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Abstract

We employ a variety of ideas from geometry and topology to perform three new instanton
computations in gauge theory and string theory.

First, we consider supersymmetric QCD with gauge group SU(N,) and with N flavors.
In this theory, it is well known that instantons generate a superpotential if Ny = N, —1
and deform the moduli space of supersymmetric vacua if Ny = N.. We extend these results
to supersymmetric QCD with Ny > N, flavors, for which we show that instantons generate
a hierarchy of new, multi-fermion F-terms in the effective action.

Second, we revisit the question of which Calabi-Yau compactifications of the heterotic
string are stable under worldsheet instanton corrections to the effective space-time superpo-
tential. For instance, compactifications described by (0, 2) linear sigma models are believed
to be stable, suggesting a remarkable cancellation among the instanton effects in these the-
ories. We show that this cancellation follows directly from a residue theorem, whose proof
relies only upon the right-moving worldsheet supersymmetries and suitable compactness
properties of the (0,2) linear sigma model. We also extend this residue theorem to a new
class of “half-linear” sigma models. Using these half-linear models, we show that heterotic
compactifications on the quintic hypersurface in CP* for which the gauge bundle pulls back
from a bundle on CP* are stable.

Third, we study Chern-Simons gauge theory on a Seifert manifold M (the total space of
a nontrivial circle bundle over a Riemann surface). When M is a Seifert manifold, Lawrence
and Rozansky have shown from the exact solution of Chern-Simons theory that the partition

function has a remarkably simple structure and can be rewritten entirely as a sum of local
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“instanton” contributions from the flat connections on M. We explain how this empirical
fact follows from the technique of non-abelian localization as applied to the Chern-Simons
path integral. In the process, we show that the partition function of Chern-Simons theory
on M admits a topological interpretation in terms of the equivariant cohomology of the

moduli space of flat connections on M.
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Chapter 1

Introduction

Perturbation theory is a useful tool to describe quantitatively the behavior of weakly-
coupled, interacting quantum systems. However, even at weak coupling, certain important
and intrinsically quantum phenomena cannot be seen in perturbation theory.

As a simple example, consider a single bosonic particle of unit mass which moves along

the real axis in the double-well potential U(z) in Figure 1.1. We assume that the potential

U

|
1
X

Figure 1.1: Double-well potential

is invariant under the reflection + — —z, so that U(z) = U(—z), and in particular the

Taylor expansions of U(x) about the minima labelled 4 and z_ in Figure 1.1 coincide,

U(dzy) = %wz ot 4+, oy =+ (x—2y) . (1.0.1)



If we treat the higher order terms which we have omitted from (1.0.1) as perturbations, then
to all orders in A the quantum mechanical system possesses a pair of degenerate groundstates
whose wavefunctions are localized in the respective wells of U(z). We denote this pair of
states by [Q4).

On the other hand, one can prove by quite general arguments (see for instance Lecture
1 of [1]) that this quantum system actually has a unique groundstate |0), which must arise
from the symmetric, reflection-invariant combination [Q24) + |Q2_). Consequently, effects
which are non-perturbative in 4 and which are associated to quantum tunneling between
the wells necessarily lift the degeneracy of the system, which is an important qualitative
effect that cannot be seen at any order in perturbation theory.

As was explained long ago by Polyakov [2] and later amplified by Coleman in Chap-
ter 7 of his beautiful lectures [3] (on which the following exposition is based), the non-
perturbative effects which lift the degeneracy between the states |24) and |Q_) can be
understood — and even computed — semi-classically as instanton effects. Such instanton
effects are broadly the subject of this thesis, and as we illustrate here with this toy model,
the corresponding semi-classical analysis of quantum systems can provide powerful insight
into otherwise intractable, non-perturbative phenomena. These semi-classical ideas become
particularly important in the context of string theory or M-theory, for which a complete,

non-perturbative definition of the theory is generally lacking.

1.1 What Is an Instanton?

The essential idea of any instanton computation is simply to apply the stationary phase
approximation (or the method of steepest descent) to compute the Feynman path integral
for a given quantum system in its semi-classical limit. Although at first glance one might not
expect to learn much by using such a crude description of the path integral, the stationary
phase approximation can actually capture quite non-trivial information about the quantum
system.

As a concrete example, let us continue to consider the toy model of a particle moving



in the double-well potential of Figure 1.1. We wish to compute the splitting in energy
between the groundstate |0) and the first excited state |1) to leading order in h. We denote
this splitting by AE = E; — Ey, and our goal is to show directly that AFE is non-zero.
This computation turns out to be very illustrative of the general features of any instanton
computation, so we present it in detail. (The reader who wishes to proceed to matters more

immediately related to the thesis can skip to Section 2.)

Setting Up the Instanton Computation

We first recall how to extract the splitting AFE from the Feynman path integral de-
scription of this quantum system. As is standard, we denote by |2’) the position eigenstate
associated to a given point 2’ on the real axis. Then to extract the splitting AE from the
path integral, we consider the Euclidean Green’s function describing the propagation of the
particle from an initial point z; to a final point z; over a Euclidean time interval 7. This

propagator has the following path integral description,

T z(r/2)=mz¢ 1
(& exp (—H) i) = / Da(t) exp (— SE) . (1.1.1)
h z(—7/2)=x; h
Here H is the Hamiltonian associated to the potential U(z), Sg is the Euclidean action,
/2 1
Sp = / dt ['2+U(x)] , (1.1.2)
—7/2 2

and the path integral is formally defined as an integral over all paths x(t) starting at z; at
time ¢ = —3 and ending at xy at time t = 7.

If we know the propagator in (1.1.1), then we can use its expansion over all eigenmodes
|n) of H to study the spectrum of energies E,, since

lexp (<20 )lw) = 3 exp (=25, ) oyl nlas). (1.1.3)

n>0

To extract the splitting AE = FEy — Ey from the expression in (1.1.3), we note that the
groundstate |0) arises from the reflection-symmetric linear combination of the two pertur-
bative states |{21), and hence the excited state |1) arises from the anti-symmetric linear

combination of these states. In particular, the anti-symmetric state |a),

la) = |os) — [2_), (114)



is orthogonal to |0) but not to |1). Similarly, the symmetric state |s),
) = o) + o) (1.1.5)

is orthogonal to |1) but not to |0). So we see from (1.1.3) that when 7 is large,

(alexp (—TH/h)|a

|a) _ T
(s|exp (—rH/R)|s) P (—;-LAE) e (1.1.6)

Here c is an irrelevant constant that arises from the ratio |{a|1)|? - |(s|0)| 2, and the ellipses

n (1.1.6) denote terms which are exponentially suppressed relative to the given term at
large 7.

Finally, since the system is reflection-invariant, we note that

(wslexp (~2H I} = (ol exp (~2H )la-)
(24| exp (—;H)\x_) = (o_|exp (_;H)m).

Also, as we will show next, the propagators from x, to x_ and vice versa in the second line

(1.1.7)

of (1.1.7) are exponentially suppressed at small h relative to the propagators from = and
from x_ back to themselves in the first line of (1.1.7). With these facts, we can approximate

the left side of (1.1.6) as

(a|exp (=TH/h)|a) _<x+‘exp(—7-H/h)‘x_>
(sloxp (—rHMs) — © (o_fexp (crH/mz) T (118)

where we again drop terms exponentially suppressed at large 7 relative to those appearing
explicitly in (1.1.8). From (1.1.6) and (1.1.8), we take logarithms to conclude that, to

leading order in 7,
(xy|exp (—TH/h)|z_)
(x_|exp (—TH/h)|z_)

:%AE+0@%. (1.1.9)

From the path integrals which represent the Green’s functions in (1.1.9), we extract AFE.

So we set

z(1/2)=x 1
Zy (1) = (x| exp (—TH/h)|z_) ! Dx(t) exp (hSE> ,
(=7/2)=zx_

/ z(17/2)=x_

(1.1.10)

Z__(1) = (z_|exp (—TH/h)|z_) Dx(t) exp (—;SE) .

(—7/2)=x_



An Instanton Computation for the Double- Well Potential

So far, we have only described in (1.1.9) how to extract the splitting AE from the
propagators of the system. We now compute these propagators semi-classically from their
path integral description in (1.1.10). This computation serves as a canonical example of an
instanton computation.

As we have mentioned, the basic idea of the instanton computation is to apply the
method of steepest descent to compute semi-classically the path integrals appearing in
(1.1.10). In this approximation, the leading contributions to the path integral come from

critical points of the Euclidean action Sg, which here correspond to trajectories that satisfy

_ 38 av

0 ox T dx

(1.1.11)

This equation (1.1.11) is the equation of motion for a particle that moves in the inverted

potential —U(z) shown in Figure 1.2.

Figure 1.2: Inverted double-well potential

For instance, if we consider the path integral over trajectories x(t) that satisfy the trivial
boundary conditions z(—7/2) = x(7/2) = z_, then the leading semi-classical contribution
to the path integral Z__(7) in (1.1.10) comes from the constant trajectory z(t) = x_.

As a much more interesting case, we consider the path integral Z,_(7) over paths with

the boundary conditions x(—7/2) = z_ and z(7/2) = x1. Then the leading semi-classical



contribution to Z;_(7) comes from the obvious classical trajectory by which the particle
“rolls” from x_ to x4 in Figure 1.2. When 7 is very large, the energy E' = %m’2 —U(x) of
the particle moving in the potential —U(x) is nearly zero, and such trajectories appear as

in Figure 1.3.

X x(t)

Figure 1.3: An instanton solution in the double-well potential

The important feature of the classical trajectory in Figure 1.3 is that it has a kink which
is localized in time. Analytically, this fact follows from the observation that a trajectory
with B’ = 1i? — U(z) = 0 satisfies

& =/2U(x), (1.1.12)
and near the minima x4, the potential is well-approximated by

U(dxy) =~ %wz ox2 ory = £(z—24) . (1.1.13)

Hence for = near x, we see from (1.1.12) and (1.1.13) that the trajectory z(¢) approaches

the fixed point x exponentially fast,
(x4 —x) = exp (—wt), (1.1.14)

and similarly for x_. Because the kink is thus localized in an instant of time, with a width
~ 1/w much less than 7, this classical solution is an “instanton”.
Another very important distinguishing feature of the instanton solution is the following.

If we consider the trivial trajectory x(¢) = z_, then we immediately see that Sg = 0 for this



classical solution, and hence it attains the absolute minimum of the (manifestly positive)
Euclidean action. In contrast, the instanton solution arises from a higher critical point
of Sg with non-zero, finite action. More precisely, if we consider the solution depicted in
Figure 1.3 and we recall the relation (1.1.12), then we compute the Euclidean action Iy of

this instanton as

Iy ~ /_o:odt Ba’:Q—FU(x)} - /_O:odt (Zj)z - /:+ dz \/2U (z). (1.1.15)

To explain why the finite action I of the instanton solution is an essential feature, let us
recall more precisely how we apply the method of steepest descent to approximate the path
integrals Z, _(7) and Z__(7) in (1.1.10). For each classical trajectory zo(t), we parametrize

a neighborhood of this trajectory in the space of all paths as

xz(t) = zo(t) + Zcm T (). (1.1.16)

Here the fluctuating modes x,,(t) are a complete set of orthonormal functions which satisfy
the boundary conditions x,,(+7/2) = 0, and the parameters ¢, are coefficients which specify
an arbitrary such fluctuation about the classical trajectory xo(t).

We now expand the action Sg[z(t)] as a functional of the path x(t) to quadratic order

about z((t), so that

Sglz(t)] = Sg[zo(t)] + % (W) CmC, - (1.1.17)

Because zo(t) is a critical point of the functional Sg[z], no linear term appears in (1.1.17).
To obtain the leading semi-classical behavior of the path integral, we just evaluate the

integral over fluctuations about z((t) in the Gaussian approximation, so that

o(7/2)=as dc 1 1 (52SE [(IZQ (t)]
~ 7 —— S t ol o . mbtn )
oy = 20 /x(_T/m:xi [ﬂm] eXp[ h ( Blro()] + 3 ( Sembr, )

Zo exp <—711 SE[:co(t)]> ldet (‘Wﬂ o

OXm0Tn,

Z(t

(1.1.18)
Here Zj is a normalization constant that generally appears when we relate the path integral

measure Dx(t), which is defined implicity by the relation (1.1.1), to the natural measure



that appears in the Gaussian integral above,

[\/62%} - 1;[ (\C/l;%) : (1.1.19)

So we see from (1.1.18) that the leading contribution from the classical trajectory xo(t)

to the path integral is just determined by its classical action Sg[zo(t)], and at the next, one-
loop order, a determinant arises from the Gaussian integral over the variables ¢, parametriz-
ing the quantum fluctuations about zo(t). For simplicity in writing (1.1.18), we assume
here that the Hessian matrix of second derivatives of Sg is positive-definite, implying that
xo(t) is an isolated, locally stable critical point of Sg. In particular, since the trivial path
zo(t) = x_ with Sg = 0 makes the leading contribution to Z__(7), and since the non-trivial
instanton solution in Figure 1.3 with Sg # 0 makes the leading contribution to Z;_(71), we
immediately conclude that Z;_(7) is exponentially suppressed relative to Z__(7) when h
is small.

On the other hand, Z,_ (1) is non-zero, and this fact fundamentally leads to the presence
of the non-perturbative splitting AFE. To prove this assertion, we just apply the semi-
classical result (1.1.18) to compute Z__(7) and Z;_(7) and hence to compute AE.

First, from (1.1.18) we can immediately write a formula for Z__(7) to leading order in A.
In this context, an interesting general observation to make is that, besides the contribution
from the constant solution, Z__(7) also receives semi-classical contributions from non-
trivial, multi-instanton solutions which appear as in Figure 1.4. In this figure, we consider
time scales 7 much longer than the width ~ 1/w of a single instanton, so the individual
instantons appear as sharp jumps from one well to the other.

However, we only wish to compute here Z__(7) to leading order in A. If the multi-
instanton solution has N instantons (or kinks), then clearly the classical action of this
solution is NIy, where Iy is the action for a single instanton in (1.1.15). Such multi-
instantons consequently make contributions to Z__(7) of order exp (—NIy/h), and these
contributions are exponentially suppressed relative to the contribution from the constant
trajectory x(t) = x_ of vanishing action.

Thus, the leading contribution to Z__(7) comes from the constant trajectory, and to



Figure 1.4: A multi-instanton solution

evaluate its contribution to the path integral we must consider the one-loop determinant
describing fluctuations about z(t) = z_. Expanding the potential U(z) to quadratic order

about z_, we can formally express this determinant as

(5251_«7[.%0] d2 2

Hence, to leading order in A,

N

Z__(1) = Zy ldet (—;;ﬂa?)]_ : (1.1.21)

Similarly, the leading semi-classical contribution to Z;_(7) comes from the instanton
solution in Figure 1.3. However, unlike the constant solution which represents an isolated
critical point of Sg, this instanton solution is actually a member of a one-parameter family
of critical points of Sp. To explain this fact, we let Z(¢) denote the instanton solution in
Figure 1.3, which crosses the point = 0 at time ¢t = 0. Because the classical equation of
motion (1.1.11) is invariant under time-translation, when 7 is large then for any constant
to we can define another instanton solution by Z(¢;ty) = Z(t — o).

The parameter tg, which represents the “position” of the kink in time, is thus a collective
coordinate for the instanton solution, and when we compute the instanton contribution to

Z4_(71) we must integrate over this coordinate to. All instantons in this family make the
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same contribution to Z4_(7), so the integral over to simply contributes the overall factor

/2 dto T
= . 1.1.22
/—7‘/2 V2mh \V2mh ( )

As is usual in soliton computations of this sort, the factor 1/v/% appears in the measure for

each collective coordinate. This factor arises directly from the corresponding factor in the
measure on the parameters ¢, in (1.1.19).
Another factor that we must also consider is the one-loop determinant associated to

quantum fluctuations about the instanton solution Z(¢). Formally, this one-loop determinant

) . (1.1.23)
z(t)

Here the notation “det’” indicates that the zero-mode associated to the collective coordi-

is given by

det’(ézSE[i(t)]> = det/ (—d2 + d27U

0L 0Ty,

nate ty of the instanton is omitted from the determinant, since otherwise the determinant
vanishes.

As we indicate, the second derivative of the potential U(x) must be evaluated on the
instanton solution Z(t) and hence is time-dependent. However, since 7 is large, the solution
Z(t) is essentially constant and equal to z_ or x4 for the vast majority of the time. As a
result, the determinant in (1.1.23) for the non-trivial instanton solution essentially reduces
to the corresponding determinant for the trivial solution in (1.1.20), up to a multiplicative

correction to account for the small time interval containing the kink,

det/ (525}3[”‘0]> = K det <—d2 - w2> : (1.1.24)

0T 0Ty, dt?
This equation (1.1.24) defines the (dimensionful) constant K, which is independent of 7 for
large 7.
Assembling these factors (1.1.22) and (1.1.24), we compute Z;_(7) at leading order in

h to be

N

(1.1.25)

T I d?
Z+_ (7‘) = ZO \/ﬁ exXp (-;) |f1€t <_dt2 + w2>

From (1.1.21) and (1.1.25), the ratio of Z,_(7) to Z__(7) is given for small h and large 7
by

Zy (1) _ T (f;;) (1.1.26)
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Hence from (1.1.9) and (1.1.10) we compute the splitting between the groundstate and the

first excited state to be

h Iy
AFE = 5 e <P <_h> . (1.1.27)

In particular, AFE is non-zero, and the leading contribution to the splitting arises semi-

classically from the instanton solution.

1.2 An Overview of the Thesis

In the rest of the thesis, we perform three new instanton computations in gauge theory and
string theory. The basic philosophy of an instanton computation in these quantum systems
with infinitely-many degrees of freedom is exactly the same as in the single-particle toy
model: we simply compute a path integral by summing over the semi-classical contributions
from suitable classical solutions.

More precisely, the three theories in which we perform instanton computations are N' = 1
supersymmetric QCD, heterotic string theory compactified to four dimensions on a Calabi-
Yau threefold, and Chern-Simons gauge theory on a three-manifold. We devote Chapters
2, 3, and 4 of the thesis to the study of these theories respectively, and in each chapter we
provide an introduction to our work therein. However, we find it useful to include here a
brief overview of the main results in each chapter.

The material in Chapters 2, 3, and 4 of this thesis is based on joint work with Edward

Witten and has appeared in [4-6].

1.2.1 Instantons in Supersymmetric QCD

In Chapter 2, we consider supersymmetric QCD (or SQCD) with gauge group SU(N.) and
with Ny flavors, each flavor being a massless chiral multiplet transforming in the direct sum
of the fundamental plus the anti-fundamental representations of the gauge group. Our main
result is to show that, in the regime N; > N,, supersymmetric instantons generate a hierar-

chy of new, multi-fermion F-terms in the low-energy effective action of this theory. Among
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other interactions, such F-terms describe effective vertices for 2(Ny — N.) + 4 fermions, and
hence the name.

These new instanton effects are quite subtle, as they do not change the classical geometry
of the moduli space of supersymmetric vacua and do not qualitatively alter the low-energy
physics. Nonetheless, they naturally generalize two famous and much more drastic instanton
effects which occur in SQCD with Ny = N, — 1 and with Ny = N, flavors. In the remainder

of this section, we briefly review these two basic examples.

The Affleck-Dine-Seiberg Superpotential

We begin by considering SQCD with Ny = N. — 1 flavors. As shown by Affleck, Dine,
and Seiberg [7], supersymmetric instantons in this theory generate a superpotential which
completely lifts the moduli space and dynamically breaks supersymmetry. These instan-
tons in SQCD naturally generalize the self-dual or anti-self-dual solutions of pure Yang-Mills
theory first considered by Belavin, Polyakov, Schwartz, and Tyupkin [8], and the Affleck-
Dine-Seiberg computation is a supersymmetric extension of the foundational instanton com-
putation by 't Hooft [9] in non-supersymmetric QCD.

We will not review the details of the Affleck-Dine-Seiberg instanton computation here.
However, we will review the most important feature of this computation, which is the fact
that the form of any superpotential term in SQCD with Ny < N, flavors is completely
determined by the symmetries of the theory and holomorphy. We later apply this general
analysis to the multi-fermion F-terms we consider in Chapter 2.

We first introduce the notation Q% and @f to denote the quark and the anti-quark
chiral superfields in SQCD, where a =1,..., N, is a color index and ¢ =1,..., Ny is a
flavor index. In the regime Ny < IV, all gauge-invariant chiral operators that can be made

from the superfields Q¢ and @? are functions of the composite meson superfields M. ]Zf,
M; = Q,Q5 . (1.2.1)

In particular, no chiral baryons or anti-baryons are present in SQCD in the regime Ny < N..

Any superpotential W that could be generated is consequently a function of the mesons
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M?

3.
Of course, the superpotential W cannot be an arbitrary function of M ; but must respect
the global symmetries of SQCD. Besides the SU(N.) gauge symmetry, SQCD with Ny

flavors has a large group of non-anomalous global symmetries, which is given by
SU(Nf) X SU(Nf) X U(I)B X U(I)R (1.2.2)

Here U (1) is a baryon number symmetry and U(1)x is an R-symmetry. The superpotential
W must be invariant under the subgroup SU(N¢) x SU(Ny) x U(1)p, and W must have
charge +2 under the R-symmetry. Furthermore, SQCD has an anomalous axial U(1)4
symmetry. This anomalous symmetry imposes an additional selection rule on the form
of W once we consider the standard holomorphic coupling scale A to transform under its

action. We summarize below the action of these symmetries on the fields @, ~§1, and the

coupling A.
SU(Ne)  SU(Ny)  SUNy)  UMp  UMa Uz
Q. N N¢ 1 1 1 1— 3
Qs N. 1 N ~1 1 -
A3Ne=Ny 1 1 1 0 2Ny 0
(1.2.3)

The quantity A3Ve=Ns that appears in (1.2.3) is particularly natural, since it is precisely
the instanton counting parameter in SQCD with gauge group SU(N.) and with Ny flavors.
That is, A3Ne=N7 plays a role analogous to the classical factor exp (—Ip/h) in the toy model
we considered earlier.

To fix the form of W, we observe that the only SU(Ny) x SU(Ny) invariant function
of M ; is the determinant det M, or a power thereof. The condition that W have R-charge
+2 determines the power of det M that can appear, and the condition that W be invariant
under the axial symmetry determines the corresponding power of A. As a result, any

non-perturbative superpotential in SQCD with N; < N, flavors necessarily takes the form

1
3Nc—Ny | Ne—N
W lA ] o (1.2.4)

det M
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In particular, for the case Ny = N, — 1, the Affleck-Dine-Seiberg superpotential is
A3Ne—Ny

W= ——— N;=N,—1. 1.2.5
det M’ f ( )

We note that in precisely this case an integral power of the instanton-counting parameter
A3Ne=Ns appears in (1.2.4). Indeed, the superpotential (1.2.5) depends on a single power
of this parameter. Hence this superpotential can be generated by a single instanton, and
the main result of [7] is to show that a single instanton does make a non-zero contribution
to it.

By considering a general supersymmetric mass deformation of SQCD, one can also de-
duce that the superpotential for general Ny < N, in (1.2.4) is generated non-perturbatively,
though not by simple instanton effects except in the special case Ny = N, — 1. The super-
potential in (1.2.4) has a drastic effect on the infrared structure of SQCD with Ny < N,
flavors. For any theory with global ' = 1 supersymmetry, a supersymmetric vacuum must
be a critical point of W, at which dWW = 0. Yet the Affleck-Dine-Seiberg superpotential in
(1.2.4) has no critical points away from M — oo. Thus, the superpotential lifts completely

the moduli space of supersymmetric vacua and dynamically breaks supersymmetry.

The Complex Structure Deformation of the Moduli Space

The non-perturbative superpotential in (1.2.4) is only generated in SQCD in the regime
Ny < N, and one can prove, again using symmetries and holomorphy, that no superpoten-
tial can be generated in SQCD when Ny > N.. For instance, if we consider the expression
for W in (1.2.4), then for Ny < N, we see that this expression vanishes in the weak-coupling
limit A — 0 as it must; for Ny > N, this expression does not vanish as A — 0 and hence
cannot be generated.

However, as observed by Seiberg [10] (see also [11] for a related analysis), a very in-
teresting and somewhat more subtle instanton effect still occurs in SQCD with Ny = N,
flavors. In this case, the instanton does not generate a superpotential in the low-energy
effective action, but it does deform the complex structure of the classical moduli space of

supersymmetric vacua. This result is essential for our work in Chapter 2, so we briefly
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review it here.

To distinguish the classical from the quantum moduli space, we introduce the notation
M for the classical moduli space of supersymmetric vacua, and we let M denote the exact,
quantum moduli space. In general, the classical moduli space M of SQCD is parametrized
by the expectation values of the chiral, composite meson and baryon operators in this theory.
However, these expectation values are not arbitrary but satisfy a set of classical constraints
that follow immediately from the definition of the composite mesons and baryons in terms
of the quarks Q% and the anti-quarks @f

The classical moduli space of the theory with Ny = N, flavors is particularly simple, as
it can be described with only a single constraint. Besides the mesons M ]’ in (1.2.1), SQCD
with Ny = N, flavors possesses a single baryon B and a single anti-baryon E, which are

given by

i iN ~ i ein ~ ~an.
B = €ir-ing t1aNe Q?zll T Qaz\}i ) B = ' €a1--an, Q;’lll T Qu]\yf : (1.2.6)
Here the e-tensors denote the standard invariant, anti-symmetric tensors of the special
unitary group.

The expectation values of the mesons M ;, the baryon B, and the anti-baryon B are not

arbitrary but satisfy the obvious classical constraint,
det M —BB = 0. (1.2.7)

Hence the classical moduli space M, is a hypersurface parametrized by all expectation
values of M ;, B, and B consistent with the constraint (1.2.7).

As shown by Seiberg [10], the classical constraint (1.2.7) is modified in the full quantum
theory to become

det M — BB = A*e, (1.2.8)

The form of this deformation is fixed completely by the global symmetries of SQCD and by
dimensional analysis. The deformation in (1.2.8) does not alter the asymptotic structure of

the moduli space far from the origin, where the theory is weakly-coupled, but it drastically



16

alters the structure at the origin. In particular, the deformation (1.2.8) removes the conical
singularity at the origin of M, which is associated to the unbroken classical gauge symmetry
at that point, and the quantum moduli space M defined by the constraint (1.2.8) is smooth.
Physically, the disappearance of the singularity in the classical moduli space is associated
to confinement, since in a confining vacuum massless gluons cannot be seen.

Schematically, this deformation from M to M appears as in Figure 1.5.

e -

Mcl M

Figure 1.5: Quantum deformation of the SQCD moduli space

As Seiberg noted, the deformation from M. to M can also be understood as a one-
instanton effect. This interpretation is suggested by the fact that the deformation in (1.2.8)
depends on precisely one power of the instanton-counting parameter A2Ne appropriate for
SQCD with Ny = N, flavors. We check this fact directly in Chapter 2, where we actually

perform an instanton computation to demonstrate this quantum effect.

1.2.2 Worldsheet Instantons in Heterotic String Theory

In Chapter 3, we study heterotic string theory compactified to four-dimensional Minkowski
space on a Calabi-Yau threefold X, with a stable, holomorphic gauge bundle E over X.
With these conditions on X and E, the background preserves N' = 1 supersymmetry in
four dimensions, and the worldsheet sigma model generically has (0, 2) supersymmetry.

Associated to the choices of X and E are various continuous parameters which describe
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the classical moduli space of the heterotic compactification. For instance, we must choose a
complex structure on X to specify it as a complex manifold, and we must choose a Kéahler
class on X to fix its Ricci-flat metric. This Kahler class is naturally complexified once we
choose a background configuration for the heterotic B-field. Finally, we must choose the
complex structure on the bundle E. In the four-dimensional, low-energy effective action
that describes the heterotic compactification, these complex moduli associated to the pair
(X, E) are respresented by a set of light chiral superfields which are singlets under the
unbroken gauge group.

We have described the classical moduli space of this compactification, but as in the
example of SQCD with Ny < N, flavors, quantum effects can drastically change the pic-
ture. Just as in SQCD, instantons can contribute to a superpotential for the singlet chiral
superfields that lifts flat directions on the moduli space and, in the case of a theory with
local N’ = 1 supersymmetry, generates a non-zero cosmological constant.

The instantons which we consider in Chapter 3 are worldsheet instantons, and one nice
feature of these instantons is that they can be studied perturbatively in the string genus ex-
pansion. As shown by Dine, Seiberg, Wen, and Witten [12], the supersymmetric worldsheet
instantons which can contribute to a superpotential are those described by (nontrivial)
holomorphic maps ® : > — X from the string worldsheet ¥ to the Calabi-Yau target
space X. More specifically, non-renormalization theorems imply that worldsheet instanton
contributions to the background superpotential can only arise at string tree level, meaning
that the string worldsheet ¥ has genus zero. Thus, if X contains a genus zero holomorphic
curve C', worldsheet instantons which wrap C' can potentially contribute to a superpotential
for the moduli of the compactification.

In the simplest case that C' is a smooth, isolated, genus zero holomorphic curve, then
the leading instanton contribution from C to the background superpotential takes the form

A(C)

2ma!

W(C) = exp (— +i/CB> x (1-Loop) , (1.2.9)

where A(C) denotes the area of C' in the Calabi-Yau metric on X, B is the heterotic B-

field, and o/ is the string tension. The argument of the exponential in W(C) is just the



18

classical Euclidean action of a string worldsheet which wraps once about C, and we have
not made the one-loop determinants that multiply this classical factor explicit. (We will
be quite explicit about these one-loop factors in Chapter 3.) The important feature of this
expression for W (C) is simply that such a contribution to the superpotential clearly induces
a potential for the Kéahler modulus of X, since this Kéhler modulus determines the area
of C' appearing in (1.2.9). So if worldsheet instantons make a non-zero contribution to the
superpotential, that contribution has the drastic effect of lifting the Kéahler modulus of the
compactification and destabilizing the model.

In this context, a natural question to ask is whether any N' = 1 supersymmetric, Calabi-
Yau compactifications of the heterotic string are actually stable against worldsheet instan-
ton corrections. Certainly some more or less trivially stable examples are known. For
instance, if £ = T'X, then the worldsheet supersymmetry algebra is enhanced from (0,2)
to (2,2) supersymmetry, and the two extra left-moving supersymmetries cause the one-loop
determinants that appear in W(C') to vanish. Hence in such a model, the superpotential
contribution from each holomorphic curve C' identically vanishes.

On the other hand, Silverstein and Witten [13] (and later Basu and Sethi [14]) have
argued that general compactifications described by (0,2) linear sigma models are stable
against worldsheet instanton corrections. In such models, the Calabi-Yau threefold X has
many holomorphic curves which make contributions to the superpotential, and the result
of [13] implies that a miraculous cancellation must occur among all the contributions from
the individual curves.

Our main result in Chapter 3 is to directly explain this cancellation among instanton
effects as a consequence of a residue theorem, whose proof relies only upon the right-moving
worldsheet supersymmetries and suitable compactness properties of the (0,2) linear sigma
model. We also extend our residue theorem to a new class of “half-linear” sigma models.
Using these half-linear models, we show for instance that heterotic compactifications on
the quintic hypersurface in CP* for which the gauge bundle pulls back from a bundle on

CP* are stable. Finally, we apply similar ideas to compute the superpotential contributions
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from families of membrane instantons in M-theory compactifications on manifolds of Go

holonomy.

1.2.3 Chern-Simons Theory and Localization

In Chapter 4, we study Chern-Simons gauge theory on a three-manifold M. This theory is

described by the following action for the gauge field A,
k 2

CS(A) = = / Tr (A/\dA + A/\A/\A) . (1.2.10)
A Sy 3

Here k is an integer, the level of the theory, and Tr is a suitably normalized, negative-
definite, invariant quadratic form on the Lie algebra of the gauge group. The classical
solutions of this gauge theory are simply the flat connections on M, and the Chern-Simons
action is notable for the fact that, unlike the Yang-Mills action, no metric on M is necessary
to define it. Hence Chern-Simons gauge theory serves as a sterling example of a topological
quantum field theory.

A remarkable fact about Chern-Simons theory is that it is exactly solvable, as shown by
Witten in [15]. This solution relies on deep connections between Chern-Simons theory on
M and two-dimensional rational conformal field theory [16]. On the other hand, the exact
solution of Chern-Simons theory bears little apparent relation to the standard computational
techniques of perturbative field theory, and a long-standing mathematical puzzle has been
to understand how the exact solution of Chern-Simons theory is related to its perturbative
expansion.

One elegant result in this direction has recently been obtained by Lawrence and Rozan-
sky [17]. In the special case that the three-manifold M is a Seifert manifold (the total space
of a nontrivial circle bundle over a Riemann surface), these authors have shown from the
exact solution of Chern-Simons theory that the partition function has a remarkably simple
structure and can be rewritten entirely as a sum of local “instanton” contributions from the
flat connections on M.

In Chapter 4, we explain how this empirical fact follows from the semi-classical technique

of non-abelian localization as applied to the Chern-Simons path integral. In the process,
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we show that the partition function of Chern-Simons theory on M admits a topological
interpretation in terms of the equivariant cohomology of the moduli space of flat connections

on M.

Abelian Localization and the Duistermaat-Heckman Formula

In Chapter 4, we provide a self-contained review of non-abelian localization, a technique
introduced by Witten [18] to evaluate exactly a certain class of symplectic integrals. This
localization technique is essentially a sophisticated version of the stationary phase approxi-
mation, and in this sense we can rephrase our main result as the statement that, when M is
a Seifert manifold, the stationary phase approximation to the Chern-Simons path integral
is exact.

Before we delve into the technical analysis of Chapter 4, we pause to present here a simple
example of localization. As a model for the path integral, we consider a finite-dimensional
integral defined in terms of the following data. We let X be a compact symplectic manifold,
with symplectic form . We assume that the group U(1) acts on X in a Hamiltonian
fashion, with Hamiltonian (or moment map) p. Finally, we let V' be a vector field on X

that generates the action of U(1). By definition, the Hamiltonian p associated to V' satisfies
wQ = dp, (1.2.11)

where ¢y is the interior product operator which acts on forms by contraction with V.

Using this data, we consider the following symplectic integral over X,

Z(t) = /X exp (2 — ity). (1.2.12)

Here t is a parameter, and the term exp (£2) is to be interpreted by expanding the exponential
in series and picking out the term of proper degree to integrate over X. If X has dimension
2n, then this term will be Q" /n!, the usual symplectic measure on X.

A classic result of Duistermaat and Heckman [19] states that the stationary phase ap-
proximation to Z(t) is exact. Thus all contributions to Z(t) arise from the critical points of

the Hamiltonian p, at which du = 0. From the relation (1.2.11) and the non-degeneracy of
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), we see that the generating vector field V' vanishes at precisely these critical points, which
are the fixed points of the U(1) action on X. Thus, the Duistermaat-Heckman formula very
broadly asserts that Z(t) can be written as a sum over local contributions from the fixed
points of the U(1) action,

t) = > Zy(t). (1.2.13)

P

For simplicity in writing (1.2.13), we assume that all the fixed points p are isolated, and the
sum is a finite sum over these points. By definition, Z,(t) is the local contribution to Z(t)
from the point p as evaluated in the stationary phase approximation. As beautifully ex-
plained by Atiyah and Bott [20], the result of Duistermaat and Heckman is best understood
as an example of abelian localization, since the formula (1.2.13) fundamentally asserts that
all contributions to Z(t) arise locally from fixed points of U(1).

To make the formula (1.2.13) more explicit, we need to evaluate the local quantities
Zp(t). This computation is a toy model for the more involved computations in Chapter 4,
so we find it useful to present here. Our exposition follows the very elegant discussion in §7
of [20].

We first consider the local action of U(1) near a given fixed point p, and to leading
order we need only consider the action on the tangent space 7' = T, X at p. Since p is an
isolated fixed point, U(1) acts freely on the vector space T', which therefore decomposes

into two-dimensional, irreducible represenations of U(1). We write

Tj, (1.2.14)
1

n
j=
where n = %dimX and where each T} is an irreducible representation of U(1) associated
to an integer charge ¢; # 0.

Without loss, we assume that the generating vector field V takes the form

22:: ( 9y y’ai) (1.2.15)

Here (x;,y;) are real coordinates on each representation 7 which are adapted to the action
of V as above. By exponentiation, these coordinates on 7} extend to coordinates on a

neighborhood of p in X.
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To evaluate Z,(t), we must determine local expressions for the symplectic form © and
the Hamiltonian p at p. Because {2 is invariant under U (1), we can assume that the pairs
(x,y;j) determine canonical coordinates at p, and Q takes the local form

n
Q= dujidy;+--- . (1.2.16)
j=1
Here we drop higher order terms in €2 which vanish at p; these terms are not relevant when
we evaluate the integral in the leading, Gaussian approximation. Given the local form of V'

and of Q at p, the Hamiltonian relation (1.2.11) then implies that u takes the local form

n

1 1
p= ) = 3 (553 5u2) o (12.17)

7=1
where again we drop higher order terms in (z;,y;).

Thus, at leading order near p, we evaluate Z,(t) in the Gaussian approximation as

, s (1 1
Zp(t) = exp [—itu(p)] H /d:rj/\dyj exp [thj (2.%'3 + 2y]2->} ,
j=1
’ . (1.2.18)
. 2r\" 1
= exp[-itu(p)] (=) —, & =]]a-
it €p et
‘]7
Hence if U(1) acts with isolated fixed points on X, we can explicitly evaluate Z(t) by
summing the local expression in (1.2.18) over the fixed points.

In Chapter 4, a large part of the analysis is devoted to performing a similar semi-classical
computation to evaluate the local contributions to the Chern-Simons path integral from flat
connections on M. In the example here, the interesting dependence of Z,(t) on the local
geometry near p is encoded in the one-loop factor e,. This factor has a very interesting
topological interpretation, as it is the equivariant Euler class of T' interpreted as a U(1)-

equivariant bundle over p. We will explain this statement in Section 5.3 of Chapter 4, where

equivariant Euler classes also appear naturally in the non-abelian localization formula.

An Simple Example of the Duistermaat-Heckman Formula

Finally, we give a simple example of the Duistermaat-Heckman formula. In our example,

we take X to be CP!, which we endow with the standard angular coordinates (6, ¢), where 6
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runs from 0 to 7 and ¢ runs from 0 to 2w. We also choose the standard symplectic structure
on CP!, with symplectic form Q = d(cos §) Adé.

Finally, we consider the U(1) action on X which is generated by the vector field
V =0/0¢. This U(1) action has two fixed points, at the poles # =0 and 6 = . Since
1ty = —d(cos ), we see that, up to an arbitrary additive constant, the Hamiltonian for
this action is

= —cosf. (1.2.19)

The Duistermaat-Heckman integral Z(t) is thus given explicitly by

Z(t) = /d(cos O)A\d¢ exp (it cosh) ,

- 27: exp (it) — exp (—it)] .

(1.2.20)

Of course, this integral is an elementary integral, and we evaluate it directly in passing to
the second line of (1.2.20). As implied by the Duistermaat-Heckman formula, Z(t) is the
sum of two terms, each of the form in (1.2.18), which represent the local contributions from
the two fixed points at § = 0 and § = 7. A relative sign arises between these contributions
because in one case the local U(1) action at the fixed point is right-handed with respect to

the orientation induced by €2 and in the other case it is left-handed.



Chapter 2

New Instanton Effects in

Supersymmetric QCD

2.1 Introduction

Supersymmetric QCD with gauge group SU(N.) and with Ny massless flavors is among
the simplest and most studied of four dimensional A’ = 1 supersymmetric gauge theories.
In particular, due to holomorphy and the large amount of symmetry this theory possesses,
many properties of its low energy vacuum structure are amenable to exact analysis. Yet
the theory still displays a wealth of interesting non-perturbative phenomena, including
the generation of a superpotential [7,21-24], a deformation of the complex structure of the
moduli space of supersymmetric vacua [10] (see also [11] for a related analysis), and electric-
magnetic duality [25]. Although we briefly reviewed a few aspects of this story in Chapter
1, we refer the reader to [26,27] for a more complete account.

As we did explain in Chapter 1, some of these nonperturbative phenomena, such the
generation of a superpotential when Ny = N, — 1 and the deformation of the moduli space
when Ny = N,, can be understood semi-classically as instanton effects. On the other hand,
SQCD with Ny > N, flavors possesses supersymmetric instantons in precise analogy to the

instantons for Ny = N, — 1 and Ny = N, yet the instantons for Ny > N, neither generate a

24
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superpotential nor deform the classical moduli space. As a result, one might ask, “So what
are these instantons good for?” In this chapter, our purpose is to answer this question. To
simplify the technical analysis, we focus on the case N, = 2, but we believe that our results
generalize for arbitrary N..

Thus, in SU(N.) SQCD with Ny > N, flavors, we find that instantons generate a new
class of F-terms in the low-energy effective action of the theory. Among other interactions,
these F-terms generate vertices with 2(Ny — N.) + 4 fermions, and for this reason we call
them “multi-fermion” F-terms. These new F-terms fit into a hierarchy which naturally
generalizes the superpotential that appears in the theory with Ny = N. — 1 flavors and the
four-fermion (or two-derivative) F-term that describes the complex structure deformation
in the theory with Ny = N, flavors. In fact, we were originally motivated to consider such
multi-fermion F-terms precisely as a means to describe systematically a general deformation
of the moduli space.

One reason that these instanton effects have gone unnoticed for so long is that for
Ny > N, the multi-fermion F-terms have no effect on the classical geometry of the moduli
space and no qualitative effect on the physics. (However, if we turn on supersymmetric
bare masses for some of the flavors, then these F-terms induce the usual instanton effects
in the cases Ny = N, and Ny = N, —1.) As a result, such F-terms have not been much
considered in the context of A/ = 1 supersymmetric theories in four dimensions. However,
despite the novelty of the multi-fermion F-terms in four dimensions, these F-terms are
closely related to well-known chiral operators that appear in the context of two-dimensional,
N = (2,2) supersymmetric sigma models. In the two-dimensional context, these operators
are the generators of the (c,c) chiral ring, or equivalently the ring of local observables of
the topological B model.

Because the multi-fermion F-terms themselves are novel, we begin our discussion in
Section 2 with some general remarks on multi-fermion F-terms in N’ = 1 supersymmetric
effective actions.

We next specialize in Section 3 to the case of SQCD with gauge group SU(2). We
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show that the symmetries of SU(2) SQCD suffice to fix uniquely the possible form of any
multi-fermion F-term correction to the effective action. Here we exploit the fact that, in the
special case of SQCD with gauge group SU(2), the flavor symmetry is enhanced because
both the quarks and the anti-quarks transform in the fundamental representation of the
gauge group.

Finally, we show in Section 4 that these multi-fermion F-terms are indeed generated in
the effective action of SQCD. We do this in three ways, each of which casts a different light
on the origin of these unusual F-terms. First, we perform a direct instanton computation
as in [7] to show that the multi-fermion F-terms are generated. Second, in the special case
that N. = 2, Ny = N.+ 1 = 3, we show that the multi-fermion F-terms arise from a tree-
level Feynman diagram computation in the Seiberg dual description of the theory. Third,
we consider the supersymmetric mass deformation of SQCD, and we show that the multi-
fermion F-terms give rise by renormalization group flow to the standard superpotential
in the theory with Ny = N, — 1 flavors. As mentioned above, we believe these analyses
generalize from the case N. = 2 to arbitrary V..

This chapter of the thesis is based on [4].

2.2 General Remarks on Multi-Fermion F'-Terms

In this section, we describe the general structure of multi-fermion F-terms in N' = 1 super-
symmetric effective actions. However, before discussing generalities, we motivate our study
of these interactions by considering a very specific and well-known example: the complex
structure deformation of the moduli space M of vacua that occurs in SU(2) SQCD with
two flavors. Asin Chapter 1, we write M for the classical moduli space of supersymmetric

vacua, and we write M for the exact quantum moduli space.

2.2.1 Example: SU(2) SQCD With Four Doublets

As we apply extensively later, for the gauge group SU(2) the fundamental and the anti-

fundamental representations coincide, so that SU(2) gauge theory with N; = n flavors is
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described more symmetrically as a theory with 2n doublets, or equivalently with chiral
multiplets transforming as 2n copies of the two-dimensional representation 2. To avoid the
perhaps confusing terminology of “flavors” for SU(2), we just write the number of doublets
as 2n. (Because of a global anomaly, the number of chiral doublets in SU(2) gauge theory
must be even [28].)

To establish notation for the rest of the chapter, we combine the matter fields into one
chiral multiplet,

Qb = qo + 0, + -, (2.2.1)

with a = 1, 2 being the color index for the 2 of the SU(2) gauge symmetry, and i = 1,...,2n
being the flavor index for the 2n of the global SU(2n) flavor symmetry. Of course, we have
indicated in (2.2.1) the component expansion of %, including a scalar field ¢¢ and a Weyl
fermion ! .

We also introduce the gauge invariant, composite meson chiral superfield M, given by
MY = Q. (2.2.2)

The meson M¥ is clearly anti-symmetric in the flavor indices i and j and so transforms in
the skew representation A%(2n) of SU(2n).

Using the mesons M%, we can succinctly describe the classical moduli space M, of
supersymmetric vacua as being parametrized by arbitrary expectation values of M* subject
to the constraint

MAM =0, (2.2.3)

or more explicitly,
MMt Rz = (), (2.2.4)

€i1j11272 - injn

This system of quadratic equations (2.2.3) simply enforces the condition that
rank(M) < 2, (2.2.5)

as follows from the definition (2.2.2) of M% as the skew product of two quark superfields.
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Now, if the number of doublets is 2n = 4, the classical constraint (2.2.3) reduces to a
single quadratic equation

€ijrinjs ML M272 = () (2.2.6)

which must be satisfied by M%. Upon introducing suitable complex linear combinations
m!, I =1,...,6, of the six independent components M¥ 4, j = 1,...,4, so as to diagonalize
the nondegenerate quadratic form that appears on the left hand side of (2.2.6), the classical

equation (2.2.6) becomes

6 2
> (m') =o0. (2.2.7)

I=1

The classical moduli space M,; is thus smooth away from the origin. Its singularity at
the origin is a signal of the unbroken gauge symmetry. The m! transform in the vector
representation of the SU(4) or SO(6) flavor symmetry of the SU(2) gauge theory with four
doublets.

The classical moduli space M whose structure we have just reviewed is deformed in
the quantum theory [10] and does not coincide with the quantum moduli space of vacua M.
To describe this deformation, we introduce the usual holomorphic coupling scale A. Then,

in the quantum theory, the moduli space M is described by the modified constraint

MAM = A*, (2.2.8)
or equivalently, with € ~ A%,
6
2
> (m') = (2.2.9)
I=1

Up to a multiplicative constant, the form of the deformation (2.2.8) is determined completely
by the SU(4) flavor symmetry and dimensional analysis. Of course, as a result of the
deformation, the singularity of M at the origin is removed and M is a smooth complex

manifold.

Representing the Deformation in the Effective Action

But precisely how does the geometric deformation (2.2.8) appear physically as a quantum

correction to the effective action of SQCD?
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In this very simple example, one way to implement the quantum deformation in the low
energy effective theory is to introduce a massive field ¥ and a superpotential W into the

effective action,

W =3 (MAM - AY) (2.2.10)
which thus takes the form
S = /d4xd49 K(M,M;z,i) T /d4:cd26 W + cec., (2.2.11)

where K is the Kéhler potential. At a critical point of W, we find that ¥ = 0 and
M A M = A%, so the quantum moduli space is reproduced by this model. In this descrip-
tion, the quantum correction to the effective action is clearly an F-term, being a correction
AW = —A*Y to the effective superpotential. In the weak-coupling limit A — 0, this term
vanishes and the constraint reduces to the classical one M A M = 0.

The description we have just given is useful for this particular example, but it is an
extrinsic rather than an intrinsic description of the deformation. In the extrinsic description
of the classical moduli space M, and its deformation M, we use a linear sigma model to
describe these spaces in terms of unconstrained linear fields ¥ and m!, I =1, ..., 6, together
with a superpotential. However, as is usual for linear sigma models, not all of the linear
fields are massless at generic points (away from the origin). In this example, of the seven
total fields, we see that in the generic vacuum two, namely ¥ and a linear combination of
the m!, are massive, while five components of m! are massless and parametrize intrinsically
the moduli space. Obviously, our deformation AW = —A*Y involves the massive fields. In
an analogous but different example, the moduli space might not admit such a simple, linear
sigma model description. For this reason, we want to describe the deformation intrinsically
in a low-energy effective action constructed only from the massless fields.

To find such an intrinsic description, we could just integrate out the massive fields in the
linear sigma model to convert AW into an effective interaction for massless fields only. In
doing so, we work modulo D-terms and attempt to determine what F-terms are generated.
This computation is both simple and instructive and we will perform it, along with an

analogous computation in the theory with six doublets, in Section 4.2.
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However, we can alternatively use supersymmetry (and a bit of geometry) to determine
what F-terms are possible on M. At least away from the origin of M, the low-energy
effective action of this theory is intrinsically described as an N’ = 1 supersymmetric, nonlin-
ear sigma model governing maps ¢ : M4 — M, from Minkowski space M4 to M. From

this perspective, the perturbative effective action is the usual sigma model action,
S = /d% d'0 K (o', 3") . (2.2.12)

Here ® and ®' are chiral and anti-chiral superfields whose lowest components ¢* and 52
are local holomorphic and anti-holomorphic coordinates on M, and K is again the Kéahler
potential associated to some Kiahler metric ds? = 9 dqbidag on M. (In this discussion, ‘i’
is not a flavor index but an index parametrizing local coordinates on M,;.) The reason that
we consider a sigma model whose target is M,; is that this is the low energy structure in
perturbation theory. We want to know how this description may be modified by instantons,
in other words, what F-term on M may be induced by instantons.

Of course, we also know the quantum effective action: it is the same nonlinear sigma
model but with target space M, as opposed to M., and in this language the F-term must
describe the complex structure deformation of M, into M. So let us discuss what terms
in the effective action of an N/ = 1 sigma model with a given target (in our case, M)
describe a deformation of the complex structure of the target. We have already described
this deformation extrinsically, as a modification of the algebraic equations which define the
target. To describe the deformation intrinsically, we instead consider it as a modification
of the d operator of the target.

In general, a deformation of the complex structure on M, is described as a change in

the 0 operator on M,; of the form

1

+ ws' ;. (2.2.13)

J Jj
Here w]f." is a representative of a Dolbeault cohomology class in H'(M, T M), whose

elements parametrize infinitesimal deformations of M. We use standard notation, with

TM, and Q}\/tcl denoting the holomorphic tangent and cotangent bundles of M.
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We can equally well represent the change (2.2.13) in the d operator on M as a change

in the dual basis of holomorphic one-forms d¢?’,
o' — d¢' — w' g . (2.2.14)
As a result, under the deformation, the metric on M, changes as
95 d0'dd’ — g5 (do' — wi ddT) dd, (2.2.15)

so that, upon deforming M,;, the metric picks up a component of type (0,2) when written
in the original holomorphic and anti-holomorphic coordinates. (Of course, there is also a
complex conjugate term of type (2,0).)

Since we know how the metric on M, changes when M,; is deformed, we can imme-

diately deduce that the corresponding correction to the sigma model action is generally of

the form
55 = /d4xd20 wi; DT - DI = /d% wiz dg A + -+, (2.2.16)
with
1 7 7

Here D = Dy is the usual spinor covariant derivative on superspace, and we have introduced
the shorthand notation “” for the contraction of spinor indices (so for any two spinors 7
and ¢, n- ¢ is shorthand for 74¢%). We have also performed the fermionic integral over 6 in
(2.2.16), from which we see that the leading bosonic term reproduces the correction to the
metric in (2.2.15).

Of course, the most important property of 4S — and the primary motivation for this
work — is the fact that 4S5 is an F-term. But 6.5 is not a correction to the superpotential
— it generates terms with two derivatives of bosons, or with four fermions. Because of the
latter contribution, 4S is a special case of what we call a multi-fermion F-term.

In contrast to a superpotential interaction, a deformation of the complex structure (of a
smooth complex manifold, such as M, with the origin removed) is trivial locally. So locally

on My, it must be possible to write §S in the form [d*6(...). As will become clear, this
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cannot be done globally on M, and it cannot be done even locally in a way that respects
the SU(4) flavor symmetry. In that sense, S is a non-trivial F-term.

We also note that this F-term is not manifestly supersymmetric, since the operator
O, = Wiz D' - DdJ is not manifestly chiral. Rather, the chirality of O, in the on-shell
supersymmetry algebra determined by the unperturbed sigma model action S follows from
the fact that w]f.i is annihilated by 0.

In Section 2.2, we discuss more systematically the basic properties of multi-fermion

F-terms such as 5.
Computing 6.5 in SQCD

We have described in general what sort of term in the low energy effective action of an
N =1 sigma model describes the deformation of the complex structure of the target. We
will now be more explicit for SU(2) gauge theory with four doublets.

For this purpose, we reconsider the extrinsic, algebraic description of the deformation

of M, using the coordinates m!. Rather than considering the deformation as a change in

the classical constraint equation
> (m')? =0 (2.2.18)
to a quantum constraint

> (mh)? =e (2.2.19)

we want to provide a description in which the target space remains the same (away from
the origin and perturbatively in €) but a new interaction is generated.

To obtain this description, we first make a non-holomorphic change of variables, such
that away from the origin the quantum constraint (2.2.19) is converted to the classical
constraint (2.2.18). Explicitly, when the old coordinates m/ satisfy the quantum constraint
(2.2.19), the new coordinates B

~1 1 _ € ‘%mJ

m =m — = =
2 mm

(2.2.20)

obey the classical constraint (2.2.18) to first order in e. (We could work beyond first order,

but this is not necessary.) Here mm = 9_, |m!|?, and in describing m! we introduce
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the tensor (5§ constructed from the SO(6) invariant tensors 67 and & ;75 in the language of
o

— 5:6.5).

. g -
SU(4), these tensors would be respectively €77, €/, and (670~ 70,7

0

Thus, when the original coordinates m! satisfy the quantum constraint, the new coor-

dinates m! satisfy the classical constraint, at least to leading order in e,

26: (ﬁ#f = 0(e). (2.2.21)
I=1

The new coordinates m!

are obviously not holomorphic in the old complex structure
on M, but we can find a new complex structure in which they are holomorphic. In other
words, we correct the 9 operator as in (2.2.13) so that the new operator annihilates the new

coordinates m!. So we impose the condition

9 ;0N -k

From this equation, we can directly solve for the tensor wjl in terms of the components m/

of M. We find, again to leading order in €, that
I

1 —J __
D B S L L (2.2.23)
7= 2\ e )

with indices raised and lowered with 6’7 and § /7 as appropriate.
In this expression, only the first two terms in (2.2.23) arise directly from solving the
equation (2.2.22). In fact, the last term in the expression for w! dmjﬁ/am] vanishes

identically when we restrict to M, as on M we have the relation
6 _
0=> midm' = 5 (Z(mf)2> . (2.2.24)

We have included this trivial term in wjf just so that, upon lowering one index with the
Kéhler metric, the tensor w;5 is manifestly symmetric.

Of course, we do not actually know the Kéhler metric g on M, as appears implicitly in
determining 45 by converting the section w of Q}\Ad ®T M, to a section of ﬁ}wd ®ﬁ}\/lcl7 as
in (2.2.16) and (2.2.17). By symmetry, we do know that this metric must equal the metric

on M induced from the Euclidean metric times a function of mm, and asymptotically for
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large mm the metric must reduce to the classical metric describing canonical kinetic terms
for underlying quarks in the ultraviolet regime of SQCD.

All of our expressions for the multi-fermion F-terms depend on the metric g. However,
this dependence is irrelevant in the sense that the fundamental holomorphic object w which
represents a class in H'(M,TM) and determines the existence of the multi-fermion F term
does not depend on a choice of Kéhler metric. Of course, the metric is known asymptotically,
near infinity on M, where it can be determined from the underlying classical field theory
and asymptotic freedom.

We will now give a concrete formula for 45. Because of the dependence on g, we can
present this formula in various ways. The most general approach, which also leads to the
simplest expressions, is simply to leave g implicit, absorbing it into the index structure of
wr7 as we did in (2.2.17). This means that we simply use an unknown Kéhler metric in
raising and lowering indices. With this convention understood, from (2.2.16), (2.2.17), and

(2.2.23), we see that 65 takes the form

€ ( 51 mim’ m! m’

4 2
55 = [d'wdo o

mm  (mm)?:  (mm)

) Dmy-Dmy. (2.2.25)
Alternatively, this expression (2.2.25) is what results if we assume that g is the flat metric,
so that we simply raise and lower indices with the Kronecker delta.

On the other hand, because the mesons m! and m! most naturally (that is in the
classical theory) have dimension 2, the metric g,7 most naturally has dimension —2 (so
that ds? = gﬁdml dm! has dimension two). As a result, the dimensional analysis of our
expression in (2.2.25) is not transparent. Asymptotically on M, the Kéhler potential is
known to be asymptotic to K = v/7mm. With this knowledge, we can make the asymptotic
form of the interaction more precise. In doing so, it is convenient to also make dimensional
analysis manifest by simply using the Kronecker delta 0,7 to raise and lower indices on m

and 7, while writing factors of v/mmm explicitly. In this case, all components of m and

with indices up or down have dimension two. The asymptotic form of the interaction §.5
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then becomes

4 2
65 = [d'ad S __nm

mm (mm)

¢ s mlmd mlm?
(mm ~ (mm)

> ﬁml ~ﬁmJ. (2.2.26)
Recalling that € ~ A%, one can check directly that the naive dimensional analysis holds.

In the rest of the chapter, we will mainly follow the first convention, as in (2.2.25), so
that g appears only implicitly.

In terms of the components M% of M written using SU(4) flavor indices, as we will use

in Section 3, the expression (2.2.25) becomes
ei1iriaga g1kl priage Mkl eladakl privg Mkl

5S:/d4xd29A4 o MER My _ M
MM 2(MM) 2(MM) (2.2.27)

X DM, j, - DM,,j, .
Here we take MM = 13 M;;M%. (The factor of 1/2 is included so that if the only nonzero
components of M% are M'?2 = —M?' = 1, then MM = 1. The factors of 1/2 in (2.2.27)
relative to (2.2.25) arise from this convention and lead to the simple formula below.)

For future reference, we observe that up to a constant factor the expression in (2.2.27)

can be written more compactly as
a (oo 20 (T "2 civdvizie N7 KT . DT
58 = A /d vd0 (MM) ~ 22 My, (MM DMy, - DMy, ) . (2.2.28)

In Section 3, we will show that this form (2.2.28) of the F-term is completely determined
by symmetry and furthermore extends naturally to the case of SU(2) SQCD with n > 2

flavors.

2.2.2 Multi-Fermion F'-terms

Our description of the complex structure deformation in SQCD by means of a multi-fermion
F-term may seem perverse, as the algebraic description of the deformation in (2.2.8) is so
much simpler than (2.2.28). However, by phrasing this deformation as a multi-fermion F-
term in an effective four-dimensional N' = 1 supersymmetric sigma model, we can see an

immediate generalization to F-terms of even higher order.
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To introduce this generalization, we begin by recalling that a four-dimensional sigma
model with A/ = 1 supersymmetry can be dimensionally reduced to a two-dimensional sigma
model with N = (2, 2) supersymmetry. Under this reduction, chiral operators in one sigma
model map naturally to chiral operators in the other. As it turns out, the multi-fermion
F-terms that we introduce in four dimensions have better-known analogs in two dimensions.

In two dimensions, rings of chiral operators have been much studied [29-32] in the
context of string theory and correspond to the rings of local observables in the topological
A- and B-models. In fact — with the superpotential being a typical example — F-terms in
four dimensions reduce to chiral observables of the B-model in two dimensions. These chiral
operators in the B-model arise geometrically in one-to-one correspondence with elements
of the Dolbeault cohomology groups HP (M, N1TM).

Motivated by the general B-model observables, to construct multi-fermion F-terms we
begin with a section w of the bundle ﬁﬁ,t ®ﬁ€w. (Lorentz-invariance imposes the requirement
that we consider only the B-model observables for p = ¢ above.) In components, w is given
by a tensor w; . ; Fi, that is antisymmetric in the i; and also in the j,. Given such a
tensor, we construct a possible term in the effective action that generalizes what we found

in (2.2.16):

58 = [d'ad0wr ;5.5 (DB D). <Dq>ip _D@jp) 7
titp Jidp

(2.2.29)
- / dizd20 0, .

To achieve Lorentz invariance, spinor indices are contracted here. To denote these contrac-

tions, we recall our abbreviation

(D®"-D&1) = (Ds3" DB . (2.2.30)
Furthermore, given the form of this operator, we can assume that w is symmetric under the
overall exchange of ¢’s and j’s.
Supersymmetry of O,

The interaction .S is not manifestly supersymmetric. For it to be supersymmetric, O,,

must be chiral, that is, annihilated by the anti-chiral supersymmetries Q4. And even if 4.9
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is supersymmetric, it may represent a trivial F-term. Though we write (2.2.29) in the form
[d?6(...), it may be that §S can be alternatively written [d*6(...), in other words as a
D-term. This will be so if it is possible to write O, = {Qa, [Q%, V]} for some V. In this
case, O, is trivially chiral and §S = [d*zd*0 V.

To describe the chirality condition on O, which will be no surprise from experience
with the two-dimensional B-model, we first note that we can use the Kéhler metric g; on
M to raise either set of ¢ or j indices on w. The raised indices become holomorphic, so
upon raising the indices, w becomes interpreted as a section of ﬁlj\,l ® APT M in two distinct
ways. By our assumption on the symmetry of w, we find the same section of ﬁ% ® NPT M
either way.

We now consider the action of the anti-chiral supercharges Q4 in the on-shell supersym-
metry algebra of the unperturbed sigma model, so that we consider for simplicity only the
linearized supersymmetry constraint on §S. Under the action of Q4, the component fields

¢' and 1% of ® and the component fields 55 and E{ﬁ of @ transform as
5d¢i - 07 6(1&; = 71;7

datlh = 1040’ datly = —TLo G k.

Here T is the connection associated to the Kéhler metric gz on M. So long as we consider

(2.2.31)

only the action of a single supercharge, we can without loss set I' to zero by a suitable
coordinate choice on M.

By using the metric to interpret each set of anti-chiral fermions EZB for ﬁ = 1,2 as
alternatively anti-holomorphic one-forms d@g or holomorphic tangent vectors 9/9¢", we see
directly from (2.2.31) that the action of each of the two supercharges Q4 on O, corresponds
to the action of @ on w when w is regarded as a section of ﬁ?\/t ® NPT M in either of the
two possible ways. Thus, the chirality constraint on O, is simply the condition that w be

annihilated by 0. This result is familiar in the B-model.

Cohomology of O,

We must also impose an equivalence relation on the space of operators O, such that

O, is considered trivial if 65 is equivalent to a D-term. The condition we will get is closely
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related to the reduction to & cohomology in the B-model.

As a simple example, any perturbative correction § K to the Kéhler form can be trivially

rewritten as an F-term correction upon performing half the integral over superspace:
/ A di0 0K = / d*e d20 DYK
B B (2.2.32)

- / d'0 0 VYK (D - D).

In the second line, we have introduced the covariant derivative V associated to the connec-
tion I" in (2.2.31), and we have explicitly rewritten the chiral integrand in the form of an

operator O, with

Even more generally, we must consider possible corrections to the effective action which

involve integrals over three quarters of superspace and are of the form

55 = / 'z 420 d0 ¢ - DB (DB D) - (DB - DB,

ig-+ip J1-dp

= / d*z d*0 dfs O, (2.2.34)

= /d4xd20vf - ; (D% . Do) ... (DB - DE) .

i1 302 0p J1Jp

Here £ is a section of ﬁpj\:l ! ® ﬁpM. We do not know of any actual examples of operators of
this type that can be written as integrals over three quarters of superspace but not over all
of superspace, but we must still allow for this possibility.

Because the correction in (2.2.34) has the same form as the F-term in (2.2.29), we must

consider the chiral operators O, as defined up to the equivalence
Ou ~ Ou + {Qa, O} . (2.2.35)
Mathematically, this equivalence becomes an equivalence relation on sections of ﬁﬁ,t QU

Wi TG, T Vb 7-g, T (k< Jk) - (2.2.36)

Yireipjrdy
As we indicate, the term involving £ is to be symmetrized like w under the exchange of all

pairs iy < j.
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Because of this symmetrization, the equivalence relation implied by (2.2.36) on sections
of ﬁljvl ® NPT M is not the same as the usual equivalence relation in Dolbeault cohomology.
Furthermore, since the corrections (2.2.34) arise from an integral only over three quarters of
superspace, they are not supersymmetric unless we impose the (nontrivial) condition that
(? annihilate the operator (’)gd, which implies a corresponding constraint on the sections &
which appear in (2.2.34) and (2.2.36).

We are unaware of a more standard mathematical description of this sort of cohomology,
specific to the bundles ﬁljw ® APTM on an arbitrary Kéhler manifold, and we will not
comment further on its general structure. Luckily, symmetries alone will suffice in Section 3
to show that the operators O, which we consider for SQCD cannot be written as integrals

over three-fourths of superspace, much less all of it.

2.2.3 Adding a Superpotential to the Sigma Model

Although we are most interested in SQCD with massless flavors, a useful technique to
study this theory is to consider instead SQCD with massive flavors and to ask how various
observables depend upon the mass parameters. Because these mass parameters appear in a
superpotential, holomorphy serves as a powerful tool to constrain their appearance in the
effective action. In Section 4, we will apply exactly this technique as one way to compute
the multi-fermion F-terms in SQCD.

More generally, we can consider adding any background superpotential W to the basic

sigma model action,
S = /d4xd40 K(®, ) + /d4xd20 W(®Y) + c.c. (2.2.37)

Because of the superpotential, the on-shell supersymmetry algebra of the sigma model is
altered, and hence the chirality condition on O, is also altered. This fact is fundamental
to our study of the mass deformation of SQCD in Section 4, so we pause to explain it here
in the general setting.

In the new action (2.2.37), the on-shell variations under Qg of the component fields ¢,
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@, 7,%, and @;ﬁ are now given by

datlh = i0apd’,  Oally = —TL GLUE + e, g"OW .

Because of the appearance of the one-form dW in the variation of Ezﬁ in (2.2.38), the action

(2.2.38)

of the supercharges Q4 on O, is no longer given geometrically by the action of d on w.
Instead, when @; is interpreted as a holomorphic tangent vector 9/9¢’, the term involving
W corresponds geometrically to the interior product of 9/9¢’ with the holomorphic one-

form dW. So the 0 operator is now generalized to the operator
§=0 + taw, (2.2.39)

acting on sections of ﬁpM ® NPT M. Here gy denotes the operator on ﬁzf)\,l ® NPT M which
acts by the interior product with the one-form dW. (In other words, (g acts by removing
1 and replacing it with dW.) We note that because W is holomorphic, 62 = 0. Thus, the
first order chirality condition on the operator O, becomes the requirement that § annihilate
w.

A nice mathematical discussion of the cohomology theory associated to o is given by
Liu in [33], and applications to string theory are discussed in Chapter 3 of the thesis.

When w is a section of ﬁ}w ® T'M, then the modified chirality condition has a very
direct geometric interpretation. In this case, the condition that dw = 0 implies that w is

annihilated separately by both the operators @ and tgy7. The latter condition implies that
wi' W = 0. (2.2.40)

Since W is holomorphic, this condition is then equivalent to the condition that
(35 + wi' o)W =0, (2.2.41)

implying that the deformation of J represented by w must preserve the holomorphy of .
More generally, if it is possible to modify W to a function W + AW that is holomorphic in

the deformed complex structure, then w + AW is annihilated by 0.
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2.3 Multi-Fermion F-Terms in SU(2) SQCD

Up to this point, we have discussed general properties of multi-fermion F-terms in an
arbitrary N’ = 1 sigma model. We now specialize our analysis to the particular case of
SQCD. Our main goal in the rest of the chapter, concentrating mainly on the example of
gauge group SU(2), is to show that multi-fermion F-terms are generated in the effective
action of SQCD.

To this end, we begin in this section by analyzing the constraints imposed by symmetries
and holomorphy on the form of any multi-fermion F-term corrections in SU(2) SQCD. The
case of SQCD with gauge group SU(2) is particularly simple due to the enhancement of
the flavor symmetry. In this case, we fix the form of the operators O, uniquely, and we
demonstrate that they are nontrivial in the cohomology of Q4.

In the general case of SQCD with gauge group SU(N.) and Ny > N, flavors, a similar
analysis to determine the form of the operators O,, appears to be more complicated, since the
geometry of the moduli space M itself is more complicated. However, the direct instanton
computation of Section 4.1 shows that such interactions arise for all N. and Ny > N, — 1.
The other derivations in Section 4 generalize in spirit.

In the case of SU(2) SQCD with Ny = n flavors, we have already described algebraically
the classical moduli space M as being parametrized by the mesons M¥, subject to the
system of quadratic equations MAM = 0. This description of M has the virtue of being
very succinct. However, we now give another description of M which makes its symmetry
more apparent and consequently enables us to determine immediately the chiral operators

O, which arise from cohomology classes on M.

2.3.1 More About the Geometry of M

Since symmetries are of the utmost importance, we first review the symmetries of SU(2)
SQCD with Ny = n flavors. Besides the SU(2) color and SU(2n) flavor symmetries, this
gauge theory also possesses a non-anomalous U(1) R-symmetry as well as an anomalous

U(1) axial symmetry. Under these symmetries, the quark superfields Q% the mesons M¥,
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and the holomorphic coupling scale A transform as follows:

SU@2)e  SU@2n)  U(l)a UMz

Q. 2 2n 1 1-2
3 (2.3.1)
M 1 AZ(2n) 2 2(1-2)
A 1 1 2n 0.

Here A~ is the standard instanton counting parameter. (In this one place, we denote the
gauge group as SU(2)., to distinguish it from an unbroken SU(2) flavor group that will
appear momentarily.)

We now describe M by considering the pattern of symmetry breaking around a fixed
supersymmetric vacuum. Up to the action of the symmetries, any solution of the usual

D-term equations takes the form

v 0
0 v

Q. =10 of=vd, (2.3.2)
0 0

with v being an arbitrary complex number.
So long as v is non-zero, the expectation value of Q¢ in (2.3.2) breaks the symmetry

group in (2.3.1) down to a subgroup
SU(2) x SU(2n —2) x U(1)y x U(1)x. (2.3.3)

The unbroken SU(2) x SU(2n — 2) factor arises in the obvious way, and the unbroken U (1)
axial and R-symmetries arise from linear combinations of the corresponding generators in

(2.3.1) with the diagonal flavor generator in the center of the subgroup
S(U(2) xU(2n—2)) C SU(2n). (2.3.4)

Of course, the gauge group is completely Higgsed, and the massless fluctuations of the

quarks Q% about the point (2.3.2) decompose into two irreducible representations of the
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unbroken symmetry group (2.3.3), with
SU(2) SU((2n —2) Uy, Ul)x

-2
be 2 n -2 we = (2.3.5)
d 1 1 0 0

A 1 1 n 0.

Here the singlet ® describes a rescaling of M; the other fluctuations transform as an irre-
ducible representation ®7 of the unbroken symmetry, where ¢ = 1,2 is an index labelling
the 2 of the unbroken SU(2) and s = 3,...,2n is now an index labelling the 2n — 2 of
SU(2n — 2). Throughout the chapter, we will apply the convention that c,d, e, f refer to
indices 1,2 of the unbroken SU(2), that s,t,u,v refer to indices 3,...,2n of the unbroken
SU(2n —2), and that 4, j, k, [ run over all indices 1,...,2n of the full SU(2n) flavor symme-
try. These massless fluctuations ® and 7 represent local coordinates on M, such as were
used in section 2. Finally, for future reference in Section 3.2 we have included in (2.3.5) the
charges of A°~™, which are identical to those in (2.3.1).

Because any solution of the D-term equations can be brought to the form (2.3.2) using
the SU(2) x SU(2n) symmetry of SQCD, we see that the SU(2n) flavor symmetry acts
transitively on the quotient of M minus the origin by the C* action which scales v. We
thus set M = M — {0}, and we let B be this quotient of M by C*.

Furthermore, our description of the symmetry breaking pattern in (2.3.3) is equivalent to
the geometric observation that, at any non-zero v, the subgroup of SU(2n) which stabilizes
the point corresponding to Q% = v 3% on M is S(U(2) x U(2n — 2)). Thus, we can describe

B as a homogeneous (and in fact symmetric) space,
B=SU2n)/S(U(2) xU(2n —2)). (2.3.6)

To incorporate the value of v into our description of M, we observe that the C* action
which scales v is the complexification of the U(1)4 symmetry in (2.3.1). This symmetry
corresponds to the action of the central U(1) which lies in the stabilizer subgroup S(U(2) x
U(2n — 2)) and whose generator mixes with the generator of U(1)4 under the symmetry

breaking. Associated to this U(1) generator in S(U(2) x U(2n — 2)) is a corresponding
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homogeneous line bundle £ — and hence a C* bundle — over B. To specify £, we simply
note that the singlet field ® transforms as a section of £ and has charge +2 under the
original U(1) 4 symmetry, as ® describes the rescaling of M%,

So, if we excise the singularity at the origin of M, then M can be globally described as
this C* bundle over the base B,

c*— M- B. (2.3.7)

A direct relationship now exists between the algebraic description of M in (2.2.3) and
the intrinsic description of M in (2.3.7). To describe this relation, we consider the mesons
M?% modulo overall scaling, corresponding to the C* action generated by U(1)4. Then the
equations MAM = 0 are the classical Pliicker relations [34] which describe the Grassman-
nian G7(2,2n) of complex two planes in C?" as an algebraic subvariety of the projective
space parametrized by MY .

On the other hand, this Grassmannian can also be described as a quotient,
Gr(2,2n) =U(2n)/(U(2) x U(2n — 2)), (2.3.8)

which is equivalent to our description in (2.3.6) of the base B. Thus, the C* bundle over B
in (2.3.7) is simply the bundle associated to the affine cone over the Grassmannian Gr(2,2n)
with its Pliicker embedding in projective space. Equivalently, the line bundle £ arises as

the pullback from the degree one bundle O(1) on projective space.

2.3.2 The New F-Terms

With our thorough discussion of the symmetries of SQCD, we can immediately derive the
form of any multi-fermion F-terms that might appear on M. We perform our analysis in

two steps: first locally, and then globally.

Local Analysis

Locally, we construct the chiral operator O, from the massless fluctuations described
by ®¢ and ® about the vacuum Q°, = Sg Thus, in terms of the section w of Q% ® APTM,

we only consider w as restricted to the tangent space of M at this point.
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Now, the operator O, must be invariant under the symmetries SU(2) x SU(2n — 2) x
U(1); and must have charge +2 under U(1)% in (2.3.5). Furthermore, since we are only
considering the corresponding section w as restricted to the tangent space of a point in M,
we must construct O, completely from the fermionic fields Ds® and D4 ®¢ which represent
either one-forms or (by raising an index) tangent vectors to M. From (2.3.5) we see that
D4® and D, ®¢ have respective charges +1 and +1/(n — 1) under U(1)%. So just to make
an operator of U(1)} charge +2, we require that it contain either two copies of Ds®, or
one copy of Ds® and n — 1 copies of Dg®¢, or 2(n — 1) copies of Ds;®¢.

We can immediately rule out the first possibility, necessarily of the form D® - D®,
since from (2.3.5) this operator is not charged under U(1)’, and hence is not multiplied by
any power of A, contradicting the fact that our operator must vanish in the appropriate
weak coupling limit as well as the fact that we expect it to be generated by instantons. (A
more detailed study shows that there are no non-trivial chiral operators of this type.) On
the other hand, since the only tensors of SU(2) x SU(2n — 2) which we can use to make
invariants out of the fields D4®¢ are the anti-symmetric tensors e.q and €51/t St with
p = n — 1, we cannot make an invariant operator from one copy of Ds® and only n — 1
copies of D4®C.

We are left to consider the operator O,, which is made from 2(n — 1) copies of Dg ¢,

of the form
A7 gsitisptp €crdy * Ecpdy (ﬁ@g . ﬁ@?ll) - (E@gi . b@f:) , p=n-—1. (2'3.9)

This operator is invariant under SU(2) x SU(2n — 2) and carries charge +2 under U(1)%.
The pattern of contractions of spinor indices is fixed by the fact that each expression in
parentheses must be antisymmetric under exchanges of both the pairs (¢, d) and (s,t) and
must also obey Fermi statistics.

Also, we see from (2.3.5) that each fermion appearing in O,, carries charge —n/(n — 1)
under U(1)4, so the fermionic part of O, carries axial charge —2n. The fact that O, must
be invariant under the axial symmetry then fixes the dependence on A. In particular, we

see that the operator in (2.3.9) involves a single power of the instanton counting parameter
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A%~ and so could arise as a one-instanton effect.

So the local form of O, is fixed completely by the symmetries, and moreover O, has
the correct dependence on A to be generated by instantons. Furthermore, in terms of the
section w of ﬁf)\/t ® NPT M, we see that the parameter p is related to the number of flavors
n by p=n—1. This fact is a special case of the relation p = Ny — N.+ 1 which must
hold in SU(N.) SQCD with Ny flavors. In the direct instanton computation in Section
4, this relation follows most immediately by counting fermion zero modes in the instanton

background.

A Geometric Remark on Pullbacks From B

Because O,, only involves D ®¢ and not the singlet D ®, the section w has only compo-
nents along the base B, with no legs along the C* fiber. Naively, one might have concluded
that w then arises as the pullback from a section of ﬁ%_l ® A" I'TB on B. Actually, the
dependence of O, on scaling of the quark superfields means that it is a pullback from a
section of ﬁ%*l ® AT B ® LF for some k. (There is an irrelevant subtlety here. Because
of the nontrivial exact sequence 0 — TF — TM — TB — 0, where TF is the tangent
space to the fibers of M — B, a section of T'B cannot literally be pulled back to a section
of M. However, our concern is really with cohomology, and because the cohomology of T'F’
is trivial, we can ignore this subtlety.)

In fact, the degree of the twist by L is fixed to be k = —n. Indeed, as we noted above,
the fermionic part of O, carries U(1)"; charge —2n. As U(1), differs from U(1)4 by a
generator of SU(2n) under which O, is invariant, this means that, if we omit the factor
of AS~" from (2.3.9), then O, has U(1)4 charge —2n. Since the basic meson field M has
U(1)4 charge 2, this means that O, transforms as M ~" and w can be regarded as a section
of A '@ A"TITB® L7,

Consider a general scaling M — MM, M — XM, for A\ € C*. Under this scaling,
w— A"A0w = \""w. The fact that the exponent of X is zero is implied by the fact that
Ow = 0, and the fact that the exponent of A is —n is equivalent to the fact that w is a

section of ﬁ%_l ® A" ITB ® £L7". We apply these observations when we write a global
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expression for O,,.

Chirality and Cohomology of O,

Let us now check that O, is chiral — annihilated by Q4 — and moreover represents a
nontrivial Q4 cohomology class. This check follows directly from symmetries.

We recall that the chirality condition on O, is equivalent to the geometric condition
that O annihilate w. Because O, is a pullback from B, we can consider just the action of
the 0 operator along B on w, considered as a section of ﬁ% ® A\PTB ® L7™. Because both
the 0 operator on B and w are singlets under the action of SU(2) x SU(2n — 2), the section
Ow of Q%H ® APTB ® L7" must also be a singlet. But no (nontrivial) invariant section
of Q’]_’;l ® APTB ® L™ exists; such a section would be constructed from an SU(2) singlet
made from the tensor product of 2p +1 2’s. So the 0 operator on B necessarily annihilates
w.

A similar argument based upon symmetries also shows that O, cannot be written in
the form {Q,, (’)5'5‘} in a way that respects the flavor symmetry. Indeed, invariant sections
of ﬁ%fl @ APTB ® L7 and Q% @ AP 'TB ® £~ do not exist, since one cannot make an

SU(2) invariant from 2p — 1 2’s.

Global Analysis

Our expression in (2.3.9) is only a local expression for O, but because the SU(2n)
flavor symmetry acts transitively on M, this local expression suffices to determine a global
expression for Q. In order to write such an expression using the mesons M%, we observe
that the local tensors €511 5r» and e.4 in (2.3.9) extend globally to tensors on M given by

eirdringn A, o and MM, Then O, must take the global form
Op = A" F(MM) €9t M, i, Oy -+ Oii (2.3.10)

with
o _ 1
O;j = MM DMy -DM,;;, MM = 5 MM (2.3.11)
Of course, we employ the usual summation convention in writing MM as in (2.3.11), using

the Kahler metric ¢ on M to raise and lower indices throughout.
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In writing O,,, we have also included as a prefactor an invariant function F(M M) on M
which is not directly determined by the local expression in (2.3.9). The function F(M M) is,
however, determined by dimensional analysis and also, as we will now discuss, by requiring
O,, to be chiral.

The chirality condition on O, is most naturally expressed as the condition that the
corresponding section w of ﬁ;ﬁ;l ® A" T M be annihilated by 0. Explicitly, the section w
which determines the operator O, in (2.3.10) is given globally by

TN Li1d1 - indn T kalo 777 9 knln 777 9
w = F(MM)emnM; 4 (M 22 dM ok, 6]\4[232) (M mndM;, k., (9MW"> .
(2.3.12)
In order that w be annihilated by 9, we have already observed that it must be invariant
under the scaling M — AM. Furthermore, in order that w arise from a section of the
bundle Q" ®@ A" ITB @ L7, we have also observed that it must transform under the
scaling M — AM as w — A7 "w.

However, if we ignore F/(M M), we see that w in (2.3.12) otherwise scales with degree n

in A and with degree zero in A\. Thus, we set F(MM) = (MM)™™ to ensure that w scales

as M~™. So we must set
O, = AB—n (MM) - i ingn Miljl Oizjz cee Oinjn . (2313)

This expression directly generalizes our previous formula (2.2.28) in the special case n = 2.

Let us also make a remark about the global form of O, or equivalently w in (2.3.12).
In this expression, the components M% of M which appear are just affine coordinates on a
vector space in which M is embedded, and it must be that only the components of 9/9M%
and dM% which represent tangent and cotangent vectors to M itself appear in (2.3.12).
To check this condition, we can without loss consider the point of M at which M¥ = €7,
(We recall that the nonzero components of € are €2 = —¢2! = 1.) Then the holomorphic
tangent space to M at this point is spanned by vectors 9/0M% for which both i,j = 1,2,
corresponding to the singlet ®, or for which ¢ = 1,2 and j > 2, corresponding to ®; in the

representation (2,2n — 2).
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In particular, the vector 9/OM% for which both i,j > 2 is not a tangent vector to M
at this point. So in order for (2.3.12) to be well defined as a section of ﬁrﬂl ® A" M,
such components of dM;; and 9/0M 4 with both 4, j > 2 must not appear. However, upon
substituting M%¥ = €9 into (2.3.12), we see that the factors of M;,;, and M*! ensure that
these unwanted components do not appear, and the expression in (2.3.12) is a section of
ﬁnj\;l ® A" T M as claimed.

Like (2.2.25), (2.3.13) is written in terms of an arbitrary unknown Kéahler metric on
M. As in (2.2.26), we can make the asymptotic behavior more explicit, since we know the
asymptotic form of the K&hler metric. In writing this formula, just as in (2.2.26), we use
Kronecker deltas to raise and lower indices on M (so all components of M and M with
index up or down have dimension two), and write all factors of MM explicitly. With this

understood, the asymptotic form of the interaction is

—(Bn—1)/2

Aﬁ—n <MM> €i1j1~~.injn Miljl (97,'2]'2 e O'Ln]n (2314)

2.4 Computing The Multi-Fermion F-Terms

Although symmetries suffice to fix the form of the F-term correction in SQCD uniquely,
we must still check that it is actually generated. So in this section, we provide three

computations which show this.

2.4.1 A Direct Instanton Computation

Since instanton effects are the subject of this thesis, we first generate the F-terms directly
by a one-instanton computation which generalizes the classic one-instanton computation
[7,23,24] of the superpotential in the theory with Ny = N, — 1 flavors.

The most basic, and most illuminating, feature of this instanton computation is that it
directly explains how the relation p = n —1 arises in the SU(2) theory with Ny = n flavors.
This relation arises from counting fermion zero modes in the instanton background, and the

same counting implies that, in the SU(N,) theory, we must have p = Ny — N, + 1.
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Very briefly, before we review the details of the instanton computation, we will explain
the counting of fermion zero modes that controls the structure of the F-term. We thus
recall that, in the one-instanton background, we find at leading order 2/N. gaugino zero
modes and 2Ny quark zero modes. However, beyond leading order, the Yukawa couplings
pair 2(N. — 1) of the gaugino and quark zero modes, and these modes are lifted. As a
result, two gaugino zero modes and 2(Ny — N, + 1) quark zero modes remain. The two
gaugino zero modes that remain are generated by exact global supersymmetries. Thus, if
we consider the general form of the multi-fermion F-term in (2.2.29), the two gaugino zero
modes are associated to the fermionic collective coordinates % that appear in the integral
over superspace, and the 2(Ny — N, + 1) quark zero modes must be absorbed by the chiral
operator O, itself. So p = Ny — N, + 1.

We now present the details of the instanton computation in the case of SU(2) SQCD. As
described above, this computation should generalize directly to the case of SU(N.) SQCD,
though one must consider a more involved integral over the collective coordinates of the
instanton.

Following closely the computation of Affleck, Dine, and Seiberg [7], we work on the
Higgs branch of SQCD, under the assumption that the classical quark vacuum expectation
value, Q) = v Sg, is large and the effective gauge coupling g?(v) is small. In this regime, the

approximate instanton equations are valid,
DMF,, =0, D¢ =0, (2.4.1)

where we recall that ¢ is the scalar component of Q%. In a one-instanton background, the
solution of (2.4.1) for ¢ with boundary condition fixed by its classical expectation value is

given by

. ol xho
q, = EH—— (2.4.2)

Here 0, = (1, —iaA), with 04 the Pauli matrices, are the usual quaternion representatives.

Also, z* is a coordinate on R*, and p is the scale of the instanton solution. The classical
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action for this instanton background is

1

So
7

(872 + 4x2p?|o[?) . (2.4.3)

When |v]? # 0, instantons of large size are exponentially suppressed by this classical action,
and the integral over the scale p will be convergent.

We must now consider what sort of correlation function to compute in order to probe for
the multi-fermion F-term determined by the operator O, in (2.3.13). For this purpose, we
recall the chiral superfields ® and ®; which we introduced in Section 3 to describe massless
fluctuations of the quark superfields around the Higgs vacuum. Introducing components for

these fields,

O =¢+0x+ ...,
(2.4.4)

O° = ¢ + Oxs + ...,
we see that among the various interactions which arise from the multi-fermion F-term is an

effective interaction for 2n fermions of the form

AS—7 o1 —d e _d
W /d4l‘€slt1 Sptpecldl“'ecpde'X (Xgi th)(X?;Xt:) , p:n—l

(2.4.5)
We have included the dependence of this interaction on v and @. This dependence can either
be checked directly, or it can be deduced from requirement that the interaction transforms
as A" under M — AM, M — XM, as discussed in Section 3.
To probe for the presence of the F-term, we thus compute in the instanton background
the correlation function
(xx () () - (2.4.6)
(Because the correlator includes external legs with massless propagators, the fermions con-
jugate to those in the effective vertex appear.) This computation as usual has two pieces: a
one-loop integral over fluctuating modes in the instanton background and an integral over
zero modes. Because the instanton background is supersymmetric to leading order, the
one-loop integral over quantum fluctuations is trivial and contributes only a factor of unity.

So the important integral to consider is the integral over zero modes.
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Bosonic Zero Modes

As usual, in the instanton background we have eight bosonic zero modes. Four zero
modes are associated to the collective coordinate zq for the location of the instanton in R*.
One zero mode is associated to the scale p of the instanton. Finally, three zero modes arise

from global SU(2) gauge transformations and are associated to a collective coordinate h on

SU(2).
Fermionic Zero Modes

Much more important than the bosonic zero modes are the fermionic zero modes. We
have already discussed the counting of these modes generally, but now we review the details.
First, we have two gaugino zero modes which arise from the action of the chiral super-
charges @), and which take the form
p?oth,

)\SSA[ﬂ] — )
o (p2+x2)2

(2.4.7)

Here SS stands for global supersymmetry, A labels the adjoint representation of SU(2), «
is a spinor index, and 3 simply labels the two zero modes. Since we will not try to compute
the absolute normalization of our interaction, we have not bothered to normalize the zero
modes.

Second, at leading order in g2, we have an additional 2n + 2 fermion zero modes. Two
of these extra zero modes are gaugino zero modes associated to the action of the supercon-
formal generators ngﬁ , of the form

paj ot

ASCA[B]
a (p? + 22)2

(2.4.8)

The other 2n zero modes arise from the 2n fermion doublets and are of the form

. 5t hb e

i o P9 Nacab (2.4.9)
aalil ™ (p2 4 42)3/2

Again, j is just an index that labels the zero modes. We have also included explicitly

the dependence of these modes on the element h’ of SU(2) parametrizing global gauge

transformations. We could also have included this collective coordinate in (2.4.7) and
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(2.4.8), but any dependence of the gaugino zero modes on h will drop out immediately in
our computation.

These 2n zero modes transform in the representation 2n of the flavor group SU(2n).
After giving expectations to the quark superfields, SU(2n) is broken to SU(2) x SU(2n —2)
(where in an instanton field, SU(2) must be combined with a rotation). Under the subgroup,
the zero modes of v transform as (2,1) @ (1,2n — 2). The superconformal zero modes

similarly transform as (2,1).

Yukawa Interactions

The zero modes in (2.4.7), (2.4.8), and (2.4.9) are simply zero modes of the I) operator
in the instanton background. However, to perform the instanton computation, we must
go beyond leading order and consider the effect of the Yukawa couplings in SQCD. These

couplings of course take the form
/d4:c g (v X)) - (2.4.10)

On the Higgs branch, with ¢ satisfying (2.4.2), this interaction pairs the two supercon-
formal zero modes A9 with the two zero modes of the quarks that transform the same
way, which are those with ¢ = 1,2 in (2.4.9) (and which we have denoted x in (2.4.4)). As a
result, when we compute the correlator (2.4.6), these fermion zero-modes can be absorbed
by pulling down two copies of the Yukawa interaction (2.4.10) from the SQCD action, which
contributes a factor proportional to 72 to the correlator.

We are then left with the two gaugino zero modes A5

and the other 2n — 2 quark zero
modes appearing in (2.4.9). Of course, these 2n — 2 quark zero modes are absorbed directly
by the massless fermions x{ appearing in the correlator (2.4.6). But what of the zero modes
ASS?

To answer this question, we recall that another very important, qualitative effect of

the Yukawa coupling (2.4.10) is that it alters the form of the zero modes A to include

components also involving the fermion . Specifically, to first order in pv, the relevant
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equations of motion are

DXx=0, D¢=+V2q-, (2.4.11)

which have solution

A=2A%8 gld iﬁf]qg, (2.4.12)
with g as in (2.4.2). Simply by symmetry, the massless components of &yf} which mix with
A% must correspond to the singlet ¥. Thus, the two supersymmetric zero modes A% are
absorbed by the two fermions ¥ which appear in the correlator (2.4.6).

The classical wavefunction of ¥ can be explicitly evaluated in the instanton background

from (2.4.12), and far from the instanton location zy the wavefunction takes the form
() = 1p*85 (@, o), (2.4.13)

where Sg (z,x0) is the free fermion propagator.

Computing the Correlator

We are now prepared to compute the fermion correlator (2.4.6) in the instanton back-
ground. Using the classical wavefunctions (2.4.9) and (2.4.13) for the fermion zero modes,

we see that

(ox (e xi) - (e ox)) =

AT / d'zodpdp p™ 5 exp(—4np*[v]? [g?) ettt (BRI ey, ) - (hEzhlE ec,y,)

P

x (S(y1 —zo) - S(y2 — z0)) - - - (S(y2n-1 — x0) - S(Y2n — 20)) -
(2.4.14)

In this expression, ¥i,...,%2, are the positions of the 2n fermions in R*, which are
assumed to be far from the position xg of the instanton. We then make use of the fact that, in
this limit, the classical wavefunctions (2.4.9) of the fermions x? have the correct asymptotic
behavior so that the correlator can be written using the free fermion propagator S. In
computing the amputated vertex, we would simply drop these factors and the integration

over the position zg of the instanton.
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2n+5 and a factor

Besides the factor d*zg, the bosonic measure also includes a factor dp p
dp, which represents the invariant Haar measure on SU(2). We have determined the power
of p that appears simply by dimensional analysis.

Thus, since a prefactor of 7* appears from the fermion zero modes, the Gaussian integral
over p then produces the correct dependence on v and 7 as in (2.4.5). We have not been
careful about factors of the gauge coupling ¢? which also appear in the integration measure
and upon performing the Gaussian integral. By holomorphy, any explicit dependence of
the correlator on g2 should be absorbed into a wavefunction renormalization of the external

legs.

The only integral left to consider is the group integral over SU(2), which takes the form
ot / dp W3 n2 . pr (2.4.15)
This integral is manifestly non-zero. The SU(2) x SU(2) symmetry implies that

dy dy---d .
Ie) ey cny X ehdze, ... edar-1d2p €cap_10ap + (permutations) . (2.4.16)

Here the first term on the right hand side must be symmetrized under the exchanges of
indices corresponding to exchanges between the factors of h in (2.4.15). These symmetries
arise in the effective interaction (2.4.5) from the permutation symmetries of the fermions.
Thus, upon substituting (2.4.16) into (2.4.14), we produce the effective interaction which

arises from the multi-fermion F-term.

2.4.2 A Computation in the Seiberg Dual With Six Doublets

In many examples of duality, non-perturbative effects in the direct theory become classical
effects in the dual theory. In this section we show, at least in the SU(2) theory with 2n = 6
doublets, how the multi-fermion F-term which we have now computed non-perturbatively
in the direct description of SQCD can also be computed classically, at tree-level, in the
Seiberg dual [10,25] description.

As promised in Section 2, we also revisit here the deformation of complex structure that

occurs in the theory with four doublets. In particular, we reproduce the effective interaction
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in (2.2.28) by integrating out the massive fields in the linear sigma model with superpotential
W = S(MAM — A*) which describes the deformation. Since this computation is exactly
the same in spirit as our classical computation in the Seiberg dual of the theory with six
doublets, we describe both computations together.

The Seiberg dual of SU(2) SQCD with six doublets is distinguished by the fact that
the dual gauge group is trivial, and hence this theory is especially simple. In particular,
the elementary degrees of freedom in the dual theory are described entirely by the mesonic

fields M% | with Wess-Zumino action
1 4 Ay TF 4. 20 A—3
S:/ﬂ/d xd@MM—i—/d xd*0 A™° MAMAM + c.c. (2.4.17)

We have included the canonical kinetic terms in S, with an arbitrary scale p that appears
so that, by convention, M has dimension two. Using a different kinetic term for M would
not affect the computation of F-terms.

The cubic superpotential plays an interesting role in this theory. As shown by Seiberg
[10], this potential appears nonperturbatively in the electric theory, but in the dual theory
it arises at tree level. In either case, the F-term equations which follow from this super-
potential are simply the classical Pliicker relations MAM = 0 that enforce the condition
rank(M) < 2, which is necessary to describe M.

In the special case n = 3, the multi-fermion F-term in (2.3.13) takes the explicit form

58 = i4 / d*z d*0 A® (MM) =3 12203 BT, 1 x
K (2.4.18)

x (MM DM, - DMy,) (M¥" DMy - DMy, ) -
We will generate this effective interaction in the most naive way possible. We simply
observe that, when we expand the Wess-Zumino model around a generic point on M, the
cubic superpotential induces a mass for some components of M. We then integrate out
these massive modes at tree level in a Feynman diagram computation to generate (2.4.18).

At this point, one might immediately protest that we are making the quixotic proposal
to generate an F-term in perturbation theory and in blatant violation of standard non-

renormalization theorems. However, these non-renormalization theorems have only been
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considered for conventional F-terms which describe superpotentials, and the multi-fermion
F-terms we consider evade them in an interesting way.

The essential point here is that the multi-fermion F-terms arise from cohomology classes
on M. Whenever we perform a perturbative computation around some vacuum on M, we
are only working in a small neighborhood of that point, and in that neighborhood any
operator O, which represents a positive degree cohomology class of Q4 becomes Q4-trivial.
As a result, though globally on M the multi-fermion F-terms cannot be written as D-terms,
they can be written as D-terms if we expand in fluctuations around a given vacuum. These
D-terms can then be directly generated in perturbation theory.

As a simple and highly relevant example, we consider the F-term at hand in (2.4.18).
We expand (2.4.18) around some point with (M%) # 0. With no loss of generality, we
can assume that the only nonzero component of (M%) is (M12). In expanding around this
particular vacuum, we apply our standard convention that c¢,d, e, f refer to indices 1,2,
s,t,u, v refer to indices 3,...,6, and i, j, k,[ run over all indices 1,...,6. From (2.4.18), we
generate a series of interactions among the fluctuating fields d M, one interaction being

55 = :4 / 'z d20 A3 (FIM)~™> (M 12) x

x gstisats <5M0dﬁ(5ﬁm -ﬁdﬁdtl) (5Mef DoM,,. .Emfw) .
(2.4.19)
Of course, the effective fermion interaction (2.4.5) which we considered in the instanton
computation is one of the terms that arises from (2.4.19).

By definition, if §M;; is massless, then the basic equation of motion (2.2.38) for §M;
takes the form D” dM;; = O(6M 2). Since only massless fluctuations appear in the effective
interaction (2.4.19), we can immediately integrate this F-term into a D-term at leading

order,

68 = % / dzd*0 A* (MM)~* (M) x
; (2.4.20)
x etttz (NG, . 60, ) (6M DM, - Dollp,) |

We have used the fact that to this order, two D’s cannot act on the same dM, and none

can act on oM.
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In the case of the theory with n = 2, the same observations imply that the analogous

part of the F-term in (2.2.28) can be rewritten locally as the simple D-term below,
1 _ o
55 = / Az d A (RTM) " et ST o0 g1 (2.4.21)

Here again we expand around a vacuum in which the nonvanishing part of (M) is (M12),
and ¢,d = 1,2 while s,t = 3, 4.

Thus, the appearance of these unusual F-terms is signaled by the perturbative appear-
ance of the D-terms in (2.4.20) and (2.4.21), which we must now compute. As in the
instanton computation, we could compute some particular component of this superspace
interaction. However, we are in a situation perfectly suited for a manifestly supersymmetric

computation using the formalism of super Feynman diagrams.

FEvaluating a Super Feynman Diagram

We will not review here the basic derivation of Feynman rules in superspace, for which
we recommend Section 6.3 of [35]. In general, superspace Feynman rules can be derived by
standard path integral manipulations just as for ordinary Feynman rules, and for the sake
of brevity we will only state the super Feynman rules that we need for our very simple,
tree-level computations.

In the case of the theory with 2n = 6, we begin by expanding the tree-level Wess-Zumino

action in fluctuations dM about the vacuum, so that

1 -
S= 5 / 'z 40 STISM + / d'z 420 (3N (MYNSMASM + NSMASMASM) + c.c.,
(2.4.22)

where for convenience we introduce the abbreviation
A= A3, (2.4.23)

We will not be concerned with constants here, and we simply absorb the numerical factor
of 3 in (2.4.22) into (M). We will also suppress the appearance of the mass scale p in all
expressions that follow, since its appearance is trivially fixed at the end of the computation

by dimensional analysis.
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Of course, we similarly expand the sigma model action in the theory with n = 2,

1 _
S = o /d4:c d*0 SMSM + /d% d?0 (2 (MYASM 6% 4 SMASM 6% — €6%)+ c.e. 4 -+ -,
(2.4.24)
where the ellipses indicate kinetic terms and a mass term for the fluctuations of the auxiliary

field 3. As above, we ignore constants, and we abbreviate
e =AY, (2.4.25)

The most important terms in (2.4.24) for our computation are simply the linear source term

for 0% which represents the deformation as well as the mass term mixing M and §3.

Propagators

In the vacuum with only (M'2) # 0, we want to get an effective interaction for the
massless fields by integrating out the massive fields M, s,t =3,...,2n.
These fields have standard superspace propagators, which may be either chiral or non-

chiral. We indicate these propagators below, in the theory with n = 3,

OMy —————— M™ = w0/ (7 + IN(IM))

M P g = XMy e D2/ p? (0?4 IAQIM)), (24.26)
— 52 _ —9 —-

Py My = AM') €40, D° /2 (p? + INMM)) .

In writing the non-chiral propagator, we use the standard notation 63 = 650y — 6;'6y. We

have also suppressed a superspace delta function §4(6 — #') which accompanies these prop-
agators. Finally, we note the superspace derivatives D? and D? which appear in the chiral
and anti-chiral propagators. These factors arise ubiquitously in supergraph computations
when chiral integrals over half of superspace are rewritten as non-chiral integrals over the
full superspace.

In the theory with n = 2, similar propagators appear for the appropriate linear combi-

nations of 6% and §M, for which the mass squared is again proportional to (MM). (If a
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separate mass term mX? for ¥ is also present, this statement remains true in the classical
limit that (M M) is large.)
Vertices

In the theory with n = 3, the cubic superpotential gives rise to cubic vertices for chiral
and anti-chiral interactions, as we distinguish in Figure 2.1. We have written these inter-
actions in an SU(6) symmetric fashion, though of course each chiral and anti-chiral vertex
decomposes under the unbroken SU(2) x SU(4) symmetry to give various interactions be-
tween the massive and massless components of M, which we leave implicit. Each superspace
vertex comes with a factor of [d*f, and the delta functions from the propagators simply
ensure that the overall diagram has precisely one factor of [ d*0, as we expect.

mn

= A €ijklimn »

mn
X 6z'jkl'rrm )
i K
Figure 2.1: Vertices forn =3
In the corresponding theory with n = 2, we require a similar cubic vertex arising from

the interaction M ASM 5% as well as the chiral source term € 6%, as shown in Figure 2.2.

Again, we leave the obvious decomposition under SU(2) x SU(2) implicit.
oL
— gkl
ij kl
O——e = ¢

Figure 2.2: Vertices for n =2
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Last, we recall the rule that if a chiral vertex has N internal legs (external legs don’t
count), then N —1 of those legs appear with a factor of D? attached. Briefly, if J(x, 6) is the
chiral source introduced as usual to derive Feynman rules, then the functional derivative of
J satisfies 6.J(z,0)/8J(2,0") = D?6*(x — 2') 6*(0 — 0'). So N factors of D? appear from
these derivatives, but one factor of D? is used to write [d20 D?> = [ d*), as mentioned
above.

With these rules in hand, we can immediately generate the interactions in (2.4.20) and
(2.4.21). First, in the simpler case of n = 2, we immediately evaluate the simple diagram

in Figure 2.3 at zero momentum to produce the effective interaction

/ drz d20 €Lest ST o6 M gy — (2.4.27)

(MM)’
as in (2.4.21).

SC

0%

td

Figure 2.3: Two-point super Feynman diagram

For the theory with n = 3, we consider the slightly more involved diagram in Figure 2.4.
We note that the D? operator in this diagram arises from the central chiral propagator, and
the two D? operators arise from the two chiral vertices.

At first sight, one might worry about the spurious pole at zero momentum that appears
to arise from the extra factor of p? appearing in the central chiral propagator, as in (2.4.26).
Physically, since we only integrate out massive fields, we do not expect to find any pole at
zero momentum.

However, we can integrate by parts to move one of the D? operators onto the central
chiral propagator to form D?D?. Since D?>D? = p? when acting on a chiral field, this factor

of D?D? cancels against the extra factor of p? in the denominator of the chiral propagator.
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S1G

S2C, t, dz

Figure 2.4: Sixz-point super Feynman diagram

Thus, the diagram is well defined in the limit of zero momentum, and we evaluate it in
this limit to reproduce the D-term (2.4.20). We also note that once we cancel the factor
of D?D?, we are left with only one factor of D?, which acts on the external anti-chiral legs
just as in the interaction (2.4.20).

So at zero momentum, the remainder of our computation is a trivial matter of algebra.

We find that this diagram produces the effective interaction

/ @' d*0 50 4ye, 0 ssey (DM 0, - D6Mpya,) SMH1 51212 x

X €C1C2 ¢S152Uv X 6u’v’wﬂc <M12> X ew’x’tltg 6d1d2
T'AE 1oy € -T-)\E !t € =
M (M) e RN (M) wewwte 2 T NN (MM)
(2.4.28)
The tensor on the second line of (2.4.28) is then proportional to
AT (MM) ™ (M) 633 62102 o192t (2.4.29)

which has precisely the form required to produce the F-term. The \’s have happily canceled,
ensuring the requisite holomorphy.

N. Seiberg has pointed out the following interpretation of the 1/ factor. As the meson
superfield M has dimension two in the classical theory, the dependence on A of the super-
potential interaction in the Wess-Zumino model (2.4.17) is fixed by dimensional analysis
to be [dixd*0 A3 M N M A M. Thus, the abstract coupling A is a multiple of A=3 in
SQCD, as in (2.4.23), and the multi-fermion F-term interaction, being proportional to A~!

in the Seiberg dual description, is proportional to A3 in the original SQCD description. But
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A3 is the standard instanton factor for SU(2) with six doublets, and the direct instanton

computation of Section 4.1 did, accordingly, give a result proportional to A3.

2.4.3 Mass Deformation And Renormalization Group Flow

For our final computation, we perturb SU(2) SQCD with 2n massless doublets by adding

a tree-level superpotential which gives a mass to some of the n flavors,
W = mi; MV . (2.4.30)

As usual, we assign charges to the mass parameters m;; under the symmetries of the massless

theory so that W is formally invariant,
SU(2) SU(2n) U(1)a Ul)r
(2.4.31)
mi 1 A2(2n) —2 -2(1-2).
The whole computation will be performed on B.

As we observed in general in Section 2.3, the tree-level superpotential alters the on-shell
supersymmetry algebra of the theory. Consequently, the operator O, = ™) in (2.3.13)
which is chiral in SQCD with 2n massless doublets is no longer chiral when some of those
doublets become massive.

Physically, we expect that there is instead some deformation O,, of this operator, de-
pending holomorphically on m;;, which is chiral in the massive theory and which reduces
to (’)L(‘,n) upon setting m;; to zero.

On the other hand, if we give very large masses to k of the flavors and integrate them
out, we also expect that O,, must reduce to the operator Ofun_k) appropriate for the massless
theory with n — k flavors. In particular, upon integrating out all but one flavor, O,, should

reproduce the well known nonperturbative superpotential,

A5

%4 . 2.4.32
- (2432)

Here M = M is the only independent component of the 2 x 2 antisymmetric matrix M%.

We now compute O, which will be uniquely determined from Ofun) by supersymmetry

and will have the properties above. Since we know already from the work of [7] that the
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superpotential (2.4.32) is generated, we will thus show that the F-term involving (’)&n) is
generated in the massless theory with n flavors. Finally, we remark that this sort of analysis
extends, at least in spirit, directly to the general case of SU(N.) SQCD with Ny > N, flavors
and might be successfully applied there.

As before, we use M to denote the moduli space of the massless theory, and we recall
that M is a complex cone over the Grassmannian B = SU(2n)/S(U(2) x U(2n —2)). Then
our problem of constructing O, is equivalent to the geometric problem of finding a tensor
w, which is generally an inhomogeneous sum of sections of QPM ® NPT M for various p, such

that @ satisfies the supersymmetry condition,
(5+ de) 5 =0, (2.4.33)

and in the massless limit reduces to our former tensor w.

Preliminaries

As in Section 3, the important analysis of @ is the local analysis on B near the point
corresponding to M% = €. However, we first find it useful to revisit our construction of
the simpler tensor w in greater detail and in a manner which immediately generalizes to the
construction of @.

Let us recall our construction of w in Section 3. We begin by picking a point P on B, for
concreteness corresponding to the point M% = €7 on M. By an overall scaling of the M,
we can set M'2 = 1, and then we take complex coordinates on B (in a neighborhood of the
point P) to be simply the off-diagonal matrix elements ¢? = €caM*t c=1,2,5=3,...,2n.
These complex coordinates are the usual complex coordinates on the Grassmannian, and
they transform as in (2.3.5) under the action of the unbroken S(U(2) x U(2n—2)) symmetry
group at P. The matrix elements M% i, j > 2, are determined implicitly in terms of the ¢3
by the equation M A M = 0. We will not need the explicit form of these matrix elements;
because we work locally at P, the only important fact is that they are of order (¢%)2.

In (2.3.13), we determined the form of the multi-fermion F-term:

Ow = AGin (MM) - Eiljlmi"j" Miljl Oi2j2 oo Oi"jn, (2434)
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where

Oy = MM DMy DNy, MM = MM, (2.4.35)
In that discussion, we used an argument based on symmetries to prove that dw = 0. As
a prelude to including the superpotential deformation, we will here demonstrate this more
explicitly.

Since w is invariant under the action of SU(2n) on the homogeneous space B, it suffices
to show that dw = 0 at the point P. Furthermore, to evaluate this derivative at P we need
only describe w up to terms of order ¢2. Once we recognize this fact, we can immediately
see why w is annihilated by 9. Thus, we note that MM = 1 + O(¢?), so working up to
terms of order ¢? allows us to set MM = 1 in (2.4.34). Furthermore, examining (2.4.34)
and (2.4.35), we see that up to terms of order ¢?, we can replace the explicit factor of M, 1
in (2.4.34) by €, ;,, so that all factors of O;,;, have iy, ji, > 2. (We also observed this fact
at the end of Section 3.2.) Further, for iz, jr > 2, we can take O;, ;, = eCdﬁMikc -ﬁﬂdjk,
again up to terms of order ¢?. So, up to terms vanishing to second order at P, w takes the

particularly simple form

S S .Sntn P a 1 Cn 8
W = € 1t1 2t2 t <651d1d¢si %) LR <€Cndnd s"&bﬁ{;) . (2436)

Now the fact that dw = 0 at P is manifest: all terms in w have constant coefficients and
are trivially annihilated by .

The benefit of this approach is that we can now conveniently understand the gener-
alization with the superpotential turned on. We claim that the generalization of O, is

simply
% 6—n (A1 -n g1 indn AT, . (). . . .
O, = A (MM) € Miyj, Oiggy - Oiip s (2.4.37)

Oij = MM DMy, - DM;; — (MM) mi; .

This certainly reduces to O, at m = 0; we just have to prove that it is chiral. In other
words, we need to show that the object w, obtained from w by replacing each O;; by (5,~j, is
annihilated by 0+ gy It suffices to do the computation at the point P € B with M¥ = €J
since, as we will make no particular assumption about the form of the mass matrix m;;, the

computation would proceed in the same way at any other point.
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So as before, we want to write out a simple formula for & that is valid near P to order
¢?. To this order, the explicit factors of M, ji in @w and of M* in @ij can be replaced by
€,4, and e~ Since in (51-]-, the indices ¢, j are then in the range 3,...,2n the mass matrix
m;; can be replaced by p;j, its orthogonal projection onto the part with 4,5 > 2. We write
IT for the projector onto components of m;; with 7, j > 2 and will describe II more explicitly
momentarily.

The net result is that up to terms of order ¢?, @ is described near P by a simple

generalization of (2.4.36),

o = 651t1...5ptp ‘:151751 . &V)sptp , p=n-— 1 ,
2.4.38)
y N T B (
Wst = €cd (dﬁf)g% + &¢gd¢t> — st -

The virtue of factorizing w in this way is as we will see each factor W, is separately
annihilated by 9 + tgyy. Also, in the expression for @ in the second line of (2.4.38), we
have explicitly indicated the two terms that arise from the contraction of spinor indices on
Dy, in (2.4.37), since we will try to be careful about factors of two in the following.

Let us first evaluate tqp(ws). The contraction operator tgyy trivially annihilates pg
(because the latter is a zero-form). As W = m;; M%, we have dW = m;;dM%. So the effect
of contraction with dW is just to map 0/0¢; to u$, the projection of the mass matrix m to
terms that transform like 9/0¢¢ (in other words, as (2,2n — 2)) under the subgroup of the

symmetry group that leaves fixed the point P € B. Hence we have
LAWWst = €cd (c@i i+ u d@l) : (2.4.39)

It remains to evaluate O(—js). This is nonzero because of the projection in the definition
of pst. As we will show,
Opst = €ca (d$§ i+ s d@f) : (2.4.40)
From (2.4.39) and (2.4.40), we then see directly that d + 4y annihilates &g and hence @
at the point P on B.
To derive the formula (2.4.40) for O, we begin by considering the projection II of the

mass matrix m onto its components which transform in the representation A2 (2n—2). We
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can directly write a global formula for this projection,
II(m)y; = my; + (HM)71 (mikMklMlj — mjkMklMli) + (2.4.41)
+ (MM)_2 (Mg MM, MPID ) a
Upon substituting M% = € and using repeatedly that E"’laj = —gf (explaining the signs
above), one can check that the second and third terms of (2.4.41) subtract the components
of m transforming in the representations 1 and (2,2n — 2) under SU(2) x SU(2n—2) at P,
leaving only the components in A? (2n — 2). Since the formula (2.4.41) for I is invariant,
it is correct globally on B.

Because the action of 0 commutes with pullback, we can now act with 0 directly on
(2.4.41) as an unconstrained expression in the ambient vector space (or projective space)
parametrized by M%. We then pull this expression back to M by dropping all terms which
involve the one-forms dM,; with both indices 7,j > 2.

To evaluate Ou at ¢ = 0, we can discard all terms proportional to ¢, and in particular
to components M% or M,;; with i or j bigger than 2. Terms that survive at ¢ = 0 only

arise from the action of @ on the second term of (2.4.41), with the expression
Svavals kL7 kL7 .
(MM) " (ma MMM — mp MMM ) 0> 2. (2.4.42)

From this global expression (2.4.42) we immediately deduce the local formula (2.4.40) upon
setting M% = €7 and identifying m, M kldﬂlj as representing locally e.q ué do¢ at P. We
remark that the relative sign between the two terms in (2.4.40) and (2.4.42) arises from a
rearrangement of flavor indices in passing from (2.4.42) to (2.4.40).

Finally, although we have thus far only considered the special case that W = m,;; M i,
if we now consider the case of a general superpotential deformation of SQCD, then our
construction of @ immediately generalizes upon substituting everywhere W /0M¥ for m;;.
The only important property of m which we used was the fact that it is annihilated by 0,

which is always true for dW.

Renormalization Group Flow

To conclude, we consider how O, in (2.4.37) behaves under renormalization group flow.
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If we expand O, as a polynomial in m, then the term of degree k in m is given by

— S —(n—k .. .
o=k — (1) (” 1) AT (MM) 7R Girgingo

k
— 2.4.43
X My Migjy - Mgy Oiggagings = Oinin ( )
Oij = Mklﬁﬂlk . ﬁﬁlj .
This operator O(E,n*k) has the same form as the operator in (2.3.13) which appears in the

theory with n — k massless flavors.

We consider the limit in which k flavors have masses m > A. To integrate out these
flavors, we restrict to the sublocus of M describing supersymmetric vacua in the massive
theory, so that m;,M* = 0 for all i,j (as follows from the F-term equations), and we
simply omit from the operator (5w any terms which involve the heavy quarks. The operator
to which O,, flows in the infrared is thus O * in (2.4.43).

In particular, we can consider flowing to the theory with only one flavor. The operator

to which O, flows is then given by

Nl
o — (_1>(n*1) A6 (MM) €T I In N My G (2.4.44)

w

As we see, (’)5,1) involves no fermions at all and represents a function on M. Of course, this

function is not holomorphic on all of M.
However, if we restrict (’)S) to the sublocus of M describing supersymmetric vacua, then
(’)L(‘,l) is holomorphic. Indeed, this locus can be described by a single massless meson M, so
(1

the matrix structure disappears and M cancels out. On this locus, Oy’ can be written in

terms of M as

2

O = (=)D NS vttty ey, M (2.4.45)

In this expression, the Pfaffian of the rank 2(n — 1) minor of m appears, and an extra factor

of two arises from the contraction of indices of M, ;,. So, once ultraviolet and infrared

scales are matched, Og) reproduces the nonperturbative superpotential in (2.4.32).



Chapter 3

Residues and Worldsheet

Instantons

3.1 Introduction

String theory backgrounds which preserve only N/ = 1 supersymmetry in four dimensions
are of great interest both from a theoretical and a phenomenological perspective. A textbook
way to obtain such a background is to compactify either the EgxFg or Spin(32)/Zs heterotic
string on a Calabi-Yau threefold X with a stable, holomorphic gauge bundle E. One
might suppose that these compactifications, which admit a completely perturbative string
description, would be a natural starting point from which to study the moduli space of
N =1 backgrounds of string theory.

However, in fact we know very little about which pairs (X, F) give rise to consistent
heterotic backgrounds, even in string perturbation theory. The issue, of course, is that
models described by generic X and FE, even though they may satisfy the classical equations
of motion to all orders in o/, are destabilized non-perturbatively by world-sheet instantons
[12]. These instantons, arising from world-sheets which wrap rational (i.e. holomorphic,
genus zero) curves in X, can each contribute to a background superpotential W which lifts

the Kahler moduli of X and generates a cosmological constant. So one might think that

69
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the only stable A/ = 1 heterotic compactifications would arise from very special choices of
X and E — for instance corresponding to world-sheet theories with (2,2) supersymmetry
or the (0,2) models studied by Distler and Greene [36,37] — for which each world-sheet
instanton simply cannot contribute to W.

In this light, the result of [13] that there are no non-perturbative contributions to W that
destabilize compactifications described by (0,2) linear sigma models [38,39] is somewhat
surprising. This result does not rely upon any consideration of world-sheet instantons and
instead follows from simple facts about the linear sigma model. One simply observes that
W must always be a holomorphic section of a complex line-bundle of strictly negative
curvature over the moduli space of the low-energy effective theory, which is naturally a
compact Kéhler manifold in the case of a linear sigma model. The compactness of the
moduli space implies that W must have a pole somewhere on the moduli space or else vanish
identically. However, the linear sigma model, being a two-dimensional, super-renormalizable
gauge theory, can only become singular when the target space becomes non-compact, as
some bosonic field develops a dangerous, unsuppressed zero-mode. In computing the linear
sigma model correlators which describe the couplings of gauge-singlet fields in the effective
theory and so probe for a background W, one finds that, after suitably twisting the model,
no boson has a dangerous zero-mode. So W has no poles on the moduli space and thus
vanishes.

Now, Calabi-Yau compactifications which are described by (0, 2) linear sigma models are
certainly not generic — but nor are they so special that each world-sheet instanton simply
does not contribute to W. So from the world-sheet perspective, the stability of (0,2)
linear sigma models implies in these compactifications a remarkable cancellation among
the contributions to W from world-sheet instantons wrapped on rational curves in each
homology class of X.

For instance, the analysis of [13] was applied in most detail to the simple case that X is a
quintic hypersurface in CP* and E is a deformation of the holomorphic tangent bundle T'X,

corresponding to a deformation off the locus of (2,2) supersymmetric world-sheet theories.
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In this case, the linear sigma model result implies that, contrary to one’s naive expectation,
the world-sheet instanton contributions to W from the 2875 lines on the generic quintic
sum to zero.

Our main goal in this chapter of the thesis is to understand, from the world-sheet per-
spective, the source of this remarkable cancellation among instantons. In the process, we
will introduce a new (0,2) “half-linear” sigma model and show that heterotic compactifi-
cations described by these models form another class of stable N' = 1 string backgrounds.
For instance, using the half-linear model we show that heterotic compactifications on the
quintic hypersurface in CP* for which the gauge bundle pulls back from a bundle on CP*
are stable.

More generally, just as for the linear models, the half-linear models can be used to
describe compactification on any Calabi-Yau threefold X which is a complete-intersection
in a compact toric variety Y. However, in the half-linear models the bundle F on X is
now any stable, holomorphic bundle which pulls back from a bundle on Y. In particular, £
need not be a “monad” bundle on X, the sort most naturally described in the linear sigma
model. (Technically, a monad bundle is one which admits a description as the cohomology
of a complex A — B — C of three bundles A, B, and C on X.) Conversely, however, there
are also monad bundles on X (including obvious ones such as its tangent bundle) that do
not pull back (at least in any obvious way) from a holomorphic bundle on Y. So we will also
develop a version of the vanishing argument adapted to linear models and monad bundles

on X.

3.1.1 A Brief Sketch of the Idea

Our essential idea can be motivated by considering the actual form of the instanton contri-
butions to W in the simple case that the string world-sheet wraps once about an isolated
rational curve C' embedded in X. Actually, the most direct and elegant way [40,41] in this
case to derive the instanton contribution to W is to evaluate the partition function of the

worldvolume theory on a single D1-brane wrapped on C' in the Type I theory, which is the
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dual description [42] of a world-sheet instanton in the Spin(32)/Zs heterotic theory. (As
explained in [41], the derivation of W from the Type I theory most directly applies to the
Spin(32)/Zy heterotic theory, but holomorphy and gauge-invariance allow us to interpret
the answer for the Egx Eg heterotic theory as well.) Holomorphy allows us to evaluate this

partition function at one-loop, so the instanton contribution to W from C is just

B _A(C) ; Pfaff' (Dp)
w(C) = exp( = + /CB> 7det’(DB) . (3.1.1)

Here the exponential factor in W (C) represents the classical action of the D1-brane.
We have written this action in heterotic units, so that A(C') is the area of C' in the heterotic
string metric on X, o’ is the heterotic string tension, and B is the heterotic B-field.

The other factor in W(C') arises from the one-loop integral over the fluctuations of the
bosons and fermions living on the worldvolume of the D1-brane. Dp and Dp are thus
the respective kinetic operators of the worldvolume bosons and fermions, and the “prime”
in det’(Dp) and Pfaff’(Dp) indicates that these expressions are to be evaluated only after
omitting the zero-modes associated to the bulk symmetries which are broken by the D1-
brane. Four bosonic zero-modes associated to the broken translational symmetries in R*
and two right-moving fermionic zero-modes associated to the broken supersymmetries arise
in this fashion.

The complex structure moduli of X and E are described by chiral superfields in the
low-energy, effective N' = 1 theory, and W (C') must depend holomorphically on these fields.
Unfortunately, our simple expression (3.1.1) for W(C') is not manifestly holomorphic. To
get a manifestly holomorphic expression for W (C'), we must use the fact that the two super-
symmetries left unbroken by the D1-brane imply a cancellation between the contributions
of the right-moving fermionic modes to Pfaff' (Dr) and the contributions of the right-moving
bosonic modes to det'(Dp).

To make this cancellation explicit, we write W (C) solely in terms of the left-moving
bosonic and fermionic modes. By convention, the kinetic operator of a left-moving fermion
on C will be a @ operator, while the kinetic operator for a right-moving fermion will be a

0 operator. Thus, since the left-moving worldvolume fermions transform as sections of the
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left-moving spin bundle S_ = O(—1) on C tensored with the gauge bundle E as restricted
to C, their contribution to Pfaff (Dg) is just the Pfaffian of the d operator coupled to
E ® O(-1) = E(-1), which we denote dp_1). Here O(n) is the usual notation for the
complex line-bundle of degree n on projective space. In particular, O is the trivial complex
bundle of rank one.

Similarly, in the formula (3.1.1) for W (C), we have written the boson kinetic operator
Dpg as a real operator acting on the eight real bosons representing the normal directions to
C in R*x X. Since C, X, and R* all have complex structures, we can equally well group the
eight real bosons into four complex bosons taking values in the complex normal bundle N
to C in R* x X. When C is isolated in X, N is isomorphic to O & O ® O(—1) @ O(—1), the
first two summands representing the normal directions in R* and the last two summands
representing the normal directions in X. Thus, the contribution of the non-zero left-moving
bosonic modes to det'(Dp) just arises from the 0 operator on C coupled to the normal
bundle N.

So, cancelling out the right-moving modes from W (C) in (3.1.1), we have

e (LA Pfaff (9p(1)(C))
w(C) p( s /CB) (det’50)2 (detgo(_l)((}'))z. (3.1.2)

This expression for W (C') is now manifestly holomorphic. Specifying a d operator on either
X or F is equivalent to specifying its complex structure, so the operators EE(_l)(C) and
5@(,1)(0) themselves depend holomorphically on the complex structure moduli of X and
E. We have also emphasized in (3.1.2) that the way in which the complex structure moduli
of X and E appear in these O operators itself depends upon which curve C' in X that
the instanton wraps. In fact, at least when X is elliptically fibered, one can derive very
explicit expressions in given examples for the dependence of W(C') on the moduli of F and
X [43,44], although we will not be needing such detailed expressions here.

Thus, in the case that X is a generic quintic in CP* and E is a deformation of TX, the
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vanishing of W implies as a corollary that, summing W (C) over the 2875 lines on X,
2875 exXp (Z fCZB) Pfaff (5E(71) (Cz))
— 2
i=1 (det 8@(_1) (Cﬁ)

= 0. (3.1.3)

In this expression, we have dropped from W (C') an overall factor of exp (}‘;‘rg)), which
is constant for curves on X of given degree, and a factor of (det’ 9p)~2, which is simply
constant.

One is very much also tempted to drop from (3.1.3) the factor of exp (i [, B), which
is at least “morally” constant on curves of given degree. However, as reviewed in [41],
because only the product of exp (i [, B) and the fermion Pfaffian is even well-defined, we
must technically include in (3.1.3) this factor involving B so that the full expression makes
sense. Nevertheless, our interest in (3.1.3) resides in the holomorphic dependence of this
formula on the complex structure moduli of X and E, and we will not dwell here on the
subtleties of the heterotic B-field.

At first sight, the formula (3.1.3) might seem like an exotic mathematical prediction
derived only indirectly from the underlying (0, 2) linear sigma model. But in fact, this sort
of formula has a clear precedent from algebraic geometry, in the form of a residue theorem.

To derive the simplest example of such a residue theorem, suppose that w is a mero-

morphic one-form on CP' with simple poles at points P;, i = 1,...,N. Letting 2z be a

holomorphic coordinate on CP!, we can express w as

d
o 9B (3.1.4)
f(z)
where f and g are polynomials in z, f having non-degenerate zeroes at the points P, ..., Py.

Without loss, we assume that w does not have a pole at z = 0o, so that the degrees of f
and g satisfy
degg <degf—2. (3.1.5)

As usual, we then define the residue of w at each point P;, denoted Resp, (w), by inte-

grating w over a small contour ; about the point P;,

_ 1 __9(R)
Resp, (w) = 9 j{ﬁw = 97 /0:(P) (3.1.6)
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We now obtain a residue theorem simply by considering the sum of contours
F=vy+---+. (3.1.7)

Since I' is contractible, we have

=5 ?{w = ZRGSP Z 8f/8z (3.1.8)

So the residue theorem simply states that the sum of the residues of w is zero.

Comparing (3.1.3) to (3.1.8), we can already see a vague similarity between these two
formulae, with the Pfaffian in (3.1.3) being a holomorphic function analogous to g in (3.1.8),
and the bosonic determinant in (3.1.3) being analogous to df/0z in (3.1.8). Our main goal
in this chapter is to make the correspondence between these formulae precise, showing
directly that the instanton contributions to W vanish in suitable models due to an infinite-

dimensional generalization of the simple one-dimensional residue theorem above.

3.1.2 The Plan of the Chapter

Our plan for this chapter is as follows. In Section 2, we start by generalizing the one-
dimensional residue theorem to finitely many dimensions. Although standard mathematical
approaches exist for studying multi-dimensional residues, as for instance in [34,45], we will
take a more physical approach by studying a certain supersymmetric, finite-dimensional
integral. This integral is a natural abstraction of the path-integral over the right-moving
world-sheet fields on the heterotic string, and from it we easily prove a very general, multi-
dimensional residue theorem.

At the end of Section 2, we also describe precisely how the partition function of the
worldvolume theory on a supersymmetric D1-brane can be interpreted as a residue. Un-
fortunately, although the D1-brane formalism provides a very elegant description of the
superpotential contribution from any single instanton, the world-sheet description of the
heterotic string turns out to be better for proving vanishing results for the sums of these

instanton contributions.
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So in Section 3, we apply our analysis from Section 2 to the heterotic world-sheet
theory itself. This analysis most directly generalizes to the “half-linear” class of heterotic
compactifications, for which X is a complete-intersection in a compact toric variety Y and
the gauge bundle £ on X pulls back from a bundle on Y. For these compactifications, the
vanishing of the instanton contributions to W follows from essentially the same argument
as we use in Section 2 to deduce the multi-dimensional residue theorems. We also show how
this argument can be applied to the (0,2) linear sigma models to prove directly formulae
such as (3.1.3).

Very recently, Basu and Sethi [14] have also given another argument for the stability of
(0,2) linear sigma models. Their argument focuses on showing the absence of corrections
to the world-sheet superpotential.

Finally, in Section 4 we consider the N' = 1 compactification of M-theory on a manifold
X of Gy holonomy. Using ideas very similar to those in Sections 2 and 3, we extend the
results of [46] by computing the superpotential contribution from membranes which wrap
a continuous family of supersymmetric three-cycles in X.

This chapter of the thesis is based on [5].

3.2 Residues and Supersymmetry

Rather than trying to generalize immediately from the one-dimensional residue theorem to
an infinite-dimensional residue theorem which is applicable to the heterotic string, we will
warm up with the simpler generalization to residue theorems in only a finite number of
dimensions. Our strategy is to consider a finite-dimensional, supersymmetric integral on
an arbitrary compact, complex manifold M. The finite-dimensional residue theorem then
follows from the supersymmetry, which allows us to localize the integral to a sum of terms
generalizing the one-dimensional residues, and from the compactness of M, which leads
to the vanishing of the integral and hence the sum. After we obtain this result, we will
indicate some easy generalizations of it which also have relevance to the heterotic models

we introduce in Section 3. Finally, we describe precisely how the partition function of the
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worldvolume theory on supersymmetric D1-brane can be interpreted as a residue.
Standard mathematical approaches to multi-dimensional residues and residue theorems
can be found in [34] and [45]. Mathematical discussions somewhat more related to our

approach via supersymmetry are given in [47], [48], and [49].

3.2.1 A Finite-Dimensional Integral

We now introduce the finite-dimensional, supersymmetric integral that is central to our
study of residues and which serves as a model for the path-integral over the world-sheet
fields of the heterotic string. Since the supersymmetry in our integral is essential, we will
begin by specifying how it acts on the variables of integration.

As mentioned above, we perform the integral over a compact, complex manifold M,
having (complex) dimension n. So the bosonic variables of integration will be the local
holomorphic and anti-holomorphic coordinates z* and 2t =2l on M.

We also introduce a set of anti-commuting, fermionic coordinates 9¢ and x%. Here the
fermions 6 transform as coordinates on the anti-holomorphic tangent bundle TM, and the
fermions x“ transform as coordinates on a holomorphic vector bundle V', of rank r, over
M. The bundle V is completely arbitrary and should be considered, like M, as part of the
defining data for our integral.

Besides specifying V' itself, we must now also choose a global holomorphic section s of
V. We need this section s simply to define an interesting supersymmetry transformation
for the fermions x“, since none of the other variables of integration have anything to do
with V. So under the supersymmetry 9§, the bosonic and fermionic variables transform as

620 =0, (52:{:9{,
i} (3.2.1)
ox*=s%, 60'=0.
Note that since s is holomorphic, 62 = 0, the most important property of §.

The supersymmetric integral which we consider takes the general form

Z = /M gdu exp (—tS), (3.2.2)
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where t is a positive real parameter representing the “coupling constant” for Z, S is a

finite-dimensional “action” which we will soon present, and
gdp=g(z)d"zd"zd"0d" x (3.2.3)

is the measure. Locally, ¢ is a function which represents the particular choice of measure
for Z, and to ensure that the measure respects the supersymmetry, g must be holomorphic.

The fact that we have to worry about the measure for Z may seem slightly odd, since
in many supersymmetric integrals, one can make a canonical choice of measure (up to
normalization). The point is that, under any change of variables, the resulting Jacobians
for the bosonic variables are cancelled by the fermionic Jacobians for their superpartners.

In the case of du above, such a cancellation occurs between the anti-holomorphic bosons
' and their superpartners 6'. So the factor d"zd"0 appearing in du indeed represents a
canonical choice of measure for these variables.

On the other hand, the bosonic variables z* and the fermionic variables x® are unre-
lated by supersymmetry, which means that we really must choose the factor g(z)d"zd"x
appearing in (3.2.3). Globally, g is not a function but transforms as a holomorphic section
of the line-bundle Q%, ® A"V on M, where €2}, denotes as usual the canonical bundle of
holomorphic n-forms on M and A"V is the top exterior power of V. Since we generally have
no preferred choice of such a section, we must interpret our choice of g as another part of
the input data needed to specify Z.

We must, of course, also specify the action S for the integrand of Z. We first choose a

positive-definite, hermitian metric hg, on V. Then we consider a d-trivial action,
S=9 (haa saxo‘> , (3.2.4)

or expanding,

S = haasasa + haaDjSE 03)(& . (325)

Here D; is the covariant derivative associated to the canonical connection arising from the

metric hgo on V. Recall that the canonical connection [34] is the unique connection on V'
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for which hg, is covariantly constant and for which Djf = 85 when acting on a holomorphic
frame of V.

One easy consequence of the fact that S is d-trivial is that .S is obviously supersymmetric,
0S5 = 0. A deeper consequence of the fact that S is d-trivial is that the integral Z is formally
independent of the real parameter ¢ and the metric hg, on V which we introduced. For

instance, the invariance of Z under changes in ¢ is derived by first observing that

iz

== —/Mgd,uSexp(ftS) = —(8). (3.2.6)

However, if @ is any function of the variables 2, zg, x%, and 95, then

(50) = /Mgd,u 50 exp (~tS) =0, (3.2.7)

which in the language of topological field theory is the decoupling of BRST-trivial observ-
ables [50,51]. Since the action S is of the form 6O, we deduce immediately that dZ/dt = 0.
The invariance of Z under deformations of the metric hg, follows by the same argument.
Finally, we observe that S is invariant under a ghost number symmetry, under which
the anti-commuting variables y* and g carry charges —1 and +1 respectively, and § itself

carries charge +1. Since the measure dyp thus carries ghost number
dimM —rank V=n—r, (3.2.8)

Z vanishes identically unless n = r. So, if we wish to use Z to prove a residue theorem, we

must assume that dim M = rank V.

3.2.2 A Residue Theorem

As is familiar from the study of other topological models, we can prove an interesting
theorem by using the fact that Z is independent of ¢ and then evaluating Z for t — oo and
t = 0. Sometimes, a formal statement such as “Z is independent of ¢” could fail to hold
if the convergence of Z were sufficiently poor. See [13] for a nice demonstration of such a

failure in the context of the linear sigma model. However, because here Z is an integral
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over a compact manifold M, the convergence of Z is assured, even when ¢ = 0, and there
are no difficulties with the formal statements above.

Evaluating Z when t = 0 is easy. Then

Z:/ gdul =0, (3.2.9)
M

since neither xy® nor 6 appear in the integrand above.

Evaluating Z for t — oo, we see from the action S in (3.2.5) that only points in a
neighborhood of the vanishing locus L of the section s contribute to Z. In general, L will
consist of several disconnected components C, and Z must have an expression

Z=> 7)), (3.2.10)
ccL

where Z(C') denotes the local contribution to Z from the component C. So (3.2.9) and
(3.2.10) imply as a very general vanishing theorem that

Y zZ(C)=0. (3.2.11)

CcCL

The power of this approach is that the vanishing theorem (3.2.11) does not rely on any
specific behavior of the section s of V. In the simplest case, s has simple zeroes on a set of
isolated points of M. But we can equally well consider the case that s has degenerate zeroes
at some points, or even that s vanishes over some components of positive dimension. In
order to translate (3.2.11) into a more explicit formula, along the lines of the one-dimensional

residue theorem (3.1.8), we must simply evaluate the expression Z(C') for each case.

Multi-dimensional residues

To make contact with the one-dimensional residue theorem (3.1.8), we will consider at
first only the easiest case that s vanishes in a non-degenerate fasion on a set of isolated
points P of M.

Recall that the requirement that s vanish non-degenerately at a point P is simply the

condition that the Jacobian det (ds) be non-vanishing at P,

8(817 o '78n)

det (ds)(P) = det (m)(m £0. (3.2.12)
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In this case, the contribution Z(P) from P can be evaluated exactly using the Gaussian

approximation to Z near this point, and we easily see that

9(P)

2(P) = 3a (ds)(P)

(3.2.13)

In this expression, we suppress overall factors of 7 that arise from the Gaussian integration.

Thus, the vanishing result (3.2.11) becomes

P
3 det‘?;s))(P) = 0. (3.2.14)

This expression represents a natural generalization of the one-dimensional residue theorem
(3.1.8).

To sharpen the correspondence between the formula (3.2.14) and a multi-dimensional
residue theorem, we consider the particular case that the bundle V is a direct sum of n line
bundles,

V=0D)® - -®0(D,), (3.2.15)

which are associated to n irreducible, effective divisors Dy, ..., D, intersecting transversely
at isolated points P in M.

To describe the appropriate section s of V' for this case, we note that each divisor D;
is determined as the vanishing locus of a holomorphic section s; of the line-bundle O(D;).

Then we simply take s to be the direct sum of the s;, so that s has components
s=(S1,..-,5n)- (3.2.16)

We note that the section s vanishes non-degenerately at each point P € Dy N ---N Dy, so
our simple expression for Z(P) in (3.2.13) is valid.

In this case, we can now give a very nice geometric interpretation of the local contribution
Z(P) from each point P € D;N---N D,. Near P, we can trivialize all the line bundles
O(D;) as well as the canonical bundle of M. Upon doing so, we can regard g as an ordinary
holomorphic function that is nonzero at P, and the s; as holomorphic functions that vanish

on D;. Now we can define a meromorphic n-form w that generalizes the one-dimensional
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expression (3.1.4),
oo 942N A (3.2.17)
S 8p
Given the meromorphic n-form w, and a real n-cycle v that links in a suitable way the
locus of its poles, we can naturally define an n-dimensional residue Resp(w) = (1/271)" [, w
that will generalize the usual one-dimensional residue. We let « be the real n-cycle deter-

mined by
|sil =€, i=1,...,n, (3.2.18)

where € is a small parameter. Technically, we must also orient ~, which we do by the
condition d(argsi)A--- Ad(args,) > 0.

On 7, w is holomorphic, so we can define

Resp(w) = ( ! )n Aw. (3.2.19)

2mi
Since dw = 0 on a neighborhood of «, this definition only depends on the homology class
of v and in particular does not depend the parameter € above.
The residue Resp(w) can be then be evaluated by a change of variables and the iterative

application of Cauchy’s theorem. We find

g(P)

Resp(w) = dot (d5)(P)

(3.2.20)

generalizing the one-dimensional expression in (3.1.6). Of course, Resp(w) agrees precisely
with Z(P) for the special choices of V' and s above, so our main result (3.2.11) is properly

interpreted as a generalized, multi-dimensional residue theorem.

A quick example

Before proceeding further, we will give a quick example of the residue theorem.
For our example, we take M = CP? and V = TM, the holomorphic tangent bundle. If
we let [Xo : X7 : X2] be homogeneous coordinates on M, then any holomorphic section s

of V takes the form

0 0
s=apXg=—— ta1 X1 — +ay Xo

— 2.21
0Xo 00X 00Xy’ 3 )



83

where (ag, a1, az) are complex coefficients parametrizing s. Because [Xg : X7 : X3 are only
homogeneous coordinates, the coefficients (ag, a1, az) are only defined up to the addition of
a multiple of (1,1, 1), which describes the zero section of V. If (ag, a1, a2) are generic coeffi-
cients, then s vanishes non-degenerately at the three points Py =[1:0:0], P, =1[0:1:0],
and Ps=[0:0:1] of M.

Since V' = T'M, the measure du is a section of the trivial bundle O = Qf, @ A"T'M.
Consequently, in this example we do have a canonical measure for Z and ¢ is a constant.

Now in the patch where X # 0, with local coordinates (2!, 2?), s takes the form
0 0
s = (a1 — agp) zlﬁ + (ag — agp) 22@ , (3.2.22)

and so the residual contribution from P; to Z is

1

Z(P) = . 3.2.23
(P1) (a1 ao)(a — ao) ( )
Similar contributions from the points P, and Pj are
1 1
Z(Py) = Z(P3) = (3.2.24)

(a0 — a1)(az —a1)’ (a0 — ag)(a1 — ag) -
The residue theorem then simply states that Z(P;) + Z(P) + Z(Ps) = 0, as one can verify

directly.

3.2.3 Generalizations

The ghost number symmetry preserved by S implies that Z trivially vanishes unless the
condition rank V = dim M holds. So if we wish to study bundles V' such that rank V' #

dim M, we should consider not Z itself but expectation values (O),

(©O) = / gdn O exp (~tS), (3.2.25)
M
where O is any function of 2*, zg, x%, and 0° which satisfies 60 = 0. Of course, O must also
have ghost number n — r if (O) is to be any more interesting that Z itself.
Globally, functions O of 2%, zz, x%, and 9 are elements of the complex

P A (M) @ APV (3.2.26)
(p.9)
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Here A9 (M) is the bundle of smooth (0,q) forms on M, and V* is the holomorphic
bundle dual to V. A function homogeneous and ¢** order in 0 is a (0, ¢)-form on M, while
a function homogeneous and p* order in x® is a section of APV*. We will often refer to an
element of A9 (M) @ APV* for fixed (p, q) as having “type” (p,q).

The supersymmetry transformation § acts on elements of this complex as

: 9
D=0+~ 3.2.27
0 T oe ( )

More intrinsically, we can identify D with the operator
D=0+, (3.2.28)

where 0 is the usual Dolbeault operator on M and ¢4 acts on sections of APV* by the interior
product with s. The action of D on this complex has certainly been considered before in
the mathematical literature, for instance in [47,48,49], though mostly for the case V.= TM.

Since (00) = 0 for any O, the interesting observables O correspond to nontrivial ele-
ments of the cohomology of D. In general, what can we say about this cohomology?

Without placing additional conditions on M, V, and s, in fact we cannot say much.
(However, see [49] for a nice discussion of the easiest case that V' = T'M and s has zeroes
at isolated points. In this case, the cohomology of D is isomorphic to H°(M,O/I), where
T is the ideal sheaf associated to s.) Nonetheless, we do have a systematic procedure to
compute the D-cohomology, using a spectral sequence (see [52] for a clear introduction to
spectral sequences).

In physical terms, we want to solve the equation 6O = 0, and the spectral sequence is
essentially a perturbative way to do this, really by following one’s nose. So to construct an
O which satisfies 60 = 0, we start with an “order-zero” trial solution O©), of type (p, q),
which satisfies 90©) = 0. (If we wished, we could equally well start with O©) satsifying
1s0©) = 0 and reverse the roles of d and ¢; above. We find it convenient to do this in Section
3.) If 0 also happens to satisfy (;0©) = 0, then © = O but generally 1,0 £ 0.

To correct for this discrepancy, we then try to solve

1,00 + 500 =, (3.2.29)
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to determine the “first-order” correction @), We consider O as a correction to @©) in a
very definite sense, since although O is of type (p,q), OW is of type (p—1,q—1). Thus,

if we continue to solve iteratively
L, O™ 19O+ — ¢, (3.2.30)

we will either find an obstruction, or the procedure will terminate after a finite number of
steps with @ = O©) 4 O ... satisfying 60 = 0. We will find this little procedure useful
when constructing heterotic models in Section 3.

What sort of results, analogous to the generalized residue theorem (3.2.11), do we then
obtain by considering the expectations (O) of nontrivial observables O7 Evaluating (O) at
t = 0 now yields

©) = [ gduo. (3.231)
M
which need not vanish if O carries the proper ghost number. Evaluating (O) in the limit
t — oo, we again see that (O) can be expressed as a sum of local contributions from each
of the components C' of the vanishing locus L of s,

(0)y=>_(0)(C). (3.2.32)

CccL

So for instance, again in the case that s vanishes non-degenerately over isolated points

P of M and O has ghost number zero,

(P
/ gdpO = sz:L det s (P)) (3.2.33)
In the above expression, we must interpret the integral over M as picking out the component
of O of type (n,n) and the evaluation at P as picking out the component of O of type (0,0).
We can also consider the under-determined case, for which rank V' < dim M, as well
as the over-determined case, for which rank V' > dim M. In the under-determined case,
the components C of L will generically be complex submanifolds of dimension n —r in M.

We assume that s vanishes in a non-degenerate fashion on each C, which means that the

Jacobian det (ds|y) of s with respect to the normal directions to C' in M is non-vanishing
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along C. Then the local contribution of C' to (O) is

gduO
(ONE) = | Gt (ds|n)

(3.2.34)
In the above, gdu /det (ds|y) determines an element of 2"™" on C, and thus only the
component of O of type (0,n — r) now contributes to the integral over C'.

As we shall see in Section 3, the case of direct relevance to the heterotic string is actually
the over-determined case, rank V' > dim M. In this case, generically s # 0, and upon taking
t — oo we immediately conclude that (O) = 0 for all O.

However, if s is not generic, then the locus s = 0 need not be empty, and we can get a
non-trivial result with a non-trivial O, which in the simplest case has degree (r —n,0). This
situation actually occurs in the half-twisted heterotic string, for which O is the exponential
of a fermion bilinear and r — n is infinite. If such an O is present, then the section s cannot
vary freely, since the supersymmetry condition (0 + t5)O = 0 must be preserved. Hence
for a suitable O, it can be natural to consider a section s having zeroes with non-trivial
residues. For instance, if s again vanishes non-degenerately at an isolated point P of M,

now meaning that the matrix ds = (9s%/9z%) has full rank at P, then the local contribution

from P to (O) is

©)p) = (L22) (p) = (g O) ). (323)

ds 0y 891 -+ - Oy 5%

Evidently, in such an example with isolated zeroes of s, only the component of type (r—n, 0)

of O contributes to (O)(P).

3.2.4 The Dl-brane Partition Function as a Residue

Our discussion of multi-dimensional residues now allows us to make precise the manner in
which the partition function of a supersymmetric D1-brane can be interpreted as a residue.
We have already seen in the introduction a strong formal similarity between expressions
such as (3.1.3) and (3.1.8) which suggests this interpretation. To check this idea, though,
we must examine to what extent the worldvolume theory on a supersymmetric D1-brane

actually generalizes our finite-dimensional model which produces the residues.
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At first glance, one might be worried by the following fact. If we consider the bosonic
action for a D1-brane which wraps an arbitrary, not necessarily holomorphic, surface ¥ in
the Calabi-Yau threefold X, then this action is just the area A[X] of the surface. So if
the D1-brane action were literally to be the obvious generalization of the action (3.2.5) of
the finite-dimensional model, then A[X] would have to admit a representation as the norm-
squared of a suitable holomorphic section s over the space M of immersed surfaces in X.
But A[X] presumably does not admit such a representation, and it is not even obvious that
the space M, which should play the role of the complex manifold M in the finite-dimensional
model, admits a complex structure.

Thus, as far as we know, the full D1-brane worldvolume action does not fit into the
simple structure of the finite-dimensional model. As a result, we cannot hope to use the
D1-brane formalism to prove vanishing results such as (3.1.3). Physically, the difficulty in
using the D1-brane formalism to prove the vanishing results is that the D1-brane world-
volume description becomes more complicated when the brane is “off-shell”, i.e. not super-
symmetric. We do not believe that these off-shell complications are really essential, but we
also do not know how to eliminate them in the D1-brane framework. (We remark paren-
thetically that D5-branes can be put in a gauge-invariant version of this framework.) When
we deduce these vanishing results in Section 3, we will use instead approaches based on
linear and half-linear sigma models, which are more closely related to the finite-dimensional
model.

Yet to discuss the superpotential contribution from a D1-brane which wraps an isolated
holomorphic curve C in X requires considerably less than the full worldvolume action. Since
we evaluate the partition function at one-loop, we only need to discuss fluctuations about
the holomorphic curve up to quadratic order in the action. Considering the worldvolume
theory only to this order, we can nicely fit it into the framework of the finite-dimensional
model. In particular, the second variation of A[YX] away from a minimum corresponding to
a holomorphic curve indeed appears as the norm-squared of a suitable section s and the

contribution to the superpotential is indeed a residue.
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Geometrically, the approach of working only to quadratic order in the supersymmetric
D1-brane action corresponds to linearizing the space M over the point corresponding to
the given holomorphic curve C' in X. The linearization possesses the requisite complex
structure.

We now give a thorough discussion of how this approximation to the D1-brane action fits
into the framework of the finite-dimensional model. As we have indicated, our identification
of the supersymmetric D1-brane partition function as a residue is of more conceptual than
practical interest here, not only because of the off-shell complications but also because of
the lack of compactness in the D1-brane approach. However, in Section 4 we will apply sim-
ilar ideas to study the superpotential contributions from continuous families of membrane
instantons in M-theory compactifications on manifolds of G3 holonomy.

To proceed, we begin with the general observation [53] that whenever a brane wraps a
supersymmetric cycle, then the worldvolume theory on the brane is automatically twisted,
implying the existence of at least one scalar supercharge. The existence of a scalar super-
charge on the D1-brane worldvolume is crucial if we are to interpret the worldvolume theory
in analogy to the finite-dimensional model, with its scalar supersymmetry generator ¢.

We focus our attention on the sector of the D1-brane worldvolume theory describing
fluctuations of the brane in X, as opposed to the trivial sector describing fluctuations in R?.
When the D1-brane wraps a holomorphic curve C' in X, the worldvolume bosons ! and zl
which describe fluctuations of the brane in X transform as coordinates on the holomorphic
normal bundle N and anti-holomorphic normal bundle N of C' in X. The worldvolume
theory also possesses fermions 14,; which transform as right-moving Weyl fermions on R?,
as indicated by the & index, and as coordinates on the dual bundle N* of N. Equivalently,
using the hermitian metric g;; on X, we can regard these fermions as transforming in
the anti-holomorphic normal bundle N. The twisted model has two scalar supercharges,
described in detail later, which relate the worldvolume fields (a:z, wz)

Now, in the finite-dimensional model, the supersymmetry transformations as well as

the form of the action are determined by the holomorphic section s of V. So what are the
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analogues of s and V for the D1-brane?

As has already been observed in [54,55], for a variety of supersymmetric compactifica-
tions of string and M-theory, the supersymmetric brane configurations can be characterized
as the critical points of a “superpotential” ¥, suitably interpreted as a function on the space
of arbitrary brane configurations. (This idea has also been discussed lately in a mathemat-
ical context in [56].) For the D1-brane, if § is the exterior derivative on the space M of
brane configurations, then W is a one-form that vanishes at the point corresponding to a
holomorphic curve C, and moreover 0¥ is holomorphic once we linearize in a neighborhood
of C. So a natural guess is to take V to be the holomorphic cotangent bundle 7% M and
s=0V.

To check that this identification is correct, we must describe ¥ explicitly. For argument’s
sake, we start by defining W on surfaces 3 which are homologically trivial in X — although
we note that any holomorphic surface, being calibrated by the Kéahler form on X, actually
resides in a nontrivial homology class. In any case, ¥(X) is defined for a homologically

trivial surface ¥ by
1
w&nzf/sm (3.2.36)
6.J/B

where B is a bounding three-cycle for 3 and 2 is the holomorphic three-form on X. The
factor of % is simply to cancel some constants that would otherwise appear in later formulae.
If H3(X,Z) # 0, as is always the case when X has complex structure moduli, then ¥(X)
generally depends on the class of B and is defined only up to an additive constant.

Now, if 3 is a surface representing a nontrivial homology class in X, then a bounding
three-cycle B does not exist. To define U(X) in this case, for each class in Ha(X,Z) we
choose a particular representative 3. Then, if ¥ lies in the same class as ¥y, a bounding
three-cycle B exists for 3 — 3. That is, the boundary of B has two components, one of

which is ¥ and the other is Xy, considered with opposite orientation. So now we set
1
wm—m@wzé/g. (3.2.37)
B

In this case, the additive constant in ¥ also depends on the representative Yy as well as the

class of B.
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The fact that W is only defined up to an additive constant does not concern us, as this
constant does not affect the location of the critical points, for which §¥ = 0. Explicitly, in

terms of holomorphic coordinates z* on X,
1 o
SU(Y) = 5/ i1, 0t dad ndac® | (3.2.38)
P

So 0¥ = 0 precisely for those surfaces ¥ on which the (2, 0)-form €y, dz’ AdzF is equal to
zero. If ¥ is holomorphic in X, then any (2,0)-form vanishes when restricted to X, so ¥
vanishes when X is a holomorphic curve C'. Because €, is everywhere nonzero, holomorphy
of ¥ is necessary as well as sufficient for vanishing of JW.

While §W¥ vanishes at the point corresponding to C, we also need the linear behavior
near this point. For this, we pick local complex coordinates on X consisting of a parameter
z that is a local complex coordinate on C' as well as two local coordinates 4 of the normal
bundle N. We write ¢;; for Q.;;. In (3.2.38), we take dz' to be a displacement of one of
the y*, since otherwise we are not moving ¥ away from C at all. So we will write &y for
d2*. Evaluated on ¥, we have dz/Adz* = dz AdZ (0,27 Oz2% — 9:270,2%). Because of the
antisymmetry in j and k (or because dzz = 0), we cannot set both / and z* equal to z.

To linearize ¥ around C, we set one of them, say z7, to z, and the other to y*. So we get
0¥ = / €ij 5yi5yj +..., (3239)
C

where the ellipses indicate that higher order terms have been dropped. From this, we can

also deduce that to quadratic order,
1 .
UV=c+ 7/ €Y' 0y, (3.2.40)
2 Jo

where c¢ is an integration constant.
In particular, we see from (3.2.40) that when evaluated on C,

PRV
6y7 (2)0y*(2')

o = i 0:0(2,2"), (3.2.41)

where, more intrinsically, &z represents the 0 operator acting on sections of N.
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Since ¥ functions like a superpotential, the unbroken worldvolume supersymmetries
in the linearized theory can be very simply expressed in terms of W. Under the twisted
supercharges @, the transformations of the fields 3, yz, and 14 ; take the usual form

day' =0, day’ =k,

ST (3.2.42)

5dwﬁ',i = €44 o
Since ¥ is holomorphic, in the sense that é¥ /5y;' = 0, these supersymmetry transforma-
tions satisfy {d4, (55} = 0 as required. Obviously these worldvolume supersymmetries are
unbroken when §¥ /§y* = 0, which we have already observed is the proper condition for the
D1-brane to be supersymmetric. Further, taking s = §U, we see that (3.2.42) represents an
N = 2 generalization of the supersymmetry transformations (3.2.1) in the finite-dimensional
model.

The worldvolume action which describes to leading order the fluctuations of a D1-brane
which wraps a holomorphic curve C' in X takes a very simple form when written in terms

of ¥. Just as for the finite-dimensional action (3.2.4),

1 Y = O
_ = ap 5. 1 .
S 1 /CE 55 (Wg (5@/; 1/41,1)

N /ow <29 5y 0 T4 9 pyipyavet)

(3.2.43)

Here D is the covariant derivative with respect to the metric g; on X, and w is the Kahler
form on X which restricts to the volume form on C. We also note from (3.2.38) that
SW /6y’ is actually a two-form on C, and we have implicitly used the induced metric to
dualize §¥ /§y" to a scalar on C.

The action S is to be interpreted by expanding to quadratic order in the normal fluctu-
ations 3’ and y{ about the given holomorphic curve C, so that

1 - D20 D20 - . 1 .,- D20 =
§= e S Y R L e S R I 3.2.44

Using (3.2.41), we can write S more explicitly as

T = -
_ - _ 7 e ¢ SN | i
S = 5 /Cw (gii 0,y" O=y" + € €5 71’58%%) . (3.2.45)
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In the above, we have assumed that €2 is normalized on X so that gjjfﬁeji = g;;- This
action is just the free action for fluctuations which we implicitly used in the Introduction
when we evaluated the partition function.

More geometrically, we can identify the complex linear space M describing fluctuations
of the D1-brane about C with the space of sections of N. Our formula for .S simply reflects
the classic fact [57,58] that, given a section %, the second derivative of the area functional
A[Y;] along the one-parameter family of surfaces ¥; determined by y¢, evaluated at $g = C,
is just

T (3.2.46)

1
A =5 [

which appears as the bosonic term in (3.2.45). This formula indicates that holomorphic
curves are always area-minimizing in X, and only holomorphic deformations of a holomor-
phic curve can preserve its area.

Finally, to make contact with the finite-dimensional model, we can evaluate the partition
function Z(C') of a D1-brane wrapped on C' exactly as we evaluated the contribution to the
finite-dimensional integral from an isolated, non-degenerate zero of s in (3.2.13). We find
that

Z(C) = / Pfaff (51;(71)) dpeS,
M

~ Paff (5,5(_1))(0)
det (62W /6yisyt)(C)

(3.2.47)

Here dj = Dy’ DyE o D@bg D), is the naive path-integral measure, and the Pfaffian factor
produced by the left-moving bundle fermions is directly analogous to the section g, since
both are required for the path-integral measure to be well-defined. Recalling from (3.2.41)
that §2W /6y 5y’ represents the O operator acting on sections of N = O(—1) & O(—1), we

see that Z(C') indeed agrees with the summand in the expression (3.1.3).

3.3 A Residue Theorem for the Heterotic String

We now extend our investigation of residues in Section 2 to the heterotic string itself.

(Because the left-moving world-sheet fermions play only an auxiliary role in our analysis,
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we will not need to distinguish between the EgxEg and Spin(32)/Za heterotic strings.) Our
goal is to prove a residue theorem, precisely analogous to the theorems we derived in Section
2, for the vanishing of world-sheet instanton contributions to W. A very useful tool in our
analysis is the twisted version of the heterotic world-sheet theory, as it is the twisted theory
that directly generalizes the finite-dimensional model we introduced in Section 2. Thus,
we begin this section with a short reminder of what it means to twist [59-62] the heterotic
world-sheet theory, and we explain how this theory is related to the finite-dimensional model

of Section 2.

3.3.1 Preliminary Remarks on Twisting

The twisted heterotic world-sheet theory is simply a version of the physical (untwisted)
heterotic theory in which the right-moving world-sheet fermions are assigned unconventional
spins. To describe the twisting, we first recall that the world-sheet theory contains complex
bosons ¢! and ¢z = ¢' which describe sigma model maps ® : ¥ — X from the world-sheet
¥ to a Kihler target space X. In the physical theory, the superpartners of ¢’ and qzﬁz are
right-moving fermions 1’ and 1/1{, which transform as sections of the bundles F% ® P*(TX)
and ?é ® ®*(TX) respectively. Here, TX denotes the holomorphic tangent bundle of X,
and K denotes the anti-canonical bundle of 3. The anti-canonical bundle can be explicitly
described as the line-bundle of (0,1) forms on X, and from this description we see that
F% is a right-moving spin-bundle on £. Then in the twisted theory, we simply take 9" to
transform as a section of K @ ®*(TX) and 1’ to transform as a section of ®*(TX).
One way to interpret the twist is that we shift the right-moving world-sheet stress tensor
Tz by
T — Tz = Tz + %agjg, (3.3.1)

where jz is the world-sheet U(1) current present in the right-moving N = 2 algebra. Upon
twisting, one of the two right-moving world-sheet supersymmetry generators becomes a
nilpotent scalar @), which we interpret as a BRST-operator on the world-sheet. The de-

coupling of Q-trivial states from the correlation functions of @Q-invariant operators then
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greatly simplifies the twisted theory. In particular, though the twisted heterotic theory is
not topological, all correlation functions of Q-invariant operators in the twisted theory vary
holomorphically on the world-sheet, because the twisted stress-tensor Ty is Q-trivial.

We now explain how the general framework of Section 2 applies to the twisted world-
sheet theory. Instead of performing an integral over a finite-dimensional complex manifold
M, we now perform a path-integral over the infinite-dimensional complex manifold M which
is the space of all sigma model maps ® : ¥ — X. The world-sheet bosons ¢’ themselves
provide local holomorphic coordinates on M and play the same role as the holomorphic
coordinates z* on M. In addition, the fermions WT, as sections of ®*(T'M), are coordinates
on TM and correspond to the anti-commuting coordinates 0’ in Section 2. F inally, we
interpret the fermions 1/1%, whichtransform as sections of K ® ®*(TX), as anti-commuting
coordinates on a holomorphic bundle V over M, so that these fermions play the same role
as the fermionic coordinates x® on V in Section 2. (We have slightly changed notation
Pt — w% to remind ourselves that 1/1% now transforms as a (0,1) form on X.) In particular,
on world-sheets for which K is trivial, we can identify the bundle V on M as the holomorphic
tangent bundle T M.

Under @, the world-sheet fields transform as

04t =0, b0’ =y,
Sl =0z0', 0y =0.
Comparing (3.3.2) to (3.2.1), we see that the action of @ is precisely analogous to the

(3.3.2)

supersymmetry transformation in the finite-dimensional model. Further, we see that 9z¢'
is the holomorphic section of V corresponding to the section s of V' in Section 2.

The sigma model action for the world-sheet fields can now be written as
S :/ 26 (g5; 00" VL) + -+, (3.3.3)
by

where g;; is the Kéhler metric on X. The Q-trivial expression above is a direct generalization
of the action (3.2.4) which we considered in Section 2. Just as the finite-dimensional integral

localizes on the set where s = 0, so the twisted path-integral localizes on sigma model maps
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satisfying 0z¢' = 0. Such maps, being holomorphic, are either constant or represent world-
sheet instantons.

The “.--” appearing in S represents the additional terms in the sigma model action
which are not Q-trivial (but of course are Q)-closed). More precisely, these additional terms
arise either from a purely topological expression which is the integral of the complexified
Kahler class of X over ¥ or from the kinetic terms of the left-moving bundle fermions.

Both of these sorts of terms admit an easy interpretation in light of the results of Section
2. First, if we restrict the world-sheet path-integral to the sector describing maps whose
images lie in a fixed homology class of X, the topological term in S is constant and can
be ignored. Second, if we also only consider world-sheet correlation functions which do not
involving the left-moving bundle fermions, then at least for isolated world-sheet instantons,
the only role of the bundle fermions is to produce the Pfaffian factor that appears in the
Introduction. As we have already observed in the contex of the D1-brane, like the section g
in the finite-dimensional model, this Pfaffian factor can be interpreted as defining a suitable
measure for the path-integral over the modes of ¢, qb’T, %, and 1/)5.

Finally we remark that, although the physical and twisted theories are generally very
different, some quantities in the physical theory can be computed using the twisted theory.
In particular, as long as K is the trivial bundle on X, correlation functions computed on X
in the twisted theory agree with those computed on ¥ in the physical theory. For instance,
if ¥ is a cylinder with Ramond sector ground-states at each end, then correlation functions
on Y compute the Yukawa couplings arising from the superpotential W in the low-energy

effective theory. In this fashion we can use the twisted theory to probe for a background

w.

3.3.2 The Half-Linear Heterotic String

Our proof of the residue theorem in Section 2 only relies upon the fact that the integral
Z is invariant under a nilpotent supersymmetry and the fact that the space M over which

we integrate is compact. We wish to generalize this residue theorem to apply to world-
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sheet correlators in the twisted heterotic theory, so we must consider models for which both
of these crucial facts hold. Since the action of the BRST-operator () on the world-sheet
naturally generalizes the supersymmetry transformation of Section 2, the first fact holds
for an arbitrary (0,2) compactification. However, as regards the second fact, the space M
of sigma model maps is certainly not compact, and so to generalize the finite-dimensional
residue theorem from Section 2 to a vanishing result for W of the form (3.1.3), we must
look for heterotic models with some special sort of compactness.

The vanishing result of [13] naturally suggests that we start by considering the linear
sigma models. Indeed, the compactness of the moduli spaces of X and FE is an essential
ingredient in the analysis of [13].

Moreover, the linear sigma models possess another sort of compactness not present
in an arbitrary heterotic compactification. As discussed extensively in [63] and [64], in
compactifications for which continuous families of world-sheet instantons exist, the instanton
moduli spaces of the linear sigma model provide natural compactifications of the instanton
moduli spaces of the corresponding nonlinear sigma model. The compactness of these
instanton moduli spaces turns out to be the essential ingredient in our proof of a residue
theorem for the heterotic string.

However, we do not really have to consider the linear sigma models themselves to exploit
the fact that the instanton moduli spaces of the corresponding nonlinear sigma models have
natural compactifications. We find it technically simpler, in fact, to discuss a class of half-
linear heterotic models. These models are like the linear models in that X is a complete-
intersection Calabi-Yau in a compact toric variety Y. Unlike the linear models, the gauge
bundle F on X is any bundle which satisfies the usual consistency conditions on X and also
pulls back from a bundle on Y. Thus F must generally be described in a nonlinear fashion.

So in the remainder of this section, we first introduce the half-linear models and demon-
strate that the finite-dimensional residue theorems of Section 2 naturally generalize to for-
mulae of the form (3.1.3). We then return to the linear sigma models themselves and

give a direct proof of the vanishing of instanton contributions to W. For concreteness, we
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shall throughout this section consider only the case that X is the quintic hypersurface in

Y = CP.

Half-linear fields

We start by specifying the field content of the half-linear model. The world-sheet bosons
and the right-moving world-sheet fermions are the usual fields which describe twisted non-
linear sigma model maps ® : ¥ — Y. For the case Y = CP*, the model has four complex
bosons ¢' and gb{ which represent local holomorphic and anti-holomorphic coordinates on
Y (as opposed to the global homogeneous coordinates on Y that would appear in the cor-
responding linear sigma model). Since the half-linear model is twisted, the right-moving
supersymmetry associates to the bosons ¢’ and ¢{ corresponding fermions ¢% and WT, trans-
forming on ¥ as sections of K ® ®*(TY) and ®*(TY) respectively.

As for the left-moving sector of the world-sheet, the bundle F on Y is represented in
the usual nonlinear fashion by a set of thirty-two left-moving fermions A® coupled to the
pull back of F to ¥X. We assume that E satisfies the standard topological conditions for
anomaly-cancellation and stability on X. Thus, E satisfies p1(F)/2 = c2(T'X) (and, if the
structure group of E reduces to a subgroup with U(1) factors, there are restrictions on the
corresponding first Chern classes).

However, the field content of the half-linear model, as it stands, cannot be correct. As in
the linear sigma model, to localize the half-linear model from Y onto X, we must introduce
a potential .J(¢%) on the world-sheet. Geometrically, .J transforms as a holomorphic section
of the line-bundle O(5) on Y. Supersymmetry requires that J couple to the right-moving
fermions as well as the bosons, but we currently have no way to couple J to these fermions.

A more fundamental problem is that, although we choose the bundle F so as to can-
cel sigma model anomalies on X, the half-linear model on Y is currently anomalous as
p1(E)/2 # co(TY).

We can elegantly fix both of these problems by adding a pair of left-moving fermions
to the model. These fermions, which we denote by x, and ¥, transform on the world-sheet

as sections of K ® ®*(O(-5)) and ®*(O(5)). Thus we can directly include the required
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Yukawa terms for J in the model.

As for the anomalies, since x, and X are also “twisted” in the sense of having non-
standard world-sheet spins, they cancel the excess left-moving central charge from the new
boson. Also, upon adding x, and Y to the left-moving sector of the model, we cancel the
sigma model anomalies, since near X, the adjunction formula implies that TY splits as a
smooth bundle into the sum T'X @ O(5). Explicitly, relative to the model on X, the half-
linear model on Y has an additional pair of twisted, right-moving fermions which arise from
the directions in the normal bundle O(5) to X in Y. These fermions transform as sections
of K ® ®*(O(5)) and ®*(O(—5)). Since y, and X transform as the complex conjugates of
these two fermions, they cancel the corresponding anomalies.

Half-linear supersymmetry
In the half-linear model, the action of the scalar supercharge @ slightly generalizes

(3.3.2), due to the transformations of the left-moving fermions x, and ¥ — the other left-

moving fermions are invariant. So ) acts as
04t =0, b0’ =,
L= 00", Y =0,
X =J(#),

ox. =0.

As we have mentioned, J is locally a quintic polynomial in the holomorphic coordinates ¢

(3.3.4)

and globally a holomorphic section of O(5) on Y. Of course, J represents the data needed
to determine X as a hypersurface in Y.

We see from the action of @ that the fermions ¥, %, and y, in the half-linear model
can all be identified as the analogues of the fermions x® in the finite-dimensional model.
In this basis, s = (0z¢%, J(¢'),0). So, if we construct an action for the half-linear model
analogous to (3.2.4) in the finite-dimensional model, the half-linear model will localize on
sigma model maps ® satisfying

dz¢' = J(¢") = 0. (3.3.5)

The first condition requires that ® be holomorphic, and the second condition requires that
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the image of ® lie in the subset J = 0 of Y, which can be identified with X. So the

half-linear model localizes on world-sheet instantons in X.

The half-linear action

To complete our description of the half-linear model, we must finally specify its world-
sheet action S.
First, in complete analogy to the action of the finite-dimensional integral, S includes

the terms
So = t/dQZ ) (g;Z 8z¢i1!}%+jy>
> . . . (3.3.6)
— /E 0z (45, 0.7 06" + g, Do U+ 1T + 47 D5T X) |
Here ¢ is a coupling parameter as in Section 2, and g;; is a Kéhler metric on Y. Because
Sp is Q-exact, quantities which we compute in the half-linear model are unchanged under
deformations of ¢, g;;, and J. We also observe parenthetically that, since the expression
J X transforms as a smooth section of the trivial bundle on Y, we do not actually need to
specify a hermitian bundle metric on O(5) to make sense of this expression.

The action Sg for the left-moving fermions A\* which describe E is the standard action,

which we record for completeness below,
Sp = / Pz (MaDX + Ff A\t | (3.3.7)
b

where

Ao DAY = NgOsA\? + Ny Oz A2 N 3.3.8
ib

In the above, A is a holomorphic connection on E, having components only of type (1,0)
on Y, and ngl‘j is the curvature of this connection. Since Sg is the usual action for the left-
moving bundle fermions, and since @) acts in the usual way (3.3.2) on the fields appearing
in Sg, this action is clearly -invariant.

A more nontrivial fact is that we can also write a Q-invariant action for the fermions
X: and Y. Abstractly, the presence of x, and ¥ in the half-linear model implies that we

are dealing with the over-determined case dim M < rank V discussed in Section 2.3. So
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we must add some Q-invariant observable O involving x, and ¥ to the action if we wish to
compute something nontrivial in the half-linear model.

Physically, this @-invariant observable O must introduce a kinetic term Dzy x, for x.
and Y. To find a @Q-invariant extension of this kinetic term, we follow the philosophy of
Section 2.3 and attempt to solve §O = 0 perturbatively. We begin by noting that the

expression O
0 = Dexx. — ¢4 DiJ X2
‘ ‘ (3.3.9)
= (9= + 020" 4) Xots — UL (9 + A))T X
is trivially invariant under the variations of ¥ and wé. That is, in analogy to the finite-
dimensional model, 1,0 = 0.
In the expression for O above, we have introduced the canonical holomorphic connec-
tion A; on the line-bundle O(5) on Y. Because A; depends on ¢’ as well as ¢, we have

that
600 =500 £ . (3.3.10)

Rather,

90O = Fy )" 920" X x= — Fy 'L J x| (3.3.11)
where F%, is the curvature of A;. However, introducing (’)(1),

0M = B pixx. (3.3.12)
we easily see that
80 4,00 =, (3.3.13)

Because A; is a holomorphic connection on O(5), the curvature satisfies dF;; = 0, so that
00WM) = 0. Consequently, © = 0 + OO ig Q-invariant (but not Q-trivial).

Thus, we can add kinetic terms for x, and X to the action S by including

s, = /cﬂzo - /d% (0© + o)
b Y

i (3.3.14)
= [ (DX = vE Dl xe + F v i)
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Finally, we include in S the purely topological term which describes the action of the

world-sheet instanton itself,
Siop = /E O (we), (3.3.15)

where wc is the complexified Kéhler class of Y. This term simply reproduces the exponential
factor in (3.1.2), but we include it for completeness.

Thus, the action for the half-linear model is

S =Sy + Sp+ Sy + Stop - (3.3.16)

3.3.3 A Half-Linear Residue Theorem

We now show in the half-linear model that world-sheet instanton contributions to the su-
perpotential W vanish by a residue theorem precisely analogous to the finite-dimensional
residue theorem of Section 2.

Before we discuss a residue theorem for the half-linear model, though, we must first
demonstrate the general fact that the half-linear model on Y is equivalent to the usual
twisted non-linear sigma model on X. Only then does the residue theorem for the half-
linear model imply the vanishing of the instanton contributions to W in the non-linear
sigma model.

Relative to the non-linear model on X, the half-linear model on Y possesses additional
world-sheet degrees of freedom described by the left-moving fermions x., X, and the com-
plex boson and associated right-moving fermions describing fluctuations of the world-sheet
normal to X in Y. We will denote these normal fields simply by ¢, ¢, 1=, and %, suppressing
indices associated to the tangent bundle TY.

The additional world-sheet fields present in the half-linear model on Y relative to the
non-linear model on X are all massive due to the terms in the action involving .J and J.
For instance, the normal bosons ¢ and ¢ gain a mass from the J.J term that appears in the

Q-trivial action Sy,

t/Eszé(jy) :t/EdQZ (77 +4'D,7x) . (3.3.17)
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Similarly, the fermions vz, ¥, X, and X all gain masses from the DJ term in (3.3.17) and
the conjugate term appearing in S, in (3.3.14).

The mass terms for ¢, ¢, 1z, 1, x», and ¥ thus appear in the half-linear action as

/Ed% (aﬁJDJ¢+EﬁJy—¢5DJXZ) , (3.3.18)

where DJ is the (holomorphic) normal derivative of J along X, and we have absorbed
the coupling ¢ in (3.3.17) into J. Because we assume that X is a non-singular quintic
hypersurface, DJ is everywhere non-vanishing on X and consequently transforms in the
trivial line-bundle on X. Also, because .J is holomorphic and vanishes on X, the 0 operator
of X acts on DJ as DJ = [0, D]J = 0, so that D.J is holomorphic on X. As such, once
we choose a non-vanishing holomorphic section of the trivial bundle on X, a choice which
we must make in defining the fermionic measure of the path-integral, we can regard DJ as
merely a constant mass parameter for the normal modes.

As we have already remarked, since J only appears in the half-linear model through
the @Q-trivial terms in (3.3.17), the half-linear model is invariant under deformations of
J. Scaling J by a large constant, the massive world-volume fields in (3.3.18) all acquire
arbitrarily large masses. As such, we can integrate out these massive world-sheet fields at
one-loop with arbitrary precision. From (3.3.18), we see that the one-loop contributions
from the massive modes of ¢, ¢, 1z, 1, Y., and ¥ all cancel but for a finite, anomalous
factor associated to the index of the 0 operator acting on the pull back of the normal bundle
N to the world-sheet. This one-loop contribution can be absorbed into a renormalization of
the string coupling constant and the Kéhler class of X and is not relevant for the vanishing
argument. Finally, upon integrating out the massive fields, we set them to zero in the
half-linear action and in all observables, so that the half-linear model on Y clearly localizes
to the non-linear model on X.

For completeness, we give in this paragraph a brief description of the renormalization.

Massive modes with nonzero momentum cancel in the path integral, so the renormalization
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comes from the constant modes. The constant modes contribute a factor

———DJ"”DJ", (3.3.19)
(DJD.J)m

where n; formally denotes the number of modes of ¢, no the number of modes of ¥, and
n3 the number of modes of x,. Since ¢ and X both transform in the pull back ®*(N) of
the normal bundle N = O(5) to the world-sheet, n; equals na. However, x, transforms
in the bundle K ® ®*(N*), and thus the difference n; — ng is equal to the index of the
operator on the world-sheet acting on the bundle ®*(N). If the world-sheet is a Riemann
surface ¥ of genus g and ® is a map of degree d into X, then the index theorem (or simply
the Riemann-Roch theorem) implies that n; — n3 = 5d + 1 — g. Thus, in this situation the
one-loop contribution of the massive modes is a factor (1/D.J)®4*1=9)  In the non-linear

model on X, this one-loop contribution can be written as

<D1J>(5d+19) = exp [_2177 /Elog (DJ) (5@*(w) + ;Rﬂ ; (3.3.20)

where ®*(w) is the pull back of the Kéhler class from X, which we assume is normalized to
satisfy [y, ®*(w) = 27d, and R is the world-sheet curvature, which satisfies [y, R = 47 (1—g).
The expression in (3.3.20) manifestly represents the renormalization of the Kéhler class of
X and the string coupling constant upon integrating out the massive modes.

Having shown that the half-linear model on Y is equivalent to the non-linear sigma
model on X, we now establish a residue theorem for the half-linear model which implies the
vanishing of world-sheet instanton contributions to the superpotential W.

The half-linear model is a closer cousin to the usual world-sheet CFT description of
the heterotic string than to the dual D1-brane description which we explored in Section
2.4. As such, in neither the world-sheet CFT nor the half-linear model can we compute W
directly. Rather, because of the presence of three right-moving fermion zero-modes arising
from fluctuations tangent to the world-sheet, we must indirectly probe for W by computing
a cubic correlator of vertex operators on the world-sheet. In the terminology of Section
2.3, the half-linear model describes the over-determined case rank ¥V > dim M, due to the

presence of the fermions y, and ¥ in the model, but the section s = (9z¢*, J(¢),0) still
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vanishes over a locus on M of complex dimension three, due to the SL(2,C) action on
the world-sheet. So we must insert a suitable observable O, the cubic correlator of vertex
operators, to compute something non-trivial.

The easiest way to probe for W is to compute the correlator (RRR), where R is the

vertex operator for the (unique) Kéahler modulus of Y. Explicitly,
R = w;, 0,0 , (3.3.21)

where w;; is a harmonic representative of the Kahler class of Y, implying that R is Q-
invariant. Since the half-linear model arises from a sigma model on Y (and only restricts
to X when J is large), we must consider operators such as R which are actually defined on
Y. Note as claimed that each of the three right-moving fermion zero-modes from SL(2,C)
can be soaked up with the fermion @Z)z that appears in R.

Of course, the Kahler class of Y determines by restriction the Kéahler class of X and
thus the radius of the compactification. The only dependence of W on this Kahler modulus
is through the exponential factor exp (— [; ®*(w)) arising from the classical action of the
instanton itself. If we let R be the N' = 1 chiral field in the low-energy effective theory
associated to the Kéhler modulus, then the correlator (RRR) computes the third derivative
8%W of W with respect to R. Thus, given the simple exponential dependence of W on R,
the vanishing of W is equivalent to the vanishing of the correlator (RRR).

In the case of the finite-dimensional model in Section 2, we deduced a residue theorem
by taking ¢ = 0. Although we have already interpreted the half-linear model as being
formally analogous to the finite-dimensional model, unlike the case of the finite-dimensional
model, we cannot simply take ¢ = 0 in the half-linear model to deduce that (RRR) vanishes.
Clearly with no exponential suppression of the fluctuating modes in the half-linear model,
the half-linear path-integral ceases to be defined.

However, in localizing the half-linear model on Y to the non-linear model on X, we have
already used the fact that the BRST-invariance of the half-linear model implies that the
model is formally independent of J as well as . So rather than taking ¢ = 0, we consider

taking J = 0 instead.
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When J = 0, the half-linear model no longer localizes on instantons contained in X.
Instead, after integrating out at weak coupling all fluctuating modes of the fields, the half-
linear model localizes onto the moduli space of instantons in Y.

If we restrict attention to a given instanton sector of degree d holomorphic maps ® from
Y = CP! to Y, then the moduli space of these instantons has a natural compactification
to CP°¥**. Because of this compactness, the half-linear path-integral over each instanton
sector can be defined even when J = 0. Thus, the correlator (RRR) can be computed either
at large J, where it is proportional to W as computed in the non-linear model on X, or it
can be computed at J = 0, where we will easily see that it vanishes order by order in d.
Morally speaking, the vanishing of the instanton contribution to the superpotential follows
by applying the residue theorem of section 2 to the compact manifold CP°¥*4. Rather than
invoking this theorem (which could lead one to worry about singularities in CP°+4), we
will imitate its proof and just look at what happens at J = 0.

We now review in detail how CPo4+4

arises as a compactification of the moduli space of
degree d instantons in Y, following [38,63,64]. In fact, even though we focus here on the
case Y = CP*, the existence of such a compactification generalizes whenever Y is a compact
toric variety, as already applied in [63,64].

We first introduce homogeneous coordinates [®° : ---: ®4] on Y and homogeneous co-

ordinates [U : V] on ¥. In terms of the homogeneous coordinates, any degree d holo-

morphic map ® : ¥ — Y is specified by a set of homogeneous, degree d polynomials
PO V),....p U V)},

0 =po(U, V) =aQU+ UV + ..+ a Ve,

(3.3.22)
ot =pt(U, V) = ad Ul +ai UV + - 4 a V.
Each polynomial p’ is determined by its d 4+ 1 coefficients (af), . ,aé), and the space
of polynomials {p°,...,p*} can be parametrized by these coefficients as C®@+1) | Since the

0....

coordinates [P : 4] are merely homogeneous coordinates on Y, defined only up to

scaling, an overall scaling of {p",...,p*} does not affect the map ®. Subtracting from
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C®@+1) the point at the origin which does not describe an actual map into Y and then
taking the quotient by the overall scaling, we find the projective space CP?¥t4,

The only subtlety in this example is that, as just observed, ®° = ... = ®* = 0 does not
correspond to any point in Y, so that the moduli space of instantons of degree d on Y
is actually the subset of the parameter space CP°#** for which the polynomials p°,...,p*
have no common zeroes on Y. The polynomials which do have at least one common zero

P5d+4, since we must tune one complex

appear as an algebraic locus of codimension four in C
parameter in any four of p¥,...,p* to reach this locus. Thus, the moduli space of “true”
instantons in Y is a complicated but nonetheless dense, open subset of CP***4. In particular,
CP%¥** gives a natural compactification of the true moduli space.

We now consider evaluating the correlator (RRR) in the half-linear model with J = 0.
In this case, if we consider the contribution to the correlator from the topological sector of
degree d world-sheet maps, we must integrate over the moduli space of degree d instantons
in Y described globally above.

This integral over the instanton moduli space is actually a supersymmetric integral just
as in Section 2, since both the world-sheet bosons and fermions possess zero-modes when
J = 0. As our global discussion above implies, the bosons ¢, QS’T, and their superpartners
1/)z all have 5d + 4 zero-modes. Of these 5d + 4 zero-modes, three zero-modes arise from the
SL(2,C) action on CP! and are immediately soaked up by the cubic correlator. The other
5d + 1 zero-modes represent the non-trivial holomorphic deformations of degree d rational
curves in Y. The left-moving fermion X also has 5d + 1 zero-modes, which arise from
holomorphic sections of the bundle ®* (O(5)) = O(5d). Neither the right-moving fermions
¢% nor the left-moving fermion y, have any zero-modes in the instanton background.

When J is non-vanishing, these 5d + 1 interesting modes of ¢¢, ¢2’ 1/)2, and X enter the
half-linear model action through the Q-trivial terms involving J in (3.3.17) and through
the four-fermion interactions in (3.3.7) and (3.3.14). In the weak coupling limit ¢t — oo,
the four-fermion interactions are irrelevant, since they always involve the fermions @Z)% which

have no zero-modes. So the only way to absorb the zero-modes of WT and X is through the
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quadratic mass terms that arise from J.

In fact, if we consider integrating out all of the fluctuating modes at weak coupling,
to reduce the half-linear path-integral to a finite-dimensional supersymmetric integral over
these 5d + 1 modes, then the Q-trivial terms involving J in (3.3.17) implicitly represent the
same finite-dimensional action (3.2.5) which we considered in Section 2. In this case, the
modes of WT represent the fermionic coordinates 02, the modes of X represent the bundle
fermions x*, and J implicitly determines a holomorphic section s of a rank 5d 4+ 1 bundle
over the moduli space of instantons in Y which vanishes precisely over those instantons
contained in X.

Just as in Section 2, once we set J to zero, then the 5d + 1 fermion zero-modes of w[‘
and ¥ cannot be absorbed when computing the correlator (RRR). Hence, (RRR) vanishes
order by order for each sector of degree d maps. Finally, since our vanishing result follows
exactly as the residue theorem in Section 2, we naturally interpret it as a residue theorem

for instanton contributions to W.

3.3.4 Extension to the Linear Sigma Model

Just as in the finite-dimensional case, the argument for the vanishing of the instanton
contributions to W in the half-linear model relies only upon the right-moving world-sheet
supersymmetries and suitable compactness. These ingredients are also present in the (0,2)
linear sigma models themselves, so we should also be able to give a similar, direct argument
for the vanishing of instanton contributions to W in these models. The reason for doing
so is that the linear sigma model version of the argument applies to a somewhat different
class of models — bundles constructed in a simple way from polynomials, but which do not
necessarily extend over Y = CP*.

We now present just such an argument. Although the gist of the vanishing argument for
the linear sigma model is exactly the same as for the half-linear model, we must present the
details of the argument in a slightly different way, since the specifics of the linear model and

the half-linear model are very different. Nonetheless, the fact that the general argument
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does extend from the half-linear to the linear model, despite the obvious differences between
these world-sheet theories, indicates that this argument is robust.

As in the previous section, we once more focus on the case that X is a quintic hypersur-
face in Y = CP*. However, we now assume that the bundle F on X is a deformation of the
holomorphic tangent bundle 7' X, which corresponds in the linear sigma model to a deforma-
tion away from the locus of theories with (2,2) world-sheet supersymmetry. Since neither
TX nor E pulls back (in any obvious way) from any bundle on Y, the compactifications

cannot necessarily be described by the half-linear model.

Background

We must recall a few facts about the (0, 2) linear sigma model which describes heterotic
compactification on X with gauge bundle E. Useful background can be found in [13], [38],
and [39]. We will be rather brief in our description of the linear sigma model, both because
this material is well-known and also because the vanishing argument which we present does
not rely on many details of the model.

We first recall the field content for this model. (We ignore the decoupled current algebra
degrees of freedom which represent the unbroken space-time gauge group.) On the (2,2)
locus itself, the linear sigma model which describes a quintic X in CP? is a two-dimensional
U(1) gauge theory with five chiral superfields S*, i = 1,...,5, of charge 4+1 and one chiral
superfield P of charge —5.

Once this model is deformed away from the (2,2) locus, the (2,2) gauge multiplet
decomposes into a (0,2) gauge multiplet and a neutral (0,2) chiral multiplet. Similarly,
each (2,2) chiral multiplet decomposes into a (0,2) chiral multiplet and a (0,2) Fermi
multiplet. We denote again by S° and P the corresponding (0,2) chiral superfields, with
components (s*, 9" ) and (p, @ZJ?F), and by ¥* and U0 the associated Fermi superfields, with
components 1% and 9.

The action of the (0,2) model contains many interactions, but the only interactions

relevant to our vanishing argument arise from the (0,2) superpotential. Recall that these
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interactions can be written as integrals over half of (0,2) superspace, in the form
Sy = = / o+ (\I/ J; + w0 Jo) + h.c. (3.3.23)
V2 Js - -

In general, J; and Jy are holomorphic functions of the chiral fields S* and P. More specifi-

cally, J; and Jy take the form

(3.3.24)

where F = F(S?) is a quintic polynomial in the S? which determines X as a hypersurface
in Y, and the F}; are quartic polynomials in the S’ that are assumed to satisfy S*F; = 0 and
which determine E as a deformation of T'X.

In terms of the component fields, the (0,2) superpotential (3.3.23) leads to a bosonic

potential U,

5
U=> |Jl, (3.3.25)
and Yukawa interactions of the form
i 5 9J; 0 BJ
(e + 557 w+ BP (3.3.26)

The superpotential (3.3.23) also preserves a right-moving U(1) R-symmetry, under
which the lowest components of S* and ¢ carry charge +%, and the lowest components of

P and U? are neutral.

The vanishing theorem

The first step in our vanishing argument is to twist the (0, 2) linear sigma model so that
the supersymmetry generator usually denoted @, becomes a scalar, exactly as described in
[13]. Under this twisting, the world-sheet spin of each field is shifted by —%J R+ %Q, where
Jpr is the R-symmetry generator and @ is the gauge-symmetry generator. Since the gauge
current corresponding to @ is of the form {@,, ...}, the fact that %Q appears in the twist
is irrelevant and is merely for convenience, so that upon twisting all fields have integral or

half-integral world-sheet spins.
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Upon twisting the model, the spins of the bosons s’ are unaffected, but the boson p
now has spin —% and transforms as a section of K2 ® £° on ¥ = CP'. Here K is the
canonical bundle on ¥ as earlier, and £ = O(d) is the line-bundle on ¥ associated to a
degree d instanton configuration in the gauge field. Also, just as in the half-twisted model,
the fermions wi and wi, fori=1,...,5, now have spins +1 and 0 and transform as sections
of K® L and L. Finally, the left-moving fermions 1" and ¢ are unaffected by the twisting
and transform as sections of K2 @ £ and K2 @ L.

To proceed with the argument, we must compute the linear sigma model correlator
analogous to (RRR) in the half-linear model. As explained in [13], the linear sigma model
representative of the vertex operator R describing deformations of the Kahler class of Y
(hence also X) is A_, the left-moving gaugino. This fact can be motivated by observing that,
since the Kahler class of Y is represented in the linear model by a Fayet-Iliopolous D-term,
the linear sigma model representative for R must come from the (0, 2) gauge multiplet. The
supersymmetry and R-symmetry then determine this representative to be A_. So we must
compute the instanton contributions to (A\_A_A_) in the linear sigma model.

As in the half-linear model, the twisted linear model is formally invariant under de-
formations of J;, i = 0,...,5, so we consider taking J; = 0. At first glance, one might
worry that this deformation would be singular in the linear model, since at least in the un-
twisted theory, the boson p has an unbounded zero-mode which only receives a mass from
the potential term U in (3.3.25). However, because p has spin —% in the twisted theory,
this dangerous zero-mode is not present. This observation was also central to the vanishing
argument of [13], so we certainly expect it to play a role in our argument as well. Thus, we
can compute (A\_A_\_) in the theory with J; = 0, provided we perform the twist.

In the half-linear model, once we performed the analogous deformation by taking J = 0,
we easily saw that the correlator (RRR) vanished due to the presence of excess fermion
zero-modes which could no longer be absorbed through world-sheet interactions. We will

now argue that the correlator (A\_A_A_) vanishes when J; = 0 in the linear sigma model,

again due to excess fermion zero-modes.
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The relevant zero-modes arise from the fermions z/;i and 9%, for i = 1,...,5. In the
background of a degree d instanton, each fermion ‘/’i has d+1 zero-modes, and each fermion
¥ has d zero-modes (and the conjugate partners of these fermions have no zero-modes).

To show that these fermion zero-modes cannot be absorbed in computing the correlator
(A_X_X_) with J; = 0, we first make a few general remarks about the computation of
(A_X_)_) even when the J; are not assumed to vanish. First, since all kinetic terms in the
linear model are Q ,-trivial, we can by a field rescaling assume that the couplings appearing
in J; and J; are arbitrarily small. Hence we can compute (A\_A_\_) perturbatively in J;
and J;.

As a special case of our vanishing result, we now observe that (A\_A_A_) trivially vanishes
when J; = J; = 0. In this case, the model with no superpotential describes, instead of X,
the total space of the line-bundle O(—5) over CP*. As such, the model possesses a classical
global symmetry which rotates the fiber of this space leaving fixed the base. Under this
symmetry, the superfields S* and ¥’ , for i = 1,...,5, transform with charge +1 while all
other fields are uncharged. In particular, the gaugino A_ is uncharged, which distinguishes
this global symmetry from the R-symmetry.

The fermion zero-modes we discussed above are relevant precisely because they cause
this classical symmetry to be anomalous. Due to these zero-modes, regardless of the degree
d, the path-integral measure transforms with net charge +5 under this symmetry. This
anomaly immediately implies that (A_\_A_) vanishes in the theory with no superpotential.
For instance, computing (A_A_A_) perturbatively at weak coupling, all interactions respect
the classical symmetry and so there is no way to absorb the fermion zero-modes by pulling
down fermion interaction terms from the action. This fact is why the detailed structure of
the linear model is largely irrelevant for our argument.

We now consider the general case that .J; and J; are non-zero. Since the superpotential
breaks the classical symmetry we used above, the fermion Yukawa terms involving J; and
J; in (3.3.26) are candidates to soak up the zero-modes of ¢i and 9" above. However,

whatever interaction terms we bring down from the action to soak up the fermion zero-
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modes, the anomaly implies that these terms must carry net charge —5 to cancel the charge
of the measure. We now observe from (3.3.26) that the interactions involving J; all carry
charge +5 and those involving J; carry charge —5.

Thus, when J; vanishes, the zero-modes of the fermions wi and 9" cannot be absorbed,
since perturbation theory in the J; can only bring down interactions of positive charge.
This observation merely reflects the fact that the twisted fermions @Di, which give rise
to the anomaly, appear in the Yukawa couplings involving J;, not J;, in (3.3.26). Thus
(A_A_A_) vanishes in an arbitrary degree d instanton background, and instantons in the
linear sigma model do not contribute to the space-time superpotential.

Of course, when J; is non-zero, the linear model sums over individual instantons in X,
and the contribution of each instanton should generically be non-zero. Our argument is
consistent with this fact, since insertions of the Yukawa couplings involving both .J; and J;
can carry the proper charge to absorb the zero-modes.

This vanishing argument is at its heart very similar to the vanishing argument of [13]
that we reviewed in the Introduction. A key fact there is that W transforms as a section of
a line-bundle of strictly negative curvature on the moduli space of the low-energy effective
theory. Now in the context of the present argument, the complex coefficients which define
the quintic polynomial F' and the quartic polynomials F;, and thus appear as couplings
in the J;, can be considered as projective coordinates on the moduli space of complex
structures of X and F.

Our perturbative argument above can be rephrased as a selection rule for the dependence
of the correlator (A\_A_A_) on these coefficients. This selection rule follows from formally
assigning the complex coefficients appearing in F' and F; charge —5 under the anomalous
symmetry, so that formally the J; are uncharged. The anomaly implies that the correlator
(A_A_A_), as a function of these coefficients, transforms homogeneously with charge +5.
As a result, the selection rule implies that (A_A_A_) (and hence W) must transform as
a section of a line-bundle of strictly negative curvature over the complex structure moduli

space which these coefficients parametrize. In this language, our vanishing theorem follows
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simply because, when J; vanishes, a perturbative calculation of (A\_A_\_) in terms of the J;
can only produce a polynomial in the complex coefficients, which has negative charge under
the anomalous symmetry and does not have the required pole on the complex structure

moduli space.

3.4 Families of Membrane Instantons

The vanishing result which we derived for world-sheet instanton contributions to the super-
potential is a manifestation of the rigidity inherent in holomorphic objects. As an interesting
contrast to this result, we now consider how M-theory membranes which wrap a continu-
ous family of supersymmetric three-cycles in a manifold X of G2 holonomy contribute to
the superpotential. The approach which we take here is very similar to our discussion of
D1-brane contributions to the superpotential at the end of Section 2. We note that the
superpotential contribution from an isolated membrane in X has already been thoroughly
discussed in [46].

Just as in the case of a D1-brane which wraps a holomorphic curve, the worldvolume
theory on a membrane which wraps a supersymmetric three-cycle on X is naturally twisted.
Unlike the case of the D1-brane though, in the case of a supersymmetric membrane, the
sector of the worldvolume theory describing fluctuations in X is topological, as opposed to
holomorphic, in character. This fact could hardly be otherwise, since X is not a complex
manifold, but it represents a key distinction between D1-brane and membrane instantons.

Thus, if C represents a continuous family of supersymmetric membrane configurations
within the space M of all membrane configurations in X, then the contribution to the
superpotential from the family C only depends upon topological data associated to C. Our
main result here is to show that the contribution of the family C to the superpotential is
proportional to the Euler character x(C) of C.

Our analysis ignores singularities. We suspect that it remains valid even if some of the

membrane instantons parametrized by C are singular, as long as C itself is smooth.
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The membrane worldvolume theory

Just as in the Introduction, the most elegant way to determine the superpotential con-
tribution from a membrane instanton (or a family of such instantons) is to compute the par-
tition function of the membrane worldvolume theory. The structure of this theory is largely
determined by supersymmetry. More specifically, it is determined by the requirement that
only supersymmetric membrane configurations contribute to the partition function. So we
begin by recalling a few facts about supersymmetric three-cycles in X.

To describe which three-cycles in X are supersymmetric, we first recall that X, as a
manifold of G5 holonomy, possesses a canonical, covariantly constant three-form ¢. Then, as
emphasized generally in [65], the supersymmetric three-cycles are those which are calibrated
by ¢ and hence are of minimal volume within each homology class. That is, if ¥ is a

supersymmetric three-cycle, then the calibration condition states that on X,

¢ls = vol|x, (3.4.1)

where vol = %(ﬁA*gf) is the volume form associated to the metric on X.

Just as for supersymmetric D1-brane configurations, the supersymmetric membrane
configurations in X can be characterized as the critical points of a superpotential ¥ on M. ¥
is defined in a manner precisely analogous to the superpotential for D1-brane configurations

in a Calabi-Yau threefold. Thus, we define W(X) for any three-cycle 3 by

WD) — U(S) = 112/3 vy (3.4.2)

Here %¢ is the four-form on X dual to ¢, ¥ is a fixed representative in the homology class
of ¥, and B is a four-cycle bounding ¥ — ¥y. Again, ¥(X) is defined only up to an additive
constant, depending on the choices of ¥y and B.

But again, the fact that ¥ is only defined up to an additive constant does not concern
us, as this constant does not affect the location of the critical points, for which ¥ = 0. In

terms of local coordinates x*, i =1,...,7, on X,

1 o
o (%) = g/z *ijr 0x' dad AdxF Adxh (3.4.3)
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Thus, 6¥ () = 0 when x¢;j dv/ Adz¥Adx! = 0 on . As observed in [66], this condition
is equivalent to the condition (3.4.1) that ¥ be calibrated by ¢. So the critical points of W
correspond to supersymmetric three-cycles in X.

Thus, dV¥ is a one-form on the space M of arbitrary membrane configurations in X
which vanishes precisely over the supersymmetric configurations. So in this sense, §¥ plays
much the same role as the section s we introduced in Section 2, and we expect the action
of the worldvolume theory on a supersymmetric membrane to be expressed in terms of §V,
much as the action (3.2.5) is expressed in terms of s.

Unlike s, though, ¥ is not holomorphic, and the space M of membrane configurations is
not even complex, even on-shell. As a result, the supersymmetry algebra on the membrane
worldvolume takes a form slightly different from the supersymmetry (3.2.1) considered in
Section 2.

We focus on the sector of the worldvolume theory which describes fluctuations of the
membrane in X. As explicitly demonstrated in [46], this sector is automatically twisted
when the membrane wraps a supersymmetric cycle ¥. Normal fluctuations of the membrane
in X are described on the worldvolume by four real bosons 4%, i = 1,..., 4, taking values in
the (real) normal bundle N of ¥ in X. Associated to these four bosons are four fermions 1%
also taking values in N and transforming as right-moving Weyl fermions in R?, as indicated
by the & index.

The worldvolume theory on the supersymmetric membrane then possesses two scalar
supercharges Q. The action of these supercharges on the worldvolume fields can be neatly

summarized by introducing (0|2) superfields Y, where
V' =y + 0%, + §ed59“95FZ . (3.4.4)

In defining the superfield Y, we have introduced an auxiliary boson F' taking values in NV.
Even though the membrane worldvolume is three-dimensional, the appropriate superspace
is only the (0|2) superspace because, just as for the D1-brane, we regard the bosonic fields
y' as being an infinite set of tangential coordinates to the membrane configuration space

M at the point corresponding to a given supersymmetric membrane configuration.
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In the (0|2) superspace, the action of the supercharges @, is exceedingly simple. Namely,
the supercharges @, act as the fermionic derivatives 9, corresponding to the component
transformations

Say' =Wk, Sl =eu5F', GaF'=0. (3.4.5)

We note that {@w@g} trivially vanishes.

The supersymmetry algebra, along with the requirement that the membrane partition
function localize on configurations for which ¥ = 0, determines the form of the world-
volume action on a supersymmetric membrane. As for the D1-brane, this action is really
the leading order action for fluctuations around a supersymmetric configuration — but
given the topological nature of the membrane worldvolume theory, the leading order action
certainly suffices to determine the partition function.

When written in terms of the (0|2) superspace, the membrane worldvolume action thus
appears as

S = / d?0 ¢ (;gij(Y) edﬁaﬁyiadw‘ + \IJ(Y))
%

1 ;.00 60 D>v . o (3.4.6)
= /E<Z5 (29135?;1'@ +2DyiDyj(WW)+Rikjl(¢l¢y)(¢k¢l)> .

In this expression, g;; is the metric on X, R;; is the curvature, and the canonical three-
form ¢ appears simply to represent the volume-form on the supersymmetric three-cycle
Y. We also note from (3.4.3) that 6¥ /8y’ is actually a three-form on ¥, and so we have
implicitly used the induced metric to dualize ¥ /3y’ to a scalar above. Finally, we have
used the shorthand (1%47) to indicate the SU(2) singlet combination %e‘j‘gwé é, and in
passing to the second line of (3.4.6) we integrated out the auxiliary bosons F*.

The membrane worldvolume action (3.4.6) has a very familiar look. Formally, we can
interpret this action as the reduction to 0 4+ 0 dimensions of the standard supersymmetric
quantum mechanics [67] on the membrane configuration space M, with Morse function
W, As is well known, the partition function of supersymmetric quantum mechanics on a

finite-dimensional Riemannian manifold M computes the Euler class x(M) of M. Thus,

our claim that the membrane partition function is proportional to the Euler class x(C) of
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the family C follows almost immediately now, though we still discuss this result in detail
below.

We can also compare the form of the membrane worldvolume theory to the form of the
D1-brane worldvolume theory (or more generally to the holomorphic models we considered
in Section 2). Upon integrating out the auxiliary bosons F', the supersymmetries on the

membrane worldvolume act as
i i
564 Yy = 7%( )

i o 1w (3.4.7)
Oty = —THahu + Seq9”

vk
In the above, I‘é»k is the usual torsion-free affine connection associated to the metric g;;
on X; this connection must appear so that the fermions 9%, transform covariantly under
reparametrizations of the y’. Comparing the supersymmetries (3.4.7) and action (3.4.6) of
the membrane worldvolume theory to the general supersymmetry (3.2.1) and action (3.2.5)
from Section 2, we see that the membrane worldvolume theory is just a real, N = 2 version
of the holomorphic models relevant for world-sheet instantons which we considered earlier.
Clearly the one-form 0¥ on M plays exactly the same role as the holomorphic section s
on the complex manifold M, and from (3.4.6) we see that at weak coupling the membrane
partition function localizes on the zeroes of §W. We also note that the N = 2 supersymmetry
present in the membrane worldvolume theory determines a canonical choice for the measure
of the membrane partition function, as all bosons are paired by supersymmetry with all
fermions in (3.4.5). So there is no analogue here of the section g which was necessary to

define a measure for the holomorphic models.

The membrane partition function

Our simple description of the membrane worldvolume theory allows us to easily evaluate
the membrane partition function, even in the degenerate case that the membranes wrap a
continuous family of supersymmetric three-cycles in X.

We first observe that, because Q, = ¢, the worldvolume action (3.4.6) is evidently Q-

trivial. As a result, the membrane partition function Z is clearly topological in character.
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In particular, Z is unchanged if we multiply ¢ — t ¢, so that taking ¢ to be large we can
evaluate Z at weak coupling. Furthermore, Z is unchanged under deformations of the metric
gj, and even the one-form dW. This latter observation is in clear contrast to the holomorphic
models in Section 2, which were unchanged under deformations of s but certainly depended
upon .

Thus, we suppose that X contains a continuous family of supersymmetric three-cycles.
Then the vanishing locus of §¥ on M contains a component C of positive dimension rep-
resenting this continuous family. To evaluate Z for membranes which wrap three-cycles in
C, we simply make a generic deformation of §¥, which is small in the sense that J¥ still
grows sufficiently fast away from C so that Z is defined. Under such a deformation, we lift
the degeneracy of §W¥, which now has a finite set of isolated zeroes on C.

At weak coupling, we can directly evaluate the contribution to Z from each non-
degenerate zero of 0¥ as a one-loop integral over the fluctuating bosons and fermions.

Generally speaking, if P is such a zero, then the contribution to Z from P takes the form
Zp=Z(N)-Z(C)p, (3.4.8)

where Z(N) represents the one-loop integral over modes normal to C, and Z(C) p represents
the one-loop integral over the finite number of modes tangent to C at P. Because of the
topological invariance of Z, the factor Z(N) in (3.4.8) does not depend on P, so that

Z=2ZWN)-> Z(C)p. (3.4.9)

P
Clearly the second factor in (3.4.9) captures the interesting dependence of the superpo-
tential on C. In the Gaussian approximation, we can express the contribution Z(C)p from

each point P as

detc (8183\11) (P)
P =

\ dete (9;0;9) (P)‘

Z(C) = +1, (3.4.10)

where the subscript C indicates that the determinants are only evaluated over the modes

tangent to C. Geometrically, we recognize the expression (3.4.10) as the index of the vector
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field V¥ (projected onto TC) at the point P, where it vanishes. Thus,

> Z(C)p=x(C), (3.4.11)
>

and Z is proportional to the Euler character x(C) of C as claimed. We could also derive
this result, without explicitly deforming éW to lift its degeneracy, by using the four-fermion
interaction in (3.4.6) to absorb the fermion zero-modes tangent to C, producing the Chern-
WEeil representation of the Euler character.

Finally, we remark that the factor Z(N), studied in [46] for the case of an isolated
membrane instanton, is simply the formal generalization of (3.4.10) from the phase of a
determinant on the tangential directions of C to the normal directions. Z(N') can thus be
expressed as the sign of the Dirac operator acting on the membrane worldvolume spinors

multiplied by a factor coming from the C-field.



Chapter 4

Non-Abelian Localization For

Chern-Simons Theory

4.1 Introduction

Chern-Simons gauge theory is remarkable for the deep connections it bears to an array
of otherwise disparate topics in mathematics and physics. For instance, Chern-Simons
theory is intimately related to the theory of knot invariants and the topology of three-
manifolds [15,68], to two-dimensional rational conformal field theory [16] via a holographic
correspondence, to three-dimensional quantum gravity [69-71], to the open string field
theory of the topological A-model [72], and via a large N duality to the Gromov-Witten
theory of non-compact Calabi-Yau threefolds [73-77].

Of course, Chern-Simons theory is also a topological gauge theory, though of a very
exotic sort. In the case of a more conventional topological gauge theory such as topological
Yang-Mills theory on a Riemann surface or on a four-manifold (for a review of both topics,
see [51]), the theory can be fundamentally interpreted in terms of the cohomology ring of
some classical moduli space of connections. In this sense, such gauge theories are themselves
essentially classical. In contrast, Chern-Simons theory is intrinsically a quantum theory,

and it is exotic precisely because it does not admit a general mathematical interpretation

120
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in terms of the cohomology of some classical moduli space of connections.

Yet if we consider Chern-Simons theory not on a general three-manifold M but only on
three-manifolds which are of a simple sort and which perhaps carry additional geometric
structure, then we might expect Chern-Simons theory itself to simplify. In particular, we
might hope that the theory in this case admits a more conventional mathematical interpre-
tation in terms of the cohomology of some classical moduli space of connections.

For instance, in the very special case that M is just the product of S' and a Riemann
surface 3, so that M = S' x ¥, then the partition function Z of Chern-Simons theory on M
does have a well-known topological interpretation. In this case, Z is the dimension of the
Chern-Simons Hilbert space, obtained from canonical quantization on R x Y. In turn, this
Hilbert space can be interpreted geometrically as the space of global holomorphic sections
of a certain line bundle over the moduli space M of flat connections on .

If we consider for simplicity Chern-Simons theory with gauge group G = SU(r + 1) at
level k, then the relevant line bundle over My is the k-th power of a universal determinant
line £ on My. Of course, the moduli space My is singular at the points corresponding
to the reducible flat connections on Y. However, suitably interpreted, the index theorem
in combination with the Kodaira vanishing theorem for the higher cohomology of £F still

yields a topological expression for Z,
Z(k) = dim H'(My, L) = (Mo, L¥) = / exp (K Q) Td(Mo) , (4.1.1)
Mo

where ' = ¢1(L) is the first Chern class of £ and Td(M,) is the Todd class of M.

In this chapter, we show that the Chern-Simons partition function has an analogous
topological interpretation on a related but much broader class of three-manifolds. Specif-
ically, we consider the case that M is a Seifert manifold, so that M can be succinctly

described as the total space of a nontrivial circle bundle over a Riemann surface 3,
St— My, (4.1.2)

where, as we later explain, X is generally allowed to have orbifold points and the circle

bundle is allowed to be a corresponding orbifold bundle.
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In this case, our fundamental result is to reinterpret the Chern-Simons partition function
as a topological quantity determined entirely by a suitable equivariant cohomology ring on
the moduli space of flat connections on M. Because the moduli space of flat connections on
M is directly related to the moduli space of solutions of the Yang-Mills equation on X, our re-
sult implies that Chern-Simons theory on M can be also be interpreted as a two-dimensional
topological theory on ¥ akin, in a way which we make precise, to two-dimensional Yang-
Mills theory. This two-dimensional interpretation of Chern-Simons theory on M has also
been noted recently by Aganagic and collaborators in [78], where the theory is identified
with a g-deformed version of two-dimensional Yang-Mills theory.

Of course, physical Yang-Mills theory on a Riemann surface Y also has a well-known
topological interpretation in terms of intersection theory on the moduli space Mg of flat
connections on Y. This interpretation follows from the technique of non-abelian localization,
as applied to the Yang-Mills path integral [18]. In an analogous fashion, we arrrive at our
new interpretation of Chern-Simons theory by applying non-abelian localization to the

Chern-Simons path integral,

k 2

2(k) = [DA exp [z [ (A/\dA—i— AAAAAH . (4.13)
A Iy 3

As we recall in Section 4, non-abelian localization provides a method for computing

symplectic integrals of the canonical form

Z(e) = /Xexp {Q — 2i6 (p,p)} . (4.1.4)

Here X is an arbitrary symplectic manifold with symplectic form 2. We assume that a Lie
group H acts on X in a Hamiltonian fashion, with moment map u : X — b*, where b* is
the dual of the Lie algebra h of H. Finally, (-,-) is an invariant quadratic form on § and
dually on b* which we use to define the action S = %(u, 1), and € is a coupling parameter.

As we briefly review in Section 2, the path integral of Yang-Mills theory on a Riemann
surface immediately takes the canonical form in (4.1.4), where the affine space of all con-
nections on a fixed principal bundle plays the role of X and where the group of gauge

transformations plays the role of H. In contrast, the path integral (4.1.3) of Chern-Simons
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theory on a Seifert manifold is not manifestly of this required form. Nonetheless, in Section
3 we show that this path integral can be cast into the form (4.1.4) for which non-abelian
localization applies. More abstractly, we show that Chern-Simons theory on a Seifert man-
ifold has a symplectic interpretation generalizing the classic interpretation due to Atiyah
and Bott [79] of two-dimensional Yang-Mills theory.

Because the path integral of Chern-Simons theory on a Seifert manifold M assumes the
canonical form (4.1.4), we deduce as an immediate corollary that the path integral localizes
on critical points of the Chern-Simons action, which are the flat connections on M. In fact,
this observation has been made previously by Lawrence and Rozansky [17,80] (and later
generalized by Marino in [81]) as an entirely empirical statement deduced from the known
formula for the exact partition function.

Considering SU(2) Chern-Simons theory on a Seifert homology sphere M, Lawrence
and Rozansky managed to recast the known formula for Z(k), which initially involves an
unwieldy sum over the integrable representations of an SU(2) WZW model at level k, into
a simple sum of contour integrals and residues which can be formally identified with the
contributions from the flat connections on M in the stationary phase approximation to the
path integral.

A very simple example of a Seifert manifold is S2, by virtue of the Hopf fibration over
CP!. The result of Lawrence and Rozansky in the case of SU(2) Chern-Simons theory on

S3 then amounts to rewriting the well-known expression for Z(k) as below,

[ 2 71' 1 i ¥ 1 i (k +2)
7 — i = k+2 inh? ( = 2.
(k) k+281n(k+2) 57 + /_OO dx sin (264 w) exp( o x)

(4.1.5)

We note that, when the hyperbolic sine is expressed as a sum of exponentials, the integral
in (4.1.5) becomes a sum of elementary Gaussian integrals which conspire to produce the
standard expression for Z(k). Because the only flat connection on S is the trivial connec-
tion, the integral over z in (4.1.5) is to be identified with the stationary phase contribution
from the trivial connection to the path integral.

So one immediate application of our work here is to provide an underlying mathematical
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explanation for the phenomenological results in [17,80,81]. In fact, we will apply localization
to the Chern-Simons path integral to derive directly the expression of Lawrence and Rozan-
sky in (4.1.5) for the partition function on S3. One amusing aspect of this computation is
that we will see the famous shift in the level £ — k + 2.

In order to perform concrete computations in Chern-Simons theory using localization,
we must have a thorough understanding of the local symplectic geometry near each flat
connection. As we will see, this local geometry shares important features with the local ge-
ometry near the higher, unstable critical points of Yang-Mills theory on a Riemann surface.

Thus, as a warmup for our computations in Chern-Simons theory, we begin in Section
4 by discussing localization for Yang-Mills theory. We first review the computation in [18]
of the contribution to the path integral from flat Yang-Mills connections, corresponding
to the stable minima of the Yang-Mills action, and then we extend this result to compute
precisely the contributions from the higher, unstable critical points as well. Localization at
the unstable critical points of Yang-Mills theory has been studied previously in the physics
literature by Blau and Thompson [82] and (most recently) in the mathematics literature by
Woodward [83], but we find it useful to supplement these references with another discussion
more along the lines of [18]. Of course, the roots of our work on localization trace back to the
beautiful equivariant interpretation by Atiyah and Bott [20] of the Duistermaat-Heckman
formula [19].

In Section 5 we then apply localization to perform path integral computations in Chern-
Simons theory on a Seifert manifold. As mentioned above, these computations depend on
the nature of the local symplectic geometry near each critical point, and for illustration we
consider two extreme cases.

First, we consider localization at the trivial connection on a Seifert homology sphere. In
this case, the first homology group of M is zero, Hi(M,Z) = 0, and the trivial connection
is an isolated flat connection. On the other hand, all constant gauge transformations on M
fix the trivial connection, and this large isotropy group, isomorphic to the gauge group G

itself, plays an important role in the localization. Here we directly derive a formula found
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by Lawrence and Rozansky in [17] and generalized by Marino in [81].

Second, we consider localization on a smooth component of the moduli space of flat
connections. Such a component consists of irreducible connections, for which the isotropy
group arises solely from the center of G. In this case, we derive a formula originally obtained
by Rozansky in [80] by again working empirically from the known formula for the partition
function.

Finally, although we will not elaborate on this perspective here, one of the original mo-
tivations for our study of localization in Chern-Simons theory was to place computations
in this theory into a theoretical framework analogous to the framework of abelian localiza-
tion in the topological A-model of open and closed strings (see Chapter 9 of [84] for a nice
mathematical review of abelian localization in the closed string A-model).

This chapter of the thesis is based on [6].

4.2 The Symplectic Geometry of Yang-Mills Theory on a

Riemann Surface

A central theme of this chapter is the close relationship between Chern-Simons theory on a
Seifert manifold M and Yang-Mills theory on the associated Riemann surface ¥. Thus, as
a prelude to our discussion of the path integral of Chern-Simons theory on M, we begin by
recalling how the path integral of Yang-Mills theory on 3 can be understood as a symplectic
integral of the canonical form (4.1.4).

In fact, we start by considering the path integral of Yang-Mills theory on a compact

Riemannian manifold ¥ of arbitrary dimension, so that

1 1 \Qgr)/2 1
Z(e) = W (m> /A(P)DA exp {26 /ZTr (FAN*F4)

)

(4.2.1)

Here F4 = dA 4+ ANA is the curvature of the connection A. We assume that the Yang-
Mills gauge group G is compact, connected, and simple. If G = SU(r + 1), then “Tr” in

(4.2.1) denotes the trace in the fundamental representation. With our conventions, A is
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an anti-hermitian element of the Lie algebra of SU(r + 1), so that the trace determines a
negative-definite quadratic form. For more general G, “Tr” denotes the unique invariant,
negative-definite quadratic form on the Lie algebra g of G which is normalized so that, for
simply-connected G, the Chern-Simons level &k in (4.1.3) obeys the conventional integral
quantization. Of course, the parameter ¢ is related to the Yang-Mills coupling g via € = g°.

In order to define Z formally, we fix a principal G-bundle P over . Then the space
A(P) over which we integrate is the space of connections on P. The group G(P) of gauge
transformations acts on A(P), and we have normalized Z in (4.2.1) by dividing by the
volume of G(P) and a formal power of e. As we review in Section 4, this normalization
of Z is the natural normalization when ¥ is a Riemann surface and we apply non-abelian
localization to compute Z.

The space A(P) is an affine space, which means that, if we choose a particular basepoint
Ap in A(P), then we can identify A(P) with its tangent space at Ag. This tangent space is
the vector space of sections of the bundle Q% ® ad(P) of one-forms on ¥ taking values in
the adjoint bundle associated to P. In other words, an arbitrary connection A on P can be
written as A = Ay + n for some section 7 of O} ® ad(P).

Of course, to discuss an integral over A(P) even formally, we must also discuss the
measure DA that appears in (4.2.1). Because the space A(P) is affine, we can define DA up
to an overall multiplicative constant by taking any translation-invariant measure on A(P).

In general, the Yang-Mills action is only defined once we choose a metric on Y, which
induces a corresponding duality operator x, as appears in (4.2.1). This duality operator
induces a metric on A(P) such that if n is any tangent vector to A(P), then the norm of 7
is defined by

(nm) = — /Z Te (A7) - (4.2.2)

Thus, a convenient way to represent the path integral measure and to fix its normalization
is to take DA to be the Riemannian measure induced by the metric (4.2.2) on A(P). We also
use the operator x to define a similar invariant metric on G(P), which formally determines

the volume of G(P).
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Although we generally require a metric on ¥ to define physical Yang-Mills theory, when
3 is a Riemann surface we actually need much less geometric structure to define the theory.
In this case, to define the Yang-Mills action in (4.2.1) we only require a duality operator *
which relates the zero-forms and the two-forms on ¥. In turn, to define such an operator
we require only a symplectic structure with associated symplectic form w on X, so that x is
defined by x1 = w.

The symplectic form w is invariant under all area-preserving diffeomorphisms of 3, and
this large group acts as a symmetry of two-dimensional Yang-Mills theory. More precisely,
this symmetry group is “large” in the sense that its complexification is the full group of
orientation-preserving diffeomorphisms of 3 [85]. This fact is fundamentally responsible for
the topological nature of two-dimensional Yang-Mills theory.

Furthermore, when ¥ is a Riemann surface, the affine space A(P) acquires additional
geometric structure. First, A(P) has a natural symplectic form €. If n and £ are any two

tangent vectors to A(P), then Q is defined by

) =~ [ T (423)
Clearly Q is closed and non-degenerate. Second, A(P) has a natural complex structure.
This complex structure is associated to the duality operator * itself, since *> = —1 when

acting on the tangent space of A(P). Finally, the metric on A(P) is manifestly Kahler with
respect to this symplectic form and complex structure, since we see that the metric defined
by (4.2.2) can be rewritten as Q(-,*-).

An important consequence of the fact that the metric on A(P) is Kahler when ¥ is
a Riemann surface is that the Riemannian measure DA on A(P) is actually the same as
the symplectic measure defined by €. If X is a symplectic manifold of dimension 2n with
symplectic form , then the symplectic measure on X is given by the top-form "/nl.
This measure can be represented uniformly for X of arbitrary dimension by the expression
exp (2), where we implicitly pick out from the series expansion of the exponential the term
which is of top degree on X. Consequently, because the Riemannian and the symplectic

measures on A(P) agree, we can formally replace DA in the Yang-Mills path integral (4.2.1)
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by the expression exp (£2), as in the canonical symplectic integal (4.1.4). This natural

symplectic measure on A(P) makes no reference to the metric on 3.

The Yang-Mills Action as the Square of the Moment Map

Of course, as an affine space, A(P) is pretty boring. What makes Yang-Mills theory
interesting is the fact that A(P) is acted on by the group G(P) of gauge transformations.
In fact, another special consequence of considering Yang-Mills theory on a Riemann surface
is that the action of G(P) on A(P) is Hamiltonian with respect to the symplectic form €.

To recall what the Hamiltonian condition implies, we consider the general situation that
a connected Lie group H with Lie algebra h acts on a symplectic manifold X preserving
the symplectic form 2. The action of H on X is then Hamiltonian when there exists an
algebra homomorphism from b to the algebra of functions on X under the Poisson bracket.
The Poisson bracket of functions f and g on X is given by {f,g} = —V}(g), where V} is
the Hamiltonian vector field associated to f. This vector field is determined by the relation
df = v, §, where 1y, is the interior product with Vy. More explicitly, in local canonical
coordinates on X, the components of Vy are determined by f as V™ = —(Q~ 1™ 9, f, where
O~ !is an “inverse” to € that arises by considering the symplectic form as an isomorphism
Q: TM — T*M with inverse Q7' : T*M — TM. In coordinates, Q7! is defined by
(QHmQ = 6L, and {f,g} = anme ;' The algebra homomorphism from the Lie
algebra b to the algebra of functions on X under the Poisson bracket is then specified by a
moment map g : X — b*, under which an element ¢ of § is sent to the function (u, ¢) on
X, where (-,-) is the dual pairing between § and bh*.

The moment map by definition satisfies the relation

d{p, @) = tv(p)§2, (4.2.4)

where V(¢) is the vector field on X which is generated by the infinitesimal action of ¢. In

terms of u, the Hamiltonian condition then becomes the condition that p also satisfy

{(w: @), (s o)} = (s [0, 901) - (4.2.5)
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Geometrically, the equation (4.2.5) is an infinitesimal expression of the condition that the
moment map u commute with the action of H on X and the coadjoint action of H on b*.

Returning from this abstract discussion to the case of Yang-Mills theory on X, we first
consider the moment map for the action of G(P) on A(P), as originally discussed in [79].
Elements of the Lie algebra of G(P) are represented by sections of the adjoint bundle ad(P)
on Y, so if ¢ is such a section then the corresponding vector field V' (¢) on A(P) is given as

usual by

V(g) = dad = do +[A, ¢]. (4.2.6)

We then compute directly using (4.2.3),

o = — /Z Tr (dadASA) — /E Tr (¢ daSA) = 6 /E Tr (Fad) . (4.2.7)

Here we write § for the exterior derivative acting on A(P), so that, for instance, 0A is
regarded as a one form on A(P). Thus, the relation (4.2.4) determines, up to an additive

constant, that the moment map u for the action of G(P) on A(P) is
p=Fy. (4.2.8)

Here we regard Fy, being a section of Q% ® ad(P), as an element of the dual of the Lie
algebra of G(P).

One can then check directly that p in (4.2.8) satisfies the condition (4.2.5) that it arise
from a Lie algebra homomorphism, and this condition fixes the arbitrary additive constant
that could otherwise appear in p to be zero. Thus, G(P) acts in a Hamiltonian fashion
on A(P) with moment map given by p = Fy4. In particular, if we introduce the obvious

positive-definite, invariant quadratic form on the Lie algebra of G(P), defined by

(6,0) = = [ Tr(or%0) (4.2.9)

then the Yang-Mills action S is proportional to the square of the moment map,

S = —1/Tr (FaAsFa) = = (1) - (4.2.10)
2 Jx 2
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As a result, the path integral of Yang-Mills theory on Y can be recast completely in terms

of the symplectic data associated to the Hamiltonian action of G(P) on A(P),

Z(e) = \/01(;(13)) (%)AQ(P)/Q /A(P)exp {9—216(#,”)}, (4.2.11)

precisely as in (4.1.4).

4.3 The Symplectic Geometry of Chern-Simons Theory on
a Seifert Manifold

In this section, we explain how the path integral of Chern-Simons theory on a Seifert
manifold can be recast as a symplectic integral of the canonical form (4.1.4) which is suitable
for non-abelian localization. More generally, we explain some beautiful facts about the
symplectic geometry of Chern-Simons theory on a Seifert manifold.

To set up notation, we consider Chern-Simons theory on a three-manifold M with com-
pact, connected, simply-connected, and simple gauge group G. With these assumptions,
any principal G-bundle P on M is necessarily trivial, and we denote by A the affine space
of connections on the trivial bundle. We denote by G the group of gauge transformations
acting on A.

We begin with the Chern-Simons path integral,

Z(6) = — ( ! )Ag /DA e [’ /T (A/\dAJrQA/\A/\A)]

€) = _— X —_— T — ,

Vol(G) \2re A Pl2e Jur 3 (4.3.1)
€= 2%, Ag =dimG.

We have introduced a coupling parameter ¢ by analogy to the canonical integral in
(4.1.4), and we have included a number of formal factors in Z. First, we have the measure
DA on A, which we define up to norm as a translation-invariant measure on A. As is
standard, we have also divided the path integral by the volume of the gauge group G.
Finally, to be fastidious, we have normalized Z by a formal power of € which, as in (4.2.1),

will be natural in defining Z by localization.
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4.3.1 A New Formulation of Chern-Simons Theory

At the moment, we make no assumption about the three-manifold M. However, if M is
an S' bundle over a Riemann surface X, or an orbifold thereof, then to reduce Chern-
Simons theory on M to a topological theory on ¥ we must eventually decouple one of the
three components of the gauge field A. This observation motivates the following general
reformulation of Chern-Simons theory, which proves to be key to the rest of the chapter.

In order to decouple one of the components of A, we begin by choosing a one-dimensional
subbundle of the cotangent bundle T*M of M. Locally on M, this choice can be represented
by the choice of an everywhere non-zero one-form «, so that the subbundle of T* M consists
of all one-forms proportional to k. However, if ¢ is any non-zero function, then clearly x and
t k generate the same subbundle in 7*M. Thus, our choice of a one-dimensional subbundle
of T*M corresponds locally to the choice of an equivalence class of one-forms under the
relation

K~tk. (4.3.2)

We note that the representative one-form x which generates the subbundle need only be
defined locally on M. Globally, the subbundle might or might not be generated by a non-
zero one-form which is defined everywhere on M; this condition depends upon whether
the sign of k can be consistently defined under (4.3.2) and thus whether the subbundle is
orientable or not.

We now attempt to decouple one of the three components of A. Specifically, our goal is
to reformulate Chern-Simons theory on M as a theory which respects a new local symmetry
under which A varies as

0A = ok. (4.3.3)

Here o is an arbitrary section of the bundle 99, ® g of Lie algebra-valued functions on M.
The Chern-Simons action certainly does not respect the local “shift” symmetry in
(4.3.3). However, we can trivially introduce this shift symmetry into Chern-Simons the-

ory if we simultaneously introduce a new scalar field ® on M which transforms like A in
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the adjoint representation of the gauge group. Under the shift symmetry, ® transforms as
00 =o0. (4.3.4)

Now, if k in (4.3.3) is scaled by a non-zero function ¢ so that k — t k, then this rescaling
can be absorbed into the arbitrary section o which also appears in (4.3.3) so that the
transformation law for A is well-defined. However, from the transformation (4.3.4) of ®
under the same symmetry, we see that because we absorb ¢ into ¢ we must postulate an
inverse scaling of ®, so that ® — ¢~!®. As a result, although & is only locally defined up
to scale, the product k ® is well-defined on M.

The only extension of the Chern-Simons action which now incorporates both ® and the
shift symmetry is the Chern-Simons functional C'S(-) of the shift invariant combination

A — k®. Thus, we consider the theory with action
S(A,®) = CS(A—-k D), (4.3.5)
or more explicitly,

S(A,®) = CS(A) — / [26ATe(@F) — rnds Tx(27)] (4.3.6)

M

To proceed, we play the usual game used to derive field theory dualities by path integral
manipulations, as for T-duality in two dimensions [86,87] or abelian S-duality in four di-
mensions [88]. We have introduced a new degree of freedom, namely ®, into Chern-Simons
theory, and we have simultaneously enlarged the symmetry group of the theory so that
this degree of freedom is completely gauge trivial. As a result, we can either use the shift
symmetry (4.3.4) to gauge ® away, in which case we recover the usual description of Chern-
Simons theory, or we can integrate ® out, in which case we obtain a new description of

Chern-Simons theory which respects the action of the shift symmetry (4.3.3) on A.

A Contact Structure on M

Hitherto, we have supposed that the one-dimensional subbundle of T*M represented

by k is arbitrary, but at this point we must impose an important geometric condition on
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this subbundle. From the action S(A, ®) in (4.3.6), we see that the term quadratic in @ is
multiplied by the local three-form xAdk. In order for this quadratic term to be everywhere
non-degenerate on M, so that we can easily perform the path integral over ®, we require
that kAdk is also everywhere non-zero on M.

Although k itself is only defined locally and up to rescaling by a non-zero function ¢,
the condition that kAdk # 0 pointwise on M is a globally well-defined condition on the
subbundle generated by k. For when x scales as Kk — tx for any non-zero function t, we
easily see that kAdk also scales as kAdk — t? kAdk. Thus, the condition that kAdk # 0 is
preserved under arbitrary rescalings of .

The structure which we thus introduce on M is the choice of a one-dimensional subbundle
of T*M for which any local generator k satisfies kAdk # 0 at each point of M. This
geometric structure, which appears so naturally here, is known as a contact structure [89—
91]. More generally, on an arbitrary manifold M of odd dimension 2n+1, a contact structure
on M is defined as a one-dimensional subbundle of T*M for which the local generator k
satisfies KA(dk)™ # 0 everywhere on M.

In many ways, a contact structure is the analogue of a symplectic structure for manifolds
of odd dimension. The fact that we must choose a contact structure on M for our refor-
mulation of Chern-Simons theory is thus closely related to the fact, mentioned previously,
that we must choose a symplectic structure on the Riemann surface 3 in order to define
Yang-Mills theory on ..

We will say a bit more about contact structures on Seifert manifolds later, but for now,
we just observe that, by a classic theorem of Martinet [92], any compact, orientable three-
manifold possesses a contact structure. (We note that, because kAdk — t? kAdk under a
local rescaling of x and because ¢ is always positive, the sign of the local three-form xAdk

is well-defined. So any three-manifold with a contact structure is necessarily orientable.)

Path Integral Manipulations

Thus, we choose a contact structure on the three-manifold M, and we consider the
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theory defined by the path integral

1 1 1 \29¢
2(€) = 1) VoI(S) <2m) x
x /DADCI) exp Bﬁ (CS (A) —/M%/m (DF4) + /Mmmer(@?)ﬂ.

Here the measure D is defined independently of any metric on M by the invariant, positive-

(4.3.7)

definite quadratic form

(D,3) = — /M kAdk T (92) | (4.3.8)
which is invariant under the scaling kK — tx, ® — t~'®. We similarly use this quadratic
form to define formally the volume of the group S of shift symmetries, as appears in the
normalization of (4.3.7).

Using the shift symmetry (4.3.4), we can fix ® = 0 trivially, with unit Jacobian, and the
resulting group integral over S produces a factor of Vol(S) to cancel the corresponding factor
in the normalization of Z(e¢). Hence, the new theory defined by (4.3.7) is fully equivalent
to Chern-Simons theory.

On the other hand, because the field ® appears only quadratically in the action (4.3.6),
we can also perform the path integral over @ directly. Upon integrating out ®, the new

action S(A) for the gauge field becomes

1
KAdK

S(A) = /MTr (AAdA+§A/\A/\A> _ /M Tr[ (A Fa)?] (4.3.9)

We find it convenient to abuse notation slightly by writing “1/kAdkr” in (4.3.9). To
explain this notation precisely, we observe that, as kAdk is nonvanishing, we can always
write kAF4 = ¢ kAdk for some function ¢ on M taking values in the Lie algebra g. Thus,
we set kAFa/kAdk = ¢, and the second term in S(A) becomes [, kATr (Fap). As our
notation in (4.3.9) suggests, this term is invariant under the transformation x — ¢k, since
¢ transforms as ¢ — t~1 .

By construction, the new action S(A) in (4.3.9) is invariant under the action of the shift
symmetry (4.3.3) on A. We can directly check this invariance once we note that, under the

shift symmetry, the expression kAFy transforms as

KkANFy — KAFA + 0 KAdE . (4.3.10)
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The partition function Z(e) now takes the form

1 1 —i\2e/?
2(€) = JolG) VoI(S) <27re> 8

X /,4 DA exp [216 < /MTr (A/\dA+ zA/\A/\A) _ /M le T [(/i/\FA)z}ﬂ ,
(1.3.11)

where the Gaussian integral over ® cancels some factors of 2me in the normalization of
Z. As is standard, in integrating over ® we assume that the integration contour has been
slightly rotated off the real axis, effectively giving € a small imaginary part, to regulate the
oscillatory Gaussian integral. Thus, the theory described by the path integral (4.3.11) is

fully equivalent to Chern-Simons theory, but now one component of A manifestly decouples.

4.3.2 Contact Structures on Seifert Manifolds

Our reformulation of Chern-Simons theory in (4.3.11) applies to any three-manifold M
with a specified contact structure. However, in order to apply non-abelian localization to
Chern-Simons theory on M, we require that M has additional symmetry.

Specifically, we require that M admits a locally-free U(1) action, which means that
the generating vector field on M associated to the infinitesimal action of U(1) is nowhere
vanishing. A free U(1) action on M clearly satisfies this condition, but more generally it
is satisfied by any U(1) action such that no point on M is fixed by all of U(1) (at such
a point the generating vector field would vanish). Such an action need not be free, since
some points on M could be fixed by a cyclic subgroup of U(1). The class of three-manifolds
which admit a U(1) action of this sort are precisely the Seifert manifolds [93].

To proceed further to a symplectic description of Chern-Simons theory, we now restrict
attention to the case that M is a Seifert manifold. We first review a few basic facts about

such manifolds, for which a complete reference is [93].

M Admits a Free U(1) Action

For simplicity, we begin by assuming that the three-manifold M admits a free U(1)
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action. In this case, M is the total space of a circle bundle over a Riemann surface X,
[CR— [ QLI (4.3.12)

and the free U(1) action simply arises from rotations in the fiber of (4.3.12). The topology of
M is completely determined by the genus g of ¥ and the degree n of the bundle. Assuming
that the bundle is nontrivial, we can always arrange by a suitable choice of orientation for
M that n > 1.

At this point, one might wonder why we restrict attention to the case of nontrivial
bundles over ¥X. As we now explain, in this case M admits a natural contact structure
which is invariant under the action of U(1). As a result, our reformulation of Chern-Simons
theory in (4.3.11) still respects this crucial symmetry of M.

To describe this U(1) invariant contact structure on M, we simply exhibit an invariant
one-form k, defined globally on M, which satisfies the contact condition that kAdk is
nowhere vanishing. To describe k, we begin by choosing a symplectic form w on ¥ which is

normalized so that
/w — 1. (4.3.13)
>

Regarding M as the total space of a principal U(1)-bundle, we take x to be a connection

on this bundle (and hence a real-valued one-form on M) whose curvature satisfies
dk =nr'w, (4.3.14)

where we recall that n > 1 is the degree of the bundle. For a nice, explicit description of &
in this situation, see the description of the angular form in §6 of [52].

We let R (for “rotation”) be the non-vanishing vector field on M which generates the
U (1) action and which is normalized so that its orbits have unit period. By the fundamental
properties of a connection, k is invariant under the U(1) action and satisfies (k, R) = 1.
Here we use (-, -) generally to denote the canonical dual pairing. Thus, « pulls back to a
non-zero one-form which generates the integral cohomology of each S' fiber of M, and we
immediately see from (4.3.14) that kAdk is everywhere non-vanishing on M so long as the

bundle is nontrivial.
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For future reference, we note that the integral of kKAdk over M is determined as follows.
Because k satisfies (k, R) = 1, where R is the generator of the U(1) action whose orbits
correspond to the S! fibers over ¥ in (4.3.12), the integral of x over any such fiber is given
by

/51 k=1, (4.3.15)

Upon integrating over the S* fiber of M, we see from (4.3.13), (4.3.14), and (4.3.15) that

/ KNk = n/ RAT 'w = n / w=mn. (4.3.16)
M M )

Orbifold Generalization

Of course, in the above construction we have assumed that M admits a free U(1) action,
which is a more stringent requirement than the condition that no point of M is completely
fixed by the U(1) action. However, an arbitrary Seifert manifold does admit an orbifold
description precisely analogous to the description of M as a principal U(1)-bundle over a
Riemann surface. This point of view is taken in a nice paper by Furuta and Steer [94] for
an application somewhat related to ours, and we follow their basic exposition below.

To generalize our previous discussion to the case of an arbitrary Seifert manifold, we
simply replace the Riemann surface ¥ with an orbifold, and we replace the principal U(1)-
bundle over ¥ with its orbifold counterpart. Concretely, the orbifold base S of M is now
described by a Riemann surface of genus g with N marked points p;, j = 1,..., N, at which
the coordinate neighborhoods are modeled not on C but on C/Z,; for some cyclic group

Za;, which acts on the local coordinate z at p; as
2z, (=emi/a, (4.3.17)

The choice of the particular orbifold points p; is topologically irrelevant, and the orbifold

base 3 can be completely specified by the genus g and the set of integers {aq,...,an}.
We now consider a line V-bundle over . Such an object is precisely analogous to a

complex line bundle, except that the local trivialization over each orbifold point p; of Y is

now modeled on C x C/Z,, where Z,; acts on the local coordinates (z, s) of the base and
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fiber as
2 (2, s— s, (=e? (4.3.18)

for some integers 0 < ; < a;.

Given such a line V-bundle over f], an arbitrary Seifert manifold M can be described as
the total space of the associated S' fibration. Of course, we require that M itself is smooth.
This condition implies that each pair of integers (o, §;) above must be relatively prime so
that the local action (4.3.18) of the orbifold group Z,,; on C x S l'is free (in particular, we
require 3; # 0 above).

The U(1) action on M again arises from rotations in the fibers over 52, but this action
is no longer free. Rather, the points in the S! fiber over each ramification point p; of S are
fixed by the cyclic subgroup Z,; of U(1), due to the orbifold identification in (4.3.18).

Once the integers {f,...,0n} are fixed, the topological isomorphism class of a line
V-bundle on ¥ is specified by a single integer n, the degree. Thus, in total, the description

of an arbitrary Seifert manifold M is given by the Seifert invariants

{g;n; (a1, 51),-- -, (aN,ﬂN)] . ged(ay, B5) =1. (4.3.19)

Because the basic notions of bundles, connections, curvatures, and (rational) character-
istic classes generalize immediately from smooth manifolds to orbifolds [95,96], our previous
construction of an invariant contact form x as a connection on a principal U(1)-bundle im-
mediately generalizes to the orbifold situation here. In this case, if L denotes the line
V-bundle over 5 which describes M, with Seifert invariants (4.3.19), then £ is nontrivial

so long as its Chern class is non-zero (and positive by convention),

N N 3.
all) =n+d L >0, 4.3.20
1(£) ;aj ( )

which generalizes our previous condition that n > 1. In particular, n can now be any integer
such that the expression in (4.3.20) is positive.

In the Chern-Weil description of the Chern class, ¢;(£) is represented by smooth curva-

ture in the bulk of the orbifold 3. In contrast, the degree n receives contributions from both
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the bulk curvature in 3 and from local, delta-function curvatures at the orbifold points of 5.

That is why n is an integer but the orbifold first Chern class ¢;(£) is not. The delta-function

contributions to n are cancelled by the rational numbers (;/c; appearing explicitly in the

-~

formula (4.3.20) for ¢;(L).
From (4.3.20), to define a contact structure on M we choose the connection s so that

its curvature is given by
de = |n+ Y |70, (4.3.21)

where @ is a symplectic form on ¥ of unit volume, as in (4.3.13). Then, exactly as in

(4.3.16), the integral of kAdk over M is determined by the Chern class of /3,

/ kAdK = n + Z—J (4.3.22)
M =

—
For future reference, we also note that the Riemann-Roch formula for a line bundle on
a Riemann surface has a direct generalization to the case of a line V-bundle on an orbifold
[97], so that

-~ -~

X(L) = dime H(S, L) — dimc H'(3,£) = n+1—g, (4.3.23)

which justifies calling n the degree of L.

In this discussion, we have used the notation Y and £ to distinguish these orbifold
quantities from their smooth counterparts ¥ and £. In the future, we will not make this
artificial distinction, and in our discussion of Chern-Simons theory we will use ¥ and L to

denote general orbifold quantities.

4.3.3 A Symplectic Structure For Chern-Simons Theory

We now specialize to the case of Chern-Simons theory on a Seifert manifold M, which carries
a distinguished U(1) action and an invariant contact form . Initially, the path integral of
Chern-Simons theory on M is an integral over the affine space A of all connections on M.
Unlike the case of two-dimensional Yang-Mills theory, A is not naturally symplectic and
cannot play the role of the symplectic manifold X that appears in the canonical symplectic

integral (4.1.4).
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However, we now reap the reward of our reformulation of Chern-Simons theory to de-
couple one component of A. Specifically, we consider the following two-form 2 on A. If n
and & are any two tangent vectors to A, and hence are represented by sections of the bundle

O, ® g on M, then we define 2 by

O, &) = — /M KATE (TAE) . (4.3.24)

Because k is a globally-defined one-form on M, this expression is well-defined. Further,
Q) is closed and invariant under all the symmetries. In particular, € is invariant under the
group S of shift symmetries, and by virture of this shift invariance {2 is degenerate along
tangent vectors to A of the form ok, where ¢ is an arbitrary section of Qg/[ ® g. However,
unlike the gauge symmetry G, which acts nonlinearly on A4, the shift symmetry S acts in a
simple, linear fashion on A. Thus, we can trivially take the quotient of A by the action of
S, which we denote as A,

A=A/S. (4.3.25)

Under this quotient, the presymplectic form 2 on A descends immediately to a symplectic
form on A, which becomes a symplectic space naturally associated to Chern-Simons theory

on M. In the following, A plays the role of the abstract symplectic manifold X in (4.1.4).

More About the Path Integral Measure

Our reformulation of the Chern-Simons action S(A) in (4.3.9) is invariant under the shift
symmetry S, so S(A) descends to the quotient A of A by S. But we should also think (at
least formally) about the path integral measure DA. As in Yang-Mills theory, we define DA
up to norm as a translation-invariant measure on A, and a convenient way both to describe
DA and to fix its normalization is to consider this measure as induced from a Riemannian
metric on A. In turn, we describe this metric on A as induced from a corresponding metric

on M, so that a tangent vector 1 to 4 has norm

(m,m) = — /MTr(n/\*n)- (4.3.26)

We normalize the volume of G in (4.3.1) using the similarly induced, invariant metric on G.
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We assume that U(1) acts on M by isometries, so that the metric on M associated to

the operator x in (4.3.26) takes the form
ds3; = m*ds% + K@ K. (4.3.27)

Here ds% represents any Kahler metric on ¥ which is normalized so that the corresponding
Kahler form pulls back to dk. As a result of this normalization convention, the duality
operator * defined by the metric (4.3.27) satisfies x1 = KAdk.

Tangent vectors to the orbits of the shift symmetry S are described by sections of
O}, ® g which take the form ok, where o is any function taking values in g on M. Similarly,
tangent vectors to the quotient A are naturally represented by sections of Qzlw ® g which
are annihilated by the interior product ¢ with the vector field R, the generator of the U(1)
action on M. When the metric on M takes the form in (4.3.27), the one-forms annihilated
by tr are orthogonal to the one-forms proportional to x. Thus, the tangent space to S is
orthogonal to the tangent space to A in the corresponding metric (4.3.26) on A.

We can exhibit the orthogonal decomposition of the metric in (4.3.26) explicitly as

(n,n) = _/M kAdk Tr {(LRH)Q} - /M kATr |:H(7’/)/\*2H(77)} ) (4.3.28)

The first term in (4.3.28) describes the metric on & which we have already introduced in
(4.3.8), and the second term describes the induced metric on A. The form of the first term
follows immediately from the fact that xx = dk.

In the second term of (4.3.28), we have introduced two natural operators. First, we
introduce the the operator II which projects from the tangent space of A to the tangent

space of A, so that II is given by

II(n) =n— (trn) K. (4.3.29)

Trivially, tcp o II = 0.

Second, we introduce an effective “two-dimensional” duality operator xo on M which
induces a corresponding complex structure on A. This operator is defined globally on M
by

X9 = —LRO*. (4.3.30)
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Using that xx = dk and 1 = kKAdk, we see immediately that xo K = %2 (kAdk) = 0 and that
%9 1 = —dk. Also, one can easily check (for instance by considering local coordinates) that
xg satisfies (x2)2 = —1 when acting on one-forms in the image of II, representing tangent
vectors to A. This latter property is important, since it implies that % defines a complex
structure on A exactly as in two-dimensional Yang-Mills theory.

With this notation in place, the form of the second term in (4.3.28) follows immediately

from the simple computation below,

T(n)ATI(n) = er(KATI() ) ASTI()
= —RAI()A r(*T1(n)) , (4.3.31)
= KAIL(n)Ax2ll(n) .
In passing from the first to the second line of (4.3.31), we have “integrated by parts” with
respect to the operator vg, as tg (KAIL(n)AxII(n)) is trivially zero on the three-manifold M
by dimensional reasons.

We thus see from the second term in (4.3.28) that the induced metric on A is Kahler
with respect to the symplectic form € in (4.3.24) and the complex structure 2. Hence
the Riemannian measure induced on A from (4.3.28) is identical to the symplectic measure
induced by .

Finally, because the measure along the orbits of S in A is the same as the invariant
measure (4.3.8) which we defined on S itself, we can trivially integrate over these orbits,
which simply contribute a factor of the volume Vol(S) to the path integral. Consequently,
the Chern-Simons path integral in (4.3.11) reduces to an integral over A with its symplectic

measure,

9 (4.3.32)
S(A) = /MTr (A/\dA + SAAA/\A) - /M

Tr[(/@/\FA)Z] .

KAAK

4.3.4 Hamiltonian Symmetries of Chern-Simons Theory

To complete our symplectic description of the Chern-Simons path integral on M, we must

show that the action S(A) in (4.3.32) is the square of a moment map p for the Hamiltonian
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action of some symmetry group H on the symplectic space A.

By analogy to the case of Yang-Mills theory on ¥, one might naively guess that the
relevant symmetry group for Chern-Simons theory would also be the group G of gauge
transformations. One can easily check that the action of G on A descends under the quotient
to a well-defined action on A, and clearly the symplectic form € on A is invariant under G.
However, one interesting aspect of non-abelian localization for Chern-Simons theory is the
fact that the group H which we use for localization must be somewhat more complicated
than G itself.

A trivial objection to using G for localization is that, by construction, the square of the
moment map p for any Hamiltonian action on A defines an invariant function on A, but
the action S(A) is not invariant under the group G. Instead, the action S(A) is the sum
of a manifestly gauge invariant term and the usual Chern-Simons action, and the Chern-
Simons action shifts by integer multiples of 27 under “large” gauge transformations, those
not continuously connected to the identity in G.

This trivial objection is easily overcome. We consider not the disconnected group G of
all gauge transformations but only the identity component Gy of this group, under which
S(A) is invariant.

We now consider the action of Gy on A, and our first task is to determine the corre-
sponding moment map u. If ¢ is an element of the Lie algebra of Gy, described by a section
of the bundle 29, ® g on M, then the corresponding vector field V (¢) generated by ¢ on A
is given by V(¢) = da¢. Thus, from our expression for the symplectic form € in (4.3.24)
we see that

e = — / KATE (dAdASA) . (4.3.33)
M
Integrating by parts with respect to d4, we can rewrite (4.3.33) in the form 0{u, ¢), where
(n,¢) = / KATr(¢Fa) — / drATr(g(A — Ao)) . (4.3.34)
M M

Here Ap is an arbitrary connection, corresponding to a basepoint in A, which we must

choose so that the second term in (4.3.34) can be honestly interpreted as the integral of
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a differential form on M. Geometrically, the choice of Ay corresponds to the choice of
a trivialization for the principal G-bundle over M. We will say more about this choice
momentarily, but we first observe that the expression for p in (4.3.34) is invariant under
the shift symmetry and immediately descends to a moment map for the action of G on A.

The fact that we must choose a basepoint Ay in A to define the moment map is very
important in the following, and it is fundamentally a reflection of the affine structure of
A. In general, an affine space is a space which can be identified with a vector space only
after some basepoint is chosen to represent the origin. In the case at hand, once Ay is
chosen, we can identify A with the vector space of sections 7 of the bundle Qzlw ®gon M,
via A = Ao + 1, as we used in (4.3.34). However, A is not naturally itself a vector space,
since A does not intrinsically possess a distinguished origin. This statement corresponds to
the geometric statement that, though our principal G-bundle on M is trivial, it does not
possess a canonical trivialization.

In terms of the moment map u, the choice of Ay simply represents the possibility of
adding an arbitrary constant to u. In general, our ability to add a constant to u means
that p need not determine a Hamiltonian action of Gy on A. Indeed, as we show below, the
action of Gy on A is not Hamiltonian and we cannot simply use Gy to perform localization.

In order not to clutter the expressions below, we assume henceforth that we have fixed
a trivialization of the G-bundle on M and we simply set Ay = 0.

To determine whether the action of Gy on A is Hamiltonian, we must check the condition
(4.2.5) that p determine a homomorphism from the Lie algebra of Gy to the algebra of

functions on A under the Poisson bracket. So we directly compute

{<M, ¢>,<Wl})} = Q(qub, dA¢) = —/M KATE (dagAd )
= /M mTr([qs,mFA) - /Md/i/\Tr(qbdAz/J), (4.3.35)

(s [6,0) = [ dnTe (o).

Thus, the failure of y to determine an algebra homomorphism is measured by the coho-
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mology class of the Lie algebra cocycle

e(6,9) = {(w8), ()} = . [0, )

(4.3.36)
_ /M drnTx(¢ i) = /M RARTE (D L)

In the second line of (4.3.36), we have rewritten the cocycle more suggestively by using the
Lie derivative £ along the vector field R on M which generates the U(1) action. The class

of this cocycle is not zero, and no Hamiltonian action on A exists for the group Go.

Some Facts About Loop Groups

The cocycle appearing in (4.3.36) has a very close relationship to a similar cocycle that
arises in the theory of loop groups, and some well-known loop group constructions feature
heavily in our study of Chern-Simons theory. We briefly review these ideas, for which a
general reference is [98].

When G is a finite-dimensional Lie group, we recall that the loop group LG is defined as
the group of smooth maps Map(S*?, G) from S! to G. Similarly, the Lie algebra Lg of LG is
the algebra Map(S?, g) of smooth maps from S! to g. When g is simple, then the Lie algebra
Lg admits a unique, G-invariant cocycle up to scale, and this cocycle is directly analogous
to the cocycle we discovered in (4.3.36). If ¢ and v are elements in the Lie algebra Lg, then

this cocycle is defined by

c(é,1) = _/51 Tr(gbddj) = _/31 dtTr(gb,ERz,Z)). (4.3.37)

In passing to the last expression, we have by analogy to (4.3.36) introduced a unit-length
parameter ¢ on S, so that [¢1 dt = 1, and we have introduced the dual vector field R = 9/0t
which generates rotations of S?.

In general, if g is any Lie algebra and c is a nontrivial cocycle, then ¢ determines a

corresponding central extension g of g,
R—g—g. (4.3.38)
As a vector space, g = g ® R, and the Lie algebra of g is given by the bracket

((6,0),W,B)] = ([6,0],e(6,1)) (4.3.39)
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where ¢ and 1) are elements of g, and a and b are elements of R.

In the case of the Lie algebra Lg, the cocycle ¢ appearing in (4.3.37) consequently
determines a central extension IA/E; of Lg. When G is simply connected, the extension
determined by c¢ or any integral multiple of ¢ lifts to a corresponding extension of LG by
U,

U(l) — LG — LG. (4.3.40)
Topologically, the extension LG is the total space of the S! bundle over LG whose Euler
class is represented by the cocyle of the extension, interpreted as an invariant two-form on
LG. The fact that the Euler class must be integral is responsible for the corresponding
quantization condition on the cocycle of the extension.

When g is simple, the algebra Lg has a non-degenerate, invariant inner product which

is unique up to scale and is given by

(6,0) = — /S Ty (9u) (4.3.41)

On the other hand, the corresponding extension If/vg does not possess a non-degenerate,
invariant inner product, since any element of ivg can be expressed as a commutator, so that
[IA/E;, Eﬁ] = Lg, and the center of Lg is necessarily orthogonal to every commutator under an
invariant inner product.

However, we can also consider the semidirect product U(1) x LG. Here, the rigid U(1)
action on S' induces a natural U(1) action on LG by which we define the product, and
the important observation about this group U(1) x LG is that it does admit an invariant,
non-degenerate inner product on its Lie algebra.

Explicitly, the Lie algebra of S x LG is identified with R & Ijé =R® LgPR as a vector

space, and the Lie algebra is given by the bracket

((p.6,a), (0, 0,0)] = (0,[6,¥] +pLrv — aLro,c(6,1)), (4.3.42)

where £p is the Lie derivative with respect to the vector field R generating rotations of S?.

We then consider the manifestly non-degenerate inner product on R @ ITg which is given by

(.00 (@.0.0)) = = [ @tTe(6) = pb—qa. (43.43
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One can directly check that this inner product is invariant under the adjoint action deter-
mined by (4.3.42). We note that although this inner product is non-degenerate, it is not

positive-definite because of the last two terms in (4.3.43).

Ezxtension To Chern-Simons Theory

We now return to our original problem, which is to find a Hamiltonian action of a group
H on A to use for localization. The natural guess to consider the identity component Gy of
the gauge group does not work, because the cocycle ¢ in (4.3.36) obstructs the action of Gy
on A from being Hamiltonian.

However, motivated by the loop group constructions, we consider now the central ex-

tension G of Go by U(1) which is determined by the cocycle ¢ in (4.3.36),
U(1) — Gy — Go . (4.3.44)

We assume that the central U(1) subgroup of Go acts trivially on A, so that the moment
map for the central generator (0,a) of the Lie algebra is constant. Then, by construction,
we see from (4.3.36) and (4.3.39) that the new moment map for the action of Gy on A,

which is given by

(u, (¢,a)) = /M RATr (pF4) — /M deNTr (pA) + a, (4.3.45)

satisfies the Hamiltonian condition

{8, @)), (. (0,0)) } = (s (81 0). (,0)]) (4.3.46)

The action of the extended group Gy on A is thus Hamiltonian with moment map in (4.3.45).
But 56 is still not the group H which we must use to perform non-abelian localization
in Chern-Simons theory! In order to realize the action S(A) as the square of the moment
map p for some Hamiltonian group action on A, the Lie algebra of the group must first
possess a non-degenerate, invariant inner product. Just as for the loop group extension IA/C/},
the group Go does not possess such an inner product.
However, we can elegantly remedy this problem, just as it was remedied for the loop

group, by also considering the action of U(1) on M. The U(1) action on M induces an
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action of U(1) on Gy, so we consider the associated semidirect product U(1) x Go. Then a

non-degenerate, invariant inner product on the Lie algebra of U(1) x Go is given by

((p, o,a),(q,, b)) =— /M rAdK Tr(py)) — pb — qa, (4.3.47)

in direct correspondence with (4.3.43). As for the loop group, this quadratic form is of
indefinite signature, due to the hyperbolic form of the last two terms in (4.3.47).
Finally, the U(1) action on M immediately induces a corresponding U(1) action on
A. Since the contact form « is invariant under this action, the induced U(1) action on A
descends to a corresponding action on the quotient A. In general, the vector field upstairs
on A which is generated by an arbitrary element (p, ¢,a) of the Lie algebra of U(1) x Go is
then given by
0A=dap+pLRA, (4.3.48)

where R is the vector field on M generating the action of U(1). Clearly the moment for the

new generator (p,0,0) is given by

<u, (p, 0,0)> = —;p/M KATE (£RANA) (4.3.49)

This moment is manifestly invariant under the shift symmetry and descends to A.

In fact, the action of U(1) x Go on A is Hamiltonian, with moment map

<,u, (p, @, a)> = f%p /M kAT (£RANA) + /M RATr (pF4) — /M deNTr (pA) +a. (4.3.50)

To check this statement, it suffices to compute {(u, (p,0,0)), (1, (0,¢,0)>}, which is the
only nontrivial Poisson bracket that we have not already computed. Thus,
{00, (9,0,00), 00, (0,0,0)} = (b £rAdat) = =p [ #ATr(£rANdA)
= p/ RATr (£ryp Fy) — p/ denTr (£gp A),  (4.3.51)
M M
= </~L> (Oap'wav 0)> )
as required by the Lie bracket (4.3.42).

Thus, we identify H = U(1) x Gy as the relevant group of Hamiltonian symmetries which

we use for localization in Chern-Simons theory.
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4.3.5 The Action S(A) as the Square of the Moment Map

By construction, the square (ju, ) of the moment map g in (4.3.50) for the Hamiltonian
action of H on A is a function on A invariant under H. The new Chern-Simons action S(A)
in (4.3.9) is also a function on A invariant under H. Given the high degree of symmetry,
we certainly expect that (i, u) and S(A) agree up to normalization. We now check this fact
directly and fix the relative normalization.

We first observe that, in terms of the invariant form (-,-) in (4.3.47) on the Lie algebra
of H, we can express the moment map dually as determined by the inner product with
the vector (—1, — (kAFa — dkAA) [kAdK, 5 [y /{/\Tr(.fRA/\A)) in the Lie algebra of H, so

that

(1. (p.6,0)) = ((-1,— (W) ;/M nATr(,ERA/\A)> (o, (;5,@)) (43.52)

Thus, by duality, the square of p is determined to be

(s p) = <u, (—1,— (M> ;/M %ATr(fRAAA)» :

KAdK
4.3.
KAF4 — d/ﬁ}/\A)Q) (4.3.53)

= /M /q/\TI‘(fRA/\A> - /M RAdE Tr(( KAdK

To simplify the first term of (4.3.53), we use the fact that the Lie derivative £ can be

expressed as an anti-commutator £ = {tg,d}, so that

/ /iATr(,ERA/\A) = / HATF({LR, d}A/\A) . (4.3.54)
M M
We now observe that tgA can be expressed as
ANdK
A= ) 4.3.55
‘R KAdK ( )

Using this fact and integrating by parts with respect to the outermost operator d or tg in

both of the two terms from the anti-commutator (4.3.54), we find that

/ RATE(LrANA) = / [LRRATY (dARA) — RATE(dA 17 A) +
M M

+ drATr (1gA A) — KATE (1rA dA) |

4.3.56
_ / drAA p A) N ( )
M
drNA

KAAK
+ drNTr ( )
kAdK

Tr (AANdA) — 2/<;/\Tr<
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(We observe that trivially tp (kATr (dANA)) = 0.)

Consequently, after some algebra, we find that (4.3.53) becomes

(1, p) = — /M m\ldﬁTr<(m/\FA)2) + /M Tr(AndA) + 2/M RATr((1rA)ANA) . (4.3.57)

In arriving at (4.3.57), we have observed that the terms involving & in (4.3.56) are cancelled
by corresponding terms from the second term in (4.3.53), arising from the perfect square
((kAFy — deAA) /kAdK)?, after expanding Fy = dA + A A A. The last term in (4.3.57),
cubic in A, arises from the cross-term in this perfect square when we express Fy = dA+ANA
and we apply the identity (4.3.55).

To simplify the last term of (4.3.57), we observe that

0= tp(KATEH(ANANA)) = =3kATr((Lr A)ANA) + Tr (ANANA) (4.3.58)
so that
(1) = — /M ml (A FA)?) + /M Tr(ANdA + %A/\A/\A) . (4.3.59)

We thus find the beautiful result,
S(A) = (p, ) - (4.3.60)

We finally write the Chern-Simons path integral as a symplectic integral over A of the

canonical form,

Z(e) = Voll( G (;)Agﬂ /A exp {QJF;'E(M, M)] (4.3.61)

4.4 Non-Abelian Localization and Two-Dimensional Yang-

Mills Theory

In this section, we recall following [18] how the technique of non-abelian localization can be

generally applied to study a symplectic integral of the canonical form

1 1

Z(e) = Vol() <27T6>AH/2 /Xexp {Q - 2% (;L,,u)} , Ay =dimH . (4.4.1)
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Here X is a symplectic manifold with symplectic form €2, and H is a Lie group which acts
on X in a Hamiltonian fashion with moment map p. Finally, (-, ) is an invariant, positive-
definite quadratic form on the Lie algebra b of H and dually on §* which we use to define
the “action” S = %(u,,u) and the volume Vol(H) of H that appear in (4.4.1).

In the case of Chern-Simons theory, the corresponding quadratic form (4.3.47) on h
has indefinite signature, due to the hyperbolic summand associated to the two extra U(1)
generators of H relative to the group of gauge transformations Gy. Also, invariance under
large gauge transformations requires the Chern-Simons symplectic integral (4.3.61) to be
oscillatory, instead of exponentially damped. These features do not essentially change our
discussion of localization below, and we reserve further comment until Section 5.

Later in this section, we also review and extend the ideas of [18] to apply non-abelian

localization to Yang-Mills theory on a Riemann surface.

4.4.1 General Aspects of Non-Abelian Localization

To apply non-abelian localization to an integral of the form (4.4.1), we first observe that

Z(€) can be rewritten as

Z(e) = Voll(H) [, 2] e 2 -itwe) - S6.6)] . (4.4.2)

Here ¢ is an element of the Lie algebra h of H, and [d¢] is the Euclidean measure on h that
is determined by the same invariant form (-, -) which we use to define the volume Vol(H) of
H. The Gaussian integral over ¢ in (4.4.2) leads immediately to the expression in (4.4.1).

The measure [d¢/27] includes a factor of 1/2x for each real component of ¢.

A BRST Symmetry

The advantage of writing Z in the form (4.4.2) is that, once we introduce ¢, then Z
becomes invariant under a BRST symmetry, and this BRST symmetry leads directly to a
localization formula for (4.4.2).

To describe this BRST symmetry, we recall that the moment map satisfies



152

where V' (¢) is the vector field on X associated to the infinitesimal action of ¢. Because of
the relation (4.4.3), the argument of the exponential in (4.4.2) is immediately annihilated

by the BRST operator D defined by
D = d + 7 LV(¢) . (4.4.4)

To exhibit the action of D locally, we choose a basis ¢% for b, and we introduce local
coordinates ™ on X. We also introduce the notation x” = dz™ for the corresponding
basis of local one-forms on X, and we expand the vector field V(¢) into components as
V(p) = ¢V, 9/02™. Then the action of D in (4.4.4) is described in terms of these local

coordinates by

Da™ = x™,
DY™ = i V™, (4.4.5)
D¢ = 0.

From this local description (4.4.5), we see that the action of D preserves a ghost number,
or grading, under which x carries charge 0, y carries charge +1, ¢ carries charge +2, and
D itself carries charge +1.

The most important property of a BRST operator is that it squares to zero. In this
case, either from (4.4.4) or from (4.4.5), we see that D squares to the Lie derivative along
the vector field V' (¢),

D? = i{d, iy} =i £y - (4.4.6)

Thus, D? = 0 exactly when D acts on the subspace of H-invariant functions O(z, x, ¢) of
x, X, and ¢.
For simplicity, we restrict attention to functions O(z, x, ¢) which are polynomial in ¢.

Then an arbitrary function of this form can be expanded as a sum of terms

O(%)ml...mp aj...aq Xml T me ¢a1 tt (Z)aq 5 (447)

for some 0 < p < dim X and ¢ > 0. (The restriction on p arises from the fact that x satisfies

Fermi statistics, whereas ¢ satisfies Bose statistics.)
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More globally, each term of the form (4.4.7) is specified by a section of the bundle
QO @ Sym?(h*) of p-forms on X which take values in the ¢-th symmetric tensor product of
the dual b* of the Lie algebra of H. Thus, if we consider the complex (% ® Sym* (5N of
all H-invariant differential forms on X which take values in the ring of polynomial functions
on h, then we see that D defines a cohomology theory associated to the action of H on X.
This cohomology theory is known as the Cartan model of the H-equivariant cohomology
of X. With the exception of the last computation in Section 5.3, our applications will
not require a greater familiarity with equivariant cohomology than what we have described
here. However, in Section 5.3 we will need to use a few additional properties of equivariant

cohomology that we discuss in Appendix C, and we recommend [20,99] as basic references.

Localization for Z

Because the argument of the exponential in (4.4.2) is annihilated by D and because
this argument is manifestly invariant under H, the integrand of the symplectic integral Z
determines an equivariant cohomology class on X. Furthermore, by the usual arguments,
Z is formally unchanged by the addition of any D-exact invariant form to its integrand.
This formal statement can fail if X is not compact and Z suffers from divergences, as we
analyze in great detail in Appendix A, but for the moment we ignore this issue and assume
X is compact. Thus, Z depends only on the equivariant cohomology class of its integrand.

We now explain how this fact leads immediately to a localization formula for Z. We
first observe that we can add to the argument of the exponential in (4.4.2) an arbitrary
term of the form ¢ DA, where X is any H-invariant one-form on X and ¢ is a real parameter,

so that

Z(e) = Voll( 7 /h » Bﬂ exp [9 ~ il ¢) — 5(6,6) + ¢ DA (4.4.8)

This deformation of the integrand of (4.4.2) is D-exact and does not change Z. In particular,
Z does not depend on t.

By definition, DA is given explicitly by

DX = dA+i (A V(). (4.4.9)
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As before, (-, -) denotes the canonical dual pairing, so that in components the last term of
(4.4.9) is given by A, V"¢

Thus, apart from a polynomial in ¢ that arises from expanding the term exp (¢ d\), all
of the dependence on t in the integrand of Z arises from the factor exp [i t (A, V(¢))] that
now appears in (4.4.8). So if we consider the limit ¢ — oo, then the stationary phase
approximation to the integral is valid, and all contributions to Z localize around the critical
points of the function (A, V(¢)).

We expand this function in the basis ¢* for h which we introduced previously,
(A V(g) = ¢" (A Va). (4.4.10)

Thus, the critical points of (A, V(¢)) arise from the simultaneous solutions in § x X of the

equations
(A Va) =0,
(4.4.11)
P d(\,V,) = 0.
The first equation in (4.4.11) implies that Z necessarily localizes on points in h x X for
which (A, V,) vanishes. As for the second equation in (4.4.11), we see that it is invariant
under an overall scaling of ¢ in the vector space h. Consequently, upon integrating over ¢
in (4.4.8), we see that the critical locus of the function (A, V(¢)) in  x X projects onto the
vanishing locus of (A, V,) in X. So Z localizes on the subset of X where (A, V,) = 0.

By making a specific choice of the one-form X, we can describe the localization of Z
more precisely. In particular, we now show that Z localizes on the set of critical points of
the function S = 3(u, p1) on X.

We begin by choosing an almost complex structure J on X. Thatis, J: TX — TX is a
linear map from T X to itself such that J?> = —1. We assume that J is compatible with the
symplectic form €2 in the sense that €2 is of type (1, 1) with respect to J and the associated
metric G(+,-) = Q(+,J+) on X is positive-definite. Such an almost complex structure always

exists.

Using J and S, we now introduce the invariant one-form

A= JdS = (u,Jdp). (4.4.12)
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In components, A = dz™J}0,S = dx™u*J} Ontia.

The integral Z now localizes on the subset of X where (A, V,) =0. Comparing to
(4.4.12), we see that this subset certainly includes all critical points of S, since by definition
dS = 0 at these points.

Conversely, we now show that if (\,V,) =0 at some point on X, then this point is
a critical point of S. To prove this assertion, we use the inverse Q7! to 2, which arises
by considering the symplectic form as an isomorphism € : TM — T*M with inverse
Q~':T*M — TM. In components, Q7! is defined by (2~ 1) Q,,,, = 6L.

In terms of Q7! the moment map equation (4.4.3) is equivalent to the relation
V =0 'du, (4.4.13)
or VM = (Q=1™" 9, p1,. Thus,
Qtds = (u, Q7dp) = (V) (4.4.14)

or (=19, S = prvm.

In particular, the condition that (A, V,) = 0 implies that
0= (u, NV)) = (X, Q71dS) = (JdS, Q71dS), (4.4.15)

or more explicitly, 0 = u*\, V" = A\p, (7)™ 9,8 = (Q~Y)y™JL 9,5 0,,S. We recognize
the last expression in (4.4.15) as the norm of the one-form dS with respect to the metric
G on X. As G is positive-definite, we conclude that the condition (\,V,) = 0 implies the

vanishing of dS. Thus, the symplectic integral Z localizes precisely on the critical set of S.

4.4.2 Non-Abelian Localization For Yang-Mills Theory, Part I

In the rest of this section, we apply non-abelian localization to perform path integral com-
putations in two-dimensional Yang-Mills theory on a smooth Riemann surface . These
computations are an essential warmup for our later computations in Chern-Simons theory.

As we discussed in Section 2, the Yang-Mills path integral is naturally a symplectic

integral of the canonical form (4.4.1), where the abstract symplectic manifold X is now the
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affine space A(P) of connections on a fixed principal G-bundle P over ¥, and where the
abstract group H is now the group G(P) of gauge transformations. Also, the moment map
for the action of G(P) on A(P) is simply the curvature of the connection, u = Fjy.

As a result of our general discussion above, the Yang-Mills path integral localizes on
critical points of the Yang-Mills action. These critical points fall into two qualitatively
different sorts. Because the action S = %(,u, 1) is quadratic in the moment map pu, so that
dS = (u,dpu), we see that the critical locus of S includes all points where p vanishes, as well
as other points where p is generally non-zero. The points at which p = 0 are clearly stable
minima of S, and any other critical points at which p # 0 are higher extrema of .S, which
in our applications are unstable. In the case of Yang-Mills theory, the stable minima of the
action are the flat connections on 3, and the higher extrema are connections with non-zero
curvature which represent classical solutions of Yang-Mills theory, so that daxF4 = 0 with
Fa #0.

For our application to Chern-Simons theory, we must understand localization at both
the flat and the non-flat solutions of classical Yang-Mills theory. So in the rest of Section
4.2, we review following [18] how non-abelian localization works for flat connections, and
then in Section 4.3 we discuss the generalization for solutions of Yang-Mills theory with

curvature.

Localization on a Smooth Component of the Moduli Space of Flat Connections

We assume that M is a smooth component of the moduli space of flat connections on

Y. For ease of future notation, we make the identifications

X = A(P),
H = ¢g(P), (4.4.16)
w = Fy.

We now identify My abstractly as a symplectic quotient of the zero locus p=1(0) C X by
the free action of the group H, so that Mo = u~1(0)/H.

The fundamental result of [18], whose derivation we now recall, is that the local contri-
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bution Z(€)|a, to the path integral from M, is given by the topological expression

Z2(6) | me = /M exp (Q+€0). (4.4.17)

0

Here € is the symplectic form on Mj induced from the corresponding symplectic form on X
(also denoted previously by €2), and © is a characteristic class of degree four on Mg which
appears explicitly as part of the derivation of (4.4.17). In particular, when the coupling e
is zero, then Z(0)|rq, is the symplectic volume of M.

To derive (4.4.17) by localization, we start by considering the local geometry of the zero
set ©~1(0) in X. Thus, we let N be a small open neighborhood of x~1(0) in X, so that
p1(0) € N C X. We assume that this neighborhood is chosen so that N is preserved
by the action of H and so that N retracts equivariantly onto x~'(0). By composing this
retraction with the quotient by the action of H, we define a projection pr : N — Mj. Thus,

denoting the fiber of pr by F', we have the following equivariant bundle
F— N2 M,. (4.4.18)

The symplectic integral which describes the local contribution of Mg to Z is now given

by

2()|mg = Voll(H) /be Bﬂ exp [Q_uu, 8 — <(6,6) +1DA| (4.4.19)

where A is the invariant one-form that we introduced in (4.4.12) to localize Z. Because N
is noncompact, this integral in (4.4.19) is only defined by localization, so that we require
t # 0.

As explained in detail in [18], because N retracts equivariantly onto Mg and because
the action of H is free near ~1(0), the equivariant cohomology class of degree two repre-
sented by the expression Q — i (i, ¢) in (4.4.19) is simply the pullback by pr of the induced
symplectic form on My. (We recall that ¢ carries degree +2 with respect to equivariant
cohomology.) Similarly, the equivariant cohomology class of degree four represented by
—%((;5, ¢) in (4.4.19) is the pullback by pr of an ordinary cohomology class © of degree four
on My. Since H acts freely on p~1(0), © represents a degree four characteristic class of

1~ 1(0) regarded as a principal H-bundle over M.
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Thus, as the only term appearing in the argument of the exponential in (4.4.19) which
does not pull back from My is t DX itself, to derive (4.4.17) from (4.4.19) we must only
show that the integral of exp (¢DA) over the fiber F' of (4.4.18) produces a trivial factor of
L,

Voll(H) /hxF [;l;ﬂ exp[t DA] = 1. (4.4.20)

This computation is what we must essentially generalize to discuss localization at non-flat

Yang-mills solutions, so we review it in detail.

A Local Model For F' From Hodge Theory

In order to perform the direct computation of the integral in (4.4.20), we first identify
the correct local model for the geometry of F'. By assumption, the group H acts freely on
F', so F must contain a copy of H. Since F' must also be symplectic, the simplest local
model for F' is just the cotangent bundle T*H of H, with its canonical symplectic structure.

In fact, the simple guess that F' = T*H is precisely correct, and it has an important
infinite-dimensional interpretation in the context of Yang-Mills theory. To explain this
interpretation, we consider the tangent space to A(P) at a point corresponding to a flat
connection A. As we have discussed, the tangent space to A(P) at A can be identified
with the space of smooth sections I'(X, % ® ad(P)) of the bundle of one-forms on ¥ taking
values in the adjoint bundle ad(P).

By definition, the flatness of A implies that the covariant derivative d, satisfies d% = 0.
Because of this fact, d 4 has many of the same properties as the de Rham exterior derivative
d, and the usual Hodge decomposition for d has an immediate analogue for d .

In the case of the covariant derivative d,, the Hodge decomposition implies that the
vector space I'(X, Q% ® ad(P)) decomposes into three subspaces, orthogonal with respect

to the metric induced by x on A(P), of the form
I'(2, 0 ©ad(P)) = Hy & Im(dy) & Im(d},) . (4.4.21)

Here dL = —xd,* is the standard adjoint to d, with respect to the metric on A(P).

Also, H; denotes the finite-dimensional subspace of harmonic one-forms taking values in
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ad(P), so that elements of H; are annihilated by the Laplacian Ay = d Ad]:4 + de 4 Finally,
Im(d ) and Im(dL) denote the images of d 4 and d}; when these operators act respectively
on sections of the bundles ad(P) and Q% ® ad(P) on X.

Concretely, the Hodge decomposition implies that, if 7 is any section of QL ® ad(P),

then 1 can be uniquely written as a sum of three terms, all orthogonal,
n =&+ dso+ dyV, (4.4.22)

where ¢ satisfies A 4§ = 0 and where ¢ and ¥ are respectively sections of the bundles ad(P)
and Q% ® ad(P).

To interpret the Hodge decomposition (4.4.21) as a geometric statement, we note that
the finite-dimensional vector space H; of harmonic one-forms can be identified with the
tangent space to the moduli space My of flat connections at A. For instance, since d124 =0,
we can consider the cohomology of d 4. As usual, we identify the harmonic forms in H; as
representatives of cohomology classes in H' (X, ad (P)). These cohomology classes describe
infinitesimal deformations of the flat connection A.

On the other hand, since we assume that the gauge group G(P) acts freely at A, d, has
no kernel when acting on sections of ad(P). Otherwise, if a section ¢ of ad(P) did satisfy
d,¢ = 0, then the gauge transformation generated by ¢ would fix A. Equivalently, we have
that HY(X,ad (P)) = 0.

Because d 4 has no kernel when acting on sections of ad(P), d 4 can be formally inverted
and the image of d4 in I'(%, Q% ® ad(P)) identified with the space of sections of ad(P)
itself. Of course, a section ¢ of ad(P), as appears in (4.4.22), is interpreted geometrically
as a tangent vector to the gauge group G(P).

Similarly, we can also identify the image of the adjoint dil with the space of sections of
the bundle Q% ® ad(P). Such a section ¥, as in (4.4.22), is interpreted geometrically as a
cotangent vector to the gauge group G(P).

Furthermore, if we recall the natural symplectic form €2 on A(P) in (4.2.3), we see that

Im(d,) is isotropic with respect to Q. For if ¢ and v are any two sections of the bundle
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ad(P) on X, then

Qdag,day)) = — /E Tr(dadAdarh) = /E Tr(¢pdie) = 0. (4.4.23)

This fact crucially relies on the flatness of A, since we use that d4 = 0 in deducing the
last equality of (4.4.23). Of course, the fact that Im(d,) is isotropic with respect to €2 is
mirrored by the fact that H is a Lagrangian submanifold of 7% H.

Thus, the Hodge decomposition (4.4.21) applied to I'(X, Q5 ® ad(P)) locally reflects
the geometric statement that F' is modeled on the cotangent bundle T*H. In this ex-
ample, it may seem perverse to translate the simple statement that F' = T*H into the
infinite-dimensional statement of the Hodge decomposition. However, when we consider
the corresponding local geometry for higher critical points, this infinite-dimensional per-
spective allows us to deduce directly how the simple symplectic model based on T* H must

be modified to describe higher critical points of Yang-Mills theory.

Computing a Symplectic Integral on T*H

Having identified the symplectic model for F' as the cotangent bundle 7% H, we compute

in the remainder of this subsection the symplectic integral

vo11( 7 /h . [;lﬂ exp [t DA]. (4.4.24)

We review this short computation from [18] simply because we must generalize it to discuss

localization at non-flat Yang-Mills connections.
Thus, we consider the symplectic manifold 7% H with its canonical symplectic structure.
By convention, the action of H on T*H is induced from the right action of H on itself. By
passing to a basis of right-invariant one-forms and using the invariant metric (-, -) on H, we
identify T*H = H x h. Under this identification, we introduce coordinates (g,~) on H x b.
In these coordinates, the canonical right-invariant one-form on H which takes values in
b is given by
0 = dgg~'. (4.4.25)
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In terms of 6, the canonical symplectic structure on T* H is given by the invariant two-form

Q= d('}/yg) = (d’%e) + (77 d&),

_ (d7_|_ ;[%0],9> | (4.4.26)

where in passing to the second line of (4.4.26) we recall that df = 6A\6 = %[9, 0]. Also, if ¢
is an element of h, then the corresponding vector field V(¢) on T*H which is generated by

the infinitesimal right-action of ¢ is given by
0g = —g¢, oy = 0. (4.4.27)

To proceed, we require an explicit formula for the invariant one-form A appearing in
(4.4.24). Abstractly, A = (u,J du) is determined by the moment map p for the H-action
on T*H and an almost complex structure J compatible with Q in (4.4.26), both of which

are easy to determine. A convenient formula for A\ was obtained in [18]. In brief, one has

{, ®) = —(v, 909~ 1), and one defines a G-invariant almost complex structure compatible
with by
1 1
J(0) = — (d’y + 2[%9]) , (dv + 50 6]) =0. (4.4.28)

One then finds that (i, J du) = (7, 6) after using the fact that [y,~v] = 0. So finally
A= (u,Jdp) = (v,0). (4.4.29)
Thus, from (4.4.27), (4.4.29), and the definition of D in (4.4.4), we see that

DN\=Q—i (’y, gqbg*l) . (4.4.30)

1

Without loss, we set t = 1 in (4.4.24) and we change variables from ¢ to g¢g~ ", under which

the measure [d¢] on b is invariant. Then the symplectic integral takes the simple form

Voll(H) /th*H [;l;ﬂ exp [Q —i (7, ¢>)} . (4.4.31)

The integral over v can be done using the fact that

/+OO dy exp (—ixy) = 27 d(x), (4.4.32)

—00
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and the resulting multi-dimensional delta function can be used to perform the integral over
¢. We note that the factors of 27 from (4.4.32) nicely cancel the factors of 27 in the
measure for ¢. Finally, the remaining integral over g in H produces a factor of the volume
Vol(H) which cancels the prefactor in (4.4.31). Thus, assuming 7™ H is suitably oriented,

the symplectic integral over 7% H is indeed 1, as claimed in (4.4.20).

4.4.3 Non-Abelian Localization For Yang-Mills Theory, Part I

We now study localization at the higher, unstable critical points of the Yang-Mills action,
which correspond to non-flat connections which solve the Yang-Mills equation on . We
begin with some generalities about these connections.

We first introduce the notation f for the section of ad(P) dual to the curvature Fgu,
[ =*Fa. (4.4.33)
Then, by definition, any Yang-Mills solution on 3 satisfies the classical equation of motion
daf = 0. (4.4.34)

This equation simply expresses the geometric condition that f be a covariantly constant
section of ad(P), and we can consequently regard f as an element of the Lie algebra g of G.

Because f is constant, f yields a reduction of the structure group G of the bundle to the
subgroup Gy C G which commutes with f. In physical terms, the background curvature
breaks the gauge group from G to Gy.

As a result of the reduction from G to G, any non-flat Yang-Mills solution for gauge
group G can be succinctly described as a flat connection for gauge group Gy which is twisted
by a constant curvature line bundle associated to the U(1) subgroup of G generated by f.

In general, we denote by M ¢ the moduli space of Yang-Mills connections whose curva-
ture lies in the conjugacy class of f. We have already discussed localization on the moduli
space My of flat connections, for which Gy = G. At the opposite extreme, f breaks G to
a maximal torus Gy commuting with f. We refer to such a Yang-Mills solution as “maxi-

mally reducible,” and one basic goal in this section is to obtain an explicit formula, as in



163

(4.4.17), for the contribution to the path integral from the corresponding moduli space M ¢
of maximally reducible Yang-Mills solutions. Of course, we could also consider the local
contributions from Yang-Mills solutions between the extremes of the flat and maximally
reducible connections, but this further generalization is not necessary for our discussion of
Chern-Simons theory.

Because f is constant, the adjoint action of f determines a bundle map from ad(P) to
itself, and a good idea is to decompose ad(P) under this action. With our conventions, f

is anti-hermitian, so following [79] we introduce a hermitian operator A,
A=ilf, ], (4.4.35)

which acts on a section ¢ of ad(P) as A¢ = i[f, ]

When we consider the action of A, it is natural to work with complex, as opposed to
real, quantities. So we now consider in place of the real bundle ad(P) the complex bundle
adc(P) = ad(P) ® C. When we complexify ad(P), the (1,0) and (0, 1) parts of an ad(P)-
valued connection become independent complex variables. After picking a local complex
coordinate z on X, these can be written locally as A, and Asz.

Under the action of A, the bundle adc(P) decomposes into a direct sum of subbundles,
each associated to a distinct eigenvalue of A. For our purposes, we need only consider the

decomposition of adc(P) into the positive, zero, and negative eigenspaces of A,
adc(P) = ad4(P) @ adp(P) @ ad_(P), (4.4.36)

where ady (P) and adg(P) denote respectively the subbundles of ad¢(P) associated to these
eigenspaces. The eigenspace decomposition of adc(P) in (4.4.36) will play an important

role shortly.
Ezample: G = SU(2)

As a simple example of these ideas, we consider the higher Yang-Mills critical points
when the gauge group G is SU(2). In this case, all non-flat Yang-Mills solutions are

maximally reducible, since any f # 0 reduces the structure group to a maximal torus

U(1) c SU(2).
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The rank-one case G = SU(2) of Yang-Mills theory is also the essential case to un-
derstand for our application to Chern-Simons gauge theory, with gauge group of arbitrary
rank. As we explain in Section 5, near a flat Chern-Simons connection on the three-manifold
M, the local geometry in the symplectic manifold A of (4.3.25) can be modeled on the ge-
ometry of infinitely-many copies of the geometry near a higher SU(2) Yang-Mills critical
point. This correspondence arises heuristically by identifying the background Yang-Mills
curvature f, which generates the torus U(1) C SU(2), with the geometric curvature of M
regarded as a principal U(1)-bundle over the surface X.

In the case of Yang-Mills theory, since f reduces the structure group of the SU(2)
bundle to U(1), the SU(2) bundle on X splits as a direct sum of line bundles. As f itself is
associated to a constant curvature line bundle on X, up to conjugacy f takes the form

n 0
f=2mi ( ) , (4.4.37)
0 —n
for some integer n # 0. Because the Weyl group of SU(2) acts on f by sending n — —n,
without loss we can assume that n > 0.

Introducing the standard generators of su(2) regarded as a complex Lie algebra,

1 0 0 1 0 0
o, = ( > , oy = ( ) , oO_ = ( ) , (4.4.38)
0 — 0 0 1 0

we see that A acts on su(2), and hence on adc(P), with eigenvalues 0 and +47n. Thus, in

this case the general decomposition of adc(P) in (4.4.36) takes the simple form
ade(P) = L7 (—2n) @ O @ L(2n). (4.4.39)

Here O is the trivial line bundle on X, £ is an arbitrary flat line bundle on 3, and we use
the standard notation £(2n) = £ ® O(2n), where O(2n) is the 2n-th tensor power of a fixed
line bundle O(1) of degree one on X.

Thus, for each n > 0, the choice of a non-flat connection solving the Yang-Mills equation
on X is determined by the choice of the flat line bundle £ on .. Such a line bundle is specified
by the U(1) holonomy of its connection, and hence the moduli space of flat line bundles

on X is parametrized by a complex torus, the Jacobian of ¥. If ¥ has genus g, with 2¢g



165

periods, then the Jacobian has complex dimension g. Thus, for fixed f # 0, the moduli
space M of higher critical points of SU(2) Yang-Mills theory on ¥ is simply a complex
torus of dimension g.

More generally, if we consider an arbitrary gauge group G of rank r such that f breaks
G to a maximal torus, then the corresponding moduli space M/ is again a complex torus

of dimension g r which describes the holonomy in U(1)".

The Partition Function of SU(2) Yang-Mills Theory

One of our basic goals in the rest of this section is to compute directly the contributions
from higher critical points to the partition function Z of SU(2) Yang-Mills theory. Of course,
Z can be computed exactly [100], and we can readily extract from the known expression
for Z a formula for the local contributions from the higher critical points. So before we
delve into our path integral computation, we present now the answer which we expect to
reproduce and we preview its most interesting features.

In general, if the gauge group G is simply-connected, then the partition function of Yang-

Mills theory on a unit area Riemann surface of genus g is given by a sum over representations

R of G of the form

20 = (VIO S s v (~5eG(R)). (1)

Here Co (R) is a renormalized version of the quadratic Casimir associated to the represen-
tation R, and the volume Vol(G) of G is determined in our conventions by the invariant
form —Tr on the Lie algebra g. We recall that for G = SU(r + 1), “Ir” denotes the trace
in the fundamental representation, and the renormalized quadratic Casimir 62(7?,) differs
from the usual quadratic Casimir solely by an additive constant.

Finally, because of the possibility of weighting the Yang-Mills path integral on ¥ by
a purely topological factor exp (¢ (2g — 2)) for an arbitrary constant ¢, we have fixed the
prefactor in (4.4.40) so that Z(0) agrees, at least up to a sign which we will not try to fix,
with the symplectic volume of the moduli space Mg of flat connections on ¥ as computed

in [101] from the theory of Reidemeister-Ray-Singer torsion. Our choice of ¢ differs from
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the choice in [101] simply because the symplectic form 2 in (4.2.3) which we use here is
related to the integral symplectic form €’ used in [101] by Q = 472 Q).

We now evaluate (4.4.40) in the case G = SU(2). In this case, each representation is
labelled by its dimension, so we denote by R, the SU(2) representation of dimension n.
The renormalized quadratic Casimir of R,,, which is just the usual quadratic Casimir with
an additive constant, is then

~ 1
Co(Rn) = 5 n?. (4.4.41)

Finally, using the metric on SU(2) determined by —Tr, the volume of SU(2) is given by
Vol(SU(2)) = 25/272. This fact follows immediately if we recall that the volume of an S3
of unit radius is 27%. However, in our metric on SU(2), the U(1) subgroup associated to
the normalized generator T, = % 0., as in (4.4.38), has length 27v/2, so SU(2) has radius

= /2 in our metric. Thus, the partition function (4.4.40) of SU(2) Yang-Mills theory on

Y. becomes

-1 & en?
Z(e) = (327r4>g ! Z # exp (—4) . (4.4.42)

In order to extract the contributions of the higher critical points from (4.4.42), we first
differentiate Z(e) with respect to € to cancel the prefactor n=2(9=1) in the summand of

(4.4.42),

ai?_ez@ = (-st)" g o <_212> — 5 (=se)" (‘1 2 e <_212>> .
(4.4.43)

To obtain a manifestly convergent expression in the weak coupling regime of small €, we

2)) . (4.4.44)

Finally, to identify the contribution in (4.4.44) from higher Yang-Mills critical points,

apply Poisson summation to the last term of (4.4.43) to obtain

9=17(¢ _
aaeff)—;(&r <1+\/72 <

nez

we observe that at a higher critical point of degree n, the classical Yang-Mills action S,
determined by f in (4.4.37) is given by S,, = (27n)?/e (assuming ¥ has unit area). The

semiclassical contribution to Z from such a critical point is weighted by the usual exponential
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factor exp (—S,,), which we see directly in the last term of (4.4.44). Thus, the locus M,, of

higher critical points of degree n contributes to the sum in (4.4.44) as

_ (_87#)9_1 ﬁ exp <_ (2”'6")2> . (4.4.45)

We note that a trivial factor of two in (4.4.45) arises from the action of the Weyl group,

297 Z(e)
Oed—1

n

since the two terms in (4.4.44) for both £n arise from the higher critical points of degree n.
This expression (4.4.45) is what we compute using localization, and it has a number of
interesting features. Most fundamentally, we see that the natural quantity to consider is
not Z but its derivative 3971 Z(¢)/0e9~!. In discussing the higher critical points, we lose
nothing by considering this derivative, since any terms in Z that are polynomial in €, and
hence are annihilated by the derivative, arise as contributions from the moduli space My
of flat connections. Moreover, although the formula in (4.4.45) is expressed in terms of
elementary functions, its integral with respect to € cannot be expressed so simply.

We also see from (4.4.45) that the local contributions from the higher critical points to
09717 (e)/0e9~! are essentially independent of g and n, apart from a numerical prefactor
and the usual exponential dependence on the classical action S,,.

Finally, we see that the only dependence on € in (4.4.45) besides the classical dependence
on S, is through the prefactor proportional to e /2. As we will see, this prefactor reflects
the geometric fact that the gauge group does not act freely on the locus of non-flat Yang-
Mills solutions. To explain this fact, we note that for any Yang-Mills solution the section
f of ad(P) satisfies d4f = 0, so that f # 0 generates a U(1) subgroup of the gauge group
G(P) that fixes the corresponding point of A(P).

This geometric observation about higher critical points of Yang-Mills theory is actually a
general property of any higher critical points of the abstract symplectic model with quadratic
action S = %(u, w). Namely, the abstract Hamiltonian group H can never act freely at a
higher critical point of S.

By definition, such a higher critical point x¢ in the symplectic manifold X is described by
the conditions dS = (u,du) = 0 with p # 0 at xg. To show that H does not act freely at x,

we now exhibit a Hamiltonian vector field which vanishes at xg. We first recall the quantity
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V = Q7 ldu which we introduced in Section 4.1. Geometrically V', or V/* = (Q~1H™"9, i, in
components, is a linear map from the Lie algebra h of H to the space of Hamiltonian vector
fields on X. From (4.4.13) and (4.4.14), we see that V trivially satisfies (u, V) = p®V;* =0
at xg. But since u(zp) is non-zero, we can consider on X the Hamiltonian vector field
generated by p(zo) itself. This vector field is given by (u(xo),V) = pu(xo)* V", and by our

observations above it vanishes at xg.

The Hodge Decomposition at a Higher Yang-Mills Critical Point

In many respects, localization at an irreducible, flat Yang-Mills solution is precisely
opposite to localization at a maximally reducible, non-flat Yang-Mills solution. In both
cases, the local geometry in A(P) near these critical points can be described as the total
space N of an equivariant bundle with infinite-dimensional fiber F' over a finite-dimensional
moduli space My,

F— N2 M. (4.4.46)

However, in the case of a flat connection the interesting contributions to the integral over N
arise from the moduli space My itself, and the integral over the infinite-dimensional fiber
F = T*H contributes a trivial factor of 1. In contrast, for a maximally reducible Yang-Mills
solution, the integral over M is essentially trivial, and the interesting contributions arise
from the fiber F'. Therefore, the most important aspect of our discussion of non-abelian
localization at higher critical points in Yang-Mills theory is to identify the correct symplectic
model for F', analogous to the identification F' = T*H used previously.

At this point, we can immediately see that a local symplectic model for F' based on
T*H does not correctly describe the geometry near My if f # 0. First, as we have already
observed, the gauge group does not act freely at points on My, as we used in identifying
F with T*H when we considered the geometry near Mg. Second, if ¢ and ¢ are any two
sections of ad(P) representing tangent vectors to G(P), then the computation in (4.4.23)

shows that the symplectic form 2 at a point on M satisfies

Udas,dav) = = [ Tdaondat) = [ @) = [ Te(@ [Fav) . (@447)
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Here we just use the fact that d4 = F4 is nonzero, and we observe that the last expression
in (4.4.47) need not vanish for suitable ¢ and . Thus, the orbit of G(P) through any point
on My is no longer an isotropic submanifold of A(P), as would be required to model this
orbit on H embedded in the cotangent bundle T* H with its canonical symplectic structure.

Now, the fact that F' is not modelled on T*H at a higher critical point of Yang-Mills
theory must be reflected in a breakdown of the naive Hodge decomposition for the corre-

sponding covariant derivative d 4, so that
I'(Z, 0% ©ad(P)) # Hy @ Im(dy) & Im(dl,) . (4.4.48)

Thus, a natural strategy to determine the correct symplectic model for F' is just to consider
how the Hodge decomposition is modified when A is a non-flat solution of the Yang-Mills
equation.

In expanding around a flat connection, the tangent space to the moduli space My of
flat connections is given by H, C%A(E, ad(P)). For a non-flat Yang-Mills connection, d4 only
squares to zero when restricted to adg(P), the subspace of ad(P) that commutes with f.
However, any infinitesimal deformation of a Yang-Mills solution must preserve f up to a
gauge transformation, since the eigenvalues of f are quantized to take integral values. As
a result, tangent vectors to My arise from one-forms valued in the bundle ady(P). More
globally, these sections of Q% ® ady(P) represent deformations of the Yang-Mills solution by
flat connections valued in the subgroup of G that commutes with f. So the tangent space

to My is Hy = HcllA (3,ado(P)). By standard Hodge theory, this can also be defined as
H1 = HX(X,ado(P)). (4.4.49)

Similarly, the Lie algebra of the unbroken subgroup G, which leaves fixed the given Yang-
Mills connection, is

Ho = Hy, (3, ado(P)) = Hg(%,ado(P)). (4.4.50)

What we have said so far is a fairly direct generalization of the usual statements in the

flat case. However, if A is a non-flat Yang-Mills solution, then the usual Hodge theory needs
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to be modified from the flat case in two essential ways. First, once we get out of ady(P),
the image of d4 and the image of dL are no longer transverse. They have a nonzero,

finite-dimensional intersection that we will call &y:
Im(d,) NIm(d',) = &. (4.4.51)

Second, the image of d4 plus the image of di‘ plus the tangent space H; to the moduli
space no longer generates Tp = I'(X, Q% ® ad(P)). The quotient Tp/(Im(d,) & Im(dg))
is another finite-dimensional vector space £. The bundles & and & both have natural
complex structures. They will turn out to be

50 = H%(Euad-i-(P))v

(4.4.52)
&1 = Hi(Y,ady(P)) ® H5(,ad_(P)).

We will often regard these complex vector spaces as real vector spaces of twice the dimension.

Thus, the correct generalization of (4.4.48) is informally
I(2,04 ®ad(P)) = H1 @ Im(d,) @ Im(d) e & @ & . (4.4.53)

As indicated by our use of “©”, the expression in (4.4.53) is to be interpreted somewhat
in the sense of K-theory. Since Im(d4) and Im(dL) have a non-trivial intersection &, this
extra copy of & must be removed to get the right description of T'(X, QL ® ad(P)).

The definition of the Dolbeault cohomology groups in (4.4.52) requires a complex struc-
ture on Y. Abstractly, this complex structure is induced from the duality operator x on X.
Because x> = —1 when % acts on any one-form on ¥, we can define the bundles Q%! and
080 of complex one-forms of either type on ¥ by the respective +i and —i eigenspaces of
*. This decomposition by type determines the complex structure and hence the Dolbeault
0 operator appearing in (4.4.52).

However, for the following we find it useful to give an explicit formula for the operator

0, acting on the bundle ad¢(P), in terms of x and the covariant derivative d4. We define
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the operators ) acting on complex p-forms on ¥ taking values in adc(P) by

00 = da — ixd4,

W) = —idy + dax, (4.4.54)
2 =o.
Again because x> = —1 when acting on one-forms on 3, one can easily check the essential

requirement that ) 0 90 = 0. From the expression for 1) in (4.4.54), we also see that
O annihilates all one-forms in the +i eigenspace of *, which we have identified with the
space of one-forms of type (0,1).

The subbundle adg(P) has a de Rham cohomology (with respect to d4) that we have al-
ready encountered. The subbundles ad; (P) and ad_(P) do not have de Rham cohomology,

but they have Dolbeault cohomology groups
H(X,ad((P)), Hg(%,ad_(P)), Hz(X,ad(P)), HE(E,ad_(P)) (4.4.55)

that we should expect will enter somehow. Of these cohomology groups, Hg(E, ad_(P)) is
zero by the Kodaira vanishing theorem [79], which is the reason that & in (4.4.52) only
involves ady(P). (We also note parenthetically that H%(Z,ad.k (P)) is similarly zero for
critical points associated to line bundles of sufficiently high degree.) So we are left to show
that & corresponds to the finite-dimensional intersection of Im(d,) and Im(d;) and &
describes the tangent vectors to A(P) not contained in Im(d,) ® Im(dL) ® Hy.

We identify & as described in (4.4.51) immediately from our formula for 8 in (4.4.54).
It is convenient to write ad(P) = ado(P) @ ad (P), with ad; (P) (whose complexification is
ady (P)®ad_(P)) the orthocomplement of ady(P). By standard Hodge theory, if we restrict
to adg(P), Im(dy) ﬂIm(dL) = 0. So the nontrivial intersection of Im(d 4) and Im(d:fq) occurs
in ad) (P). Such an intersection arises if there is ¢ € T'(X,ad | (P)) and ¥ € Q?(%,ad (P))
such that d ¢ = dL\I'. If so, let v = V¥, whereupon, since dl, = —xd g% and *2 = —1,
we have dgp = —xdatp. So if o = ¢ + ih, we have 0 VD¢ = (dy — ixds)e = 0. Hence
@€ Hg(Z, ady (P)@®ad_(P)). But by Kodaira vanishing, ad_(P) does not contribute, and

RS H%(E, ady(P)). This argument can also be run backwards, to map H%(E, ady(P)) to
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&p. This explains the claim that & = Hg(Z, ady(P)).

Finally, we can identify £, the subspace of I'(3, ad | (P)) that is orthogonal to the image
of d4 and the image of d;. We begin with the tautological observation that the orthocom-
plement of the image of d 4 is precisely the kernel of dil, and similarly the orthocomplement
of the image of dL is precisely the the kernel of d,. Thus, &, the orthocomplement to
the image of d, and dL, consists of forms annihilated by both di‘ and d4. (We note that
although d% and d;Q are nonzero, they annihilate Q!(X,ad, (P)) for dimensional reasons,
so d4 and dL can have a kernel.) Given the formula W) = —id 4 + dax, it follows that o)
annihilates £&. Moreover, 5“1), the &' operator acting on one-forms, is 9 = di‘ — idil*,
and so annihilates £ . This reasoning can also be read backwards to show that a form
annihilated by 1) and its adjoint 9' (M is annihilated by da and d; and hence is contained
in £;. By Hodge theory, the joint kernel of d and d' is the same as the cohomology of 0.
So finally, & = H%(Z, ady(P) @ ad_(P)), as we have claimed.

A New Symplectic Model For Localization

The Hodge decomposition (4.4.53) implicitly describes the local symplectic model to
use at a higher Yang-Mills critical point. We now present this model and compute via
localization the canonical symplectic integral in this case.

Abstractly, our local model for F' now differs in two ways from the model based on the
cotangent bundle T*H. First, H no longer acts freely at the given critical point. We let
Hy C H denote the subgroup of H which fixes the critical point. Thus, the orbit of H
through the critical point can be identified with H/Hj. In the case of Yang-Mills theory,
the vector space Ho of harmonic sections of adg(P) is abstractly identified with the Lie
algebra by of Hy.

Second, because of the appearance of & and &; in the Hodge decomposition in (4.4.53),
the naive model based on the cotangent bundle of the orbit H/Hy must be modified in the
following way. If we simply wanted to discuss the cotangent bundle of the orbit H/Hj, then

we could again pass to a basis of right-invariant forms and use the invariant metric (-, -) on
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h to present T*(H/Hy) as a homogeneous bundle

T*(H/Ho) = H xp, (h© ho) - (4.4.56)

”

Here h © hp denotes the orthogonal complement to hp in h, and “Xpg,” indicates that we

identify points (g,~) in the product H x (h © o) under the following action of Hy,
he(g.7) = (hg,hvh™") . he€Ho. (4.4.57)

To incorporate the appearance of & and &; in (4.4.53), we now introduce abstractly a
subspace Fy of the Lie algebra § which has a trivial intersection with hy and is preserved
under the adjoint action of Hy, so that infinitesimally [ho, Ep] C Ep. This condition certainly
holds in Yang-Mills theory for the vector space &. Similarly, we introduce another vector
space F7 on which Hy acts in some representation. We assume that, like the subspace FEj,
the representation F7 admits a metric invariant under the action of Hy.

We now describe our model for F' as a homogeneous bundle over the orbit H/Hy which
generalizes (4.4.56). To describe this bundle, we need only specify the fiber of F over
the identity coset of H/Hj and the action of Hy on the fiber. Thus, as in the modified
Hodge decomposition (4.4.53), we subtract Ep from the cotangent fiber of H/Hj in (4.4.56),
meaning that we take the orthogonal complement to Fy in § & by, and we also add F; to
the cotangent fiber of H/Hy. So the resulting fiber of F' over the identity is given by
hShy S Ey® E1. By our assumptions on Ey and Fq, this vector space transforms as a
representation of Hy.

In summary, the local model for F' is given abstractly by the following homogeneous
bundle over H/Hy,

F =Hxy,(heh e Eyd E) . (4.4.58)

We now use 7 to denote an element of the orthogonal complement b to by @ Fy in b,
v e bt =heho Ey, (4.4.59)

and we use v to denote a vector in Ej. So in (4.4.58), we identify points (g,~,v) in the
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product H x (h* @ E;) under the following action of Hy,
h - (g’r}/vv) = (h’g y h’Yh_l ; h - ’U> s h c HO . (4460)

To specify completely our local model, we must also discuss the symplectic structure
and the Hamiltonian H-action on F. We will be somewhat brief, since we are just applying
standard techniques to construct symplectic bundles, as explained for instance in Ch. 35-41
of [102].

In order to construct a symplectic structure on F', we must make some additional as-
sumptions about the representations Ey and E; of Hy. We first introduce an element g of
ho. Abstractly, vo corresponds to the value of the moment map at the given critical point,
and in the Yang-Mills context g is identified with f.

As in Yang-Mills theory, we assume that the hermitian operator A,
A =iy, ], (4.4.61)

annihilates hg and acts on the vector spaces Fy and E; with strictly non-zero eigenvalues.
The first assumption implies that g is central in by and is invariant under the adjoint action
of Hy,

Hovo Hy' = 7. (4.4.62)

Because the action of g preserves the invariant metrics on Fy and Fp, the action of
7o is represented by a real, anti-symmetric matrix. By our second assumption above, this
matrix is non-degenerate. Consequently, the decomposition of Ejy, and similarly Ej, into
the positive and negative eigenspaces of A defines a complex structure which is invariant
under the action of Hy and for which the invariant metric (-, ) is hermitian.

Having introduced g, we now describe the symplectic structure on F. As in Section

4.2, we let 6 be the canonical right-invariant one-form on H taking values in b,
6 = dgg . (4.4.63)

We recall that in the case of the cotangent bundle T*H or T*(H/Hy), we can immediately

describe the sympletic structure with the manifestly closed and non-degenerate two-form
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Qo = d(1,9), (4.4.64)

which reduces on the orbit H/Hy, where v = 0, to the canonical form (d~,6).

Similarly, when we consider the homogeneous bundle F' in (4.4.58), Qo in (4.4.64) still
descends to a closed two-form on F. However, because v now takes values in h' as in
(4.4.59), the restriction of €y to the orbit H/Hj is degenerate on the subspace Ej of the
tangent space to the orbit. Thus, if we ignore the vector space F; for the moment, then
to construct a symplectic structure on the homogeneous bundle with fiber h* over H/Hy
we must supplement the canonical two-form €y with an additional two-form which is non-
degenerate on Ejy.

What other two-form should we consider? For motivation, while keeping £ = 0, let us
consider the opposite case from the cotangent bundle. As the cotangent bundle has Ey = 0,
the other extreme is for Ej to be all of h © b, so that h©hy© Ey = 0 and F = H/Hy. Since
we have postulated that g acts non-degenerately on Ey, while commuting with bg, it follows
in this case that by is precisely the subalgebra of h that commutes with 7. Therefore, H/H)
is precisely the orbit of 7g in the Lie algebra of H. Such an orbit is called a coadjoint orbit
(for compact Lie groups the difference between the adjoint representation and its dual is

not important here) and has a natural symplectic structure, namely

= d(y0,0) = 5 (0, [,0]) , (4.4.65)

N | =

where we observe that df = A0 = 1[6,6] in deducing the second equality of (4.4.65).
Because 7y is invariant under the adjoint action of Hy in (4.4.62), ; is also invariant under
the action of Hy in (4.4.60) and descends to a manifestly closed and nondegenerate two-
form on H/Hy. Indeed, coadjoint orbits are the basic examples of homogeneous symplectic
manifolds.

In fact, we have already seen the coadjoint form €2y arise in the context of Yang-Mills
theory. We recall from (4.4.47) that the restriction of the Yang-Mills symplectic form € on

the affine space A(P) to the orbit of G(P) through a non-flat Yang-Mills solution is given
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by
dad,dav) = [ Tr(6 [Fav]) . (4.4.66)

Upon identifying the abstract element vy with f, we see that ©; in (4.4.65) precisely rep-
resents (4.4.66).

The general case, still with £; = 0, is a mixture of the cotangent bundle and the
coadjoint orbit. We thus naturally add the two two-forms that arise in those two cases and
consider the sum

Qo+ = d(y+.,0), (4.4.67)

which restricts on the orbit H/Hj, where v = 0, to the simple expression
1
(2 + ) i, = (d7,0) + 3 (0,10, 0)) (4.4.68)

We see immediately from (4.4.68) that 2+ defines a symplectic form on a neighborhood
of H/Hy in the homogeneous bundle with fiber h*. For instance, since the expression in
(4.4.67) is manifestly invariant under the right action of H on H/Hj, we need only consider
(4.4.68) as restricted to the tangent space (hSho) @b+ of the bundle at the identity coset on
H/Hy. The top power of (4.4.68) on this tangent space is then manifestly non-zero, since
all tangent vectors in h are paired by €y and the remaining tangent vectors to the orbit
in Fy are paired by €.

Finally, we need to include E;. By assumption, F; has a metric and a complex structure
invariant under the action of Hy, so that F4 has an associated symplectic form Q) invariant
under Hy.

In order to pass from the symplectic form Q on E; to a closed two-form on F which
is non-degenerate on the F; fiber at the identity coset of H/Hy and compatible with the
bundle structure of F', we must further suppose that Hy acts on £ in a Hamiltonian fashion
with moment map . We can always choose i to vanish at the origin of Fy. We also observe
that since the action of Hy on F; is linear, of the form dv = 1 - v for v in Fj and % in o,

the moment map 1 depends quadratically on v and satisfies dp = 0 at the origin of Fj.
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With these observations in hand, we consider the two-form €9 defined below,
Qy = Q+d(ji,0). (4.4.69)

This two-form is manifestly closed, as Q is closed. It also is clearly invariant under the
action of Hy in (4.4.60).

Finally, to explain the appearance of the second term in (4.4.69), we note that the action
of hp on F' can be described as follows. For 1 € by, the corresponding vector field V() on

F acts by
6g =g, oy =W, dv=4-o (4.4.70)

In order that Qs descend under the quotient by Hy which defines the bundle, we require
that Q9 be invariant under Hy (as we have already seen) and that Q9 be annihilated by
contraction with V' (¢). By the defining moment map relation, the contraction of V' (¢) with
Q is Lv(w)ﬁ = d(ii,). As for the second term in (4.4.69), the one-form (i, ) is invariant
under the action of Hy and hence annihilated by the Lie derivative £y, = {d, ty(y)}. Thus
we see that vy () d(i, 0) = —d 1y (y) (i, 0) = —d(fi,¢), which cancels the contraction of ¢y/(y)
with €.

Because i = djp = 0 at the origin of Ej, the restriction of Qg to the orbit H/H in F' is
simply the symplectic form Q on Ej. Thus, the sum of Qg, 1, and Qs defines a symplectic

form Q on a neighborhood of the orbit H/Hy in F,
Q= Qo+ Q1 +Q,

) (4.4.71)

Having placed a symplectic structure on F', we are left to consider the action of H on
F. As in the model based on the cotangent bundle, we assume that H acts from the right

on the orbit H/Hp in F, so that
h'(g777v) - (gh_1777U)7 heH. (4472)
The corresponding element ¢ in b generates the vector field

0g = —g¢, oy =0, ov = 0. (4.4.73)
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Since the one-form 6 appearing in €2 is right-invariant, the symplectic form €2 is manifestly
invariant under H.
Finally, using (4.4.71) and (4.4.73), one can easily check that the action of H on F is

Hamiltonian with moment map p given by

(0) = (v+70,9097") + (fi, 9097") - (4.4.74)

In particular, we see that the value of u at the point corresponding to the identity coset on

the orbit H/H is just the dual of vy in h*, as we have claimed.

Computing the Symplectic Integral over F

For our applications to both Yang-Mills theory and Chern-Simons theory, we now com-
pute the canonical symplectic integral over F',

1 dé

Z(e) = Vol(il) /hxF {%] exp {Q —i{u, Py — %((b, ) +tDA|. (4.4.75)

In this expression, A is the canonical one-form defined as in (4.4.12) by A = J dS, where
S = %(u, w) and J is a compatible almost-complex structure, and ¢ is a non-zero parameter.

Before we delve into computations, let us make a few remarks about how this symplectic
integral over F' is to be interpreted. We start by considering the canonical symplectic
integral (4.4.8) of the same form as (4.4.75) but defined as an integral over a compact
symplectic manifold X instead of F'. Because X is compact, this integral is convergent for
arbitrary ¢, including ¢ = 0, and does not depend on either ¢ or .

By our general analysis of Section 4.1, in the limit ¢ — oo and for A of the canonical
form, the integral over X localizes on the critical set of S and reduces to a finite sum
of contributions from the components of this set. Although the global integral over X is
perfectly defined, independent of ¢ and A, the contributions from the critical locus of S are
only defined via localization, with ¢ # 0 and A of the canonical form. For instance, at a
higher critical point of S, for which we model the normal symplectic geometry on F', the
unstable modes of S make the integral over the non-compact fibers of F' ill-defined when
t = 0. Thus, the symplectic integral Z(e) over F' as in (4.4.75) represents a definition of the

local contribution from an unstable critical point of S in X.
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Although we use the canonical one-form A = J dS to define via localization the integral
over F in (4.4.75), we are free to compute Z(€) using any other invariant form X" which is
homotopic to A on F. In particular, though X is defined globally on X, A\’ need only be
defined locally on F.

The reason that we might want to compute Z(€) using some alternative form )\’ instead
of the canonical one-form A is just that generically the integral over F' defined by A is not
Gaussian even in the limit ¢ — oo and cannot be easily evaluated in closed form. See the
appendix of [18] for a simple example of this behavior. However, by making a convenient
choice for N, we can greatly simplify our computation and essentially reduce it to the
evaluation of Gaussian integrals.

So in order to compute Z(€) in (4.4.75), we first make a convenient choice for \'. Since
the motivation for our choice is fundamentally to simplify the evaluation of Z(e), we next
evaluate (4.4.75) using )\’ in place of A\. Finally, in Appendix A, we perform the analysis
required to show that Z(e) as defined using the canonical one-form A can be equivalently
evaluated using \.

To describe our choice for ', we introduce a projection Iy, onto hy and a projection Ilg,
onto Fjy in the Lie algebra h of H. We define these projections using the invariant metric
on b, so that they are invariant under the adjoint action of Hy on h. We then introduce the
quantities

Oy = oo (), (969" )pe = Mye(g¢9™ "),
Op, = My (0), (909 )me = Hry(997").

We now define \ as

(4.4.76)

N = (v,0) —i (GEO,gqﬁg_l) +i ((g(bg_l)ho . v,dv) —1 ((g(bg_l)ho v, 0, - v) . (4.4.77)

The first term in (4.4.77) has the same form as the canonical one-form which we used
for localization on T*H. However, we recall that now ~ takes values not in h but in
bt =S ho © Ey. As before, this first term has degree one under the grading on equivariant

cohomology. The other three terms are associated to the new vector spaces Fy and F; that
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appear at a higher critical point. Since ¢ carries charge +2 under the grading on equivariant
cohomology, these terms are all of degree three.

The most basic requirement that \' must satisfy is that it descends to an invariant form
on F under the quotient by Hy which defines the homogeneous bundle. So we first observe
that X is manifestly invariant under the action of Hy in (4.4.60). Furthermore, if V(¢))
denotes the vector field on the product H x (h @ E;) generated by 1 in hg as in (4.4.70),
then the first two terms in A are trivially annihilated upon contraction with V(1) since

both v and fg, take values in the orthocomplement to hg. Because of the identity

tyydv = -v = (Lv(w)9h0> ‘v, (4.4.78)

the last two terms in A" are also annihilated upon contraction with V(¢). So A" descends
to a well-defined form on F'.
Finally, to check that A’ is invariant under the action of H on F in (4.4.72), we simply

1 s invariant.

note that ¢ transforms under the adjoint action of H so that the quantity g¢g~
Since 6 is also invariant under the action of H, )\’ is manifestly invariant.

To motivate our definition (4.4.77), we now use X to compute the symplectic integral
over F'. We first compute D). As we saw when we considered localization on T H, the final
expression for D) will only involve ¢ in the invariant combination g¢g~!. Thus, even before
presenting our formula for D), we make the change of variables from ¢ to g¢g~"' in the

symplectic integral in order to simplify slightly our result. If we recall that D = d + ity (¢)

and we use the formula in (4.4.73) for V(¢), we find by a straightforward computation that

DX = (dv,0) — i (v,¢) — i (0my, [P0, 0B,)) — (Es PE,) +

+ i(¢bo'dvvdv) - (¢h0'va¢ho'v) + X.

(4.4.79)

Here X consists of extra terms in D) that will not actually contribute to the symplectic

integral in the limit t — co. Explicitly,

P (%;[97 9]> _ z@ o+, 0"] 7¢EO> — i (|0, 0m) . 0%) - Z<; [9E0,9E0]7¢L> N

. 1
— 1 (@bbo g [Q,G]bo -v) mod By, .
(4.4.80)



181

(Terms involving 6y, in DX, some of which are omitted here, actually cancel since DX is
a pullback from F'.) We use the fact that df = %[9, 0] to simplify somewhat the form of X,
and we use the natural notation - and ¢+ to denote the projections of 6 and ¢ onto hr.

In (4.4.79), the first two terms arise from the action of D on the first term in X', the
next two arise from the action of D on the second term in ), and the final two terms arise
from the action of D on the last two terms in \'. We remark that our choice of the i’s
that appear in the definition (4.4.77) of ' was made to ensure that the quadratic terms in
(4.4.79) involving ¢ g, and ¢y, - v are both negative-definite.

We now consider the canonical symplectic integral in (4.4.75) with A" in place of A and
in the limit ¢ — oco. This symplectic integral is an integral over the product h x F. We
can perform this integral over h x F in two steps. First, we hold the projection ¢y, of
the variable ¢ in hy C h fixed, and we perform the integral over the remaining variables in
F = (h ©ho) x F. This integral produces a measure on by, which we then use to perform
the remaining integral over hy. The utility of this way of performing the symplectic integral
is that, with our ansatz for ), we will see that the first integral over (h © o) x F' can be
performed directly as a Gaussian integral in the limit ¢ — oo and under the assumption
that ¢y, acts in a non-degenerate fashion on Ey and Ej.

To prove this fact, we first consider the symplectic integral over F = (h © ho) x F which

arises if X' is omitted from D). So we consider the integral

1
1éw) = o /;

;ﬂ exp [t (dy, 0) — it (7, @) — it (Bgy, [P6o Or)) — t (DB, PE,)] X

X exp [it (¢h0 ~dv, d’U) —t ((bho U, Gy v)] .
(4.4.81)

For fixed ¢y, acting non-degenerately on Ey and Ej, this integral (4.4.81) is a Gaussian
integral, which we now evaluate. In performing this integral, we recall that the vector
spaces Ey and E; carry a complex structure, invariant under the action of ¢y, for which
the metric (-,-) is hermitian.

Assuming Fj is suitably oriented, the Gaussian integral over v in Fp first produces a
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factor

det (gbbﬂ

-1
. 4.4.82
2w E1> ( 8 )

This expression does not depend on ¢, due to a cancellation between the factors of ¢ that
arise from the Gaussian integral over v and the factors of ¢ that appear in the measure on
FE.

The Gaussian integral over ¢, in (4.4.81) next produces a factor proportional to ¢t =9,
where dy = dim¢ Ey, which we will absorb momentarily into another determinantal factor
arising from FEj.

As in Section 4.2, the integral over 7 in h* then produces a delta function of t¢ that can
be used to perform the integral over the remaining values of ¢ in h+. This delta function
contributes a factor ¢~ dimv™"

We are left with an integral over the orbit H/Hj itself. The measure on H/Hy now
arises from the both the terms ¢ (dv, ) and t (0g,, [¢y,, 0E,]) that appear in the exponential
in (4.4.81). The term involving dry only receives contributions from directions tangent to b=
at the identity coset of H/Hy, and the factors of ¢ that arise from expanding the exponential
exp [t (dv, 8)] cancel the factor ¢~ %™b™ from the delta function.

Of course, the remaining term t (6g,, [¢n,,05,]) only receives contributions from direc-
tions on H/Hj tangent to Ey. Upon expanding the exponential exp [—it (0g,, [¢ny, 0E,])]
and absorbing the factor proportional to ¢t~% that arises from the corresponding integral

over ¢g,, we see that the integral over H/Hj produces an overall factor

Vol(H) Pro
Vol(Hy) (271'

Eo) . (4.4.83)

Again, the explicit factors of ¢ that arise from the measure on Ej cancel the factor t~% that
arises from the Gaussian integral over ¢g,. In writing the determinant of ¢y, in (4.4.83), we
regard ¢y, as a linear operator acting via the adjoint representation on the complex vector
space Ej.

So finally, simplifying the notation by setting 1 = ¢y,, the result arising from the
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Gaussian integration is

I(W) = — - det (QZ’

-1
VOI(HQ) 2 El) ’ Y € by (4484)

Eo) det (21/;

The result (4.4.84) for the integral (4.4.81) is independent of t. We now observe that the

terms in X which we omitted from D) when computing (4.4.84) are all of at least third
order in the integration variables on F = (h © o) x F (which do not include the constant
®n, ). Thus, upon rescaling all the integration variables by =% so that the quadratic terms
in (4.4.81) become independent of ¢, we see that any contributions from terms in X to the
symplectic integral fall off at least as fast as =3 for large t. Thus, our Gaussian evaluation
of the symplectic integral over F is exact as t — oo.

So we are left to consider the remaining integral over by, which is now given formally
by

710 sty ] o (3 w0

In obtaining this expression, we recall from (4.4.74) that the value of the moment map pu at

(¥, )| -
(4.4.85)

o) e[

_f
2

the identity coset on the orbit H/Hj is . Also, we denote this quantity as Z’(e), instead of
Z(€), to emphasize that we compute it with X" instead of the canonical form X\ that defines
the local contributions to Z(e).

Now, this formal integral over hg in (4.4.85) might or might not actually be defined. Due
to the exponential factor in the integrand of (4.4.85), the integral is certainly convergent
at large . However, on the locus in hy where the determinant of ¢ acting on F; vanishes
(for instance at the origin of hg), the measure I(¢)) in (4.4.84) might be singular if there
is no compensating zero from the determinant of ¢ acting on Ey. If (1)) is singular, then
the integral in (4.4.85) could fail to be convergent at the singularity. Since Z(e) as defined
using the canonical one-form \ is always finite, our computation using \' cannot generally
be valid.

On the other hand, because Ey and E; are both finite-dimensional vector spaces, with

dim(c EO = do, dimc E1 = d1 s (4.4.86)
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the determinants appearing in I(¢)) in (4.4.84) are just invariant polynomials, homogeneous
of degrees dy and dj, of ¥ in bhg. For our application to SU(2) Yang-Mills theory, for which
Hy = U(1), we need only consider the simplest case that hy = R is one-dimensional. In this

case, the invariant polynomials are just monomials

Y _ do Y _ dr
det (27r Eo) = o™, det (%‘E) = cp Y™, (4.4.87)
for some constants ¢y and c;.
Assuming (4.4.87), we see that (4.4.85) becomes
1 dy co _ . €
0 sy L8] () w0

Although this expression in (4.4.88) is ill-defined if d; > dy, we can still apply our previous
work to compute using \ a completely well-defined integral. Namely, instead of considering

the symplectic integral Z’(€), we introduce the differential operator @,
9\ 3(d1—do)
Q= (—2) , (4.4.89)

and we consider instead the quantity

1 do 1g._ . €
- Z'(€) = / ] (d1—do) [Q _ _° D /} )
Q (6) VO](H) {])(F 27_(_ (¢? ¢) 2 eXp ? </"L7 ¢> 2 (¢7 ¢) + t )\
(4.4.90)
Using the same definition for A" and proceeding exactly as before, we compute
1 dv Co . €
Q20 = g [ |5e] (2) exp|-i00) - 5 ).

Vol(H, 2 2

Ol(Ho) Joo L27] Rer (4.4.91)

~ vty (&) vame o [5"
VOl(HO) C1 2me P 2€ '

The fact that the differential operator @ in (4.4.89) can be used to cancel the determi-
nants of 1 in (4.4.87) that arise from localization is a special consequence of our assumption
that dimbhy = 1. For an arbitrary Lie algebra §y, we cannot generally express these deter-
minants as functions of only the quadratic invariant (,) that appears in the canonical
symplectic integral. As a result, in the general case we cannot cancel such determinants

simply by differentiating Z(e) with respect to the coupling e. Though we will not require
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the generalization for this chapter, we explain in Appendix B how to extend the discussion
above to the case of general .

We see from (4.4.91) that, although our computation using A" does not always give a
sensible answer for Z'(¢), it does give a sensible answer for the derivative Q-Z’(¢). Knowledge
of this derivative implicitly determines the contribution of a higher critical point to Z’(e),
as the only ambiguity in integrating (4.4.91) is a polynomial in € which cannot arise from
a higher critical point. Finally, as we show in Appendix A, the quantity @ - Z’(e) in
(4.4.91) defined using )\ agrees with the corresponding quantity @ - Z(e) defined using the
canonical one-form \. Hence, provided we take derivatives when necessary, we can use )\
for localization computations on F'.

Our computation also shows that it may be easier to consider the contributions of higher
critical points not to Z(e) but to the derivative @) - Z(e¢). We have already seen an example
of this phenomenon in our discussion of SU(2) Yang-Mills theory. In that case, we found
it more natural to compute the contributions of higher Yang-Mills critical points to the

derivative 0971 Z(e) /097! in (4.4.45) as opposed to Z(e) itself.

Application to Higher Critical Points of Yang-Mills Theory

To finish this section, we apply our abstract study of localization on F' to compute the
path integral contributions from maximally reducible Yang-Mills solutions. We focus on
the specific case of SU(2) Yang-Mills theory, for which we reproduce the explicit expression
in (4.4.45) for the contributions from the locus M,, of degree n critical points.

As we have discussed, if f = xF is the curvature of a maximally reducible Yang-Mills
solution for gauge group G of rank r, then f breaks the gauge group to a maximal torus
Gy =U(1)". In terms of our abstract model, we thus identify the stabilizer group Hy with
the subgroup U(1)" C G(P) of constant gauge transformations in this maximal torus. As we
have also discussed, this fact implies that the corresponding moduli space M of maximally
reducible Yang-Mills solutions is just a complex torus of dimension gr.

Now, our description of the local symplectic model F' for the normal geometry over a

higher Yang-Mills critical point is completely general, since in deriving the model for F
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we did not make any assumptions about the reducibility of the connection. However, if
we wish to use this local model to compute contributions from arbitrary higher Yang-Mills
critical points, we will generally find that both the integral over F' and the integral over the
associated moduli space My make nontrivial contributions to Z(e) which depend on e.

In contrast, if we restrict to the special case that M describes maximally reducible
Yang-Mills solutions, then only the integral over F' is nontrivial, and the integral over the
torus My contributes a multiplicative factor Vol(M) independent of €, where

Vol (M) = / exp (). (4.4.92)
My
From a physical perspective, the contribution from M to Z(e) does not involve the coupling
€ because abelian gauge theory is free. From a mathematical perspective, the Donaldson
theory of U(1) bundles is simple, as the corresponding universal bundle is a line bundle
having only a first Chern class, which is proportional to €.

In the case of SU(2) Yang-Mills theory, the stabilizer group Hy is just U(1), and bo has
dimension one. Thus, we can apply our computation of the integral over F' in (4.4.91) to
conclude that the local contribution from the moduli space M,, of higher critical points of
degree n is described by

8\ 2(d1—do) Vol(M,,) [« 1 (27n)?
(_286> 'Z(E)‘Mn:7Vol(Hg) (C?> Tz O [— X ] (4.4.93)

We immediately see that this expression has the same form as the expression that appeared

earlier in (4.4.45).
To make a precise comparison of our formula (4.4.93) to (4.4.45), we must compute the

various constants appearing in (4.4.93). To start, we introduce the normalized generator Ty

PORINE DU B (4.4.94)
0 \/éz \/5 0 —i 5 -

which satisfies Tr(T3) = —1. From (4.4.94), we immediately see that the volume of Hy in

of HQ,

our metric on bg is

Vol(Hy) = 27v/2. (4.4.95)
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In the case of SU(2) Yang-Mills theory, we have already identified in (4.4.39) the bundles
ads (P) with the line bundles £(4+2n) and £71(—2n). Thus, from (4.4.52), the complex
vector spaces & and &1, abstractly identified with Fy and E1, are now given by the following

Dolbeault cohomology groups,

Ey

HY(S, L(2n)),
(4.4.96)
By = H5(%,L(2n)) & H5(S, L~ (—2n)) .

The index theorem, in combinating with the vanishing of H%(E, L7Y(—2n)), implies that

X(£(2n)) = dime H(, £(2n)) — dime HE(S, £(2n)) = 2n+1—g,
(4.4.97)
X(£7H(=2n)) = dime H5(S, L7 (=2n)) = 2n—1+g¢.

Thus, from (4.4.97) we determine the exponent (di — dy) appearing in (4.4.93) to be

%(dl —do) = %[X (7 (=2m) = x (£(2n))] = g— 1. (4.4.98)

To fix the ratio ¢p/c; appearing in (4.4.93), which is determined by the determinant of
¥/2m acting on Ep and E; as in (4.4.87), we recall that £(2n) and £~!(—2n) arise from
the standard generators o+ of the complex Lie algebra of SU(2), as in (4.4.38). Since o in
(4.4.94) acts with eigenvalues £2i on o, we see that 1) = ¢ - Tj) acts on sections of £(2n)

and £71(—2n) with eigenvalues +iv/2¢. Thus, in this case,

¥ e\ (Ve (—ivag T
det (27r Eo) det <27T El) B < 2m ) 27 ’ (4.499)
- wz 1—g 4.
()
So
(?) = (2n?)7 1. (4.4.100)
1

Finally, we must compute the symplectic volume Vol(M,,). This is equivalent to the
moduli space of flat connections for the group U(1), and appears with the same symplectic
structure as if we were doing U(1) gauge theory. The symplectic form is hence equivalent

to Q =>"7 | dx; Ady;, where our normalization is such that each of dz; and dy; have period
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2m/2 on the appropriate one-cycle. (This is the same factor that appeared in (4.4.95).)
Thus,

Vol(M,) = (87%)" . (4.4.101)

So from (4.4.95), (4.4.98), (4.4.100), and (4.4.101), we evaluate (4.4.93) as

971 Z ) no-1 [Ar (2n)?
W‘Mn = (-8 N ek (4.4.102)

which agrees with (4.4.45).

4.5 Non-Abelian Localization For Chern-Simons Theory

We now discuss non-abelian localization for Chern-Simons theory on a Seifert manifold M.

As we recall from Section 3, the Chern-Simons path integral then takes the symplectic form

Z(e) = Voll( G (27;)%/2 /A exp [Q—;Z,E(u, M)}. (4.5.1)

Our general discussion in Section 4 implies that Z(e€) localizes on critical points of the action

S = %(,u,,u). Explicitly,

_ 2 _ 1 2
S — /MT&" (A/\dA + 3A/\A/\A) /M v (A Fa)?] (4.5.2)

Our first task is thus to classify the critical points of S. We claim that, up to the action
of the shift symmetry, the critical points of S correspond precisely to the flat connections
on M. To prove this statement, we simply observe that the critical points of S satisfy the

equation of motion

F F
Fy— (”A A) drk — kA4 (”A A) =0, (4.5.3)
K K K K

where the first term of (4.5.3) arises from the variation of the Chern-Simons functional and
the last two terms arise from the variation of the last term in (4.5.2). To classify solutions
of (4.5.3), we recall that S is invariant under the shift symmetry 0A = ok, where o is an
arbitrary function on M taking values in the Lie algebra g of the gauge group G. Under

the shift symmetry, the quantity kAF4 transforms as

KAF4 — KAFg + 0 kAdE . (4.5.4)
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Thus, since kAdk is everywhere non-zero on M, we can unambiguously fix a gauge for the
shift symmetry by the condition
kAF4 = 0. (4.5.5)

In this gauge, any solution of the equation of motion (4.5.3) is precisely a flat connection
on M. So, as we certainly expect, the Chern-Simons path integral localizes around points
of A which represent flat connections on M.

It is interesting to contrast this situation to the case of Yang-Mills theory on a Riemann
surface X. In that case, the path integral receives contributions from two qualitatively
different kinds of critical points, for which the moment map pu = F4 satisfies either yu =0
or u # 0, and the critical point is respectively stable or unstable. Since the critical points
of Chern-Simons theory are described by flat connections on M, one might naively suppose
that these critical points are analogous to the stable critical points of Yang-Mills theory,
which are also described by flat connections. However, let us recall our expression from

Section 3 for the Chern-Simons moment map,

<,u, (p, @, a)> = —;p/M RATr (£RANA) + /M KATr (pF4) — /M deNTr (A) + a. (4.5.6)

The last term of (4.5.6) is simply a constant piece of p dual to the generator a of the
central extension of the group Gy, and this generator acts trivially on A. As a result of
this term, the Chern-Simons moment map is everywhere non-zero, and the critical points
of Chern-Simons theory are actually of the same kind as the higher, unstable critical points
of Yang-Mills theory.

Our goal in the rest of the chapter is now to compute the local contributions to Z(e) from
two especially simple sorts of flat connections on M. First, we compute the contribution to
Z(€) from the trivial connection when M is a Seifert homology sphere. Second, we compute
the contribution to Z(e) from a smooth component in the moduli space of irreducible flat
connections when M is a principal U(1)-bundle over a Riemann surface. As we will see,
these local computations in Chern-Simons theory are direct generalizations of the local

computation at a higher critical point of two-dimensional Yang-Mills theory. The two cases
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we consider are the extreme cases in which the connection is either trivial or irreducible.

Other cases are intermediate between these.

The Normalization of Z(e)

Before we perform any detailed computations, we must make a few general remarks
about the normalization of Z(e). As we see from (4.5.1), we have normalized the Chern-

Simons path integral with the formal prefactor

1 1 \Ag/2 '

which is defined in terms of the group G of gauge transformations.

On the other hand, as we discussed in Section 3, the Hamiltonian group which we use
for localization in Chern-Simons theory is not G but rather the group H = U(1) x Go, where
Go is a central extension by U(1) of the identity component Gy of G. We also introduce the
group H' = U(1) x g~, which arises from the corresponding central extension G of the full
group G of all gauge transformations.

When we apply non-abelian localization to Chern-Simons theory, the path integral which
we compute most directly is not given by (4.5.1) but by the canonically normalized sym-
plectic integral

2006) = i [ [ o0 (2= 1 6) = S 000 (453

as we computed abstractly in Section 4. The appearance of the volume of the disconnected
group H' in (4.5.8), as opposed to the connected group H, accounts for the action of gauge
transformations in the disconnected components of G on critical points in A. Also, because
the Chern-Simons path integral is oscillatory, an imaginary coupling ¢ now appears in
(4.5.8).

If we perform the Gaussian integral over ¢ in (4.5.8), then Zy(e) becomes

Zo(e) = VOlE"H’) ( ! )AH/Q /Aexp {Q— i (,u,,u)} , Ay = dimH. (4.5.9)

2mie
In computing this integral over ¢, we must be careful to remember that the quadratic

form (-, -) on the Lie algebra h of H is the direct sum of a positive-definite form on the
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Lie algebra of the gauge group G and a hyperbolic form (with signature (4, —)) on the
two additional generators in H relative to G. Had the form on h been positive-definite,
the Gaussian integral over each generator in h would have contributed an identical factor
(27m'e)_% to the prefactor in front of (4.5.9). However, due to the hyperbolic summand in
(-, ), the phases that result from the Gaussian integral over the two generators in the
hyperbolic subspace of b actually cancel. To account for this cancellation, we include the
extra factor of ‘4" appearing in (4.5.9).

Although Zy(e) in (4.5.9) takes the same form as the physical Chern-Simons path integral
Z(€) in (4.5.1), evidently the prefactor (4.5.7) which fixes the normalization of Z(¢) differs

from the corresponding prefactor in Zy(e) by the ratio

= Vol(U(1)?) - 27e. (4.5.10)

2mie

Vol(H') ( 1 >§<AQ—AH>
i Vol(G)

The finite factors Vol(U(1)?) and 27e arise in the obvious way from the two extra generators

in H relative to G.

When we perform localization computations in Chern-Simons theory, we apply our ab-
stract localization computations in Section 4 to compute Zy(e). By our observation above,
for the purpose of computing the physical Chern-Simons path integral Z(e), we must mul-
tiply the results from our abstract local computations by the finite factor in (4.5.10). As we
will see, this expression turns out to cancel nicely against corresponding factors from the

local computation.

4.5.1 A Two-Dimensional Interpretation of Chern-Simons Theory on M

Our symplectic interpretation of Chern-Simons theory on M fundamentally relies on the
fact that the shift symmetry decouples one component of the gauge field A. As a result,
we can essentially perform Kaluza-Klein reduction over the S! fiber of M to the base ¥
to express Chern-Simons theory as a two-dimensional topological theory on ¥. From this
two-dimensional perspective, we can immediately apply our localization computations in

Section 4 to Chern-Simons theory.
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In fact, the two-dimensional topological theory on ¥ arising from Chern-Simons theory
on M is closely related to Yang-Mills theory on X, a point also recently emphasized in [78].
At the level of the classical moduli spaces, the relationship between Chern-Simons theory
on M and Yang-Mills theory on ¥ was noted long ago by Furuta and Steer in [94]. These
authors identify a correspondence between the moduli space of flat connections on M and
certain components of the moduli space of Yang-Mills solutions on 3. Since the relationship
between flat connections on M and Yang-Mills solutions on ¥ underlies our study of Chern-

Simons theory, we now explain the fundamental aspects of this correspondence.

Flat Connections on M From Yang-Mills Solutions on X

We start by considering the moduli space of flat connections on M. As before, we
suppose that the gauge group G is compact, connected, simply-connected, and simple.

A flat connection on M is determined by its holonomies, and the moduli space of flat
connections on M, up to gauge equivalence, can be concretely described as the space of
group homomorphisms from the fundamental group 71 (M) to G, up to conjugacy. Hence
the structure of the moduli space of flat connections on M is determined by 71 (M).

On the other hand, because M is a Seifert manifold, and hence generally a U(1) V-
bundle over an orbifold ¥, the structure of 71 (M) is closely tied to the structure of the
orbifold fundamental group m1(X). This topological fact underlies the close relationship
between flat connections on M and Yang-Mills solutions on X, and to explain it we now
present the group 1 (M).

As in Section 3, we describe M using the Seifert invariants

{gvn7 (ahﬁl)’ ceey (O‘NMBN)] 5 ng(amﬁ]) =1. (4511)

We recall that g is the genus of X, n is the degree of the U(1) V-bundle over X, and the
relatively prime integers (o, 3;) for j =1,..., N specify the local geometry of M near the

N orbifold points on X.
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To present 71 (M), we introduce elements

apvbpa p:]-a"'vgu
¢, j=1,...,N, (4.5.12)
h.

Then 71 (M) is generated by these elements in (4.5.12) subject to the following relations,

[ap, h] = [bp, h] = [¢j h] = 1,

c?j R =1

) (4.5.13)
g N

H lap, by] ch = h".

p=1 Jj=1

We will not give a formal proof of this presentation of 71 (M), which follows from the
standard surgery construction of M and which can be found in [93], but we will describe the
geometric interpretation of the generators in (4.5.12). The generator h, which is a central
element of 71 (M) by the first line of (4.5.13), arises from the generic S* fiber over . Since
> has genus g, the generators a, and b, for p =1,..., g arise from the 2g non-contractible
cycles on Y. Finally, the generators ¢, for p = 1,..., N arise from small one-cycles in X
about each of the orbifold points. We note that from the presentation of 71 (M) in (4.5.12)
and (4.5.13) one can immediately compute the corresponding homology group Hi(M,Z) as
the abelianization of m (M).

For example, with a view to our application below, let us determine the condition to have

Hy(M) = 0. This requires g = 0, else the homology of ¥ will appear in Hy(M). So 7 (M)

has generators ¢;, j = 1,..., N, and cg = h. There are N + 1 relations, namely c?j coi =
1,7=1...,N, and H;V:l ¢j-co " = 1. These relations can be written Hévzo CJKN =1in

terms of an N + 1 x N + 1 matrix K. A general element of H;(M) of the form Hévzo c;-)j is
trivial if and only if one can write v; = >_. Kjjw; for some integer-valued vector w; that
is, Hé-V:O c;fj is trivial if and only if the vector v; lies in the integral lattice generated by the

matrix K. Consequently Hy(M) is trivial if and only if det(K) = 1. With the actual
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form of K, one can work out this determinant and find that the condition is that
J
— =+ —. 4.5.14
O (1510

The left hand side is also equal to the orbifold first Chern class ¢1(£) of the line V-bundle
L discussed in Section 3.2.

With the presentation of w1 (M) in (4.5.12) and (4.5.13), we can immediately present
m1(2) as well. Thus, 71(3) is generated by the elements ay, b,, and ¢; in (4.5.12), omitting
the generator h which arises from the S! fiber, and the relations in 71 (¥) are given by the
relations in (4.5.13) upon setting h = 1. A very succinct description of this relation between

m1(M) and 71(X) is to recognize 71 (M) as a central extension of 71 (%),
1—7Z—mM) —m((X) —1, (4.5.15)

where h is the generator of Z above.
Given the close relationship between the groups 71 (M) and 71 (X) expressed in (4.5.15),
we can immediately deduce a relationship between flat connections on M and Yang-Mills

solutions on Y. To describe this relationship, we consider a homomorphism p,
p:m(M)— G, (4.5.16)

which describes the holonomies of a given flat connection on M.

Because h is central in 7 (M), the image of p must lie in the centralizer G ) of the
element p(h) in G. To simplify the following discussion, we suppose that p(h) actually lies
in the center I' of G, implying that G,y = G. This condition is necessary whenever the
connection described by p is irreducible, and it certainly holds also when the connection
is trivial, which are the two main cases we consider when we perform computations in
Chern-Simons theory. We refer to [94] for a discussion of the general case.

Clearly if p(h) = 1, so that the corresponding flat connection on M has trivial holonomy
around the S! fiber over ¥, then p factors through the extension (4.5.15) to induce a
homomorphism from 71 (X) to G. Hence p describes a flat connection on M that pulls back

from a flat Yang-Mills connection on .
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More generally, when p(h) is non-trivial in I', then the corresponding flat connection on
M has non-trivial holonomy around the S! fiber of M and is not the pull back of a flat
G-connection on ¥. However, if we pass from G to the quotient group G = G/T, so that
we consider the connection on M as a flat connection on the trivial G-bundle, then the
holonomy of this connection around the S! fiber of M becomes trivial.

As a result, the homomorphism p can be interpreted as describing a flat connection
on M which arises from the pull back of a flat Yang-Mills connection on a generally non-
trivial V-bundle over ¥ whose structure group is now G, as opposed to G. In general,
a flat connection on a non-trivial G-bundle over ¥ can be described as a flat connection
on the trivial G-bundle over ¥ such that the connection has non-trivial monodromies in
I' around the orbifold points as well as around one additional, arbitrarily chosen smooth
point of 3. These monodromies represent the obstruction to smoothly extending the given
flat connection to the trivial G-bundle over all of ¥, and hence they describe the non-trivial
G-structure on the bundle.

In the case at hand, we see from the relations (4.5.13) which describe m (M) as an
extension of 71 (X) that the relevant monodromies are determined by the holonomies of the
connection on M associated to the elements A% and h”, so that these holonomies determine
the topology of the corresponding G-bundle on X. For instance, if we consider the simplest
case that the gauge group G is SU(2) and M arises from a principal U(1)-bundle over a
smooth Riemann surface X such that the degree n is odd, then flat connections on M whose
holonomies satisfy p(h) = p(h)" = —1 correspond bijectively to flat SU(2) connections on
Y which have monodromy —1 around a specified puncture. Such flat SU(2) connections
can then be identified with flat connections on the topologically non-trivial principal SO(3)-
bundle over X.

On the other hand, if the degree n of the principal U(1)-bundle is even, then p(h)" =1
for both p(h) = =£1, so points in both of these components of the moduli space of flat

connections on M are identified with flat SU(2) connections on X.
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The Local Symplectic Geometry Near a Critical Point of Chern-Simons Theory

The discussion above shows that irreducible flat connections on M can be identified
with corresponding flat Yang-Mills connections on 3. We now extend this observation to
give a “two-dimensional” description of the local symplectic geometry in A around such a
critical point of Chern-Simons theory.

Because A is the quotient of the affine space A by the shift symmetry S, we are free
to work in any convenient gauge for S. For instance, in order to identify the critical points
of the new Chern-Simons action S in (4.5.2), we found it convenient to impose the gauge
condition (4.5.5).

However, in order to describe the local geometry in A in terms of geometric quantities

on Y, we make a new gauge choice for S, corresponding to the gauge condition
trA = 0. (4.5.17)

Because A transforms under the shift symmetry as 0 A = o x, the quantity (g A transforms
as tpA — tpA + o, and the gauge condition in (4.5.17) is unambiguous.

To describe a critical point of the action S in the gauge (4.5.17), we consider as above
a flat Yang-Mills connection By on a generally non-trivial V-bundle with structure group
G over X. Then, in the gauge (4.5.17), the full tangent space to the symplectic manifold A
at By is described by the space of sections £ of the bundle Q]lw ® g which satisfy the gauge
condition

LrE = 0. (4.5.18)

Because our symplectic description of Chern-Simons theory respects the geometric U (1)
action on M, we naturally consider the decomposition of the tangent space to A under the
action of this U(1). In terms of the section &, this statement simply means that we consider

the Fourier decomposition of £ into eigenmodes of the operator £. Thus we write

E= ) &, (4.5.19)

where, in addition to the gauge condition (4.5.18), each eigenmode &; satisfies

£R€t = —27Tit'€t. (4520)
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We can similarly perform this Fourier decomposition on the tangent space to the group

of gauge transformations G. Thus, if ¢ is a section of Q%, ® g, we write

+o0o
b= ¢, (4.5.21)
t=—o0
where
£R¢t = —2mit - ¢t . (4522)

To describe these eigenmodes & and ¢; geometrically on 3, we recall that £ denotes the
line V-bundle over ¥ associated to the Seifert manifold M. Since non-trivial representations
of the U(1) action on M are associated to non-zero powers of £ on X, we can describe the
modes & and ¢; geometrically on X as being respectively sections of the bundles Q% ®
ad(P) ® £t and Q% ® ad(P) ® L£!. Here we have also replaced the trivial bundle g on M by
the possibly nontrivial G-bundle ad(P) on .

So, at least formally, the tangent space to A at By decomposes into the following sum

of spaces of sections on X,

+oo
TA= @ T (2,0 2adP) o L), (4.5.23)

t=—00

and similarly for the Lie algebra of G,

“+00
T¢= @ (2,08 @ad(P)a L) . (4.5.24)

t=—o00

By assumption, the covariant derivative dp, commutes with the Lie derivative £g,
[dp,,£Rr] = 0, (4.5.25)

so these decompositions are compatible with the action of dp,.
As in Section 4.2, the local structure of the space of fields over which we integrate near

a given component M of the moduli space of critical points is a fibration
F— N2 M. (4.5.26)
As before, I is given by a symplectic bundle

F =Hxp, (hohc& &), (4.5.27)
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where the invariance group Hg and the exceptional bundles & and £ must be identified.
As we observed at the start of this section, because the Chern-Simons moment map is
non-vanishing, the local model is analogous to the geometry near a higher critical point of
Yang-Mills theory, with some & and &;.

In the model (4.5.27) for F, H = U(1) x Go is the Hamiltonian group which we use
for localization, and Hy is the subgroup of H which fixes By. In general, Hy is a finite-
dimensional group of the form

Hy = U(1)?> x Ky . (4.5.28)

One U(1) factor in Hy arises from the action of £z on A, which fixes By by assumption,
and the other U(1) factor arises from the central U(1) in Go. This U(1) acts trivially on
all of A. Finally, Ky denotes the group of gauge transformations acting on ad(P) which
fix Byg. These gauge transformations are generated by covariantly constant sections ¢ of
ad(P)® L°, so that ¢ is annihilated by £, and consequently Ko commutes with both U(1)
factors in Hy.

To identify & and &1, we must look at the images of dp, and of x2dp, mapping T'G
to TA. The bundle ad(P) ® £! has connection C' = By + tx (k is the constant curvature
connection on £ introduced in Section 3.2). For fixed ¢, the three-dimensional operators dp,
and *2dp, reduce to two-dimensional operators do and xdc. As By is flat, the connection
C has curvature equal to t times a positive two-form. So the analysis of the intersection
and unions of the images of do and *d¢o precisely follows Section 4.3, with the following
dictionary between quantities in the two-dimensional analysis of that section and quantities

in the present three-dimensional problem:

adg(P) «— ad(P)
ad,(P) «— @ ad(P) & L'
t>0

ad_(P) «— P ad(P) ® L".
t<0

(4.5.29)

In two dimensions, we decomposed ad(P) into ady(P), ad4(P), and ad_(P) according to
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the sign of the curvature. Here, curvature comes only from £. So finally, we get

& = P HYZ,ad(P)© L") = P H(S,ad(P) @ (L' & L),

170 =1 (4.5.30)
£ = %Hé(E,ad(P) ® L = @H%(E,ad(P) @ (LYo L7Y).
t 2

Unlike in the case of Yang-Mills theory, these exceptional bundles & and & now have
infinite dimension, since the cohomology groups in (4.5.30) are non-zero for infinitely many

t’s.

4.5.2 Localization at the Trivial Connection on a Seifert Homology Sphere

We are finally prepared to carry out a computation in Chern-Simons theory using non-
abelian localization. We consider localization at the trivial connection when M is a Seifert
manifold that also is a homology sphere, that is, it has H; = 0. We start by stating some

necessary facts about the topology of M in this case.

Seifert Homology Spheres and a Slight Generalization

We recall that we generally characterize M with the Seifert invariants

{g; n; (a1, B1), - - -, (OéNaBN)} , ged(ag, ;) = 1. (4.5.31)

As we have explained above, M is a homology sphere, with Hy(M,Z) = 0, if and only if

the invariants in (4.5.31) satisfy
Bj LA
g=20, cl(ﬁo):n—i—g —:j:”—. (4.5.32)

Here L denotes the line V-bundle over the orbifold 3 which describes M.
To interpret geometrically the condition on Ly in (4.5.32), we note that this condition

implies the arithmetic condition that the numbers «; be pairwise relatively prime, so that
ged(aj, a0) =1, j#g. (4.5.33)

In turn, as explained in Section 1 of [94], this arithmetic condition on the orders of the

orbifold points of ¥ implies that the Picard group of line V-bundles on ¥ is isomorphic to
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Z, just as for CP!. In analogy to the case of S3, which arises from a generator of the Picard
group of CP!, the condition on c1(Lp) in (4.5.32) is then precisely the condition that Lo
generate the Picard group of 3.

As previously, we orient M so that c;(Ly) is positive, and we introduce the notation ﬁ?

to distinguish the orbifold invariants of this fundamental line V-bundle Ly on ¥,
gy N
ca(lo) =n+> L =]]—. (4.5.34)
— a;
j=1 7 j=1"

The reason that we distinguish the invariants ﬁjo of Ly is that, more generally, we will
also consider the case that M arises not from the fundamental line V-bundle £y on ¥ but
from some multiple Eg for d > 1. In this case, we simply require that g = 0 in (4.5.32) and
that the invariants o; be relatively prime to each (3; and also pairwise relatively prime, as
in (4.5.33). The Seifert manifold arising from Lg is a quotient by the cyclic group Zg of the
Seifert manifold associated to Lo, and in this case Hi(M,Z) = Zq4. So the integer d can be

characterized topologically as the order of H;(M,Z),
d = |H{(M,Z)|. (4.5.35)

These Seifert manifolds are still rational homology spheres, with H;(M,R) = 0, and the
trivial connection on M is an isolated flat connection.

We note that when the Seifert manifold M is described by a smooth, degree n line-
bundle over CP', then M is a lens space, and the Seifert invariant n coincides with d in

(4.5.35).

The Result of Lawrence and Rozansky

Our basic results on localization for Chern-Simons theory imply that the Chern-Simons
partition function Z can be expressed as a sum of local contributions from the flat connec-
tions on M. In the case G = SU(2) and with M as above, Lawrence and Rozansky [17] have
already made this simple structure of Z explicit by working backwards from the previously
known formula for Z. Our goal here is to compute directly one term in their formula, the
local contribution from the trivial connection. However, because the general result in [17]

is both very elegant and very suggestive, we now pause to present it.
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To express Z as in [17], we find it useful to introduce the numerical quantities

27
T kr2
N
P:Haj ifN>1, P =1 otherwise, (4.5.36)
e 5.
d N
90:3—F+1223(5j,aj).

j=1
Here €, is the renormalized coupling incorporating the famous shift k¥ — k + 2 in the level

in the case G = SU(2), and s(8, ) is the Dedekind sum,

s(B,a) = i C;z; cot (Zf) cot <7T(lf> . (4.5.37)

For brevity, we also introduce the analytic functions

P = (2 (2)) 1T (h ()) |

=1

Wy = b (dY,2_ 27l
GY(2) I, <P>Z o z.

(4.5.38)

Then, from the results of [17], the partition function Z(e) of Chern-Simons theory on

M can be written as

exp (32 — Ly, d—1
Z(e) = (-1) b Zﬂ; o) {ZZ % /C(l)dz F(2) exp [GD(2)] -

(o)
m=1

1 —exp (—z—f z)

d—1 27"
— Z Z Res (F(z) exp [G(l)(z)D
=1 m=1

z=—2mim }

(4.5.39)

z=2mim

Our notation differs somewhat from [17], and we have normalized Z(e) so that the partition
function on S? x S! is 1, whereas the authors of [17] normalize the partition function on S3
to be 1.

Here C) for I = 0,...,d — 1 denote a set of contours in the complex plane over which
we evalute the integrals in the first line of (4.5.39). In particular, C () is the diagonal line
contour through the origin,

O = oF xR, (4.5.40)
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and the other contours C¥ for | > 0 are diagonal line contours parallel to C(9 running
through the stationary phase point of the integrand, given by z = —4mil(P/d). Also,
“Res” denotes the residue of the given analytic function evaluated at the given point.

We now wish to point out a few general features of this result (4.5.39) from the perspec-
tive of non-abelian localization.

First, the d contour integrals in the first term of (4.5.39) are identified in [17] with the
local contributions from the d reducible flat connections on M. In particular, the integral
arising from [ = 0 above is the local contribution from the trivial connection, which takes

the form

1) exp (% — ﬁ@oer) y

oy 4/P

1 7 d\ o . 2\\ 2N N . z
X % C(Q)dZ exp |:4€r (P) z :| (2 sinh (2)> . H 2 sinh @ .

j=1
(4.5.41)

Z(e)|

For instance, one can directly check that, in the case M = S3, the integral in (4.5.41)
reduces to our much simpler expression for Z(e) in (4.1.5).

Similarly, the integrals for [ > 0 arise from reducible flat connections whose holonomies
lie in a maximal torus of SU(2), and hence these connections are fixed by a U(1) subgroup
of the gauge group. As we generally saw in Section 4 when we considered higher critical
points of Yang-Mills theory, non-abelian localization at a reducible connection leads to an
integral over the Lie algebra hg of the stablizer group Hy. This integral over by is represented
by the contour integrals above.

In contrast, the residues in the remaining terms of (4.5.39) are identified in [17] with
the local contributions from the irreducible flat connections on M. As we show later, at
least in the non-orbifold case N = 0 and g > 0, the local path integral contribution from a
smooth component M in the moduli space of irreducible flat connections on M is given by
a computation in the cohomology ring of M. In the context of two-dimensional Yang-Mills
theory, cohomology computations on M are often expressed in the form of residues, and we

expect the residues in (4.5.39) to arise in this fashion.
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Finally, the phase of Z(¢) in (4.5.39) is quite subtle. As explained in [103], this phase can
be defined given the choice of a 2-framing on M, meaning a trivialization of TM T M, and
for each three-manifold M a canonical choice of 2-framing exists. The partition function
can thus be presented with a canonical phase, as originally computed in [104,105] and as
given in (4.5.39). The phase of Z(e) which arises naturally when we define Chern-Simons
theory via localization differs from this canonical phase, and we discuss this fact at the end

of the section.

Localization at the Trivial Connection

We now compute using localization the contribution from the trivial connection to Z(€)
when M is a Seifert homology sphere. Although the results of Lawrence and Rozansky in
(4.5.39) hold for gauge group G = SU(2), Marino has presented in [81] an expression for the
contribution from the trivial connection for an arbitrary simply-laced gauge group G. With
our methods, the generalization from G = SU(2) to arbitrary simply-laced G is immediate,
so we also consider the general case.

At the trivial connection, the moduli space M is trivial, so the local geometry in A is
entirely described by the normal symplectic fiber F in (4.5.27), with the appropriate o, Ep,
and F;. So we need only evaluate the canonical symplectic integral over F' for this case.

We first observe that the stabilizer subgroup Hy C H for the trivial connnection is given
as in (4.5.28) by

Hy = U(1)*x G, (4.5.42)

where the factor G arises from the constant gauge transformations on M. Since Hy decom-
poses as a product, we decompose an arbitrary element v of its Lie algebra h = RS gd R
as

Y=p+to+ta, (4.5.43)

where p and a generate the U(1) factors of Hy and ¢ is an element of g, according to the
notation of Section 3.

As in (4.5.30), the exceptional bundles & and &; at the trivial connection are now given
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by
& = PHIS, s (L'a L),
=t (4.5.44)
&= PHAE 50 (L' L),
t>1

Here £ = L is the line V-bundle on ¥ which describes M.
From our localization formula (4.4.85) in Section 4, the contribution of the trivial con-

nection to Z(e) is now given formally by the following integral over by,

_ (2me) dy i G
20, = v . |5 @) e =i 0.0) - 5 @), (15.45)
where e(v)) is an infinite-dimensional determinant,
-1
e(y) = det (;fr 50) det (;’i 51) . (4.5.46)

In normalizing (4.5.45), we have cancelled the factor Vol(U(1)?) that appears in the relative
normalization (4.5.10) against a corresponding factor in 1/ Vol(Hp) from the localization
formula (4.4.85), leaving the factor 1/ Vol(G). We have also included the factor (27e) from
(4.5.10).

Evaluating e()

We first evaluate e(1)), which turns out to be the only non-trivial piece of our compu-
tation. From (4.5.46), we see that e(¢) is described formally by the determinant of the
operator 1 acting on the infinite-dimensional vector spaces & and £;. So to evaluate e(v)),
we will have to decide how to define such a determinant.

Here we employ the standard analytic technique of zeta/eta-function regularization to
define the various infinite products that represent the determinant e(¢)). This choice is
somewhat ad hoc, and our best justification for it is the fact that it eventually leads to
agreement with the results of Lawrence and Rozansky. However, this method of regular-
ization does feature in the usual perturbative approach to Chern-Simons gauge theory, for
instance in the one-loop computation in [15]. So, optimistically, one might be able to better

justify the use of zeta/eta-function regularization here by comparing the localization com-
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putation with conventional perturbation theory. We make a few further remarks in Section
5.3.

Since the general element of H acts on A as
0A=dap+pLRrA, (4.5.47)

we see that the determinants in e(y)) can be written concretely in terms of p and ¢ in

(4.5.43) as

-1
e(y) = e(p,¢) = det %(;IMQR— [, -]) SJ . (4.5.48)

] det |5 wEr=16.)

In particular, e(p, ¢) does not depend on a in g, since this generator acts trivially. This
fact is important later.
As £ acts on sections of L' with eigenvalue —2mit, we rewrite e(p, ¢) as a product over

the non-zero eigenvalues of £ as
x(£Y)

e(p,¢) = det | | —itp — . 4.5.49
) =11 [( -5 ] (45.49)

Here x(L£!) is the Euler character of £!, so that we incorporate the cancellation between
the action of ¢ on elements of & and &;, and the determinant in (4.5.49) indicates the
determinant with respect to the action on g.

We now evaluate this finite-dimensional determinant on g. This determinant is invariant
under the adjoint action on g, and without loss we assume that ¢ lies in the Lie algebra t
of a maximal torus T of G. In this case, if 3 denotes a root of g and gg the corresponding
generator of g, then the adjoint action of ¢ on gg is given by [¢, gg] = i (B3, $) gg. Thus

diagonalizing the adjoint action of ¢, we see that

det (—itp— 9. ])‘ = (—itp)™¢ H (1 + 8. ¢>) 7

27 2mtp
7 5o (4.5.50)
= (—itp)™© — (= :
= (—itp) 512[0<1 (%tp> )

Here A¢ denotes the dimension of G. In the first line of (4.5.50), the product runs over all
the roots [ of g, whereas in the second line of (4.5.50), we have grouped together the two

terms arising from the roots +3 and rewritten the product over a set of positive roots.
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Now from (4.5.49) and (4.5.50), we rewrite e(p, ¢) as

i 1] <1_ ((ﬁ,¢>>2>

350 2mtp

X(LE)+x(L7)

(4.5.51)

e(p, ) = exp (—Zrn) 11

t>1

Here exp (—%Tn) represents the phase of e(p, ¢), which involves an infinite product of factors
+i, and the product written explicity in (4.5.51) represents the norm. We first evaluate this
norm, as the quantity n is much more delicate to determine.

To start, we evaluate the exponent that appears in (4.5.51). By the Riemann-Roch
theorem in (4.3.23),

(LY +x(L7Y = deg(Lh) 4 deg(L7") + 2. (4.5.52)

In general, the degree of a line V-bundle is not multiplicative, so that deg(L') # t deg(L),
and the first two terms on the right of (4.5.52) do not necessarily cancel as they do for
ordinary line bundles.

So we must work a little bit to simplify (4.5.52). As we now show, this exponent can be
simplified as

N

XL+ X(LT) =2=N+> ¢a,(t), (4.5.53)
j=1

where ¢, (t) is an arithmetic function which takes the value 1 if a; divides ¢ and is 0

otherwise,

0o, (t) =1 if  «j|t,
~ ’ (4.5.54)
= 0 otherwise.
To deduce (4.5.53), we suppose that the line V-bundle L! is characterized on ¥ by

isotropy invariants 7;, where
vi =tpf; mod o, 0<7; <ay, (4.5.55)

and, as before, the isotropy invariants §; characterize the line V-bundle £ itself. From
(4.5.14), the degree of L! is given in terms of the first Chern class, which is multiplicative,
and v; as

deg(L') = tei(L) — ivj ﬁ (4.5.56)
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On the other hand, the isotropy invariants 7; for the inverse line V-bundle L7t are given
by

so that in terms of v;,
Y == iy #0,
’ (4.5.58)
= v; = 0 otherwise.
We note from (4.5.55) that ; vanishes whenever ¢3; =0 mod «;. Because j3; is rela-
tively prime to «; by assumption, the vanishing of «; is then equivalent to the condition

that «; divide ¢, so that

Vi = 0 <= Q; |t . (4.5.59)

Thus, using the arithemetic function ¢q,(t) defined in (4.5.54) in conjunction with

4.5.58) and (4.5.59), we see that the degree of £L=! can be written as
( ) g

N
deg(L™") = —ter(L) =),
. ’ (4.5.60)
= —ta(0) -y (1—3—%@))
j=1 J
From (4.5.52), (4.5.56), and (4.5.60), we immediately deduce (4.5.53).
Consequently, e(p, ¢) now becomes
. oy [2NHE L P (O
) = LN T 12 (1_ <ﬁ,¢>> |
e(p, ¢) eXp< 277> t>Hl (tp) 61;[0 (27Ttp) o
. N
= ex _Zj i 2 X faj(p7 ¢)
e p( 277) folp, ¢) J];[l .8 |

where

ol 9) = 1 [(w)AG I (1— (£2) )] , (15.62)

t>1 B>0

and fq; is related to fo by
fa;(p, ) = folay - p, o). (4.5.63)
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In deducing (4.5.61) from (4.5.62) and (4.5.63), we apply the following arithmetic identity,
which holds for an arbitrary function f(¢),
IT r&)%® =TT Flej-t). (4.5.64)
t>1 t>1
We finally evaluate the infinite product which defines fo(p, ¢). We use the well known

identity below,
2

Sinf) - 11 (1— 7§t2> : (4.5.65)

t>1

and we use the Riemann zeta-function ¢ to define trivial, but infinite, products

[I p%¢ = exp(Aglnp-¢(0) = p~26/?,

=t (4.5.66)
[T 29 = exp (-Ag - ¢'(0)) = (2m)2c/2.
t>1
So from (4.5.65) and (4.5.66), we evaluate fo(p, ®) to be
B ﬂ —Ag/2 2
i) = (57) 1 (5]
(4.5.67)

— (2m)Be/2 pAT/2 11 [(ﬁ2¢> g (<5 ¢>>} '

B8>0

Here Ar denotes the dimension of the maximal torus 7" of G (hence the rank of G), and in
passing to the second line of (4.5.67) we just pull the factors of p outside the product over
the positive roots of G.

From (4.5.61), (4.5.63), and (4.5.67), we finally evaluate e(p, ¢) to be

e(p,¢) = exp <—m77) - @(Z\Wﬁ)j); X

2
—2 . (/87 ¢> . <ﬁa ¢>
X H (B,¢)"* |2sin ( o > 2sin < 20, )

B8>0
where P is defined in (4.5.36) as the product of all the «;.

bN N (4.5.68)

[1

J=1

)

FEvaluating n and the Quantum Shift in the Chern-Simons Level
We now evaluate the phase factor exp (—%rn), from which we will find the famous
quantum shift in the Chern-Simons level £ — k 4 ¢;, where ¢, is the dual Coxeter number

of g. For instance, we recall that in the case G = SU(r + 1), ¢, =r + 1.
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To start, we consider the operator

1

5 (PLr =19 ]) (4.5.69)

acting on the vector spaces & and & in (4.5.44). The spectrum of this operator is real, so
at least formally, we see from the definition of e(p, ¢) in (4.5.48) that the phase 7 is given
by

n = Z sign()\(o))— Z Sign()\(l)), (4.5.70)
A(0)#0 A1)#0

where Ay and Ay range, respectively, over the eigenvalues of the operator in (4.5.69)
acting on &y and &;.

We have not written (4.5.70) with an equality because the sums on the right of (4.5.70)
are ill-defined without a regulator. To regulate these sums, we follow the philosophy of [106]
and introduce the eta-function

M) (s) = Y sign(Ao) Mol ™= D sign(A\q) Al ™. (4.5.71)

A0)#0 A1)#0
Here s is a complex variable. When the real part of s is sufficiently large, the sums in (4.5.71)
are absolutely convergent so that 7, 4)(s) is defined in this case. Otherwise, 7, ) (s) is
defined by analytic continuation in the s-plane. Assuming that the limit s — 0 exists, we

then set
1n = Np.)(0)- (4.5.72)

Thus, 7 is basically the classic eta-invariant of [106] which is here associated to the operator
in (4.5.69) acting on the virtual vector space & © &1, where the “©” simply indicates the
relative sign in (4.5.71).

In our problem, because we explicitly know the spectrum of the operator in (4.5.69), we
can directly evaluate 7, 4) (0) without too much work. One advantage of this direct approach
is that it very concretely displays the origin of the finite shift in the Chern-Simons level k,
a very subtle quantum effect to understand otherwise.

Ultimately this shift in & arises because, despite what might be one’s naive expectation

from (4.5.70), n depends nontrivially on p and ¢. To isolate this interesting functional
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dependence of 7, 4)(0) on p and ¢, we observe that, for s = 0, the sum in (4.5.71) is invariant
under an overall scaling of the eigenvalues ) and A1), so that 7, 4)(0) is invariant under
an overall scaling of the operator itself in (4.5.69). In particular, so long as p > 0 (as holds
when we later set p = 1/¢€), we are free to rescale the operator in (4.5.69) by 1/p without
changing 7.

As a technical convenience, we thus introduce another eta-function nEp’ ¢>)(5) which is

defined as in (4.5.71) but is associated to the rescaled operator

e 2]). s

Because 7 = 1,4)(0) = nEp 4) (0), we see from (4.5.73) that n can only depend on p and ¢
in the combination ¢/p.
We also introduce the eta-function 7y(s) which is associated to the constant operator

i£Rr/2m, and to isolate the functional dependence of 7 on p and ¢ we define

an(p, @) = N(p,4)(0) — 10(0). (4.5.74)
As we now compute directly,
Cq d 2
mn(p, o) = 2 \ P Tr(¢°) mod 2. (4.5.75)

The role of the mod 2 terms is to remove the absolute value bars | -| that appear in (4.5.68),
so that e(p, ¢) depends analytically on p and ¢ as its definition suggests.
Of course, 7 itself is given by n = dn(p, ¢) + n0(0). We also discuss 70(0), though this

constant is much less interesting than dn(p, ¢).

A Warmup Computation on S*

Before we directly evaluate dn, 19(0), and n for the case at hand, we find it useful to
warm up with a simpler example, originally presented in [106,II]. Thus, we consider the

eta-function 7, (s) which is associated to the operator D, acting on functions on S L

i d
Dy = -+ v. (4.5.76)
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Here v is a real parameter in the interval 0 < v < 1, and z is a coordinate on S with
period 27. If we wish, we can equivalently consider D, as the covariant derivative acting
on sections of a flat U(1) bundle over S! whose connection has holonomy parametrized by
v.

Clearly the eigenvalues A of D, are given by A = ¢ + v as ¢ runs over all integers. So we

compute

m(s) = Y sign(A) A7,
A

1 1
= Y o Ns 4.5.
tzzo (t +v)° ; (t—v)s (4.5.77)
1 2us 1
Sy miyio( L),
1 2
s = s+ et ts+

In passing from the second to the third lines of (4.5.77), we apply the binomial expansion,
and we collect into O(1/t5%2) the terms in this expansion for which the sum over t is
absolutely convergent near s = 0. Thus, when we evaluate 7,(s) at s = 0, the last term of
(4.5.77) vanishes.

On the other hand, for the term involving the sum over 1/t*T!, we have

3 f’ﬁ = 2wsC(1+s). (4.5.78)

t>1
Because ((1 + s) has a simple pole with residue 1 at s = 0, we see that (4.5.78) makes a

non-zero contribution to 7,(0), and
m(0) = 1—2v. (4.5.79)

Physically the term involving v arises as a finite renormalization effect, due to the divergence

in the sum over eigenvalues in (4.5.78).

The Computation of n on M

Given the formal similarity of the operators in (4.5.73) and (4.5.76), we now evaluate
N(p,¢)(0) just as in our warmup computation on S 1. In the case at hand, we must consider the
eigenvalue multiplicities which are associated to the dimensions of the Dolbeault cohomology

groups H%(E, L") and H%(Z, L"), and as in our earlier computation we must also consider
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the eigenvalues of the adjoint action of ¢ on g. Taking these considerations into account,

we find the following compact expression for nEp ¢)(s),

ZZ (L") sign (A (t, 8)) [A(5 8)|

t=—cc (4.5.80)
AL B) = t+ <§£>

Here the sum over (3 is again a sum over the roots of g, including the roots § = 0 from the
Cartan subalgebra. We note that the appearance of the Euler character x(£!) in (4.5.80)
accounts both for the multiplicities and the relative signs of the eigenvalue contributions
from & and &; in (4.5.71).

We can give a similar, simpler expression for 7y(s),

ZZ ) sign(¢) [t]7*,

t£0 B

—ZZX

t>1

(L y (4.5.81)

In the general orbifold case, the index difference x(L£!) — x(£7%) that arises in (4.5.81)
appears to be a somewhat complicated arithmetic function of ¢, in contrast to our simple
expression for the index sum in (4.5.53), and we will not evaluate 70(0) in complete generality
here.

However, if we consider the special case of a degree d line-bundle £ over a smooth

Riemann surface ¥, then the Riemann-Roch theorem immediately implies that
(LY — x(£7Y = 2dt, (4.5.82)

independent of the genus of . So in this special case, we have from (4.5.81) that

d
m(s) = A Y o
t21 (4.5.83)
= 2dAg((s—1)
Thus,
m0(0) = 2dAg((—1) = _48¢ (4.5.84)
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Having discussed 79(0), we now compute the more interesting quantity dn(p,¢) in

(4.5.74). Upon expressing (4.5.80) as in (4.5.81) and collecting terms, we find that

o =) = 25 (W29 ~X(€) - | e~ 4| +
(r.0) t>0ﬂ>0( ) (t+55) ! (4.5.85)
ty _ -ty . ;—l
+t§ﬁz>:0 (X(E) xX(£ )) [<t_</237,$>)3 tS]'

In writing this expression, we assume without loss that the condition below holds for each

positive root f3,

(8, 9)
2mp

0< <1. (4.5.86)

Otherwise, when the quantity in (4.5.86) undergoes an integral shift, then the overall phase
exp (—imn/2) of e(p, ¢) simply picks up a sign so as to effectively remove the absolute value
bars | - | appearing in (4.5.68). Hence e(p, ¢) depends analytically on p and ¢.

We now observe from our general expressions (4.5.56) and (4.5.60) for deg(L!) and

deg(L£7") that the index difference in (4.5.85) depends generally on t as
d
X(L) = x(£7") = 2t <P> +0(t9). (4.5.87)

We have used the fact that ¢i(£) = d/P, since £ = L, and ¢1(Ly) = [[;1/aj =1/P.

If we now consider the binomial expansion of the denominators in (4.5.85), we see
immediately that no contribution at s = 0 can arise from the terms of order t° in (4.5.87).
The leading terms in the expansion which arise from these O(t°) terms are proportional to
+(8,¢)/(27p) -t~ 1 and such terms linear in ¢ cancel between the two sums in (4.5.85).
The same cancellation occurs between the leading expansion terms which arise from the
term linear in ¢ in (4.5.87), and fundamentally these cancellations reflect the fact that no
invariant linear function of ¢ exists.

Thus, expanding the denominators in (4.5.85) to second order, we find

nszﬁ)( s) = mo(s) = 2( > ZZ ( 27p >2' ts+1 ZZ s O( s+2> - (4.5.88)

t>1 >0 t>1 >0

We evaluate (4.5.88) at s = 0 to determine 67(p, ¢), which is thus given by

on(p,¢) = 2 (;i) 3 <<5’¢>)2 : (4.5.89)

550 27p
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To simplify the sum over roots on the right side of (4.5.89), we note that this sum defines
an invariant quadratic polynomial of ¢ and hence must be proportional to Tr(¢?). When g
is simply-laced, we have the following identity, as shown for instance in [107,VI],
D (8,8)° = —& Te(4”). (4.5.90)
B>0
Together, (4.5.89) and (4.5.90) imply the main result in (4.5.75).

Thus the full determinant e(p, ¢) is now given by

e(p,#) = exp (—i;no(o)) -(152\2:; X
<exp | 1% () )] I 6.0 2in <62=p¢>>r‘N ﬁ [2 i (f{;}f?)] .

(4.5.91)
As we will see directly, the exponential term involving Tr(¢?) in e(p, ¢) describes the quan-

tum shift in the Chern-Simons level k.

FEvaluating the Integral over b

We are finally left to consider the integral over b in (4.5.45). We first observe that the

norm (1,1)) appearing in the exponent of the integrand there is given explicity by

() = = [ kAdRTH() — 2pa,

d

- (P) - (4.5.92)

In passing to the second line of (4.5.92), we use the fact that ¢ is constant so that the
integral over M simply evaluates to ¢1(£) = d/P. Second, we recall from Section 3 that

the moment map at the trivial connection satisfies

(1Y) = (0,9) = a. (4.5.93)

Hence the integral over hg takes the explicit form

Z(e)‘{o} = \21722) /ho [;ii] Bﬂ [;iﬂ e(p, ) exp {—Z’a + iepa +%€ <]Ci> Tr(ngQ)} )

(4.5.94)




215

We now evaluate the integral over a, which is easy since a only appears in the exponent
of the integrand in (4.5.94). From a previous identity (4.4.32), this integral produces the
delta function 27 6(1 — ep).

In turn, we use the delta function to perform the integral over p, setting p = 1/e. In the
process, we cancel the explicit factor of 27e which appears in the normalization of (4.5.94),

and the integral over by simplifies to an integral over g,

20),, = Voll( & /g [;lﬂ e(e!,6) exp [Z; (i) Tr(gz)?)}. (4.5.95)

Because the integrand of (4.5.95) is invariant under the adjoint action on g, we can

apply the classical Weyl integral formula to reduce the integral over g to an integral over
the Cartan subalgebra t, in which form we make contact with the results in [17,81]. In its
infinitesimal version, the Weyl integral formula states that, if f is a function on g invariant

under the adjoint action, then

[140] £0) = i ey [ 19ol T80 ). (4.5.96)

g t B>0

Here |W| is the order of the Weyl group of GG, and the product over the positive roots 3 of
G appearing on the right of (4.5.96) is a Jacobian factor.
Applying (4.5.96) and recalling the form of E in (4.5.91), we rewrite (4.5.95) explicitly

as

=5 i () o[ (2) (o )]
N

(4.5.97)
We finally make the change of variables ¢ — €¢ to remove some of the extraneous factors

of € in front of (4.5.97), so that

20, = o0 (<50 v ()

* /t[d¢] P [2267« <;i) Tr(&)} gl;[o {2 sin <<ﬁ’2¢>)]2_N jlj_:[l [2 sin <<§’Of>>] : )
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Here we introduce the usual renormalized coupling e,,

2
T = ) 4. .
s (4.5.99)

to absorb the explicit shift in the coefficient of Tr(¢?) that arises from the phase dn and
that appears in (4.5.97).

As it stands, the integral over t in (4.5.98) has oscillatory, as opposed to exponentially
damped, behavior at infinity due to purely imaginary Gaussian factor involving Tr(¢?).
Such oscillatory Gaussian integrals typically arise in quantum field theory. For instance, we
saw an earlier example in our path integral manipulations at the end of Section 3.1, when
we integrated out the auxiliary scalar field ® that appeared there.

Exactly as in Section 3.1, the standard analytic prescription to define such an oscillatory
integral is to shift the integration contour slightly off the real axis. That is, in the context
of (4.5.98) we consider the complexification t ® C of the real Lie algebra t, and we define
(4.5.98) by integrating over t x (1 — ig) for a small real parameter €. This ie prescription
has the added virtue that the new contour avoids any poles of the integrand on the real
axis that generally occur for N > 2.

Once we define (4.5.98) with the ie prescription, we are free to analytically continue
the contour to lie along the diagonal t x e ~¥"/4 so that the Gaussian factor in (4.5.98)
becomes purely real and negative-definite. (We recall that Tr is a negative-definite form.)
To make contact with the result of Lawrence and Rozansky in (4.5.39), we finally make

another change of variables ¢ — ¢, so that

in 1 (—1)(Ae—Ar)/2 1 \Ar
2() = exp <_2”°(0)) W Vol(T) ( \/Ta) x

X /cxt [d¢] exp [—2; (j?) Tr(¢2)] 11 {2 sinh <<5é¢>)}2N ﬁ lQ sinh <<§:j>>] )

B>0

where C is the diagonal contour R x e, as in (4.5.40).
We immediately see that (4.5.100) has the same form as our earlier expression in (4.5.41)
for the contribution from the trivial connection in the case G = SU(2), and with a suitable

choice of generator for t one can see that (4.5.100) agrees, up to the overall phase, with the
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result of Lawrence and Rozansky. For general G, our expression takes the same form as

that found by Marifio in [81].

The Phase of Z(€)

We now discuss the phase of our result (4.5.100) for the contribution of the trivial
connection to the Chern-Simons path integral. In the simplest case that M is described by
a smooth line-bundle of degree d = n over CP!, we have computed this phase explicitly, as

determined by the constant
dAg

4.5.101
- (45.101)

no(0) =

Since we have not performed a careful analysis of the path integral phases that arise from
the 7 invariant when M is an orbifold, we restrict attention to the smooth case in the
following.

If we compare our result to the result (4.5.41) of Lawrence and Rozansky for gauge
group SU(2), we see that the overall phase of Z(€) which arises naturally from localization
does not agree with the canonical phase. To be more precise, the result of Marifio [81] in
the case of a general gauge group G shows that the ratio exp (i §¥) between the canonical

phase of Z(€) and the phase we determine via (4.5.101) is given by

A A G .
exp (1 0V) = exp <z7r ¢_ chg o + mno(o)) 5
1 12(k+¢y) 2 (45.102)
~ex (iﬂAG(g _d)— ImAGC, 0 ) 0.
- P\ 12(k+¢,) )

Here k is the Chern-Simons level. The quantity 6y is defined in general in (4.5.36), and in

the smooth case we see that 6 is given by
O =3—d. (4.5.103)

Hence the expression in (4.5.102) simplifies greatly to

itkAg

g

(3 d)) . (4.5.104)

As we now explain, the phase discrepancy in (4.5.104) is not really a discrepancy at all,

and it merely reflects the fact that our path integral computation is effectively performed
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in a framing of M which differs from the canonical two-framing of Atiyah [103], which has
been used by Lawrence and Rozansky. We first recall from [15] that the partition function
of Chern-Simons theory generally transforms under a change in the framing of M by

: kA
e > , ¢ sEZ. (4.5.105)

Z — exp (12 s c = m,
Here c arises as the central charge of the two-dimensional WZW model associated to the
group G, and s is an integer that labels the shift in the frame. As a result, we see immediately
from (4.5.105) that the phase discrepancy (4.5.104) can be eliminated by a shift in s = (3—d)
units from the canonical framing of M.

Of course, in evaluating the Chern-Simons path integral by localization, we did not
explicitly specify any framing of M. Given the framing ambiguity (4.5.105) in Z, one might
naturally wonder how we managed to obtain a definite answer for the phase of Z in the
first place.

To answer this question, we observe generally that if M is an integral homology sphere,
then the choice of a locally-free U(1) action on M implies a canonical choice, up to homotopy,
of a framing of M. Concretely, a framing of M amounts to the choice of three linearly
independent, non-vanishing vector fields on M, and the U(1) action on M immediately
supplies us with one such vector field, the generating vector field R of U(1). We decompose
the tangent bundle to M as TM = L & W, where L is a one-dimensional bundle generated
by R and W is the complement. We are left to make a choice for the other two vector fields,
which must span the rank two sub-bundle W of T'M which lies in the kernel of the contact
form . The choice of these two vector fields amounts to a trivialization of W, so if the
Euler class of W is non-zero, W is non-trivial and our construction fails. However, since
the Euler class of W lies in the cohomology group H?(M, Z), which vanishes for an integral
homology sphere, W is automatically trivial in this case. Finally, because W has rank two,
possible changes of trivialization of W are classified by homotopy classes of maps of M to
SO(2). But for a homology sphere M (or even a rational homology sphere), the space of
maps to SO(2) is connected (as we recall below). So, given the choice of the original U(1)

action, we produce a unique framing of M up to homotopy.
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Parenthetically, to show that the space of maps M — SO(2) is connected, we let w = df
be an angular form on SO(2) 2 S! and we let m : M — SO(2) be any map. As H'(M;R)
vanishes by assumption, m*(w) vanishes in de Rham cohomology; hence m*(w) = df for
some real-valued function f: M — R. We can now define a trivial homotopy from f to a
constant map from M to R by simply setting f; =tf,0 <t < 1. Nowlet 7 : R — S =2 R/27
be the projection. Then setting m; = 7o f;, we get the desired homotopy from m to a
constant map from M to S'.

More generally, if M is not assumed to be a homology sphere, then W might be nontriv-
ial. To define the Chern-Simons invariant of a three-manifold M, however, it is not quite
necessary to have a framing of TM. It is enough to have a two-framing, a trivialization
of TM @ TM. We claim that every Seifert fibration 7 : M — 3 determines a natural
two-framing on M (which might depend on the choice of 7, as a given M may admit more
than one Seifert fibration). As TM ®&TM = L& LB W @ W, and L has rank one, it suffices
to trivialize W & W.

The trivialization of W & W which we need is not arbitrary but must satisfy two con-
ditions. For the first condition, we observe that W @& W has a natural spin structure, the
spin bundle being the sum of exterior powers of W. On the other hand, any trivial bundle
associated to a vector space V' also has a natural spin bundle associated to the Clifford
module C(V'), which is unique up to isomorphism. So a given trivialization of W & W
also determines a spin structure, and we require that this spin structure coincide with the
natural spin structure.

Second, since U(1) acts on the Seifert manifold M, we require that the trivialization of
W @& W be invariant under this action.

To show that W& W is trivial in the first place, we note that by definition W is a pullback
from some SO(2) bundle Wy over 3. Hence W & W is the pullback of U = Wy & Wy. The
rank four real bundle U has vanishing Stiefel-Whitney classes w; and wy (being valued in
Za, they are killed by taking two copies of W), so it is trivial and hence W & W is also

trivial.
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A trivialization of W @& W compatible with the two conditions above exists, and it is
unique up to homotopy. To prove the uniqueness, we note that compatibility with a given
spin structure of a rank k real bundle U — in our application k£ = 4 — means that changes
of trivialization really come from maps to Spin(k) rather than SO(k). As m;(Spin(k)) =0
for i <2, k > 3, a trivial SO(k) bundle U over ¥ of rank k& > 3 has up to homotopy only
one trivialization compatible with a given spin structure. So finally the Seifert fibration
m: M — ¥ endows M with a natural two-framing (which may differ from its canonical
two-framing [103], which is determined by a different construction).

In sum, then, a Seifert fibration of a homology sphere M determines a natural trivial-
ization of the tangent bundle T'M, which we will call the Seifert framing, and any Seifert
fibration 7 : M — X (even if M is not a homology sphere) determines a natural trivializa-
tion of TM & T'M, which we will call the Seifert two-framing. If M is a Seifert homology
sphere, the Seifert two-framing just arises by applying the Seifert framing to each copy of
TM.

Now we consider in detail the illustrative example M = S3. S3 has no one natural
framing. However, if we identify it with the Lie group SU(2), then it does have two
equally natural framings, one which is left-invariant and one which is right-invariant. They
are exchanged by an orientation-reversing reflection of S3, so neither one is preferred. In
regarding S3 as a Seifert fibration over CP!, we write CP! = S3/U(1), where U(1) is either
part of the left action of SU(2) on itself or part of the right action. For either choice of
U(1), our construction produces a framing that is canonically determined by the choice
of U(1) generator and so is invariant under any symmetry that commutes with U(1). If
the U(1) is part of the left SU(2), then it commutes with the right SU(2) and so we get
the right-invariant framing; and likewise if the U(1) is part of the right SU(2), we get the
left-invariant framing.

We naturally expect that the phase of Z in our computation of the Chern-Simons path
integral is based on the Seifert framing. In view of our direct computation of the phase

of Z, the Seifert two-framing of M must differ from the canonical two-framing of [103] by
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s = (3 — d) units. We now give a simple proof of this fact in the case M = 5% and d = 1
(though we will not be careful about the sign of the shift).

When M = S3, the canonical two-framing of [103] can be described as follows. It is
the trivialization of TM & T'M that comes from the left-invariant framing on, say, the first
copy of TM and the right-invariant framing on the second. (This is the unique reflection-
invariant two-framing of S, so it must be the canonical two-framing.) On the other hand,
the Seifert framing of M is (for a suitable choice of fibration 7 : % — CP') the left-invariant
framing of T'M, so the Seifert two-framing comes by applying the left-invariant framing to
each of the two copies of T'M. Hence the comparison between the Seifert two-framing and
the canonical one is the same as the comparison between the left-invariant two-framing and
the right-invariant two-framing for a single copy of T'M.

The right-invariant framing of S3 is determined by the basis of right-invariant one-forms
0 = dg g—', while the left-invariant framing is determined by the basis of left-invariant one-
forms 6 = g 'dg. To compare the framings, we write § = T§T‘1, where T' is a map from
M to SO(3). Such a map has a “degree,” and this integer measures by how many units
the two framings differ. Clearly, in this case, T' = ¢, so T is the “identity” map from
S3 = SU(2) to itself. This map is of degree 1 as a map to SU(2). However, because the
structure group of the tangent bundle of M is SO(3) = SU(2)/Z2, we must actually count
the degree for maps to SO(3). The identity map to SU(2) descends to a map of degree 2
to SO(3), and this shows, as expected, that the Seifert two-framing of S* differs from the
canonical two-framing by 3 — d = 2 units.

To illustrate the role of the structure group SO(3), let us consider one more simple
example, which is M = SO(3) = S3/Zy. This is the case d = 2 of the lens space considered
above, so we expect the Seifert two-framing and the canonical two-framing to differ by
3 —d =1 unit. The comparison again reduces to comparing the right-invariant framing of
TM with the left-invariant one. So again we have to compare § = dg g~! with 6 = g dg.
We have 0 = ggg_l, where now g is the identity map from SO(3) to itself, which is of degree

1, showing that the two two-framings differ by one unit.
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For any d, the general analysis of framings by Freed and Gompf in [104] can be used to
check that the canonical two-framing and the Seifert two-framing on M differ by s = (3 — d)

units.

4.5.3 Localization on a Smooth Component of the Moduli Space of Irre-

ducible Flat Connections

We now extend our work in the previous section to describe the local contribution to the
Chern-Simons path integral from a smooth component M of the moduli space of irreducible
flat connections on a Seifert manifold M. We assume here for simplicity that M is described
by a line bundle £ of degree n over a smooth Riemann surface ¥ of genus g > 1. The orbifold
case is also discussed by Rozansky in [80] but is somewhat more involved.

As we recall from Section 5.1, M is literally the moduli space of flat connections on the
trivial G-bundle over M such that the holonomy p(h) around the S! fiber of M is a fixed
element of the center I' of G. This moduli space is not smooth for arbitrary p(h) in T', but
it is smooth in certain cases. The main such case, and the case we consider here, arises
when the gauge group G is SU(r + 1), p(h) is a generator of I' = Z, 41, and n and r + 1
are relatively prime. Under these conditions, p(h)™ also generates I', and M is smooth and
can be identified with an unramified (r + 1)29-fold cover of the moduli space My of flat
Yang-Mills connections on an associated principal bundle P over ¥ with structure group
G = G/T. (G enters because when we project to G, p(h) projects to 1 and the representation
p becomes a pullback from ¥. But as the three-dimensional gauge group is really G, the
holonomies of p around one-cycles in ¥ are defined as elements of G, not G this leads to
the unramified cover.)

Our general discussion of non-abelian localization in Section 4 implies that the path
integral contribution from M can be expressed entirely in terms of the cohomology ring of
M, or equivalently Mg. One of the reasons that localization on M is interesting is that we
find in Chern-Simons theory a natural generalization of the cohomological formula (4.4.17)

for the path integral contribution from Mg in two-dimensional Yang-Mills theory.
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We recall from our discussion in Section 5.1 that a local symplectic neighborhood N

near M in A is described by an equivariant bundle
F— N2 M, (4.5.106)

where the normal fiber F' takes the (by now familiar) form F = H xg, (h ©ho© E ® &1).

By assumption, the only gauge transformations which fix the irreducible flat connections
associated to points in M are constant gauge transformations by elements in the center I' of
G, since the center of G always acts trivially in the adjoint representation. So the stabilizer

subgroup Hy in H is now given by
Hy = U(1)* x T, (4.5.107)
where we recall that the torus U(1)? arises from the two extra generators in H relative to

g.

Also, we recall that the vector spaces & and £ are now given over a point of M by

& = P HH(Z,ad(P)© L") = P H(Z,ad(P) @ (L' & L7Y),

7 = (4.5.108)
& = %Hé(E,ad(P) ® L) = g?H%(Z,ad(P) ® (Lo L),
t -

The Canonical Symplectic Integral Over N

Having described the local geometry near M in A, we next consider the canonical

symplectic integral over N. This integral takes the form

mTE- VO 2 7€
Z(f)‘M =2 \X)II((HU)(U ) /M [;lﬂ exp {Q—i<u,¢>—2(¢, @) +tDA|,  (4.5.109)

where we include in the normalization of (4.5.109) the prefactor from (4.5.10). To define the
integral over the non-compact directions in N, we also include in (4.5.109) the localization
form tDA.

Our goal now is to reduce the integral over h x N in (4.5.109) to an integral over the
moduli space M itself. We have already discussed a problem of this sort in Section 4.2,
when we considered the path integral contribution from irreducible flat connections in two-

dimensional Yang-Mills theory. As we briefly recall, in the case of Yang-Mills theory the
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fiber F' in (4.5.106) is modelled on the cotangent bundle T*H (with H being the group of
gauge transformations in that case), so that N retracts equivariantly onto a principal H-
bundle Pp over the the moduli space Mg. Because H acts freely on Py, the H-equivariant
cohomology of the total space Py can be identified with the ordinary cohomology of the
quotient Py /H = My, so Hy;(Pg) = H*(My). In particular, the H-equivariant cohomol-
ogy classes of [QQ—i (u, ¢)] and [—%(gb, ¢)] on Py pull back from ordinary cohomology classes
Q and © of degrees two and four on My, and we apply this fundamental fact to reduce the
symplectic integral in Yang-Mills theory to an integral over M.

In the case of Chern-Simons theory, the group H = H no longer acts freely on IV, but we
can still apply much the same logic as for the case of Yang-Mills theory. Here a subgroup Hy
of H acts with fixed points on N, so N equivariantly retracts onto a bundle with fiber H/H|
over M. We denote the total space of this bundle by Ny, so that H/Hy — Ny — M.

Because Ny is an equivariant retraction from N, the H-equivariant cohomology ring
of N is the same as that of Ny. As we explain in Appendix C, the formal properties of
equivariant cohomology further imply that the H-equivariant cohomology ring of Ny is
identified under pullback with the Hy-equivariant cohomology ring of M itself. So in total,
we have the relation Hy(N) = Hy (M).

As a result, in precise analogy to the case of two-dimensional Yang-Mills theory, the H-
equivariant cohomology classes of [Q2—i (i, ¢)] and [—%(qﬁ, ¢)] which appear in the symplectic
integral over IV can be identified as the pullbacks from M of elements in the ring Hy (M).

To identify the elements of Hp (M) which pull back to these classes appearing in the
symplectic integral over N, we note that Hy; (M) has a very simple structure. As we also
explain in Appendix C, because Hy acts trivially on M, H} (M) is given by the tensor
product of the ordinary cohomology ring H*(M) of M with the Hy-equivariant cohomology
ring Hy (pt) of a point. Thus, Hf; (M) = H*(M) @ Hyy (pt).

Finally, our previous discussion of the Cartan model of equivariant cohomology explicitly
identifies the Hyp-equivariant cohomology ring of a point with the ring of invariant functions

on the Lie algebra ho. Thus, all elements of Hj (M) can be written as sums of terms
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having the form z - f(1), where z is an ordinary cohomology class on M and f(v) is an
invariant function of ¥ in hg.

With our concrete description of Hy (M), we can immediately identify the elements of
this ring which pull back to the H-equivariant classes [Q — i (i, ¢)] and [—1 (¢, $)] on N.
Let us decompose the Lie algebra h of H as a sum h = (h © ho) @ ho. As a result, we write
¢ = ¢+ p+ a, where ¢ is an element of h S by, which can be identified as the Lie algebra
of G, and, in the same notation from Section 3.4, p and a are elements of the Lie algebra
ho of Hy.

We then identify the H-equivariant classes on N appearing in (4.5.109) with correspond-

ing Hp-equivariant classes on M via

Q—i</.t,¢><—>Q—i(L,
) (4.5.110)
~5(6:0) — n® + pa.

We abuse notation slightly in the first line of (4.5.110). On the left, € is the symplectic
form on A restricted to N, and on the right Q is the induced symplectic form on M (or
equivalently M), exactly as in our discussion of two-dimensional Yang-Mills theory. In
identifying the dependence of this degree two class in Hp (M) on p and a, we use the
fact, evident from the formula for p in (4.3.50), that the value of the moment map (u, @)
evaluated at a flat connection which pulls back from 3 is just the constant a appearing on
the right of the first line in (4.5.110).

Similarly, in the second line of (4.5.110), the degree four class ® on M is the same
degree four class that appeared in our discussion of Yang-Mills theory. The identification

in (4.5.110) arises by writing the degree four invariant —%(qﬁ, ¢) in terms of ¢, p, and a as

1 1
—§(d>, ¢) = §/M wAdK Tr(p?) + pa = g/EwTr(go?) + pa, (4.5.111)

where we recall that n is the degree of the line-bundle £ over ¥ which defines M and w is a
unit-volume symplectic form on . As in the case of two-dimensional Yang-Mills theory, the
term quadratic in the generators ¢ of the gauge symmetry is associated by the Chern-Weil

homomorphism to the degree four class ©.
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With the identifications in (4.5.110), we can rewrite the symplectic integral over N as

_ 2me - Vol(U(1)?)
M Vol(H)

d
Z(e)‘ / {qﬁ] exp [(pr*Q) — ia (1 —ep) + ien (pr*®) + tDA].
hx N 2
(4.5.112)
As in the case of localization at the trivial connection, the generator a acts trivially on all
of N and so does not appear in the localization form tDA. So we can perform the integrals

over a and p exactly as before, and the integral over a produces a delta-function that sets

p = 1/e. As a result, the symplectic integral reduces to the form

Z(e)’ = w /(heho)xN {d(ﬁ] exp {(pr*Q) + ien (pr*O) + tD)\‘

M Vol(H) 27 P=1/€] .

(4.5.113)

The only term in (4.5.113) which does not pull back from M is the localization term
tDA, so we are left to integrate tDA over the fiber ' of N. In the case of two-dimensional
Yang-Mills theory, with F' = T*H, this integral gave a trivial factor of unity. In Chern-

Simons theory, the result is much more interesting.

An Equivariant Euler Class From F

To evaluate (4.5.113), we consider the following integral,

I(y) = Voll(H) /ﬁ Bi] exp[tDA], F = (hSho)xF, peby.  (4.5114)

Here we let v = p+ a be an arbitrary element of hg, though in general the generator a will
not appear in (4.5.114) since a acts trivally on N, and we set p = 1/e at the end of the
discussion, as in (4.5.113).

Of course, in Section 4.3 we computed this integral over the abstract model for F'. There

we assumed M to be a point, and we found the result

) det (o

Unfortunately, we cannot apply this result directly to the case at hand. When F' is fibered

~1
(W) = — det <‘Z’ E) . den. (4.5.115)

VOl(HO) 2T

over a non-trivial moduli space M, then () will generally involve cohomology classes on
M which are associated to the twisting of the bundle and which our previous computation

did not detect.
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To compute I(1)) in (4.5.114), one approach is simply to generalize the abstract local-
ization computation in Section 4.3 to allow for a non-trivial moduli space M. We perform
this computation in Appendix D. However, we can also make an immediate guess, on the
basis of mathematical naturality, for what the generalization of the formula (4.5.115) must
be when M is non-trivial. This guess relies on a more intrinsic topological interpretation
of the result (4.5.115) even in the case that M is a point. For this reason, it turns out to
be much more illuminating to “guess” the generalization of (4.5.115) rather than simply to
compute, so we pursue this approach now.

Let us think about what our result for () really means in the case that M = pt.
Abstractly, the data which enter the formula (4.5.115) are the group Hy, which acts trivially
on M, and the finite-dimensional unitary representations FEy and F; of Hy. In general, to
say that E is a representation of Hy is the same thing as to say that F is an Hyp-equivariant
bundle over a point, so if we like, we can consider Fy and F; as Hg-equivariant bundles
over M = pt.

This language is useful, since whenever we have a vector bundle (even a vector bundle
over a point!) an extremely natural set of topological invariants to consider are the char-
acteristic classes of the bundle. In our context, we naturally consider the Hy-equivariant
characteristic classes of Ey and E; as Hp-equivariant bundles over M = pt. (Although we
will not require the generalization here, we refer the reader to Chapter 8.5 of [99] for a gen-
eral discussion of equivariant characteristic classes.) These characteristic classes are valued
in the Hy-equivariant cohomology ring of M — since M is a point, this ring is the ring of
invariant functions on the Lie algebra by of Hyp.

If F is a unitary representation of Hy and we consider E as an Hy-equivariant bundle
over a point, then the Hyp-equivariant characteristic classes of E have a simple description.
We let U(FE) be the unitary group acting on E. Since Hy acts in a unitary fashion on
E, the relevant characteristic classes of E to consider are the equivariant Chern classes.
As is well known, the ordinary Chern classes of a vector bundle are associated via the

Chern-Weil homomorphism to the generators ¢; of the ring of invariant polynomials on
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the Lie algebra of the unitary group. To describe the corresponding Hy-equivariant Chern
classes of E, we observe that, since F is a unitary representation of Hy, we have an induced
map Hy — U(F). Consequently, any invariant polynomial on the Lie algebra of U(FE)
pulls back to an invariant polynomial on the Lie algebra hy of Hy. The pullbacks of the
generators ¢; to invariant polynomials on by are then the Hp-equivariant Chern classes of
E. In particular, if the action of Hy on F is non-trivial, then the equivariant Chern classes
of E can also be non-trivial, despite the fact that F is a bundle over only a point.

The invariant polynomials appearing in /(¢), namely

o (w
cr(pt, En) = det (5

_ Y
Eo) , e, (pt, B1) = det <27r

El) , (4.5.116)

arise from determinants. The Chern-Weil homomorphism associates the determinant to the
top Chern class, so by our discussion above the invariant polynomials in (4.5.116) can be
characterized intrinsically as the Hg-equivariant top Chern classes, or equivalently Euler
classes, of Fy and E; as equivariant bundles over a point. Thus, when M is a point, we
write I(¢)) in (4.5.115) intrinsically as

— ]‘ eHO (pta EO)
VOl(H()) eHO (pt, El) '

I(+) (4.5.117)

More generally, if E is an Hp-equivariant vector bundle over a complex manifold M,
then we can still consider the Hy-equivariant Euler class ey, (M, E) of E, which takes
values in the Hp-equivariant cohomology ring of M. If Hy acts trivially on M (but not
necessarily trivially on E), we have already identified this cohomology ring as a product
Hy (M) = H*(M) ® Hy (pt). We describe ep, (M, E) in this case explicitly below.

In our application to Chern-Simons theory, the infinite-dimensional vector spaces &y
and & in (4.5.108) determine associated Hp-equivariant bundles over the moduli space
M, on which Hp in (4.5.107) acts trivially. Given our intrinsic interpretation of I(1))
when M is a point, we certainly expect that the integral over F' in (4.5.114) produces the
natural generalization of (4.5.117), involving the Hyp-equivariant Euler classes of the bundles
associated to & and &; over M. That is,

1 eHO(/\/l,go)

Iy) = Vol(Hy) ey, (M, &1)

(4.5.118)
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As our direct computation in Appendix D shows, this formula is correct.

We remark that the appearance of the equivariant Euler class of the bundle &; in the de-
nominator of (4.5.118) is quite standard. This class appears in precisely the same way in the
classic Duistermaat-Heckman formula [19] for abelian localization, as was explained in [20].
The essentially new feature of the formula (4.5.118) is the appearance of a corresponding
Euler class from & in the numerator.

We set

_eny(M, &)
e(y) = e (M, E1)

Then from (4.5.113), (4.5.114), and (4.5.118), the local contribution from M in Chern-

. (4.5.119)

Simons theory is given abstractly by

Z(e)‘M = ]Il‘] /M e(p)‘p:l/6 exp (Q + ien®). (4.5.120)

In arriving at (4.5.120), we note that the prefactor Vol(U(1)?) in (4.5.113) cancels against
a corresponding factor in Vol(Hp) from I(¢). This cancellation leaves the factor 1/|T"| in
(4.5.114), where |I'| is the order of the center I' of G.

As we recall in writing (4.5.120), since the generator a in hy acts trivially on N,
e(y) = e(p) depends only on p in hy. Once we set p = 1/e in (4.5.120), e(e~!) will be-
come an ordinary cohomology class on M. As in the case of localization at the trivial

connection, our computation now reduces to determining explicitly this class.

More About the Equivariant Euler Class

Before we evaluate the equivariant Euler classes of the infinite-dimensional bundles
corresponding to & and &, we first give a more explicit description of the equivariant
Euler class in a simpler, finite-dimensional situation. To make contact with Chern-Simons
theory, we assume abstractly that Hy is a torus which acts trivially on a complex manifold
M, and we assume that E is a complex representation of Hg which is fibered over M
to determine an associated Hy-equivariant bundle. Our goal is now to give a concrete
topological formula for ep, (M, E), which we will then apply to evaluate e(¢) in (4.5.119)

for Chern-Simons theory.
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In general, ey, (M, E) incorporates both the algebraic data associated to the action of
Hy on E as well as the topological data that describes the twisting of E over M. To encode
the data related to the action of Hy on F, we decompose E under the action of Hy into a

sum of one-dimensional complex eigenspaces
dim E
E= P Es, (4.5.121)
j=1
where each (3; is a weight in hj which describes the action of Hp on the eigenspace Eg;.
To encode the topological data associated to the vector bundle determined by E over
M, we apply the splitting principle in topology, as explained for instance in Chapter 21
of [52]. By this principle, we can assume that the vector bundle determined by E over M
splits equivariantly into a sum of line-bundles associated to each of the eigenspaces Eg, for
the action of Hy. Under this assumption, we let x; = c1(Ep,) be the first Chern class of the
corresponding line-bundle. These virtual Chern roots x; determine the total Chern class of
I as
dim E

cBE) =[] (t+ay). (4.5.122)
j=1

In particular, the ordinary Euler class of F over M is then given by

dim E
eM,E) = [] - (4.5.123)

j=1
The equivariant Euler class eg, (M, E) is now determined in terms of the weights [3;
and the Chern roots x;. Since Hy acts trivially on M, we recall that eg, (M, E) is defined
as an element of Hy (M, E) = H*(M) ® Hy (pt). Thus, ey, (M, E) will be a function of
1 € ho with values in the cohomology of M. Explicitly, the Hyp-equivariant Euler class of

FE over M is given by

dimE ,. /5
emy (M, E) = [] (ij) . (4.5.124)
j=1

We see that this expression is a natural generalization of the ordinary Euler class (4.5.123)
of E. Also, when M is only a point, the Chern roots ; do not appear in (4.5.124) for dimen-
sional reasons, and the product over the weights 3; in (4.5.124) reproduces the determinant

of ¢ acting on E as in (4.5.116).
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Evaluating e(p)

We now evaluate e(p) for Chern-Simons theory. We set p = 1/€ only at the very end
of the computation. First we recall that the complex vector spaces & and & appearing in
(4.5.119) arise from the Dolbeault cohomology groups of the bundles ad(P) ® L over X,
with

& = P HY(Z,ad(P) © L") = P HY(S,ad(P) @ (L' & L),
10 t>1

& = P HES,ad(P)® L") = P HE(S,ad(P) @ (L' & L7)).
t#0 t>1

(4.5.125)

We also recall that the action of Hy on & and & is determined by the operator p.£r, whose
action in turn only depends on the grading ¢ in (4.5.125). We naturally decompose & and

&1 under the action of Hy, and we consider the finite-dimensional eigenspaces

e = HYT,ad(P) o LY, &Y = HYT,ad(P)® LY). (4.5.126)

The abelian group Hy acts canonically on both Sét) and 51(t) with eigenvalue —2mit.

In terms of this decomposition, the quantity e(p) is given by the following infinite prod-

uct,

e - 1 [eHo(M,gét))] 1 leHO(M,Eét))'eHO(M,Eét)) | (£5.127)
t#0 eHO(Mvgl(t)) eHo(Mvgl(t))'eHo(M7g§7t))

t>1

Here ey, (M, Eét)) and eg, (M,El(t)) denote the Hp-equivariant Euler classes of the finite-
dimensional bundles determined by Eét) and 51(15) over M.

Our basic strategy to evaluate the product in (4.5.127) is to deduce a recursive relation
between the equivariant Euler classes of Eét), Sét_l), El(t), and Sl(t_l). So far, we have
only specified the line-bundle £ topologically, by specifying its degree n. The holomorphic
structure of L really was not important. Now we want to pick a convenient holomorphic
structure on £ to simplify our computation. We pick n arbitrary points o1,...,0, on X

and we take £ to be O(o1 + ...+ op).

With this choice of L, we have the following short exact sequence of coherent sheaves
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on 3,

0 — ade(P)® L7 — ade(P) ® L — @ adc(P)|,, — 0. (4.5.128)

aj
=1

Here t is any integer, and adc(P)| », denotes the skyscraper sheaf associated to the fiber

of adc(P) over the point ;. The appearance of this skyscraper sheaf explains our need to

work a bit more generally with coherent sheaves, as opposed to more innocuous bundles.
Associated to this short exact sequence we have the usual long exact sequence in sheaf

cohomology,
0 — H(S,ade(P) @ L) — HO(S,ade(P) @ £1) — @) HO(S, ade(P)),,) —
i=1

— H'(3,ade(P) ® L7 — HY(Z,ade(P) ® L) — 0.
(4.5.129)

Since a skyscraper sheaf has no higher cohomology, we observe that H!(X,adc(P)| s.) =0
for the last term of (4.5.129).

Each cohomology group appearing in (4.5.129) can be considered as the fiber of an
associated holomorphic bundle over the moduli space M, and the exactness of the sequence
(4.5.129) implies the exactness of the corresponding sequence of bundles on M. Except
for the single term involving the skyscraper sheaf, we see that the bundles which appear in
(4.5.129) are those associated to Eét_l), Sét), Sl(t_l), and Sft). In analogy to (4.5.126), we
set

Vi = H°(2,adc(P)],,) - (4.5.130)

Over M, V; also fibers as a holomorphic bundle. Although the holomorphic structure
of V(;) depends on oy, its topology, which is all we will care about, does not (as is clear
from the fact that the points o; can be moved continuously), so we just write V for any
of the V;. Thus, the exact sequence in (4.5.129) implies the following exact sequence of

associated bundles on M,
0— & — gl —vem — gV — el —o. (4.5.131)

This sequence is an exact sequence of bundles on M, but we need an exact sequence of

Hy-equivariant bundles on M, such that the maps in the sequence are compatible with the
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5(’5—1)

action of Hy. Because Hy acts with different eigenvalues on the equivariant bundles &

and Eét), and similarly on Sl(tfl) and Eft), the canonical action of Hy is not compatible with
the maps in (4.5.131).

To fix this problem, we note that we are free to consider actions of Hy on Eét) and 81(t)
other than the canonical action. That is, we consider Hy-equivariant bundles over M whose
fibers are still given by the cohomology groups Hg(Z, ad(P) ® L) and H%(Z, ad(P) ® L)
but where the action of Hy is not the canonical action fixed by t. In fact, so long as Hy
acts uniformly on the fiber, we can take Hy to act with any eigenvalue.

Thus we let Sé?n and 51(t7)n denote the Hy-equivariant bundles over M whose fibers are
determined by t as before but where Hy acts with eigenvalue —2mim for some integer m.
In this notation, the bundles Eét) and Eft) with the canonical action of Hy are Eéft) and El(’t).
We similarly denote by V,, the Hyp-equivariant bundle associated to V for which Hj acts
uniformly on the fiber with eigenvalue —2mim.

The exact sequence in (4.5.131) on M now determines a corresponding exact sequence

of Hyp-equivariant bundles,

0,m 1,m

Since the action of Hy is the same on every term in this sequence, the maps are trivially
compatible with the group action.

We now recall that a fundamental property of the equivariant Euler class is that it

behaves multiplicatively with respect to an exact sequence of equivariant bundles, just like

the ordinary Euler class. Thus, if Fj, Es, and F3 are Hy-equivariant bundles on M which

fit into an exact sequence whose maps respect the action of Hy,
0 — E) — Ey — E3 — 0, (4.5.133)
then the Hy-equivariant Euler classes of these bundles satisfy the relation
ety (M, E2) = eny,(M, E1) - en, (M, E3). (4.5.134)
More generally, given an exact sequence of arbitrary length,

0— F — Fy — -+ — Foy —> Fony1 — 0, (4.5.135)
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the relation (4.5.134) generalizes in the natural way, with

BHO(M,EQ) €HO(M,E2N) = GHO(M,El) GHO(M,E2N+1) . (45136)

We apply this multiplicative property of the equivariant Euler class to the exact sequence

in (4.5.132). For the following, it is very natural to introduce the ratio of equivariant Euler

classes,
M, g(t)
o = eHy ( ‘2;’)”) , (4.5.137)
eHo(Mvgl,m)
so that e(p) is given by
ep) = [T 2. (4.5.138)
140

In terms of Qg,? , the multiplicative relation (4.5.134) applied to (4.5.132) implies that

QY = QU - ey, (M, V)™ . (4.5.139)
Expanding the recursive relation (4.5.139), we find

QY = 0O [es, (M, Vi)™ . (4.5.140)

What has this work gained us? As we now explain, we can give a very concrete expression
for the quantity on the right of (4.5.140). By definition, the bundles over M which determine

the ratios Qi’t) have fibers
e = HYZ,ade(P), & = HL(S,adc(P)). (4.5.141)

By our assumption that all points in the moduli space M correspond to irreducible con-
(0) (0)

nections, &, = 0. Further, as we mentioned in Section 4.3, £ is naturally identified

with the holomorphic tangent bundle T'M of the moduli space itself, so 51(0) =TM. We
(0)

introduce the convenient notation &3 = T'M; to indicate the Hy-equivariant version of
TM. Because of this observation, we can apply the relations (4.5.138) and (4.5.140) to

rewrite e(p) entirely in terms of the equivariant bundles TM; and V;,

1

tl;lo e (M TM,) [er1y (M, V)™ . (4.5.142)

e(p) =



235

Let us make the factors appearing on the right in (4.5.142) more explicit. To this end,
we introduce the Chern roots w; of TM, where j =1,...,dim M, and the Chern roots
vy of V, where [ =1,...,rkV. Since V arises from the fiber of the adjoint bundle ad¢(P),
the rank of V is simply rkV = dim G = Ag. As in our general discussion of the equivariant
Euler class, the Chern roots w; and v, are “virtual” degree two classes in H*(M) which

are defined in terms of the total Chern classes of T M and V as

dim M Ag
(TM) = [ O+, V) =][0+w). (4.5.143)
j=1 =1

In terms our these Chern roots, our general description of the equivariant Euler class in

(4.5.124) implies that

dim M Ag
er, (M, TM;) = H (—itp + wj) , e, (M, V) = H (—itp + v;) . (4.5.144)
j=1 =1

The terms in (4.5.144) which involve p arise via the infinitesimal action of Hp on the fibers
of TM; and V;. We recall that Hy acts infinitesimally as p£r = —2mitp.

Together, (4.5.142) and (4.5.144) imply the following formal expression for e(p),

dim M 1 Ag
e(p) = S —i )™ | . 4.5.145
o =TT s I v ] (4.5.145

This infinite product represents the determinant of a first-order operator D acting on E&&7,
where

1
D= o (pLr + iR). (4.5.146)

Here R is the curvature operator acting on & and &£; as bundles over M, as appears in
the computation in Appendix D, and “©” indicates that we actually take the inverse of the
determinant of D acting on &;.

The determinant in (4.5.145) is only a formal expression, and to define it we must choose
some regularization procedure. For instance, we considered the determinant of a similar

operator Dy in our computation at the trivial connection in Section 5.2,

Dy = o (pén—[6,]) (4.5.147)



236

In that case, we defined the determinant of Dy analytically, using the zeta-function to define
its absolute value and the eta-function to define its phase.

We follow a similar strategy to define the determinant of D, or more explicitly the
infinite product in (4.5.145). To start, we find it useful to rewrite the product in (4.5.145)

by pulling out an overall factor of p,

e(p) = plimM tl;[o [djlni[f (—it + <?))1] liﬁi <—it + (l;l))m] . (4.5.148)

In passing from (4.5.145) to (4.5.148), we use as in Section 5.2 the classical Riemann zeta-
function to define the trivial, but infinite, product over p which arises from (4.5.145),
H p 2dmM — exp(—2dim M -Inp - ¢ (0)) = pHmM, (4.5.149)
t>1
(There is no contribution from the factors in (4.5.145) which are associated to V due to a
cancellation between the terms for +t.) Thus, we are left to consider the determinant of

the rescaled operator D/,

1 R
D = o <£R + 2) , (4.5.150)
m p

which represents the infinite product appearing in (4.5.148) and which depends on p and
the Chern roots only in the combinations w;/p and v;/p.

One interesting distinction between the operator D, or equivalently D’, and the operator
Dy which appeared previously is that whereas Dy is an anti-hermitian operator, with a
purely imaginary spectrum, the operator D has no particular hermiticity properties and its
spectrum has no particular phase. This is manifest in the product (4.5.148), since —it is
imaginary but both the Chern roots and p are real. In terms of (4.5.150), both £z and R
are anti-hermitian operators, but we have an explicit factor of ‘¢’ in front of R. Because
D' is neither hermitian nor anti-hermitian, we will have to generalize the zeta/eta-function
regularization technique which we applied to define the determinant of Dy in Section 5.2.

Before we supply a definition for the determinant of D’, or equivalently for the products

in (4.5.148), let us consider what general properties our definition should possess. To start,
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we factorize the product in (4.5.148) into the two infinite products below,

dim M
=11 II (it + 2=y,
=1
70 (4.5.151)
H H —it + z21)"
t£0 =1

where z = 1/p is now a formal parameter.

The expressions in (4.5.151) are ill-defined as they stand. However, if we formally
differentiate log fa((z) and log fy(z) with respect to z a sufficient number of times, we
eventually obtain well-defined, absolutely convergent sums. For instance, in the case of

fm(z), we see that

T 1o s dliM Z — diiM L jog | )|y s159)
dz? g faalz = #0 —it + zw])2 = dz? & sinh (mzw;) | e

The second equality in (4.5.152) follows from the same product identity (4.5.65) for sin(z)/x
as we applied in Section 5.2.

So any reasonable definition for faq(z) in (4.5.151) must be compatible with the relation
(4.5.152). In particular, upon integrating (4.5.152), we see that log fa((z) is determined up
to a linear function of z, and hence fa((z) is determined up to two arbitrary real constants
ag and aq,

dim M

fm(z) = explag + arzer (TM)] ]

j=1
Here ¢1(TM) = 37, w; is the first Chern class of M. In deducing the form (4.5.153), we

(rzw;)
(e (4.5.153)

have applied the fact, manifest from (4.5.151), that fu((z) can only depend on z and the
Chern roots w; in the combinations zw;, and we have also used the fact that only symmetric
combinations of the Chern roots have any real meaning — hence each Chern root w; must
appear with the same coefficient a; in the exponential factor of (4.5.153). Comparing to
the product (4.5.151), we also note that fa((z) is formally real (for real z), so ap and a;
must be real.

We can also apply this general analysis to fy(z) in (4.5.151). Here we observe that
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log fy(z) should satisfy

3 Ag

d 2nt
Losn(s) = ¥ 5 2

i70 1=1 (=it + z1p)*’

B Z %% 2ntv} N 2ntv} (4.5.154)
=1 = L=t an)® (=it — )’ ]
=0.

In contrast to the case of faq(2), we must take three derivatives of log fy(z) to get a conver-
gent sum, due to the exponent nt appearing in (4.5.151). In passing to the second equality
of (4.5.154), we have simply paired terms for +¢. However, to deduce the cancellation in
the third line of (4.5.154), we must use some topological facts about the bundle V.

We recall that V is the bundle over M whose fibers are given by H°(3, adc(P)|,) for
some point ¢ on Y. This bundle is naturally the complexification of a real bundle over M,
namely the bundle whose fibers are H°(X, ad(P)|,). Consequently, the non-zero Chern roots
of V are paired such that for each root v there is a corresponding root v with v/ = —v. This
fact implies that any odd, symmetric function of the Chern roots vanishes. In particular,
all odd Chern classes of V vanish.

We now consider a series expansion of the denominators in the second line of (4.5.154)
in terms of the nilpotent quantities z1v;. Because of the relative signs in these denominators,
and because of the explicit cubic factor v in the numerators, all terms of even degree in
the Chern roots v; automatically cancel. However, by our observation about V above, the
remaining terms of odd degree in the v; cancel when we sum over roots.

From (4.5.154), we see that log fy(z) is determined up to a quadratic function of z.

Hence fy(z) is determined up to two real constants by and bo,
fu(z) = exp [ibo + ibyz 0] . (4.5.155)

A term linear in z would necessarily appear with the first Chern class ¢1()), which vanishes
by our observation above. Since c;(V) = 0, the only degree two class that can appear in

(4.5.155) is the characteristic class ©. We also observe from the product (4.5.151) that
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fv(z) must be simply a phase (for real z), since under complex conjugation fy(z) goes to
fi,1(2). This observation fixes the factors of ‘i’ in (4.5.155).

Having fixed the general forms (4.5.153) and (4.5.155) of faq and fy, we now compute
the undetermined constants. To do this, we must still decide how to define the determi-
nant of the operator D' = (1/27) [£r + i(R/p)]. Motivated by our work in Section 5.2, we
proceed as follows. First, although p is a positive, real variable in our problem, we will
define the determinant of D’ more generally for complex p. Second, once we allow p to be
complex, we impose the requirement that the determinant of D’ depend analytically on p.
In particular, if we evaluate the determinant for purely imaginary p, of the form p = i/y
for real y > 0 (the fact that we use 1/y is just for notational convenience later), then the
determinant is defined for real p > 0 by analytic continuation. Finally, when p = i/y, we
see that D' = (1/27) [£r + yR] is an anti-hermitian operator exactly like Dy, and we can
use zeta/eta-function regularization to define the determinant of D’ for these values of p as
we did in Section 5.2.

In terms of faq and fy in (4.5.151), this definition of the determinant of D’ amounts to

the prescription to use zeta/eta-function regularization to define the products

dim M
fM = _ly H H )
t£0 j=1 t+ yw])
(4.5.156)
oz = —iy) HH D"t + )™
t£0 1=1

We first ignore the factors of ‘4’ in (4.5.156) and we compute the absolute values of fa and

Jv.

For instance,

dim M dimMm dim M
-1 1 (myw;)
| faa(— (yw;)?| = () : — 2V (4.5.157)
tl;[l ]1_[1 { I } 2 31;[1 sin(myw;)

Since the Chern roots w; are nilpotent, the terms in the first product in (4.5.157) are
manifestly positive. In passing to the second equality, we apply the same identities (4.5.65)
and (4.5.66) from Section 5.2. This form of | faq(—iy)| is clearly compatible with our general

expression (4.5.153).
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On the other hand, one can easily check that zeta-function regularization defines the

absolute value of fy, to be trivial, for the same topological reason that we explained following

(4.5.154), so
Ag nt
) t+ yy
Iv(=iy)l = 1T 11 [} = 1. (4.5.158)
t>1 =1 t—yu

We are left to compute the phases of fa((—iy) and fy(—iy). We define these using the

eta-function, as in Section 5.2. More precisely, we write

fal=iv) = exp (= Fune) Uml. M) = e (< Tw). (45.159)

Here naq and 7y denote the eta-invariants which arise as the values at s = 0 of the eta-

functions na(s) and ny(s) abstractly associated to the hermitian operator iD’ as it acts on

& 6 &,

7

iD’ (£r + YR) . (4.5.160)
27
This operator should be compared to the corresponding operator which we considered when

computing the phase of e(p, ¢) at the trivial connection,

% (JgR_ [jj D . (4.5.161)

We recall from Section 5.2 that the eta-invariant associated to the operator in (4.5.161)
acquires an anomalous dependence on (¢/p) which produces the finite shift in the Chern-
Simons level. In the case at hand, a similar anomalous dependence of ¢ and 7y on yR
gives rise to the same shift in the level.

Concretely, the eta-functions na(s) and ny(s) are given by the following regularized
sums over the factors which appear in f(—iy) and fy(—iy) in (4.5.156) and which represent

the eigenvalues \ of iD’,

dim M
nm(s) =) Y —sign(A(t,@)) - IME@))| 7L At @) =ty
40 j=1
N (4.5.162)
77V(5) = ZZ nt Sign()‘(tayl)) : |)‘(tayl)|7s ) )‘(t7 Vl) =t+yy.
140 =1

The various constants appearing in (4.5.162) are perhaps most clear if we compare to the

formal expressions for faq(—iy) and fy(—iy) in (4.5.156). Thus, the overall minus sign in
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nm(s) arises because i as opposed to —i appears in faq(—iy), which is in turn associated
to the fact that we consider & & &1 as opposed to & @ &£1. Similarly, the multiplicity factor
nt appears in 1y (s) because of the factor (—i)™ in fy(—iy).

Since the Chern roots are nilpotent, we note that sign(A(t,z)) = sign(t), where z = w;

or x = vy as the case may be. Thus, we write the regularized sums in (4.5.162) explicitly as

dim M dim M
; jzl vy t; ]Zl - yw) | (4.5.163)
;lz; +yyl t>1lzl t—yz/l

As in Section 5.2, we are left to evaluate these sums at s = 0.
In fact, we have already done all of the required computation. The sum which defines
nam(s) is the same as the sum (4.5.77) which we evaluated in the warmup computation on

St in Section 5.2. Thus we find

dim M
m(0) =2y Y @i =2y (TM). (4.5.164)
j=1

In deducing the second equality, we note that the trace over all Chern roots of T'M is the
first Chern class of T'M.
To evaluate 1y(0), we perform a computation precisely isomorphic to our computation

of e(p, ¢) in Section 5.2. Applying our earlier results, we find

g TLAG
mw(0) =m0 +ny® > i, mo= - (4.5.165)
=1

Here 7y is the same constant that appeared in our localization computation at the trivial
connection. As for the term quadratic in v, this term arises in the same way as the term
quadratic in ¢ in (4.5.89).

We now recall from Section 5.2 that we applied a Lie algebra identity (4.5.90) involving
Cq to rewrite the term quadratic in ¢ in (4.5.89) in terms of the natural quadratic invariant
%Tr(gzﬁQ). Under the Chern-Weil homomorphism, by which we identify the Chern roots v

with the eigenvalues of the curvature operator iR /27w, we can apply the same Lie algebra
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identity to rewrite the degree four class 3, /7 in terms of the class © that already appears

in the integral over M. We find from the identity (4.5.90) that

Ag 3y
S = &9 (4.5.166)
l 2
=1
and 7,(0) becomes
ne
mw(0) = mo + 3 y0. (4.5.167)

With these results (4.5.164) and (4.5.167), we evaluate faq(—iy) and fy(—iy) to be

. ) 1 dimM dim M Ty,
ful=iv) = exp (<imyerTM)- (5] Qmmgy
=t ’ (4.5.168)
. s ey o
) = - — Y O).
o=t = exp ( 2™ " or Y )
Upon setting z = —iy, these expressions assume the same form as the general expressions

in (4.5.153) and (4.5.155).
We recall that p is related to y via p = i/y. So e(p), as determined by the analytic

continuation of (4.5.168), is finally given by

e(p) = pM™ M. fu(p) - o),

W@@<ﬂMMMM<mm>
27p? 27 sinh(meo;/p)
(4.5.169)

T T
= exp (—2770 + 501(TM) +
j=1

As we will see, this formula incorporates the famous shift in the Chern-Simons level &k, and

leads to agreement with the results of Rozansky.

Some Further Remarks

Our use of zeta/eta-function regularization to define e(p), and especially the analytic
continuation we performed in p, is somewhat ad hoc. The need for this analytic continuation
is an unfortunate consequence of the ‘i’ that appears in the Cartan differential D = d + ity
that we introduced in Section 3. Had we used the more standard mathematical definition of
D, with D = d+ 1y, then the basic symplectic volume integral on a symplectic manifold M
would turn out to be [, exp(i€2) rather than the more usual [, exp(£2). The mathematical

version of D would also clash with some conventions of physicists about reality conditions
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for fermions. However, it would clarify our discussion of the determinants, since if all factors
of i are omitted from the localization form X, then the operator ¢D’ would come out to be
hermitian. Hence, the zeta/eta-function definition of determinants could be implemented
directly, with no need for artificial analytic continuation.

The zeta/eta-function definition is really most natural for oscillatory bosonic integrals

such as appear in Chern-Simons theory. For example, if we consider a bosonic integral
Z = /D(ID exp(i(®, M D)), (4.5.170)

for some indefinite real symmetric operator M, and we regularize Z by the Feynman pre-
scription M — M +ie, for small positive ¢, then the phase of Z is naturally exp(inn(M)/2).
This is really why, in Chern-Simons theory, eta-invariants appear in the one-loop correc-
tions. If we take D = d+ty, and take the localization form A to be purely imaginary rather
than purely real, then all integrals in Appendix D are oscillatory Gaussian integrals rather
than real Gaussians. In this framework, zeta/eta-function regularization provides a natural
definition of the determinants that appear in our localization computation.

Our general analysis of d?log fa(2)/dz? and d°log f(z)/dz® showed that any reason-
able definition of these determinants would differ from the zeta/eta-function approach by
adding a constant to 7y and changing the coefficients of ¢;(T'"M) and © in (4.5.169). We
will see shortly that the coefficients as written in (4.5.169) do agree with Chern-Simons
theory; in fact, they show up in Chern-Simons theory at the one-loop level. Ultimately, to
justify the coefficients in (4.5.169) on an a priori basis requires a more rigorous comparison

between the localization procedure and Chern-Simons theory.

The Contribution From M in Chern-Simons Theory

Having evaluated e(p), we now set p = 1/e and substitute (4.5.169) into our expression

(4.5.120) for the contribution from M to the Chern-Simons path integral. Thus,

1 i 1\ dmM
Z = — - —
(6)‘/\4 T exp( 2 770) (27Te> %

. dim M )
X / exp [Q + meci(TM) + ien <1 + Gcg) @} H [ e
M

(4.5.171)
27 i sinh (ﬂew]-)]
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Since we are dealing with an integral, by making changes of variables we can rewrite
the integrand of (4.5.171) in different ways which illuminate different features of this result.
In the form at hand, we note that one can define a non-trivial scaling limit of (4.5.171)
such that the Chern-Simons coupling e goes to zero (so that the level k goes to oo) and
the degree n of £ goes to co with en held fixed. In this limit, which physically decouples
all the higher Kaluza-Klein modes of the gauge field, we see directly that the contribution
from M in Chern-Simons theory has the same form as the simple expression (4.4.17) for
the corresponding contribution from My in two-dimensional Yang-Mills theory.

To express (4.5.171) more compactly, we now rescale all elements of the cohomology
ring of M by a factor (2me)?/2, where ¢ is the degree of the given class. So for instance, the
degree two Chern roots w; scale as w; — 2mew,. This trivial change of variables cancels
the prefactor involving € in (4.5.171) and reduces the product over Chern roots in (4.5.171)
to a well-known characteristic class, the fl—genus of M.

We recall that the ﬁ—genus of M is given in terms of the Chern roots of T M as

AM) = dilnl[M _@il2 (4.5.172)

i sinh(w;/2) )
In a sense, the appearance of the ﬁ—genus in our problem is not so surprising, since it
appears in roughly the same way as in the standard path integral derivations of the index
theorem. See [108] for a derivation of the index theorem that applies abelian localization
to a sigma model path integral; at least formally, that computation shares many features

of our computation here.

In terms of the ﬁ—genus7 our expression in (4.5.171) simplifies to

1

Z(e)‘M =T exp( 770> / A(M) exp {Q—i— ;cl(TM)

mn

©|. (4.5.173)

4dm2e,
Here we have absorbed the contribution from 7, (0) into a renormalization of the coupling
er = 21 /(k + ¢4) that appears in front of ©.

Of course, we would like to write (4.5.171) entirely in terms of the renormalized coupling

e. To do so, we apply a theorem of [109] which relates the first Chern class ¢1(T'M) to the
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symplectic form € in the case of gauge group G = SU(r + 1). In this case,
e (TM) = 2(r + 1), (4.5.174)

where ' = Q/(2m)? is the standard, integral symplectic form on M. Happily, the dual
Coxeter number ¢, of G = SU(r + 1) is also given by ¢, = r + 1, so we see that (4.5.173)

can be expressed very simply using €.,

Z(e)’M = |F1| exp <i;r770) /M A(M) exp [27:67« <Q + % @)] . (4.5.175)

This expression is of the same form as the corresponding result of Rozansky in [80].

We close with the following amusing observation. On general grounds, the ﬁ—genus of

M is related to the Todd class Td(M) of M by
1 N
Td(M) = exp (2c1(TM)> AM). (4.5.176)

So from (4.5.173), we see that an alternative expression for the path integral contribution

from M is

_ 1 _am , in
Z(E)‘M =T exp( 5 770> //vl Td(M) exp {k:Q + 12 @} . (4.5.177)

Although our derivation of (4.5.177) is not valid for the trivial case M = S! x 3, we see
that, upon setting n = 0, our result (4.5.177) takes the same form as the index formula
(4.1.1) for Z(e) in the trivial case. It is satisfying to see that both the index formula (4.1.1)
and the two-dimensional Yang-Mills formula (4.4.17) are reproduced as special limits of our

general result.



Appendix A

Brief Analysis to Justify the
Localization Computation in

Chapter 4.4

In this appendix, we show that the quantity @ - Z'(¢) computed using X in (4.4.91) of
Chapter 4.4.3 agrees with the same quantity defined using A, so that Z’(e) as defined by
integrating (4.4.91) agrees with Z(e). Thus we consider the following one-parameter family

of invariant forms, interpolating from A to A’ on F,
A(s) = sA+(1—s) X, se€[0,1], (5.0.1)
and to start we consider the corresponding family Z(e, s) of integrals over F,

1 de
2(&:%) = Yo /hxp

, €
[ exp |2 i(1.0) - 5(0.0) +£DA)|. (5.0.2)
If this integral is convergent for all s and also continuous as a function of s, then Z(e, s)

21

is independent of s, so that Z(e) = Z(e,1) = Z(e,0) = Z'(e). This fact follows by differ-
entiating the integrand of (5.0.2) with respect to s, which produces a total derivative on
F.

We thus need to consider the basic convergence and continuity of Z(e, s). Very broadly,

divergences in the integral over F' in (5.0.2) can only arise from integration over the non-
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compact fibers b= and E; which sit over the compact orbit H /Ho. However, the first,
degree one term of X in (4.4.77) is precisely of the canonical form to define localization on
the fiber b+, exactly as in our computation on T*H. Thus, no divergence arises from the
integral over b, and we need only analyze the integral over the complex vector space Ej.
As we have already seen, precisely this integral over Ej leads to the dangerous, possibly
singular factor in I(1)) in (4.4.84). Furthermore, in our application to Yang-Mills theory,
the corresponding vector space &£ describes the set of gauge-equivalence classes of unstable
modes of the Yang-Mills action, and we expect the integral over these modes to be the most
delicate.

We now analyze directly the symplectic integral over E; that arises from (5.0.2). To set
up notation, we recall that F7 is a complex vector space, dim¢ Fq = dy, with an invariant,
hermitian metric (-,-) and an invariant symplectic form Q. In terms of holomorphic and

anti-holomorphic coordinates v" and v" on Ej, Q is given by

Q= — 2 (dv,dv) = —%ﬁnAdvn. (5.0.3)

i
2
If ¢ is an element of by, then the corresponding vector field V' (¢) on Fj is described by

v =1-v, (5.0.4)

n ,,m

or in coordinates, dv™ = ¢r v™, and similarly for the conjugate components of V(¢)).

From (5.0.3) and (5.0.4), we see that the moment map i for the action of Hy on Ej is
explicitly given by
(i) = 5 w4 0) . (5.0.5)
By our assumption that (-, -) is invariant under (5.0.4), ¢ is anti-hermitian and the expres-
sion in (5.0.5) is real.
Of course, the complex structure J acts on E; as J(dv) = —idv and J(dv) = +i dv.

Thus, since

1 1

S = §(ﬁ7ﬁ) = g(vav)Qv (506)

we see that the canonical one-form A = J dS is given by

A= —3 (v,0) (v, dv) — (dv,v)) - (5.0.7)
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On the other hand, from (4.4.77) we see that X on E; reduces to
N =i(-v,dv) . (5.0.8)

Thus, if we restrict the integral in (5.0.2) to Ey and keep only the terms relevant in the

limit of large t (after which we set ¢ = 1), we just consider the reduced integral

Zred(€,8) = /b . B:/:] exp [—i (70, %) — % (1) +sDX+ (1 —s) DX|. (5.0.9)

Of the original integral over the full Lie algebra b of H, only the integral over the subalgebra
ho is relevant to the integral over Ej.

We first perform integral over v in hg. To illustrate the essential behavior of the integral
over Fy, we assume as before that hp = R has dimension one. Explicitly, DX\ and DN
depend on 1 as

DX = dr+ % (v,0) (0,0 - ), (5.0.10)
and

DX = i(¢-dv,dv) — (¢ -v,7 - v), (5.0.11)

so the integral over 1 is purely Gaussian. Upon performing this integral over ¢, we find

that Z,¢q is formally given by

Zyeale,s) = /

(47 A)"2 exp [s i+t (J, A J)] , (5.0.12)
Er 4

where A is defined in terms of the normalized generator Ty of by by

A= -+ 1-s)(Tp-v,To-v) , (5.0.13)

€
2
and J in hg is defined by

J = —iv+ ; (v,v) (v, Ty -v) To+1i (1 —s) (Tp - dv,dv) Tp . (5.0.14)

We are now interested in the behavior of the integral in (5.0.12) for large |v|, where the
non-compactness of Fj is essential. So long as s # 0, then the integrand of (5.0.12) falls

off at least as fast as exp [—(v,v)3] for large v, due to the term quartic in v in (5.0.14) that
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arises from \ and the term quadratic in v in (5.0.13) that arises from ). Thus, the integral
over Fj is strongly convergent for s # 0 and depends smoothly on s away from 0. Of
course, this integral is also non-Gaussian and cannot be simply expressed using elementary
functions.

However, when s = 0, the integrand of (5.0.12) is no longer suppressed exponentially
and decays only as a power law at infinity. This behavior arises because the bosonic term of
D) is quadratic in 1), whereas the bosonic term of DA is linear in ¢. Because the integrand
of (5.0.12) decays only as a power law for s = 0, the integral over E; does not generally
converge. The prefactor proportional to A='/2 decays like 1/|v], and for s = 0 the measure
arising from the quadratic term (J, A~'.J) in the exponential of (5.0.12) is of the form
1/|v|% d?>hv. Consequently, the integral over By behaves as [ d?®v 1/[v|(4+D for large v
and diverges.

However, we now consider the same analysis as applied to @ - Z(e, s). By our analysis
above, we are only concerned with the potentially dangerous behavior near s = 0 and for

large |v|, for which we must consider the following integral over Ej,

(_Qi)dl.gmd(e,s):/& <_2§6>5d1 ((47TA)§ [sd)\—i— (7.4° J)D

(5.0.15)

N =

To analyze (5.0.15), we first note that € only appears in the quantity A in (5.0.13), and

0 1 H?
<—2a€ + = s)W) A=0. (5.0.16)

A satisfies

Thus, we can rewrite (5.0.15) as

o d
(2886) - Zred(€,5) = /E1 ((1i5) 2 ‘ . (5.0.17)

X <47rA éexp[saD\—i— JA J)})
)

NI

We now apply simple scaling arguments to (5.0.17) to show that this integral is conver-
gent at s = 0 and behaves continuously as s — 0. First, at s = 0, we immediately see that
this integral behaves for large |v| as [ d*®v 1/]v|?*¥*D and hence is convergent, though

just barely.
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To discuss the limit s — 0, we assume s is fixed at a small, non-zero value. All terms
involving s which we previously dropped for s = 0 now appear in the argument of the

exponential in (5.0.17). For large |v|, this argument behaves schematically as

(dv, dv)
v]?

(dv, dv)?
v]?

slof? (do, dv) + 9010 102 (40, 1) +

|'U|2 (70’T0)+82‘U|6+

(5.0.18)

Since our argument is only a scaling argument, we ignore all signs and constants in writing
(5.0.18), though we do recall that the dominant term s [v|® leads to an exponential decay
of the integrand at large v.

We see three terms in (5.0.18) which vanish in the limit s — 0. Of these terms, we can
ignore the quadratic term s |v|?(vo,Tp), since it is subleading compared to s |v|® for fixed
s and large |v].

However, we need to consider the effect of the measure s2 |v|* (dv, dv)?, which dominates
|6

the measure (dv,dv)?/|v|? at s = 0 by a relative factor of s [v|%. We also need to consider

the terms which arise when the derivative §%/0v; 9v® in (5.0.17) acts on exp (—s?[v|®) to

bring down the term s? [v[*, which dominates 1/|v|? by the same relative factor s2|v|°.

These terms lead to contributions depending on s in (5.0.17) which behave for large |v|
as

d2d1 v
Eq

o[2di 1 s7" 0] exp (—=s?[v]%) n=1,...,d;. (5.0.19)

Since these integrals only converge for s # 0, when the integrand is exponentially damped,
one might have worried that these terms could cause the limit s — 0 to be singular. However,
we see by scaling that the expression in (5.0.19) behaves as st1/3 for all n and hence the
asymptotic contributions to (5.0.17) from these terms still go continuously to zero as s — 0.

Finally, apart from the terms in (5.0.19) with n > 1, the integrand of (5.0.17) is a

smooth function F'(v, s) of v and s which behaves asymptotically for large |v| as

1

F('U,S) ~ 7|,U|2d1+1

exp (—s%|v]°%). (5.0.20)

Thus, F(v,s) decays exponentially for s # 0, is integrable for all s, and is dominated by

F(v,0), which has a pure power law decay at infinity. On general grounds, the integral of
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F(v,s) over E; then depends continously on s, and, for the purpose of computing @ - Z(e),

we can validly interpolate from A to A’ on F.



Appendix B

More About Localization at Higher

Critical Points: Higher Casimirs

In this appendix, we continue from Chapter 4.4.3 our general discussion of non-abelian
localization at higher critical points. We recall that we obtained a formal expression for the

canonical symplectic integral over F' in terms of an integral over the Lie algebra by of the

E0> det (;fr 5

As we discussed, this integral generally fails to converge when the ratio of determinants

stabilizer group Hy,

Z(e) = Vol(lHo) /h [;’:ﬂ det <21fr 1)1 exp [—z’ (0.9) = 5 (W, 9)|

(6.0.1)

in the integrand has singularities in hy. In the special case Hy = U(1), relevant for higher
critical points of SU(2) Yang-Mills theory, we deal with this problem by computing not
Z(€) itself but a higher derivative @ - Z(¢€), where @ = Q(9/0¢) is a differential operator
which we choose so that the action of @ on the integrand of (6.0.1) brings down sufficient
powers of (1,1)) to cancel any poles that would otherwise appear.

However, if we consider higher critical points of Yang-Mills theory with general gauge
group G, then the rank of Hy can be arbitrary, and the determinants in (6.0.1) cannot
generally be expressed as a functions of only the quadratic invariant (¢,1). Consequently,

we cannot simply differentiate Z(e) with respect to € to cancel the poles in (6.0.1).
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Nevertheless, by applying some simple ideas about the localization construction, we can
generalize our discussion in Section 4.3 of Chapter 4 to the case that Hy has higher rank.

As in Section 4.1, we recall the form of the localization integral:

Z(e) = Vbifm(AXX[jﬁ}exp[a-iu%¢>—-;@x¢>. (6.0.2)

In the case of Yang-Mills theory, H = G(P) and X = A(P) in the notation of Section 2.
Let us consider what natural generalizations of (6.0.2) exist. Of the terms appearing in
(6.0.2), the quantity Q — i (u, ¢) is distinguished as an element of the equivariant cohomol-
ogy ring of X, since it represents the equivariant extension of the symplectic form on X.
However, nothing really distinguishes the quadratic function —%(qﬁ, ¢) among all invariant
polynomials of ¢, and we are free to consider a general symplectic integral over h x X of

the form
2 = o | ] e = itns) - Vo) (6.0.3)
T Vol(H) Jyxx L2r] FPE TV ' e
Here V(¢) is any invariant polynomial on b such that the integral over h remains convergent

at large ¢. We can take
V(p) =€ Cj(e), (6.0.4)
J

where C; are the Casimirs of H — the homogeneous generators of the ring of invariant
polynomials on h — and €; are parameters. The standard localization technique can be
applied to evaluate this integral. The fact that V is not quadratic in ¢ leads to no special
complications.

In the case of Yang-Mills theory on a Riemann surface ¥ with symplectic form w, we

would write
Vo) = e e Cilo). (6.0.5)

We assume that the gauge group G has rank r, and now C;(¢) are the Casimirs of G. We
associate to each generator a corresponding coupling €;. If we want to compare to standard
methods of studying two-dimensional Yang-Mills theory by cut and paste methods, we
should integrate over ¢ to express the theory in terms of the gauge field (and noninteracting

fermions) alone. Of course, if V(¢) is not quadratic, we can no longer perform the integral
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over ¢ in (6.0.3) as a Gaussian integral. Instead, if we abstractly introduce the Fourier

transform

exp [V(0)] = [ 5] exnl-it0.0) - Vo). (6.0.6)

which is an invariant function of ¢* in the dual algebra h*, then the generalized symplectic

integral over X takes the form

ZlV] = Voll(H) /Xexp (Q—V(,U,)). (6.0.7)

In the case of Yang-Mills theory, we recall that © = Fj4. So in that case, (6.0.7)
corresponds to a generalization of Yang-Mills theory in which the action is not the usual
Tr f2 (with f = «F) but Tr V(f), for some more general function V. The partition function
of this generalized Yang-Mills theory can be computed by the usual cut and paste methods
[100]. If G is simply-connected and we apply the same normalization conventions as we

used in (4.4.40) for the case G = SU(2), the generalized partition function is

1 !
ZIV] = (Vol(G))*~2 ;Wexp(—v (R)), (6.0.8)

where V/(R) is the energy of the representation R. (We are taking the area of ¥ to be 1;
for a general area «, the exponential factor would be exp(—aV’(R)).)

To compute the energy V'(R), we start with the action V(f) and compute the canonical
momentum Il = 8‘7/8 f. As usual, the energy is determined by the eigenvalue of the
Hamiltonian, which is the Legendre transform of the action V(f). Thus, the Hamiltonian
is H= fIl — ‘A/( f), which must be extremized with respect to f and regarded as a function
of II. After computing H(II), II is interpreted as the generator of the group G and taken
to act on the representation R to get the energy V'(R).

Since the Legendre transform is a semiclassical approximation to the Fourier transform,
the Legendre transform approximately undoes the Fourier transform in (6.0.6), and hence
H(II) = V(II)+lower order terms. As discussed in [18], if the representation R has high-
est weight h, the precise formula needed to match with the localization computation is

V(R) = V(h + 6), where the constant § is half the sum of positive roots of the Lie algebra
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of G. This formula incorporates the difference between the Legendre transform and the
Fourier transform and other possible quantum corrections.

To generalize what we said in Section 4.3, we want to find a polynomial F(C}) of the
Casimirs of H which when restricted to hg is divisible by the dangerous factor in the denom-
inator, namely w(v) = det (1/)/2%\}31). Then @ = F(—0/0¢j) is a differential operator that
when acting on exp(—V') will produce the factor F' and cancel the denominator. Thus, Q
generalizes the operator 9971 /9e9~! that we used in Section 4.3 for two-dimensional SU(2)
gauge theory in genus g.

The dangerous factor w is an invariant polynomial on the Lie algebra of g or equiva-
lently, a polynomial on the maximal torus of Hy that is invariant under the Weyl group of
Hy. This polynomial can be extended, though not canonically, to a polynomial w’ on the
maximal torus of H. We can pick the extension to be invariant under the Weyl group of
Hy but not necessarily under the Weyl group of H. However, by multiplying w’ by all its
conjugates under the Weyl group of H, we make a polynomial w on the maximal torus of
H that is invariant under the Weyl group of H, and whose restriction to Hy is divisible by
w. The Weyl-invariant polynomial w corresponds to the polynomial F'(C}) of the Casimirs
that was used in the last paragraph.

Finally, let us make this more explicit for Yang-Mills theory. The denominator factor
in (6.0.8) that we need to cancel is dim(R)?9~2, so it suffices to know that dim(R)? is a
polynomial of the Casimirs. This can be proved using the Weyl character formula, dis-
cussed in §123 of [110], which provides a general formula for dim(R). Parametrizing the

representation Ry, by a highest weight h,

} (B,h+0)
dim(Ry) = - 6.0.9
(Rn) 61;[0 (83,0) (6.0.9)

The product in (6.0.9) runs over the positive roots 3, and we recall that § is a constant,

equal to half the sum of the positive roots. We regard this as a function of b’ = h + 4.
The formula (6.0.9) exhibits a polynomial function d on the Cartan subalgebra of the Lie

algebra g of G such that dim(Rj) = d(h’). The polynomial d is not strictly invariant under

the action of the Weyl group on h/, but is invariant up to sign, so d? is Weyl invariant.
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As such, d? extends to an invariant polynomial on all of g, and thus a polyomial in the
Casimirs. Finally, we observe that the shift h — h’ = h + 0 is the same renormalization
that we introduced for the potential V'(Ry) = V/(h + ¢), so that by differentiating with

respect to the couplings of each Casimir in ¥V’ we can cancel the denominator dim(R)2972.



Appendix C

A Few Additional Generalities

About Equivariant Cohomology

Following the discussion in Section 5.3 of Chapter 4, we discuss in this appendix the identi-
fication of the H-equivariant cohomology of Ny with the Hy-equivariant cohomology of M,
a fact which fundamentally leads to the correspondence (4.5.110).

To start, we find it useful to employ another topological model of equivariant cohomol-
ogy, explained for instance in Chapter 1 of [99]. In this model, if X is any topological space
on which a group H acts, the H-equivariant cohomology ring of X is defined as the ordinary
cohomology ring of the fiber product Xy = X xgyg EFH, where EH is any contractible space
on which H acts freely. Such an EFH always exists, and the choice of £FH does not matter,
since EH is unique up to H-equivariant homotopies. Thus, Hy;(X) = H*(Xp).

As a simple example, if H acts freely on X, implying that X is a principal H-bundle over
X/H, then Xy is equivalent to a product Xy = (X/H) x EH. Since EH is contractible,
we see that Hj;(X) = H*(X/H), a fact we applied in our discussion of two-dimensional
Yang-Mills theory.

At the opposite extreme, when H acts trivially on X, then Xy is also a product
Xy =X x BH, where BH = FH/H is the classifying space associated to the group H.
In this case, Hf;(X) = H*(X) ® H*(BH). However, by the definition of equivariant coho-
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mology above, the ordinary cohomology of BH is the H-equivariant cohomology of a point,
so that Hy;(X) = H*(X) ® Hj;(pt). For the latter factor, our description of the Cartan
model in Section 4.1 clearly identifies Hj;(pt) with the ring of invariant functions on the
Lie algebra § of H.

In the case relevant for Chern-Simons theory, we suppose that X is a fiber bundle over
M with fiber H/Hy for some H. As a result, H acts on the fibers with isotropy subgroup
Hy.

For the following, we want to realize X globally as a quotient Y/Hy. Here YV is a
principal bundle over M with fiber H, so that H — Y — M, and we suppose that Y has
the following additional properties. First, we assume that H x Hy acts on Y, with H acting
on the fibers on the left and Hy on the right. As above, we also assume that Y/Hy = X. In
this situation, H and Hy both act freely on Y, the quotient Y/H being M and the quotient
Y/Hy being X. Of course, Hy acts trivially on X.

We can now argue as follows. First, Hf;, y (Y) = Hj(X), as Hy acts freely on Y with
quotient X. On the other hand Hj, y (Y) = Hj (M) because H acts freely on Y with
quotient M. Finally, as Ho acts trivially on M, Hy (M) = H*(M) ®@ Hy (pt). Putting
these facts together, we have our desired result that Hy (X) = H*(M) ® Hy (pt).

In general such a Y only exists rationally (which is good enough for de Rham cohomol-
ogy), but for our problem with Chern-Simons theory on a Seifert manifold, a natural Y can
be constructed as follows.

First of all, over any symplectic manifold A, a “prequantum line bundle” £ is a unitary
line bundle with connnection whose curvature is the symplectic form. For Chern-Simons
theory, £ exists and is unique up to isomorphism as A is just an affine space. We let Lo be
the bundle of unit vectors in £, a circle bundle over A.

In general, any connected Lie group of symplectomorphisms of a symplectic manifold
that has an invariant moment map lifts to an action on the prequantum line bundle. For
Chern-Simons theory on a Seifert manifold, the group G of gauge transformations does not

have a moment map (due to the obstruction arising from the loop group cocycle) but its
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central extension (j does. We recall that QN is an extension of G by an abelian subgroup
U(1)z that acts trivially on A but has constant moment map equal to 1. In particular,
since 5 has a moment map, QN acts on £, and hence on the subbundle £y. Under this action,
the subgroup U(1)z acts freely by rotating the fibers of the fibration £y — A.

Finally, the Hamiltonian group H that we really use for our quantization is a semidirect
product of G with another abelian factor U (1)g that geometrically rotates the fibers of the
Seifert fibration. The group U(1)g acts on £ and Ly, but not freely. To get the desired
space Y on which U(1)gr acts freely, we simply set Y = U(1) x Lo, where U(1)r acts by
rotation on U(1) together with its natural action on Ly. So in fact Hy = U(1)r x U(1)z
acts freely on Y.

We now want to restrict this construction from A, the space of all connections, to Ny, the
space of flat connections on which we localize and whose quotient Ny/H is M, the moduli
space of gauge-equivalence classes of flat connections. We let Yy be the restriction to Ny of
the fibration Y — A. So H x Hy acts on Yy; Hy acts freely on Yy with quotient No, and H
acts freely on Yy with quotient M. Finally, Hy acts trivially on M. With these observations,

the general argument presented above shows that H(No) = H*(M) ® H (pt).



Appendix D

More About Localization at Higher
Critical Points: Localization Over

a Nontrivial Moduli Space

In this appendix, we consider the general case that our abstract model for F' in Chapter
4 is fibered over a non-trivial moduli space M. Our goal is to compute the equivariant

cohomology class on M which is produced by the canonical symplectic integral over F',

1 do
Iy) = Vol(H) /ﬁ

|ewptDXN,  F=(om)xF,  wven.  (801)
We begin with some geometric preliminaries. Very briefly, we recall that we model F' as

2

a vector bundle with fiber h* @ E; over a homogeneous base H/Hy. Here b = b © hg © Ep,
and explicitly,
F =Hxpg, (b7 ®E). (8.0.2)

To describe the total space NN of the fiber bundle ¥ — N — M, we introduce a
principal H-bundle Py over M. Besides the given action of H on Pj, we assume that Py
also admits a free action of Hy which commutes with the action of H. As a result, we can

describe the bundle N concretely in terms of Py as
N = Py xp, (ht @ E). (8.0.3)
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Upon setting Py = H, where H acts on the right and Hy acts on the left, this model for NV
reduces to the model for F itself, with M being a point.

Of course, the key ingredient in our localization computation is to choose a good repre-
sentative of the canonical localization form A on N. As in Section 4.3, we introduce another
localization form X which (under the same caveats as in Section 4.3 and Appendix A) is

homotopic to A on N and takes the form
No= XN 4+ XNg, + Xg,» (8.0.4)
with
)‘/J_ = (’y,@) )

o = i (05,9097 HIRO) . R(O) = o [6,6], (8.05)

351 = i((ggbg_l)ho v, dv — by, "U) .

In these expressions, we recall that v is an element of ht, ¢ is an element of H, ¢ is an
element of h, and v is an element of the vector space F;. Finally, 6 is now a connection
on the principal H-bundle Py. In particular, 8 is a globally-defined one-form on Pp. As
usual, we let R(#) denote the curvature of 6.

Our choice for X\ is precisely analogous to the choice we made in Section 4.3 in the case
that Py = H, and in (8.0.4) we have simply grouped the terms in A in a natural way
for the localization computation. The only term present in (8.0.5) which was not present
in Section 4.3 is the term involving the curvature R(f) in A . The curvature of 6 is a
horizontal form on P, meaning that it is annihilated by contraction with the vector fields
V(¢) which generate the action of H on Py, so this curvature term could not appear when
M was only a point. Equivalently, if the connection @ takes the global form 6 = dgg~"' as
in Section 4.3, then R(#) vanishes identically.

In (8.0.4) and (8.0.5) we have written A as an invariant form on the direct product
Py x (bt @ E1), but one can check exactly as in Section 4.3 that )\ descends under the
quotient by Hy to an invariant form on V.

Although X is globally defined on N, we have written X in coordinates on Py with

respect to a local trivialization of this bundle about some point m on the base M. The
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integral we perform will be an integral over the fiber F,,, above this point m, and since m
is arbitrary, this local computation suffices to determine the cohomology class on M that
arises after we perform the integral over all the fibers of ' — N — M. In particular,

upon pulling 6 back to the fiber F;,, 6 takes the canonical form,
Olp, =dgg". (8.0.6)

However, since the curvature R(6) can be non-zero, in general df # %[0, 6] at points in the
fiber over m.
At this point, we repeat our earlier computation of D), allowing for the presence of the

curvature R(6). We find
DX\ = (dv,0) — i(y,¢ +idb),
DXg, = —i(d0g,, ¢ +iR(0)) + i (05, (0,0 +iRO)]) — (d5,, ¢ +iR(0)),  (8:0.7)
DX, = iy, - dv,dv) — (¢4 - v, (0 +iR(D)),, - v) + X,
with
. . 1
X =1 ([0,(1)]% m,dv) + i (gbho U3 0,61, 'v) mod 0y, . (8.0.8)

As before, in writing these expressions we make the change of variable from ¢ to gpg—'

at the end of the calculation to simplify the result. Also, the terms appearing in X are at
least of cubic order in the “massive” variables #, v, and dv and so are irrelevant in the limit
t — oo. Finally, we are free to work modulo terms involving 6y, since DX is a pullback
from the quotient Py x g, (h* @ F1).

We now compute directly the integral below in the limit ¢ — oo,

1 d¢ / / / n
I(¢n,) = Vol (H) /Fm {QW] exp [tDX| +tDXNg, +tDNg, |, Fn = (h©h) x Fy,
(8.0.9)
This integral behaves essentially the same as the integral in Section 4.3, so we will be brief.
We first consider the integral over F4, which we perform as a Gaussian integral using

the terms from tD)\jgl in the large t limit. Explicitly, the integral over E; is given by

/E exp [it (64, - dv, dv) — 1 (4 v, (6 +iR(O))y, -v) + ] . (8.0.10)
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Since X is of at least cubic order in the massive variables 6, v, and dv, this term can be
dropped from the integrand when ¢ is large. Keeping the other terms quadratic in v and dv

in (8.0.10), the Gaussian integral over E; immediately produces

1
det (;ﬂ (o, +iR(0)s,) E) . (8.0.11)

We now integrate over both v and ¢ in b = S hy © Ey. We see from (8.0.7) that
still appears only linearly in tD), so the integral over v produces a delta-function of ¢,
where ¢ denotes the component of ¢ in h-. As is evident from the form of tDX|, this
delta-function sets ¢; = —idf,. (As in Section 4.3, the factors of ¢ cancel between the
integral over v and the integral over ¢, .)

We are left to integrate over ¢p, and over the base H/Hy of F,,. Of course, upon
Taylor expanding the exponential exp (dv, 6) from DX to produce the measure for v, we
also produce the canonical measure on the tangent directions to H/Hy lying in ht. So
infinitesimally we have only to integrate over the remaining tangent directions to H/H)
which lie in Fy in addition to ¢g,.

So we are left to integrate over Fjy using the terms in tD)\’EO. This integral takes the

form

/ €xXp [*it (GEO’ [¢h0 + iR(G)hoa GEO]) +1 (R(Q)an R(G)Eo)] X
Eo (8.0.12)

x exp [—2it (R(0) gy, PEy) — t(PEes D)) -

In deducing (8.0.12), we have expanded and simplified various terms in D)\jEO in (8.0.7).
For instance, the curvature term (R(6)g,, R(8)Eg,) arises from the linear combination of
terms (dfg,, R(0)) — (0r,, [0, R(0)]) in DN, . To see this, we rewrite this expression as
(dOg, —10,0r,], R(O)E,) = (R(8)Ey, R(0)E,), where “=” indicates that the equality holds
modulo 6y, and 6 , which is good enough since these forms do not contribute to the integral
over Fjy.

In writing (8.0.12), we also note that when we set ¢; = —idf, in D)\’EO, we effectively
cancel similar terms in DA which involve the components of the curvature R(¢) in ht.

So R(#), does not appear in (8.0.12).
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We first perform the Gaussian integral over ¢, in (8.0.12). The result of this integral
produces a term proportional to exp [t (R(0)g,, R(0)g,)] which precisely cancels the term
quadratic in the curvature R(0)g, in the first line of (8.0.12). Consequently, once we collect
factors of ¢t and 27 exactly as in Section 4.3, the term quadratic in 6, in (8.0.12) produces

another determinant,

1
det 5 (00, + i R(O),)

E) . (8.0.13)

Including the factor Vol(H )/ Vol(Hp) that arises from the integral over H/Hj and setting

¢n, = 1 for notational simplicity, we find our final result for the integral in (8.0.9),

-1
I(W) = — - det (;ﬁ (W +iR(6)s,) E) (3.0.14)

VOI(H())

E) det (;ﬁ (W +iR(6)s,)

Since both Ey and E; are representations of Hy, the associated bundles Py x g, Eo and
Py x g, Eq determine Hy-equivariant bundles over M once we divide by the action of H
on Py. The determinants appearing in (8.0.14) are then the Chern-Weil representatives of

the Hy-equivariant Euler classes of these bundles.
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