle

adC(P ) = ad(P ) ⊗ C. When we complexify ad(P ), the (1, 0) and (0, 1) parts of an ad(P )-

valued connection become independent complex variables. After picking a local complex

coordinate z on Σ, these can be written locally as Az and Az.

Under the action of Λ, the bundle adC(P ) decomposes into a direct sum of subbundles,

each associated to a distinct eigenvalue of Λ. For our purposes, we need only consider the

decomposition of adC(P ) into the positive, zero, and negative eigenspaces of Λ,

adC(P ) = ad+(P )⊕ ad0(P )⊕ ad−(P ) , (4.4.36)

where ad±(P ) and ad0(P ) denote respectively the subbundles of adC(P ) associated to these

eigenspaces. The eigenspace decomposition of adC(P ) in (4.4.36) will play an important

role shortly.

Example: G = SU(2)

As a simple example of these ideas, we consider the higher Yang-Mills critical points

when the gauge group G is SU(2). In this case, all non-flat Yang-Mills solutions are

maximally reducible, since any f 6= 0 reduces the structure group to a maximal torus

U(1) ⊂ SU(2).
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The rank-one case G = SU(2) of Yang-Mills theory is also the essential case to un-

derstand for our application to Chern-Simons gauge theory, with gauge group of arbitrary

rank. As we explain in Section 5, near a flat Chern-Simons connection on the three-manifold

M , the local geometry in the symplectic manifold A of (4.3.25) can be modeled on the ge-

ometry of infinitely-many copies of the geometry near a higher SU(2) Yang-Mills critical

point. This correspondence arises heuristically by identifying the background Yang-Mills

curvature f , which generates the torus U(1) ⊂ SU(2), with the geometric curvature of M

regarded as a principal U(1)-bundle over the surface Σ.

In the case of Yang-Mills theory, since f reduces the structure group of the SU(2)

bundle to U(1), the SU(2) bundle on Σ splits as a direct sum of line bundles. As f itself is

associated to a constant curvature line bundle on Σ, up to conjugacy f takes the form

f = 2πi

(
n 0

0 −n

)
, (4.4.37)

for some integer n 6= 0. Because the Weyl group of SU(2) acts on f by sending n → −n,

without loss we can assume that n > 0.

Introducing the standard generators of su(2) regarded as a complex Lie algebra,

σz =

(
i 0

0 −i

)
, σ+ =

( 0 1

0 0

)
, σ− =

( 0 0

1 0

)
, (4.4.38)

we see that Λ acts on su(2), and hence on adC(P ), with eigenvalues 0 and ±4πn. Thus, in

this case the general decomposition of adC(P ) in (4.4.36) takes the simple form

adC(P ) = L−1(−2n)⊕O ⊕ L(2n) . (4.4.39)

Here O is the trivial line bundle on Σ, L is an arbitrary flat line bundle on Σ, and we use

the standard notation L(2n) = L ⊗O(2n), where O(2n) is the 2n-th tensor power of a fixed

line bundle O(1) of degree one on Σ.

Thus, for each n > 0, the choice of a non-flat connection solving the Yang-Mills equation

on Σ is determined by the choice of the flat line bundle L on Σ. Such a line bundle is specified

by the U(1) holonomy of its connection, and hence the moduli space of flat line bundles

on Σ is parametrized by a complex torus, the Jacobian of Σ. If Σ has genus g, with 2g
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periods, then the Jacobian has complex dimension g. Thus, for fixed f 6= 0, the moduli

space Mf of higher critical points of SU(2) Yang-Mills theory on Σ is simply a complex

torus of dimension g.

More generally, if we consider an arbitrary gauge group G of rank r such that f breaks

G to a maximal torus, then the corresponding moduli space Mf is again a complex torus

of dimension g r which describes the holonomy in U(1)r.

The Partition Function of SU(2) Yang-Mills Theory

One of our basic goals in the rest of this section is to compute directly the contributions

from higher critical points to the partition function Z of SU(2) Yang-Mills theory. Of course,

Z can be computed exactly [100], and we can readily extract from the known expression

for Z a formula for the local contributions from the higher critical points. So before we

delve into our path integral computation, we present now the answer which we expect to

reproduce and we preview its most interesting features.

In general, if the gauge group G is simply-connected, then the partition function of Yang-

Mills theory on a unit area Riemann surface of genus g is given by a sum over representations

R of G of the form

Z(ε) = (Vol(G))2g−2
∑
R

1
dim(R)2g−2

exp
(
−1

2
ε C̃2 (R)

)
. (4.4.40)

Here C̃2(R) is a renormalized version of the quadratic Casimir associated to the represen-

tation R, and the volume Vol(G) of G is determined in our conventions by the invariant

form −Tr on the Lie algebra g. We recall that for G = SU(r + 1), “Tr” denotes the trace

in the fundamental representation, and the renormalized quadratic Casimir C̃2(R) differs

from the usual quadratic Casimir solely by an additive constant.

Finally, because of the possibility of weighting the Yang-Mills path integral on Σ by

a purely topological factor exp (c (2g − 2)) for an arbitrary constant c, we have fixed the

prefactor in (4.4.40) so that Z(0) agrees, at least up to a sign which we will not try to fix,

with the symplectic volume of the moduli space M0 of flat connections on Σ as computed

in [101] from the theory of Reidemeister-Ray-Singer torsion. Our choice of c differs from
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the choice in [101] simply because the symplectic form Ω in (4.2.3) which we use here is

related to the integral symplectic form Ω′ used in [101] by Ω = 4π2 Ω′.

We now evaluate (4.4.40) in the case G = SU(2). In this case, each representation is

labelled by its dimension, so we denote by Rn the SU(2) representation of dimension n.

The renormalized quadratic Casimir of Rn, which is just the usual quadratic Casimir with

an additive constant, is then

C̃2(Rn) =
1
2
n2 . (4.4.41)

Finally, using the metric on SU(2) determined by −Tr, the volume of SU(2) is given by

Vol(SU(2)) = 25/2π2. This fact follows immediately if we recall that the volume of an S3

of unit radius is 2π2. However, in our metric on SU(2), the U(1) subgroup associated to

the normalized generator Tz = 1√
2
σz, as in (4.4.38), has length 2π

√
2, so SU(2) has radius

r =
√

2 in our metric. Thus, the partition function (4.4.40) of SU(2) Yang-Mills theory on

Σ becomes

Z(ε) =
(
32π4

)g−1
∞∑
n=1

1
n2g−2

exp

(
−ε n

2

4

)
. (4.4.42)

In order to extract the contributions of the higher critical points from (4.4.42), we first

differentiate Z(ε) with respect to ε to cancel the prefactor n−2(g−1) in the summand of

(4.4.42),

∂g−1Z(ε)
∂εg−1

=
(
−8π4

)g−1
∞∑
n=1

exp

(
−ε n

2

4

)
=

1
2

(
−8π4

)g−1
(
−1 +

∑
n∈Z

exp

(
−ε n

2

4

))
.

(4.4.43)

To obtain a manifestly convergent expression in the weak coupling regime of small ε, we

apply Poisson summation to the last term of (4.4.43) to obtain

∂g−1Z(ε)
∂εg−1

=
1
2

(
−8π4

)g−1
(
−1 +

√
4π
ε

∑
n∈Z

exp

(
−(2πn)2

ε

))
. (4.4.44)

Finally, to identify the contribution in (4.4.44) from higher Yang-Mills critical points,

we observe that at a higher critical point of degree n, the classical Yang-Mills action Sn

determined by f in (4.4.37) is given by Sn = (2πn)2/ε (assuming Σ has unit area). The

semiclassical contribution to Z from such a critical point is weighted by the usual exponential
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factor exp (−Sn), which we see directly in the last term of (4.4.44). Thus, the locusMn of

higher critical points of degree n contributes to the sum in (4.4.44) as

∂g−1Z(ε)
∂εg−1

∣∣∣∣∣
Mn

=
(
−8π4

)g−1
√

4π
ε

exp

(
−(2πn)2

ε

)
. (4.4.45)

We note that a trivial factor of two in (4.4.45) arises from the action of the Weyl group,

since the two terms in (4.4.44) for both ±n arise from the higher critical points of degree n.

This expression (4.4.45) is what we compute using localization, and it has a number of

interesting features. Most fundamentally, we see that the natural quantity to consider is

not Z but its derivative ∂g−1Z(ε)/∂εg−1. In discussing the higher critical points, we lose

nothing by considering this derivative, since any terms in Z that are polynomial in ε, and

hence are annihilated by the derivative, arise as contributions from the moduli space M0

of flat connections. Moreover, although the formula in (4.4.45) is expressed in terms of

elementary functions, its integral with respect to ε cannot be expressed so simply.

We also see from (4.4.45) that the local contributions from the higher critical points to

∂g−1Z(ε)/∂εg−1 are essentially independent of g and n, apart from a numerical prefactor

and the usual exponential dependence on the classical action Sn.

Finally, we see that the only dependence on ε in (4.4.45) besides the classical dependence

on Sn is through the prefactor proportional to ε−1/2. As we will see, this prefactor reflects

the geometric fact that the gauge group does not act freely on the locus of non-flat Yang-

Mills solutions. To explain this fact, we note that for any Yang-Mills solution the section

f of ad(P ) satisfies dAf = 0, so that f 6= 0 generates a U(1) subgroup of the gauge group

G(P ) that fixes the corresponding point of A(P ).

This geometric observation about higher critical points of Yang-Mills theory is actually a

general property of any higher critical points of the abstract symplectic model with quadratic

action S = 1
2(µ, µ). Namely, the abstract Hamiltonian group H can never act freely at a

higher critical point of S.

By definition, such a higher critical point x0 in the symplectic manifoldX is described by

the conditions dS = (µ, dµ) = 0 with µ 6= 0 at x0. To show that H does not act freely at x0,

we now exhibit a Hamiltonian vector field which vanishes at x0. We first recall the quantity
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V = Ω−1dµ which we introduced in Section 4.1. Geometrically V , or V m
a = (Ω−1)mn∂nµa in

components, is a linear map from the Lie algebra h of H to the space of Hamiltonian vector

fields on X. From (4.4.13) and (4.4.14), we see that V trivially satisfies (µ, V ) = µaV m
a = 0

at x0. But since µ(x0) is non-zero, we can consider on X the Hamiltonian vector field

generated by µ(x0) itself. This vector field is given by (µ(x0) , V ) = µ(x0)a V m
a , and by our

observations above it vanishes at x0.

The Hodge Decomposition at a Higher Yang-Mills Critical Point

In many respects, localization at an irreducible, flat Yang-Mills solution is precisely

opposite to localization at a maximally reducible, non-flat Yang-Mills solution. In both

cases, the local geometry in A(P ) near these critical points can be described as the total

space N of an equivariant bundle with infinite-dimensional fiber F over a finite-dimensional

moduli space Mf ,

F −→ N
pr−→Mf . (4.4.46)

However, in the case of a flat connection the interesting contributions to the integral over N

arise from the moduli space M0 itself, and the integral over the infinite-dimensional fiber

F = T ∗H contributes a trivial factor of 1. In contrast, for a maximally reducible Yang-Mills

solution, the integral over Mf is essentially trivial, and the interesting contributions arise

from the fiber F . Therefore, the most important aspect of our discussion of non-abelian

localization at higher critical points in Yang-Mills theory is to identify the correct symplectic

model for F , analogous to the identification F = T ∗H used previously.

At this point, we can immediately see that a local symplectic model for F based on

T ∗H does not correctly describe the geometry nearMf if f 6= 0. First, as we have already

observed, the gauge group does not act freely at points on Mf , as we used in identifying

F with T ∗H when we considered the geometry near M0. Second, if φ and ψ are any two

sections of ad(P ) representing tangent vectors to G(P ), then the computation in (4.4.23)

shows that the symplectic form Ω at a point onMf satisfies

Ω(dAφ, dAψ) = −
∫
Σ

Tr(dAφ∧dAψ) =
∫
Σ

Tr(φd2
Aψ) =

∫
Σ

Tr (φ [FA, ψ]) . (4.4.47)
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Here we just use the fact that d2
A = FA is nonzero, and we observe that the last expression

in (4.4.47) need not vanish for suitable φ and ψ. Thus, the orbit of G(P ) through any point

on Mf is no longer an isotropic submanifold of A(P ), as would be required to model this

orbit on H embedded in the cotangent bundle T ∗H with its canonical symplectic structure.

Now, the fact that F is not modelled on T ∗H at a higher critical point of Yang-Mills

theory must be reflected in a breakdown of the naive Hodge decomposition for the corre-

sponding covariant derivative dA, so that

Γ(Σ,Ω1
Σ ⊗ ad(P )) 6= H1 ⊕ Im(dA)⊕ Im(d†A) . (4.4.48)

Thus, a natural strategy to determine the correct symplectic model for F is just to consider

how the Hodge decomposition is modified when A is a non-flat solution of the Yang-Mills

equation.

In expanding around a flat connection, the tangent space to the moduli space M0 of

flat connections is given by H1
dA

(Σ, ad(P )). For a non-flat Yang-Mills connection, dA only

squares to zero when restricted to ad0(P ), the subspace of ad(P ) that commutes with f .

However, any infinitesimal deformation of a Yang-Mills solution must preserve f up to a

gauge transformation, since the eigenvalues of f are quantized to take integral values. As

a result, tangent vectors to Mf arise from one-forms valued in the bundle ad0(P ). More

globally, these sections of Ω1
Σ⊗ad0(P ) represent deformations of the Yang-Mills solution by

flat connections valued in the subgroup of G that commutes with f . So the tangent space

toMf is H1 = H1
dA

(Σ, ad0(P )). By standard Hodge theory, this can also be defined as

H1 = H1
∂
(Σ, ad0(P )). (4.4.49)

Similarly, the Lie algebra of the unbroken subgroup Gf , which leaves fixed the given Yang-

Mills connection, is

H0 = H0
dA

(Σ, ad0(P )) = H0
∂
(Σ, ad0(P )). (4.4.50)

What we have said so far is a fairly direct generalization of the usual statements in the

flat case. However, if A is a non-flat Yang-Mills solution, then the usual Hodge theory needs
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to be modified from the flat case in two essential ways. First, once we get out of ad0(P ),

the image of dA and the image of d†A are no longer transverse. They have a nonzero,

finite-dimensional intersection that we will call E0:

Im(dA) ∩ Im(d†A) = E0. (4.4.51)

Second, the image of dA plus the image of d†A plus the tangent space H1 to the moduli

space no longer generates TP = Γ(Σ,Ω1
Σ ⊗ ad(P )). The quotient TP /(Im(dA) ⊕ Im(d†A))

is another finite-dimensional vector space E1. The bundles E0 and E1 both have natural

complex structures. They will turn out to be

E0 = H0
∂
(Σ, ad+(P )) ,

E1 = H1
∂
(Σ, ad+(P ))⊕H1

∂
(Σ, ad−(P )).

(4.4.52)

We will often regard these complex vector spaces as real vector spaces of twice the dimension.

Thus, the correct generalization of (4.4.48) is informally

Γ(Σ,Ω1
Σ ⊗ ad(P )) = H1 ⊕ Im(dA)⊕ Im(d†A)	 E0 ⊕ E1 . (4.4.53)

As indicated by our use of “	”, the expression in (4.4.53) is to be interpreted somewhat

in the sense of K-theory. Since Im(dA) and Im(d†A) have a non-trivial intersection E0, this

extra copy of E0 must be removed to get the right description of Γ(Σ,Ω1
Σ ⊗ ad(P )).

The definition of the Dolbeault cohomology groups in (4.4.52) requires a complex struc-

ture on Σ. Abstractly, this complex structure is induced from the duality operator ? on Σ.

Because ?2 = −1 when ? acts on any one-form on Σ, we can define the bundles Ω0,1 and

Ω1,0 of complex one-forms of either type on Σ by the respective +i and −i eigenspaces of

?. This decomposition by type determines the complex structure and hence the Dolbeault

∂ operator appearing in (4.4.52).

However, for the following we find it useful to give an explicit formula for the operator

∂, acting on the bundle adC(P ), in terms of ? and the covariant derivative dA. We define
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the operators ∂(p) acting on complex p-forms on Σ taking values in adC(P ) by

∂(0) = dA − i ?dA ,

∂(1) = −i dA + dA? ,

∂(2) = 0 .

(4.4.54)

Again because ?2 = −1 when acting on one-forms on Σ, one can easily check the essential

requirement that ∂(1) ◦ ∂(0) = 0. From the expression for ∂(1) in (4.4.54), we also see that

∂(1) annihilates all one-forms in the +i eigenspace of ?, which we have identified with the

space of one-forms of type (0, 1).

The subbundle ad0(P ) has a de Rham cohomology (with respect to dA) that we have al-

ready encountered. The subbundles ad+(P ) and ad−(P ) do not have de Rham cohomology,

but they have Dolbeault cohomology groups

H0
∂
(Σ, ad+(P )) , H0

∂
(Σ, ad−(P )) , H1

∂
(Σ, ad+(P )) , H1

∂
(Σ, ad−(P )) (4.4.55)

that we should expect will enter somehow. Of these cohomology groups, H0
∂
(Σ, ad−(P )) is

zero by the Kodaira vanishing theorem [79], which is the reason that E0 in (4.4.52) only

involves ad+(P ). (We also note parenthetically that H1
∂
(Σ, ad+(P )) is similarly zero for

critical points associated to line bundles of sufficiently high degree.) So we are left to show

that E0 corresponds to the finite-dimensional intersection of Im(dA) and Im(d†A) and E1

describes the tangent vectors to A(P ) not contained in Im(dA)⊕ Im(d†A)⊕H1.

We identify E0 as described in (4.4.51) immediately from our formula for ∂(0) in (4.4.54).

It is convenient to write ad(P ) = ad0(P )⊕ad⊥(P ), with ad⊥(P ) (whose complexification is

ad+(P )⊕ad−(P )) the orthocomplement of ad0(P ). By standard Hodge theory, if we restrict

to ad0(P ), Im(dA)∩Im(d†A) = 0. So the nontrivial intersection of Im(dA) and Im(d†A) occurs

in ad⊥(P ). Such an intersection arises if there is φ ∈ Γ(Σ, ad⊥(P )) and Ψ ∈ Ω2(Σ, ad⊥(P ))

such that dAφ = d†AΨ. If so, let ψ = ?Ψ, whereupon, since d†A = −?dA? and ?2 = −1,

we have dAφ = −?dAψ. So if ϕ = φ + iψ, we have ∂(0)ϕ = (dA − i?dA)ϕ = 0. Hence

ϕ ∈ H0
∂
(Σ, ad+(P )⊕ ad−(P )). But by Kodaira vanishing, ad−(P ) does not contribute, and

ϕ ∈ H0
∂
(Σ, ad+(P )). This argument can also be run backwards, to map H0

∂
(Σ, ad+(P )) to
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E0. This explains the claim that E0 = H0
∂
(Σ, ad+(P )).

Finally, we can identify E1, the subspace of Γ(Σ, ad⊥(P )) that is orthogonal to the image

of dA and the image of d†A. We begin with the tautological observation that the orthocom-

plement of the image of dA is precisely the kernel of d†A, and similarly the orthocomplement

of the image of d†A is precisely the the kernel of dA. Thus, E1, the orthocomplement to

the image of dA and d†A, consists of forms annihilated by both d†A and dA. (We note that

although d2
A and d†A

2 are nonzero, they annihilate Ω1(Σ, ad⊥(P )) for dimensional reasons,

so dA and d†A can have a kernel.) Given the formula ∂(1) = −idA + dA?, it follows that ∂(1)

annihilates E1. Moreover, ∂†(1), the ∂† operator acting on one-forms, is ∂†(1) = d†A − id
†
A?,

and so annihilates E1. This reasoning can also be read backwards to show that a form

annihilated by ∂(1) and its adjoint ∂†(1) is annihilated by dA and d†A and hence is contained

in E1. By Hodge theory, the joint kernel of ∂ and ∂
† is the same as the cohomology of ∂.

So finally, E1 = H1
∂
(Σ, ad+(P )⊕ ad−(P )), as we have claimed.

A New Symplectic Model For Localization

The Hodge decomposition (4.4.53) implicitly describes the local symplectic model to

use at a higher Yang-Mills critical point. We now present this model and compute via

localization the canonical symplectic integral in this case.

Abstractly, our local model for F now differs in two ways from the model based on the

cotangent bundle T ∗H. First, H no longer acts freely at the given critical point. We let

H0 ⊂ H denote the subgroup of H which fixes the critical point. Thus, the orbit of H

through the critical point can be identified with H/H0. In the case of Yang-Mills theory,

the vector space H0 of harmonic sections of ad0(P ) is abstractly identified with the Lie

algebra h0 of H0.

Second, because of the appearance of E0 and E1 in the Hodge decomposition in (4.4.53),

the naive model based on the cotangent bundle of the orbit H/H0 must be modified in the

following way. If we simply wanted to discuss the cotangent bundle of the orbit H/H0, then

we could again pass to a basis of right-invariant forms and use the invariant metric (·, ·) on



173

h to present T ∗(H/H0) as a homogeneous bundle

T ∗(H/H0) ∼= H ×H0 (h	 h0) . (4.4.56)

Here h 	 h0 denotes the orthogonal complement to h0 in h, and “×H0” indicates that we

identify points (g, γ) in the product H × (h	 h0) under the following action of H0,

h · (g, γ) =
(
hg , hγh−1

)
, h ∈ H0 . (4.4.57)

To incorporate the appearance of E0 and E1 in (4.4.53), we now introduce abstractly a

subspace E0 of the Lie algebra h which has a trivial intersection with h0 and is preserved

under the adjoint action ofH0, so that infinitesimally [h0, E0] ⊆ E0. This condition certainly

holds in Yang-Mills theory for the vector space E0. Similarly, we introduce another vector

space E1 on which H0 acts in some representation. We assume that, like the subspace E0,

the representation E1 admits a metric invariant under the action of H0.

We now describe our model for F as a homogeneous bundle over the orbit H/H0 which

generalizes (4.4.56). To describe this bundle, we need only specify the fiber of F over

the identity coset of H/H0 and the action of H0 on the fiber. Thus, as in the modified

Hodge decomposition (4.4.53), we subtract E0 from the cotangent fiber of H/H0 in (4.4.56),

meaning that we take the orthogonal complement to E0 in h 	 h0, and we also add E1 to

the cotangent fiber of H/H0. So the resulting fiber of F over the identity is given by

h	 h0 	 E0 ⊕ E1. By our assumptions on E0 and E1, this vector space transforms as a

representation of H0.

In summary, the local model for F is given abstractly by the following homogeneous

bundle over H/H0,

F = H ×H0 (h	 h0 	 E0 ⊕ E1) . (4.4.58)

We now use γ to denote an element of the orthogonal complement h⊥ to h0 ⊕ E0 in h,

γ ∈ h⊥ = h	 h0 	 E0 , (4.4.59)

and we use v to denote a vector in E1. So in (4.4.58), we identify points (g, γ, v) in the
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product H × (h⊥ ⊕ E1) under the following action of H0,

h · (g, γ, v) =
(
hg , hγh−1 , h · v

)
, h ∈ H0 . (4.4.60)

To specify completely our local model, we must also discuss the symplectic structure

and the Hamiltonian H-action on F . We will be somewhat brief, since we are just applying

standard techniques to construct symplectic bundles, as explained for instance in Ch. 35–41

of [102].

In order to construct a symplectic structure on F , we must make some additional as-

sumptions about the representations E0 and E1 of H0. We first introduce an element γ0 of

h0. Abstractly, γ0 corresponds to the value of the moment map at the given critical point,

and in the Yang-Mills context γ0 is identified with f .

As in Yang-Mills theory, we assume that the hermitian operator Λ,

Λ = i [γ0, · ] , (4.4.61)

annihilates h0 and acts on the vector spaces E0 and E1 with strictly non-zero eigenvalues.

The first assumption implies that γ0 is central in h0 and is invariant under the adjoint action

of H0,

H0 γ0 H
−1
0 = γ0 . (4.4.62)

Because the action of γ0 preserves the invariant metrics on E0 and E1, the action of

γ0 is represented by a real, anti-symmetric matrix. By our second assumption above, this

matrix is non-degenerate. Consequently, the decomposition of E0, and similarly E1, into

the positive and negative eigenspaces of Λ defines a complex structure which is invariant

under the action of H0 and for which the invariant metric (·, ·) is hermitian.

Having introduced γ0, we now describe the symplectic structure on F . As in Section

4.2, we let θ be the canonical right-invariant one-form on H taking values in h,

θ = dgg−1 . (4.4.63)

We recall that in the case of the cotangent bundle T ∗H or T ∗(H/H0), we can immediately

describe the sympletic structure with the manifestly closed and non-degenerate two-form
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Ω0,

Ω0 = d(γ, θ) , (4.4.64)

which reduces on the orbit H/H0, where γ = 0, to the canonical form (dγ, θ).

Similarly, when we consider the homogeneous bundle F in (4.4.58), Ω0 in (4.4.64) still

descends to a closed two-form on F . However, because γ now takes values in h⊥ as in

(4.4.59), the restriction of Ω0 to the orbit H/H0 is degenerate on the subspace E0 of the

tangent space to the orbit. Thus, if we ignore the vector space E1 for the moment, then

to construct a symplectic structure on the homogeneous bundle with fiber h⊥ over H/H0

we must supplement the canonical two-form Ω0 with an additional two-form which is non-

degenerate on E0.

What other two-form should we consider? For motivation, while keeping E1 = 0, let us

consider the opposite case from the cotangent bundle. As the cotangent bundle has E0 = 0,

the other extreme is for E0 to be all of h	h0, so that h	h0	E0 = 0 and F = H/H0. Since

we have postulated that γ0 acts non-degenerately on E0, while commuting with h0, it follows

in this case that h0 is precisely the subalgebra of h that commutes with γ0. Therefore, H/H0

is precisely the orbit of γ0 in the Lie algebra of H. Such an orbit is called a coadjoint orbit

(for compact Lie groups the difference between the adjoint representation and its dual is

not important here) and has a natural symplectic structure, namely

Ω1 = d(γ0, θ) =
1
2

(θ, [γ0, θ]) , (4.4.65)

where we observe that dθ = θ∧θ = 1
2 [θ, θ] in deducing the second equality of (4.4.65).

Because γ0 is invariant under the adjoint action of H0 in (4.4.62), Ω1 is also invariant under

the action of H0 in (4.4.60) and descends to a manifestly closed and nondegenerate two-

form on H/H0. Indeed, coadjoint orbits are the basic examples of homogeneous symplectic

manifolds.

In fact, we have already seen the coadjoint form Ω1 arise in the context of Yang-Mills

theory. We recall from (4.4.47) that the restriction of the Yang-Mills symplectic form Ω on

the affine space A(P ) to the orbit of G(P ) through a non-flat Yang-Mills solution is given
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by

Ω(dAφ, dAψ) =
∫
Σ

Tr (φ [FA, ψ]) . (4.4.66)

Upon identifying the abstract element γ0 with f , we see that Ω1 in (4.4.65) precisely rep-

resents (4.4.66).

The general case, still with E1 = 0, is a mixture of the cotangent bundle and the

coadjoint orbit. We thus naturally add the two two-forms that arise in those two cases and

consider the sum

Ω0 + Ω1 = d(γ + γ0, θ) , (4.4.67)

which restricts on the orbit H/H0, where γ = 0, to the simple expression

(Ω0 + Ω1) |H/H0
= (dγ, θ) +

1
2

(θ, [γ0, θ]) . (4.4.68)

We see immediately from (4.4.68) that Ω0+Ω1 defines a symplectic form on a neighborhood

of H/H0 in the homogeneous bundle with fiber h⊥. For instance, since the expression in

(4.4.67) is manifestly invariant under the right action of H on H/H0, we need only consider

(4.4.68) as restricted to the tangent space (h	h0)⊕h⊥ of the bundle at the identity coset on

H/H0. The top power of (4.4.68) on this tangent space is then manifestly non-zero, since

all tangent vectors in h⊥ are paired by Ω0 and the remaining tangent vectors to the orbit

in E0 are paired by Ω1.

Finally, we need to include E1. By assumption, E1 has a metric and a complex structure

invariant under the action of H0, so that E1 has an associated symplectic form Ω̃ invariant

under H0.

In order to pass from the symplectic form Ω̃ on E1 to a closed two-form on F which

is non-degenerate on the E1 fiber at the identity coset of H/H0 and compatible with the

bundle structure of F , we must further suppose that H0 acts on E1 in a Hamiltonian fashion

with moment map µ̃. We can always choose µ̃ to vanish at the origin of E1. We also observe

that since the action of H0 on E1 is linear, of the form δv = ψ · v for v in E1 and ψ in h0,

the moment map µ̃ depends quadratically on v and satisfies dµ̃ = 0 at the origin of E1.
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With these observations in hand, we consider the two-form Ω2 defined below,

Ω2 = Ω̃ + d〈µ̃ , θ〉 . (4.4.69)

This two-form is manifestly closed, as Ω̃ is closed. It also is clearly invariant under the

action of H0 in (4.4.60).

Finally, to explain the appearance of the second term in (4.4.69), we note that the action

of h0 on F can be described as follows. For ψ ∈ h0, the corresponding vector field V (ψ) on

F acts by

δg = ψg , δγ = [ψ, γ] , δv = ψ · v. (4.4.70)

In order that Ω2 descend under the quotient by H0 which defines the bundle, we require

that Ω2 be invariant under H0 (as we have already seen) and that Ω2 be annihilated by

contraction with V (ψ). By the defining moment map relation, the contraction of V (ψ) with

Ω̃ is ιV (ψ)Ω̃ = d〈µ̃, ψ〉. As for the second term in (4.4.69), the one-form 〈µ̃, θ〉 is invariant

under the action of H0 and hence annihilated by the Lie derivative £V (ψ) = {d, ιV (ψ)}. Thus

we see that ιV (ψ) d〈µ̃, θ〉 = −d ιV (ψ)〈µ̃, θ〉 = −d〈µ̃, ψ〉, which cancels the contraction of ιV (ψ)

with Ω̃.

Because µ̃ = dµ̃ = 0 at the origin of E1, the restriction of Ω2 to the orbit H/H0 in F is

simply the symplectic form Ω̃ on E1. Thus, the sum of Ω0, Ω1, and Ω2 defines a symplectic

form Ω on a neighborhood of the orbit H/H0 in F ,

Ω = Ω0 + Ω1 + Ω2 ,

= d (γ + γ0 , θ) + d〈µ̃ , θ〉+ Ω̃ .
(4.4.71)

Having placed a symplectic structure on F , we are left to consider the action of H on

F . As in the model based on the cotangent bundle, we assume that H acts from the right

on the orbit H/H0 in F , so that

h · (g, γ, v) = (gh−1, γ, v) , h ∈ H . (4.4.72)

The corresponding element φ in h generates the vector field

δg = −gφ , δγ = 0 , δv = 0 . (4.4.73)
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Since the one-form θ appearing in Ω is right-invariant, the symplectic form Ω is manifestly

invariant under H.

Finally, using (4.4.71) and (4.4.73), one can easily check that the action of H on F is

Hamiltonian with moment map µ given by

〈µ, φ〉 =
(
γ + γ0, gφg

−1
)

+
〈
µ̃, gφg−1

〉
. (4.4.74)

In particular, we see that the value of µ at the point corresponding to the identity coset on

the orbit H/H0 is just the dual of γ0 in h∗, as we have claimed.

Computing the Symplectic Integral over F

For our applications to both Yang-Mills theory and Chern-Simons theory, we now com-

pute the canonical symplectic integral over F ,

Z(ε) =
1

Vol(H)

∫
h×F

[
dφ

2π

]
exp

[
Ω− i 〈µ, φ〉 − ε

2
(φ, φ) + tDλ

]
. (4.4.75)

In this expression, λ is the canonical one-form defined as in (4.4.12) by λ = J dS, where

S = 1
2(µ, µ) and J is a compatible almost-complex structure, and t is a non-zero parameter.

Before we delve into computations, let us make a few remarks about how this symplectic

integral over F is to be interpreted. We start by considering the canonical symplectic

integral (4.4.8) of the same form as (4.4.75) but defined as an integral over a compact

symplectic manifold X instead of F . Because X is compact, this integral is convergent for

arbitrary t, including t = 0, and does not depend on either t or λ.

By our general analysis of Section 4.1, in the limit t → ∞ and for λ of the canonical

form, the integral over X localizes on the critical set of S and reduces to a finite sum

of contributions from the components of this set. Although the global integral over X is

perfectly defined, independent of t and λ, the contributions from the critical locus of S are

only defined via localization, with t 6= 0 and λ of the canonical form. For instance, at a

higher critical point of S, for which we model the normal symplectic geometry on F , the

unstable modes of S make the integral over the non-compact fibers of F ill-defined when

t = 0. Thus, the symplectic integral Z(ε) over F as in (4.4.75) represents a definition of the

local contribution from an unstable critical point of S in X.
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Although we use the canonical one-form λ = J dS to define via localization the integral

over F in (4.4.75), we are free to compute Z(ε) using any other invariant form λ′ which is

homotopic to λ on F . In particular, though λ is defined globally on X, λ′ need only be

defined locally on F .

The reason that we might want to compute Z(ε) using some alternative form λ′ instead

of the canonical one-form λ is just that generically the integral over F defined by λ is not

Gaussian even in the limit t → ∞ and cannot be easily evaluated in closed form. See the

appendix of [18] for a simple example of this behavior. However, by making a convenient

choice for λ′, we can greatly simplify our computation and essentially reduce it to the

evaluation of Gaussian integrals.

So in order to compute Z(ε) in (4.4.75), we first make a convenient choice for λ′. Since

the motivation for our choice is fundamentally to simplify the evaluation of Z(ε), we next

evaluate (4.4.75) using λ′ in place of λ. Finally, in Appendix A, we perform the analysis

required to show that Z(ε) as defined using the canonical one-form λ can be equivalently

evaluated using λ′.

To describe our choice for λ′, we introduce a projection Πh0 onto h0 and a projection ΠE0

onto E0 in the Lie algebra h of H. We define these projections using the invariant metric

on h, so that they are invariant under the adjoint action of H0 on h. We then introduce the

quantities

θh0 = Πh0(θ) , (gφg−1)h0 = Πh0(gφg
−1) ,

θE0 = ΠE0(θ) , (gφg−1)E0 = ΠE0(gφg
−1) .

(4.4.76)

We now define λ′ as

λ′ = (γ , θ) − i
(
θE0 , gφg

−1
)
+ i
((
gφg−1

)
h0

· v , dv
)
− i
((
gφg−1

)
h0

· v , θh0 · v
)
. (4.4.77)

The first term in (4.4.77) has the same form as the canonical one-form which we used

for localization on T ∗H. However, we recall that now γ takes values not in h but in

h⊥ = h	 h0 	 E0. As before, this first term has degree one under the grading on equivariant

cohomology. The other three terms are associated to the new vector spaces E0 and E1 that
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appear at a higher critical point. Since φ carries charge +2 under the grading on equivariant

cohomology, these terms are all of degree three.

The most basic requirement that λ′ must satisfy is that it descends to an invariant form

on F under the quotient by H0 which defines the homogeneous bundle. So we first observe

that λ′ is manifestly invariant under the action of H0 in (4.4.60). Furthermore, if V (ψ)

denotes the vector field on the product H × (h⊥ ⊕ E1) generated by ψ in h0 as in (4.4.70),

then the first two terms in λ′ are trivially annihilated upon contraction with V (ψ) since

both γ and θE0 take values in the orthocomplement to h0. Because of the identity

ιV (ψ) dv = ψ · v =
(
ιV (ψ)θh0

)
· v , (4.4.78)

the last two terms in λ′ are also annihilated upon contraction with V (ψ). So λ′ descends

to a well-defined form on F .

Finally, to check that λ′ is invariant under the action of H on F in (4.4.72), we simply

note that φ transforms under the adjoint action of H so that the quantity gφg−1 is invariant.

Since θ is also invariant under the action of H, λ′ is manifestly invariant.

To motivate our definition (4.4.77), we now use λ′ to compute the symplectic integral

over F . We first compute Dλ′. As we saw when we considered localization on T ∗H, the final

expression for Dλ′ will only involve φ in the invariant combination gφg−1. Thus, even before

presenting our formula for Dλ′, we make the change of variables from φ to gφg−1 in the

symplectic integral in order to simplify slightly our result. If we recall that D = d+ i ιV (φ)

and we use the formula in (4.4.73) for V (φ), we find by a straightforward computation that

Dλ′ = (dγ, θ) − i (γ, φ) − i (θE0 , [φh0 , θE0 ]) − (φE0 , φE0) +

+ i (φh0 · dv, dv) − (φh0 · v, φh0 · v) + X .
(4.4.79)

Here X consists of extra terms in Dλ′ that will not actually contribute to the symplectic

integral in the limit t→∞. Explicitly,

X =
(
γ,

1
2
[θ, θ]

)
− i

(
1
2

[
θ⊥, θ⊥

]
, φE0

)
− i

([
θ⊥, θE0

]
, φ⊥

)
− i

(
1
2

[θE0 , θE0 ] , φ
⊥
)
−

− i

(
φh0 · v,

1
2

[θ, θ]h0
· v
)

mod θh0 .

(4.4.80)
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(Terms involving θh0 in Dλ′, some of which are omitted here, actually cancel since Dλ′ is

a pullback from F .) We use the fact that dθ = 1
2 [θ, θ] to simplify somewhat the form of X ,

and we use the natural notation θ⊥ and φ⊥ to denote the projections of θ and φ onto h⊥.

In (4.4.79), the first two terms arise from the action of D on the first term in λ′, the

next two arise from the action of D on the second term in λ′, and the final two terms arise

from the action of D on the last two terms in λ′. We remark that our choice of the i’s

that appear in the definition (4.4.77) of λ′ was made to ensure that the quadratic terms in

(4.4.79) involving φE0 and φh0 · v are both negative-definite.

We now consider the canonical symplectic integral in (4.4.75) with λ′ in place of λ and

in the limit t → ∞. This symplectic integral is an integral over the product h × F . We

can perform this integral over h × F in two steps. First, we hold the projection φh0 of

the variable φ in h0 ⊂ h fixed, and we perform the integral over the remaining variables in

F̃ = (h	 h0)× F . This integral produces a measure on h0, which we then use to perform

the remaining integral over h0. The utility of this way of performing the symplectic integral

is that, with our ansatz for λ′, we will see that the first integral over (h 	 h0) × F can be

performed directly as a Gaussian integral in the limit t → ∞ and under the assumption

that φh0 acts in a non-degenerate fashion on E0 and E1.

To prove this fact, we first consider the symplectic integral over F̃ = (h	 h0)× F which

arises if X is omitted from Dλ′. So we consider the integral

I(φh0) =
1

Vol(H)

∫
F̃

[
dφ

2π

]
exp [t (dγ, θ)− it (γ, φ)− it (θE0 , [φh0 , θE0 ])− t (φE0 , φE0)]×

× exp [it (φh0 · dv, dv)− t (φh0 · v, φh0 · v)] .
(4.4.81)

For fixed φh0 acting non-degenerately on E0 and E1, this integral (4.4.81) is a Gaussian

integral, which we now evaluate. In performing this integral, we recall that the vector

spaces E0 and E1 carry a complex structure, invariant under the action of φh0 , for which

the metric (·, ·) is hermitian.

Assuming E1 is suitably oriented, the Gaussian integral over v in E1 first produces a
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factor

det
(
φh0

2π

∣∣∣
E1

)−1

. (4.4.82)

This expression does not depend on t, due to a cancellation between the factors of t that

arise from the Gaussian integral over v and the factors of t that appear in the measure on

E1.

The Gaussian integral over φE0 in (4.4.81) next produces a factor proportional to t−d0 ,

where d0 = dimC E0, which we will absorb momentarily into another determinantal factor

arising from E0.

As in Section 4.2, the integral over γ in h⊥ then produces a delta function of tφ that can

be used to perform the integral over the remaining values of φ in h⊥. This delta function

contributes a factor t− dim h⊥ .

We are left with an integral over the orbit H/H0 itself. The measure on H/H0 now

arises from the both the terms t (dγ, θ) and t (θE0 , [φh0 , θE0 ]) that appear in the exponential

in (4.4.81). The term involving dγ only receives contributions from directions tangent to h⊥

at the identity coset of H/H0, and the factors of t that arise from expanding the exponential

exp [t (dγ, θ)] cancel the factor t− dim h⊥ from the delta function.

Of course, the remaining term t (θE0 , [φh0 , θE0 ]) only receives contributions from direc-

tions on H/H0 tangent to E0. Upon expanding the exponential exp [−it (θE0 , [φh0 , θE0 ])]

and absorbing the factor proportional to t−d0 that arises from the corresponding integral

over φE0 , we see that the integral over H/H0 produces an overall factor

Vol(H)
Vol(H0)

det
(
φh0

2π

∣∣∣
E0

)
. (4.4.83)

Again, the explicit factors of t that arise from the measure on E0 cancel the factor t−d0 that

arises from the Gaussian integral over φE0 . In writing the determinant of φh0 in (4.4.83), we

regard φh0 as a linear operator acting via the adjoint representation on the complex vector

space E0.

So finally, simplifying the notation by setting ψ = φh0 , the result arising from the
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Gaussian integration is

I(ψ) =
1

Vol(H0)
det

(
ψ

2π

∣∣∣
E0

)
det

(
ψ

2π

∣∣∣
E1

)−1

, ψ ∈ h0 . (4.4.84)

The result (4.4.84) for the integral (4.4.81) is independent of t. We now observe that the

terms in X which we omitted from Dλ′ when computing (4.4.84) are all of at least third

order in the integration variables on F̃ = (h	 h0)× F (which do not include the constant

φh0). Thus, upon rescaling all the integration variables by t−
1
2 so that the quadratic terms

in (4.4.81) become independent of t, we see that any contributions from terms in X to the

symplectic integral fall off at least as fast as t−
1
2 for large t. Thus, our Gaussian evaluation

of the symplectic integral over F̃ is exact as t→∞.

So we are left to consider the remaining integral over h0, which is now given formally

by

Z ′(ε) =
1

Vol(H0)

∫
h0

[
dψ

2π

]
det

(
ψ

2π

∣∣∣
E0

)
det

(
ψ

2π

∣∣∣
E1

)−1

exp
[
−i (γ0, ψ)− ε

2
(ψ,ψ)

]
.

(4.4.85)

In obtaining this expression, we recall from (4.4.74) that the value of the moment map µ at

the identity coset on the orbit H/H0 is γ0. Also, we denote this quantity as Z ′(ε), instead of

Z(ε), to emphasize that we compute it with λ′ instead of the canonical form λ that defines

the local contributions to Z(ε).

Now, this formal integral over h0 in (4.4.85) might or might not actually be defined. Due

to the exponential factor in the integrand of (4.4.85), the integral is certainly convergent

at large ψ. However, on the locus in h0 where the determinant of ψ acting on E1 vanishes

(for instance at the origin of h0), the measure I(ψ) in (4.4.84) might be singular if there

is no compensating zero from the determinant of ψ acting on E0. If I(ψ) is singular, then

the integral in (4.4.85) could fail to be convergent at the singularity. Since Z(ε) as defined

using the canonical one-form λ is always finite, our computation using λ′ cannot generally

be valid.

On the other hand, because E0 and E1 are both finite-dimensional vector spaces, with

dimC E0 = d0 , dimC E1 = d1 , (4.4.86)
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the determinants appearing in I(ψ) in (4.4.84) are just invariant polynomials, homogeneous

of degrees d0 and d1, of ψ in h0. For our application to SU(2) Yang-Mills theory, for which

H0 = U(1), we need only consider the simplest case that h0 = R is one-dimensional. In this

case, the invariant polynomials are just monomials

det
(
ψ

2π

∣∣∣
E0

)
= c0 ψ

d0 , det
(
ψ

2π

∣∣∣
E1

)
= c1 ψ

d1 , (4.4.87)

for some constants c0 and c1.

Assuming (4.4.87), we see that (4.4.85) becomes

Z ′(ε) =
1

Vol(H0)

∫
h0

[
dψ

2π

] (
c0
c1

)
ψd0−d1 exp

[
−i (γ0, ψ)− ε

2
(ψ,ψ)

]
. (4.4.88)

Although this expression in (4.4.88) is ill-defined if d1 > d0, we can still apply our previous

work to compute using λ′ a completely well-defined integral. Namely, instead of considering

the symplectic integral Z ′(ε), we introduce the differential operator Q,

Q =
(
−2

∂

∂ε

) 1
2
(d1−d0)

, (4.4.89)

and we consider instead the quantity

Q · Z ′(ε) =
1

Vol(H)

∫
h×F

[
dφ

2π

]
(φ, φ)

1
2
(d1−d0) exp

[
Ω− i 〈µ, φ〉 − ε

2
(φ, φ) + tDλ′

]
.

(4.4.90)

Using the same definition for λ′ and proceeding exactly as before, we compute

Q · Z ′(ε) =
1

Vol(H0)

∫
h0

[
dψ

2π

] (
c0
c1

)
exp

[
−i (γ0, ψ)− ε

2
(ψ,ψ)

]
,

=
1

Vol(H0)

(
c0
c1

)
1√
2πε

exp
[
−(γ0, γ0)

2ε

]
.

(4.4.91)

The fact that the differential operator Q in (4.4.89) can be used to cancel the determi-

nants of ψ in (4.4.87) that arise from localization is a special consequence of our assumption

that dim h0 = 1. For an arbitrary Lie algebra h0, we cannot generally express these deter-

minants as functions of only the quadratic invariant (ψ,ψ) that appears in the canonical

symplectic integral. As a result, in the general case we cannot cancel such determinants

simply by differentiating Z(ε) with respect to the coupling ε. Though we will not require
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the generalization for this chapter, we explain in Appendix B how to extend the discussion

above to the case of general h0.

We see from (4.4.91) that, although our computation using λ′ does not always give a

sensible answer for Z ′(ε), it does give a sensible answer for the derivativeQ·Z ′(ε). Knowledge

of this derivative implicitly determines the contribution of a higher critical point to Z ′(ε),

as the only ambiguity in integrating (4.4.91) is a polynomial in ε which cannot arise from

a higher critical point. Finally, as we show in Appendix A, the quantity Q · Z ′(ε) in

(4.4.91) defined using λ′ agrees with the corresponding quantity Q · Z(ε) defined using the

canonical one-form λ. Hence, provided we take derivatives when necessary, we can use λ′

for localization computations on F .

Our computation also shows that it may be easier to consider the contributions of higher

critical points not to Z(ε) but to the derivative Q ·Z(ε). We have already seen an example

of this phenomenon in our discussion of SU(2) Yang-Mills theory. In that case, we found

it more natural to compute the contributions of higher Yang-Mills critical points to the

derivative ∂g−1Z(ε)/∂εg−1 in (4.4.45) as opposed to Z(ε) itself.

Application to Higher Critical Points of Yang-Mills Theory

To finish this section, we apply our abstract study of localization on F to compute the

path integral contributions from maximally reducible Yang-Mills solutions. We focus on

the specific case of SU(2) Yang-Mills theory, for which we reproduce the explicit expression

in (4.4.45) for the contributions from the locus Mn of degree n critical points.

As we have discussed, if f = ?FA is the curvature of a maximally reducible Yang-Mills

solution for gauge group G of rank r, then f breaks the gauge group to a maximal torus

Gf = U(1)r. In terms of our abstract model, we thus identify the stabilizer group H0 with

the subgroup U(1)r ⊂ G(P ) of constant gauge transformations in this maximal torus. As we

have also discussed, this fact implies that the corresponding moduli spaceMf of maximally

reducible Yang-Mills solutions is just a complex torus of dimension gr.

Now, our description of the local symplectic model F for the normal geometry over a

higher Yang-Mills critical point is completely general, since in deriving the model for F
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we did not make any assumptions about the reducibility of the connection. However, if

we wish to use this local model to compute contributions from arbitrary higher Yang-Mills

critical points, we will generally find that both the integral over F and the integral over the

associated moduli space Mf make nontrivial contributions to Z(ε) which depend on ε.

In contrast, if we restrict to the special case that Mf describes maximally reducible

Yang-Mills solutions, then only the integral over F is nontrivial, and the integral over the

torus Mf contributes a multiplicative factor Vol(Mf ) independent of ε, where

Vol (Mf ) =
∫
Mf

exp (Ω) . (4.4.92)

From a physical perspective, the contribution fromMf to Z(ε) does not involve the coupling

ε because abelian gauge theory is free. From a mathematical perspective, the Donaldson

theory of U(1) bundles is simple, as the corresponding universal bundle is a line bundle

having only a first Chern class, which is proportional to Ω.

In the case of SU(2) Yang-Mills theory, the stabilizer group H0 is just U(1), and h0 has

dimension one. Thus, we can apply our computation of the integral over F in (4.4.91) to

conclude that the local contribution from the moduli space Mn of higher critical points of

degree n is described by(
−2

∂

∂ε

) 1
2
(d1−d0)

· Z(ε)
∣∣∣
Mn

=
Vol(Mn)
Vol(H0)

(
c0
c1

)
1√
2πε

exp

[
−(2πn)2

ε

]
. (4.4.93)

We immediately see that this expression has the same form as the expression that appeared

earlier in (4.4.45).

To make a precise comparison of our formula (4.4.93) to (4.4.45), we must compute the

various constants appearing in (4.4.93). To start, we introduce the normalized generator T0

of H0,

T0 =
1√
2
σz =

1√
2

(
i 0

0 −i

)
, (4.4.94)

which satisfies Tr(T 2
0 ) = −1. From (4.4.94), we immediately see that the volume of H0 in

our metric on h0 is

Vol(H0) = 2π
√

2 . (4.4.95)
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In the case of SU(2) Yang-Mills theory, we have already identified in (4.4.39) the bundles

ad±(P ) with the line bundles L(+2n) and L−1(−2n). Thus, from (4.4.52), the complex

vector spaces E0 and E1, abstractly identified with E0 and E1, are now given by the following

Dolbeault cohomology groups,

E0 = H0
∂
(Σ,L(2n)) ,

E1 = H1
∂
(Σ,L(2n))⊕H1

∂
(Σ,L−1(−2n)) .

(4.4.96)

The index theorem, in combinating with the vanishing of H0
∂
(Σ,L−1(−2n)), implies that

χ(L(2n)) = dimC H
0
∂
(Σ,L(2n))− dimC H

1
∂
(Σ,L(2n)) = 2n+ 1− g ,

χ(L−1(−2n)) = dimC H
1
∂
(Σ,L−1(−2n)) = 2n− 1 + g .

(4.4.97)

Thus, from (4.4.97) we determine the exponent 1
2(d1 − d0) appearing in (4.4.93) to be

1
2
(d1 − d0) =

1
2

[
χ
(
L−1(−2n)

)
− χ (L(2n))

]
= g − 1 . (4.4.98)

To fix the ratio c0/c1 appearing in (4.4.93), which is determined by the determinant of

ψ/2π acting on E0 and E1 as in (4.4.87), we recall that L(2n) and L−1(−2n) arise from

the standard generators σ± of the complex Lie algebra of SU(2), as in (4.4.38). Since σz in

(4.4.94) acts with eigenvalues ±2i on σ±, we see that ψ ≡ ψ · T0 acts on sections of L(2n)

and L−1(−2n) with eigenvalues ±i
√

2ψ. Thus, in this case,

det
(
ψ

2π

∣∣∣
E0

)
det

(
ψ

2π

∣∣∣
E1

)−1

=

(
i
√

2ψ
2π

)2n+1−g (−i√2ψ
2π

)−2n+1−g

,

=

(
ψ2

2π2

)1−g

.

(4.4.99)

So (
c0
c1

)
= (2π2)g−1 . (4.4.100)

Finally, we must compute the symplectic volume Vol(Mn). This is equivalent to the

moduli space of flat connections for the group U(1), and appears with the same symplectic

structure as if we were doing U(1) gauge theory. The symplectic form is hence equivalent

to Ω =
∑g
i=1 dxi∧dyi, where our normalization is such that each of dxi and dyi have period
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2π
√

2 on the appropriate one-cycle. (This is the same factor that appeared in (4.4.95).)

Thus,

Vol(Mn) =
(
8π2

)g
. (4.4.101)

So from (4.4.95), (4.4.98), (4.4.100), and (4.4.101), we evaluate (4.4.93) as

∂g−1Z(ε)
∂εg−1

∣∣∣
Mn

=
(
−8π4

)g−1
√

4π
ε

exp

(
−(2πn)2

ε

)
, (4.4.102)

which agrees with (4.4.45).

4.5 Non-Abelian Localization For Chern-Simons Theory

We now discuss non-abelian localization for Chern-Simons theory on a Seifert manifold M .

As we recall from Section 3, the Chern-Simons path integral then takes the symplectic form

Z(ε) =
1

Vol(G)

(
1

2πiε

)∆G/2 ∫
A

exp
[
Ω− 1

2iε
(µ, µ)

]
. (4.5.1)

Our general discussion in Section 4 implies that Z(ε) localizes on critical points of the action

S = 1
2(µ, µ). Explicitly,

S =
∫
M

Tr
(
A∧dA+

2
3
A∧A∧A

)
−
∫
M

1
κ∧dκ

Tr
[
(κ∧FA)2

]
. (4.5.2)

Our first task is thus to classify the critical points of S. We claim that, up to the action

of the shift symmetry, the critical points of S correspond precisely to the flat connections

on M . To prove this statement, we simply observe that the critical points of S satisfy the

equation of motion

FA −
(
κ∧FA
κ∧dκ

)
dκ− κ∧dA

(
κ∧FA
κ∧dκ

)
= 0 , (4.5.3)

where the first term of (4.5.3) arises from the variation of the Chern-Simons functional and

the last two terms arise from the variation of the last term in (4.5.2). To classify solutions

of (4.5.3), we recall that S is invariant under the shift symmetry δA = σκ, where σ is an

arbitrary function on M taking values in the Lie algebra g of the gauge group G. Under

the shift symmetry, the quantity κ∧FA transforms as

κ∧FA −→ κ∧FA + σ κ∧dκ . (4.5.4)
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Thus, since κ∧dκ is everywhere non-zero on M , we can unambiguously fix a gauge for the

shift symmetry by the condition

κ∧FA = 0 . (4.5.5)

In this gauge, any solution of the equation of motion (4.5.3) is precisely a flat connection

on M . So, as we certainly expect, the Chern-Simons path integral localizes around points

of A which represent flat connections on M .

It is interesting to contrast this situation to the case of Yang-Mills theory on a Riemann

surface Σ. In that case, the path integral receives contributions from two qualitatively

different kinds of critical points, for which the moment map µ = FA satisfies either µ = 0

or µ 6= 0, and the critical point is respectively stable or unstable. Since the critical points

of Chern-Simons theory are described by flat connections on M , one might naively suppose

that these critical points are analogous to the stable critical points of Yang-Mills theory,

which are also described by flat connections. However, let us recall our expression from

Section 3 for the Chern-Simons moment map,

〈
µ, (p, φ, a)

〉
= −1

2
p

∫
M
κ∧Tr (£RA∧A) +

∫
M
κ∧Tr (φFA) −

∫
M
dκ∧Tr (φA) + a . (4.5.6)

The last term of (4.5.6) is simply a constant piece of µ dual to the generator a of the

central extension of the group G0, and this generator acts trivially on A. As a result of

this term, the Chern-Simons moment map is everywhere non-zero, and the critical points

of Chern-Simons theory are actually of the same kind as the higher, unstable critical points

of Yang-Mills theory.

Our goal in the rest of the chapter is now to compute the local contributions to Z(ε) from

two especially simple sorts of flat connections on M . First, we compute the contribution to

Z(ε) from the trivial connection when M is a Seifert homology sphere. Second, we compute

the contribution to Z(ε) from a smooth component in the moduli space of irreducible flat

connections when M is a principal U(1)-bundle over a Riemann surface. As we will see,

these local computations in Chern-Simons theory are direct generalizations of the local

computation at a higher critical point of two-dimensional Yang-Mills theory. The two cases
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we consider are the extreme cases in which the connection is either trivial or irreducible.

Other cases are intermediate between these.

The Normalization of Z(ε)

Before we perform any detailed computations, we must make a few general remarks

about the normalization of Z(ε). As we see from (4.5.1), we have normalized the Chern-

Simons path integral with the formal prefactor

1
Vol(G)

(
1

2πiε

)∆G/2

, ∆G = dimG , (4.5.7)

which is defined in terms of the group G of gauge transformations.

On the other hand, as we discussed in Section 3, the Hamiltonian group which we use

for localization in Chern-Simons theory is not G but rather the group H = U(1) n G̃0, where

G̃0 is a central extension by U(1) of the identity component G0 of G. We also introduce the

group H′ = U(1) n G̃, which arises from the corresponding central extension G̃ of the full

group G of all gauge transformations.

When we apply non-abelian localization to Chern-Simons theory, the path integral which

we compute most directly is not given by (4.5.1) but by the canonically normalized sym-

plectic integral

Z0(ε) =
1

Vol(H′)

∫
h×A

[
dφ

2π

]
exp

[
Ω− i 〈µ, φ〉 − iε

2
(φ, φ)

]
, (4.5.8)

as we computed abstractly in Section 4. The appearance of the volume of the disconnected

group H′ in (4.5.8), as opposed to the connected group H, accounts for the action of gauge

transformations in the disconnected components of G on critical points in A. Also, because

the Chern-Simons path integral is oscillatory, an imaginary coupling iε now appears in

(4.5.8).

If we perform the Gaussian integral over φ in (4.5.8), then Z0(ε) becomes

Z0(ε) =
i

Vol(H′)

(
1

2πiε

)∆H/2 ∫
A

exp
[
Ω− 1

2iε
(µ, µ)

]
, ∆H = dimH . (4.5.9)

In computing this integral over φ, we must be careful to remember that the quadratic

form ( · , · ) on the Lie algebra h of H is the direct sum of a positive-definite form on the
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Lie algebra of the gauge group G and a hyperbolic form (with signature (+,−)) on the

two additional generators in H relative to G. Had the form on h been positive-definite,

the Gaussian integral over each generator in h would have contributed an identical factor

(2πiε)−
1
2 to the prefactor in front of (4.5.9). However, due to the hyperbolic summand in

( · , · ), the phases that result from the Gaussian integral over the two generators in the

hyperbolic subspace of h actually cancel. To account for this cancellation, we include the

extra factor of ‘i’ appearing in (4.5.9).

Although Z0(ε) in (4.5.9) takes the same form as the physical Chern-Simons path integral

Z(ε) in (4.5.1), evidently the prefactor (4.5.7) which fixes the normalization of Z(ε) differs

from the corresponding prefactor in Z0(ε) by the ratio

Vol(H′)
iVol(G)

·
(

1
2πiε

) 1
2
(∆G−∆H)

= Vol(U(1)2) · 2πε . (4.5.10)

The finite factors Vol(U(1)2) and 2πε arise in the obvious way from the two extra generators

in H relative to G.

When we perform localization computations in Chern-Simons theory, we apply our ab-

stract localization computations in Section 4 to compute Z0(ε). By our observation above,

for the purpose of computing the physical Chern-Simons path integral Z(ε), we must mul-

tiply the results from our abstract local computations by the finite factor in (4.5.10). As we

will see, this expression turns out to cancel nicely against corresponding factors from the

local computation.

4.5.1 A Two-Dimensional Interpretation of Chern-Simons Theory on M

Our symplectic interpretation of Chern-Simons theory on M fundamentally relies on the

fact that the shift symmetry decouples one component of the gauge field A. As a result,

we can essentially perform Kaluza-Klein reduction over the S1 fiber of M to the base Σ

to express Chern-Simons theory as a two-dimensional topological theory on Σ. From this

two-dimensional perspective, we can immediately apply our localization computations in

Section 4 to Chern-Simons theory.
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In fact, the two-dimensional topological theory on Σ arising from Chern-Simons theory

on M is closely related to Yang-Mills theory on Σ, a point also recently emphasized in [78].

At the level of the classical moduli spaces, the relationship between Chern-Simons theory

on M and Yang-Mills theory on Σ was noted long ago by Furuta and Steer in [94]. These

authors identify a correspondence between the moduli space of flat connections on M and

certain components of the moduli space of Yang-Mills solutions on Σ. Since the relationship

between flat connections on M and Yang-Mills solutions on Σ underlies our study of Chern-

Simons theory, we now explain the fundamental aspects of this correspondence.

Flat Connections on M From Yang-Mills Solutions on Σ

We start by considering the moduli space of flat connections on M . As before, we

suppose that the gauge group G is compact, connected, simply-connected, and simple.

A flat connection on M is determined by its holonomies, and the moduli space of flat

connections on M , up to gauge equivalence, can be concretely described as the space of

group homomorphisms from the fundamental group π1(M) to G, up to conjugacy. Hence

the structure of the moduli space of flat connections on M is determined by π1(M).

On the other hand, because M is a Seifert manifold, and hence generally a U(1) V -

bundle over an orbifold Σ, the structure of π1(M) is closely tied to the structure of the

orbifold fundamental group π1(Σ). This topological fact underlies the close relationship

between flat connections on M and Yang-Mills solutions on Σ, and to explain it we now

present the group π1(M).

As in Section 3, we describe M using the Seifert invariants

[
g;n; (α1, β1), . . . , (αN , βN )

]
, gcd(αj , βj) = 1 . (4.5.11)

We recall that g is the genus of Σ, n is the degree of the U(1) V -bundle over Σ, and the

relatively prime integers (αj , βj) for j = 1, . . . , N specify the local geometry of M near the

N orbifold points on Σ.
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To present π1(M), we introduce elements

ap , bp , p = 1 , . . . , g ,

cj , j = 1 , . . . , N ,

h .

(4.5.12)

Then π1(M) is generated by these elements in (4.5.12) subject to the following relations,

[ap, h] = [bp, h] = [cj , h] = 1 ,

c
αj

j h
βj = 1 ,

g∏
p=1

[ap, bp]
N∏
j=1

cj = hn .

(4.5.13)

We will not give a formal proof of this presentation of π1(M), which follows from the

standard surgery construction of M and which can be found in [93], but we will describe the

geometric interpretation of the generators in (4.5.12). The generator h, which is a central

element of π1(M) by the first line of (4.5.13), arises from the generic S1 fiber over Σ. Since

Σ has genus g, the generators ap and bp for p = 1, . . . , g arise from the 2g non-contractible

cycles on Σ. Finally, the generators cp for p = 1, . . . , N arise from small one-cycles in Σ

about each of the orbifold points. We note that from the presentation of π1(M) in (4.5.12)

and (4.5.13) one can immediately compute the corresponding homology group H1(M,Z) as

the abelianization of π1(M).

For example, with a view to our application below, let us determine the condition to have

H1(M) = 0. This requires g = 0, else the homology of Σ will appear in H1(M). So π1(M)

has generators cj , j = 1, . . . , N , and c0 = h. There are N + 1 relations, namely cαj

j c0
βj =

1, j = 1 . . . , N , and
∏N
j=1 cj · c0−n = 1. These relations can be written

∏N
j=0 c

Kj,l

j = 1 in

terms of an N + 1×N + 1 matrix K. A general element of H1(M) of the form
∏N
j=0 c

vj

j is

trivial if and only if one can write vj =
∑
j′ Kjj′wj′ for some integer-valued vector w; that

is,
∏N
j=0 c

vj

j is trivial if and only if the vector vj lies in the integral lattice generated by the

matrix Kjj′ . Consequently H1(M) is trivial if and only if det(K) = ±1. With the actual
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form of K, one can work out this determinant and find that the condition is that

n+
N∑
j=1

βj
αj

= ±
n∏
j=1

1
αj
. (4.5.14)

The left hand side is also equal to the orbifold first Chern class c1(L) of the line V -bundle

L discussed in Section 3.2.

With the presentation of π1(M) in (4.5.12) and (4.5.13), we can immediately present

π1(Σ) as well. Thus, π1(Σ) is generated by the elements ap, bp, and cj in (4.5.12), omitting

the generator h which arises from the S1 fiber, and the relations in π1(Σ) are given by the

relations in (4.5.13) upon setting h = 1. A very succinct description of this relation between

π1(M) and π1(Σ) is to recognize π1(M) as a central extension of π1(Σ),

1 −→ Z −→ π1(M) −→ π1(Σ) −→ 1 , (4.5.15)

where h is the generator of Z above.

Given the close relationship between the groups π1(M) and π1(Σ) expressed in (4.5.15),

we can immediately deduce a relationship between flat connections on M and Yang-Mills

solutions on Σ. To describe this relationship, we consider a homomorphism ρ,

ρ : π1(M) −→ G , (4.5.16)

which describes the holonomies of a given flat connection on M .

Because h is central in π1(M), the image of ρ must lie in the centralizer Gρ(h) of the

element ρ(h) in G. To simplify the following discussion, we suppose that ρ(h) actually lies

in the center Γ of G, implying that Gρ(h) = G. This condition is necessary whenever the

connection described by ρ is irreducible, and it certainly holds also when the connection

is trivial, which are the two main cases we consider when we perform computations in

Chern-Simons theory. We refer to [94] for a discussion of the general case.

Clearly if ρ(h) = 1, so that the corresponding flat connection on M has trivial holonomy

around the S1 fiber over Σ, then ρ factors through the extension (4.5.15) to induce a

homomorphism from π1(Σ) to G. Hence ρ describes a flat connection on M that pulls back

from a flat Yang-Mills connection on Σ.
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More generally, when ρ(h) is non-trivial in Γ, then the corresponding flat connection on

M has non-trivial holonomy around the S1 fiber of M and is not the pull back of a flat

G-connection on Σ. However, if we pass from G to the quotient group G = G/Γ, so that

we consider the connection on M as a flat connection on the trivial G-bundle, then the

holonomy of this connection around the S1 fiber of M becomes trivial.

As a result, the homomorphism ρ can be interpreted as describing a flat connection

on M which arises from the pull back of a flat Yang-Mills connection on a generally non-

trivial V -bundle over Σ whose structure group is now G, as opposed to G. In general,

a flat connection on a non-trivial G-bundle over Σ can be described as a flat connection

on the trivial G-bundle over Σ such that the connection has non-trivial monodromies in

Γ around the orbifold points as well as around one additional, arbitrarily chosen smooth

point of Σ. These monodromies represent the obstruction to smoothly extending the given

flat connection to the trivial G-bundle over all of Σ, and hence they describe the non-trivial

G-structure on the bundle.

In the case at hand, we see from the relations (4.5.13) which describe π1(M) as an

extension of π1(Σ) that the relevant monodromies are determined by the holonomies of the

connection on M associated to the elements hβj and hn, so that these holonomies determine

the topology of the corresponding G-bundle on Σ. For instance, if we consider the simplest

case that the gauge group G is SU(2) and M arises from a principal U(1)-bundle over a

smooth Riemann surface Σ such that the degree n is odd, then flat connections on M whose

holonomies satisfy ρ(h) = ρ(h)n = −1 correspond bijectively to flat SU(2) connections on

Σ which have monodromy −1 around a specified puncture. Such flat SU(2) connections

can then be identified with flat connections on the topologically non-trivial principal SO(3)-

bundle over Σ.

On the other hand, if the degree n of the principal U(1)-bundle is even, then ρ(h)n = 1

for both ρ(h) = ±1, so points in both of these components of the moduli space of flat

connections on M are identified with flat SU(2) connections on Σ.
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The Local Symplectic Geometry Near a Critical Point of Chern-Simons Theory

The discussion above shows that irreducible flat connections on M can be identified

with corresponding flat Yang-Mills connections on Σ. We now extend this observation to

give a “two-dimensional” description of the local symplectic geometry in A around such a

critical point of Chern-Simons theory.

Because A is the quotient of the affine space A by the shift symmetry S, we are free

to work in any convenient gauge for S. For instance, in order to identify the critical points

of the new Chern-Simons action S in (4.5.2), we found it convenient to impose the gauge

condition (4.5.5).

However, in order to describe the local geometry in A in terms of geometric quantities

on Σ, we make a new gauge choice for S, corresponding to the gauge condition

ιRA = 0 . (4.5.17)

Because A transforms under the shift symmetry as δA = σ κ, the quantity ιRA transforms

as ιRA→ ιRA+ σ, and the gauge condition in (4.5.17) is unambiguous.

To describe a critical point of the action S in the gauge (4.5.17), we consider as above

a flat Yang-Mills connection B0 on a generally non-trivial V -bundle with structure group

G over Σ. Then, in the gauge (4.5.17), the full tangent space to the symplectic manifold A

at B0 is described by the space of sections ξ of the bundle Ω1
M ⊗ g which satisfy the gauge

condition

ιRξ = 0 . (4.5.18)

Because our symplectic description of Chern-Simons theory respects the geometric U(1)

action on M , we naturally consider the decomposition of the tangent space to A under the

action of this U(1). In terms of the section ξ, this statement simply means that we consider

the Fourier decomposition of ξ into eigenmodes of the operator £R. Thus we write

ξ =
+∞∑
t=−∞

ξt , (4.5.19)

where, in addition to the gauge condition (4.5.18), each eigenmode ξt satisfies

£Rξt = −2πit · ξt . (4.5.20)
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We can similarly perform this Fourier decomposition on the tangent space to the group

of gauge transformations G. Thus, if φ is a section of Ω0
M ⊗ g, we write

φ =
+∞∑
t=−∞

φt , (4.5.21)

where

£Rφt = −2πit · φt . (4.5.22)

To describe these eigenmodes ξt and φt geometrically on Σ, we recall that L denotes the

line V -bundle over Σ associated to the Seifert manifold M . Since non-trivial representations

of the U(1) action on M are associated to non-zero powers of L on Σ, we can describe the

modes ξt and φt geometrically on Σ as being respectively sections of the bundles Ω1
Σ ⊗

ad(P )⊗Lt and Ω0
Σ ⊗ ad(P )⊗Lt. Here we have also replaced the trivial bundle g on M by

the possibly nontrivial G-bundle ad(P ) on Σ.

So, at least formally, the tangent space to A at B0 decomposes into the following sum

of spaces of sections on Σ,

TA =
+∞⊕
t=−∞

Γ
(
Σ,Ω1

Σ ⊗ ad(P )⊗ Lt
)
, (4.5.23)

and similarly for the Lie algebra of G,

TG =
+∞⊕
t=−∞

Γ
(
Σ,Ω0

Σ ⊗ ad(P )⊗ Lt
)
. (4.5.24)

By assumption, the covariant derivative dB0 commutes with the Lie derivative £R,

[dB0 ,£R] = 0 , (4.5.25)

so these decompositions are compatible with the action of dB0 .

As in Section 4.2, the local structure of the space of fields over which we integrate near

a given component M of the moduli space of critical points is a fibration

F −→ N
pr−→M. (4.5.26)

As before, F is given by a symplectic bundle

F = H×H0 (h	 h0 	 E0 ⊕ E1) , (4.5.27)
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where the invariance group H0 and the exceptional bundles E0 and E1 must be identified.

As we observed at the start of this section, because the Chern-Simons moment map is

non-vanishing, the local model is analogous to the geometry near a higher critical point of

Yang-Mills theory, with some E0 and E1.

In the model (4.5.27) for F , H = U(1) n G̃0 is the Hamiltonian group which we use

for localization, and H0 is the subgroup of H which fixes B0. In general, H0 is a finite-

dimensional group of the form

H0 = U(1)2 ×K0 . (4.5.28)

One U(1) factor in H0 arises from the action of £R on A, which fixes B0 by assumption,

and the other U(1) factor arises from the central U(1) in G̃0. This U(1) acts trivially on

all of A. Finally, K0 denotes the group of gauge transformations acting on ad(P ) which

fix B0. These gauge transformations are generated by covariantly constant sections φ of

ad(P )⊗L0, so that φ is annihilated by £R, and consequently K0 commutes with both U(1)

factors in H0.

To identify E0 and E1, we must look at the images of dB0 and of ?2dB0 mapping TG

to TA. The bundle ad(P ) ⊗ Lt has connection C = B0 + tκ (κ is the constant curvature

connection on L introduced in Section 3.2). For fixed t, the three-dimensional operators dB0

and ?2dB0 reduce to two-dimensional operators dC and ?dC . As B0 is flat, the connection

C has curvature equal to t times a positive two-form. So the analysis of the intersection

and unions of the images of dC and ?dC precisely follows Section 4.3, with the following

dictionary between quantities in the two-dimensional analysis of that section and quantities

in the present three-dimensional problem:

ad0(P )←→ ad(P )

ad+(P )←→
⊕
t>0

ad(P )⊗ Lt

ad−(P )←→
⊕
t<0

ad(P )⊗ Lt.

(4.5.29)

In two dimensions, we decomposed ad(P ) into ad0(P ), ad+(P ), and ad−(P ) according to
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the sign of the curvature. Here, curvature comes only from L. So finally, we get

E0 =
⊕
t6=0

H0
∂
(Σ, ad(P )⊗ Lt) =

⊕
t≥1

H0
∂
(Σ, ad(P )⊗ (Lt ⊕ L−t)) ,

E1 =
⊕
t6=0

H1
∂
(Σ, ad(P )⊗ Lt) =

⊕
t≥1

H1
∂
(Σ, ad(P )⊗ (Lt ⊕ L−t)) .

(4.5.30)

Unlike in the case of Yang-Mills theory, these exceptional bundles E0 and E1 now have

infinite dimension, since the cohomology groups in (4.5.30) are non-zero for infinitely many

t’s.

4.5.2 Localization at the Trivial Connection on a Seifert Homology Sphere

We are finally prepared to carry out a computation in Chern-Simons theory using non-

abelian localization. We consider localization at the trivial connection when M is a Seifert

manifold that also is a homology sphere, that is, it has H1 = 0. We start by stating some

necessary facts about the topology of M in this case.

Seifert Homology Spheres and a Slight Generalization

We recall that we generally characterize M with the Seifert invariants

[
g;n; (α1, β1), . . . , (αN , βN )

]
, gcd(αi, βi) = 1 . (4.5.31)

As we have explained above, M is a homology sphere, with H1(M,Z) = 0, if and only if

the invariants in (4.5.31) satisfy

g = 0 , c1(L0) = n+
N∑
j=1

βj
αj

= ±
N∏
j=1

1
αj

. (4.5.32)

Here L0 denotes the line V -bundle over the orbifold Σ which describes M .

To interpret geometrically the condition on L0 in (4.5.32), we note that this condition

implies the arithmetic condition that the numbers αj be pairwise relatively prime, so that

gcd(αj , αj′) = 1 , j 6= j′ . (4.5.33)

In turn, as explained in Section 1 of [94], this arithmetic condition on the orders of the

orbifold points of Σ implies that the Picard group of line V -bundles on Σ is isomorphic to
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Z, just as for CP1. In analogy to the case of S3, which arises from a generator of the Picard

group of CP1, the condition on c1(L0) in (4.5.32) is then precisely the condition that L0

generate the Picard group of Σ.

As previously, we orient M so that c1(L0) is positive, and we introduce the notation β0
j

to distinguish the orbifold invariants of this fundamental line V -bundle L0 on Σ,

c1(L0) = n+
∑
j=1

β0
j

αj
=

N∏
j=1

1
αj

. (4.5.34)

The reason that we distinguish the invariants β0
j of L0 is that, more generally, we will

also consider the case that M arises not from the fundamental line V -bundle L0 on Σ but

from some multiple Ld0 for d ≥ 1. In this case, we simply require that g = 0 in (4.5.32) and

that the invariants αj be relatively prime to each βj and also pairwise relatively prime, as

in (4.5.33). The Seifert manifold arising from Ld0 is a quotient by the cyclic group Zd of the

Seifert manifold associated to L0, and in this case H1(M,Z) = Zd. So the integer d can be

characterized topologically as the order of H1(M,Z),

d = |H1(M,Z)| . (4.5.35)

These Seifert manifolds are still rational homology spheres, with H1(M,R) = 0, and the

trivial connection on M is an isolated flat connection.

We note that when the Seifert manifold M is described by a smooth, degree n line-

bundle over CP1, then M is a lens space, and the Seifert invariant n coincides with d in

(4.5.35).

The Result of Lawrence and Rozansky

Our basic results on localization for Chern-Simons theory imply that the Chern-Simons

partition function Z can be expressed as a sum of local contributions from the flat connec-

tions on M . In the case G = SU(2) and with M as above, Lawrence and Rozansky [17] have

already made this simple structure of Z explicit by working backwards from the previously

known formula for Z. Our goal here is to compute directly one term in their formula, the

local contribution from the trivial connection. However, because the general result in [17]

is both very elegant and very suggestive, we now pause to present it.
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To express Z as in [17], we find it useful to introduce the numerical quantities

εr =
2π
k + 2

,

P =
N∏
j=1

αj if N ≥ 1 , P = 1 otherwise ,

θ0 = 3− d

P
+ 12

N∑
j=1

s(βj , αj) .

(4.5.36)

Here εr is the renormalized coupling incorporating the famous shift k → k + 2 in the level

in the case G = SU(2), and s(β, α) is the Dedekind sum,

s(β, α) =
1
4α

α−1∑
l=1

cot
(
πl

α

)
cot

(
πlβ

α

)
. (4.5.37)

For brevity, we also introduce the analytic functions

F (z) =
(

2 sinh
(
z

2

))2−N
·
N∏
j=1

(
2 sinh

(
z

2αj

))
,

G(l)(z) =
i

4εr

(
d

P

)
z2 − 2π l

εr
z .

(4.5.38)

Then, from the results of [17], the partition function Z(ε) of Chern-Simons theory on

M can be written as

Z(ε) = (−1)
exp

(
3πi
4 −

i
4θ0εr

)
4
√
P

{
d−1∑
l=0

1
2πi

∫
C(l)
dz F (z) exp

[
G(l)(z)

]
−

−
2P−1∑
m=1

Res

F (z) exp
[
G(0)(z)

]
1− exp

(
−2π
εr
z
)
 ∣∣∣∣∣

z=2πim

−
d−1∑
l=1

[ 2Pl
d

]∑
m=1

Res
(
F (z) exp

[
G(l)(z)

]) ∣∣∣∣∣
z=−2πim

}
.

(4.5.39)

Our notation differs somewhat from [17], and we have normalized Z(ε) so that the partition

function on S2×S1 is 1, whereas the authors of [17] normalize the partition function on S3

to be 1.

Here C(l) for l = 0, . . . , d − 1 denote a set of contours in the complex plane over which

we evalute the integrals in the first line of (4.5.39). In particular, C(0) is the diagonal line

contour through the origin,

C(0) = e
iπ
4 × R , (4.5.40)
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and the other contours C(l) for l > 0 are diagonal line contours parallel to C(0) running

through the stationary phase point of the integrand, given by z = −4πi l (P/d). Also,

“Res” denotes the residue of the given analytic function evaluated at the given point.

We now wish to point out a few general features of this result (4.5.39) from the perspec-

tive of non-abelian localization.

First, the d contour integrals in the first term of (4.5.39) are identified in [17] with the

local contributions from the d reducible flat connections on M . In particular, the integral

arising from l = 0 above is the local contribution from the trivial connection, which takes

the form

Z(ε)
∣∣∣
{0}

= (−1)
exp

(
3πi
4 −

i
4θ0εr

)
4
√
P

×

× 1
2πi

∫
C(0)

dz exp
[
i

4εr

(
d

P

)
z2
] (

2 sinh
(
z

2

))2−N
·
N∏
j=1

(
2 sinh

(
z

2αj

))
.

(4.5.41)

For instance, one can directly check that, in the case M = S3, the integral in (4.5.41)

reduces to our much simpler expression for Z(ε) in (4.1.5).

Similarly, the integrals for l > 0 arise from reducible flat connections whose holonomies

lie in a maximal torus of SU(2), and hence these connections are fixed by a U(1) subgroup

of the gauge group. As we generally saw in Section 4 when we considered higher critical

points of Yang-Mills theory, non-abelian localization at a reducible connection leads to an

integral over the Lie algebra h0 of the stablizer group H0. This integral over h0 is represented

by the contour integrals above.

In contrast, the residues in the remaining terms of (4.5.39) are identified in [17] with

the local contributions from the irreducible flat connections on M . As we show later, at

least in the non-orbifold case N = 0 and g > 0, the local path integral contribution from a

smooth componentM in the moduli space of irreducible flat connections on M is given by

a computation in the cohomology ring ofM. In the context of two-dimensional Yang-Mills

theory, cohomology computations onM are often expressed in the form of residues, and we

expect the residues in (4.5.39) to arise in this fashion.
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Finally, the phase of Z(ε) in (4.5.39) is quite subtle. As explained in [103], this phase can

be defined given the choice of a 2-framing on M , meaning a trivialization of TM⊕TM , and

for each three-manifold M a canonical choice of 2-framing exists. The partition function

can thus be presented with a canonical phase, as originally computed in [104,105] and as

given in (4.5.39). The phase of Z(ε) which arises naturally when we define Chern-Simons

theory via localization differs from this canonical phase, and we discuss this fact at the end

of the section.

Localization at the Trivial Connection

We now compute using localization the contribution from the trivial connection to Z(ε)

when M is a Seifert homology sphere. Although the results of Lawrence and Rozansky in

(4.5.39) hold for gauge group G = SU(2), Mariño has presented in [81] an expression for the

contribution from the trivial connection for an arbitrary simply-laced gauge group G. With

our methods, the generalization from G = SU(2) to arbitrary simply-laced G is immediate,

so we also consider the general case.

At the trivial connection, the moduli space M is trivial, so the local geometry in A is

entirely described by the normal symplectic fiber F in (4.5.27), with the appropriate h0, E0,

and E1. So we need only evaluate the canonical symplectic integral over F for this case.

We first observe that the stabilizer subgroup H0 ⊂ H for the trivial connnection is given

as in (4.5.28) by

H0 = U(1)2 ×G , (4.5.42)

where the factor G arises from the constant gauge transformations on M . Since H0 decom-

poses as a product, we decompose an arbitrary element ψ of its Lie algebra h0 = R⊕ g⊕ R

as

ψ = p+ φ+ a , (4.5.43)

where p and a generate the U(1) factors of H0 and φ is an element of g, according to the

notation of Section 3.

As in (4.5.30), the exceptional bundles E0 and E1 at the trivial connection are now given
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by

E0 =
⊕
t≥1

H0
∂
(Σ, g⊗ (Lt ⊕ L−t)) ,

E1 =
⊕
t≥1

H1
∂
(Σ, g⊗ (Lt ⊕ L−t)) .

(4.5.44)

Here L = Ld0 is the line V -bundle on Σ which describes M .

From our localization formula (4.4.85) in Section 4, the contribution of the trivial con-

nection to Z(ε) is now given formally by the following integral over h0,

Z(ε)
∣∣∣
{0}

=
(2πε)

Vol(G)

∫
h0

[
dψ

2π

]
e(ψ) exp

[
−i (γ0, ψ)− iε

2
(ψ,ψ)

]
, (4.5.45)

where e(ψ) is an infinite-dimensional determinant,

e(ψ) = det
(
ψ

2π

∣∣∣
E0

)
det

(
ψ

2π

∣∣∣
E1

)−1

. (4.5.46)

In normalizing (4.5.45), we have cancelled the factor Vol(U(1)2) that appears in the relative

normalization (4.5.10) against a corresponding factor in 1/Vol(H0) from the localization

formula (4.4.85), leaving the factor 1/Vol(G). We have also included the factor (2πε) from

(4.5.10).

Evaluating e(ψ)

We first evaluate e(ψ), which turns out to be the only non-trivial piece of our compu-

tation. From (4.5.46), we see that e(ψ) is described formally by the determinant of the

operator ψ acting on the infinite-dimensional vector spaces E0 and E1. So to evaluate e(ψ),

we will have to decide how to define such a determinant.

Here we employ the standard analytic technique of zeta/eta-function regularization to

define the various infinite products that represent the determinant e(ψ). This choice is

somewhat ad hoc, and our best justification for it is the fact that it eventually leads to

agreement with the results of Lawrence and Rozansky. However, this method of regular-

ization does feature in the usual perturbative approach to Chern-Simons gauge theory, for

instance in the one-loop computation in [15]. So, optimistically, one might be able to better

justify the use of zeta/eta-function regularization here by comparing the localization com-
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putation with conventional perturbation theory. We make a few further remarks in Section

5.3.

Since the general element of H acts on A as

δA = dAφ+ p£RA , (4.5.47)

we see that the determinants in e(ψ) can be written concretely in terms of p and φ in

(4.5.43) as

e(ψ) = e(p, φ) = det
[

1
2π

(p£R − [φ, · ])
∣∣∣
E0

]
det

[
1
2π

(p£R − [φ, · ])
∣∣∣
E1

]−1

. (4.5.48)

In particular, e(p, φ) does not depend on a in h0, since this generator acts trivially. This

fact is important later.

As £R acts on sections of Lt with eigenvalue −2πit, we rewrite e(p, φ) as a product over

the non-zero eigenvalues of £R as

e(p, φ) =
∏
t6=0

det

(−itp− [φ, · ]
2π

) ∣∣∣∣∣
g

χ(Lt)

. (4.5.49)

Here χ(Lt) is the Euler character of Lt, so that we incorporate the cancellation between

the action of ψ on elements of E0 and E1, and the determinant in (4.5.49) indicates the

determinant with respect to the action on g.

We now evaluate this finite-dimensional determinant on g. This determinant is invariant

under the adjoint action on g, and without loss we assume that φ lies in the Lie algebra t

of a maximal torus T of G. In this case, if β denotes a root of g and gβ the corresponding

generator of g, then the adjoint action of φ on gβ is given by [φ, gβ] = i 〈β, φ〉 gβ . Thus

diagonalizing the adjoint action of φ, we see that

det
(
−itp− [φ, · ]

2π

)∣∣∣∣∣
g

= (−itp)∆G
∏
β

(
1 +
〈β, φ〉
2πtp

)
,

= (−itp)∆G
∏
β>0

(
1−

(〈β, φ〉
2πtp

)2
)
.

(4.5.50)

Here ∆G denotes the dimension of G. In the first line of (4.5.50), the product runs over all

the roots β of g, whereas in the second line of (4.5.50), we have grouped together the two

terms arising from the roots ±β and rewritten the product over a set of positive roots.
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Now from (4.5.49) and (4.5.50), we rewrite e(p, φ) as

e(p, φ) = exp
(
− iπ

2
η

)
·
∏
t≥1

∣∣∣∣∣∣(tp)∆G
∏
β>0

(
1−

(〈β, φ〉
2πtp

)2
)∣∣∣∣∣∣

χ(Lt)+χ(L−t)

. (4.5.51)

Here exp
(
− iπ

2 η
)

represents the phase of e(p, φ), which involves an infinite product of factors

±i, and the product written explicity in (4.5.51) represents the norm. We first evaluate this

norm, as the quantity η is much more delicate to determine.

To start, we evaluate the exponent that appears in (4.5.51). By the Riemann-Roch

theorem in (4.3.23),

χ(Lt) + χ(L−t) = deg(Lt) + deg(L−t) + 2 . (4.5.52)

In general, the degree of a line V -bundle is not multiplicative, so that deg(Lt) 6= tdeg(L),

and the first two terms on the right of (4.5.52) do not necessarily cancel as they do for

ordinary line bundles.

So we must work a little bit to simplify (4.5.52). As we now show, this exponent can be

simplified as

χ(Lt) + χ(L−t) = 2−N +
N∑
j=1

ϕαj (t) , (4.5.53)

where ϕαj (t) is an arithmetic function which takes the value 1 if αj divides t and is 0

otherwise,

ϕαj (t) = 1 if αj | t ,

= 0 otherwise .
(4.5.54)

To deduce (4.5.53), we suppose that the line V -bundle Lt is characterized on Σ by

isotropy invariants γj , where

γj ≡ t βj mod αj , 0 ≤ γj < αj , (4.5.55)

and, as before, the isotropy invariants βj characterize the line V -bundle L itself. From

(4.5.14), the degree of Lt is given in terms of the first Chern class, which is multiplicative,

and γj as

deg(Lt) = t c1(L)−
N∑
j=1

γj
αj

. (4.5.56)
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On the other hand, the isotropy invariants γj for the inverse line V -bundle L−t are given

by

γj ≡ −t βj mod αj , 0 ≤ γj < αj , (4.5.57)

so that in terms of γj ,

γj = αj − γj if γj 6= 0 ,

= γj = 0 otherwise .
(4.5.58)

We note from (4.5.55) that γj vanishes whenever tβj ≡ 0 mod αj . Because βj is rela-

tively prime to αj by assumption, the vanishing of γj is then equivalent to the condition

that αj divide t, so that

γj = 0 ⇐⇒ αj | t . (4.5.59)

Thus, using the arithemetic function ϕαj (t) defined in (4.5.54) in conjunction with

(4.5.58) and (4.5.59), we see that the degree of L−t can be written as

deg(L−t) = −t c1(L)−
N∑
j=1

γj
αj

,

= −t c1(L)−
N∑
j=1

(
1− γj

αj
− ϕαj (t)

)
.

(4.5.60)

From (4.5.52), (4.5.56), and (4.5.60), we immediately deduce (4.5.53).

Consequently, e(p, φ) now becomes

e(p, φ) = exp
(
− iπ

2
η

)
·
∏
t≥1

∣∣∣∣∣∣(tp)∆G
∏
β>0

(
1−

(〈β, φ〉
2πtp

)2
)∣∣∣∣∣∣

2−N+
∑N

j=1
ϕαj (t)

,

= exp
(
− iπ

2
η

)
· f0(p, φ)2 ·

N∏
j=1

∣∣∣∣∣fαj (p, φ)
f0(p, φ)

∣∣∣∣∣ ,
(4.5.61)

where

f0(p, φ) =
∏
t≥1

(tp)∆G
∏
β>0

(
1−

(〈β, φ〉
2πtp

)2
) , (4.5.62)

and fαj is related to f0 by

fαj (p, φ) = f0(αj · p, φ) . (4.5.63)



208

In deducing (4.5.61) from (4.5.62) and (4.5.63), we apply the following arithmetic identity,

which holds for an arbitrary function f(t),

∏
t≥1

f(t)ϕαj (t) =
∏
t≥1

f(αj · t) . (4.5.64)

We finally evaluate the infinite product which defines f0(p, φ). We use the well known

identity below,
sin(x)
x

=
∏
t≥1

(
1− x2

π2t2

)
, (4.5.65)

and we use the Riemann zeta-function ζ to define trivial, but infinite, products∏
t≥1

p∆G = exp (∆G ln p · ζ (0)) = p−∆G/2 ,

∏
t≥1

t∆G = exp
(
−∆G · ζ ′(0)

)
= (2π)∆G/2 .

(4.5.66)

So from (4.5.65) and (4.5.66), we evaluate f0(p, φ) to be

f0(p, φ) =
(
p

2π

)−∆G/2 ∏
β>0

[
2p
〈β, φ〉

sin
(〈β, φ〉

2p

)]
,

= (2π)∆G/2 p−∆T /2
∏
β>0

[
2
〈β, φ〉

sin
(〈β, φ〉

2p

)]
.

(4.5.67)

Here ∆T denotes the dimension of the maximal torus T of G (hence the rank of G), and in

passing to the second line of (4.5.67) we just pull the factors of p outside the product over

the positive roots of G.

From (4.5.61), (4.5.63), and (4.5.67), we finally evaluate e(p, φ) to be

e(p, φ) = exp
(
− iπ

2
η

)
· (2π)∆G

(p
√
P )∆T

×

×
∏
β>0

〈β, φ〉−2

∣∣∣∣2 sin
(〈β, φ〉

2p

)∣∣∣∣2−N N∏
j=1

∣∣∣∣∣2 sin

(
〈β, φ〉
2αjp

)∣∣∣∣∣ ,
(4.5.68)

where P is defined in (4.5.36) as the product of all the αj .

Evaluating η and the Quantum Shift in the Chern-Simons Level

We now evaluate the phase factor exp
(
− iπ

2 η
)
, from which we will find the famous

quantum shift in the Chern-Simons level k → k + čg, where čg is the dual Coxeter number

of g. For instance, we recall that in the case G = SU(r + 1), čg = r + 1.
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To start, we consider the operator

i

2π
(p£R − [φ, · ]) , (4.5.69)

acting on the vector spaces E0 and E1 in (4.5.44). The spectrum of this operator is real, so

at least formally, we see from the definition of e(p, φ) in (4.5.48) that the phase η is given

by

η ≈
∑

λ(0) 6=0

sign(λ(0))−
∑

λ(1) 6=0

sign(λ(1)) , (4.5.70)

where λ(0) and λ(1) range, respectively, over the eigenvalues of the operator in (4.5.69)

acting on E0 and E1.

We have not written (4.5.70) with an equality because the sums on the right of (4.5.70)

are ill-defined without a regulator. To regulate these sums, we follow the philosophy of [106]

and introduce the eta-function

η(p,φ)(s) =
∑

λ(0) 6=0

sign(λ(0)) |λ(0)|−s −
∑

λ(1) 6=0

sign(λ(1)) |λ(1)|−s . (4.5.71)

Here s is a complex variable. When the real part of s is sufficiently large, the sums in (4.5.71)

are absolutely convergent so that η(p,φ)(s) is defined in this case. Otherwise, η(p,φ)(s) is

defined by analytic continuation in the s-plane. Assuming that the limit s → 0 exists, we

then set

η = η(p,φ)(0) . (4.5.72)

Thus, η is basically the classic eta-invariant of [106] which is here associated to the operator

in (4.5.69) acting on the virtual vector space E0 	 E1, where the “	” simply indicates the

relative sign in (4.5.71).

In our problem, because we explicitly know the spectrum of the operator in (4.5.69), we

can directly evaluate η(p,φ)(0) without too much work. One advantage of this direct approach

is that it very concretely displays the origin of the finite shift in the Chern-Simons level k,

a very subtle quantum effect to understand otherwise.

Ultimately this shift in k arises because, despite what might be one’s naive expectation

from (4.5.70), η depends nontrivially on p and φ. To isolate this interesting functional
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dependence of η(p,φ)(0) on p and φ, we observe that, for s = 0, the sum in (4.5.71) is invariant

under an overall scaling of the eigenvalues λ(0) and λ(1), so that η(p,φ)(0) is invariant under

an overall scaling of the operator itself in (4.5.69). In particular, so long as p > 0 (as holds

when we later set p = 1/ε), we are free to rescale the operator in (4.5.69) by 1/p without

changing η.

As a technical convenience, we thus introduce another eta-function η′(p,φ)(s) which is

defined as in (4.5.71) but is associated to the rescaled operator

i

2π

(
£R −

[
φ

p
, ·
])

. (4.5.73)

Because η = η(p,φ)(0) = η′(p,φ)(0), we see from (4.5.73) that η can only depend on p and φ

in the combination φ/p.

We also introduce the eta-function η0(s) which is associated to the constant operator

i£R/2π, and to isolate the functional dependence of η on p and φ we define

δη(p, φ) = η′(p,φ)(0)− η0(0) . (4.5.74)

As we now compute directly,

δη(p, φ) = − čg

2(πp)2

(
d

P

)
Tr(φ2) mod 2. (4.5.75)

The role of the mod 2 terms is to remove the absolute value bars | · | that appear in (4.5.68),

so that e(p, φ) depends analytically on p and φ as its definition suggests.

Of course, η itself is given by η = δη(p, φ) + η0(0). We also discuss η0(0), though this

constant is much less interesting than δη(p, φ).

A Warmup Computation on S1

Before we directly evaluate δη, η0(0), and η for the case at hand, we find it useful to

warm up with a simpler example, originally presented in [106,II]. Thus, we consider the

eta-function ην(s) which is associated to the operator Dν acting on functions on S1,

Dν =
i

2π
d

dx
+ ν . (4.5.76)
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Here ν is a real parameter in the interval 0 < ν < 1, and x is a coordinate on S1 with

period 2π. If we wish, we can equivalently consider Dν as the covariant derivative acting

on sections of a flat U(1) bundle over S1 whose connection has holonomy parametrized by

ν.

Clearly the eigenvalues λ of Dν are given by λ = t+ ν as t runs over all integers. So we

compute

ην(s) =
∑
λ

sign(λ) |λ|−s ,

=
∑
t≥0

1
(t+ ν)s

−
∑
t≥1

1
(t− ν)s

,

=
1
νs
−
∑
t≥1

2νs
ts+1

+
∑
t≥1

s · O
(

1
ts+2

)
.

(4.5.77)

In passing from the second to the third lines of (4.5.77), we apply the binomial expansion,

and we collect into O(1/ts+2) the terms in this expansion for which the sum over t is

absolutely convergent near s = 0. Thus, when we evaluate ην(s) at s = 0, the last term of

(4.5.77) vanishes.

On the other hand, for the term involving the sum over 1/ts+1, we have

∑
t≥1

2νs
ts+1

= 2νs ζ(1 + s) . (4.5.78)

Because ζ(1 + s) has a simple pole with residue 1 at s = 0, we see that (4.5.78) makes a

non-zero contribution to ην(0), and

ην(0) = 1− 2ν . (4.5.79)

Physically the term involving ν arises as a finite renormalization effect, due to the divergence

in the sum over eigenvalues in (4.5.78).

The Computation of η on M

Given the formal similarity of the operators in (4.5.73) and (4.5.76), we now evaluate

η(p,φ)(0) just as in our warmup computation on S1. In the case at hand, we must consider the

eigenvalue multiplicities which are associated to the dimensions of the Dolbeault cohomology

groups H0
∂
(Σ,Lt) and H1

∂
(Σ,Lt), and as in our earlier computation we must also consider
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the eigenvalues of the adjoint action of φ on g. Taking these considerations into account,

we find the following compact expression for η′(p,φ)(s),

η′(p,φ)(s) =
+∞∑
t=−∞

∑
β

χ(Lt) sign (λ (t, β)) |λ(t, β)|−s ,

λ(t, β) = t+
〈β, φ〉
2πp

.

(4.5.80)

Here the sum over β is again a sum over the roots of g, including the roots β = 0 from the

Cartan subalgebra. We note that the appearance of the Euler character χ(Lt) in (4.5.80)

accounts both for the multiplicities and the relative signs of the eigenvalue contributions

from E0 and E1 in (4.5.71).

We can give a similar, simpler expression for η0(s),

η0(s) =
∑
t6=0

∑
β

χ(Lt) sign(t) |t|−s ,

=
∑
t≥1

∑
β

χ(Lt)− χ(L−t)
ts

.

(4.5.81)

In the general orbifold case, the index difference χ(Lt) − χ(L−t) that arises in (4.5.81)

appears to be a somewhat complicated arithmetic function of t, in contrast to our simple

expression for the index sum in (4.5.53), and we will not evaluate η0(0) in complete generality

here.

However, if we consider the special case of a degree d line-bundle L over a smooth

Riemann surface Σ, then the Riemann-Roch theorem immediately implies that

χ(Lt)− χ(L−t) = 2dt , (4.5.82)

independent of the genus of Σ. So in this special case, we have from (4.5.81) that

η0(s) = ∆G

∑
t≥1

2dt
ts

,

= 2d∆G ζ(s− 1) .

(4.5.83)

Thus,

η0(0) = 2d∆G ζ(−1) = −d∆G

6
. (4.5.84)
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Having discussed η0(0), we now compute the more interesting quantity δη(p, φ) in

(4.5.74). Upon expressing (4.5.80) as in (4.5.81) and collecting terms, we find that

η′(p,φ)(s)− η0(s) =
∑
t≥0

∑
β>0

(
χ(Lt)− χ(L−t)

)
·

 1(
t+ 〈β,φ〉

2πp

)s − 1
ts

 +

+
∑
t≥1

∑
β>0

(
χ(Lt)− χ(L−t)

)
·

 1(
t− 〈β,φ〉

2πp

)s − 1
ts

 .
(4.5.85)

In writing this expression, we assume without loss that the condition below holds for each

positive root β,

0 <
〈β, φ〉
2πp

< 1 . (4.5.86)

Otherwise, when the quantity in (4.5.86) undergoes an integral shift, then the overall phase

exp (−iπη/2) of e(p, φ) simply picks up a sign so as to effectively remove the absolute value

bars | · | appearing in (4.5.68). Hence e(p, φ) depends analytically on p and φ.

We now observe from our general expressions (4.5.56) and (4.5.60) for deg(Lt) and

deg(L−t) that the index difference in (4.5.85) depends generally on t as

χ(Lt)− χ(L−t) = 2t
(
d

P

)
+O(t0). (4.5.87)

We have used the fact that c1(L) = d/P , since L = Ld0, and c1(L0) =
∏
j 1/αj = 1/P .

If we now consider the binomial expansion of the denominators in (4.5.85), we see

immediately that no contribution at s = 0 can arise from the terms of order t0 in (4.5.87).

The leading terms in the expansion which arise from these O(t0) terms are proportional to

±〈β, φ〉/(2πp) · t−(s+1), and such terms linear in φ cancel between the two sums in (4.5.85).

The same cancellation occurs between the leading expansion terms which arise from the

term linear in t in (4.5.87), and fundamentally these cancellations reflect the fact that no

invariant linear function of φ exists.

Thus, expanding the denominators in (4.5.85) to second order, we find

η′(p,φ)(s)− η0(s) = 2
(
d

P

) ∑
t≥1

∑
β>0

(〈β, φ〉
2πp

)2

· s(s+ 1)
ts+1

+
∑
t≥1

∑
β>0

s · O
(

1
ts+2

)
. (4.5.88)

We evaluate (4.5.88) at s = 0 to determine δη(p, φ), which is thus given by

δη(p, φ) = 2
(
d

P

) ∑
β>0

(〈β, φ〉
2πp

)2

. (4.5.89)
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To simplify the sum over roots on the right side of (4.5.89), we note that this sum defines

an invariant quadratic polynomial of φ and hence must be proportional to Tr(φ2). When g

is simply-laced, we have the following identity, as shown for instance in [107,VI],

∑
β>0

〈β, φ〉2 = −čg Tr(φ2) . (4.5.90)

Together, (4.5.89) and (4.5.90) imply the main result in (4.5.75).

Thus the full determinant e(p, φ) is now given by

e(p, φ) = exp
(
− iπ

2
η0(0)

)
· (2π)∆G

(p
√
P )∆T

×

× exp
[
i čg

4πp2

(
d

P

)
Tr(φ2)

] ∏
β>0

〈β, φ〉−2
[
2 sin

(〈β, φ〉
2p

)]2−N N∏
j=1

[
2 sin

(
〈β, φ〉
2αjp

)]
.

(4.5.91)

As we will see directly, the exponential term involving Tr(φ2) in e(p, φ) describes the quan-

tum shift in the Chern-Simons level k.

Evaluating the Integral over h0

We are finally left to consider the integral over h0 in (4.5.45). We first observe that the

norm (ψ,ψ) appearing in the exponent of the integrand there is given explicity by

(ψ,ψ) = −
∫
M
κ∧dκTr(φ2)− 2pa ,

= −
(
d

P

)
Tr(φ2)− 2pa .

(4.5.92)

In passing to the second line of (4.5.92), we use the fact that φ is constant so that the

integral over M simply evaluates to c1(L) = d/P . Second, we recall from Section 3 that

the moment map at the trivial connection satisfies

〈µ, ψ〉 = (γ0, ψ) = a . (4.5.93)

Hence the integral over h0 takes the explicit form

Z(ε)
∣∣∣
{0}

=
(2πε)

Vol(G)

∫
h0

[
dp

2π

] [
da

2π

] [
dφ

2π

]
e(p, φ) exp

[
−ia+ iεpa+

iε

2

(
d

P

)
Tr(φ2)

]
.

(4.5.94)
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We now evaluate the integral over a, which is easy since a only appears in the exponent

of the integrand in (4.5.94). From a previous identity (4.4.32), this integral produces the

delta function 2π δ(1− εp).

In turn, we use the delta function to perform the integral over p, setting p = 1/ε. In the

process, we cancel the explicit factor of 2πε which appears in the normalization of (4.5.94),

and the integral over h0 simplifies to an integral over g,

Z(ε)
∣∣∣
{0}

=
1

Vol(G)

∫
g

[
dφ

2π

]
e(ε−1, φ) exp

[
iε

2

(
d

P

)
Tr(φ2)

]
. (4.5.95)

Because the integrand of (4.5.95) is invariant under the adjoint action on g, we can

apply the classical Weyl integral formula to reduce the integral over g to an integral over

the Cartan subalgebra t, in which form we make contact with the results in [17,81]. In its

infinitesimal version, the Weyl integral formula states that, if f is a function on g invariant

under the adjoint action, then

∫
g

[dφ] f(φ) =
1
|W |

Vol(G)
Vol(T )

∫
t

[dφ]
∏
β>0

〈β, φ〉2 f(φ) . (4.5.96)

Here |W | is the order of the Weyl group of G, and the product over the positive roots β of

G appearing on the right of (4.5.96) is a Jacobian factor.

Applying (4.5.96) and recalling the form of E in (4.5.91), we rewrite (4.5.95) explicitly

as

Z(ε)
∣∣∣
{0}

= e(− iπ
2
η0(0)) 1

|W |
1

Vol(T )

(
ε√
P

)∆T
∫

t

[dφ] exp
[
iε

2

(
d

P

)(
1 +

ε čg

2π

)
Tr(φ2)

]
×

×
∏
β>0

[
2 sin

(
ε 〈β, φ〉

2

)]2−N N∏
j=1

[
2 sin

(
ε 〈β, φ〉

2αj

)]
.

(4.5.97)

We finally make the change of variables φ→ εφ to remove some of the extraneous factors

of ε in front of (4.5.97), so that

Z(ε)
∣∣∣
{0}

= exp
(
− iπ

2
η0(0)

)
1
|W |

1
Vol(T )

(
1√
P

)∆T

×

×
∫

t

[dφ] exp
[
i

2εr

(
d

P

)
Tr(φ2)

] ∏
β>0

[
2 sin

(〈β, φ〉
2

)]2−N N∏
j=1

[
2 sin

(
〈β, φ〉
2αj

)]
.

(4.5.98)
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Here we introduce the usual renormalized coupling εr,

εr =
2π

k + čg

, (4.5.99)

to absorb the explicit shift in the coefficient of Tr(φ2) that arises from the phase δη and

that appears in (4.5.97).

As it stands, the integral over t in (4.5.98) has oscillatory, as opposed to exponentially

damped, behavior at infinity due to purely imaginary Gaussian factor involving Tr(φ2).

Such oscillatory Gaussian integrals typically arise in quantum field theory. For instance, we

saw an earlier example in our path integral manipulations at the end of Section 3.1, when

we integrated out the auxiliary scalar field Φ that appeared there.

Exactly as in Section 3.1, the standard analytic prescription to define such an oscillatory

integral is to shift the integration contour slightly off the real axis. That is, in the context

of (4.5.98) we consider the complexification t ⊗ C of the real Lie algebra t, and we define

(4.5.98) by integrating over t × (1 − iε) for a small real parameter ε. This iε prescription

has the added virtue that the new contour avoids any poles of the integrand on the real

axis that generally occur for N > 2.

Once we define (4.5.98) with the iε prescription, we are free to analytically continue

the contour to lie along the diagonal t × e−iπ/4, so that the Gaussian factor in (4.5.98)

becomes purely real and negative-definite. (We recall that Tr is a negative-definite form.)

To make contact with the result of Lawrence and Rozansky in (4.5.39), we finally make

another change of variables φ → iφ, so that

Z(ε)
∣∣∣
{0}

= exp
(
− iπ

2
η0(0)

)
1
|W |

(−1)(∆G−∆T )/2

Vol(T )

(
1

i
√
P

)∆T

×

×
∫
C×t

[dφ] exp
[
− i

2εr

(
d

P

)
Tr(φ2)

] ∏
β>0

[
2 sinh

(〈β, φ〉
2

)]2−N N∏
j=1

[
2 sinh

(
〈β, φ〉
2αj

)]
,

(4.5.100)

where C is the diagonal contour R× e
iπ
4 , as in (4.5.40).

We immediately see that (4.5.100) has the same form as our earlier expression in (4.5.41)

for the contribution from the trivial connection in the case G = SU(2), and with a suitable

choice of generator for t one can see that (4.5.100) agrees, up to the overall phase, with the
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result of Lawrence and Rozansky. For general G, our expression takes the same form as

that found by Mariño in [81].

The Phase of Z(ε)

We now discuss the phase of our result (4.5.100) for the contribution of the trivial

connection to the Chern-Simons path integral. In the simplest case that M is described by

a smooth line-bundle of degree d = n over CP1, we have computed this phase explicitly, as

determined by the constant

η0(0) = −d∆G

6
. (4.5.101)

Since we have not performed a careful analysis of the path integral phases that arise from

the η invariant when M is an orbifold, we restrict attention to the smooth case in the

following.

If we compare our result to the result (4.5.41) of Lawrence and Rozansky for gauge

group SU(2), we see that the overall phase of Z(ε) which arises naturally from localization

does not agree with the canonical phase. To be more precise, the result of Mariño [81] in

the case of a general gauge group G shows that the ratio exp (i δΨ) between the canonical

phase of Z(ε) and the phase we determine via (4.5.101) is given by

exp (i δΨ) = exp
(
iπ∆G

4
− iπ∆Gčg

12(k + čg)
θ0 +

iπ

2
η0(0)

)
,

= exp
(
iπ∆G

12
(3− d)− iπ∆Gčg

12(k + čg)
θ0

)
.

(4.5.102)

Here k is the Chern-Simons level. The quantity θ0 is defined in general in (4.5.36), and in

the smooth case we see that θ0 is given by

θ0 = 3− d . (4.5.103)

Hence the expression in (4.5.102) simplifies greatly to

exp (i δΨ) = exp
(

iπk∆G

12(k + čg)
(3− d)

)
. (4.5.104)

As we now explain, the phase discrepancy in (4.5.104) is not really a discrepancy at all,

and it merely reflects the fact that our path integral computation is effectively performed
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in a framing of M which differs from the canonical two-framing of Atiyah [103], which has

been used by Lawrence and Rozansky. We first recall from [15] that the partition function

of Chern-Simons theory generally transforms under a change in the framing of M by

Z −→ exp
(
iπc

12
s

)
Z , c =

k∆G

k + čg

, s ∈ Z . (4.5.105)

Here c arises as the central charge of the two-dimensional WZW model associated to the

groupG, and s is an integer that labels the shift in the frame. As a result, we see immediately

from (4.5.105) that the phase discrepancy (4.5.104) can be eliminated by a shift in s = (3−d)

units from the canonical framing of M .

Of course, in evaluating the Chern-Simons path integral by localization, we did not

explicitly specify any framing of M . Given the framing ambiguity (4.5.105) in Z, one might

naturally wonder how we managed to obtain a definite answer for the phase of Z in the

first place.

To answer this question, we observe generally that if M is an integral homology sphere,

then the choice of a locally-free U(1) action onM implies a canonical choice, up to homotopy,

of a framing of M . Concretely, a framing of M amounts to the choice of three linearly

independent, non-vanishing vector fields on M , and the U(1) action on M immediately

supplies us with one such vector field, the generating vector field R of U(1). We decompose

the tangent bundle to M as TM = L⊕W , where L is a one-dimensional bundle generated

by R and W is the complement. We are left to make a choice for the other two vector fields,

which must span the rank two sub-bundle W of TM which lies in the kernel of the contact

form κ. The choice of these two vector fields amounts to a trivialization of W , so if the

Euler class of W is non-zero, W is non-trivial and our construction fails. However, since

the Euler class of W lies in the cohomology group H2(M,Z), which vanishes for an integral

homology sphere, W is automatically trivial in this case. Finally, because W has rank two,

possible changes of trivialization of W are classified by homotopy classes of maps of M to

SO(2). But for a homology sphere M (or even a rational homology sphere), the space of

maps to SO(2) is connected (as we recall below). So, given the choice of the original U(1)

action, we produce a unique framing of M up to homotopy.
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Parenthetically, to show that the space of maps M → SO(2) is connected, we let w = dθ

be an angular form on SO(2) ∼= S1 and we let m : M → SO(2) be any map. As H1(M ; R)

vanishes by assumption, m∗(w) vanishes in de Rham cohomology; hence m∗(w) = df for

some real-valued function f : M → R. We can now define a trivial homotopy from f to a

constant map fromM to R by simply setting ft = tf , 0 ≤ t ≤ 1. Now let π : R→ S1 ∼= R/2π

be the projection. Then setting mt = π ◦ ft, we get the desired homotopy from m to a

constant map from M to S1.

More generally, if M is not assumed to be a homology sphere, then W might be nontriv-

ial. To define the Chern-Simons invariant of a three-manifold M , however, it is not quite

necessary to have a framing of TM . It is enough to have a two-framing, a trivialization

of TM ⊕ TM . We claim that every Seifert fibration π : M → Σ determines a natural

two-framing on M (which might depend on the choice of π, as a given M may admit more

than one Seifert fibration). As TM ⊕TM = L⊕L⊕W ⊕W , and L has rank one, it suffices

to trivialize W ⊕W .

The trivialization of W ⊕W which we need is not arbitrary but must satisfy two con-

ditions. For the first condition, we observe that W ⊕W has a natural spin structure, the

spin bundle being the sum of exterior powers of W . On the other hand, any trivial bundle

associated to a vector space V also has a natural spin bundle associated to the Clifford

module C(V ), which is unique up to isomorphism. So a given trivialization of W ⊕ W

also determines a spin structure, and we require that this spin structure coincide with the

natural spin structure.

Second, since U(1) acts on the Seifert manifold M , we require that the trivialization of

W ⊕W be invariant under this action.

To show thatW⊕W is trivial in the first place, we note that by definitionW is a pullback

from some SO(2) bundle W0 over Σ. Hence W ⊕W is the pullback of U = W0 ⊕W0. The

rank four real bundle U has vanishing Stiefel-Whitney classes w1 and w2 (being valued in

Z2, they are killed by taking two copies of W0), so it is trivial and hence W ⊕W is also

trivial.
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A trivialization of W ⊕W compatible with the two conditions above exists, and it is

unique up to homotopy. To prove the uniqueness, we note that compatibility with a given

spin structure of a rank k real bundle U — in our application k = 4 — means that changes

of trivialization really come from maps to Spin(k) rather than SO(k). As πi(Spin(k)) = 0

for i ≤ 2, k ≥ 3, a trivial SO(k) bundle U over Σ of rank k ≥ 3 has up to homotopy only

one trivialization compatible with a given spin structure. So finally the Seifert fibration

π : M → Σ endows M with a natural two-framing (which may differ from its canonical

two-framing [103], which is determined by a different construction).

In sum, then, a Seifert fibration of a homology sphere M determines a natural trivial-

ization of the tangent bundle TM , which we will call the Seifert framing, and any Seifert

fibration π : M → Σ (even if M is not a homology sphere) determines a natural trivializa-

tion of TM ⊕ TM , which we will call the Seifert two-framing. If M is a Seifert homology

sphere, the Seifert two-framing just arises by applying the Seifert framing to each copy of

TM .

Now we consider in detail the illustrative example M = S3. S3 has no one natural

framing. However, if we identify it with the Lie group SU(2), then it does have two

equally natural framings, one which is left-invariant and one which is right-invariant. They

are exchanged by an orientation-reversing reflection of S3, so neither one is preferred. In

regarding S3 as a Seifert fibration over CP1, we write CP1 = S3/U(1), where U(1) is either

part of the left action of SU(2) on itself or part of the right action. For either choice of

U(1), our construction produces a framing that is canonically determined by the choice

of U(1) generator and so is invariant under any symmetry that commutes with U(1). If

the U(1) is part of the left SU(2), then it commutes with the right SU(2) and so we get

the right-invariant framing; and likewise if the U(1) is part of the right SU(2), we get the

left-invariant framing.

We naturally expect that the phase of Z in our computation of the Chern-Simons path

integral is based on the Seifert framing. In view of our direct computation of the phase

of Z, the Seifert two-framing of M must differ from the canonical two-framing of [103] by
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s = (3 − d) units. We now give a simple proof of this fact in the case M = S3 and d = 1

(though we will not be careful about the sign of the shift).

When M = S3, the canonical two-framing of [103] can be described as follows. It is

the trivialization of TM ⊕ TM that comes from the left-invariant framing on, say, the first

copy of TM and the right-invariant framing on the second. (This is the unique reflection-

invariant two-framing of S3, so it must be the canonical two-framing.) On the other hand,

the Seifert framing of M is (for a suitable choice of fibration π : S3 → CP1) the left-invariant

framing of TM , so the Seifert two-framing comes by applying the left-invariant framing to

each of the two copies of TM . Hence the comparison between the Seifert two-framing and

the canonical one is the same as the comparison between the left-invariant two-framing and

the right-invariant two-framing for a single copy of TM .

The right-invariant framing of S3 is determined by the basis of right-invariant one-forms

θ = dg g−1, while the left-invariant framing is determined by the basis of left-invariant one-

forms θ̂ = g−1dg. To compare the framings, we write θ = T θ̂T−1, where T is a map from

M to SO(3). Such a map has a “degree,” and this integer measures by how many units

the two framings differ. Clearly, in this case, T = g, so T is the “identity” map from

S3 ∼= SU(2) to itself. This map is of degree 1 as a map to SU(2). However, because the

structure group of the tangent bundle of M is SO(3) = SU(2)/Z2, we must actually count

the degree for maps to SO(3). The identity map to SU(2) descends to a map of degree 2

to SO(3), and this shows, as expected, that the Seifert two-framing of S3 differs from the

canonical two-framing by 3− d = 2 units.

To illustrate the role of the structure group SO(3), let us consider one more simple

example, which is M = SO(3) = S3/Z2. This is the case d = 2 of the lens space considered

above, so we expect the Seifert two-framing and the canonical two-framing to differ by

3− d = 1 unit. The comparison again reduces to comparing the right-invariant framing of

TM with the left-invariant one. So again we have to compare θ = dg g−1 with θ̂ = g−1dg.

We have θ = gθ̂g−1, where now g is the identity map from SO(3) to itself, which is of degree

1, showing that the two two-framings differ by one unit.
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For any d, the general analysis of framings by Freed and Gompf in [104] can be used to

check that the canonical two-framing and the Seifert two-framing on M differ by s = (3− d)

units.

4.5.3 Localization on a Smooth Component of the Moduli Space of Irre-

ducible Flat Connections

We now extend our work in the previous section to describe the local contribution to the

Chern-Simons path integral from a smooth componentM of the moduli space of irreducible

flat connections on a Seifert manifold M . We assume here for simplicity that M is described

by a line bundle L of degree n over a smooth Riemann surface Σ of genus g ≥ 1. The orbifold

case is also discussed by Rozansky in [80] but is somewhat more involved.

As we recall from Section 5.1,M is literally the moduli space of flat connections on the

trivial G-bundle over M such that the holonomy ρ(h) around the S1 fiber of M is a fixed

element of the center Γ of G. This moduli space is not smooth for arbitrary ρ(h) in Γ, but

it is smooth in certain cases. The main such case, and the case we consider here, arises

when the gauge group G is SU(r + 1), ρ(h) is a generator of Γ = Zr+1, and n and r + 1

are relatively prime. Under these conditions, ρ(h)n also generates Γ, andM is smooth and

can be identified with an unramified (r + 1)2g-fold cover of the moduli space M0 of flat

Yang-Mills connections on an associated principal bundle P over Σ with structure group

G = G/Γ. (G enters because when we project to G, ρ(h) projects to 1 and the representation

ρ becomes a pullback from Σ. But as the three-dimensional gauge group is really G, the

holonomies of ρ around one-cycles in Σ are defined as elements of G, not G; this leads to

the unramified cover.)

Our general discussion of non-abelian localization in Section 4 implies that the path

integral contribution fromM can be expressed entirely in terms of the cohomology ring of

M, or equivalentlyM0. One of the reasons that localization onM is interesting is that we

find in Chern-Simons theory a natural generalization of the cohomological formula (4.4.17)

for the path integral contribution from M0 in two-dimensional Yang-Mills theory.
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We recall from our discussion in Section 5.1 that a local symplectic neighborhood N

nearM in A is described by an equivariant bundle

F −→ N
pr−→M , (4.5.106)

where the normal fiber F takes the (by now familiar) form F = H×H0 (h	 h0 	 E0 ⊕ E1).

By assumption, the only gauge transformations which fix the irreducible flat connections

associated to points inM are constant gauge transformations by elements in the center Γ of

G, since the center of G always acts trivially in the adjoint representation. So the stabilizer

subgroup H0 in H is now given by

H0 = U(1)2 × Γ , (4.5.107)

where we recall that the torus U(1)2 arises from the two extra generators in H relative to

G.

Also, we recall that the vector spaces E0 and E1 are now given over a point ofM by

E0 =
⊕
t6=0

H0
∂
(Σ, ad(P )⊗ Lt) =

⊕
t≥1

H0
∂
(Σ, ad(P )⊗ (Lt ⊕ L−t)) ,

E1 =
⊕
t6=0

H1
∂
(Σ, ad(P )⊗ Lt) =

⊕
t≥1

H1
∂
(Σ, ad(P )⊗ (Lt ⊕ L−t)) .

(4.5.108)

The Canonical Symplectic Integral Over N

Having described the local geometry near M in A, we next consider the canonical

symplectic integral over N . This integral takes the form

Z(ε)
∣∣∣
M

=
2πε ·Vol(U(1)2)

Vol(H)

∫
h×N

[
dφ

2π

]
exp

[
Ω− i 〈µ, φ〉 − iε

2
(φ, φ) + tDλ

]
, (4.5.109)

where we include in the normalization of (4.5.109) the prefactor from (4.5.10). To define the

integral over the non-compact directions in N , we also include in (4.5.109) the localization

form tDλ.

Our goal now is to reduce the integral over h × N in (4.5.109) to an integral over the

moduli space M itself. We have already discussed a problem of this sort in Section 4.2,

when we considered the path integral contribution from irreducible flat connections in two-

dimensional Yang-Mills theory. As we briefly recall, in the case of Yang-Mills theory the
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fiber F in (4.5.106) is modelled on the cotangent bundle T ∗H (with H being the group of

gauge transformations in that case), so that N retracts equivariantly onto a principal H-

bundle PH over the the moduli spaceM0. Because H acts freely on PH , the H-equivariant

cohomology of the total space PH can be identified with the ordinary cohomology of the

quotient PH/H =M0, so H∗
H(PH) ∼= H∗(M0). In particular, the H-equivariant cohomol-

ogy classes of [Ω−i 〈µ, φ〉] and [−1
2(φ, φ)] on PH pull back from ordinary cohomology classes

Ω and Θ of degrees two and four onM0, and we apply this fundamental fact to reduce the

symplectic integral in Yang-Mills theory to an integral overM0.

In the case of Chern-Simons theory, the group H ≡ H no longer acts freely on N , but we

can still apply much the same logic as for the case of Yang-Mills theory. Here a subgroup H0

of H acts with fixed points on N , so N equivariantly retracts onto a bundle with fiber H/H0

overM. We denote the total space of this bundle by N0, so that H/H0 −→ N0 −→M.

Because N0 is an equivariant retraction from N , the H-equivariant cohomology ring

of N is the same as that of N0. As we explain in Appendix C, the formal properties of

equivariant cohomology further imply that the H-equivariant cohomology ring of N0 is

identified under pullback with the H0-equivariant cohomology ring ofM itself. So in total,

we have the relation H∗
H(N) ∼= H∗

H0
(M).

As a result, in precise analogy to the case of two-dimensional Yang-Mills theory, the H-

equivariant cohomology classes of [Ω−i 〈µ, φ〉] and [−1
2(φ, φ)] which appear in the symplectic

integral over N can be identified as the pullbacks fromM of elements in the ring H∗
H0

(M).

To identify the elements of H∗
H0

(M) which pull back to these classes appearing in the

symplectic integral over N , we note that H∗
H0

(M) has a very simple structure. As we also

explain in Appendix C, because H0 acts trivially on M, H∗
H0

(M) is given by the tensor

product of the ordinary cohomology ring H∗(M) ofM with the H0-equivariant cohomology

ring H∗
H0

(pt) of a point. Thus, H∗
H0

(M) = H∗(M)⊗H∗
H0

(pt).

Finally, our previous discussion of the Cartan model of equivariant cohomology explicitly

identifies the H0-equivariant cohomology ring of a point with the ring of invariant functions

on the Lie algebra h0. Thus, all elements of H∗
H0

(M) can be written as sums of terms



225

having the form x · f(ψ), where x is an ordinary cohomology class on M and f(ψ) is an

invariant function of ψ in h0.

With our concrete description of H∗
H0

(M), we can immediately identify the elements of

this ring which pull back to the H-equivariant classes [Ω − i 〈µ, φ〉] and [−1
2(φ, φ)] on N .

Let us decompose the Lie algebra h of H as a sum h = (h	 h0)⊕ h0. As a result, we write

φ = ϕ+ p+ a, where ϕ is an element of h 	 h0, which can be identified as the Lie algebra

of G, and, in the same notation from Section 3.4, p and a are elements of the Lie algebra

h0 of H0.

We then identify the H-equivariant classes on N appearing in (4.5.109) with correspond-

ing H0-equivariant classes onM via

Ω− i 〈µ, φ〉 ←→ Ω − i a ,

−1
2
(φ, φ) ←→ nΘ + pa .

(4.5.110)

We abuse notation slightly in the first line of (4.5.110). On the left, Ω is the symplectic

form on A restricted to N , and on the right Ω is the induced symplectic form on M (or

equivalently M0), exactly as in our discussion of two-dimensional Yang-Mills theory. In

identifying the dependence of this degree two class in H∗
H0

(M) on p and a, we use the

fact, evident from the formula for µ in (4.3.50), that the value of the moment map 〈µ, φ〉

evaluated at a flat connection which pulls back from Σ is just the constant a appearing on

the right of the first line in (4.5.110).

Similarly, in the second line of (4.5.110), the degree four class Θ on M is the same

degree four class that appeared in our discussion of Yang-Mills theory. The identification

in (4.5.110) arises by writing the degree four invariant −1
2(φ, φ) in terms of ϕ, p, and a as

−1
2
(φ, φ) =

1
2

∫
M
κ∧dκTr(ϕ2) + pa =

n

2

∫
Σ
ωTr(ϕ2) + pa , (4.5.111)

where we recall that n is the degree of the line-bundle L over Σ which defines M and ω is a

unit-volume symplectic form on Σ. As in the case of two-dimensional Yang-Mills theory, the

term quadratic in the generators ϕ of the gauge symmetry is associated by the Chern-Weil

homomorphism to the degree four class Θ.
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With the identifications in (4.5.110), we can rewrite the symplectic integral over N as

Z(ε)
∣∣∣
M

=
2πε ·Vol(U(1)2)

Vol(H)

∫
h×N

[
dφ

2π

]
exp [(pr∗Ω) − ia (1− εp) + iεn (pr∗Θ) + tDλ] .

(4.5.112)

As in the case of localization at the trivial connection, the generator a acts trivially on all

of N and so does not appear in the localization form tDλ. So we can perform the integrals

over a and p exactly as before, and the integral over a produces a delta-function that sets

p = 1/ε. As a result, the symplectic integral reduces to the form

Z(ε)
∣∣∣
M

=
Vol(U(1)2)

Vol(H)

∫
(h	h0)×N

[
dφ

2π

]
exp

[
(pr∗Ω) + iεn (pr∗Θ) + tDλ

∣∣∣
p=1/ε

]
.

(4.5.113)

The only term in (4.5.113) which does not pull back from M is the localization term

tDλ, so we are left to integrate tDλ over the fiber F of N . In the case of two-dimensional

Yang-Mills theory, with F = T ∗H, this integral gave a trivial factor of unity. In Chern-

Simons theory, the result is much more interesting.

An Equivariant Euler Class From F

To evaluate (4.5.113), we consider the following integral,

I(ψ) =
1

Vol(H)

∫
F̃

[
dφ

2π

]
exp [tDλ] , F̃ = (h	 h0)× F , ψ ∈ h0 . (4.5.114)

Here we let ψ = p+ a be an arbitrary element of h0, though in general the generator a will

not appear in (4.5.114) since a acts trivally on N , and we set p = 1/ε at the end of the

discussion, as in (4.5.113).

Of course, in Section 4.3 we computed this integral over the abstract model for F . There

we assumedM to be a point, and we found the result

I(ψ) =
1

Vol(H0)
det

(
ψ

2π

∣∣∣
E0

)
det

(
ψ

2π

∣∣∣
E1

)−1

, ψ ∈ h0 . (4.5.115)

Unfortunately, we cannot apply this result directly to the case at hand. When F is fibered

over a non-trivial moduli space M, then I(ψ) will generally involve cohomology classes on

M which are associated to the twisting of the bundle and which our previous computation

did not detect.
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To compute I(ψ) in (4.5.114), one approach is simply to generalize the abstract local-

ization computation in Section 4.3 to allow for a non-trivial moduli space M. We perform

this computation in Appendix D. However, we can also make an immediate guess, on the

basis of mathematical naturality, for what the generalization of the formula (4.5.115) must

be when M is non-trivial. This guess relies on a more intrinsic topological interpretation

of the result (4.5.115) even in the case that M is a point. For this reason, it turns out to

be much more illuminating to “guess” the generalization of (4.5.115) rather than simply to

compute, so we pursue this approach now.

Let us think about what our result for I(ψ) really means in the case that M = pt.

Abstractly, the data which enter the formula (4.5.115) are the group H0, which acts trivially

on M, and the finite-dimensional unitary representations E0 and E1 of H0. In general, to

say that E is a representation of H0 is the same thing as to say that E is an H0-equivariant

bundle over a point, so if we like, we can consider E0 and E1 as H0-equivariant bundles

overM = pt.

This language is useful, since whenever we have a vector bundle (even a vector bundle

over a point!) an extremely natural set of topological invariants to consider are the char-

acteristic classes of the bundle. In our context, we naturally consider the H0-equivariant

characteristic classes of E0 and E1 as H0-equivariant bundles over M = pt. (Although we

will not require the generalization here, we refer the reader to Chapter 8.5 of [99] for a gen-

eral discussion of equivariant characteristic classes.) These characteristic classes are valued

in the H0-equivariant cohomology ring of M — since M is a point, this ring is the ring of

invariant functions on the Lie algebra h0 of H0.

If E is a unitary representation of H0 and we consider E as an H0-equivariant bundle

over a point, then the H0-equivariant characteristic classes of E have a simple description.

We let U(E) be the unitary group acting on E. Since H0 acts in a unitary fashion on

E, the relevant characteristic classes of E to consider are the equivariant Chern classes.

As is well known, the ordinary Chern classes of a vector bundle are associated via the

Chern-Weil homomorphism to the generators ci of the ring of invariant polynomials on
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the Lie algebra of the unitary group. To describe the corresponding H0-equivariant Chern

classes of E, we observe that, since E is a unitary representation of H0, we have an induced

map H0 −→ U(E). Consequently, any invariant polynomial on the Lie algebra of U(E)

pulls back to an invariant polynomial on the Lie algebra h0 of H0. The pullbacks of the

generators ci to invariant polynomials on h0 are then the H0-equivariant Chern classes of

E. In particular, if the action of H0 on E is non-trivial, then the equivariant Chern classes

of E can also be non-trivial, despite the fact that E is a bundle over only a point.

The invariant polynomials appearing in I(ψ), namely

eH0(pt, E0) ≡ det
(
ψ

2π

∣∣∣
E0

)
, eH0(pt, E1) ≡ det

(
ψ

2π

∣∣∣
E1

)
, (4.5.116)

arise from determinants. The Chern-Weil homomorphism associates the determinant to the

top Chern class, so by our discussion above the invariant polynomials in (4.5.116) can be

characterized intrinsically as the H0-equivariant top Chern classes, or equivalently Euler

classes, of E0 and E1 as equivariant bundles over a point. Thus, when M is a point, we

write I(ψ) in (4.5.115) intrinsically as

I(ψ) =
1

Vol(H0)
eH0(pt, E0)
eH0(pt, E1)

. (4.5.117)

More generally, if E is an H0-equivariant vector bundle over a complex manifold M,

then we can still consider the H0-equivariant Euler class eH0(M, E) of E, which takes

values in the H0-equivariant cohomology ring of M. If H0 acts trivially on M (but not

necessarily trivially on E), we have already identified this cohomology ring as a product

H∗
H0

(M) ∼= H∗(M)⊗H∗
H0

(pt). We describe eH0(M, E) in this case explicitly below.

In our application to Chern-Simons theory, the infinite-dimensional vector spaces E0

and E1 in (4.5.108) determine associated H0-equivariant bundles over the moduli space

M, on which H0 in (4.5.107) acts trivially. Given our intrinsic interpretation of I(ψ)

when M is a point, we certainly expect that the integral over F in (4.5.114) produces the

natural generalization of (4.5.117), involving the H0-equivariant Euler classes of the bundles

associated to E0 and E1 overM. That is,

I(ψ) =
1

Vol(H0)
eH0(M, E0)
eH0(M, E1)

. (4.5.118)
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As our direct computation in Appendix D shows, this formula is correct.

We remark that the appearance of the equivariant Euler class of the bundle E1 in the de-

nominator of (4.5.118) is quite standard. This class appears in precisely the same way in the

classic Duistermaat-Heckman formula [19] for abelian localization, as was explained in [20].

The essentially new feature of the formula (4.5.118) is the appearance of a corresponding

Euler class from E0 in the numerator.

We set

e(ψ) =
eH0(M, E0)
eH0(M, E1)

. (4.5.119)

Then from (4.5.113), (4.5.114), and (4.5.118), the local contribution from M in Chern-

Simons theory is given abstractly by

Z(ε)
∣∣∣
M

=
1
|Γ|

∫
M
e(p)

∣∣∣
p=1/ε

exp (Ω + iεnΘ) . (4.5.120)

In arriving at (4.5.120), we note that the prefactor Vol(U(1)2) in (4.5.113) cancels against

a corresponding factor in Vol(H0) from I(ψ). This cancellation leaves the factor 1/|Γ| in

(4.5.114), where |Γ| is the order of the center Γ of G.

As we recall in writing (4.5.120), since the generator a in h0 acts trivially on N ,

e(ψ) ≡ e(p) depends only on p in h0. Once we set p = 1/ε in (4.5.120), e(ε−1) will be-

come an ordinary cohomology class on M. As in the case of localization at the trivial

connection, our computation now reduces to determining explicitly this class.

More About the Equivariant Euler Class

Before we evaluate the equivariant Euler classes of the infinite-dimensional bundles

corresponding to E0 and E1, we first give a more explicit description of the equivariant

Euler class in a simpler, finite-dimensional situation. To make contact with Chern-Simons

theory, we assume abstractly that H0 is a torus which acts trivially on a complex manifold

M, and we assume that E is a complex representation of H0 which is fibered over M

to determine an associated H0-equivariant bundle. Our goal is now to give a concrete

topological formula for eH0(M, E), which we will then apply to evaluate e(ψ) in (4.5.119)

for Chern-Simons theory.
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In general, eH0(M, E) incorporates both the algebraic data associated to the action of

H0 on E as well as the topological data that describes the twisting of E overM. To encode

the data related to the action of H0 on E, we decompose E under the action of H0 into a

sum of one-dimensional complex eigenspaces

E =
dimE⊕
j=1

Eβj
, (4.5.121)

where each βj is a weight in h∗0 which describes the action of H0 on the eigenspace Eβj
.

To encode the topological data associated to the vector bundle determined by E over

M, we apply the splitting principle in topology, as explained for instance in Chapter 21

of [52]. By this principle, we can assume that the vector bundle determined by E over M

splits equivariantly into a sum of line-bundles associated to each of the eigenspaces Eβj
for

the action of H0. Under this assumption, we let xj = c1(Eβj
) be the first Chern class of the

corresponding line-bundle. These virtual Chern roots xj determine the total Chern class of

E as

c(E) =
dimE∏
j=1

(1 + xj) . (4.5.122)

In particular, the ordinary Euler class of E overM is then given by

e(M, E) =
dimE∏
j=1

xj . (4.5.123)

The equivariant Euler class eH0(M, E) is now determined in terms of the weights βj

and the Chern roots xj . Since H0 acts trivially onM, we recall that eH0(M, E) is defined

as an element of H∗
H0

(M, E) = H∗(M)⊗H∗
H0

(pt). Thus, eH0(M, E) will be a function of

ψ ∈ h0 with values in the cohomology of M. Explicitly, the H0-equivariant Euler class of

E overM is given by

eH0(M, E) =
dimE∏
j=1

(
i 〈βj , ψ〉

2π
+ xj

)
. (4.5.124)

We see that this expression is a natural generalization of the ordinary Euler class (4.5.123)

of E. Also, whenM is only a point, the Chern roots xj do not appear in (4.5.124) for dimen-

sional reasons, and the product over the weights βj in (4.5.124) reproduces the determinant

of ψ acting on E as in (4.5.116).
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Evaluating e(p)

We now evaluate e(p) for Chern-Simons theory. We set p = 1/ε only at the very end

of the computation. First we recall that the complex vector spaces E0 and E1 appearing in

(4.5.119) arise from the Dolbeault cohomology groups of the bundles ad(P ) ⊗ Lt over Σ,

with

E0 =
⊕
t6=0

H0
∂
(Σ, ad(P )⊗ Lt) =

⊕
t≥1

H0
∂
(Σ, ad(P )⊗ (Lt ⊕ L−t)) ,

E1 =
⊕
t6=0

H1
∂
(Σ, ad(P )⊗ Lt) =

⊕
t≥1

H1
∂
(Σ, ad(P )⊗ (Lt ⊕ L−t)) .

(4.5.125)

We also recall that the action of H0 on E0 and E1 is determined by the operator p£R, whose

action in turn only depends on the grading t in (4.5.125). We naturally decompose E0 and

E1 under the action of H0, and we consider the finite-dimensional eigenspaces

E(t)
0 = H0

∂
(Σ, ad(P )⊗ Lt) , E(t)

1 = H1
∂
(Σ, ad(P )⊗ Lt) . (4.5.126)

The abelian group H0 acts canonically on both E(t)
0 and E(t)

1 with eigenvalue −2πit.

In terms of this decomposition, the quantity e(p) is given by the following infinite prod-

uct,

e(p) =
∏
t6=0

[
eH0(M, E(t)

0 )

eH0(M, E(t)
1 )

]
=
∏
t≥1

[
eH0(M, E(t)

0 ) · eH0(M, E(−t)
0 )

eH0(M, E(t)
1 ) · eH0(M, E(−t)

1 )

]
. (4.5.127)

Here eH0(M, E(t)
0 ) and eH0(M, E(t)

1 ) denote the H0-equivariant Euler classes of the finite-

dimensional bundles determined by E(t)
0 and E(t)

1 overM.

Our basic strategy to evaluate the product in (4.5.127) is to deduce a recursive relation

between the equivariant Euler classes of E(t)
0 , E(t−1)

0 , E(t)
1 , and E(t−1)

1 . So far, we have

only specified the line-bundle L topologically, by specifying its degree n. The holomorphic

structure of L really was not important. Now we want to pick a convenient holomorphic

structure on L to simplify our computation. We pick n arbitrary points σ1, . . . , σn on Σ

and we take L to be O(σ1 + . . .+ σn).

With this choice of L, we have the following short exact sequence of coherent sheaves
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on Σ,

0 −→ adC(P )⊗ Lt−1 −→ adC(P )⊗ Lt −→
n⊕
i=1

adC(P )|σi
−→ 0 . (4.5.128)

Here t is any integer, and adC(P )|σi
denotes the skyscraper sheaf associated to the fiber

of adC(P ) over the point σi. The appearance of this skyscraper sheaf explains our need to

work a bit more generally with coherent sheaves, as opposed to more innocuous bundles.

Associated to this short exact sequence we have the usual long exact sequence in sheaf

cohomology,

0 −→ H0(Σ, adC(P )⊗ Lt−1) −→ H0(Σ, adC(P )⊗ Lt) −→
n⊕
i=1

H0(Σ, adC(P )|σi
) −→

−→ H1(Σ, adC(P )⊗ Lt−1) −→ H1(Σ, adC(P )⊗ Lt) −→ 0 .
(4.5.129)

Since a skyscraper sheaf has no higher cohomology, we observe that H1(Σ, adC(P )|σi
) = 0

for the last term of (4.5.129).

Each cohomology group appearing in (4.5.129) can be considered as the fiber of an

associated holomorphic bundle over the moduli spaceM, and the exactness of the sequence

(4.5.129) implies the exactness of the corresponding sequence of bundles on M. Except

for the single term involving the skyscraper sheaf, we see that the bundles which appear in

(4.5.129) are those associated to E(t−1)
0 , E(t)

0 , E(t−1)
1 , and E(t)

1 . In analogy to (4.5.126), we

set

V(i) = H0(Σ, adC(P )|σi
) . (4.5.130)

Over M, V(i) also fibers as a holomorphic bundle. Although the holomorphic structure

of V(i) depends on σi, its topology, which is all we will care about, does not (as is clear

from the fact that the points σi can be moved continuously), so we just write V for any

of the V(i). Thus, the exact sequence in (4.5.129) implies the following exact sequence of

associated bundles on M,

0 −→ E(t−1)
0 −→ E(t)

0 −→ V
⊕n −→ E(t−1)

1 −→ E(t)
1 −→ 0 . (4.5.131)

This sequence is an exact sequence of bundles onM, but we need an exact sequence of

H0-equivariant bundles onM, such that the maps in the sequence are compatible with the
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action of H0. Because H0 acts with different eigenvalues on the equivariant bundles E(t−1)
0

and E(t)
0 , and similarly on E(t−1)

1 and E(t)
1 , the canonical action of H0 is not compatible with

the maps in (4.5.131).

To fix this problem, we note that we are free to consider actions of H0 on E(t)
0 and E(t)

1

other than the canonical action. That is, we consider H0-equivariant bundles overM whose

fibers are still given by the cohomology groups H0
∂
(Σ, ad(P )⊗ Lt) and H1

∂
(Σ, ad(P )⊗ Lt)

but where the action of H0 is not the canonical action fixed by t. In fact, so long as H0

acts uniformly on the fiber, we can take H0 to act with any eigenvalue.

Thus we let E(t)
0,m and E(t)

1,m denote the H0-equivariant bundles over M whose fibers are

determined by t as before but where H0 acts with eigenvalue −2πim for some integer m.

In this notation, the bundles E(t)
0 and E(t)

1 with the canonical action of H0 are E(t)
0,t and E(t)

1,t .

We similarly denote by Vm the H0-equivariant bundle associated to V for which H0 acts

uniformly on the fiber with eigenvalue −2πim.

The exact sequence in (4.5.131) on M now determines a corresponding exact sequence

of H0-equivariant bundles,

0 −→ E(t−1)
0,m −→ E(t)

0,m −→ (Vm)⊕n −→ E(t−1)
1,m −→ E(t)

1,m −→ 0 . (4.5.132)

Since the action of H0 is the same on every term in this sequence, the maps are trivially

compatible with the group action.

We now recall that a fundamental property of the equivariant Euler class is that it

behaves multiplicatively with respect to an exact sequence of equivariant bundles, just like

the ordinary Euler class. Thus, if E1, E2, and E3 are H0-equivariant bundles on M which

fit into an exact sequence whose maps respect the action of H0,

0 −→ E1 −→ E2 −→ E3 −→ 0 , (4.5.133)

then the H0-equivariant Euler classes of these bundles satisfy the relation

eH0(M, E2) = eH0(M, E1) · eH0(M, E3) . (4.5.134)

More generally, given an exact sequence of arbitrary length,

0 −→ E1 −→ E2 −→ · · · −→ E2N −→ E2N+1 −→ 0 , (4.5.135)
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the relation (4.5.134) generalizes in the natural way, with

eH0(M, E2) · · · eH0(M, E2N ) = eH0(M, E1) · · · eH0(M, E2N+1) . (4.5.136)

We apply this multiplicative property of the equivariant Euler class to the exact sequence

in (4.5.132). For the following, it is very natural to introduce the ratio of equivariant Euler

classes,

Q(t)
m ≡

eH0(M, E(t)
0,m)

eH0(M, E(t)
1,m)

 , (4.5.137)

so that e(p) is given by

e(p) =
∏
t6=0

Q(t)
t . (4.5.138)

In terms of Q(t)
m , the multiplicative relation (4.5.134) applied to (4.5.132) implies that

Q(t)
m = Q(t−1)

m · [eH0(M,Vm)]n . (4.5.139)

Expanding the recursive relation (4.5.139), we find

Q(t)
m = Q(0)

m · [eH0(M,Vm)]nt . (4.5.140)

What has this work gained us? As we now explain, we can give a very concrete expression

for the quantity on the right of (4.5.140). By definition, the bundles overM which determine

the ratios Q(0)
±t have fibers

E(0)
0 = H0

∂
(Σ, adC(P )) , E(0)

1 = H1
∂
(Σ, adC(P )) . (4.5.141)

By our assumption that all points in the moduli space M correspond to irreducible con-

nections, E(0)
0 = 0. Further, as we mentioned in Section 4.3, E(0)

1 is naturally identified

with the holomorphic tangent bundle TM of the moduli space itself, so E(0)
1 = TM. We

introduce the convenient notation E(0)
1,t ≡ TMt to indicate the H0-equivariant version of

TM. Because of this observation, we can apply the relations (4.5.138) and (4.5.140) to

rewrite e(p) entirely in terms of the equivariant bundles TMt and Vt,

e(p) =
∏
t6=0

1
eH0(M, TMt)

· [eH0(M,Vt)]nt . (4.5.142)
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Let us make the factors appearing on the right in (4.5.142) more explicit. To this end,

we introduce the Chern roots $j of TM, where j = 1 , . . . ,dimM, and the Chern roots

νl of V, where l = 1 , . . . , rkV. Since V arises from the fiber of the adjoint bundle adC(P ),

the rank of V is simply rkV = dimG ≡ ∆G. As in our general discussion of the equivariant

Euler class, the Chern roots $j and νl are “virtual” degree two classes in H∗(M) which

are defined in terms of the total Chern classes of TM and V as

c(TM) =
dimM∏
j=1

(1 +$j) , c(V) =
∆G∏
l=1

(1 + νl) . (4.5.143)

In terms our these Chern roots, our general description of the equivariant Euler class in

(4.5.124) implies that

eH0(M, TMt) =
dimM∏
j=1

(−itp + $j) , eH0(M,Vt) =
∆G∏
l=1

(−itp + νl) . (4.5.144)

The terms in (4.5.144) which involve p arise via the infinitesimal action of H0 on the fibers

of TMt and Vt. We recall that H0 acts infinitesimally as p£R = −2πitp.

Together, (4.5.142) and (4.5.144) imply the following formal expression for e(p),

e(p) =
∏
t6=0

[
dimM∏
j=1

1
(−itp + $j)

] [
∆G∏
l=1

(−itp + νl)
nt

]
. (4.5.145)

This infinite product represents the determinant of a first-order operator D acting on E0	E1,

where

D =
1
2π

(p£R + iR) . (4.5.146)

Here R is the curvature operator acting on E0 and E1 as bundles over M, as appears in

the computation in Appendix D, and “	” indicates that we actually take the inverse of the

determinant of D acting on E1.

The determinant in (4.5.145) is only a formal expression, and to define it we must choose

some regularization procedure. For instance, we considered the determinant of a similar

operator D0 in our computation at the trivial connection in Section 5.2,

D0 =
1
2π

(p£R − [φ, · ]) . (4.5.147)
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In that case, we defined the determinant of D0 analytically, using the zeta-function to define

its absolute value and the eta-function to define its phase.

We follow a similar strategy to define the determinant of D, or more explicitly the

infinite product in (4.5.145). To start, we find it useful to rewrite the product in (4.5.145)

by pulling out an overall factor of p,

e(p) = pdimM ∏
t6=0

[
dimM∏
j=1

(
−it +

(
$j

p

))−1
] [

∆G∏
l=1

(
−it +

(
νl
p

))nt ]
. (4.5.148)

In passing from (4.5.145) to (4.5.148), we use as in Section 5.2 the classical Riemann zeta-

function to define the trivial, but infinite, product over p which arises from (4.5.145),

∏
t≥1

p−2 dimM = exp (−2 dimM · ln p · ζ (0)) = pdimM . (4.5.149)

(There is no contribution from the factors in (4.5.145) which are associated to V due to a

cancellation between the terms for ±t.) Thus, we are left to consider the determinant of

the rescaled operator D′,

D′ =
1
2π

(
£R + i

R
p

)
, (4.5.150)

which represents the infinite product appearing in (4.5.148) and which depends on p and

the Chern roots only in the combinations $j/p and νl/p.

One interesting distinction between the operator D, or equivalently D′, and the operator

D0 which appeared previously is that whereas D0 is an anti-hermitian operator, with a

purely imaginary spectrum, the operator D has no particular hermiticity properties and its

spectrum has no particular phase. This is manifest in the product (4.5.148), since −it is

imaginary but both the Chern roots and p are real. In terms of (4.5.150), both £R and R

are anti-hermitian operators, but we have an explicit factor of ‘i’ in front of R. Because

D′ is neither hermitian nor anti-hermitian, we will have to generalize the zeta/eta-function

regularization technique which we applied to define the determinant of D0 in Section 5.2.

Before we supply a definition for the determinant of D′, or equivalently for the products

in (4.5.148), let us consider what general properties our definition should possess. To start,
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we factorize the product in (4.5.148) into the two infinite products below,

fM(z) =
∏
t6=0

dimM∏
j=1

(−it + z$j)
−1 ,

fV(z) =
∏
t6=0

∆G∏
l=1

(−it + zνl)
nt ,

(4.5.151)

where z = 1/p is now a formal parameter.

The expressions in (4.5.151) are ill-defined as they stand. However, if we formally

differentiate log fM(z) and log fV(z) with respect to z a sufficient number of times, we

eventually obtain well-defined, absolutely convergent sums. For instance, in the case of

fM(z), we see that

d2

dz2
log fM(z) =

dimM∑
j=1

∑
t6=0

$2
j

(−it + z$j)
2 =

dimM∑
j=1

d2

dz2
log

[
(πz$j)

sinh (πz$j)

]
. (4.5.152)

The second equality in (4.5.152) follows from the same product identity (4.5.65) for sin(x)/x

as we applied in Section 5.2.

So any reasonable definition for fM(z) in (4.5.151) must be compatible with the relation

(4.5.152). In particular, upon integrating (4.5.152), we see that log fM(z) is determined up

to a linear function of z, and hence fM(z) is determined up to two arbitrary real constants

a0 and a1,

fM(z) = exp [a0 + a1z c1(TM)]
dimM∏
j=1

(πz$j)
sinh (πz$j)

. (4.5.153)

Here c1(TM) =
∑
j $j is the first Chern class of M. In deducing the form (4.5.153), we

have applied the fact, manifest from (4.5.151), that fM(z) can only depend on z and the

Chern roots$j in the combinations z$j , and we have also used the fact that only symmetric

combinations of the Chern roots have any real meaning — hence each Chern root $j must

appear with the same coefficient a1 in the exponential factor of (4.5.153). Comparing to

the product (4.5.151), we also note that fM(z) is formally real (for real z), so a0 and a1

must be real.

We can also apply this general analysis to fV(z) in (4.5.151). Here we observe that
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log fV(z) should satisfy

d3

dz3
log fV(z) =

∑
t6=0

∆G∑
l=1

2ntν3
l

(−it + zνl)
3 ,

=
∑
t≥1

∆G∑
l=1

[
2ntν3

l

(−it + zνl)
3 +

2ntν3
l

(−it − zνl)
3

]
,

= 0 .

(4.5.154)

In contrast to the case of fM(z), we must take three derivatives of log fV(z) to get a conver-

gent sum, due to the exponent nt appearing in (4.5.151). In passing to the second equality

of (4.5.154), we have simply paired terms for ±t. However, to deduce the cancellation in

the third line of (4.5.154), we must use some topological facts about the bundle V.

We recall that V is the bundle over M whose fibers are given by H0(Σ, adC(P )|σ) for

some point σ on Σ. This bundle is naturally the complexification of a real bundle overM,

namely the bundle whose fibers areH0(Σ, ad(P )|σ). Consequently, the non-zero Chern roots

of V are paired such that for each root ν there is a corresponding root ν ′ with ν ′ = −ν. This

fact implies that any odd, symmetric function of the Chern roots vanishes. In particular,

all odd Chern classes of V vanish.

We now consider a series expansion of the denominators in the second line of (4.5.154)

in terms of the nilpotent quantities zνl. Because of the relative signs in these denominators,

and because of the explicit cubic factor ν3
l in the numerators, all terms of even degree in

the Chern roots νl automatically cancel. However, by our observation about V above, the

remaining terms of odd degree in the νl cancel when we sum over roots.

From (4.5.154), we see that log fV(z) is determined up to a quadratic function of z.

Hence fV(z) is determined up to two real constants b0 and b2,

fV(z) = exp
[
ib0 + ib2z

2 Θ
]
. (4.5.155)

A term linear in z would necessarily appear with the first Chern class c1(V), which vanishes

by our observation above. Since c1(V) = 0, the only degree two class that can appear in

(4.5.155) is the characteristic class Θ. We also observe from the product (4.5.151) that
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fV(z) must be simply a phase (for real z), since under complex conjugation fV(z) goes to

f−1
V (z). This observation fixes the factors of ‘i’ in (4.5.155).

Having fixed the general forms (4.5.153) and (4.5.155) of fM and fV , we now compute

the undetermined constants. To do this, we must still decide how to define the determi-

nant of the operator D′ = (1/2π) [£R + i(R/p)]. Motivated by our work in Section 5.2, we

proceed as follows. First, although p is a positive, real variable in our problem, we will

define the determinant of D′ more generally for complex p. Second, once we allow p to be

complex, we impose the requirement that the determinant of D′ depend analytically on p.

In particular, if we evaluate the determinant for purely imaginary p, of the form p = i/y

for real y > 0 (the fact that we use 1/y is just for notational convenience later), then the

determinant is defined for real p > 0 by analytic continuation. Finally, when p = i/y, we

see that D′ = (1/2π) [£R + yR] is an anti-hermitian operator exactly like D0, and we can

use zeta/eta-function regularization to define the determinant of D′ for these values of p as

we did in Section 5.2.

In terms of fM and fV in (4.5.151), this definition of the determinant of D′ amounts to

the prescription to use zeta/eta-function regularization to define the products

fM(z = −iy) =
∏
t6=0

dimM∏
j=1

i

(t + y$j)
,

fV(z = −iy) =
∏
t6=0

∆G∏
l=1

(−i)nt (t + yνl)
nt .

(4.5.156)

We first ignore the factors of ‘i’ in (4.5.156) and we compute the absolute values of fM and

fV .

For instance,

|fM(−iy)| =
∏
t≥1

dimM∏
j=1

[
t2 − (y$j)

2
]−1

=
(

1
2π

)dimM
·
dimM∏
j=1

(πy$j)
sin(πy$j)

. (4.5.157)

Since the Chern roots $j are nilpotent, the terms in the first product in (4.5.157) are

manifestly positive. In passing to the second equality, we apply the same identities (4.5.65)

and (4.5.66) from Section 5.2. This form of |fM(−iy)| is clearly compatible with our general

expression (4.5.153).
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On the other hand, one can easily check that zeta-function regularization defines the

absolute value of fV to be trivial, for the same topological reason that we explained following

(4.5.154), so

|fV(−iy)| =
∏
t≥1

∆G∏
l=1

[
t + yνl
t − yνl

]nt
= 1 . (4.5.158)

We are left to compute the phases of fM(−iy) and fV(−iy). We define these using the

eta-function, as in Section 5.2. More precisely, we write

fM(−iy) = exp
(
− iπ

2
ηM

)
· |fM| , fV(−iy) = exp

(
− iπ

2
ηV

)
. (4.5.159)

Here ηM and ηV denote the eta-invariants which arise as the values at s = 0 of the eta-

functions ηM(s) and ηV(s) abstractly associated to the hermitian operator iD′ as it acts on

E0 	 E1,

iD′ =
i

2π
(£R + yR) . (4.5.160)

This operator should be compared to the corresponding operator which we considered when

computing the phase of e(p, φ) at the trivial connection,

i

2π

(
£R −

[
φ

p
, ·
])

. (4.5.161)

We recall from Section 5.2 that the eta-invariant associated to the operator in (4.5.161)

acquires an anomalous dependence on (φ/p) which produces the finite shift in the Chern-

Simons level. In the case at hand, a similar anomalous dependence of ηM and ηV on yR

gives rise to the same shift in the level.

Concretely, the eta-functions ηM(s) and ηV(s) are given by the following regularized

sums over the factors which appear in fM(−iy) and fV(−iy) in (4.5.156) and which represent

the eigenvalues λ of iD′,

ηM(s) =
∑
t6=0

dimM∑
j=1

− sign(λ(t,$j)) · |λ(t,$j)|−s , λ(t,$j) = t+ y$j ,

ηV(s) =
∑
t6=0

∆G∑
l=1

nt · sign(λ(t, νl)) · |λ(t, νl)|−s , λ(t, νl) = t+ yνl .

(4.5.162)

The various constants appearing in (4.5.162) are perhaps most clear if we compare to the

formal expressions for fM(−iy) and fV(−iy) in (4.5.156). Thus, the overall minus sign in
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ηM(s) arises because i as opposed to −i appears in fM(−iy), which is in turn associated

to the fact that we consider E0	E1 as opposed to E0⊕E1. Similarly, the multiplicity factor

nt appears in ηV(s) because of the factor (−i)nt in fV(−iy).

Since the Chern roots are nilpotent, we note that sign(λ(t, x)) = sign(t), where x = $j

or x = νl as the case may be. Thus, we write the regularized sums in (4.5.162) explicitly as

ηM(s) =
∑
t≥1

dimM∑
j=1

−1
(t + y$j)

s +
∑
t≥1

dimM∑
j=1

1
(t − y$j)

s ,

ηV(s) =
∑
t≥1

∆G∑
l=1

nt

(t + yνl)
s +

∑
t≥1

∆G∑
l=1

nt

(t − yνl)
s .

(4.5.163)

As in Section 5.2, we are left to evaluate these sums at s = 0.

In fact, we have already done all of the required computation. The sum which defines

ηM(s) is the same as the sum (4.5.77) which we evaluated in the warmup computation on

S1 in Section 5.2. Thus we find

ηM(0) = 2y
dimM∑
j=1

$j = 2y c1(TM) . (4.5.164)

In deducing the second equality, we note that the trace over all Chern roots of TM is the

first Chern class of TM.

To evaluate ηV(0), we perform a computation precisely isomorphic to our computation

of e(p, φ) in Section 5.2. Applying our earlier results, we find

ηV(0) = η0 + ny2
∆G∑
l=1

ν2
l , η0 = −n∆G

6
. (4.5.165)

Here η0 is the same constant that appeared in our localization computation at the trivial

connection. As for the term quadratic in νl, this term arises in the same way as the term

quadratic in φ in (4.5.89).

We now recall from Section 5.2 that we applied a Lie algebra identity (4.5.90) involving

čg to rewrite the term quadratic in φ in (4.5.89) in terms of the natural quadratic invariant

1
2Tr(φ2). Under the Chern-Weil homomorphism, by which we identify the Chern roots νl

with the eigenvalues of the curvature operator iR/2π, we can apply the same Lie algebra
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identity to rewrite the degree four class
∑
l ν

2
l in terms of the class Θ that already appears

in the integral over M. We find from the identity (4.5.90) that

∆G∑
l=1

ν2
l =

čgΘ
π2

, (4.5.166)

and ηV(0) becomes

ηV(0) = η0 +
nčg

π2
y2Θ . (4.5.167)

With these results (4.5.164) and (4.5.167), we evaluate fM(−iy) and fV(−iy) to be

fM(−iy) = exp (−iπy c1(TM)) ·
(

1
2π

)dimM
·
dimM∏
j=1

(πy$j)
sin(πy$j)

,

fV(−iy) = exp
(
− iπ

2
η0 −

inčg

2π
y2Θ

)
.

(4.5.168)

Upon setting z = −iy, these expressions assume the same form as the general expressions

in (4.5.153) and (4.5.155).

We recall that p is related to y via p = i/y. So e(p), as determined by the analytic

continuation of (4.5.168), is finally given by

e(p) = pdimM · fM(p) · fV(p) ,

= exp
(
− iπ

2
η0 +

π

p
c1(TM) +

inčg

2πp2
Θ
) (

p

2π

)dimM dimM∏
j=1

(π$j/p)
sinh(π$j/p)

.

(4.5.169)

As we will see, this formula incorporates the famous shift in the Chern-Simons level k, and

leads to agreement with the results of Rozansky.

Some Further Remarks

Our use of zeta/eta-function regularization to define e(p), and especially the analytic

continuation we performed in p, is somewhat ad hoc. The need for this analytic continuation

is an unfortunate consequence of the ‘i’ that appears in the Cartan differential D = d+ iιV

that we introduced in Section 3. Had we used the more standard mathematical definition of

D, with D = d+ ιV , then the basic symplectic volume integral on a symplectic manifoldM

would turn out to be
∫
M exp(iΩ) rather than the more usual

∫
M exp(Ω). The mathematical

version of D would also clash with some conventions of physicists about reality conditions
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for fermions. However, it would clarify our discussion of the determinants, since if all factors

of i are omitted from the localization form λ, then the operator iD′ would come out to be

hermitian. Hence, the zeta/eta-function definition of determinants could be implemented

directly, with no need for artificial analytic continuation.

The zeta/eta-function definition is really most natural for oscillatory bosonic integrals

such as appear in Chern-Simons theory. For example, if we consider a bosonic integral

Z =
∫
DΦ exp(i(Φ,MΦ)), (4.5.170)

for some indefinite real symmetric operator M , and we regularize Z by the Feynman pre-

scription M →M+iε, for small positive ε, then the phase of Z is naturally exp(iπη(M)/2).

This is really why, in Chern-Simons theory, eta-invariants appear in the one-loop correc-

tions. If we take D = d+ ιV , and take the localization form λ to be purely imaginary rather

than purely real, then all integrals in Appendix D are oscillatory Gaussian integrals rather

than real Gaussians. In this framework, zeta/eta-function regularization provides a natural

definition of the determinants that appear in our localization computation.

Our general analysis of d2 log fM(z)/dz2 and d3 log fV(z)/dz3 showed that any reason-

able definition of these determinants would differ from the zeta/eta-function approach by

adding a constant to η0 and changing the coefficients of c1(TM) and Θ in (4.5.169). We

will see shortly that the coefficients as written in (4.5.169) do agree with Chern-Simons

theory; in fact, they show up in Chern-Simons theory at the one-loop level. Ultimately, to

justify the coefficients in (4.5.169) on an a priori basis requires a more rigorous comparison

between the localization procedure and Chern-Simons theory.

The Contribution From M in Chern-Simons Theory

Having evaluated e(p), we now set p = 1/ε and substitute (4.5.169) into our expression

(4.5.120) for the contribution from M to the Chern-Simons path integral. Thus,

Z(ε)
∣∣∣
M

=
1
|Γ|

exp
(
− iπ

2
η0

) (
1

2πε

)dimM
×

×
∫
M

exp
[
Ω + πε c1(TM) + iεn

(
1 +

εčg

2π

)
Θ
] dimM∏

j=1

[
πε$j

sinh (πε$j)

]
.

(4.5.171)
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Since we are dealing with an integral, by making changes of variables we can rewrite

the integrand of (4.5.171) in different ways which illuminate different features of this result.

In the form at hand, we note that one can define a non-trivial scaling limit of (4.5.171)

such that the Chern-Simons coupling ε goes to zero (so that the level k goes to ∞) and

the degree n of L goes to ∞ with εn held fixed. In this limit, which physically decouples

all the higher Kaluza-Klein modes of the gauge field, we see directly that the contribution

from M in Chern-Simons theory has the same form as the simple expression (4.4.17) for

the corresponding contribution fromM0 in two-dimensional Yang-Mills theory.

To express (4.5.171) more compactly, we now rescale all elements of the cohomology

ring ofM by a factor (2πε)q/2, where q is the degree of the given class. So for instance, the

degree two Chern roots $j scale as $j → 2πε$j . This trivial change of variables cancels

the prefactor involving ε in (4.5.171) and reduces the product over Chern roots in (4.5.171)

to a well-known characteristic class, the Â-genus ofM.

We recall that the Â-genus ofM is given in terms of the Chern roots of TM as

Â(M) =
dimM∏
j=1

$j/2
sinh($j/2)

. (4.5.172)

In a sense, the appearance of the Â-genus in our problem is not so surprising, since it

appears in roughly the same way as in the standard path integral derivations of the index

theorem. See [108] for a derivation of the index theorem that applies abelian localization

to a sigma model path integral; at least formally, that computation shares many features

of our computation here.

In terms of the Â-genus, our expression in (4.5.171) simplifies to

Z(ε)
∣∣∣
M

=
1
|Γ|

exp
(
− iπ

2
η0

) ∫
M
Â(M) exp

[
1

2πε
Ω +

1
2
c1(TM) +

in

4π2εr
Θ
]
. (4.5.173)

Here we have absorbed the contribution from ηV(0) into a renormalization of the coupling

εr = 2π/(k + čg) that appears in front of Θ.

Of course, we would like to write (4.5.171) entirely in terms of the renormalized coupling

εr. To do so, we apply a theorem of [109] which relates the first Chern class c1(TM) to the
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symplectic form Ω in the case of gauge group G = SU(r + 1). In this case,

c1(TM) = 2(r + 1) Ω′ , (4.5.174)

where Ω′ = Ω/(2π)2 is the standard, integral symplectic form on M. Happily, the dual

Coxeter number čg of G = SU(r + 1) is also given by čg = r + 1, so we see that (4.5.173)

can be expressed very simply using εr,

Z(ε)
∣∣∣
M

=
1
|Γ|

exp
(
− iπ

2
η0

) ∫
M
Â(M) exp

[
1

2πεr

(
Ω +

in

2π
Θ
)]

. (4.5.175)

This expression is of the same form as the corresponding result of Rozansky in [80].

We close with the following amusing observation. On general grounds, the Â-genus of

M is related to the Todd class Td(M) ofM by

Td(M) = exp
(

1
2
c1(TM)

)
Â(M) . (4.5.176)

So from (4.5.173), we see that an alternative expression for the path integral contribution

from M is

Z(ε)
∣∣∣
M

=
1
|Γ|

exp
(
− iπ

2
η0

) ∫
M

Td(M) exp
[
kΩ′ +

in

4π2εr
Θ
]
. (4.5.177)

Although our derivation of (4.5.177) is not valid for the trivial case M = S1 × Σ, we see

that, upon setting n = 0, our result (4.5.177) takes the same form as the index formula

(4.1.1) for Z(ε) in the trivial case. It is satisfying to see that both the index formula (4.1.1)

and the two-dimensional Yang-Mills formula (4.4.17) are reproduced as special limits of our

general result.



Appendix A

Brief Analysis to Justify the

Localization Computation in

Chapter 4.4

In this appendix, we show that the quantity Q · Z ′(ε) computed using λ′ in (4.4.91) of

Chapter 4.4.3 agrees with the same quantity defined using λ, so that Z ′(ε) as defined by

integrating (4.4.91) agrees with Z(ε). Thus we consider the following one-parameter family

of invariant forms, interpolating from λ to λ′ on F ,

Λ(s) = s λ+ (1− s)λ′ , s ∈ [0, 1] , (5.0.1)

and to start we consider the corresponding family Z(ε, s) of integrals over F ,

Z(ε, s) =
1

Vol(H)

∫
h×F

[
dφ

2π

]
exp

[
Ω− i 〈µ, φ〉 − ε

2
(φ, φ) + tDΛ(s)

]
. (5.0.2)

If this integral is convergent for all s and also continuous as a function of s, then Z(ε, s)

is independent of s, so that Z(ε) = Z(ε, 1) = Z(ε, 0) = Z ′(ε). This fact follows by differ-

entiating the integrand of (5.0.2) with respect to s, which produces a total derivative on

F .

We thus need to consider the basic convergence and continuity of Z(ε, s). Very broadly,

divergences in the integral over F in (5.0.2) can only arise from integration over the non-

246
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compact fibers h⊥ and E1 which sit over the compact orbit H/H0. However, the first,

degree one term of λ′ in (4.4.77) is precisely of the canonical form to define localization on

the fiber h⊥, exactly as in our computation on T ∗H. Thus, no divergence arises from the

integral over h⊥, and we need only analyze the integral over the complex vector space E1.

As we have already seen, precisely this integral over E1 leads to the dangerous, possibly

singular factor in I(ψ) in (4.4.84). Furthermore, in our application to Yang-Mills theory,

the corresponding vector space E1 describes the set of gauge-equivalence classes of unstable

modes of the Yang-Mills action, and we expect the integral over these modes to be the most

delicate.

We now analyze directly the symplectic integral over E1 that arises from (5.0.2). To set

up notation, we recall that E1 is a complex vector space, dimC E1 = d1, with an invariant,

hermitian metric (·, ·) and an invariant symplectic form Ω̃. In terms of holomorphic and

anti-holomorphic coordinates vn and vn on E1, Ω̃ is given by

Ω̃ = − i
2

(dv, dv) = − i
2
dvn∧dvn . (5.0.3)

If ψ is an element of h0, then the corresponding vector field V (ψ) on E1 is described by

δv = ψ · v , (5.0.4)

or in coordinates, δvn = ψnmv
m, and similarly for the conjugate components of V (ψ).

From (5.0.3) and (5.0.4), we see that the moment map µ̃ for the action of H0 on E1 is

explicitly given by

〈µ̃, ψ〉 =
i

2
(v, ψ · v) . (5.0.5)

By our assumption that (·, ·) is invariant under (5.0.4), ψ is anti-hermitian and the expres-

sion in (5.0.5) is real.

Of course, the complex structure J acts on E1 as J(dv) = −i dv and J(dv) = +i dv.

Thus, since

S =
1
2
(µ̃, µ̃) =

1
8
(v, v)2 , (5.0.6)

we see that the canonical one-form λ = J dS is given by

λ = − i
4

(v, v) ((v, dv)− (dv, v)) . (5.0.7)
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On the other hand, from (4.4.77) we see that λ′ on E1 reduces to

λ′ = i (ψ · v, dv) . (5.0.8)

Thus, if we restrict the integral in (5.0.2) to E1 and keep only the terms relevant in the

limit of large t (after which we set t = 1), we just consider the reduced integral

Zred(ε, s) =
∫

h0×E1

[
dψ

2π

]
exp

[
−i (γ0, ψ)− ε

2
(ψ,ψ) + sDλ+ (1− s) Dλ′

]
. (5.0.9)

Of the original integral over the full Lie algebra h of H, only the integral over the subalgebra

h0 is relevant to the integral over E1.

We first perform integral over ψ in h0. To illustrate the essential behavior of the integral

over E1, we assume as before that h0 = R has dimension one. Explicitly, Dλ and Dλ′

depend on ψ as

Dλ = dλ+
1
2

(v, v) (v, ψ · v) , (5.0.10)

and

Dλ′ = i (ψ · dv, dv)− (ψ · v, ψ · v) , (5.0.11)

so the integral over ψ is purely Gaussian. Upon performing this integral over ψ, we find

that Zred is formally given by

Zred(ε, s) =
∫
E1

(4πA)−
1
2 exp

[
s dλ+

1
4

(
J,A−1 J

)]
, (5.0.12)

where A is defined in terms of the normalized generator T0 of h0 by

A =
ε

2
+ (1− s) (T0 · v, T0 · v) , (5.0.13)

and J in h0 is defined by

J = −i γ0 +
s

2
(v, v) (v, T0 · v) T0 + i (1− s) (T0 · dv, dv) T0 . (5.0.14)

We are now interested in the behavior of the integral in (5.0.12) for large |v|, where the

non-compactness of E1 is essential. So long as s 6= 0, then the integrand of (5.0.12) falls

off at least as fast as exp [−(v, v)3] for large v, due to the term quartic in v in (5.0.14) that
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arises from λ and the term quadratic in v in (5.0.13) that arises from λ′. Thus, the integral

over E1 is strongly convergent for s 6= 0 and depends smoothly on s away from 0. Of

course, this integral is also non-Gaussian and cannot be simply expressed using elementary

functions.

However, when s = 0, the integrand of (5.0.12) is no longer suppressed exponentially

and decays only as a power law at infinity. This behavior arises because the bosonic term of

Dλ′ is quadratic in ψ, whereas the bosonic term of Dλ is linear in ψ. Because the integrand

of (5.0.12) decays only as a power law for s = 0, the integral over E1 does not generally

converge. The prefactor proportional to A−1/2 decays like 1/|v|, and for s = 0 the measure

arising from the quadratic term (J,A−1 J) in the exponential of (5.0.12) is of the form

1/|v|d1 d2d1v. Consequently, the integral over E1 behaves as
∫
d2d1v 1/|v|(d1+1) for large |v|

and diverges.

However, we now consider the same analysis as applied to Q · Z(ε, s). By our analysis

above, we are only concerned with the potentially dangerous behavior near s = 0 and for

large |v|, for which we must consider the following integral over E1,(
−2

∂

∂ε

) 1
2
d1

· Zred(ε, s) =
∫
E1

(
−2

∂

∂ε

) 1
2
d1 (

(4πA)−
1
2 exp

[
s dλ+

1
4

(
J,A−1 J

)])
.

(5.0.15)

To analyze (5.0.15), we first note that ε only appears in the quantity A in (5.0.13), and

A satisfies (
−2

∂

∂ε
+

1
(1− s)

∂2

∂vi ∂vi

)
A = 0 . (5.0.16)

Thus, we can rewrite (5.0.15) as(
−2

∂

∂ε

) 1
2
d1

· Zred(ε, s) =
∫
E1

(
− 1

(1− s)
∂2

∂vi ∂vi

) 1
2
d1

×

×
(

(4πA)−
1
2 exp

[
s dλ+

1
4

(
J,A−1 J

)])
.

(5.0.17)

We now apply simple scaling arguments to (5.0.17) to show that this integral is conver-

gent at s = 0 and behaves continuously as s→ 0. First, at s = 0, we immediately see that

this integral behaves for large |v| as
∫
d2d1v 1/|v|(2d1+1) and hence is convergent, though

just barely.
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To discuss the limit s → 0, we assume s is fixed at a small, non-zero value. All terms

involving s which we previously dropped for s = 0 now appear in the argument of the

exponential in (5.0.17). For large |v|, this argument behaves schematically as

s |v|2 (dv, dv) +
(γ0, γ0)
|v|2

+ s |v|2 (γ0, T0) +
(dv, dv)
|v|2

(γ0, T0) + s2 |v|6 +
(dv, dv)2

|v|2
. (5.0.18)

Since our argument is only a scaling argument, we ignore all signs and constants in writing

(5.0.18), though we do recall that the dominant term s2 |v|6 leads to an exponential decay

of the integrand at large v.

We see three terms in (5.0.18) which vanish in the limit s→ 0. Of these terms, we can

ignore the quadratic term s |v|2(γ0, T0), since it is subleading compared to s2 |v|6 for fixed

s and large |v|.

However, we need to consider the effect of the measure s2 |v|4 (dv, dv)2, which dominates

the measure (dv, dv)2/|v|2 at s = 0 by a relative factor of s2 |v|6. We also need to consider

the terms which arise when the derivative ∂2/∂vi ∂v
i in (5.0.17) acts on exp (−s2 |v|6) to

bring down the term s2 |v|4, which dominates 1/|v|2 by the same relative factor s2|v|6.

These terms lead to contributions depending on s in (5.0.17) which behave for large |v|

as ∫
E1

d2d1v
1

|v|2d1+1
s2n |v|6n exp (−s2|v|6) , n = 1, . . . , d1 . (5.0.19)

Since these integrals only converge for s 6= 0, when the integrand is exponentially damped,

one might have worried that these terms could cause the limit s→ 0 to be singular. However,

we see by scaling that the expression in (5.0.19) behaves as s+1/3 for all n and hence the

asymptotic contributions to (5.0.17) from these terms still go continuously to zero as s→ 0.

Finally, apart from the terms in (5.0.19) with n ≥ 1, the integrand of (5.0.17) is a

smooth function F (v, s) of v and s which behaves asymptotically for large |v| as

F (v, s) ∼ 1
|v|2d1+1

exp (−s2 |v|6) . (5.0.20)

Thus, F (v, s) decays exponentially for s 6= 0, is integrable for all s, and is dominated by

F (v, 0), which has a pure power law decay at infinity. On general grounds, the integral of
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F (v, s) over E1 then depends continously on s, and, for the purpose of computing Q ·Z(ε),

we can validly interpolate from λ to λ′ on F .



Appendix B

More About Localization at Higher

Critical Points: Higher Casimirs

In this appendix, we continue from Chapter 4.4.3 our general discussion of non-abelian

localization at higher critical points. We recall that we obtained a formal expression for the

canonical symplectic integral over F in terms of an integral over the Lie algebra h0 of the

stabilizer group H0,

Z(ε) =
1

Vol(H0)

∫
h0

[
dψ

2π

]
det

(
ψ

2π

∣∣∣
E0

)
det

(
ψ

2π

∣∣∣
E1

)−1

exp
[
−i (γ0, ψ)− ε

2
(ψ,ψ)

]
.

(6.0.1)

As we discussed, this integral generally fails to converge when the ratio of determinants

in the integrand has singularities in h0. In the special case H0 = U(1), relevant for higher

critical points of SU(2) Yang-Mills theory, we deal with this problem by computing not

Z(ε) itself but a higher derivative Q · Z(ε), where Q ≡ Q(∂/∂ε) is a differential operator

which we choose so that the action of Q on the integrand of (6.0.1) brings down sufficient

powers of (ψ,ψ) to cancel any poles that would otherwise appear.

However, if we consider higher critical points of Yang-Mills theory with general gauge

group G, then the rank of H0 can be arbitrary, and the determinants in (6.0.1) cannot

generally be expressed as a functions of only the quadratic invariant (ψ,ψ). Consequently,

we cannot simply differentiate Z(ε) with respect to ε to cancel the poles in (6.0.1).
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Nevertheless, by applying some simple ideas about the localization construction, we can

generalize our discussion in Section 4.3 of Chapter 4 to the case that H0 has higher rank.

As in Section 4.1, we recall the form of the localization integral:

Z(ε) =
1

Vol(H)

∫
h×X

[
dφ

2π

]
exp

[
Ω− i 〈µ, φ〉 − ε

2
(φ, φ)

]
. (6.0.2)

In the case of Yang-Mills theory, H = G(P ) and X = A(P ) in the notation of Section 2.

Let us consider what natural generalizations of (6.0.2) exist. Of the terms appearing in

(6.0.2), the quantity Ω− i 〈µ, φ〉 is distinguished as an element of the equivariant cohomol-

ogy ring of X, since it represents the equivariant extension of the symplectic form on X.

However, nothing really distinguishes the quadratic function −1
2(φ, φ) among all invariant

polynomials of φ, and we are free to consider a general symplectic integral over h × X of

the form

Z[V ] =
1

Vol(H)

∫
h×X

[
dφ

2π

]
exp [Ω− i 〈µ, φ〉 − V (φ)] . (6.0.3)

Here V (φ) is any invariant polynomial on h such that the integral over h remains convergent

at large φ. We can take

V (φ) =
∑
j

εj Cj(φ), (6.0.4)

where Cj are the Casimirs of H – the homogeneous generators of the ring of invariant

polynomials on h – and εj are parameters. The standard localization technique can be

applied to evaluate this integral. The fact that V is not quadratic in φ leads to no special

complications.

In the case of Yang-Mills theory on a Riemann surface Σ with symplectic form ω, we

would write

V (φ) =
r∑
j=1

εj

∫
Σ
ω · Cj(φ) . (6.0.5)

We assume that the gauge group G has rank r, and now Cj(φ) are the Casimirs of G. We

associate to each generator a corresponding coupling εj . If we want to compare to standard

methods of studying two-dimensional Yang-Mills theory by cut and paste methods, we

should integrate over φ to express the theory in terms of the gauge field (and noninteracting

fermions) alone. Of course, if V (φ) is not quadratic, we can no longer perform the integral
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over φ in (6.0.3) as a Gaussian integral. Instead, if we abstractly introduce the Fourier

transform

exp
[
−V̂ (φ∗)

]
≡
∫

h

[
dφ

2π

]
exp [−i 〈φ∗, φ〉 − V (φ)] , (6.0.6)

which is an invariant function of φ∗ in the dual algebra h∗, then the generalized symplectic

integral over X takes the form

Z[V ] =
1

Vol(H)

∫
X

exp
(
Ω− V̂ (µ)

)
. (6.0.7)

In the case of Yang-Mills theory, we recall that µ = FA. So in that case, (6.0.7)

corresponds to a generalization of Yang-Mills theory in which the action is not the usual

Tr f2 (with f = ?F ) but Tr V̂ (f), for some more general function V̂ . The partition function

of this generalized Yang-Mills theory can be computed by the usual cut and paste methods

[100]. If G is simply-connected and we apply the same normalization conventions as we

used in (4.4.40) for the case G = SU(2), the generalized partition function is

Z[V ] = (Vol(G))2g−2
∑
R

1
dim(R)2g−2

exp(−V ′(R)), (6.0.8)

where V ′(R) is the energy of the representation R. (We are taking the area of Σ to be 1;

for a general area α, the exponential factor would be exp(−αV ′(R)).)

To compute the energy V ′(R), we start with the action V̂ (f) and compute the canonical

momentum Π = ∂V̂ /∂f . As usual, the energy is determined by the eigenvalue of the

Hamiltonian, which is the Legendre transform of the action V̂ (f). Thus, the Hamiltonian

is H = fΠ− V̂ (f), which must be extremized with respect to f and regarded as a function

of Π. After computing H(Π), Π is interpreted as the generator of the group G and taken

to act on the representation R to get the energy V ′(R).

Since the Legendre transform is a semiclassical approximation to the Fourier transform,

the Legendre transform approximately undoes the Fourier transform in (6.0.6), and hence

H(Π) = V (Π)+lower order terms. As discussed in [18], if the representation R has high-

est weight h, the precise formula needed to match with the localization computation is

V ′(R) = V (h+ δ), where the constant δ is half the sum of positive roots of the Lie algebra
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of G. This formula incorporates the difference between the Legendre transform and the

Fourier transform and other possible quantum corrections.

To generalize what we said in Section 4.3, we want to find a polynomial F (Cj) of the

Casimirs of H which when restricted to h0 is divisible by the dangerous factor in the denom-

inator, namely w(ψ) = det
(
ψ/2π|E1

)
. Then Q = F (−∂/∂εj) is a differential operator that

when acting on exp(−V ) will produce the factor F and cancel the denominator. Thus, Q

generalizes the operator ∂g−1/∂εg−1 that we used in Section 4.3 for two-dimensional SU(2)

gauge theory in genus g.

The dangerous factor w is an invariant polynomial on the Lie algebra of h0 or equiva-

lently, a polynomial on the maximal torus of H0 that is invariant under the Weyl group of

H0. This polynomial can be extended, though not canonically, to a polynomial w′ on the

maximal torus of H. We can pick the extension to be invariant under the Weyl group of

H0 but not necessarily under the Weyl group of H. However, by multiplying w′ by all its

conjugates under the Weyl group of H, we make a polynomial w̃ on the maximal torus of

H that is invariant under the Weyl group of H, and whose restriction to H0 is divisible by

w. The Weyl-invariant polynomial w̃ corresponds to the polynomial F (Cj) of the Casimirs

that was used in the last paragraph.

Finally, let us make this more explicit for Yang-Mills theory. The denominator factor

in (6.0.8) that we need to cancel is dim(R)2g−2, so it suffices to know that dim(R)2 is a

polynomial of the Casimirs. This can be proved using the Weyl character formula, dis-

cussed in §123 of [110], which provides a general formula for dim(R). Parametrizing the

representation Rh by a highest weight h,

dim(Rh) =
∏
β>0

(β, h+ δ)
(β, δ)

. (6.0.9)

The product in (6.0.9) runs over the positive roots β, and we recall that δ is a constant,

equal to half the sum of the positive roots. We regard this as a function of h′ = h+ δ.

The formula (6.0.9) exhibits a polynomial function d on the Cartan subalgebra of the Lie

algebra g of G such that dim(Rh) = d(h′). The polynomial d is not strictly invariant under

the action of the Weyl group on h′, but is invariant up to sign, so d2 is Weyl invariant.
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As such, d2 extends to an invariant polynomial on all of g, and thus a polyomial in the

Casimirs. Finally, we observe that the shift h → h′ = h + δ is the same renormalization

that we introduced for the potential V ′(Rh) = V (h + δ), so that by differentiating with

respect to the couplings of each Casimir in V ′ we can cancel the denominator dim(R)2g−2.



Appendix C

A Few Additional Generalities

About Equivariant Cohomology

Following the discussion in Section 5.3 of Chapter 4, we discuss in this appendix the identi-

fication of the H-equivariant cohomology of N0 with the H0-equivariant cohomology ofM,

a fact which fundamentally leads to the correspondence (4.5.110).

To start, we find it useful to employ another topological model of equivariant cohomol-

ogy, explained for instance in Chapter 1 of [99]. In this model, if X is any topological space

on which a group H acts, the H-equivariant cohomology ring of X is defined as the ordinary

cohomology ring of the fiber product XH = X ×H EH, where EH is any contractible space

on which H acts freely. Such an EH always exists, and the choice of EH does not matter,

since EH is unique up to H-equivariant homotopies. Thus, H∗
H(X) = H∗(XH).

As a simple example, if H acts freely on X, implying that X is a principal H-bundle over

X/H, then XH is equivalent to a product XH = (X/H)× EH. Since EH is contractible,

we see that H∗
H(X) = H∗(X/H), a fact we applied in our discussion of two-dimensional

Yang-Mills theory.

At the opposite extreme, when H acts trivially on X, then XH is also a product

XH = X ×BH, where BH = EH/H is the classifying space associated to the group H.

In this case, H∗
H(X) = H∗(X)⊗H∗(BH). However, by the definition of equivariant coho-
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mology above, the ordinary cohomology of BH is the H-equivariant cohomology of a point,

so that H∗
H(X) = H∗(X)⊗H∗

H(pt). For the latter factor, our description of the Cartan

model in Section 4.1 clearly identifies H∗
H(pt) with the ring of invariant functions on the

Lie algebra h of H.

In the case relevant for Chern-Simons theory, we suppose that X is a fiber bundle over

M with fiber H/H0 for some H. As a result, H acts on the fibers with isotropy subgroup

H0.

For the following, we want to realize X globally as a quotient Y/H0. Here Y is a

principal bundle over M with fiber H, so that H → Y →M, and we suppose that Y has

the following additional properties. First, we assume that H×H0 acts on Y , with H acting

on the fibers on the left and H0 on the right. As above, we also assume that Y/H0 = X. In

this situation, H and H0 both act freely on Y , the quotient Y/H beingM and the quotient

Y/H0 being X. Of course, H0 acts trivially on X.

We can now argue as follows. First, H∗
H×H0

(Y ) = H∗
H(X), as H0 acts freely on Y with

quotient X. On the other hand H∗
H×H0

(Y ) = H∗
H0

(M) because H acts freely on Y with

quotient M. Finally, as H0 acts trivially on M, H∗
H0

(M) = H∗(M) ⊗ H∗
H0

(pt). Putting

these facts together, we have our desired result that H∗
H(X) = H∗(M)⊗H∗

H0
(pt).

In general such a Y only exists rationally (which is good enough for de Rham cohomol-

ogy), but for our problem with Chern-Simons theory on a Seifert manifold, a natural Y can

be constructed as follows.

First of all, over any symplectic manifold A, a “prequantum line bundle” L is a unitary

line bundle with connnection whose curvature is the symplectic form. For Chern-Simons

theory, L exists and is unique up to isomorphism as A is just an affine space. We let L0 be

the bundle of unit vectors in L, a circle bundle over A.

In general, any connected Lie group of symplectomorphisms of a symplectic manifold

that has an invariant moment map lifts to an action on the prequantum line bundle. For

Chern-Simons theory on a Seifert manifold, the group G of gauge transformations does not

have a moment map (due to the obstruction arising from the loop group cocycle) but its
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central extension G̃ does. We recall that G̃ is an extension of G by an abelian subgroup

U(1)Z that acts trivially on A but has constant moment map equal to 1. In particular,

since G̃ has a moment map, G̃ acts on L, and hence on the subbundle L0. Under this action,

the subgroup U(1)Z acts freely by rotating the fibers of the fibration L0 → A.

Finally, the Hamiltonian group H that we really use for our quantization is a semidirect

product of G̃ with another abelian factor U(1)R that geometrically rotates the fibers of the

Seifert fibration. The group U(1)R acts on L and L0, but not freely. To get the desired

space Y on which U(1)R acts freely, we simply set Y = U(1) × L0, where U(1)R acts by

rotation on U(1) together with its natural action on L0. So in fact H0 = U(1)R × U(1)Z

acts freely on Y .

We now want to restrict this construction from A, the space of all connections, to N0, the

space of flat connections on which we localize and whose quotient N0/H isM, the moduli

space of gauge-equivalence classes of flat connections. We let Y0 be the restriction to N0 of

the fibration Y → A. So H ×H0 acts on Y0; H0 acts freely on Y0 with quotient N0, and H

acts freely on Y0 with quotientM. Finally, H0 acts trivially onM. With these observations,

the general argument presented above shows that H∗
H(N0) = H∗(M)⊗H∗

H0
(pt).



Appendix D

More About Localization at Higher

Critical Points: Localization Over

a Nontrivial Moduli Space

In this appendix, we consider the general case that our abstract model for F in Chapter

4 is fibered over a non-trivial moduli space M. Our goal is to compute the equivariant

cohomology class onM which is produced by the canonical symplectic integral over F ,

I(ψ) =
1

Vol(H)

∫
F̃

[
dφ

2π

]
exp [tDλ] , F̃ = (h	 h0)× F , ψ ∈ h0 . (8.0.1)

We begin with some geometric preliminaries. Very briefly, we recall that we model F as

a vector bundle with fiber h⊥⊕E1 over a homogeneous base H/H0. Here h⊥ = h	 h0 	 E0,

and explicitly,

F = H ×H0 (h⊥ ⊕ E1) . (8.0.2)

To describe the total space N of the fiber bundle F −→ N −→M, we introduce a

principal H-bundle PH overM. Besides the given action of H on PH , we assume that PH

also admits a free action of H0 which commutes with the action of H. As a result, we can

describe the bundle N concretely in terms of PH as

N = PH ×H0 (h⊥ ⊕ E1) . (8.0.3)
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Upon setting PH = H, where H acts on the right and H0 acts on the left, this model for N

reduces to the model for F itself, withM being a point.

Of course, the key ingredient in our localization computation is to choose a good repre-

sentative of the canonical localization form λ on N . As in Section 4.3, we introduce another

localization form λ′ which (under the same caveats as in Section 4.3 and Appendix A) is

homotopic to λ on N and takes the form

λ′ = λ′⊥ + λ′E0
+ λ′E1

, (8.0.4)

with
λ′⊥ = (γ , θ) ,

λ′E0
= −i

(
θE0 , gφg

−1 + iR(θ)
)
, R(θ) = dθ − 1

2
[θ, θ] ,

λ′E1
= i

((
gφg−1

)
h0

· v , dv − θh0 · v
)
.

(8.0.5)

In these expressions, we recall that γ is an element of h⊥, g is an element of H, φ is an

element of h, and v is an element of the vector space E1. Finally, θ is now a connection

on the principal H-bundle PH . In particular, θ is a globally-defined one-form on PH . As

usual, we let R(θ) denote the curvature of θ.

Our choice for λ′ is precisely analogous to the choice we made in Section 4.3 in the case

that PH = H, and in (8.0.4) we have simply grouped the terms in λ′ in a natural way

for the localization computation. The only term present in (8.0.5) which was not present

in Section 4.3 is the term involving the curvature R(θ) in λ′E0
. The curvature of θ is a

horizontal form on PH , meaning that it is annihilated by contraction with the vector fields

V (φ) which generate the action of H on PH , so this curvature term could not appear when

M was only a point. Equivalently, if the connection θ takes the global form θ = dg g−1 as

in Section 4.3, then R(θ) vanishes identically.

In (8.0.4) and (8.0.5) we have written λ′ as an invariant form on the direct product

PH × (h⊥ ⊕ E1), but one can check exactly as in Section 4.3 that λ′ descends under the

quotient by H0 to an invariant form on N .

Although λ′ is globally defined on N , we have written λ′ in coordinates on PH with

respect to a local trivialization of this bundle about some point m on the base M. The
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integral we perform will be an integral over the fiber Fm above this point m, and since m

is arbitrary, this local computation suffices to determine the cohomology class on M that

arises after we perform the integral over all the fibers of F −→ N −→M. In particular,

upon pulling θ back to the fiber Fm, θ takes the canonical form,

θ|Fm
= dg g−1 . (8.0.6)

However, since the curvature R(θ) can be non-zero, in general dθ 6= 1
2 [θ, θ] at points in the

fiber over m.

At this point, we repeat our earlier computation of Dλ′, allowing for the presence of the

curvature R(θ). We find

Dλ′⊥ = (dγ, θ) − i (γ, φ+ i dθ) ,

Dλ′E0
= −i (dθE0 , φ+ iR(θ)) + i (θE0 , [θ, φ+ iR(θ)]) − (φE0 , φ+ iR(θ)) ,

Dλ′E1
= i (φh0 · dv, dv) −

(
φh0 · v, (φ+ iR(θ))h0

· v
)

+ X ,

(8.0.7)

with

X = i
(
[θ, φ]h0

· v, dv
)

+ i

(
φh0 · v,

1
2

[θ, θ]h0
· v
)

mod θh0 . (8.0.8)

As before, in writing these expressions we make the change of variable from φ to gφg−1

at the end of the calculation to simplify the result. Also, the terms appearing in X are at

least of cubic order in the “massive” variables θ, v, and dv and so are irrelevant in the limit

t → ∞. Finally, we are free to work modulo terms involving θh0 since Dλ′ is a pullback

from the quotient PH ×H0 (h⊥ ⊕ E1).

We now compute directly the integral below in the limit t→∞,

I(φh0) =
1

Vol(H)

∫
F̃m

[
dφ

2π

]
exp

[
tDλ′⊥ + tDλ′E0

+ tDλ′E1

]
, F̃m = (h	 h0)× Fm .

(8.0.9)

This integral behaves essentially the same as the integral in Section 4.3, so we will be brief.

We first consider the integral over E1, which we perform as a Gaussian integral using

the terms from tDλ′E1
in the large t limit. Explicitly, the integral over E1 is given by∫

E1

exp
[
it (φh0 · dv, dv) − t

(
φh0 · v, (φ+ iR(θ))h0

· v
)

+ tX
]
. (8.0.10)
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Since X is of at least cubic order in the massive variables θ, v, and dv, this term can be

dropped from the integrand when t is large. Keeping the other terms quadratic in v and dv

in (8.0.10), the Gaussian integral over E1 immediately produces

det
(

1
2π

(φh0 + iR(θ)h0)
∣∣∣
E1

)−1

. (8.0.11)

We now integrate over both γ and φ in h⊥ = h	 h0 	 E0. We see from (8.0.7) that γ

still appears only linearly in tDλ′, so the integral over γ produces a delta-function of φ⊥,

where φ⊥ denotes the component of φ in h⊥. As is evident from the form of tDλ′⊥, this

delta-function sets φ⊥ = −idθ⊥. (As in Section 4.3, the factors of t cancel between the

integral over γ and the integral over φ⊥.)

We are left to integrate over φE0 and over the base H/H0 of Fm. Of course, upon

Taylor expanding the exponential exp (dγ, θ) from Dλ′⊥ to produce the measure for γ, we

also produce the canonical measure on the tangent directions to H/H0 lying in h⊥. So

infinitesimally we have only to integrate over the remaining tangent directions to H/H0

which lie in E0 in addition to φE0 .

So we are left to integrate over E0 using the terms in tDλ′E0
. This integral takes the

form ∫
E0

exp [−it (θE0 , [φh0 + iR(θ)h0 , θE0 ]) + t (R(θ)E0 ,R(θ)E0)]×

× exp [−2it (R(θ)E0 , φE0) − t (φE0 , φE0)] .
(8.0.12)

In deducing (8.0.12), we have expanded and simplified various terms in Dλ′E0
in (8.0.7).

For instance, the curvature term (R(θ)E0 ,R(θ)E0) arises from the linear combination of

terms (dθE0 ,R(θ))− (θE0 , [θ,R(θ)]) in Dλ′E0
. To see this, we rewrite this expression as

(dθE0 − [θ, θE0 ],R(θ)E0) ≡ (R(θ)E0 ,R(θ)E0), where “≡” indicates that the equality holds

modulo θh0 and θ⊥, which is good enough since these forms do not contribute to the integral

over E0.

In writing (8.0.12), we also note that when we set φ⊥ = −i dθ⊥ in Dλ′E0
, we effectively

cancel similar terms in Dλ′E0
which involve the components of the curvature R(θ) in h⊥.

So R(θ)⊥ does not appear in (8.0.12).
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We first perform the Gaussian integral over φE0 in (8.0.12). The result of this integral

produces a term proportional to exp [−t (R(θ)E0 ,R(θ)E0)] which precisely cancels the term

quadratic in the curvature R(θ)E0 in the first line of (8.0.12). Consequently, once we collect

factors of t and 2π exactly as in Section 4.3, the term quadratic in θE0 in (8.0.12) produces

another determinant,

det
(

1
2π

(φh0 + iR(θ)h0)
∣∣∣
E0

)
. (8.0.13)

Including the factor Vol(H)/Vol(H0) that arises from the integral overH/H0 and setting

φh0 ≡ ψ for notational simplicity, we find our final result for the integral in (8.0.9),

I(ψ) =
1

Vol(H0)
det

(
1
2π

(ψ + iR(θ)h0)
∣∣∣
E0

)
det

(
1
2π

(ψ + iR(θ)h0)
∣∣∣
E1

)−1

. (8.0.14)

Since both E0 and E1 are representations of H0, the associated bundles PH ×H0 E0 and

PH ×H0 E1 determine H0-equivariant bundles over M once we divide by the action of H

on PH . The determinants appearing in (8.0.14) are then the Chern-Weil representatives of

the H0-equivariant Euler classes of these bundles.
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