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Abstract

Axions and axion-like particles are well-motivated candidates for Beyond-the-Standard-Model (BSM)

physics. While the present-day dynamics of axions are typically well approximated as nearly-free

massive particles, their production in the early universe via the misalignment mechanism can allow

them to access strong self-interactions. This thesis focuses on the consequences of these strong

self-interactions for astrophysics and cosmology. In the first part of this thesis, we consider the

dynamics of quasi-bound states called oscillons, and construct a new formalism to calculate their

structure and properties. We use this formalism to construct a family of scalar field theories whose

oscillons are cosmologically long-lived and can lead to present-day astrophysical signatures. The

second part of this thesis focuses on coupled axion systems, and we show how the kinds of potentials

that naturally arise in models of the axiverse can lead to a new kind of resonant energy transfer

between axions. This resonance causes energy to flow from the axions with larger decay constants to

those with smaller decay constants, generically enhancing direct detection signatures. Further, this

resonance enhances density perturbations, leading to the formation of dense galactic substructure

and oscillons. We explore the possible signatures of this resonance in direct detection experiments

such as ADMX and DM Radio, as well as astrophysical signatures in astrometric and photometric

probes of galactic substructure.
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2.2 This plot illustrates the mechanisms of oscillon longevity and death described in

section 2.2. Here, we plot the power carried out of the oscillon in the dominant

radiating harmonics as a function of the oscillon frequency ω. The fundamental
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early energetic death. At exceptional frequencies, certain radiative harmonics vanish

as a consequence of destructive self-interference. . . . . . . . . . . . . . . . . . . . . . 9

2.3 The oscillon’s instantaneous frequency ω(t) and radiated power P (t) plotted as explicit

functions of time. These curves correspond to the generic scenario in figure 2.2. This

plot illustrates how the oscillon spends most of its life at the exceptional frequency

where the dominant radiating harmonic vanishes through destructive self-interference. 10

2.4 The radial profile of the physical quasibreather (PQB) (solid) and its orthogonal

deformation (OD) (dashed) for the sine-Gordon (SG) oscillon at ω = 0.92m, plotted

against radius in units of the mass m−1. In the limit where the radiation tails are

small, this serves as an instantaneous approximation of the internal structure of the

oscillon. The first quasibreather harmonic S1 is exponentially bound, defining the

oscillon bulk. The third harmonic S3 is the dominant radiation mode, followed by the

fifth, seventh, and so on. The spatial and temporal phase of the OD are 90 degrees

out of phase with the PQB in the radiative region, representing outgoing radiation. . 11

2.5 The PQB trajectory of the harmonic amplitudes S1 and S3 (red) is plotted on top of

the level sets of the effective potential. The set of all initial conditions corresponding

to quasibreathers is outlined in dotted blue. The particular example plotted here is

of the sine-Gordon equation for ω = 0.5m. . . . . . . . . . . . . . . . . . . . . . . . . 12
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2.6 A physical model for an oscillon radiating into the third harmonic. The black line

represents the background oscillon source ϕ3, while the red lines represent the ampli-

tude of the radiated field. The spherical symmetry of the oscillon imposes boundary

conditions at the origin which behave like an optical mirror: an inward propagating

spherical wave is reflected at the origin, propagating back outward with the oppo-

site phase. The result is that the oscillon radiation may experience two kinds of

self-interference: interference from the physical extent of the source, analogous to

diffraction of a laser beam through a finite-width slit, and interference due to the

spherical symmetry of the oscillon, represented by the mirror. At certain oscillon

frequencies, these two effects conspire to destructively interfere, trapping a nominally

free harmonic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Effective potential Veff(S1) for a long-lived oscillon, at three nearby frequencies. The

example is obtained using the frustrated quadratic method defined in (2.42) with

m2
f = 0.9m2 and b = 2, computed using three Fourier coefficients V1,2,3 with V3

forced to satisfy the mass constraint in (2.1). We see that as ω passes through the

frustrated mass mf , new solutions to the equations of motion (2.41) emerge, specifi-

cally when the local maximum of the effective potential increases to positive values.

The balls are placed at the values S1(0) which initialize physical oscillon solutions at

the respective frequencies ω. The inset figure shows the trajectories of the smallest-

amplitude solutions of (2.41) for each of the three potentials plotted. . . . . . . . . . 26

2.8 Lifetime versus frustration for oscillons in frustrated quadratic potentials, computed

using three and four Fourier coefficients (see equation (2.42)). The lifetimes are

integrated over the interval ω ∈ [0.8, 0.999] in the one-non-perturbative harmonic PQB

formalism. We speculate that introducing more Fourier coefficients leads to longer-

lived oscillons, since the frustration mass can be closer to m before self-interactions

become repulsive, leading to enhanced geometric decoupling. The line of best fit for

three coefficients (dashed purple) is log10(mt) = 28(mf/m)2 − 11, and the best fit

with four coefficients (solid blue) is log10(mT ) = 39(mf/m)2 − 21. . . . . . . . . . . 27
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2.9 Accessible oscillon lifetimes in a periodic potential with two degrees of freedom V1,V2.

Here V3 is constrained such that the mass is fixed to m, with all other Vn≥4 = 0.

The red region indicates parts of the parameter space where ϕ = 0 is not a global

minimum of the potential, and has significantly shorter lifetimes. The stars indicate

potentials for which we have compared our formalism with multiple non-perturbative

harmonics to direct numerical simulation (see Figure 2.11). The peninsula of longevity

corresponds to the emergence of a frequency at which the third harmonic experiences

totally destructive interference at ‘dips.’ The yellow banding corresponds to the

migration of dips to higher frequencies, where geometric decoupling suppresses the

fifth harmonic, increasing the impact of the dip. At the upper right of these bands, the

dip migrates to frequencies higher than that of energetic death, creating a longevity

cliff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.10 The distribution of oscillon lifetimes for 1 (yellow), 2 (gray), and 3 (red) degrees of

freedom in a periodic potential. We uniformly sample the nDOF-dimensional cube

V1, . . .VnDOF
∈ [−1, 1] restricting the potential such that ϕ = 0 is a global minimum,

and VnDOF+1 is fixed such that the mass is m, with the remaining Vn set to 0. Life-

times are computed in the interval ω/m ∈ [0.8, 0.995] in the single-non-perturbative-

harmonic approximation. The geometric suppression of the radiative modes means

that these frequencies likely dominate the oscillon lifetime, and that the perturbative

radiation approximation is typically good. We see that each new degree of freedom

is observed to introduce a new island of longevity (island 1 log10mT ∈ [0, 4], island 2

log10mT ∈ [4, 9], island 3 log10mT ∈ [9, 14]). . . . . . . . . . . . . . . . . . . . . . . 31

2.11 The power radiated by the oscillons in the potentials denoted by stars in figure 2.9.

The dark curves are data from explicit numerical simulations (see appendix 4.5), while

the lighter curves are computed in the PQB formalism. The PQB predictions become

dotted in regions of linear instability, as computed using the methods described in

appendix 4.3. Notice that at low frequencies, the oscillon power curves are of similar

magnitude, diverging at larger frequencies due to geometric decoupling, as explained

in section 2.2.1. The loops at the end of the simulations correspond to the oscil-

lon rapidly converting into 3ω modes past the point of energetic death, causing the

measured frequency at the origin to briefly grow larger than 1. . . . . . . . . . . . . 32
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2.12 The instantaneous decay rate P/EB of the oscillons in the monodromy potentials

(2.46) for p = −1, . . . ,−8, calculated in the PQB formalism, versus the results of Olle

et al. [1]. Here, the power P and bound energy EB are computed as in section 2.1. As
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3.1 Summary of parameter space, constraints, and signatures for a pair of friendly axions

undergoing autoresonance. The lower black solid line (“Θ0 = π/2 Misalignment”) cor-

responds to the decay constant that produces the correct relic abundance for an initial

misalignment angle of π/2 with the simple cosine potential of Eq. 3.1. Autoresonance

allows an axion whose parameters lie near this line (i.e. an axion that would produce

the proper DM abundance in the absence of interactions via misalignment) to effi-

ciently transfer its energy to an axion with a much smaller decay constant. The blue

region (“Attractive Autoresonance”) labels the parameter space accessible to the sim-

ple model of Eq. 3.5. For even smaller values of f , nonperturbative structure growth

quenches the autoresonant energy transfer in this simple model (see Sec. 3.2), but

axion DM with these parameters can still be generated for slightly more complicated

axion potentials that include repulsive self-interactions to prevent structure growth

(Sec. 3.4). These regions of parameter space are labeled “Repulsive Autoresonance.”

We also show constraints and projections for various experimental efforts to detect

axions and axion DM through the axion-photon coupling gaγγ [2–9,9,10,10–16,16–58],

where we have assumed gaγγ ≃ α
4πf . In the friendly scenario, axion DM can be pro-

duced with untuned initial misalignment angles and with much stronger couplings to

the SM than would be expected based on the decay constant predicted by Eq. 3.2.

We note that these direct detection signatures persist even when the friendly axions

make up only a subcomponent of DM (Sec. 3.3.1). The region labeled “Gravitational

Signatures” can be probed using DM substructures generated during autoresonance

(Sec. 3.3.2). The horizontal axis of this plot refers to the overall mass scale of the two

axions (i.e. the parameter m in our potential Eq. 3.5), while the precise axion masses

in the mass basis have additional small dependence on the parameters µ and F . As

explained in Sec. 3.3.3, the exclusions from black hole spin measurements extend to

arbitrarily small values of f only when viewed as constraints on the specific scenario

of the pair of axions being O(1) of dark matter. . . . . . . . . . . . . . . . . . . . . 45

3.2 Resonance curve (Eq. 3.15) for a pendulum of fundamental frequency m = 1 driven

at an amplitude of σd = 4 × 10−3 at a damping of γ = 2.5 × 10−3 (Magenta). The

vertical line is drawn for a driving frequency of µ = 0.9 and intersects the resonance

curve at the three equilibrium solutions. The bottom solution (the linear branch) is

stable and well-approximated by the harmonic oscillator resonance curve (Blue). The

intermediate solution living on the dashed segment is unstable. The top solution is

once again stable, and corresponds to the autoresonant solution for the short axion

(with amplitude σS). The Dashed Black curve represents the frequency curve of a

free pendulum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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3.3 Quasi-equilibrium trajectories of the short amplitude σS as it tracks the time-dependent

resonance curve, for two values of the initial driver amplitude σL(0) and a fixed driver

frequency µ = 0.95. For small driver amplitudes (Blue), the short axion never leaves

the linear branch of the resonance curve. For large enough driver amplitudes (Ma-

genta), the short axion is smoothly lifted from zero amplitude to the stable nonlinear

branch, which converges to the undamped pendulum solution (ω(σS) = µ with ω(σS)

given by Eq. 3.12). At the critical driving, the two branches are equally accessible as

a bifurcation (Gray, Dashed). See App. 4.7.1, and in particular Fig. 4.9 for further

details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Evolution of energy densities in the short and long axions for generic initial conditions

that lead to autoresonance. The parameters taken here are µ = 0.8, F = 20, ΘS,0 =
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initial ratio of energy densities in the short and long modes but does not play any
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3.6 A representative plot of the late-time relative abundance of the short axion ΘS com-

pared to the total axion energy density, as a function of initial misalignment angles

for both ΘS and ΘL. Black regions correspond to initial angles for which ΘS dom-

inates the final relic abundance. It is clear that this happens in two qualitatively

distinct regions: when ΘL(0) is tuned close to zero and when |ΘL(0)| is above some

threshold, which for these parameters is roughly π/2. The latter corresponds to those

initial misalignment angles which land on autoresonance and thus lead to a nearly

complete transfer of energy density from ΘL to ΘS . The former is simply explained by

the linearized dynamics, as shown in the inset. The autoresonance cutoff predicted

in the adiabatic F → ∞ limit (Eq. 4.80) is displayed in Magenta. The numerical

F → ∞ cutoff is displayed in Blue, which differs from the adiabatic prediction in

that it accounts for transient ΘS motion (see main text for details). At very large

initial long axion misalignments, a fractal-like structure emerges due to chaotic dy-

namics in the coupled system, which we discuss in App. 4.7.4. Inset: The same plot

obtained by discarding all terms in the potential V (ΘL,ΘS) of Eq. 3.5 higher than

quadratic order in the fields. In this case, the upper and lower regions completely

disappear because autoresonance relies on the self-interactions of the short axion to
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3.9 The standard deviation of the density perturbations (top) and the differential fraction

of collapsed structures (bottom) at a given smoothing mass MS . The mass scale m =

10−18 eV is chosen to enable direct comparison with Fig. 7 of Ref. [59], where a 10−10

tuning of the initial misalignment angle is necessary to achieve comparable density

fluctuations. The thin dashed lines correspond to the same density fluctuations and

collapsed fraction for a non-self-interacting scalar of the same mass m = 10−18 eV. . 69

3.10 The halo spectrum ρs versus scale mass Ms in the friendly axion model with initial

misalignments and Lagrangian parameters chosen to be representative of what one

might expect to find in the axiverse. The three masses m chosen for this plot match

those of Fig. 8 in Ref. [59] in order to allow for direct comparison. Note the large

enhancement of subhalo density relative to the CDM expectation. The dashed lines

correspond to the density of a soliton, a gravitationally-bound scalar field configu-

ration supported by kinetic pressure, which represents the densest stable collapsed

axion structure of a given mass. The soliton mass-density relationship is given by

ρs ≈ 0.067G3m6M4
s [60]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
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comprises a small fraction of the total dark matter energy density. The darker blue

band shows the prospects for µ = 0.8 and ΘL(0) = 0.5π in the large F limit, where
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bative structure (Sec. 3.2.3). For µ = 0.99, the possible enhancement saturates for

F ≳ 40 (light blue band). As F decreases below the saturation value, the visibility

decreases linearly with F . This enhanced visibility should be compared to that of a

single free axion with initial misalignment Θ0 = 0.5π (middle solid blue line). The

dashed and dotted blue lines are the sensitivity prospects for µ = 0.8 and µ = 0.99
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opposed to clumped) and will pass through direct detection experiments. As a result,

the direct detection prospects are improved relative to those in Fig. 3.12. This plot
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3.12 Summary of parameter space, constraints, and signatures for friendly axions in the

concrete model of Eq. 3.5 for µ = 0.8 and representative initial conditions that result in

autoresonance. This plot is for the case where the friendly pair makes up the entirety

of DM, and the axes m and f refer to the mass and decay constant of the short axion

specifically. In the region labeled “Autores. Completes,” autoresonance lasts long

enough that nearly all of the axion energy density is in the form of θS , while in the

region labeled “Autores. Quenched,” nonperturbative structure halts autoresonance

early and the short axion makes up only a subcomponent. Throughout, we assume

that the short axion has a coupling to photons of size gaγγ ≃ α
4πf and we plot direct

detection constraints and projections based on this coupling. Even when θS is only a

subcomponent, it can be a very visible subcomponent due to its enhanced coupling

to the SM. The regions labeled “Gravitational Signatures” are discussed in Sec. 3.3.2

and elaborated on in Fig. 3.13. The regions labeled “BH Spins” and “SMBH Spins”

refer to BH superradiance constraints discussed in Sec. 3.3.3. This plot was made

using limits compiled in [2–9,9, 10,10–16,16,17,19–27,30,36–52,54–58,61]. . . . . . 76

3.13 Gravitational detection prospects for short-axion DM substructure. This plot was

generated for µ = 0.8, but does not have significant dependence on µ or the initial

misalignment angles (provided they result in autoresonance). The Purple “µ-lensing”

and Blue “α-lensing” regions show projected sensitivities of future telescopes to weak

astrometric lensing of local stars (correlated distortions in their velocities with SKA

and their accelerations with Theia respectively) [62]. The Teal “photometric lensing”

region may be probed through brightness fluctuations of a critically-lensed distant

star [59,63]. Inside the Peach region, nonperturbative structures form during radiation

domination, making this region subject to theoretical uncertainties about how this

substructure will resolve today. Nonetheless, we expect that O(1) density fluctuations

will collapse immediately after matter-radiation equality and lead to similar direct

detection prospects as for the perturbative region below. In the Hot Pink region at the

top, nonperturbative structure quenches autoresonance before the two axion energy
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3.14 The distribution of late-time energy density ratios ρS/ρL, as defined by Eq. 3.68 in

the potential Eq. 3.67. For each choice of µ, the initial conditions (ΘS(0),ΘL(0)) ∈
[−π, π]× [−π, π] are sampled uniformly, and the results are binned by the final density

ratio log ρS/ρL. This figure should be compared to Fig. 3.5. For mS ≤ µm ≲ 1.17mS ,

(note, mS ≈ 3m is the short axion mass) there are two ΘS amplitudes that can

autoresonate with ΘL, corresponding to the upper and lower tails visible in the up-

per right. Top Inset: The frequency versus amplitude curve for ΘS , showing that

small amplitudes experience net-repulsive self-interactions, which suppress perturba-

tion growth (Blue), and larger amplitudes experience net-attractive self-interactions,

which enhance growth (Magenta). The two autoresonant tails correspond to the two

solutions σS of the equation ω(σS) = µ for µ ≥ ω(0). Bottom Inset: The fraction

of initial misalignment angles landing on each branch. Note, the total probability of

landing on either nonlinear branch does not equal 1 because one may also land on the

linear branch, where the short axion does not autoresonate. . . . . . . . . . . . . . . 84

3.15 The frequency of a classical pendulum versus its energy. There are two distinct

regimes. First, at energies below the barrier height, the pendulum oscillates around

its equilibrium angle, at a frequency which decreases with energy (Blue). At energies

above the potential barrier height, the pendulum completes full rotations. In this

regime, it is the pendulum’s velocity which oscillates around an ‘equilibrium value,’

and the oscillation frequency increases with energy (Magenta). In this paper, we have

described how a driver can lock onto the low-energy branch of this curve through

autoresonance. The high-energy branch opens up the possibility of autoresonance

and associated signatures over a larger frequency range. . . . . . . . . . . . . . . . . 87
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3.16 Some possibilities for energy redistribution in the axiverse. Each axion in the axi-

verse is represented as a point in the mass-decay constant plane. The magenta line

represents those values of m and f that lead to the proper relic abundance of DM

for O(1) initial misalignment if the axions are treated independently. As we have

shown here, energy density can be resonantly transferred to axions with smaller de-

cay constants (illustrated by blue arrows). We have studied the case of two axions

with nearby masses (“2-axion Friendship”), both when the pair comprise the totality

of DM (“DM”) and when they are only a subcomponent (“Ω < 1”) but there are

other possibilities in a realistic axiverse. For example multiple axions with nearby

masses could transfer energy in a sequence (“Friendly Cascade”) or collections of ax-

ions could dynamically synchronize and lock onto a rational resonance, where no two

frequencies match identically but they are related rationally. These latter possibilities

are likely to be less common than the two-axion case discussed in this work because

they require more coincidences, but with O(100s) of axions they may still be possible

and further work is necessary to understand them. . . . . . . . . . . . . . . . . . . . 88

4.1 The asymptotic attractor (red) is approached as the inhomogeneous solution goes to

zero. The homogeneous terms, representing the initial conditions at t = −t0 cannot

converge exactly to zero by the time the inhomogeneous solution passes through zero,

and therefore the perturbation never exactly reaches the asymptotic attractor. . . . 96

4.2 Here we have a schematic Power Radiated (as a proxy for field-space) vs Oscillon Fre-

quency plot for the family of deformed PQB (red) and an oscillon trajectory (dashed

grey). Each ellipse centered on a deformed PQB represents the domain of frequencies

and field values over which that specific quasibreather is an asymptotic attractor.

As the oscillon trajectory enters an attractive region, it moves closer to the attrac-

tive deformed PQB. Consequently, it is also drawn into the attractive vicinity of the

neighboring PQBs. Therefore, the oscillon is forced to approach the red trajectory

as the radii of attraction get larger and larger towards the bottom of the dip. After

traversing the dip, the deformed PQB radii of attraction begin to shrink, and the

oscillon trajectory begins to diverge from the deformed PQB trajectory. In this lat-

ter half of the evolution, we see how the deformed PQB trajectory does not act as

a standard attractor, but can still be described as an asymptotic attractor. To see

this, notice how the oscillon instantaneously moves closer to the quasibreather when

entering each new attractive bubble. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
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4.3 The emergence of two new zero-node solutions in the potential defined by Fourier

coefficients V⃗ = {1, 0.5,−1, 0.5} at large oscillon frequencies. The plot shows the

effective potential VS1
(S1) as a function of S1 for positive values of S1; since the

potential is parity-symmetric, the S1 < 0 region is the mirror opposite with respect to

the S1 = 0 axis. We have adjusted the vertical axis to better illustrate the qualitative

features of the potential. Different regions are colored according to the sign of S1(∞)

when launched from that location. A shooting solution is represented by a point on the

boundary between a black and magenta region. Whereas initially there was only one

zero-node shooting solution (marked by the circle), the new potential adds two more

zero-node solutions, marked by the stars. Intuitively, the higher the starting point,

the further the particle will travel, causing successive solutions to have an increasing

number of nodes. However, the combination of 2/r friction and nonlinearities in the

potential breaks this intuition. Depending on the potential’s convexity at the initial

point, the oscillon may lose a widely variable amount of energy to friction. Therefore,

it is at these regions of varying curvature that we expect these new solutions to emerge.103

4.4a The Lyapunov characteristic exponent (the eigenvalue Ω0 of (4.25) with maximum

imaginary part) for the sine-Gordon deformed physical quasibreather (with an error

of ±0.005). The perturbation δθ becomes linearly unstable at ω ≈ 0.88. The nearest

asymptotically attractive quasibreather is always finitely far away from the oscillon.

When ω > 0.88, the linearly unstable mode is therefore always excited, leading to

growing quasiperiodic oscillations on top of the deformed quasibreather background

(see figure 4.4b). Note, throughout this band of linear instability, the mass energy∫
dV 1

4m
2S2

1 is monotonically decreasing, in contradiction with [64]. On the plot, we

denote the energetic death at ω ≈ 0.94, where the oscillon is forced off the quasi-

breather trajectory by energy conservation. . . . . . . . . . . . . . . . . . . . . . . . 106
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4.4b The power radiated by a simulated sine-Gordon oscillon versus the central fundamen-

tal frequency. On this plot, we’ve indicated the onset of linear instability ω ≈ 0.88

calculated using our eigenvalue code described in appendix 4.3, and the instance of

energetic death ω ≈ 0.94 described in appendix 4.1.4. This figure represents the

a consequence of linear instability: growing quasiperiodic oscillations. The specific

magnitude of this effect depends on initial conditions and environmental perturba-

tions (see figure 2.11 for an example where oscillations are suppressed). Whether or

not the unstable mode can become large enough to destroy the oscillon, the perturba-

tion itself has a radiation component, which may significantly modify the lifetime. In

this particular case, the unstable mode’s frequency ω±ReΩ0 approaches the oscillon

frequency ω towards the end of life, leading to growing beats (see figure 4.4a). The

loop of death at the end of the evolution occurs because the central oscillon rapidly

becomes a mix of first and third harmonic, causing the central frequency to be larger

than 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5 A visualization of how linear instability emerges in the simplified model of appendix

4.3. The boundary of stability is described by eigenvalues meeting at zero. The

plot describes the solutions to the eigenvalue equation (4.27) in the case of a simple

Gaussian background, in which the fundamental oscillon mode is taken to be S1(r) =

A exp
{
−r2/2σ2

}
. The plot background describes stability as a function of the two

Gaussian parameters, the oscillon amplitude A and width σ; for oscillons of sufficient

width and amplitude, there are eigenvalues Ω0 with negative imaginary part, and thus

the oscillon is unstable. We show the eigenvalues nearest to zero for three points in

this parameter space: stable (green), borderline unstable (yellow), and unstable (red).

The real eigenvalues closest to the origin become degenerate at zero on the boundary

of stability; they further split into purely imaginary conjugates in the instability region.109
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4.6 Here we plot the maximum stable amplitude of y in the nonlinear Mathieu equation

(4.29) for small ϵ, and we’ve indicated the instability band of the linear Mathieu

equation in red. Outside the red region, the nonlinear oscillations are centered on

y = 0, representing that the oscillations stay bounded independent of phase. However,

for |α| < 0.5, only oscillations of a particular phase remain bounded, indicating that

y = 0 has become hyperbolic (see left inset). Inset in the plot are two examples of the

slow oscillation trajectories. For |α| < 0.5, the red stable trajectories have amplitude

larger than 0 and are restricted to a finite interval of phase. This generally nonlinear

phenomenon represents a special region of stability within the otherwise unstable

phase of the Mathieu parameter space. For |α| > 0.5, the red stable oscillations are

restricted to a finite amplitude, but are allowed to have any phase. In both cases,

large enough amplitude perturbations grow without bound, represented by the black

trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.7 Effective Mathieu equation parameters 0 = ÿ+(a−2q cos 2kωt)y for integer k, where

we associate a pair (ar, qr) to each radius r of the sine-Gordon quasibreather back-

ground (4.25) for ω = 0.95, ignoring the gradient term. This picture is meant to

guide our intuition of the Mathieu equation into the less-familar Floquet problem

(4.25). Intuitively, a mode can be understood as more unstable if more of its volume

lies in the Mathieu instability bands. This plot, although not quantitatively precise,

provides intuition for why the lowest angular momentum states are more susceptible

to instabilities, since they have the most overlap with the dominant instability bands. 113

4.8 The set of parameters for which ΘS ends up autoresonating for ΘS(0) = 0 in the

F → ∞ limit. We compare a numerical evaluation (Blue) to the analytic adiabatic

prediction of the critical driver amplitude. The numeric autoresonance region corre-

sponds to those parameters for which ΘS has finite amplitude as t→ ∞. The analytic

contour is obtained as the minimum driver amplitude for which a quasi-equilibrium

configuration connects the zero amplitude linear resonance at t = 0 with the finite

amplitude nonlinear resonance at t = ∞ as in Fig. 3.3. Note that the analytic esti-

mate improves as µ → 1, where the evolution of the resonance curve is slowest, and

thus is most accurately described by an adiabatic approximation. Inset: A plot of

the function Θlin→cos, which takes as input the initial misalignment of a harmonic

oscillator, and outputs the misalignment of a cosine oscillator that yields the same

late-time relic abundance. Note that this function is the identity at small Θlin. . . . 123
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4.9 Short axion resonance curves over a sequence of times for two different values of ini-

tial long amplitude σL(0). Black dots represent the adiabatic evolution of an axion

system with µ = 0.95. The short axion always begins on the linear branch at early

times, but its final amplitude is determined by the evolution of the resonance curve.

Top: For σL(0) = 0.55, the resonance curve “tongue” grows over the instantaneous

equilibrium, leaving σS on the linear branch. Bottom: For σL(0) = 0.65, the res-

onance curve narrows under the instantaneous equilibrium, leaving σS elevated on

the nonlinear branch (autoresonance). Note: these resonance curves are made using

Eq. 3.15 to enable direct comparison with Fig. 3.3; utilizing Eq. 4.78 does not change

the qualitative features of these two classes of evolution history. . . . . . . . . . . . . 124
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Chapter 1

Introduction

In the present epoch, axions and scalar fields in general are often well approximated as massive

particles whose interactions with the Standard Model (SM) are firmly perturbative and whose self-

interactions are equally weak. The early universe, however, was a much more energetic place, and the

initial conditions set by inflation can allow axions to experience strong self-interactions that cannot

be treated by perturbation theory in the coupling. This thesis explores various axion dynamics made

accessible by cosmology and explores their observational signatures.

The first chapter contains results published in the journal Physical Review D [65]. The original

concept of this project was my own, and this paper is the result of a collaboration with Tudor

Giurgica-Tiron, with whom I share equally the intellectual and writing credit. The focus of the

paper is to introduce a novel method for computing the properties of oscillons, quasi-bound states

of real scalar fields with attractive self-interactions. Crucially, our formalism simultaneously retains

physical boundary conditions and non-perturbative self-interactions, and has allowed us to show

why certain oscillon ansatz solutions in the literature yield extremely accurate predictions, thus

placing these techniques on solid theoretical footing. Further, our method improves on the accuracy

of existing ansatz methods and other semi-analytic techniques in the literature, while also enhancing

computational efficiency. Finally, we use our insight to construct a new infinite family of scalar field

theories that contain extremely long-lived oscillons, which may realistically live into the present day

and lead to astrophysical signatures.

The second chapter contains results published in the journal Physical Review D [66]. The origi-

nal concept of this project was my own, and this paper is the result of a collaboration with Tudor

Giurgica-Tiron, Olivier Simon, and Jedidiah Thompson, with whom I share equally the intellectual

and writing credit. In this project, we study consequences of the existence of a large collection of

axions predicted by string theory, commonly known as a string axiverse. Axions have a natural cos-

mological production mechanism, vacuum misalignment, making them well-motivated dark matter

(DM) candidates, and much existing work on axion production has considered the case of a single
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CHAPTER 1. INTRODUCTION 2

free axion. In a realistic axiverse, however, string axions are expected to be distributed densely over

many orders of magnitude in mass, and to interact with one another through their joint potential.

In this paper, we show that non-linearities in this potential lead to a new type of resonant energy

transfer between axions with nearby masses. This resonance generically transfers energy from ax-

ions with larger decay constants to those with smaller decay constants, and leads to a multitude of

signatures. These include enhanced direct detection prospects for a resonant pair comprising even a

small subcomponent of dark matter, and boosted small-scale structure if the pair is the majority of

DM. Near-future iterations of experiments such as ADMX and DM Radio will be sensitive to this

scenario, as will astrophysical probes of DM substructure.



Chapter 2

Structure of the Oscillon

Axions are real scalar fields predicted to exist in many extensions of the Standard Model. One of

the best-motivated is the QCD axion, which emerges as the pseudo-Nambu-Goldstone boson of a

broken U(1)-axial symmetry, known as Peccei-Quinn (PQ) symmetry [67]. The PQ breaking scale

fa, known as the axion decay constant, suppresses the axion’s self-interactions and its coupling to

the Standard Model (SM). To avoid impacting stellar cooling rates, axion-SM interactions must be

highly suppressed, forcing fa to be in the deep UV, fa ≳ 1010 GeV [68–70]. As the universe cools

below the QCD scale ΛQCD ≈ 200 MeV, strong dynamics generate a periodic potential for the axion,

whose VEV cancels the strong sector’s CP-violating phase, thus resolving the strong-CP problem.

The separation between the QCD scale and the PQ scale forces the axion’s mass ma ∼ Λ2
QCD/fa to

be smaller than 1 meV, potentially by many orders of magnitude [71,72].

Furthermore, axionic degrees of freedom emerge in great numbers from realistic string compacti-

fications, collectively known as the Axiverse. Like the QCD axion, these axion-like particles (ALPs)

are generally described by two parameters: their mass m and the decay constant f . Generic ALPs

are also expected to have naturally small masses, which are exponentially suppressed by the string

instanton action. The precise form of the ALP potential depends on the specifics of the UV theory

it descends from, leaving its low-energy dynamics effectively unconstrained [73].

Axions (both the QCD axion and ALPs) come equipped with natural production mechanisms,

such as the vacuum misalignment mechanism, making them well-motivated dark matter candidates

[59,74–81]. Of particular phenomenological interest are ultralight axions, whose masses can be as low

as 10−21 eV [5,8,82–87]. Such ultralight axions lead to novel wave dark matter signatures, including

effects on the matter power spectrum and structure formation [59,88–91], CMB observables [20,92],

and the formation of compact scalar structures such as axion minihalos [93–95], gravitationally

bound solitons and axion stars [96–98], and self-interaction bound oscillons [1,64,99–123], the latter

of which is the subject of this paper.

As the densest object in this family of bound axionic structures, oscillons promise dramatic
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astrophysical signatures, and have therefore been the subject of intense scrutiny [124–130]. Oscillons

have a finite lifespan, and such phenomena crucially rely on oscillons that are cosmologically long-

lived. Since dark matter axions are constrained by Lyman-α forest measurements to be at least

10−21 eV in mass, their oscillation period is at most 0.1 years [5,8,82–84,86,87]. Therefore, oscillons

that survive 14 Gyr until the present day must be stable for at least 1011 oscillations. Simulating an

oscillon this long-lived is at the upper limit of current computational capabilities [1, 118], and thus

indirect methods are required to study longer-lived oscillons.

Significant progress has been made towards understanding the structure and evolution of oscillons

in the last two decades, building on improved computational resources and theoretical understanding

[1, 64, 106–123]. Of central theoretical importance are artificial, exactly-periodic solutions of the

equations of motion, which have been used to approximate the oscillon’s instantaneous profile and

radiation rate. In rare instances, in which the oscillon is known to be infinitely long-lived, this

approximation is exact, and the solution is called a breather : a finite energy periodic solution of the

equations of motion. The most famous such example is the 1+1 dimensional sine-Gordon breather,

which is stabilized by an infinite set of conserved quantities [131]. Breathers are not known to exist

in 3+1 dimensions. Relaxing the breather’s finite energy constraint, we find the periodic solutions

known as quasibreathers. These constructions have an infinite amount of energy residing in their

standing-wave tails. These radiative tails can be understood as an approximation of the oscillon’s

classical radiation amplitude, which can be used to estimate the oscillon’s lifetime.

In this paper, we further develop the quasibreather technique into a framework for understanding

the classical properties of oscillons, unifying several observations made in the literature, and address-

ing key conceptual questions about the harmonic structure and stability of oscillons. By imposing

realistic boundary conditions, we introduce the physical quasibreather (PQB) as the member of the

quasibreather family closest to a radiating oscillon, and arrive at an improved method for calculating

oscillon properties, such as lifetime, radial profile, linear stability, and frequency content. In the limit

of long lifetimes, our method becomes especially efficient, since semi-perturbative techniques may

be employed to rapidly compute oscillon radiation. We apply our new methods to systematically

study oscillon lifetimes in periodic axion potentials, allowing us to probe the genericity of long-lived

oscillons. Moreover, we apply our framework to expand on existing studies of long-lived oscillons in

monodromy potentials.

We summarize our study of oscillon lifetimes in periodic potentials with parity in the form of

longevity landscapes, such as the one depicted in figure 2.1a. There, we scan the coefficients Vn of

the axion potential V (ϕ) defined as

V (ϕ) = m2f2
∞∑
n=1

Vn
n2

(
1− cos

(
nϕ

f

))
,

∞∑
n=1

Vn = 1 . (2.1)

Here, the field ϕ is the axion field, m its mass, and f its decay constant. The particular slice through
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Figure 2.1a: A slice through the oscillon lifetime landscape of parity symmetric periodic potentials
with three free parameters (2.1) (see text for details). The lifetime T is calculated in units of the
scalar mass m for oscillons starting with a fundamental frequency of ω = 0.8m. The result is a
glimpse into the structure of the oscillon lifetime landscape, revealing islands of longevity, separated
by valleys. These features correspond to the location of exceptional ‘dip’ frequencies, where the
third harmonic experiences totally destructive interference. We plot the families of potentials along
the important colored contours in figure 2.1b.

the space of coefficients in figure 2.1a is defined by the choice to treat V1 and V2 as free parameters,

while fixing V3 = −1, and forcing V4 to satisfy the mass constraint, with all other Vn set to zero. Our
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Figure 2.1b: The potentials along the lines of constant lifetime in figure 2.1a. To interpret this figure,
we recognize that each color corresponds to approximately a single lifetime. Therefore, thin regions
contain the most significant features, while broad regions, such as the value of the potential near
ϕ/f = ±π, are the least significant for determining the lifetime. As the central part of the potential
approaches a free theory, the oscillon must grow in spatial extent because of weak self-interaction,
leading to decoupling of the large bound oscillon from the short wavelength radiation (see section
2.2.1). On the other hand, some self-interaction is necessary to delay energetic death, which is why
the purple potentials are much longer-lived than the red ones (see sections 2.2.3 and 2.3).
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numerical techniques based on the PQB formalism have allowed us to perform this parameter sweep

in 96 CPU-hours, parallelized down to a few hours of wall-clock time. We see that the landscape

is broken down into “islands of longevity,” where neighboring potentials sustain oscillons that are

similarly long-lived. While most of this space supports oscillons in the range 102 − 104 oscillations,

these few tunable parameters in the potential are enough to allow for oscillons that may live up to

1014 cycles.

The distinct islands in figure 2.1a correspond to the action of two mechanisms that suppress os-

cillon radiation, which we identify as totally destructive self-interference and geometric decoupling.

Together, these two effects comprise the form-factor of the oscillon coupling to radiation, but we

separate them because of their distinct imprints on the oscillon life-cycle, as depicted in figure 2.2.

Further, the cliffs in figure 2.1a represent destructive interference peaks entering unreachable fre-

quencies beyond the point of energetic death, where the oscillon is forced to dissipate because of

energy conservation. Here, we briefly review these three effects.

Destructive interference: The bound bulk of the oscillon is a nearly coherent object, oscillating

at frequency ω. Through the interaction terms of integer order ϕn+1, the oscillon bulk behaves as

a nearly coherent source of radiation at multiples of the fundamental frequency nω. Similar to a

diffraction experiment, certain geometries lead to totally destructive interference, exponentially con-

fining certain radiation channels at exceptional frequencies. When the dominant radiation channel

destructively interferes, the radiated power experiences a sudden ‘dip.’

Geometric decoupling: The size of the oscillon is inversely proportional to the momentum
√
m2 − ω2,

which blows up as the binding energy per particle m− ω goes to zero, i.e. as ω approaches the rest

mass m (see figure 2.3). In this limit, the oscillon grows much larger than the wavelengths of ra-

diation 2π/nω, causing a separation of scales. As this separation grows, the smooth oscillon bulk

decouples from radiation, which manifests as an exponential decrease in radiated power towards the

end of the oscillon’s lifetime.

Energetic death: As the oscillon radiates away its energy, the binding energy per particle decreases,

reducing the oscillon’s central amplitude and increasing its radius. In three or more spatial dimen-

sions, weak self-interactions result in a volume growing faster than can be accommodated by the

decreasing central amplitude. Therefore, at frequencies ω approaching the mass m, there is a point

past which an external energy source is necessary for the oscillon to remain bound. At this point,

the oscillon is forced to undergo a rapid process of dissipation, which we call energetic death.

These mechanisms explain the structure of the longevity landscape observed in figure 2.1a.

An island of longevity starts when a point of destructive interference (a ‘dip’) emerges from low
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frequencies (green contour). As the dip migrates toward higher frequencies, its effect is enhanced

by geometric decoupling, causing lifetime to increase until the dip moves beyond the frequency of

energetic death, resulting in a longevity ’cliff’ (blue contour).

In order to obtain these results, we have applied our PQB formalism to estimate the evolution

of extremely long-lived spherically symmetric oscillons in isolation. In doing so, we have made the

implicit assumption that the physical oscillon has relaxed into a state near the PQB. In order to

check that this assumption is valid, we have performed a detailed linear stability analysis of the

PQB to spherical and non-spherical perturbations, and we have presented evidence that unstable

modes remain small enough that our procedure stays predictive (appendix 4.3).

This paper is structured as follows. Section 2.1 introduces the main object of study, the physical

quasibreather. The oscillon is identified as living in the basin of attraction of the PQB, which

naturally captures notions of oscillon stability. Section 2.2 uses the PQB formalism to understand

the mechanisms of longevity briefly discussed above, and derives the minimum radiation condition.

Section 2.3 applies the mechanisms of oscillon longevity and death to construct a family of potentials

supporting ultra-long-lived oscillons. Section 2.4 applies our techniques to study the genericity of

long-lived oscillons, and introduces local and global measures of fine-tuning. Section 2.5 applies

our formalism to well-known potentials in the literature, re-deriving and expanding on previous

results. Finally, the appendices provide a detailed technical overview of our formalism, and contain

an exhaustive treatment of linear stability, as well as our numerical workflow. Appendix 4.1 provides

the mathematical basis of the PQB. Appendix 4.2 details the numerical procedure for obtaining the

PQB. Appendix 4.3 details our linear and nonlinear stability analysis of the PQB. Appendix 4.4

provides technical formulae relevant for computing the PQB and its linear stability. Appendix 4.5

details our explicit numerical simulations.

2.1 The physical quasibreather

The nonlinear wave equation we study in this paper is of the generic form

0 = ϕ̈−∇2ϕ+ V ′(ϕ/f) . (2.2)

Here, f is the scale of self-interaction, known as the axion decay constant. The overdot represents

time differentiation, ∇2 is the usual flat-space Laplacian, and V ′ represents differentiation of the

potential V (ϕ/f) with respect to the field ϕ. An oscillon is a finite-energy solution of (2.2) that

is quasibound by self-interactions. In 3+1 dimensions, which is the focus of our study, all known

oscillons have a finite lifetime because they radiate classical scalar waves. To understand whether

a potential hosts cosmologically relevant oscillons, one needs a robust computational formalism for

obtaining these classical radiation rates. Here, we introduce the physical quasibreather formalism for

computing the oscillon radiation and lifetime, while leaving the more technical details to appendix
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Figure 2.2: This plot illustrates the mechanisms of oscillon longevity and death described in section
2.2. Here, we plot the power carried out of the oscillon in the dominant radiating harmonics as a
function of the oscillon frequency ω. The fundamental frequency ω increases with time, and therefore
may be interpreted as a time coordinate (see figure 2.3). For simplicity, we consider a scalar potential
with parity symmetry, leading to radiation at odd multiples of ω due to n → 1 processes. Towards
higher frequencies, the size of the oscillon 2π/

√
m2 − ω2 is much larger than the radiation wavelength

2π/(nω), leading to the geometric decoupling of radiation. As the oscillon becomes more diffuse,
its volume grows faster than its amplitude shrinks, forcing an early energetic death. At exceptional
frequencies, certain radiative harmonics vanish as a consequence of destructive self-interference.
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Figure 2.3: The oscillon’s instantaneous frequency ω(t) and radiated power P (t) plotted as explicit
functions of time. These curves correspond to the generic scenario in figure 2.2. This plot illustrates
how the oscillon spends most of its life at the exceptional frequency where the dominant radiating
harmonic vanishes through destructive self-interference.
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Figure 2.4: The radial profile of the physical quasibreather (PQB) (solid) and its orthogonal defor-
mation (OD) (dashed) for the sine-Gordon (SG) oscillon at ω = 0.92m, plotted against radius in
units of the mass m−1. In the limit where the radiation tails are small, this serves as an instanta-
neous approximation of the internal structure of the oscillon. The first quasibreather harmonic S1

is exponentially bound, defining the oscillon bulk. The third harmonic S3 is the dominant radiation
mode, followed by the fifth, seventh, and so on. The spatial and temporal phase of the OD are 90
degrees out of phase with the PQB in the radiative region, representing outgoing radiation.
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Figure 2.5: The PQB trajectory of the harmonic amplitudes S1 and S3 (red) is plotted on top of the
level sets of the effective potential. The set of all initial conditions corresponding to quasibreathers
is outlined in dotted blue. The particular example plotted here is of the sine-Gordon equation for
ω = 0.5m.
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4.1.

A physical potential V represents interactions between an integer number of particles, and there-

fore possesses a well defined Taylor series. Consequently, a field oscillating at fundamental frequency

ω will only couple to integer multiples of ω. Thus, one may look for quasibreather solutions: spher-

ically symmetric, exactly periodic solutions of the equation of motion (2.2) of the form

θQB(t, r, ϑ, φ) ≡
ϕ

f
=
∑
n∈N0

Sn(r, ω) sin(nωt+ δn) , (2.3)

where δn are constant phases, with δ1 = 0 by the choice of a time coordinate. The harmonic profiles

Sn(r, ω) divide into bound modes n < m/ω and radiative modes n > m/ω. Solutions of this form

were first introduced in [132] and have since been used throughout the oscillon literature to obtain

approximate oscillon solutions (see [115] for a complete review). Although (2.3) is a periodic solution

of the equations of motion, it is not an infinitely long-lived oscillon; the far-field tails of the radiative

harmonics Sn>m/ω decay like r−1, and therefore contribute infinite energy.

These unphysical, infinite energy radiative tails have been problematic when interpreting quasi-

breathers as approximate oscillons. Furthermore, finding a quasibreather of a specific frequency is

underdetermined: there are as many different quasibreathers of frequency ω as there are radiative

degrees of freedom, representing the choice of central amplitudes Sn>m/ω(r = 0, ω). One proposal to

resolve this ambiguity is to pick the quasibreather with the minimum radiation amplitude, in an at-

tempt to minimize the influence of the unphysical radiation tails (see e.g. [115]). Here, we introduce

a different criterion for choosing the quasibreather closest to a physical oscillon. Instead of demand-

ing that the radiative tails are minimized, we will require that the quasibreather is perturbatively

close to a radiating solution of (2.2).

To this end, we introduce the orthogonal deformation (OD)

θOD(t, r, ϑ, φ) ≡
∑
nω>m

cn(r, ω) cos(nωt+ δn) , (2.4)

whose temporal phase is 90 degrees offset from that of the quasibreather (2.3). Note that the sum over

n only includes the frequencies corresponding to modes with radiative tails, nω > m. When added to

the standing wave quasibreather (2.3), the orthogonal deformation allows for travelling modes (see

figure 2.4). We then define the family of physical quasibreathers (PQB), θPQB, parametrized by ω,

as those quasibreathers which may be orthogonally deformed θPQB → θPQB + θOD to satisfy purely

outgoing boundary conditions at leading order in θOD (i.e. θPQB+ θOD must satisfy the Sommerfeld

radiation condition [133]). Note, we will use subscripts to refer either to a general quasibreather

θQB or to a physical quasibreather θPQB with an OD partner that together satisfy the Sommerfeld

radiation condition.

The radiative boundary conditions are enforced at spatial infinity, where the wave equation (2.2)
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is well approximated by the Klein-Gordon equation. In this region, the OD and the radiative tails

of the PQB are of the same amplitude because they represent purely outgoing radiation. Because

θPQB is a solution of the equations of motion, the perturbation θOD must backreact at second

order O(θ2OD), and it must obey a homogeneous linear equation to the same order 1. Therefore, a

PQB with small radiative tails must have an OD that is small everywhere, compared to the PQB

central amplitude. The infinite lifetime limit is the limit of no radiation, and in this case, the PQB

approaches a finite energy oscillon. Therefore, the PQB will be the central object in our study of

long-lived oscillons.

To summarize, the following three objects are pointwise close to one another: the finite energy

oscillon, the PQB, and the orthogonally deformed PQB. This proximity forms the basis of an expan-

sion of the oscillon, which we fully develop in appendix 4.1, where the oscillon is understood to be a

stable perturbation of the orthogonally deformed PQB. As such, oscillon properties (instantaneous

frequency, stability, radiation, etc.) may be understood as originating from the nearest PQB. Fur-

thermore, we develop the Floquet analysis of linear perturbations to the deformed PQB in appendix

4.3. Although linear stability turns out to be a sufficient criterion for the existence of an oscillon, it is

not a necessary condition, since stable orbits can (and do) emerge at higher orders. In other words,

linear instability does not imply the dissolution of the oscillon, since nonlinearities control the size

of the linearly unstable perturbations. This effect has important phenomenological consequences

for the nature of the oscillon evolution (for examples, see figures 2.11,2.13,4.4a,4.4b). Specifically,

slow quasiperiodic oscillations around the PQB profile emerge in linearly unstable regions, with

amplitude that depends strongly on initial conditions.

Below, section 2.1.1 provides a minimal technical review of our framework, which will be useful

in understanding the qualitative features of oscillon evolution in section 2.2. Afterwards, section

2.1.2 outlines the steps in the numerical workflow of computing the PQB and OD, as well as the

associated oscillon properties such as lifetime.

2.1.1 The mode equations

At each stage of its life-cycle, the oscillon may be viewed as close to a particular physical quasi-

breather. This description becomes increasingly precise in the infinite lifetime limit, where radiation

goes to zero and the oscillon evolves slowly. Because the oscillon spends a long time in the vicinity

of a particular physical quasibreather, the notion of the instantaneous frequency ω becomes well

defined. Physically, ω then behaves like an adiabatic parameter, although formally it serves as an

index to label which physical quasibreather the oscillon is closest to at a given time. The fact that

the oscillon does remain close to the physical quasibreather family is a consequence of its attractive

properties, which we make precise in appendix 4.3.

We are now in position to introduce the mode equations, which describe the spatial profile of

1This is technically only true once one introduces δθ in appendix 4.1.
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the physical quasibreather at a given frequency ω. In the interest of a pedagogical introduction, we

will consider the particularly simple case of a single bound harmonic S1 for a potential with parity

V (θ) = V (−θ), and we will keep only the first radiative harmonic S3.

As outlined above, the potential V is Taylor expandable, and therefore factorizes into a sequence

of integer harmonics of the fundamental frequency ω. By restricting to V (θ) = V (−θ), only the odd

harmonics are coupled to one another, allowing for the following decomposition

V ′(θPQB) ≡ m2f
∑
n=1,3

V ′
n(S1, S3) sin(nωt) + . . . , (2.5)

V ′′(θPQB) cos(n
′ωt) ≡ m2

∑
n=1,3

V ′′
n,n′(S1, S3) cos(nωt) + . . . , (2.6)

where the dots refer to terms proportional to higher frequencies nω, and terms that contain the

small harmonics Sn, n ≥ 5. Inserting the quasibreather and the orthogonal deformation into the

equations of motion, we arrive at the orthogonally deformed mode equations

0 = S′′
1 +

2

r
S′
1 + ω2S1 −m2V ′

1(S1, S3) ,

0 = S′′
3 +

2

r
S′
3 + (3ω)2S3 −m2V ′

3(S1, S3) , (2.7)

0 = c′′3 +
2

r
c′3 +

(
(3ω)2 −m2V ′′

3,3(S1, S3)
)
c3 .

To fully specify the solution to this system, we must provide 6 boundary conditions: regularity at

the origin

0 = S′
1(0) = S′

3(0) = c′3(0) , (2.8)

regularity at spatial infinity

0 = S1(∞) , (2.9)

and radiative boundary conditions [133]

0 = lim
r→∞

∂rrS3(r)−
√
(3ω)2 − 1rc3(r) ,

0 = lim
r→∞

√
(3ω)2 − 1rS3(r) + ∂rrc3(r) .

(2.10)

To understand these equations, it is helpful to visualize the evolution of S1 and S3 as the coordinates

of a point particle rolling down a hill, where r is now the time coordinate, and the initial stationary

particle is placed so that it arrives at the saddle located at the origin when r → ∞ (see figure 2.5).

Out of the continuum of quasibreather initial conditions S1(0), S3(0) satisfying this constraint, the
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orthogonal deformation selects only one, corresponding to the PQB.

2.1.2 Calculation workflow

Here we review the workflow of estimating the oscillon lifetime in the physical quasibreather frame-

work, leaving a more detailed presentation to the appendices.

1. The harmonics Sn of the PQB may be thought of as existing in two categories. The perturba-

tive harmonics are those Sn whose amplitude is everywhere small enough that self-interaction

can be safely neglected. Those Sn for which this is not true are called non-perturbative. Typ-

ically, only a few non-perturbative harmonics are needed to achieve numerical convergence.

The physical intuition for whether a harmonic may be treated perturbatively or not is whether

it contributes significantly to the bound energy compared to the flux radiated per cycle. In

other words, a good rule of thumb for whether a harmonic is perturbative is whether its central

amplitude is significantly larger than the leading orthogonal deformation at the origin.

2. The non-perturbative harmonics (which must include S1) are calculated using a shooting

technique, in which the Sn’s are propagated from the origin to an outer boundary at r = rout.

At this point, the Sommerfeld radiation condition (2.10) is used to calculate the OD, cn(rout)

and c′n(rout). From these final conditions, the cn are propagated back to the origin in the

background of the non-perturbative Sn. One then checks whether the backwards propagated

cn’s satisfy regularity at the origin. We perform a search over initial conditions Sn(0) until

regularity is satisfied for all cn’s.

3. Having computed the non-perturbative harmonics, an arbitrary number of perturbative har-

monics may be computed to linear order by solving a sparse matrix equation. In other words,

once the hard work of computing the non-perturbative harmonics is done, one may compute

the full spectrum of the oscillon to arbitrary harmonic order with little computational cost.

One may then re-shoot the non-perturbative harmonics in the background of the perturbative

harmonics to account for linear back-reaction, repeating until converged.

4. The result of these calculations is a semi-non-perturbative expression for the physical quasi-

breather Sn and its orthogonal deformation cn. The radiation power in each harmonic is easily

computed as Pn = 2πr2(nω)
√
(nω)2 − 1

(
S2
n + c2n

)
evaluated at the outer boundary. The sum∑

n Pn is the PQB approximation to the total power P radiated by the oscillon.

5. Having calculated the outgoing power P as a function of the PQB frequency ω, we may

approximate the lifetime of the oscillon near the physical quasibreather trajectory as T =∫
dω(dEB/dω)/P , where EB is the bound energy in the oscillon, defined as the difference

between the PQB and OD energy (see appendix 4.1.4).
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We provide a public implementation of this protocol for the case of a single non-perturbative har-

monic in potentials with parity — a fast and easy-to-use tool to obtain ballpark estimates of oscillon

properties at larger frequencies 2.

2.2 The oscillon life-cycle

Here we review and expand upon previous literature results [1, 64, 98, 99, 107–118] in order to iden-

tify the main mechanisms responsible for oscillon longevity and death. We point out two distinct

effects contributing to oscillon longevity: geometric decoupling and destructive interference, both

of which may be thought of together as the form-factor of the oscillon coupling to radiation. It is

important to separate form-factor into these two effects because they intervene at different times,

and have different consequences for oscillon evolution. Often, an oscillon’s lifetime is dominated by

one mechanism or the other, while the longest lived oscillons take advantage of both simultaneously.

Separately, as the oscillon ages and grows more diffuse, it will inevitably undergo an energetic death,

beyond which its energy would be forced to unphysically increase. These three effects are all pointed

out in figure 2.2, which depicts the typical radiation history of an oscillon. Below, we provide a

semi-quantitative overview of these three effects.

2.2.1 Geometric decoupling

Recall that the oscillon is a smooth, nearly coherent object, coupling to integer multiples n of its

fundamental frequency ω through many-to-one interactions at leading order ϕn+1. As the oscillon

radiates bound energy throughout its life, its fundamental frequency increases towards m (see figure

2.3), and its typical size 2π/
√
m2 − ω2 blows up, where m − ω is the binding energy per particle.

Therefore, a natural separation of scales occurs between the length scale of radiation 2π/nω and

the size of the oscillon, leading to an exponential suppression of the oscillon’s coupling to radiative

modes nω, n ≥ 2. According to a standard Riemann-Lebesgue suppression argument, the ratio of

the nω harmonic amplitude to the fundamental harmonic central value scales as γn, with

γ ≈ exp

[
−G ω√

m2 − ω2

]
, (2.11)

where G is an order 1 geometrical factor, used here as a stand-in for the exact shape of the oscil-

lon. The fact that the geometrical factor G is in the exponent shows that even modest changes in

the oscillon’s shape can dramatically change its lifespan, emphasizing the importance of accurately

resolving the oscillon geometry. Moreover, because the factor ω/
√
m2 − ω2 becomes larger as ω ap-

proaches m, the differences between potentials will be exaggerated in this limit, while low-frequency

oscillons will typically be similar to one another (see figures 2.11 and 2.12 for an example). As a

2� Simple oscillon code.

https://github.com/SimpleOscillon/Code
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consequence of this growing separation of scales, oscillons whose frequency ω approaches the mass

m radiate at increasingly suppressed rates, so that the last phase of the oscillon’s life is often the

longest. We refer to this general trend as geometric decoupling.

2.2.2 Destructive interference and the minimum radiation condition

Throughout the oscillon lifetime, radiative harmonics are subject to self-interference, which is totally

destructive at exceptional frequencies. At these points, destructive interference completely confines

specific harmonics, and subverts the expected radiation hierarchy implied by geometric decoupling.

When the leading harmonic is confined, the overall radiation amplitude shrinks by another global

factor of γ. For many especially long-lived oscillons, a period near harmonic confinement dominates

the total lifetime. In principle, it is possible to imagine engineering ultra-long-lived oscillons by

aligning the destructive interference of multiple harmonics, leading to additional suppression by γℓ,

where ℓ is the number of aligned exceptional points. In practice, these constructions are necessarily

fine tuned, since each resonance must be aligned to order γℓ−1.

Interferometric analogue The basic physics of oscillon radiation is captured by the physical

model in figure 2.6, which describes an interference experiment reminiscent of the classic Lloyd’s

mirror. In this simple one-dimensional setup, a coherent, finite-sized, optical source at r > 0,

representing the oscillon’s coupling to the radiative harmonic, is placed in front of a mirror at r = 0,

representing the spherical symmetry of the oscillon. Each point in the source experiences interference

both from its reflection, and from its neighbors. Let the spatial location and magnitude of the source

be described by J̃ (r). The direct radiation reaching the observer is therefore

Adirect(t, r) =

∫ ∞

0

dx J̃ (x) ei[ωt−k(r−x)] . (2.12)

On the other hand, the reflected light paths sum up to an amplitude:

Areflected(t, r) =

∫ ∞

0

dx J̃ (x) ei[ωt−k(r+x)+π] , (2.13)

where, crucially, a half-wavelength path difference is picked up upon reflection at the mirror. This is

equivalent to enforcing the usual regularity conditions at the origin in a spherically symmetric field

solution. Finally, the observer adds up these contributions coherently, which explicitly leads to an

amplitude equal to the sine-transform of the source:

Aobs(t, r) = Adirect(t, r) +Areflected(t, r) ,

= 2ei[ωt−kr+π/2]
∫ ∞

0

dx J̃ (x) sin(kx) .
(2.14)
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Figure 2.6: A physical model for an oscillon radiating into the third harmonic. The black line
represents the background oscillon source ϕ3, while the red lines represent the amplitude of the
radiated field. The spherical symmetry of the oscillon imposes boundary conditions at the origin
which behave like an optical mirror: an inward propagating spherical wave is reflected at the origin,
propagating back outward with the opposite phase. The result is that the oscillon radiation may
experience two kinds of self-interference: interference from the physical extent of the source, analo-
gous to diffraction of a laser beam through a finite-width slit, and interference due to the spherical
symmetry of the oscillon, represented by the mirror. At certain oscillon frequencies, these two effects
conspire to destructively interfere, trapping a nominally free harmonic.
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In the following section, we derive a similar result from the mode equations of the PQB, and quantify

corrections to this simplified picture.

The physical quasibreather picture In the previous section, we introduced a simple interpreta-

tion of the oscillon radiation in terms of the interference of a coherent source with its own reflection.

Here we study the mode equations (2.7), in which the first radiative harmonic S3 and the orthogonal

deformation c3 are treated as a perturbation of the fundamental S1. Under this perturbative as-

sumption, the mode equations for the radiative harmonic S̃3 ≡ rS3 and its orthogonal deformation

c̃3 ≡ rc3 further simplify to the frictionless linear system

S̃′′
3 (r) + k2S(r)S̃3(r) = rJ3(r) , (2.15)

c̃′′3(r) + k2c (r)c̃3(r) = 0 . (2.16)

Here, kS and kc represent the r-dependent wavenumbers of the third harmonic S3 and c3 in the

background of the fundamental harmonic S1, and rJ3(r) corresponds to the 3 → 1 processes gener-

ating the radiation. Note, the wavenumber is different for the third harmonic S3 and its orthogonal

deformation c3, a distinction explicitly derived in the appendix result (4.40). There, we find that

the difference between kS and kc appears at sixth order in a Bessel expansion of the background,

and therefore is typically small, making the approximation kS = kc quantitatively good in most

circumstances. We can solve the linear system analytically in terms of two linearly independent so-

lutions yS1,2(r) and y
c
1,2(r) of the homogeneous equations. In this case, the expression for the Green’s

function is simple and the full solution becomes a sum of homogeneous (defined by initial conditions)

and inhomogeneous contributions, of the form:

S̃3(r) =a
H
1 y

S
1 (r) + aH2 y

S
2 (r) + yS1 (r)

∫ r

0

dr′ r′ J3(r
′)
yS2 (r

′)

WS(r′)
− yS2 (r)

∫ r

0

dr′ r′ J3(r
′)
yS1 (r

′)

WS(r′)
,

c̃3(r) =b
H
1 y

c
1(r) + bH2 y

c
2(r) , (2.17)

where WS(r) ≡ yS1 (r)y
S
2
′
(r) − yS1

′
(r)yS2 (r) is the Wronskian. Let yS,c1 be the sine-like solution

(nonzero derivative at r = 0) and let yS,c2 be the cosine-like solution (zero derivative at r = 0).

Regularity at the origin requires that only sine-like initial conditions are allowed, constraining the

cosine-like terms to be zero bH2 = aH2 = 0.

In the far-field region, all solutions yS,c1,2 are simple combinations of sines and cosines of frequency

k3 =
√
(3ω)2 −m2. However, orthogonality between y1 and y2 is generally not maintained into the
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far-field. Without loss of generality, we can introduce phase-shifts to express these misalignments,

yS1 = sin(k3r) , (2.18)

yS2 = cos
(
k3r + φS2

)
, (2.19)

yc1 = sin(k3r + φc1) , (2.20)

with the understanding that when these phase-shifts are zero, we regain the simple constant-

wavenumber Helmholtz solutions. These phase-shifts can in principle be computed in the WKB

approximation. Furthermore, we define the orthogonal components ys = sin(k3r) and yc = cos(k3r)

against which we can project the shifted solutions, leading to

yS1 = ys , (2.21)

yS2 = yc cosφ
S
2 − ys sinφ

S
2 , (2.22)

yc1 = yc sinφ
c
1 + ys cosφ

c
1 . (2.23)

Substituting, we collect the orthogonal contributions to the radiative tails as

S3(r)r −−−→
r→∞

ys(a
H
1 + aI1 + aI2 sinφ

S
2 )− yca

I
2 cosφ

S
2 ,

c3(r) −−−→
r→∞

ysb
H
1 cosφc1 + ycb

H
1 sinφc1 , (2.24)

where aI1 and aI2 are fixed, representing the total inhomogeneous contribution from the oscillon

background

aI1 =

∫ ∞

0

dr′ r′ J3(r
′)
yS2 (r

′)

WS(r′)
, (2.25)

aI2 =

∫ ∞

0

dr′ r′ J3(r
′)
yS1 (r

′)

WS(r′)
. (2.26)

Radiative boundary conditions (2.10) match the coefficients of ys and yc between S3 and c3, which

uniquely determines the homogeneous degrees of freedom,

bH1 = aI2 cosφ
S
2 secφc1

aH1 = −aI1 + aI2(− sinφS2 + cosφS2 tanφc1).
(2.27)

Consequently, the solution simplifies to

S3(r)r = aI2 cos
(
φS2
)
(ys tanφ

c
1 − yc) , (2.28)

c3(r)r = aI2 cos
(
φS2
)
(ys + yc tanφ

c
1) . (2.29)
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In other words, the amplitude of the radiation is always proportional to the inhomogeneous contri-

bution aI2. At exceptional frequencies, this contribution is exactly zero and the harmonic experiences

totally destructive interference; this is visible in the power versus frequency plots as a sudden drop

(see figures 2.11 and 2.12 for example). Therefore, in this linear model the condition for totally

destructive interference is

0 =

∫ ∞

0

dr′ r′ J3(r
′)
yS1 (r

′)

WS(r′)
. (2.30)

In the case of a flat wave-number, i.e. Helmholtz system, this is precisely the sine-transform of the

source, as predicted by the simple interferometric model. Because totally destructive interference is

equivalent to a single constraint on one free parameter ω, we conclude this effect is generic, and not

the result of some fine tuning.

To reach this result, we have effectively solved for the physical quasibreather, defined by the

choice of aH1 in (2.27), at the level of the third harmonic and in a linear approximation. In previous

literature (e.g. [115]), a different quasibreather was highlighted as relevant in approximating the

oscillon, namely the minimum-radiation quasibreather. This corresponds to a different choice of

homogeneous parameters; in this case, the construction of c3 is irrelevant and the value of aH1 is

chosen such that S3 is minimized at the level of (2.24), specifically by picking:

aH1 = −aI1 − aI2 sinφ
S
2 . (2.31)

We see that this differs from the physical quasibreather answer (2.27) by an additional aI2 cosφ
S
2 tanφc1,

which is zero in the case when φc1 = 0, i.e. when the wavenumbers kS(r) and kc(r) are identical

functions of r. While typically small, differences between kS(r) and kc(r) appear at higher-orders

in the background, and are not guaranteed to be perturbative — as derived below in appendix

4.4.1. Therefore, the minimum-radiation quasibreather and the physical quasibreather are generally

close but distinct, and are identical only at the exceptional ‘dip’ frequency where both predict zero

radiative tails.

2.2.3 Energetic death

As explained in section 2.2.1, the spatial extent of the oscillon increases as it radiates away its

binding energy. On the other hand, the balance between self- and binding-energy demands that the

oscillon’s central amplitude decreases. Depending on the number of spatial dimensions, one effect or

the other dominates the oscillon’s total energy as ω approaches m. In particular, in three or more

spatial dimensions, the volume turns out to grow faster than the central amplitude shrinks. The

oscillon’s parent PQB also obeys the same scaling relation, and at some point the bound energy in

the PQB will necessarily begin to increase. To keep up, the oscillon would need a source of energy;

in its absence, the oscillon is forced off the PQB trajectory, in a process we call energetic death.
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To make these ideas precise, we can invoke the mode equations (2.7), in the limit of small central

amplitude S1(0). Note, because the oscillon’s volume is large, it is geometrically decoupled from

radiation according to the argument in section 2.2.1, and therefore it is safe to neglect backreaction

from the radiative harmonics. Keeping only the leading quartic nonlinearity in the potential, S1 is

described by

0 = S′′
1 +

d− 1

r
S′
1 − (m2 − ω2)S1 +

3

4
m2λS3

1 . (2.32)

Here, d is the number of spatial dimensions. To extract the scaling of S1(0), we match the bound

energy of the oscillon to its self-energy, leading to

(m2 − ω2)S2
1 ∼ m2λS4

1 . (2.33)

Therefore, the scaling of the central amplitude is independent of dimensions, namely

S1(0) ∝
√
m2 − ω2 . (2.34)

On the other hand, since the spatial extent of the oscillon scales like scale 1/
√
m2 − ω2 (as seen in

section 2.2.1), its volume must increase according to

V ∼
(
m2 − ω2

)−d/2
. (2.35)

Combining these two scalings results in the oscillon’s total energy

E ∝ V S1(0)
2 ∝

(
m2 − ω2

)1−d/2
, (2.36)

which grows as ω approachesm for spatial dimension d ≥ 3. In other words, the expectation that the

oscillon energy decreases as a function of ω is only true up to a specific frequency strictly less than

m. Beyond this point, the oscillon energy is forced to increase as a result of weak self-interaction.

Such an increase is unphysical, and the value of ω at which the PQB’s energy is minimized sets the

moment of death. For an earlier argument along these lines, see [109,115].

For an explicit comparison, take the d = 1 sine-Gordon oscillon, which has a simple analytic

form

ϕ = 4arctan

[ √
m2 − ω2 cosωt

ω cosh
√
m2 − ω2x

]
. (2.37)

In the ω → m limit, the energy of the sine-Gordon oscillon is exactly 16
√
m2 − ω2, which matches

our predicted scaling.

All the examples of oscillons studied in sections 2.3, 2.4 and 2.5 live in three spatial dimensions,
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and therefore exhibit an energetic death. In other words, for each oscillon there is a specific frequency

strictly less thanm beyond which the scalar field may no longer exist close to a PQB. After this point,

our formalism no longer applies, and the oscillon is considered “dead.” Afterwards, gravity may take

over leading to the formation of much more diffuse configurations such as axion stars [97,98]. In our

numerical simulations, this moment of death is distinctly visible as a “loop,” representing the rapid

conversion of the oscillon into radiation through 3 → 1 processes (see figures 2.11, 2.13, and 2.14).

2.3 A prescription for oscillon longevity

Here we provide a procedure for generating potentials that support cosmologically long-lived oscil-

lons. In section 2.2, we explained how the longest-lived oscillons exhibit a combination of geometric

decoupling and destructive interference. Geometric decoupling refers to the suppression of radiation

when the oscillon size is much larger than the radiation wavelengths, which is especially pronounced

at large frequencies ω close to m. For a large oscillon, the interferometric ‘fringe pattern’ also occurs

more rapidly, leading to more instances of destructive interference which further suppresses radia-

tion. Thus, we may find long-lived oscillons by searching for potentials that support large oscillons

at frequencies ω close to m. An apparent obstacle to this goal is due to energetic death (see section

2.2.3), which limits the frequencies for which the oscillon can have decreasing energy as a function

of ω. In the following, we identify a feature in the scalar potential that can stave off energetic death

and produce large oscillons.

In section 2.1, we introduced the mode equations (2.7) obeyed by the radial profiles of the PQB

harmonics Sn(r), and the sense in which these harmonics may be thought of as the coordinates of

a point particle, whose initial condition is tuned so that (S1, S3, . . . ) = 0⃗ at r = ∞. Here we aim

to study the longest-lived oscillons, whose radiation is necessarily small. Moreover, we will focus on

large frequencies ω ≈ m, for which higher harmonics are further suppressed by a natural separation

of scales ω ≫
√
m2 − ω2. Therefore, we will drop the higher harmonics n ≥ 3 in this section’s

analysis, and work with a simplified 1-dimensional point-particle picture, representing the radial

profile of the fundamental mode, S1(r).

We now introduce the equations that govern S1 from first principles, using an effective action

technique, equivalent to the PQB formalism for a single bound harmonic. The Lagrangian describing

the real scalar ϕ is

L[ϕ] =

∫
d3x

[
1

2
ϕ̇2 − 1

2
∇2ϕ2 − V (ϕ)

]
. (2.38)

Because both V and ϕ are proportional to f2 (as in (2.1)), f is an overall factor in the action, and

therefore does not contribute to the dynamics. Hence, for the rest of this section, we will work in

units of f = 1. Since we are looking for quasiperiodic, spherically symmetric solutions dominated
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by the fundamental mode, we substitute ϕ = S1(r) sinωt and integrate out time, leading to the

effective action for S1:

Seff[S1] =

∫ 2π
ω

0

dtL[S1 sinωt] = −π
ω

∫
4πr2 dr

[
1

2
S′
1(r)

2 − Veff(S1)

]
. (2.39)

By integrating out time, we arrive at an action for a point particle S1(r), where r acts like a time

coordinate, and the resulting effective potential is

Veff[S1] ≡
1

2
ω2S1(r)

2 − ω

π

∫ 2π
ω

0

dt V (S1 sinωt) . (2.40)

Finally, the equation of motion for S1 arising from this effective action carries a 2/r friction term

from the spherical Jacobian

0 = S′′
1 +

2

r
S′
1 + V ′

eff(S1) , (2.41)

where V ′
eff represents the derivative of Veff with respect to S1.

A solution of these equations which describes an oscillon profile needs to respect regularity

conditions at r = 0 and r = ∞, corresponding to S′(0) = 0 and S(∞) = 0. All solutions which

respect regularity at r = ∞ must exponentially decay, since Veff behaves like a quadratic hilltop

− 1
2 (m

2 − ω2)S2
1 for small S1. From the perspective of the point particle, this means that initial

conditions are tuned such that S1 has just enough energy to climb up the hilltop at 0.

In order to engineer large oscillons, we need the particle S1 to stay at small velocities so that

the oscillon interior spreads out. Initializing on a hillside of Veff is detrimental to this goal, since the

slope of Veff controls the speed of S1, typically leading to a small oscillon core. On the other hand,

releasing S1 close to a hilltop allows S1 to remain at low velocities for a time inversely proportional

to the initial displacement of S1 from the hilltop.

Therefore, we need to connect hilltop-initialized solutions (i.e. low central velocity) to physical

solutions (i.e. which arrive at S1(∞) = 0). To compensate for the energy lost by 2/r friction, a

physical solution must be initialized with positive potential energy (where we’ve normalized Veff(0) =

0). Effective potentials which satisfy these two conditions will have non-trivial local maxima, whose

hilltop is higher than 0 (see figure 2.7).

Here we reverse engineer a class of scalar potentials V (ϕ) which generate effective potentials

Veff(S1) with the aforementioned hilltops. This construction makes use of the fact that the mass

term in the effective potential Veff(S1) acquires an ω2 offset compared to the mass term in the

scalar potential V (ϕ). Based on this observation, we introduce the family of frustrated quadratics,

whose Fourier coefficients (in the basis expansion (2.1)) are chosen as the solution to the following
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Figure 2.7: Effective potential Veff(S1) for a long-lived oscillon, at three nearby frequencies. The
example is obtained using the frustrated quadratic method defined in (2.42) with m2

f = 0.9m2 and
b = 2, computed using three Fourier coefficients V1,2,3 with V3 forced to satisfy the mass constraint
in (2.1). We see that as ω passes through the frustrated mass mf , new solutions to the equations
of motion (2.41) emerge, specifically when the local maximum of the effective potential increases to
positive values. The balls are placed at the values S1(0) which initialize physical oscillon solutions
at the respective frequencies ω. The inset figure shows the trajectories of the smallest-amplitude
solutions of (2.41) for each of the three potentials plotted.
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Figure 2.8: Lifetime versus frustration for oscillons in frustrated quadratic potentials, computed
using three and four Fourier coefficients (see equation (2.42)). The lifetimes are integrated over the
interval ω ∈ [0.8, 0.999] in the one-non-perturbative harmonic PQB formalism. We speculate that
introducing more Fourier coefficients leads to longer-lived oscillons, since the frustration mass can
be closer to m before self-interactions become repulsive, leading to enhanced geometric decoupling.
The line of best fit for three coefficients (dashed purple) is log10(mt) = 28(mf/m)2 − 11, and the
best fit with four coefficients (solid blue) is log10(mT ) = 39(mf/m)2 − 21.
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optimization problem:

minimize max
ϕ∈[−b,b]

∣∣∣∣V (ϕ)− 1

2
m2
fϕ

2

∣∣∣∣ ,
subject to V ′′(ϕ = 0) = m2 ,

(2.42)

where 0 < b < π, and 0 < mf < m is the frustrated mass. In other words, we are forcing the

potential to have mass m at small ϕ, and a different, smaller mass mf at larger ϕ. For frequencies ω

close to mf , the effective potential Veff will consist of a series of hills and valleys inside the interval

S1 ∈ [−b, b], whose amplitude is controlled by how tightly the objective (2.42) is optimized.

As local hilltops in such potentials rise above the zero-potential line, new oscillon solutions

emerge. When the hilltop is precisely at the zero-line, this new solution is wholly unphysical,

carrying infinite energy. As ω increases, this hilltop is pushed upwards, and S1(0) starts with more

potential energy that needs to be dissipated through friction. As a consequence, S1(0) starts further

from the hilltop so that it begins rolling earlier while the 2/r friction is still active, corresponding an

oscillon with a smaller radius and less energy (see the inset of figure 2.7). Even though this branch

may appear at very large ω close to m, this effect guarantees there is some finite range of frequencies

over which the energy of these solutions decreases, meaning a physical oscillon can be supported.

In figure 2.8, we plot the lifetime of oscillons in frustrated quadratics as a function of the frus-

tration m2
f/m

2. The frustration mass mf controls the frequency at which new hilltop solutions

emerge. As mf increases towards m, the appearance of these new branches occurs at larger frequen-

cies, taking advantage of enhanced geometric decoupling and leading to longer lifetime. Increasing

the number of Fourier coefficients in the potential reduces the height of the hilltops in the effective

potential, allowing them to emerge at larger frequencies. Further, higher frequencies in the potential

pushes the hilltops closer to S1 = 0, allowing for lower-energy oscillons. We speculate that a fixed

number of Fourier coefficients in the potential implies an upper bound on oscillon lifetimes, although

we leave this question to future work.

2.4 Is longevity fine-tuned?

There are many known examples of potentials which support very long-lived oscillons, including those

identified in section 2.3. However, the precise form of these potentials remains largely unconstrained

by a UV theory, and therefore it is not clear how to assess whether their longevity is a result of fine-

tuning, since the distribution from which the potential coefficients are sampled strongly influences

the lifetime. Therefore, we introduce two notions of tuning that attempt to quantify the difficulty

of constructing a theory with a long-lived oscillon:

1. Global Tuning asks what fraction of parameter space hosts long-lived oscillons. A typical

object of study is the probability distribution of lifetimes, sampled with minimal priors over

the potential coefficients in some natural basis.
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2. Local Tuning asks whether a given long-lived oscillon is sensitive to variation in its potential

parameters. The typical objects of study are the local gradient and curvature of the lifetime

with respect to the parameter space at the point in question.

In sections 2.4.1 and 2.4.2, we address the genericity of long-lived oscillons in periodic potentials

with parity. The advantage of studying periodic potentials is that they are naturally expanded in

the Fourier basis. Without any theoretical priors, a natural scale for the Fourier coefficients is m2f2,

and variations will be of the same size.

One may also be interested in studying the genericity of long-lived oscillons in monodromy poten-

tials [134–136]. Since an oscillon has a finite amplitude, one may restrict the aperiodic monodromy

potentials to a compact interval, which is fully described by a Fourier expansion. However, any

realistic model of axion monodromy is asymptotically a power law, meaning the high frequency

modes of the potential are perfectly correlated. To sample the full space of monodromy potentials,

one must sample from a distribution that imposes this correlation. In the absence of a reliable way

to select coefficients from this distribution, we leave this question to future work. Instead, in section

2.5.1, we scan the one-parameter family of monodromy potentials studied in [1, 111,118].

2.4.1 Global tuning

In this section, we study the distribution of oscillon lifetimes as a function of the potential coefficients

in the Fourier basis. In particular, we will consider periodic potentials with parity

V (θ) = m2f2
∞∑
n=1

Vn
n2

(1− cosnθ) ,

∞∑
n=1

Vn = 1 , (2.43)

where the sum of the coefficients Vn constrains the mass of ϕ to be m. In Figure 2.9, we plot the

lifetime versus the free variation of the first two coefficients n = 1, 2 with the third constrained

so that the sum in (2.43) is satisfied, with all other Vn set to zero. The mass constraint in (2.43)

naturally sets the typical scale of Vn to 1. Therefore, we restrict our study to Vn in the range [−1, 1],

inspired in part by the fact that the QCD axion potential has order 1 coefficients in this basis (see

equation (2.49)).

Figures 2.9 and 2.10 provide illustrative examples of some important qualitative features of the

distribution of oscillon lifetimes. First, we observe islands of longevity, seen in figure 2.9 as localized

regions of exceptionally long lifetimes. In figure 2.10, this feature is manifested as plateaus in the

distribution of lifetimes. We observe that each successive degree of freedom introduces a new longer-

lived island of longevity which we observe to be exponentially more long-lived than the last. The

probability of landing on one of these islands decreases with a scaling expected to be exponential in

the number of degrees of freedom.

With these observations in mind, we introduce a notion of global tuning based on the cumulative
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Figure 2.9: Accessible oscillon lifetimes in a periodic potential with two degrees of freedom V1,V2.
Here V3 is constrained such that the mass is fixed to m, with all other Vn≥4 = 0. The red region
indicates parts of the parameter space where ϕ = 0 is not a global minimum of the potential,
and has significantly shorter lifetimes. The stars indicate potentials for which we have compared
our formalism with multiple non-perturbative harmonics to direct numerical simulation (see Figure
2.11). The peninsula of longevity corresponds to the emergence of a frequency at which the third
harmonic experiences totally destructive interference at ‘dips.’ The yellow banding corresponds to
the migration of dips to higher frequencies, where geometric decoupling suppresses the fifth harmonic,
increasing the impact of the dip. At the upper right of these bands, the dip migrates to frequencies
higher than that of energetic death, creating a longevity cliff.
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Figure 2.10: The distribution of oscillon lifetimes for 1 (yellow), 2 (gray), and 3 (red) degrees of
freedom in a periodic potential. We uniformly sample the nDOF-dimensional cube V1, . . .VnDOF ∈
[−1, 1] restricting the potential such that ϕ = 0 is a global minimum, and VnDOF+1 is fixed such
that the mass is m, with the remaining Vn set to 0. Lifetimes are computed in the interval ω/m ∈
[0.8, 0.995] in the single-non-perturbative-harmonic approximation. The geometric suppression of
the radiative modes means that these frequencies likely dominate the oscillon lifetime, and that the
perturbative radiation approximation is typically good. We see that each new degree of freedom is
observed to introduce a new island of longevity (island 1 log10mT ∈ [0, 4], island 2 log10mT ∈ [4, 9],
island 3 log10mT ∈ [9, 14]).
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Figure 2.11: The power radiated by the oscillons in the potentials denoted by stars in figure 2.9.
The dark curves are data from explicit numerical simulations (see appendix 4.5), while the lighter
curves are computed in the PQB formalism. The PQB predictions become dotted in regions of linear
instability, as computed using the methods described in appendix 4.3. Notice that at low frequencies,
the oscillon power curves are of similar magnitude, diverging at larger frequencies due to geometric
decoupling, as explained in section 2.2.1. The loops at the end of the simulations correspond to the
oscillon rapidly converting into 3ω modes past the point of energetic death, causing the measured
frequency at the origin to briefly grow larger than 1.
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probability of finding an oscillon at least as long-lived. Therefore, smaller values of this probability

mean more extreme outliers, and thus higher degrees of global tuning. For example, according to

our PQB simulations, summarized by figure 2.10, an oscillon of lifetime log10mT = 3 is tuned to

one part in 2 (or 50%). Oscillons of lifetime log10mT = 7 are tuned to one part in 8 (or 10%), and

oscillons of lifetime log10mT = 12 are tuned to one part in 400 (or 0.2%). Finally, the longest lived

potential we observe in our search lives roughly log10mT = 14, and its tuning is roughly one part

in 3000, or 0.03%, although longer-lived oscillons may still reside further up the distributional tail.

2.4.2 Local tuning

As opposed to global tuning, which deals with the statistics over large volumes of parameter space,

local tuning attempts to quantify the sensitivity of an oscillon’s lifetime to variations in its potential

coefficients. If we understand the lifetimemT as a function of the potential coefficients V⃗ ≡ {V1, . . . },
we can naturally introduce a local approximation of mT as a function of its gradient and curvature,

writing V⃗ = V⃗0 + δV⃗, and mT (V⃗0) = mT0,

Gi =
∂ log10mT

∂Vi
, Kij =

∂2 log10mT

∂Vi∂Vj
,

log10mT = log10mT0 + G⃗ · δV⃗ +
1

2
δV⃗ ·K · δV⃗ .

(2.44)

In terms of this local approximation, we may quantify the sensitivity of the lifetime to local variations

in V⃗, as the minimum relative displacement of the potential coefficients ||δV⃗||/||V⃗0|| necessary to

change the lifetime by an order of magnitude log10mT0 ± 1. In other words, our local tuning metric

is the solution to the following constrained optimization problem,

minimize ||δV⃗||/||V⃗0|| subject to
∣∣∣∣G⃗ · δV⃗ +

1

2
δV⃗ ·K · δV⃗

∣∣∣∣ > 1 . (2.45)

We denote the minimal value ν ≡ ||δV⃗||/||V⃗0||.
Consider the potential V⃗ = (1, 1/2,−1), for which an oscillon lives approximately log10mT = 14.

Using the above measure of tuning, and a grid based approximation to the gradient and Hessian,

we calculate ν ≈ 0.03. In other words, a 3% variation in the potential parameters corresponds to an

order of magnitude change in the lifetime of the oscillon. This is substantially less tuned than one

would expect from our global metric, in which this potential is 0.03% tuned. This is a reflection of

the structure of the lifetime landscape, which contains islands of stability seen in figures 2.1a, 2.9

and 2.10.
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2.5 Illustrative examples

Here we apply our framework to a series of potentials that have been studied extensively in previous

literature, with the aim to reproduce and expand upon known results. The main goal is to show

how our methods can accommodate a wide variety of potentials: both with or without parity, and

with or without periodicity. We compare the results of our PQB framework to explicit numerical

simulation. When simulating the equations of motion explicitly (as in appendix 4.5), the wall-clock

time is at least proportional to the oscillon lifetime, which becomes computationally prohibitive

for lifetimes beyond 1010/m. Our framework can bypass this scaling since time has been explicitly

integrated out, allowing us to predict the existence of very long-lived oscillons, well in excess of the

lifetimes we can simulate explicitly.

The results of this section are presented in the form of “power vs frequency” curves, which

represent the instantaneous flux radiated by the oscillon at a particular fundamental frequency

ω. The oscillon fundamental frequency ω monotonically increases with time, and can therefore be

thought of as a time coordinate. For a detailed review of how to interpret these plots and their

features, see figure 2.2.

2.5.1 Axion monodromy

Monodromy refers to the non-trivial winding of an axionic degree of freedom, which effectively

endows the axion with an aperiodic potential at low energies [73,134,135]. In general, the resulting

monodromy potentials share the property that they asymptote to a power law at large field values. A

common family of potentials which interpolate between the asymptotic power-law and the small-field

mass m is

V (ϕ) =
m2f2

p

[(ϕ
f

)2

+ 1

]p/2
− 1

 , (2.46)

where p scans the asymptotic power-law. The potential (2.46) has been widely studied, and has

been shown to support very long-lived oscillons, in excess of 1010 cycles [1, 111,113,118].

In figure 2.12, we summarize our study of the oscillon life-cycles as we scan p from −8 to −1. In

general, we find good agreement with the results of [1]: the power versus frequency curves and life-

times broadly match the predictions of [1] in the cases we have mutually studied p = −8,−5,−4,−1

although there are minor differences.

As p increases from −8 to −1, the lifetime of the corresponding oscillon increases dramatically,

from 106 to 1010 cycles. This is due to the simultaneous action of the two longevity mechanisms

identified in section 2.2. Specifically, the third harmonic experiences totally destructive interference

at an exceptional frequency that is larger with increasing p. Therefore, as p grows, the third

harmonic dip moves deeper into the frequencies where geometric decoupling dominates, which further
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Figure 2.12: The instantaneous decay rate P/EB of the oscillons in the monodromy potentials (2.46)
for p = −1, . . . ,−8, calculated in the PQB formalism, versus the results of Olle et al. [1]. Here, the
power P and bound energy EB are computed as in section 2.1. As p scans from −8 to −1, the
third harmonic dip migrates to larger frequencies where the fifth harmonic is further suppressed
by geometric decoupling, leading to increased lifetime. To obtain the PQB results, we start with a
two-non-perturbative harmonic approximation and used three non-perturbative harmonics to obtain
better accuracy near the dips. At frequencies below the dip frequency, we see a small shift in the
PQB formalism vs [1], which may arise from the need to use more non-perturbative harmonics at
lower frequencies or because the Fourier series representation of (2.46) converges slowly.



CHAPTER 2. STRUCTURE OF THE OSCILLON 36

suppresses the fifth harmonic.

A natural conjecture is that the oscillons of (2.46) are unusually long-lived because of the asymp-

totic power law in the potential. However, our results in figure 2.12 indicate that longevity is domi-

nated by large frequencies, where field amplitudes are too small for the asymptotic behavior to take

over. In particular, for p = −1, the field amplitude at the origin is roughly ϕ(0) ≈ 1.5f , far too

small to be sensitive to the flatness of the potential at large ϕ/f . Therefore, we conjecture that it is

not the asymptotic form, but the details of the connection between 1
2m

2ϕ2 and ϕp that determine

the oscillon lifetime.

In the oscillon literature, many examples of extremely long-lived oscillons are obtained with

monodromy potentials. Thus, a natural question is whether all monodromy potentials share a

common feature leading to longevity, or whether simple examples such as (2.46) happen to live in

a tuned island of longevity. In the language we introduced in section 2.4.1, in order to quantify the

link between monodromy and longevity we would need to know the probability distribution from

which monodromy potentials are chosen. In the absence of this non-trivial construction, we are left

with a case-by-case analysis of particular potentials, which, in this probabilistic view, may suffer

from sampling bias.

2.5.2 ϕ4 theory

ϕ4 theory is the quintessential example of spontaneously broken parity symmetry. It is well known to

host moderately long-lived oscillons, which have been studied in previous work [99,106,112,113,116].

Shifting to the broken vacuum and fixing the mass of ϕ = θ/f to be m, we arrive at the following

parity-violating potential

V (θ) = m2f2
(
1

2
θ2 − 1

2
θ3 +

1

8
θ4
)
. (2.47)

In order to properly compute the physical quasibreather in this potential, the first three harmonics

C0, S1, C2 must be treated non-perturbatively. As is evident from the numerical simulation (figure

2.13), the ϕ4 physical quasibreathers are linearly unstable over the entire range of ω for which the

oscillon is long lived. The instability that occurs at linear order in the PQB background is, however,

stabilized by self-interaction, leading to quasiperiodic oscillations. These nonlinear oscillations are

visible as dense curly-Q’s in the Power vs Frequency plot (figure 2.13).

Our explicit numerical simulation yields an approximate lifetime of 6000/m, which is close to

the PQB prediction of 5900/m. This confirms the earlier results in [99].

2.5.3 The QCD axion

The QCD axion is the best studied example of a scalar field described by a periodic potential,

and could allow for oscillons with cosmological observables. At low temperatures, the QCD axion
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Figure 2.13: Comparison of the explicitly simulated ϕ4 oscillon (black) with the physical quasi-
breather trajectory (red) truncated to the leading three harmonics C0, S1, C2 (in the notation of
appendix 4.1), all treated non-perturbatively. The oscillating behavior is a symptom of linear insta-
bility, although crucially, it does not destroy the oscillon, since the size of the oscillations is controlled
by nonlinearity. For technical details of the explicit simulation, see appendix 4.5.
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Figure 2.14: Comparison of the explicitly simulated QCD axion oscillon (black) to the PQB formal-
ism (red) with three non-perturbative harmonics. The radiated power is so large that the orthogonal
deformation is non-perturbative, leading to disagreement within a factor of a few, although the shape
of the physical quasibreather curve still captures the qualitative features of the simulated oscillon.
Namely, it shows that there is a dip around ω = 0.6m where the fifth harmonic is dominant. This
region, in which the third harmonic is confined and non-perturbatively large, constitutes most of
the oscillon’s lifetime.
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potential is dominated by strong dynamics, giving rise to the potential [80, 98],

V (ϕ) = −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2

(
ϕ

2f

)
. (2.48)

A simple Taylor expansion about θ = 0 reveals that (2.48) has a smaller quartic term than the

simple cosine potential, which leads us to expect the oscillons in (2.48) to be shorter-lived than the

sine-Gordon oscillon. Indeed, this expectation is confirmed by the physical quasibreather framework

and explicit numerical simulation (see figure 2.14 and appendix 4.5).

In order to compute the lifetime in the physical quasibreather formalism, we calculate the po-

tential’s Fourier coefficients

V⃗ = {1.427,−0.648, 0.336, . . . } (2.49)

Our formalism can accommodate many non-zero Fourier coefficients, although only the first three

(and a fourth to normalize the mass) are necessary to converge within 1% of the true potential;

adding more terms has a negligible impact on the results of explicit simulation and on the result of

our PQB formalism.

The result of this analysis is that the QCD axion oscillon is relatively short-lived compared to the

average oscillon, living about 400/m. However, it is interesting to observe that this oscillon spends

most of its life with a confined third harmonic, undergoing very large central-amplitude oscillations

of order 15f . Although the short lifespan of the QCD axion oscillon means that it will only leave

its cosmological imprint shortly after formation, the large amplitude and violent deaths of these

oscillons may have observational implications.

2.6 Conclusion

Real scalar fields play a central role in many theories of early universe cosmology and dark matter.

Many of these theories predict attractive self-interactions that allow the scalars to form quasistable

oscillons. Understanding oscillon lifetime is necessary for determining whether oscillons only play a

role in early universe cosmology, or whether they may also survive until the present day and lead to

dramatic astrophysical signatures.

In this work, we have expanded the quasibreather approximation into a formalism for computing

the properties of oscillons that naturally incorporates realistic boundary conditions. We defined

the physical quasibreather by finding initial conditions of the nonlinear wave equation that simul-

taneously obey radiative boundary conditions and specify a quasibreather solution. As the closest

quasibreather to a physical oscillon, the PQB provides a raw approximation for the oscillon pro-

file (see e.g. figure 2.4) which is increasingly accurate in the limit of long lifetimes. Furthermore,
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the PQB represents the solutions to which the oscillon is instantaneously and locally attracted to

during its evolution. When understood as a stable perturbation to a PQB, the oscillon borrows its

properties from its PQB partner, including its radial profile and radiation rate 3. When the PQB

becomes linearly unstable, nonlinear quasiperiodic oscillations emerge, whose size is controlled by

higher-order terms, as depicted in figures 2.13, 4.4a, and 4.4b. In other words, linear instability

often does not result in the death of the oscillon. Further, we have demonstrated that the PQB and

the minimum radiation quasibreather differ at 6th order in the background, explaining the success

of the ‘minimum radiation quasibreather ansatz.’

Since the PQB offers an accurate description of the oscillon structure, we have used it to under-

stand the oscillon’s form-factor and the resulting mechanisms which control longevity. Specifically,

as the oscillon radiates its energy away, its central amplitude decreases, causing self-interactions

to become weaker; as a result, the oscillon becomes much larger than the radiation wavelengths,

suppressing the radiated power (see figure 2.2). At these high frequencies (ω → m), the large os-

cillon core naturally leads to the rapid self-interference of radiation. When the self-interference is

destructive, the total radiation is suppressed by another power of the form-factor. While both these

effects, geometric decoupling and destructive interference, are generic features of oscillon evolution,

the longest-lived oscillons are a consequence of these two effects occurring simultaneously at large

oscillon frequencies close to m (as in figure 2.12). Finally, we have understood the physics of os-

cillon death as a further consequence of weak self-interaction: past a certain critical frequency the

energy of the PQB is forced to increase, and the oscillon cannot sustain its proximity to its PQB

partner. Using our understanding of the mechanisms responsible for oscillon longevity and death,

we have constructed the family of frustrated quadratic potentials which support extremely long-lived

oscillons, living more than 1018 cycles (see section 2.3).

There are several computational advantages provided by our methodology. First, the oscillon

evolution is computed in a time-independent way, separating the physical lifetime of the oscillon from

the computational wall-clock time it takes to evolve numerically. Second, our formalism naturally

incorporates non-perturbative harmonics, and potentials without even parity. Third, all perturba-

tive harmonics may be efficiently computed by taking advantage of sparse linear algebra. Fourth,

we have introduced the Fourier basis as the natural basis for expanding potentials when studying

oscillons. In this basis, the form of the mode equations is especially simple, allowing us to write

down analytical expansions for the mode potentials that converge everywhere. Fifth, our formalism

provides a natural language for studying the stability of oscillons. Finally, the speed of our numerical

techniques has enabled us to study extremely long-lived oscillons, and has yielded the first prediction

of cosmologically long lived periodic potentials (see figure 2.8).

Using our efficient numerical techniques, we scan over degrees of freedom in axionic potentials

(see figures 2.1a and 2.9), allowing us to probe the genericity of long-lived oscillons (see figure 2.10).

3Although, see appendix 4.1 for a full explanation of the sense in which the oscillon is a stable perturbation of a
PQB
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Important outcomes of this parameter scan include the identification of features in the lifetime

landscape with the mechanisms of longevity (see section 2.2), and the realization that extremal

lifetimes may scale at least exponentially in the number of potential degrees of freedom. At the

same time, long lifetimes are not particularly fine-tuned, since as few as three degrees of freedom are

enough to generate oscillons that survive until last-scattering (4× 106 cycles) with only 15% global

tuning (as defined in section 2.4.1), and oscillons that live until today (1011 cycles) with 0.5% global

tuning.
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Chapter 3

Friendship in the Axiverse

Among the best-motivated extensions of the Standard Model (SM) are axions, periodic pseudoscalar

fields with an approximate shift symmetry that protects their mass from radiative corrections.1 The

most well-known example is the QCD axion, which was originally proposed as a solution to the

puzzling smallness of the neutron’s electric dipole moment [137–140]. This is not the only type of

axion that can exist though: axions can be quite generic in UV completions of the SM with compact

extra dimensions and nontrivial topologies, the principle example of which is string theory [141–143].

The combined motivation of the QCD axion and string theory lead to predictions of a plenitude of

string axions with mass scales spanning many orders of magnitude, a possibility referred to as the

String Axiverse [73].

A light axion ϕ with potential V (ϕ) has a natural production mechanism known as the mis-

alignment mechanism [144–147], whereby the axion field is effectively initialized at some finite dis-

placement from the minimum of its potential, and undergoes subsequent classical evolution.2 These

potentials are generally expected to be periodic and at leading order are often well-approximated

by a cosine:

V (ϕ) = m2f2
(
1− cos

(
ϕ

f

))
. (3.1)

Here f is the axion’s decay constant, which is expected to suppress all couplings of the axion field to

the SM [155–157]. The periodicity of the axion potential provides a natural measure on the space of

initial conditions. In the absence of any dynamic [81,158–163] or anthropic [164,165] considerations,

1The term “axion-like particles” is also used in the literature.
2In the sub-eV axion mass range we consider, and because the axion is a bosonic particle, phase-space occupation

numbers are very large and the cosmological axion field can be described by solving the classical equations of motion
of a condensate [148–151]. This is the mean-field approximation in which one replaces the quantum field operator ϕ̂ by

its central value (i.e. ϕ̂ → ⟨ϕ̂⟩ ≡ ϕ) in the Heisenberg equations of motion, resulting in the classical field equations. As
stressed in [150], one does the same thing when using Maxwell’s equations to describe the electromagnetic field as the
collective behavior of a large number of photons, and indeed the mean-field approximation constitutes the standard
treatment in scalar field models of inflation and dark matter (see for example [148–154] and the many references
therein).

42
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a reasonable expectation is that the initial condition ϕ0 is drawn effectively randomly from the

interval [−πf, πf). Defining Θ0 ≡ ϕ0/f we can then compute the present-day energy density in the

axion field, yielding:

Ωax ≈ 0.4

(
Θ0

π/2

)2 ( m

10−17 eV

)1/2( f

1016 GeV

)2

, (3.2)

which receives corrections as |Θ0| gets very close to π [59, 166–171]. At these large misalignments,

self-interactions from the cosine potential can play a significant role in the field’s evolution at early

times, leading in extreme cases to exponential growth of spatial perturbations and a plethora of

associated signatures [59,166–171].

The above discussion of the misalignment mechanism applies to the case of a single axion un-

coupled from all other particles in the spectrum. However the generic prediction of the axiverse

is actually many axions, spanning orders of magnitude in both mass m and decay constant f . A

more realistic picture of the axiverse is then a sector consisting of N pseudoscalar fields that pick up

nonperturbative contributions to their collective potential from M instantons. We typically expect

M ≫ N [172], so no axion is expected to be massless. This results in a generic potential of the form:

V (ϕ1, . . . , ϕN ) =

M∑
i=1

Λ4
i

1− cos

 N∑
j=1

Qij
ϕj
fj

+ δi

 , (3.3)

where δi are arbitrary constant phases, fi are the various decay constants, and Qij are rational

numbers associated with the axion charges under each instanton [172–178]. The energy scales Λi

are typically exponentially suppressed relative to the UV string scale Λstr by instanton actions Si:

Λi ∼ Λstre
−λSi where λ is an O(1) coupling constant.

In the absence of strong priors on the instanton actions, the axions are expected to have an

approximately log-flat distribution in mass [73], an expectation that has been confirmed in specific

orientifold compactifications of type IIB string theory [172, 179]. The range of axion masses can

easily span several dozen orders of magnitude, from smaller than the current Hubble rate H0 to

order MPl. The decay constants, meanwhile, are typically more narrowly distributed but can still

range over a few orders of magnitude f ∼ 1012 − 1019 GeV [73, 172, 180]. The number of axions in

these compactifications is proportional to the Hodge number of the orientifold and thus can easily

be O(100s), making “coincidences” in axion mass a common occurrence: O(100) axions distributed

log-flat over O(60) orders of magnitude in mass imply that each axion is on average only a factor of

a few away from an axion with a similar mass. By chance some pairs of axions will be even closer,

and as we will show, these coincident pairs can be significantly more visible than other axions in the

axiverse.
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For concreteness, in this paper we consider a sector consisting of two axions receiving two in-

stanton contributions to their potential:

V (ϕL, ϕS) = Λ4
1

(
1− cos

(
ϕS
fS

+
ϕL
fL

))
+ Λ4

2

(
1− cos

ϕL
fL

)
, (3.4)

where we will focus on the case where the axion masses are within a factor of O(2) from each other

but the decay constants are not necessarily close. This potential can be shown in a nicer form by

transforming to angular variables θS ≡ ϕS

fS
and θL ≡ ϕL

fL
and then writing the instanton scales as

Λ4
1 ≡ m2f2, Λ4

2 ≡ µ2F2m2f2, yielding

V (θL, θS) = m2f2 [(1− cos (θS + θL)) + µ2F2 (1− cos θL)
]
. (3.5)

Letting f ≡ fS and F ≡ fL
fS

, the mass of ϕS is mS ≡ m, and that of ϕL is mL ≡ µm. We will

focus on the case where the parameters are in the range 0.75 ≲ µ < 1 and F ≫ 1. We term

such a similar-mass pair “friendly” and will refer to ϕL and ϕS as the “long” and “short” axion

respectively in reference to the size of their decay constants. We note that ϕL and ϕS are not exact

mass eigenstates, but as discussed in App. 4.6 they are very nearly mass eigenstates when F ≫ 1.

We will thus neglect this subtlety for the current qualitative discussion but correctly account for it

in the main text below.

In the absence of the axion interactions, Eq. 3.2 would suggest that for similar masses and O(1)

misalignments, the long axion will always dominate the late-time energy density of the pair because

of its larger decay constant. This is true for µ ≲ 0.75, but when the axion masses get within roughly

25% of each other, a new effect occurs and can result in highly efficient energy transfer from the

long axion to the short axion. We identify this new phenomenon as an instance of autoresonance, a

well-known effect in the mechanics of classical oscillators which has found broad applications across

the nonlinear sciences.3

Near the bottom of the potential, both axions oscillate with a frequency approximately given by

their mass: the long axion at µm and the short axion at m. However, because the short axion has

a nonlinear potential, its oscillation frequency receives corrections depending on its amplitude. At

O(1) amplitudes (such as those that may be expected from a random initial misalignment angle),

its oscillation frequency can become so detuned from m that it lines up instead with µm. At this

point the small interaction with the long axion can resonantly drive the short axion and hold it at

this fixed amplitude, effectively counteracting the damping effects of Hubble friction. Locking onto

this autoresonance is not a guaranteed process and does depend on the initial misalignment angles,

3Autoresonance in nonlinear systems is a fascinating topic in its own right. Although the concept can be traced
to the first sychrotron accelerators [181–183], it has of late received little attention in the high-energy theory com-
munity. First principles treatments are in [184–187]. Refs. [188, 189] review modern scientific applications. Specific
applications exist for atomic and molecular systems [190, 191], rigid rotators [190], plasmas [192–195], Bose-Einstein
condensates [196], planetary systems [188], and control theory and sensing [197–201].
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Figure 3.1: Summary of parameter space, constraints, and signatures for a pair of friendly axions
undergoing autoresonance. The lower black solid line (“Θ0 = π/2 Misalignment”) corresponds to
the decay constant that produces the correct relic abundance for an initial misalignment angle of π/2
with the simple cosine potential of Eq. 3.1. Autoresonance allows an axion whose parameters lie near
this line (i.e. an axion that would produce the proper DM abundance in the absence of interactions via
misalignment) to efficiently transfer its energy to an axion with a much smaller decay constant. The
blue region (“Attractive Autoresonance”) labels the parameter space accessible to the simple model
of Eq. 3.5. For even smaller values of f , nonperturbative structure growth quenches the autoresonant
energy transfer in this simple model (see Sec. 3.2), but axion DM with these parameters can still
be generated for slightly more complicated axion potentials that include repulsive self-interactions
to prevent structure growth (Sec. 3.4). These regions of parameter space are labeled “Repulsive
Autoresonance.” We also show constraints and projections for various experimental efforts to detect
axions and axion DM through the axion-photon coupling gaγγ [2–9, 9, 10, 10–16, 16–58], where we
have assumed gaγγ ≃ α

4πf . In the friendly scenario, axion DM can be produced with untuned initial
misalignment angles and with much stronger couplings to the SM than would be expected based
on the decay constant predicted by Eq. 3.2. We note that these direct detection signatures persist
even when the friendly axions make up only a subcomponent of DM (Sec. 3.3.1). The region labeled
“Gravitational Signatures” can be probed using DM substructures generated during autoresonance
(Sec. 3.3.2). The horizontal axis of this plot refers to the overall mass scale of the two axions (i.e.
the parameter m in our potential Eq. 3.5), while the precise axion masses in the mass basis have
additional small dependence on the parameters µ and F . As explained in Sec. 3.3.3, the exclusions
from black hole spin measurements extend to arbitrarily small values of f only when viewed as
constraints on the specific scenario of the pair of axions being O(1) of dark matter.
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but once it has been established it is extremely stable and persists until nearly all energy has been

transferred out of the long axion and into the short axion. This is by no means a tuned occurrence:

As a representative example, for µ ∼ 0.8 and F ∼ 20, roughly half of the possible combinations of

initial misalignment angles result in autoresonance, leading to the late-time energy density of the

sector being dominated by the short axion.

The signatures of a period of autoresonance are quite dramatic. Axion couplings to the SM are

generically suppressed by their decay constant, for example they are expected to have couplings to

the photon of the form [155–157,202–205]:

L ⊃ −gaγγ
4

ϕFµν F̃
µν , (3.6)

where gaγγ ∼ α
4πf with α ≡ e2

4π the QED fine structure constant. The short axion (with the

smaller decay constant) is thus typically coupled more strongly to the SM than the long axion.

Autoresonance efficiently transfers an axion sector’s energy density into a form more easily probed

experimentally. As we summarize in Fig. 3.1, much of the short axion parameter space will be

probed with existing and upcoming experiments. We emphasize that this enhancement can be

observable regardless of whether the friendly pair in question comprises the totality of the DM or

only a subcomponent.

In addition, a long period of autoresonance means that the short axion spends a long time under

the influence of its nonlinearities. As shown in Ref. [59] in the context of a single axion model, this can

lead to a parametric resonant enhancement in the growth of spatial inhomogeneities of the axion field.

If the axion makes up all of the DM, such inhomogeneities eventually collapse into gravitationally-

bound dark matter minihalos that can be probed purely through their gravitational effects. For

simple axion potentials such as Eq. 3.1, Ref. [59] found that this required initial misalignments of

the order |Θ0−π| ≲ 10−5. Such a tuning can be motivated by anthropics or dynamical mechanisms

[162, 163], and in broader classes of axion potentials it can be avoided entirely [59], but similar

minihalo phenomenology and signatures can also be reproduced by a friendly autoresonating pair of

axions with untuned initial conditions provided the friendly pair comprises the entirety of the DM.

The structure of the rest of this paper is as follows: In Sec. 3.1 we outline the dynamics of

autoresonance for the spatially homogeneous components of the axion fields in greater detail. In

Sec. 3.2 we extend our analysis to inhomogeneities in both fields and show that those in the short

axion grow due to a parametric resonance instability. In extreme cases, inhomogeneities can grow

nonperturbatively large during autoresonance, quenching the transfer of energy between the axions.

We then move to discussing signatures of autoresonance in Sec. 3.3, going over both the significant

effects on direct detection parameter space and the astrophysical and cosmological probes of dense

minihalos. In Sec. 3.4 we broaden our scope somewhat to potentials with repulsive self-interactions,

which do not lead to structure growth but can still support autoresonance. Finally, in Sec. 3.5 we

summarize the results of this paper and discuss its implications and future directions.
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To streamline the presentation we have placed several useful results and derivations in the ap-

pendices. In App. 4.6 we discuss the difference between the mass and interaction bases for the

coupled axion system and show that it has only marginal effects on our analysis. In App. 4.7 we

give a lengthier analytic treatment of autoresonance for a pair of friendly axions, and we do the

same for aspects of perturbative structure growth in App. 4.8. App. 4.9 concludes with a detailed

description and discussion of the numerical simulations used to study the case of nonperturbative

structure growth.

Throughout this paper we work in units where ℏ = c = 1, and we use the reduced Planck mass

MPl ≡ (G/8π)−1/2 ≈ 2.4 × 1018 GeV. We use the Planck 2018 results [206] for our cosmological

parameters, taking the dark matter fraction of the universe to be ΩDM = 0.23, the scale factor at

matter radiation equality aeq = 1/3388, the present-day Hubble parameter H0 = 67.66(km/s)/Mpc,

and the Hubble parameter at matter-radiation equality Heq = 2.2 × 10−28eV. We work with a

mostly negative metric signature (+,−,−,−).

3.1 Friendly zero-mode dynamics

At energies well below its instanton scale, an axion in an expanding universe is well-approximated

by a damped harmonic oscillator. Its amplitude decays because of Hubble friction as a−3/2, while

its energy density falls as a−3. The dynamics of our model (Eq. 3.5) differ from this simple picture

in two important ways. First, at early times, the axion field has enough energy that attractive self-

interactions of the cosine potential are important, and each axion behaves as a damped nonlinear

oscillator, with oscillation frequency that is smaller than its rest mass. Second, the axions are

coupled to one another, allowing energy to flow between them. These two facts lead to the possibility

of autoresonance, wherein a driven axion may dynamically adjust its frequency to match that of a

driver axion. During autoresonance, the driven axion can receive most of the driver’s energy, leading

to new late time signatures.

We begin by taking appropriate limits of the two-axion model (Eq. 3.5) to reduce to the equation

for a single driven pendulum, which exhibits the same essential behavior. The equations of motion

for the axions θS and θL specified by the potential Eq. 3.5 in an FLRW background are

□
m2

θL +
1

F2
sin(θS + θL) + µ2 sin θL = 0 , (3.7a)

□
m2

θS + sin(θS + θL) = 0 , (3.7b)

where □ ≡ ∂2t + 3H∂t − ∇2

a2 for a scalar field in FLRW and H = 1
2t during radiation domination.

In this section we are focused on the homogeneous component of both fields, so we will neglect the

spatial derivatives and denote the homogeneous components of the fields by ΘS and ΘL. In addition,
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we will measure time in units of m−1, allowing us to write these in a simpler form:

∂2tΘL +
3

2t
∂tΘL +

1

F2
sin(ΘS +ΘL) + µ2 sinΘL = 0 , (3.8a)

∂2tΘS +
3

2t
∂tΘS + sin(ΘS +ΘL) = 0 . (3.8b)

In the large-F limit, the equation of motion for ΘL decouples from ΘS , causing the ΘL field to behave

as an independent nonlinear oscillator subject only to Hubble friction. The solution to such an

equation for an O(1) initial misalignment ΘL,0 and t≫ 1 is well-known: ΘL(t) ∝ ΘL,0t
−3/4 cos(µt),

and at late times this becomes small. If we expand the ΘS equation of motion in small ΘL we

obtain:

∂2tΘS +
3

2t
∂tΘS + sinΘS ≈ −ΘL cosΘS . (3.9)

Provided the amplitude of ΘS is not too large, cosΘS will be reasonably close to 1, and we can

approximate4

∂2tΘS +
3

2t
∂tΘS +ΘS − 1

6
Θ3
S ≈ −ΘL , (3.10)

which is the equation of motion for a damped, driven pendulum in the small amplitude limit, formally

known as a Duffing oscillator.

We first consider the left hand side of Eq. 3.10 in isolation and in the absence of damping,

∂2tΘS +ΘS − 1

6
Θ3
S = 0 . (3.11)

With an oscillatory ansatz ΘS(t) ≈ σS cos(ωt+ δ), we find that, due to the attractive self-interactions,

the oscillation frequency ω of the pendulum is a decreasing function of its amplitude σS :

ω(σS) ≈ 1− σ2
S

16
+O(σ4

S). (3.12)

This fact is key to autoresonance. Because of this effect, the range of frequencies below the funda-

mental frequency 1 is now accessible to possible resonances. As we will see below, by driving the

pendulum at a frequency µ below the fundamental, the system can automatically evolve to a new

equilibrium amplitude at which ω(σS) ≈ µ.

We now move to the next stage of complexity by re-introducing constant damping and driving

terms,

∂2tΘS + γ∂tΘS +ΘS − 1

6
Θ3
S = σd cos(µt) , (3.13)

where γ and σd are the damping and driving coefficients respectively. The long-term effect of the

4This formally corresponds to the limit ΘS ≫ (1/6)Θ3
S ≫ (1/2)Θ2

SΘL. In practice, this approximation appears
to work quite well even when the hierarchy is not very large.
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Figure 3.2: Resonance curve (Eq. 3.15) for a pendulum of fundamental frequencym = 1 driven at an
amplitude of σd = 4×10−3 at a damping of γ = 2.5×10−3 (Magenta). The vertical line is drawn for
a driving frequency of µ = 0.9 and intersects the resonance curve at the three equilibrium solutions.
The bottom solution (the linear branch) is stable and well-approximated by the harmonic oscillator
resonance curve (Blue). The intermediate solution living on the dashed segment is unstable. The
top solution is once again stable, and corresponds to the autoresonant solution for the short axion
(with amplitude σS). The Dashed Black curve represents the frequency curve of a free pendulum.
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driver is best depicted by a resonance curve, which shows the possible equilibrium amplitudes σS as

a function of the driver’s frequency µ. In the absence of the nonlinear term − 1
6Θ

3
S , the oscillator’s

equilibrium amplitude is unique:

σS =
σd√

(1− µ2)
2
+ γ2µ2

,
(3.14)

where 1 − µ2 represents the difference between the squares of the oscillator frequency 1 and the

driver µ. An intuitive trick to extend this resonance curve to the nonlinear oscillator is to replace

the fundamental frequency 1 in Eq. 3.14 with its amplitude-dependent version in Eq. 3.12:

σS =
σd√

(ω(σS)2 − µ2)
2
+ γ2µ2

.
(3.15)

By introducing amplitude dependence to the resonance condition, there can now be up to three

equilibrium amplitudes for ΘS as a function of the driver frequency µ, which we show in Fig. 3.2.

The smallest amplitude corresponds to the regime of linear excitation of the pendulum and is stable

to perturbations; we will refer to this solution as the linear branch. The intermediate amplitude

solution is unstable to small perturbations. The third and largest amplitude equilibrium, which we

will refer to as the nonlinear branch, is again stable and, as we will show below, corresponds to

autoresonance.

We now return to cosmological scenario of Eq. 3.10, where friction and driving are decaying

functions of time. In particular, the damping is given by the Hubble parameter γ → 3H(t) ∝ t−1,

and the amplitude of the driver follows the cosmological evolution of the long axion, namely σd →
σL(t) ∝ t−3/4. In spite of this time dependence, the notion of a resonance curve is still useful in the

cosmological scenario since both damping and driving vary slowly compared to the rapid oscillatory

timescale when t≫ 1, allowing σS to arrive at a quasi-equilibrium.

Remarkably, it is the cosmological evolution of γ and σd that is responsible for autoresonance.

We show this effect in Fig. 3.3, where we plot the instantaneous equilibrium of σS at each point

in time for two different initial ΘL amplitudes σL(0) and fixed driving frequency µ. Early on, the

system is dominated by friction, and the equilibrium value of σS is small. At late times, Hubble

friction decays faster than the driver, resulting in equilibrium solutions on both the linear branch

near zero, and on the nonlinear branch at large amplitude. Whether the short axion is smoothly

carried up to the nonlinear branch σS → 4
√
1− µ, or left on the linear branch where σS → 0 depends

on whether the initial driving amplitude σL(0) is large enough. The same reasoning can be applied

to Eq. 3.9 with only slight modifications, which we discuss in App. 4.7.

Thus we have identified a cosmological mechanism for arriving at the nonlinear branch of the

resonance curve. This instance of autoresonance is not unique. For example, Ref. [188] showed that

autoresonance can be induced by sweeping the driver’s frequency and applied this effect to a variety
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Figure 3.3: Quasi-equilibrium trajectories of the short amplitude σS as it tracks the time-dependent
resonance curve, for two values of the initial driver amplitude σL(0) and a fixed driver frequency
µ = 0.95. For small driver amplitudes (Blue), the short axion never leaves the linear branch of the
resonance curve. For large enough driver amplitudes (Magenta), the short axion is smoothly lifted
from zero amplitude to the stable nonlinear branch, which converges to the undamped pendulum
solution (ω(σS) = µ with ω(σS) given by Eq. 3.12). At the critical driving, the two branches are
equally accessible as a bifurcation (Gray, Dashed). See App. 4.7.1, and in particular Fig. 4.9 for
further details.
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of systems, including planetary dynamics and plasma physics. In other words, autoresonance is a

generic feature of many driven nonlinear systems where some external parameter varies, and may

be a generic feature of the axiverse as well.

We now return to the full system of Eq. 3.8, which describes the homogeneous part of the

coupled axion system of Eq. 3.5 in an FLRW background. For some range of values of µ, F , and

initial misalignment angles ΘS and ΘL, the system autoresonates, with ΘS dynamically adjusting

its amplitude so that its frequency matches the driver frequency µ, and then remaining at this

amplitude until backreaction onto ΘL eventually cuts off the autoresonance. For a representative

choice of parameters this can be seen concretely in Fig. 3.4. The physics of this autoresonance is quite

rich, and in App. 4.7 we develop a formalism that lets us quantitatively understand many details

about it, but for the remainder of this section we focus on three questions. First, at what amplitude

is the short field held during autoresonance? Second, assuming the system begins to autoresonate,

what eventually cuts it off (i.e. how long does it last) and what is the final energy density in the

short axion field? And third, what range of parameters (µ, F , and the initial misalignment angles)

lead to autoresonance?

The first question is also the simplest to answer. If a nonlinear oscillator is being autoresonantly

driven in its steady state, its amplitude will be chosen such that its frequency approximately matches

the driver frequency. In the case of two friendly axions discussed here, the short axion is driven

by the long axion, which oscillates with frequency µ in its linear regime (i.e. once ΘL ≪ 1). As

discussed above, the frequency of a cosine oscillator as a function of its amplitude σS is given by

Eq. 3.12. During autoresonance, the amplitude of ΘS will remain fixed at ω(σS) ≈ µ. For µ = 0.8

for example, this evaluates to σS ≈ 1.82.

This “locking” of the ΘS amplitude has important cosmological effects. Hubble friction operates

to steadily dilute the total axion energy density, but because ΘS is autoresonantly held at fixed

amplitude, its energy density does not decrease. As a result, there is a steady transfer of energy

from the long axion to the short axion, and the relative partition of energy between the two fields

shifts as the universe evolves. If both axions have O(1) initial misalignment angles, then at H ∼ m

we have that ρS ∼ m2f2 and ρL ∼ µ2F2m2f2. As time goes on, ρS remains roughly constant but

ρL decreases ∝ a−3 = t−3/2. Thus after approximately a time

teq ≡ Ceq

m
(µF)4/3 , (3.16)

the short and long axion energy densities will have equalized, where Ceq is an order 1 constant.

Autoresonance is still maintained for some time after this, although from this point on the energy

loss in the long field is dominated by the transfer to the short field rather than Hubble friction. This

continues until autoresonance is cut off.

That autoresonance must eventually be cut off is clear from energetics; the short axion amplitude

cannot remain constant forever. Our second principal question is what causes this cutoff, and the
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Figure 3.4: Evolution of energy densities in the short and long axions for generic initial condi-
tions that lead to autoresonance. The parameters taken here are µ = 0.8, F = 20, ΘS,0 = 0.4π,
ΘL,0 = 0.8π, although the qualitative features are similar for broad ranges of initial conditions
within the “friendly” band 0.75 ≲ µ < 1. F sets the rough initial ratio of energy densities in the
short and long modes but does not play any significant role in determining whether the system lands
on autoresonance provided it is somewhat large (F ≳ 5). The short axion energy density is held
approximately constant at a value determined by the equilibrium amplitude of Eq. 3.12 (labeled
“Autores. Equil.”) until the long axion no longer has enough energy density to drive the autoreso-
nance. Note that the final energy densities are not equal, but rather the short axion ends up with
virtually all of the system’s energy density. At late times, the mass mixing of the two axions leads to
rapid flavor oscillations in the long axion’s energy density. Rotating to the mass basis (see App. 4.6)
removes these.
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answer lies in the equation of motion for ΘL (Eq. 3.8a). In our above first pass, we neglected the

F−2 sin(ΘS +ΘL) term in the large-F limit, but in truth this approximation is only valid when

the amplitude of ΘL remains somewhat large. If we expand in small ΘL and retain the first-order

contribution from the F2 term we obtain:

∂2tΘL +
3

2t
∂tΘL +ΘL(µ

2 +
1

F2
cosΘS) +

1

F2
sinΘS = 0 , (3.17)

and so we can see that when F−2 sinΘS ∼ µ2ΘL, backreaction will significantly affect the frequency

of ΘL. This is a somewhat decent proxy for when autoresonance ends, which predicts a maximum

ratio of the amplitudes σS and σL of the short and long axions:

σS
σL

∣∣∣∣
late-time

∼ µ2F2 ≫ 1 . (3.18)

Defining the homogeneous energy density in each axion by

ρS = f2
(
1

2
(∂tΘS)

2 +m2 (1− cos(ΘS +ΘL))

)
≈ 1

2
m2f2σ2

S , (3.19)

ρL = F2f2
(
1

2
(∂tΘL)

2 + µ2m2 (1− cosΘL)

)
≈ 1

2
µ2m2F2f2σ2

L , (3.20)

where the approximations are only valid when ΘL ≪ ΘS (the expectation after a period of autores-

onance), we then have,
ρS
ρL

∣∣∣∣
late-time

∼ µ2F2 ≫ 1 . (3.21)

Once autoresonance ends, the two axions behave as uncoupled fields with the exception of a small

mass mixing, which can be rotated away by shifting to the mass basis. The details of this transfor-

mation are discussed in App. 4.6, but the important result is that for F ≫ 1/
(
1− µ2

)
the rotation

angle is quite small. The resulting flavor oscillations, however, do have a small effect, which we take

into account in App. 4.7. This yields a more precise estimate for the final energy density ratio which

is given in App. 4.7. For F ≫ 1/(1− µ2) this ratio is well-approximated by:

ρS
ρL

∣∣∣∣
late-time

∼ 4F2(1− µ)2 ≫ 1 . (3.22)

This ratio then remains approximately constant as the universe evolves, since both ρS and ρL redshift

∝ a−3.

Although it is a simple heuristic, Eq. 3.22 is extremely important, and highlights one of the

main results of this paper: if autoresonance occurs, ΘL transfers nearly all of its energy density

into ΘS , which then dominates the late-time axion energy density. The short axion can thus have

far more energy density than would seem possible using the misalignment mechanism with O(1)
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misalignments for all fields. Because ΘS has a smaller decay constant, it will also generically have

larger couplings to the SM. As we will discuss in Sec. 3.3, these larger couplings can be probed by

direct detection experiments even when the friendly pair makes up only a subcomponent of the dark

matter.

In actuality Eq. 3.22 is a decent heuristic but there are a few additional effects which can modify

the final result significantly. The first is the fact that when the initial conditions of the axions cause an

autoresonance to occur, they typically also excite oscillations about the steady-state autoresonance.

These lead to a variance of the final ratio in Eq. 3.22 of up to a few orders of magnitude. We devote

App. 4.7 to a more detailed study of autoresonance that touches on such effects, although analytic

results are limited in precision by the nonlinearity of the dynamics. In all such cases, however, the

vast majority of the axion energy density ends up in the short field, so this effect only significantly

affects the final abundance of the long field (a small subcomponent of the total axion energy density).

The second and by far most significant effect is that of spatial inhomogeneities in the short field.

These can be resonantly amplified during autoresonance and, if they grow large enough, can cut off

the autoresonance before the full O(F2) ratio of Eq. 3.22 is achieved. We discuss these effects in

Sec. 3.2.

With this central result we can pass onto our third principal question: what range of parameters

(µ, F , and the initial misalignment angles) lead to autoresonance? Let us first consider the effect of

the decay constant ratio F . Because the dynamics of autoresonance are mainly determined by the

F → ∞ limit of the axion equations of motion (Eq. 3.8), the precise value of F does not play a big

role in determining whether autoresonance will occur, although it must be somewhat large (F ≳ 5)

to trust the above analytic results. Numerically, we find that there are potentially-observable effects

on gravitationally-bound structures for F ≳ 3, which we discuss further in Sec. 3.2.

The mass ratio µ of the axions plays a much larger role. For the attractive self-interactions of ΘS

discussed in the bulk of this paper, autoresonance requires µ < 1, since the driving frequency must

be less than the fundamental frequency of the driven field (i.e. the long axion’s mass must be slightly

smaller than the short axion’s). However if the hierarchy of masses is too large, autoresonance ceases

to be possible. Intuitively, this is because as the masses get further apart, the amplitude of the short

axion predicted by Eq. 3.12 gets larger and larger. Eventually, the approximation cosΘS ∼ 1 in

Eq. 3.10 fails, and the effects of this destroy the possibility of autoresonance. As we discuss in

App. 4.7, this predicts a minimum value of µ ≳ 0.64 to achieve autoresonance. In practice, very few

initial conditions lead to autoresonance for µ ≲ 0.75 (see inset of Fig. 3.5), so the range 0.75 ≲ µ < 1

is a useful notion of how “friendly” two axions must be to see significant effects of the kind we

have described. We have studied this question numerically in the finite F limit, and summarize our

results in Fig. 3.5 and in particular its inset. We find that for µ in the “friendly” band 0.75 ≲ µ < 1,

O(50%) of the space of initial misalignment angles result in autoresonance, which leads to the short

axion dominating the late-time energy density whenever it happens.
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Figure 3.5: The relic density ratio of the short axion ρS to the long axion ρL in the model two-axion
system of Eq. 3.5. A vertical slice of this plot at fixed µ should be read as a histogram, with darker
colors representing a higher likelihood of choosing initial conditions (IC) uniformly sampled from
(ΘS(0),ΘL(0)) ∈ [−π, π] × [−π, π] corresponding to that density ratio. For µ ≥ 1 and µ ≤ 0.75,
most initial conditions lead to ρS ≪ ρL (lower dark bands), as näıvely expected for two uncoupled
axions. For 0.75 ≲ µ < 1, a period of autoresonance causes ρS to dominate the relic abundance
(wispy dark features pointing towards the upper left). We plot the analytical estimate for the shape
of the autoresonance tail in dashed blue (see App. 4.7). Inset: An integrated version of this plot
that shows, for each value of µ, the total fraction of initial misalignment angles that result in the
short axion dominating the late-time energy density in the axion sector.
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Figure 3.6: A representative plot of the late-time relative abundance of the short axion ΘS compared
to the total axion energy density, as a function of initial misalignment angles for both ΘS and ΘL.
Black regions correspond to initial angles for which ΘS dominates the final relic abundance. It
is clear that this happens in two qualitatively distinct regions: when ΘL(0) is tuned close to zero
and when |ΘL(0)| is above some threshold, which for these parameters is roughly π/2. The latter
corresponds to those initial misalignment angles which land on autoresonance and thus lead to a
nearly complete transfer of energy density from ΘL to ΘS . The former is simply explained by the
linearized dynamics, as shown in the inset. The autoresonance cutoff predicted in the adiabatic
F → ∞ limit (Eq. 4.80) is displayed in Magenta. The numerical F → ∞ cutoff is displayed in Blue,
which differs from the adiabatic prediction in that it accounts for transient ΘS motion (see main
text for details). At very large initial long axion misalignments, a fractal-like structure emerges due
to chaotic dynamics in the coupled system, which we discuss in App. 4.7.4. Inset: The same plot
obtained by discarding all terms in the potential V (ΘL,ΘS) of Eq. 3.5 higher than quadratic order
in the fields. In this case, the upper and lower regions completely disappear because autoresonance
relies on the self-interactions of the short axion to achieve frequency-matching between the long and
short fields.
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For fixed µ and F , we can gain a better understanding of which initial misalignment angles lead

to autoresonance by using the resonance curve techniques discussed above. In App. 4.7 we show that

all ΘS(0) will be brought to autoresonance by sufficiently large ΘL(0) in the large F and small 1−µ
limits (see Eq. 4.80 and surrounding discussion). In Fig. 3.6, we show a representative scan over

initial misalignment angles for the parameters µ = 0.85 and F = 20. For initial |ΘL,0| ≳ π/2, nearly

all values of ΘS,0 end up autoresonating, directing nearly all the axion energy density into the short

field. Fig. 3.6 also displays the large-F autoresonance thresholds: the Magenta contour represents

the adiabatic prediction (Eq. 4.80), which one should compare to the numerical Blue contour. These

thresholds differ because the numerical contour accounts for initial transient ΘS oscillations that

depend mildly on the misalignment angles, while the analytical approximation assumes that all

transients have died out. These differences vanish as we take µ closer to 1, where the adiabatic

approximation becomes exact.

3.2 Spatial fluctuations

In the previous section, we described the phenomenon of autoresonance in the two-axion potential

of Eq. 3.5. Autoresonance causes the short axion to undergo sustained, large-amplitude oscillations

by drawing energy from the long axion. At these large amplitudes, θS experiences strong attractive

self-interactions which can lead to the growth of large density perturbations in the axion field during

radiation domination. If the friendly pair comprises a sizable fraction of DM, these perturbations

collapse early during matter domination, leading to a multitude of present-day astrophysical sig-

natures. The mechanism at play is a form of parametric resonance, quite similar to that studied

in Ref. [59]. In this section we generalize that study to our case of coupled axions. We begin in

Sec. 3.2.1 by considering a one-axion analogue of the friendly axion system that contains most of

the relevant physics of perturbation growth. We then show in Sec. 3.2.2 that the results of this

analogue model apply almost without modification to the case of friendly axions, and we arrive at

analytic expressions for the growth rate of the short axion perturbations. In Sec. 3.2.3 we proceed to

a preliminary numerical study of autoresonance in the presence of non-perturbative θS fluctuations.

Our 3+1d numerical simulations provide evidence that the autoresonant energy transfer of Sec. 3.1

can be cut off early if θS fluctuations grow sufficiently large, significantly changing the predictions of

the homogeneous theory. Finally, in Sec. 3.2.4 we conclude by describing the Newtonian formalism

to evolve the density perturbations to the present day and discuss the late-time axion halo spectrum.

In this final section we treat only the case where the friendly axions constitute all of the DM. We

expect qualitatively similar effects if the pair constitute a significant (≳ O(1%)) fraction of the DM,

but we leave this case to future work.
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3.2.1 Invitation: A single axion model of perturbation growth

In the standard misalignment picture, the axion ϕ starts out displaced by order f from its vacuum

expectation value. The axion begins oscillating at H ∼ m and quickly loses energy to Hubble fric-

tion, diluting to approximately one fifth of its initial amplitude over a single oscillation. At such

small amplitudes, self-interactions are weak, and the axion’s potential is well-approximated by a

free quadratic. If, however, the axion starts very close to the top of the cosine, then oscillations are

delayed, and Hubble friction is tiny by the time the axion starts oscillating. It thus takes a long time

for the axion to damp down from its large initial amplitude. The consequence of this large misalign-

ment is that the axion probes the nonlinear part of the potential for an extended period of time. The

now-accessible many-to-one interactions convert the non-relativistic spectrum of axion fluctuations

into semi-relativistic modes through parametric resonance. The resulting density fluctuations can

then collapse into small scale structure, leading to an abundance of late-time signatures [59,207,208].

It turns out that fine-tuned initial conditions are not necessary for such effects if the axion has

a more complicated potential. For example, Ref. [59] also studied monodromy-inspired potentials

that flatten at large field values, effectively extending the cosine plateau. We can obtain a similar

effect if a single axion’s potential receives contributions from two instantons:

V (ϕ) = m2f2
[(

1− cos

(
ϕ

f
+ δ

))
+ µ2F2

(
1− cos

(
ϕ

Ff

))]
, (3.23)

where in this setup F is an integer5 and δ ∈ [0, 2π) is a generic phase offset. Like the two-axion

potential of Eq. 3.5, this potential is comprised of a “short” and a “long” instanton (first and second

lines respectively), whose ratio of periods is F . For parameters F ≳ 3 and µ ∼ 1, the resemblance

goes further. Since the fundamental period of the field is (−πFf, πFf), an untuned initial mis-

alignment angle is ϕ/f ∼ O(F). After a time tosc ∼ 1
m (µF)4/3, the axion amplitude will have

diluted to the scale of the small instanton (ϕ/f ∼ O(1)) and it will feel strong self-interactions. This

delay is completely analogous to the time it takes for θS to fall off the autoresonance (Eq. 3.16). In

addition, Hubble friction has already decreased significantly by this time, and tosc is thus function-

ally equivalent to the delay time of oscillations during large misalignment [59]. At this point the

self-interactions can lead to rapid perturbation growth.

We study the axion perturbations in the background of the perturbed FLRW metric

ds2 = (1 + 2Φ) dt2 − a2(1− 2Φ)δij dx
i dxj , (3.24)

where Φ(t,x) =
∑

k Φk(t)e
ik·x is the adiabatic scalar perturbation generated by inflation. Planck

5A potential of this form can naturally arise from a general axiverse potential such as that of Eq. 3.3, and in that
context F is just the ratio of the axion’s integer charges Q under two different instantons. F can thus in general
be any rational number rather than only an integer, but this does not change any of the qualitative features of the
analysis and so we neglect it here.
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measurements of the CMB are consistent with a nearly scale-invariant dimensionless power spectrum

PΦ(t → 0) = ⟨Φk,0Φk,0⟩ ≈ 2.1 × 10−9(k/k⋆)
ns−1, where ns ≈ 1 − 0.03 is the spectral tilt and

k⋆ ≈ 0.05Mpc−1 is the pivot scale [206]. Because we lack measurements below k = 1 Mpc−1, and

for simplicity, we assume a scale-invariant power spectrum for the remainder of the text ⟨Φk,0Φk,0⟩ =
2.1× 10−9.

We separate the axion field θ(t,x) ≡ ϕ/(Ff) into a homogeneous component and a spatially

varying perturbation

θ(t,x) = Θ(t) +
∑
k

eik·xδθ(t,k) , (3.25)

where k is the comoving wavenumber. To make our notation simpler, we re-scale the comoving

wavenumber by defining

k̃2 ≡ 1

2mHrad(t)

k2

a(t)2
, (3.26)

where a(t) ∝ t1/2 is the scale-factor during radiation domination, H2
rad = 8πG2ρrad, and ρrad ∝ a(t)4

is the energy density in radiation. Note that with this definition k̃ is dimensionless and constant in

time, and k̃ ∼ 1 corresponds to those modes that enter the horizon at H ∼ m. The zero-mode obeys

the equation

∂2tΘ+
3

2t
∂tΘ+

1

(Ff)2
V ′(FfΘ) = 0 , (3.27)

and the perturbation obeys the linearized equation

∂2t δθ(t, k̃) + 3H∂tδθ(t, k̃) +

(
m

t
k̃2 +

1

(Ff)2
V ′′(FfΘ(t))

)
δθ(t, k̃) = S(t, k̃) , (3.28)

where primes indicate differentiation with respect to Θ, and the perturbation initial conditions are

set by inflation, which after many e-folds has flattened the axion field so that δθ(0,x) = 0 to high

precision. S(t, k̃) is a small source representing the effect of the adiabatic scalar perturbations to

the metric on the axion field:

S(t, k̃) = 2

[
tk
t

dΦk
dtk

∂tΘ+ΦkV
′(Θ)

]
, (3.29)

where

Φk = 3Φk,0

(
sin tk
t3k

− cos tk
t2k

)
, t2k ≡ 2

3

m

Hrad
k̃2 . (3.30)

Unlike misalignment in the cosine potential (Eq. 3.1), the two scales of Eq. 3.23 mean that
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misalignment takes place in two parts. In the first epoch, the axion has a large amount of energy

coming from the larger of the two instantons (the long instanton). These initial oscillations have

kinetic energy density many times larger than the small instanton, and the axion rolls over the

short instanton’s wiggles without noticing them. The second epoch begins once the axion’s energy

matches the small instanton scale at a time t = tosc. At this point, strong self interactions from the

short instanton lead to the parametric resonant growth of perturbations.

More quantitatively, the story of misalignment in the two-instanton potential (Eq. 3.23) is as

follows. At early times when H ≫ m, the axion remains fixed at its untuned initial condition

Θ = Θ0 = O(1), where it acts as a cosmological constant. After Hubble friction dilutes below the

mass scale, the zero-momentum mode starts oscillating and the axion energy density dilutes like

matter. After just one oscillation, Θ is small enough that the self-interactions caused by the large

instanton are negligible, and we can approximate the equation for δθ as

∂2t δθ + 3H∂tδθ +m2

(
k̃2

mt
+ µ2 + cos(FΘ+ δ))

)
δθ ≈ S . (3.31)

Although the self-interactions of the long instanton are no longer relevant, it still dominates the

energy density of Θ, ρ ∼ 1
2µ

2m2F2f2. Thus, when the axion is rolling past the bottom of the

potential, we can approximate Θ̇ ∼ µm, and the short instanton acts as a parametric driver at

integer multiples of the fundamental frequency FΘ̇ ≈ Fµm. Because the mass of δθ is order

µm≪ FΘ̇, these rapid parametric oscillations do not induce parametric resonance, and δθ remains

small during this early phase.

The axion does not begin to feel strong self-interactions until its energy density has diluted to

the scale of the small instanton,

ρ(t) ≈ (µm)2(Ff)2Θ2
0(mt)

−3/2 = m2f2Θ2
0

(
t

tosc

)−3/2

, (3.32)

at a time t = tosc ≈ (µF)4/3/m. At this point, the amplitude of the zero mode oscillations has

damped to Θ ∼ 1/F , and Θ acts as a parametric driver with frequency at integer multiples of

FΘ̇ ∼ m. Now that the parametric driver and the perturbation frequency are both order m, δθ will

experience a period of exponential growth due to a parametric resonance instability.

As we will derive in App. 4.8, the growth rate of the axion perturbations is controlled by a single

parameter, the frequency shift δω of the zero-mode oscillations, defined by the relationship

δω(σ) ≡ ω(σ)− ω(0) , (3.33)

where σ and ω(σ) are the amplitude and frequency of the homogeneous mode Θ. The sign of

δω characterizes the net-repulsive or attractive interactions of the potential over the range of a
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complete Θ oscillation. Consider, for example, the case of a repulsive (positive) quartic interaction.

The interaction increases the potential at larger amplitudes, causing the axion to turn around faster

than it would have in a quadratic potential, reducing the period of oscillation. Similar reasoning

applies to attractive quartic and to cubic interactions, which both work to increase the oscillation

period.6 Thus, net-repulsive interactions have δω > 0 and net-attractive interactions have δω < 0.

The instantaneous exponential growth rate Γ(t, k̃) of the axion perturbation δθ(t, k̃) amplitude

at comoving wavenumber k̃ is (see App. 4.8):

Γ(t, k̃) = Re

− 3

4t
+ |δω|

√√√√1−

(
1 +

k̃2

2tδω

)2
 , (3.34)

where the −3/4t is due to Hubble friction. We can see that for repulsive self-interactions (δω > 0),

the growth rate is always negative, and thus density perturbations do not grow through parametric

resonance. Consequently, the late-time signatures of repulsive interactions are completely character-

ized by the analysis of Sec. 3.1, offering a clean benchmark model of autoresonant dark matter which

we describe further in Sec. 3.4. On the other hand, attractive self-interactions, for which δω < 0, do

grow density perturbations, which we describe below and calculate in detail in App. 4.8.

We can estimate the size of the δθ by integrating the growth rate

⟨δθ(t, k̃)2⟩ ≈ ⟨δθ(tinit, k̃)2⟩ exp
[
2

∫ t

tinit

dt′Γ(t′, k̃)

]
(3.35)

where tinit ≈ tosc is the earliest time where Γ ≥ 0, and

⟨δθ(t, k̃)2⟩ ≈
Φ2
k,0(

1 + mtk̃2

π2

)2 , (3.36)

is an empirical formula for the amplitude of δθ before perturbations start growing [59]. Because

the leading-order frequency shift is always quadratic in the zero-mode amplitude δω ∝ σ2, we can

parametrize the frequency shift’s time evolution as δω(t) = δωosc(t/tosc)
−3/2. As we show in App. 4.8,

the resulting scalar perturbations are maximized at k̃ = k̃max, with corresponding integrated growth

rate

k̃2max ≈ −0.622δωosctosc , (3.37)

lim
t→∞

∫ t

tosc

dt′Γ(t′, k̃max) ≈ −1.45δωosctosc − 2.8 , (3.38)

where we have taken tinit = tosc, and −2.8 corresponds to the suppression from Hubble damping.

6Cubic interactions are always net-attractive, since the axion always spends more time on the attractive side of
the potential.
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To summarize, the axion only starts to experience parametric resonance once it has damped

to the short instanton scale. The early period of large-amplitude oscillations only serves to delay

parametric resonance to a late-enough time that it is not immediately quenched by Hubble friction.

In the following section, we will study perturbations in the two-axion model Eq. 3.5, and we will find

that the results of this section carry over to the period after autoresonance ends, and in addition

that autoresonance provides a mechanism for mode growth even during the early phase of large

amplitude oscillations, leading to enhanced total perturbation growth.

3.2.2 Perturbation growth during autoresonance

In this section, we quantify mode growth during the early phase of autoresonance, where the zero-

mode physics is quite different from that of Sec. 3.2.1. Nonetheless, the single-axion model (Eq. 3.23)

introduced in the previous section shares important features with the friendly axion model (Eq. 3.5),

and the same framework for parametric resonance is easily extended to this case. Importantly, we

will find that autoresonance is a period of significant parametric resonance, which accounts for

exactly one third of the total mode growth, lasting only 2% of the total growth time. This is the

consequence of the large, constant amplitude oscillations that are the hallmark of autoresonance.

The equations of motion for the density perturbations of the short and long axion are

∂2t δθS + 3H∂tδθS +m2

(
1

mt
k̃2 + cos(ΘS +ΘL)

)
δθS +m2 cos(ΘS +ΘL)δθL = SS , (3.39a)

∂2t δθL+3H∂tδθL+m
2

(
1

mt
k̃2 + F−2 cos(ΘS +ΘL) + µ2 cosΘL

)
δθL+m

2F−2 cos(ΘS +ΘL)δθS = SL .

(3.39b)

where SS,L represent how the metric fluctuations source the scalar perturbations of θS and θL

respectively (see App. 4.8). In the large-F limit, we can see that δθL will behave just as in ordinary

misalignment in a single cosine potential. Therefore, we approximate δθL → 0 and consider δθS in

isolation. We further approximate ΘS + ΘL ≈ ΘS , since ΘL damps quickly to small amplitudes

while ΘS is locked by autoresonance. Thus, the equation for the short axion perturbation becomes

∂2t δθS + 3H∂tδθS +m2

(
1

mt
k̃2 + cos (ΘS)

)
δθS ≈ SS . (3.40)

This is of the same form as Eq. 3.28, and therefore our expression for the growth rate is exactly

Eq. 3.34, where the frequency shift is now given by the condition for autoresonance δω(σS(t)) =

δωosc = µ − 1 for t < tosc. In this case, tosc = Cosc(µF)4/3/m is the time at which autoresonance

ends and nearly-harmonic decaying ΘS oscillations begin. Cosc is an O(1) constant that depends on

initial conditions. We now integrate the growth rate to arrive at the magnitude of δθS at the end of
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autoresonance

⟨δθS(tosc, k)2⟩ ≈ ⟨δθ(tinit, k)2⟩ exp
[
2

∫ tosc

0

dt′Γ(t′, k)

]
. (3.41)

The fastest growing mode starts growing at tinit ≈ 0.155tosc, with comoving wave number k̃max

and integrated growth rate

k̃2max ≈ −0.622δωosctosc , (3.42)∫ tosc

tinit

dt′Γ(t′, k̃max) ≈ −0.725δωosctosc − 1.4 , (3.43)

where −1.4 originates from Hubble damping.

After the end of autoresonance, σS decays as t−3/4 and δω(σS(t)) = δωosc(t/tosc)
−3/2, just as

in Sec. 3.2.1. At this point, we have reduced the two-axion perturbation equations Eq. 3.39 to a

single-axion equation Eq. 3.40, and we may directly apply the results of Sec. 3.2.1, leading to the

post-autoresonance integrated growth rate

k̃2max ≈ −0.622δωosctosc , (3.44)

lim
t→∞

∫ t

tosc

dt′Γ(t′, k̃max) ≈ −1.45δωosctosc − 2.8 . (3.45)

Notice that the spectrum of axion perturbations produced during autoresonance is peaked in the

same location as the post-autoresonance perturbations. As a result, the total growth from both

the fixed-amplitude autoresonance and the subsequent decaying-ΘS oscillations is just the sum of

Eq. 3.43 and Eq. 3.45

lim
t→∞

∫ t

0

dt′Γ(t′, k̃max) ≈ −2.175δωosctosc − 4.2 . (3.46)

The linear analysis of this section allows us to predict a late-time spectrum of DM halos provided

all perturbations remain small (Sec. 3.2.4). However, it is possible that a density perturbation grows

non-perturbatively large, at which point this analysis breaks down. We treat this numerically in

the next section, where we find that non-perturbative structures can also quench the autoresonant

transfer of homogeneous energy density described in Sec. 3.1. We summarize the distinction between

the perturbative and non-perturbative regions in Fig. 3.7, where the colors indicate the time at

which modes become nonlinear. In the white regions, all modes remain linear and the conclusions

of Sec. 3.1 go through unchanged. In the colored regions, the various contours indicate the different

stages of parametric resonance at which modes become nonlinear. For modes becoming nonlinear

after the end of autoresonance, we can safely apply the results of Sec. 3.1. For parameters where

modes become nonlinear before the end of autoresonance, we must instead turn to the techniques
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of Sec. 3.2.3.

3.2.3 Nonperturbative structures during autoresonance

Autoresonance holds the homogeneous field ΘS at large amplitudes for a long time, causing the

spatial perturbations δθS to undergo a long period of exponential growth through parametric res-

onance. When these perturbations become O(1), the notion of the homogeneous mode ΘS breaks

down, and the conclusions of Sec. 3.1 no longer apply. In order to get a sense of what happens in

this nonlinear regime, we have performed a preliminary numerical investigation for a small set of

Lagrangian parameters and initial conditions, which we describe in detail in App. 4.9. Here we sum-

marize our early results, which suggest that non-perturbative structure shuts down autoresonance,

generically leading to a smaller final energy density in θS than predicted by Sec. 3.1.

We simulate two axions in the potential Eq. 3.5 in the background of the perturbed FLRW metric

Eq. 3.24 where all fields are required to satisfy periodic boundary conditions. The results of one

such simulation are given in Fig. 3.8. Because of the non-perturbative fluctuations in θS , there is no

unique way to partition the energy densities between θS and θL, so we make the following choice:

ρ̄S =
f2

V

∫
dV

[
1

2
(∂tθS)

2 +
1

2
(∇θS)2+m2(1− cos(θS + θL))

]
, (3.47)

ρ̄L =
f2F2

V

∫
dV

[
1

2
(∂tθL)

2 +
1

2
(∇θL)2+m2µ2(1− cos θL)

]
. (3.48)

where V is the simulation volume. Even after the onset of non-perturbative θS fluctuations (marked

by the vertical gray line), the θS energy density only deviates slightly from the homogeneous pre-

diction. This deviation remains small until the perturbations begin collapsing under their own

attractive self-interaction, which we mark with a vertical black line. The objects nucleating from

this nonlinear collapse are oscillons: long-lived spherically symmetric scalar configurations held to-

gether by attractive self-interaction [1, 65, 100, 101, 103, 104, 111, 113, 118, 119]. At this point, both

ρS and ρL diverge from the prediction of Sec. 3.1, and simultaneously begin diluting (almost) like

cold matter. Unexpectedly, we observe the final energy density ratio ρS/ρL to scale like t0.17, al-

though it is unclear whether this scaling persists until the energy densities equalize, or whether it is

a numerical artifact. In our later estimates of direct detection prospects, we assume that the energy

density ratio is fixed after oscillon nucleation, which is conservative since we are mainly interested

in the detection of ρS .

In spite of this numerical uncertainty, there is a possible physical explanation for why oscillon

nucleation may end autoresonance. Consider that for θS to sustain autoresonance in any given region

of space, θS ’s amplitude must remain locally large enough that its frequency can remain locked to

µ. At early times, θS fluctuations are dominated by a single momentum mode k̃ = k̃max, whose

wavelength is typically much longer than the Compton wavelength of the axion field. As this mode
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Figure 3.7: The time until the onset of nonlinearity, obtained for the specific initial conditions
θS(0) = 0, θL(0) = 0.8π, chosen because they lead to autoresonance for the entire set of scanned
(µ,F). The criterion for nonlinearity is that a single mode crosses δθS ≥ 1. Above the Solid Black
contour, the axion remains perturbative indefinitely. The Dotted Black contour is the corresponding
analytical estimate using the techniques of Sec. 3.2.2. Above the Blue contour, the axion only
becomes non-perturbative after the energy densities of θS and θL have equalized. Below this, modes
become nonlinear even earlier, but above the Magenta contour modes remain linear until θS has at
least 1/10 the energy density of θL.
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Figure 3.8: Comparison of the energy densities of the long and short axions from a homogeneous
calculation (Sec. 3.1) versus the corresponding 3+1 dimensional lattice simulation (see App. 4.9 for
details). Here, F = 50 and µ = 0.8, with initial conditions θL(0) = 0.8π and θS(0) = 0 chosen to lie
in the autoresonance band. The vertical gray line represents the point beyond which θS fluctuations
become non-perturbative, although ρS does not yet deviate significantly from the homogeneous
expectation. Once these large θS fluctuations collapse under their own attractive self-interactions at
the vertical black line, the autoresonant energy transfer stops, and both species dilute approximately
like cold matter.
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grows, a fixed fraction of the comoving volume is at a large enough amplitude for autoresonance,

even after δθS(k̃max) becomes much larger than unity. After a short time, these comoving regions of

space collapse into oscillons with a fixed physical size much smaller than the scale of k̃max. At this

point the long-wavelength perturbations at k̃max have lost much of their amplitude to gradient energy

and to radiation production, and most of space is below the autoresonance threshold. While the

large-amplitude oscillons may in principle still remain autoresonant with θL, the θS energy density

now dilutes like matter, since the comoving number density of oscillons is approximately conserved,

and the non-autoresonant parts of space cannot become autoresonant.

We do, however, emphasize the need for higher resolution simulations to confirm our results

and intuition. Even though it is physically reasonable that non-perturbative structure cuts off

autoresonance, the opposite possibility also offers exciting observational prospects. If autoresonance

is not cut off, then the short axion may become even more visible at smaller fS (larger F), offering

enhanced direct detection prospects. On the other hand, if our numerics are confirmed, then the

resulting oscillons may have parametrically enhanced lifetimes, leading to interesting present-day

signatures of their own. We do not perform a full analysis of this possibility here, but we do discuss

it further in Sec. 3.5.

3.2.4 Newtonian evolution and gravitational collapse

A long time after parametric resonance has concluded, the axion field is firmly non-relativistic and

can be well-approximated by its Newtonian evolution. If the friendly pair comprises a majority of

the dark matter, the over-dense regions begin to collapse under their own gravity and virialize at the

onset of matter domination, leading to the formation of axion minihalos, which eventually comprise

galactic substructure. In this section, we extend the formalism of Ref. [59] to describe this process in

the case of two friendly axions. For concreteness, in this section we assume the friendly pair makes

up all of the dark matter.

After parametric resonance, the axion fields are best described in the mass basis

νh ≡ ϕS cos η + ϕL sin η , (3.49)

νl ≡ ϕL cos η − ϕS sin η , (3.50)

where the ν basis is related to the old basis by the rotation angle η, and the states νh and νl have

corresponding heavy and light masses mh and ml, all defined in App. 4.6. When F ≫ (1 − µ2)−1,

the mass-eigenstates νh and νl are mostly comprised of ϕS and ϕL respectively. The fields νh and

νl may be broken down into a homogeneous background and perturbations

νh,l = Nh,l(t) +
∑
k

eik·xδνh,l(t,k) (3.51)
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Figure 3.9: The standard deviation of the density perturbations (top) and the differential fraction
of collapsed structures (bottom) at a given smoothing mass MS . The mass scale m = 10−18 eV
is chosen to enable direct comparison with Fig. 7 of Ref. [59], where a 10−10 tuning of the initial
misalignment angle is necessary to achieve comparable density fluctuations. The thin dashed lines
correspond to the same density fluctuations and collapsed fraction for a non-self-interacting scalar
of the same mass m = 10−18 eV.
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Figure 3.10: The halo spectrum ρs versus scale mass Ms in the friendly axion model with initial
misalignments and Lagrangian parameters chosen to be representative of what one might expect to
find in the axiverse. The three massesm chosen for this plot match those of Fig. 8 in Ref. [59] in order
to allow for direct comparison. Note the large enhancement of subhalo density relative to the CDM
expectation. The dashed lines correspond to the density of a soliton, a gravitationally-bound scalar
field configuration supported by kinetic pressure, which represents the densest stable collapsed axion
structure of a given mass. The soliton mass-density relationship is given by ρs ≈ 0.067G3m6M4

s [60].
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yielding the corresponding relative density perturbations ρh,l = ρ̄h,l(1 + δh,l),

δh,l =
∂tNh,l∂tδνh,l +m2

h,lNh,lδνh,l
1
2 (∂tNh,l)

2 + 1
2m

2
h,lN

2
h,l

. (3.52)

where ρ̄h,l is the average density of νh,l respectively.

Following Ref. [59], we now change variables from t to y ≡ a(t)/aeq, where aeq is the scale factor

at matter-radiation equality. The density fluctuations deep inside the horizon k̃2 ≫ H/m then obey

the Newtonian equations of motion

0 = (1 + y)δ′′ +

(
3

2
+

1

y

)
δ′

−
(

3

2y
FG − 1

y3
k̃2C2

s −
1

y2
k̃4C2

Q

)
δ , (3.53)

where we have defined the vector of relative density perturbations δ ≡ (δh, δl)
T , and primes denote

differentiation with respect to y. The matrices of Eq. 3.53 are defined

C2
s =

3
√
2mHeqM

2
Pl

ρ̄h + ρ̄l

 λhhρ̄h
16m4

h

λhlρ̄l
8m2

hm
2
l

λhlρ̄h
8m2

hm
2
l

λllρ̄l
16m4

l

 , (3.54)

C2
Q =

(
m2/m2

h 0

0 m2/m2
l

)
, (3.55)

FG =
1

ρ̄h + ρ̄l

(
ρ̄h ρ̄l

ρ̄h ρ̄l

)
, (3.56)

where λhh,hl,ll are the quartic interactions in the mass basis of even parity (corresponding to in-

teractions with even numbers of both species), whose full expressions are given in App. 4.6. The

matrices Cs and CQ are coefficients representing the strength of self-interactions and kinetic pressure

respectively, which together comprise the effective speed of sound. The matrix FG represents the

attractive force of gravity. These equations may then be numerically integrated to late times.

Having solved for the full history of the linear density perturbations, we can now describe the

nonlinear collapse of these density perturbations into small-scale structures. The formalism to

describe nonlinear gravitational collapse is well-known [209] and worked out in detail in Ref. [59],

which we summarize here for completeness.

In the extended Press-Schechter formalism, a local overdensity is considered to have collapsed if

it exceeds the critical overdensity δc = 1.686 [210]. In the two-axion model, the total DM overdensity

in momentum space is

δ(t,k) ≡ ρ̄h(t)δh(t,k) + ρ̄l(t)δl(t,k)

ρ̄h(t) + ρ̄l(t)
. (3.57)
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To obtain a distribution for the density perturbations in position space, we smooth the density

field δ(t,x) ≡ (2π)−3
∫
d3keik·xδ(t,k) over a radius RS using the spherical top-hat window function

W (RS ,x) = Θ(RS − |x|)(3/(4πR3
S)):

δ(t,x, RS) ≡
∫

d3x′W (RS ,x− x′)δ(t,x′) . (3.58)

The mass contained within the smoothing radius is MS = (4π/3)ρ0DMR
3
S , where ρ0DM = 3.3 ×

10−8M⊙/pc
3 is the average dark matter density in the present-day universe.

Assuming that the density perturbations obey a Gaussian distribution, the differential collapsed

fraction of energy density per unit mass is

1

ρ0DM

dρcoll
d logMS

=

√
2

π

δc
σ(MS)

∣∣∣∣d log σ(MS)

d logMS

∣∣∣∣e− δ2c
2σ2(MS) , (3.59)

where the density fluctuation variance is σ2(MS) = ⟨δ(t,x, RS)2⟩. We plot the variance and dif-

ferential collapsed fraction in Fig. 3.9 for a representative set of initial conditions and Lagrangian

parameters for a mass scale m ≈ 10−18eV to allow for direct comparison to figure 7 of Ref. [59]. We

see that an early period of autoresonance has enhanced structure at the mass scale MS ≈ 105M⊙,

which collapses significantly earlier than the larger-scale structure comprising entire galactic halos.

In Ref. [59], the authors point out two downsides of Press-Schechter theory. First, δ(t,x, RS)

can be large even if there is no structure at the scale RS , so long as there is structure at larger

scales. Second, the differential collapsed fraction does not count substructure. To remedy this, they

propose the use of a smoothing function in momentum space which isolates structures of scale R,

W (k, R) =
1

(2πσ̃2)
1/4

exp

[
− log(|k|R/π)2

4σ̃2

]
. (3.60)

Using Eq. 3.58 with this new window function, we compute the variance σ2(MS),

σ2(Ms) =

∫
d log k |δ(t, k)|2|W (k, Rs)|2 . (3.61)

Structures at a given mass scale Ms are considered to have collapsed at a time corresponding to the

scale factor acoll(Ms) when a 1-σ overdensity exceeds δc, where Ms = ρ0DM(4π/3)R3
s. The resulting

collapsed structure has a well-known density roughly 200 times the ambient density at the time of

collapse ρs ≈ 200× ρ0DMa
−3
coll. We plot the resulting halo spectra in Fig. 3.10 for three representative

sets of initial conditions and Lagrangian parameters, where we have chosen mass scales that match

those in Fig. 8 of Ref. [59] to enable direct comparison. This halo spectrum peaks at a scale mass
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determined by the k̃max in Sec. 3.2.2, which is well-approximated by:

Ms ∼
4

3
πρDM(H = m/2)

(
2π

mk̃max

)3

∼ 1.2× 104M⊙

(
10−19 eV

m

)3/2(
5

k̃max

)3

. (3.62)

3.3 Signatures

So far, we have primarily focused on the early-time dynamics of a pair of friendly axions, but in

this section we turn to the late-time observable effects of these dynamics. Broadly they fall into two

categories.

First, autoresonance can facilitate a significant transfer of energy density from an axion with a

large decay constant to an axion with a much smaller decay constant. Since the axion’s couplings

to the SM are generically suppressed by its decay constant, axions produced via autoresonance can

be coupled significantly more strongly to the SM than axions produced via the usual misalignment

mechanism, and can be observable even if they make up only a small subcomponent of DM. We

discuss this point and outline future detection prospects in Sec. 3.3.1.

The second broad class of observable effects are indirect gravitational signatures. As discussed

in Sec. 3.2, an era of autoresonance can lead to significant growth of density fluctuations that can

collapse into gravitationally-bound structures earlier than would be predicted by ΛCDM, as shown

in Fig. 3.9. This collapse requires that the pair of friendly axions make up the entirety of dark

matter, but if this happens such structures can be detectable through their gravitational effects.

The halo substructure turns out to be quite similar to that produced by the mechanism of Ref. [59],

so the techniques discussed therein for detecting such structures apply here as well. We briefly

review these in Sec. 3.3.2. Finally, both the long and short axions can potentially be constrained by

black hole superradiance; we comment on this in Sec. 3.3.3. The reach of all signatures discussed in

this section are summarized in Fig. 3.12 for the case where the friendly axions are the DM, and in

Fig. 3.11 for the case where they are only a subcomponent.

3.3.1 Enhanced direct detection prospects

The most striking effect of axion friendship to significantly improve the prospects of probing an ax-

iverse in direct detection experiments. In the absence of interactions, all axions with similar masses

would be equally detectable provided they all started at similarly untuned initial misalignment an-

gles. An axion with a smaller decay constant f will have a smaller present-day abundance, but its

stronger coupling to the SM precisely cancels this out when it comes to observability. Quantita-

tively, haloscope experiments couple to the combination g2aγγρax, where the axion-photon coupling

is expected to be of order gaγγ ≃ α/4πf with α the QED fine-structure constant. An axion of a
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Figure 3.11: Enhanced direct detection prospects for a short axion, assuming that the friendly pair
comprises a small fraction of the total dark matter energy density. The darker blue band shows
the prospects for µ = 0.8 and ΘL(0) = 0.5π in the large F limit, where the possible enhancement
saturates for F ≳ 20 due to the formation of nonperturbative structure (Sec. 3.2.3). For µ = 0.99, the
possible enhancement saturates for F ≳ 40 (light blue band). As F decreases below the saturation
value, the visibility decreases linearly with F . This enhanced visibility should be compared to that
of a single free axion with initial misalignment Θ0 = 0.5π (middle solid blue line). The dashed and
dotted blue lines are the sensitivity prospects for µ = 0.8 and µ = 0.99 respectively in the large
F limit with ΘL(0) = 0.9π. Because the friendly pair makes up only a subcomponent of DM, its
overdensities do not collapse under self-gravity, and minihalos never form. Thus, an O(1) fraction
of ρS in the galaxy is ambient (as opposed to clumped) and will pass through direct detection
experiments. As a result, the direct detection prospects are improved relative to those in Fig. 3.12.
This plot was made using prospects compiled in [2, 3, 21–28,30,31,33,34].
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given mass m will thus be detectable to an experiment with sensitivity:7

(
g2aγγ

ρax
ρ0DM

)1/2

näıve

∼ 2.3× 10−17 GeV−1

(
Θ0

π/2

)( m

10−7 eV

)1/4
, (3.63)

where we have normalized to the current universe-average DM density, Θ0 is its initial misalignment,

and this formula receives logarithmic corrections near Θ0 = π. Note importantly that Eq. 3.63 is

independent of the decay constant. For this reason, in this naive scenario, an axion haloscope

experiment sensitive to a wide range of masses is unlikely to see any axiverse axion until it reaches

the sensitivity threshold of Eq. 3.63. However, once it does reach this point it may see several axion

signals at the same time, even from axions which make up only a small subcomponent of the DM.

In contrast, we have seen that for a pair of friendly axions in the axiverse, autoresonance can

transfer nearly all of the energy density from the long axion (with the larger decay constant fL)

to the short axion (with the smaller decay constant fS). This results in a “best of both worlds”

scenario: if autoresonance completes, the short axion’s energy density is set by fL while its coupling

to the SM is set by fS . This makes the short axion much more observable, enhancing its signal

strength relative to Eq. 3.63:

(
g2aγγ

ρax
ρ0DM

)1/2

friendly

= F
(
g2aγγ

ρax
ρ0DM

)1/2

näıve

∼ 4.6× 10−16 GeV−1

(
F
20

)(
Θ0

π/2

)( m

10−7 eV

)1/4
(3.64)

where Θ0 refers to the long axion’s initial misalignment angle. Although there may only be a few

pairs of friendly axions in the axiverse which end up autoresonating, these few pairs (or, more

precisely, the short axion in each of these pairs) may become the one most visible to direct detection

experiments.

For fixed F , the enhancement to the signal strength (Eq. 3.64) does not depend on whether the

friendly pair makes up all of DM or only a subcomponent, but this distinction can still matter for

direct detection due to the formation of spatial structure. The subcomponent case is simpler, and

we summarize the enhancement to direct detection prospects in Fig. 3.11. Any experiment whose

projected sensitivity intersects the blue regions (set by different values of F) will be able to probe

any friendly axion pair in their mass range with large-enough F . Attractive autoresonance may thus

be visible to many proposed experiments such as ADMX [23], DM Radio [21, 30], HAYSTAC [61],

KLASH [22], superconducting RF cavities [25–27], and, optimistically, BRASS [24] and MADMAX

[31].

If the friendly pair comprises the totality of DM, the situation is slightly more complicated. In

7This expression and the analysis of this section refer to experiments that probe the axion through its coupling to
photons. There are other potential axion couplings that can be probed which are subject to similar analyses, but we
do not discuss them here.
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Figure 3.12: Summary of parameter space, constraints, and signatures for friendly axions in the con-
crete model of Eq. 3.5 for µ = 0.8 and representative initial conditions that result in autoresonance.
This plot is for the case where the friendly pair makes up the entirety of DM, and the axes m and f
refer to the mass and decay constant of the short axion specifically. In the region labeled “Autores.
Completes,” autoresonance lasts long enough that nearly all of the axion energy density is in the
form of θS , while in the region labeled “Autores. Quenched,” nonperturbative structure halts au-
toresonance early and the short axion makes up only a subcomponent. Throughout, we assume that
the short axion has a coupling to photons of size gaγγ ≃ α

4πf and we plot direct detection constraints
and projections based on this coupling. Even when θS is only a subcomponent, it can be a very
visible subcomponent due to its enhanced coupling to the SM. The regions labeled “Gravitational
Signatures” are discussed in Sec. 3.3.2 and elaborated on in Fig. 3.13. The regions labeled “BH
Spins” and “SMBH Spins” refer to BH superradiance constraints discussed in Sec. 3.3.3. This plot
was made using limits compiled in [2–9,9, 10,10–16,16,17,19–27,30,36–52,54–58,61].
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this case, as discussed in Sec. 3.2, the self-interactions of θS can result in the growth of density

perturbations that gravitationally collapse earlier than they would have in ΛCDM and thus form

dense axion minihalos. The region where these structures remain perturbative until most of the

axion energy density is in the short axion is labeled “Autores. Completes” in Fig. 3.12, but even in

this case anywhere from 95–99% of the dark matter can reside in these minihalo structures.8 If the

minihalos are numerous enough that one may expect at least one encounter with a detector during

its experimental runtime, then the experimental sensitivity is not significantly changed by such

substructure, although for a resonant experiment the scanning strategy may need to be modified to

maximize the likelihood of scanning the correct frequency during a minihalo encounter [59]. This is

generally the case for axions with mass m ≳ 10−3 eV, where the minihalos are light and therefore

extremely numerous. For smaller axion masses, where the minihalos are heavy and fewer in number,

direct detection experiments are sensitive only to the ambient background fraction of DM. To be

conservative, we assume an ambient fraction of only 1% when computing the projected sensitivity

of experiments to short axions lighter than 10−3 eV.

For larger decay constant ratios F ≳ 20, θS can grow nonperturbative fluctuations during au-

toresonance. In this case, detailed simulations are required to understand the full dynamics of

autoresonance, but our initial numerical explorations provide tentative evidence that the autores-

onant energy transfer is quenched shortly after the θS field becomes nonperturbative. Most of the

friendly pair’s energy density remains in the long axion, but the short axion’s energy density is

still boosted compared to the “single axion misalignment” expectation of Eq. 3.2. In addition, if

autoresonance is quenched, the overall density fluctuations in the dark sector cease their parametric

resonant growth before becoming O(1). The large fluctuations in the θS energy density only lead

to O(F−2(mtNL)
3/2) fluctuations in the total axion energy density, where tNL is the time it takes

for δθS to become O(1). These fluctuations can in principle still seed early collapse during matter

domination, but computing their precise effects is difficult due to the uncertainties inherent in the

nonlinear collapse of the θS field.

We adopt a conservative strategy to estimating the sensitivity of future direct detection experi-

ments in the event that autoresonance is quenched. We take the short axion energy density ρS to be

given by its value at the point that autoresonance ends (i.e. the point at which the θS perturbations

become nonlinear), redshifted as matter to late times. Nonperturbative θS fluctuations at the end

of autoresonance correspond to O(ρS/(ρS + ρL)) perturbations in the total matter energy density,

which remain approximately frozen during radiation domination and grow linearly with the scale

factor during matter domination. They then undergo Newtonian collapse at a scale factor a given

8We estimate the ambient dark matter fraction by computing the collapsed fraction in structures whose mass
is smaller than that of the Milky Way, and subtracting that from the total collapsed fraction at the present day.
This calculation neglects several important effects, including tidal stripping, which may boost the ambient dark
matter component. The resulting ambient fractions we found were all between 1% and 30%, and we quote 1% to be
conservative.
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by:

ρS
ρS + ρL

a

aeq
= δc . (3.65)

If these structures collapse before the present-day (a < 1), some of the θS and θL energy densities will

reside in dense minihalo structures that may transit an experiment only rarely. To be conservative,

we quote an ambient fraction of only 1% (see Footnote 8). If these structures have not yet collapsed

by the present-day (a > 1), we consider an O(1) fraction of our local halo’s θS density to reside in

an ambient component. This occurs for a density ratio at least as small as

ρS
ρS + ρL

≲ δcaeq ≈ 1

2000
. (3.66)

The effects of substructure can thus be viewed as occurring for three distinct ranges of F .

For F ≲ 20, autoresonance completes and ρS dominates the dark matter density, although its

fluctuations suppress the ambient component, reducing overall direct detection sensitivity relative

to the case where the friendly pair collectively makes up only a DM subcomponent. For F ≳ 20, ρS

begins to drop by F−2, but this is exactly counteracted by its enhanced coupling ∝ F2. For even

larger F ≳ 20
√
2000 ≈ 900, ρS comprises an O(1/2000) subcomponent or less, and its fluctuations

no longer lead to early collapse, boosting overall detectability relative to when F ≲ 900. Altogether,

these effects result in the direct detection prospects of Fig. 3.12 for the case where the friendly pair

makes up all of DM.

3.3.2 Gravitational signatures of substructure

As discussed in Sec. 3.2, if the friendly axion pair makes up a majority of the dark matter then

autoresonance can lead to DM substructures that are denser than predicted by ΛCDM. In this

respect it is quite similar to the mechanism of Ref. [59], and indeed the halo mass spectrum predicted

by that mechanism is quite similar to the one that emerges from a period of autoresonance. We are

thus able to adapt their subhalo detection projections to the case studied here, and we summarize

the results in Fig. 3.13. We dedicate the rest of this section to a brief review of the two most relevant

signatures, suppressing others which are interesting but slightly less sensitive. For a more complete

treatment we refer the reader to Ref. [59] and the references cited therein.

The first class of indirect signatures we focus on are astrometric lensing signatures. A dense,

heavy halo passing through our line-of-sight weakly lenses all background stars, and the lensing

pattern is correlated across all stars behind the halo. A telescope with good angular resolution and

a wide field-of-view can in principle look for such correlated deflections and infer the presence of an

intervening weak lens. In practice, since the true positions of individual stars are unknown, it is

impossible to observe the correlations of the stars’ angular positions on the sky, but as the lens moves
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it will induce correlated proper motion and proper acceleration of the background star field. A high-

angular-resolution experiment that periodically measures the positions of a large number of stars

can search for such correlated motions, either with templates or by looking for global correlations.

Several such astrometric experimental efforts either exist (Gaia [211], HST [212]) or are planned

(Theia [213], WFirst [214], SKA [215], TMT [216]). Ref. [62] worked out dense subhalo sensitivity

projections for Gaia and Theia, and we report these in Fig. 3.13 for the halo mass spectrum predicted

in Sec. 3.2.

Another potential class of observable signatures are those associated with photometric microlens-

ing. The basic idea is to monitor a distant star and look for changes in its brightness that would

indicate a gravitational lens passing through the line of sight. This technique has been used to

place constraints on extremely compact objects (such as primordial black holes), but in general it

is harder to use it for dilute, gravitationally-bound subhalos because they only lens weakly and

thus have minute effects on a star’s observed brightness. To deal with this, Ref. [63] has proposed

using highly-magnified stars that are only observable because they lie close to a critical gravitational

lensing caustic of a galaxy cluster. If the DM in the galaxy cluster is composed of subhalos, the

virial motion of these subhalos will add Poissonian noise to the position of the star, which has an

amplified impact on the star’s brightness. This noise has a characteristic frequency and amplitude

that depends on the DM halo mass spectrum, and Ref. [63] suggests the observation of this noise

can probe DM substructure. Ref. [59] has made projections of the sensitivity of such a technique

for gravitationally-bound subhalos and we report these in Fig. 3.13 for the halo spectrum calculated

in this paper. It should be noted that these projections are subject to potentially significant un-

certainties associated with the galactic evolution (and tidal stripping) of such gravitationally-bound

subhalos, and we caution that proper simulations must be done to confirm them.

For F ≳ 20, perturbations in the short axion field can grow nonperturbative and quench the

autoresonance before the majority of the axion energy density is transferred to θS . In this case,

even though there are large fluctuations in the short axion field, the overall density fluctuations

are small because the majority of the axion energy density is still in θL. Structures thus collapse

gravitationally at roughly the same time they would have in ΛCDM, and all gravitational signatures

of autoresonance disappear. We show this in Fig. 3.12, where the gravitational signatures appear

only in the region where θS can compose the totality of dark matter.

3.3.3 Superradiance signatures and constraints

The phenomenon of black hole superradiance (SR), by which the angular momentum of an initially

rapidly rotating black hole (BH) is transferred to a cloud of bound axions generated around the BH,

can be used to constrain axions at ultralight masses by measuring the age and spin of astrophysical

BHs [73, 165, 172, 217–222]. SR bounds are quite unique in that they are more constraining for

an axion which has small interactions, as interactions tend to slow down the extraction of angular
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Figure 3.13: Gravitational detection prospects for short-axion DM substructure. This plot was
generated for µ = 0.8, but does not have significant dependence on µ or the initial misalignment
angles (provided they result in autoresonance). The Purple “µ-lensing” and Blue “α-lensing” regions
show projected sensitivities of future telescopes to weak astrometric lensing of local stars (correlated
distortions in their velocities with SKA and their accelerations with Theia respectively) [62]. The
Teal “photometric lensing” region may be probed through brightness fluctuations of a critically-
lensed distant star [59,63]. Inside the Peach region, nonperturbative structures form during radiation
domination, making this region subject to theoretical uncertainties about how this substructure will
resolve today. Nonetheless, we expect that O(1) density fluctuations will collapse immediately
after matter-radiation equality and lead to similar direct detection prospects as for the perturbative
region below. In the Hot Pink region at the top, nonperturbative structure quenches autoresonance
before the two axion energy densities equalize; in this region the short axion is a subcomponent and
gravitational detection prospects die off quickly as F increases.
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momentum from the BH into the cloud. Even a single axion with a potential typified by Eq. 3.1

inevitably has self -interactions, which at leading order are quartic with dimensionless coupling

λ ∼ m2/f2. As one moves towards values of f smaller than ∼ 1015 GeV in axion parameter space,

the growth of the SR cloud is cut off at perturbative values of θ and angular momentum can no

longer efficiently be extracted from the BH [222].

For the case of the coupled short and long axions studied here, as long as the evolution remains

perturbative in θS , θL, SR is better studied in the mass basis in which flavor oscillations are removed

(App. 4.6). For F ≫ (1 − µ2)−1, the heavy state νh ≈ ϕS has quartic self-interactions λhh ≈
m2/f2, while the light state νl ≈ ϕL has quartic self-interactions λll ≈ (µ/F)2λhh. As emphasized

previously, in the scenario in which the friendly axion pair is DM, the light state (i.e. the long axion)

must fall within the region of parameter space that would yield the correct present-day DM density

in the absence of friendly interactions (i.e. within a band centered on the “Θ0 = π/2 Misalignment”

line of Fig. 3.1). The coupling λll is therefore fixed. Depending on the value of F , the self-coupling

λhh of the heavy state (i.e. the short axion) may or may not be small enough that the SR bounds

apply to the short axion directly. If F is large enough that the short axion cannot be constrained

by SR, then the scenario of two friendly axions being DM is still constrained by SR bounds on the

long axion (one can check that cross-couplings do not change those bounds in that limit). For this

reason, we have shown the SR bounds from astrophysical BHs on Figs. 3.1 and 3.12 as extending to

arbitrarily large F , since they exclude a long axion living near the “Θ0 = π/2 Misalignment” line

within that mass range.

Because of the complicated merger history of supermassive BHs and the larger uncertainties on

their measured parameters, it is difficult to make a definite claim that a lack of spindown implies

the absence of an axion in the spectrum. A more detailed understanding of merger histories and

better measurements could make supermassive BHs robust probes of axions in the 10−18 − 10−16eV

mass range in the future. We show this region on Fig. 3.1 and Fig. 3.12 in a lighter shade to reflect

this uncertainty.

We note that there is a somewhat tuned—but not entirely excluded—scenario in which neither

DM axion can be constrained by SR bounds on BH spins. If µ is close enough to unity that

F ≪ (1 − µ2)−1, one can have that λll ≃ λhh ≃ m2/f2 and all mass states have comparable self-

interactions. In the interaction basis, this can be explained by observing that strong mixing between

the two axions causes the long axion to inherit the strong self-interactions of the short axion via

flavor oscillations. One might view this as the spindown signatures of an axion with a nominally

large decay constant being masked by the presence of a closely resonant axion with a small decay

constant.

If the friendly axion pair is a subcomponent of DM, the long axion is not required to live near

the “Θ0 = π/2 Misalignment” line of Fig. 3.1. In this case, both axions can have small enough decay

constants to evade SR spin bounds. Rather than rapidly extracting the angular momentum from a
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BH and storing it in a SR cloud, axions with small decay constants form smaller clouds that slowly

transfer angular momentum directly from the BH to spatial infinity in the form of coherent axion

waves that could be detected on Earth by planned nuclear magnetic resonance experiments [222].

The signal strength on Earth of these small clouds scales as the axion mass to the fourth power,

but does not scale with the decay constant. It is therefore possible that small clouds of both short

and long axions exist simultaneously around a BH and emit axion waves at nearby frequencies ∼ m

and ∼ µm that are similarly detectable. A more detailed study of cross-cloud interactions would be

necessary to fully understand this scenario.

3.4 Repulsive self-interactions

So far our analysis has been focused on the axion potential of Eq. 3.5, which has attractive self-

interactions for θS . This is often the case in the most minimal axion potentials, because instanton

contributions typically enter the potential as cosines, which have negative (i.e. attractive) quartic

interactions. However this is not a universal rule, and repulsive self-interactions can exist in axion

models [172,223]. In this section we summarize the phenomenology when the short axion has repul-

sive self-interactions. As we will see, autoresonance can occur with few differences from the attractive

case. Importantly, however, repulsive self-interactions can prevent all structure growth during au-

toresonance, implying that autoresonance cannot be cut off early by non-perturbative structures.

Therefore, if the system lands on autoresonance, it is guaranteed to complete the energy transfer,

further enhancing signatures at large decay constant hierarchies F ≫ 20, for which attractive self-

interaction signatures would be saturated (see Fig. 3.11). Future direct detection experiments such

as ADBC [28], DANCE [29], DM Radio 50L [30], LAMPOST [32], aLIGO [33], ORGAN [34], and

TOORAD [35] may therefore see a self-repulsive short axion, even though they cannot access the

parameter space relevant to an attractive theory.

To make our discussion concrete, consider the following axiverse-inspired potential with repulsive

θS self-interactions

V (θS , θL) = m2f2
(
ζ2(1− cos(θS + θL)) (3.67)

+(1− cos(QθS + δ)) + µ2F2(1− cos θL)
)
.

For small θS amplitudes, interactions are repulsive if 1 < Q ≲ ζ ≲ Q2 and 3π/4 ≲ δ ≲ 5π/4, and

repulsive autoresonance may occur if µ2 ≳ ζ2 −Q2, and F ≫ ζ.

A good diagnostic of autoresonance is to measure the late-time energy density ratio of θS and θL

as in Fig. 3.5. As before, it is often helpful to think about the energy density ratio in the interaction

basis, since it is this quantity that late-time signatures depend on. However, the partition of energy

between the two fields becomes ambiguous beyond the scale of flavor oscillations. A useful choice is
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the time-average of the corresponding kinetic term

ρS ≈ ⟨(∂tΘS)2⟩ , ρL ≈ F2⟨(∂tΘL)2⟩ . (3.68)

This estimate generalizes easily to theories with a large number of fields and instantons, provided

the mass matrix is close to diagonal. We plot the late time energy density ratios in Fig. 3.14 for

a representative set of parameters, which is meant to be compared to Fig. 3.5. This plot shows

two important distinguishing features. First, autoresonance occurs for driver frequencies above the

short rest mass µ > ωS(0), and not below as in the case of attractive self-interactions. This is a

consequence of repulsive self-interactions, which cause the short axion’s frequency to increase with

an increase in its amplitude (see inset of Fig. 3.14). Second, there are two apparent autoresonance

bands in Fig. 3.14 as opposed to the single band in Fig. 3.5. This is again a consequence of the

nontrivial dependence of frequency on amplitude. Because ΘS is a periodic variable, the repulsive

self-interactions that take place at small amplitudes cannot continue to arbitrary field displacements.

Thus, the positive frequency shift that occurs at small amplitudes must eventually turn around and

decrease, ultimately passing through zero as shown in the inset of Fig. 3.14. Therefore, every

possible positive frequency shift in the potential Eq. 3.67 is achieved at two separate amplitudes σS .

Depending on the initial conditions, the driver ΘL of a particular frequency µ may drive ΘS at one

of two possible amplitudes, giving rise to the two autoresonant tails.

These two tails, while both the consequence of repulsive self-interactions, lead to very different

phenomenology. Let us first consider the small amplitude tail (Blue). Here, the result of the small-

amplitude formalism for computing the perturbation growth rate Eq. 3.34 goes through unchanged:

perturbations do not grow because the frequency shift δω is positive (see App. 4.8).

At larger amplitudes (Magenta), the motion of the zero-mode ΘS is no longer well approximated

by its motion near the bottom of the potential, and the formalism of App. 4.8 no longer applies.

Even though we cannot analytically quantify the growth rate of modes beyond the small amplitude

approximation, we may gain some qualitative intuition through the following considerations. Recall

from our discussion in Sec. 3.2.1 that perturbations are agnostic to features in the potential below

the kinetic energy of ΘS . Therefore, the relevant features of the potential for perturbation growth

occur near the turnaround points where kinetic energy vanishes. At these points, the potential

behaves as locally attractive if increasing σS decreases ω(σS), and locally repulsive if it increases

ω(σS). In other words, the relevant quantity for mode growth is ω′(σS). This argument predicts that

autoresonance on the large amplitude tail (Magenta) of Fig. 3.14 for which ω′(σS) < 0, representing

net-attractive self-interactions, drives the growth of large perturbations. We have confirmed this

intuition with numerical simulations.

The observational prospects for repulsive autoresonance are striking. Spatial perturbations to

the axion field do not grow, and so autoresonance is not quenched even for F ≫ 20. This implies that

the boost to direct detection signal strength (Eq. 3.64) can be quite large if such large hierarchies
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Figure 3.14: The distribution of late-time energy density ratios ρS/ρL, as defined by Eq. 3.68 in the
potential Eq. 3.67. For each choice of µ, the initial conditions (ΘS(0),ΘL(0)) ∈ [−π, π]× [−π, π] are
sampled uniformly, and the results are binned by the final density ratio log ρS/ρL. This figure should
be compared to Fig. 3.5. FormS ≤ µm ≲ 1.17mS , (note, mS ≈ 3m is the short axion mass) there are
two ΘS amplitudes that can autoresonate with ΘL, corresponding to the upper and lower tails visible
in the upper right. Top Inset: The frequency versus amplitude curve for ΘS , showing that small
amplitudes experience net-repulsive self-interactions, which suppress perturbation growth (Blue),
and larger amplitudes experience net-attractive self-interactions, which enhance growth (Magenta).
The two autoresonant tails correspond to the two solutions σS of the equation ω(σS) = µ for
µ ≥ ω(0). Bottom Inset: The fraction of initial misalignment angles landing on each branch.
Note, the total probability of landing on either nonlinear branch does not equal 1 because one may
also land on the linear branch, where the short axion does not autoresonate.
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of decay constants exist in the axiverse.9 Such strongly coupled relics provide important targets

for direct detection experiments probing mass ranges where both the expectation Eq. 3.63 and that

of attractive autoresonance are out of reach. These observational implications motivate us to take

the possibility of repulsive autoresonance seriously, even though the potential Eq. 3.67 is repulsive

over a relatively small range of parameters. Whether repulsive interactions remain relatively rare in

realistic axiverse potentials is an open question, and our model serves as motivation to study this

question further.

3.5 Discussion and future directions

In this paper, we have studied the dynamics of coupled axion dark matter, and in particular the

case of a pair of axions with nearby masses. We have shown that one axion can dynamically

adjust its amplitude so that its frequency matches that of another and then remain fixed at this

amplitude for cosmologically-relevant times, avoiding the damping effects of Hubble friction long

enough to dominate the energy density in the axion sector. This frequency-matching is a form of

autoresonance, and within the concrete model of this paper, it is a common phenomenon provided

the long axion mass mL is within around 25% of the short axion mass: 0.75mS ≲ mL < mS . This

gives a good notion of how “friendly” two axions must be to see the effects we have described, and

such a coincidence of masses is unsurprising in an axiverse with O(100s) of axions distributed log-flat

in mass.

If autoresonance does occur, the energy transfer typically runs from the axion with a larger

(“long”) decay constant to the axion with a smaller (“short”) decay constant, meaning that the

effect on the axion sector is generally to make it more detectable by direct detection experiments.

This alone is a very exciting prospect, and various experiments such as ADMX, DM Radio, and

HAYSTAC will probe significant regions of parameter space of friendly axions, independent of the

friendly pair’s total energy density. In addition, if the pair makes up all of DM, we have shown that

autoresonance for a potential with attractive self-interactions can lead to a parametric-resonance-

driven growth of spatial perturbations in the axion field, which can then collapse at early times and

form dense axion minihalos. For axion massesm ≲ 10−7 eV, these have gravitational signatures that

can be probed with near-future experiments. If autoresonance lasts for a long time (which occurs for

large hierarchies of axion decay constants), spatial perturbations can grow nonperturbative and the

analytic formalism developed here breaks down, but our preliminary numerical results suggest that

the autoresonance is quenched. Still in this case, the short axion receives a significant boost to its

energy density. The various signatures discussed are complementary, and in some parts of parameter

space multiple signatures may be observed, allowing a concrete identification of the friendly axion

scenario from other mechanisms which may predict similar minihalo spectra.

9This itself is a question worthy of future study. At least some concrete realizations of the axiverse result in decay
constant distributions that are spread only 1− 2 orders of magnitude about a central value [172].
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There remain several natural questions about this mechanism. The first is whether the QCD

axion, which has a temperature-dependent mass, can receive an energy density enhancement due

to resonances with an axiverse. It turns out that autoresonant (i.e. nonlinear) energy transfer to

the QCD axion is impossible: by the time the QCD axion nears its zero-temperature mass ma, any

would-be friend has already lost too much energy for the nonlinear interactions in the QCD potential

to be accessible, putting autoresonance out of reach.

On the other hand, linear resonances are accessible to the QCD axion: as the QCD axion mass

increases through the masses of other axions in an axiverse, an level-crossing may lead to energy

transfer to or from the QCD axion. The possibility of the QCD axion generating a cosmological

abundance of axiverse axions has been explored in Refs. [224–227]. We note that it is similarly

possible for an axiverse axion to transfer its initial energy density to the QCD axion, leading to

QCD axion DM signatures at large masses ma ≳ meV, well above the range expected from an O(1)

initial misalignment angle.

A second natural question is what happens if the decay constant hierarchy F is large enough

that spatial fluctuations grow nonperturbative during autoresonance and collapse into oscillons—

compact axion structures bound by self-interactions. We have performed numerical simulations in

this regime that indicate autoresonance is quenched by oscillon formation, but they are limited in

their resolution. Further simulations are necessary to verify our results, but it is worth pointing

out that oscillons can potentially have intriguing signatures of their own which we have not worked

out here. Oscillons in general do not have very long lifetimes, but may live significantly longer in

the background of a long axion condensate that can resonantly drive them (see Refs. [228, 229] for

examples of driven nonlinear field equations). Energy conservation suggests that in this case the

oscillon’s lifetime may be extended parametrically to:

mTdriven ∝ (mTvacuum)
4/3 , (3.69)

where m is the axion mass and Tvacuum is the lifetime of an oscillon with fundamental frequency µm.

For potentials with somewhat long-lived oscillons already (see e.g. Refs. [1, 65, 111, 113, 118, 119]),

this enhancement would allow them to survive to matter-radiation equality even at larger axion

masses m ≳ 10−15 eV for the longest lived oscillons [65]. At late times, if such an oscillon is in

a galactic halo of θL DM and it can remain locked to the virialized ρL background, then the only

upper bound on its lifetime comes from exhausting the entire halo energy density. Since even a small

subcomponent of oscillons can be detected [125,126,130], this is an important case to study further.

The example of autoresonance we have studied in this paper is not the only type of nonlinear

resonance possible in a coupled oscillator system, and future work is needed to understand whether

other types of resonance can show up in the axiverse. For example, even a pendulum can resonate

in a qualitatively different way than we have studied so far: at energies above the potential barrier,

it can make complete circuits about its pivot, which opens up a large window of higher frequencies
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Figure 3.15: The frequency of a classical pendulum versus its energy. There are two distinct regimes.
First, at energies below the barrier height, the pendulum oscillates around its equilibrium angle, at
a frequency which decreases with energy (Blue). At energies above the potential barrier height, the
pendulum completes full rotations. In this regime, it is the pendulum’s velocity which oscillates
around an ‘equilibrium value,’ and the oscillation frequency increases with energy (Magenta). In
this paper, we have described how a driver can lock onto the low-energy branch of this curve through
autoresonance. The high-energy branch opens up the possibility of autoresonance and associated
signatures over a larger frequency range.
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Figure 3.16: Some possibilities for energy redistribution in the axiverse. Each axion in the axiverse
is represented as a point in the mass-decay constant plane. The magenta line represents those values
of m and f that lead to the proper relic abundance of DM for O(1) initial misalignment if the axions
are treated independently. As we have shown here, energy density can be resonantly transferred
to axions with smaller decay constants (illustrated by blue arrows). We have studied the case of
two axions with nearby masses (“2-axion Friendship”), both when the pair comprise the totality of
DM (“DM”) and when they are only a subcomponent (“Ω < 1”) but there are other possibilities
in a realistic axiverse. For example multiple axions with nearby masses could transfer energy in a
sequence (“Friendly Cascade”) or collections of axions could dynamically synchronize and lock onto
a rational resonance, where no two frequencies match identically but they are related rationally.
These latter possibilities are likely to be less common than the two-axion case discussed in this work
because they require more coincidences, but with O(100s) of axions they may still be possible and
further work is necessary to understand them.
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to autoresonance due to the nonlinearities of the oscillator. This is illustrated in Fig. 3.15. These

circular resonances may be accessed if one axion obtains an approximately constant velocity, which

may occur because of the complicated geometry of multi-axion potentials or because of an explicit

breaking of PQ symmetry in the early universe [81,230].10 We illustrate some of the other possibilities

for axiverse axions in Fig. 3.16, but further work is needed to understand which of these can be

realized in realistic models.

String theory remains the most successful attempt at a unified theory of quantum gravity, but

unfortunately we lack many experimental probes of this possibility. Nearly all new effects (particles,

forces, nonlocality, etc.) within the theory are suppressed by the string scale, which in principle can

lie quite close to the Planck scale, making it virtually impossible to test with current technology.

String theory axions are a notable exception, and observing several distinct axions in the particle

spectrum would hint at string theory as a UV completion for the SM. In many scenarios, string axions

can be accurately approximated as weakly-interacting massive fields. However, this approximate

picture of axions as a collection of perturbatively-coupled oscillators misses something important:

in such a system, exact resonances are necessary for appreciable energy transfer between normal

modes [231]. Since there is no reason to expect that axion masses obey simple integer relations

(assuming the masses are temperature-independent and remain fixed as the universe evolves), such

exact resonances are impossible, and one would conclude that no significant transfer of energy can

happen between axions in an axiverse. As we have shown here, quite the opposite is true: in a

realistic system, exact resonance can be obtained dynamically, because the frequency of a nonlinear

oscillator is a function of its amplitude. In other words, perturbative treatments can miss important

features if they do not account for the full nonlinearity of the axiverse potential. The two-axion

case studied here should be considered a minimal example of the effects of nonlinear couplings in

the axiverse, and it already provides exciting signatures in the reach of near-future experiments.
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Chapter 4

Appendix

4.1 The physical quasibreather formalism

In this appendix, we outline the precise definition of the physical quasibreather (PQB) and its or-

thogonal deformation (OD) introduced in section 2.1. We will see that the orthogonally deformed

PQB is an instantaneous solution of the equations of motion that satisfies outgoing boundary con-

ditions. We then find oscillonic solutions of the equations of motion that are perturbations of the

orthogonally deformed PQB. By studying the evolution and stability of these perturbations, we

arrive at a sense in which the orthogonally deformed PQB can be an attractor, which we apply to

study oscillon stability in appendix 4.3.

4.1.1 Quasibreathers

Physical potentials may be interpreted in terms of n-particle interactions, and therefore possess

Taylor expansions around their vacua. Consequently, a periodic field configuration with fundamental

frequency ω will only couple to modes oscillating with integer multiples of this fundamental frequency.

In other words, physical non-linear wave equations possess periodic orbits, which may be interpreted

as a Fourier series in time. This is in contrast to unphysical potentials that may not be interpreted

in terms of integer-number particle interactions, which can at best possess quasiperiodic orbits.

For the remainder of the appendix, we move into dimensionless units with m = f = 1. The

non-linear wave equation for the field θ in a potential V is then

0 = θ̈ −∇2θ + V ′(θ) . (4.1)

As we have argued above, V must possess a Taylor series, and therefore θ may be expanded as a

91
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series of integer harmonics

θ =
∑
n∈N0

Sn(r, ω) sin(nωt+ δn) , (4.2)

where δn is a phase, and we have taken spherical symmetry for simplicity. Without loss of generality,

we may take δ1 = 0. We say that a solution of the form (4.2) is generated by the frequency ω if S1

is non-zero, and the only non-zero higher harmonics Sn are those that couple to S1, consistent with

closure of the equations of motion. We then define the quasibreather as the solution generated by

ω.

Using this definition, we may compute the generic form of the quasibreather. Consider the

generic potential

V (θ) =
1

2
θ2 +

1

3
λ3θ

3 +
1

4
λ4θ

4 + . . . . (4.3)

From the symmetries of sine and cosine, we observe that

(sinωt)n =

{ ∑
k ak sinnkωt, nk ∈ Nodd, n is odd,∑
k bk cosmkωt, mk ∈ Neven, n is even,

(cosωt)n =

{ ∑
k ck cosnkωt, nk ∈ Nodd, n is odd,∑
k dk cosmkωt, mk ∈ Neven, n is even.

The case of parity V (θ) = V (−θ) offers a pleasant simplification, decopling the even harmonics and

the odd harmonics from one another. Thus, potentials with parity have quasibreathers of the form

θQB =
∑

n∈Nodd

Sn(r, ω) sinnωt , (4.4)

and a periodic solution of the form θ =
∑
n∈Neven

Sn(r, ω) sinnωt , although it is not a quasibreather

because it is not generated by ω. Quasibreathers in potentials without parity possess expansions

θQB =
∑

n∈Nodd

Sn(r, ω) sinnωt+
∑

n∈Neven

Cn(r, ω) cosnωt , (4.5)

where Neven contains 0. Thus, we have identified the form of the quasibreathers of the non-linear

wave equation when V represents a physical interaction.

Inserting the form (4.5) into (4.1), one arrives at the set of mode equations

0 = −(nω)2Cn − C ′′
n − d− 1

r
C ′
n + V ′

n(C, S) , n ∈ Neven ,

0 = −(nω)2Sn − S′′
n − d− 1

r
S′
n + V ′

n(C, S) , n ∈ Nodd , (4.6)
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where d is number of spatial dimensions, and Vn is defined through the equation

V ′(θQB) =
∑

n∈Nodd

Vn(C, S) sinnωt+
∑

n∈Neven

Vn(C, S) cosnωt . (4.7)

Equation (4.6) is a system of second order ordinary differential equations, and therefore each degree

of freedom Sn, Cn must be constrained by two boundary conditions.

In order to discuss boundary conditions, we define the number n0 as the least integer such that

n0ω > 1, so that bound harmonics have n < n0 and radiative harmonics have n ≥ n0. Regularity at

the origin places a non-trivial constraint on all harmonics, that all Sn and Cn must have zero first

derivative at the origin. However, regularity at spatial infinity is only a constraint on the bound

modes, n < n0; all radiative harmonics decay geometrically as they propagate to spatial infinity.

Thus, for a quasibreather, the radiative harmonics are only constrained by regularity at the origin,

and the space of possible quasibreathers has dimension equal to the number of radiative modes. In

other words, one has the freedom to pick the amplitude of the radiative modes at the origin, and the

result will still be a quasibreather. The authors of [115] have alleviated this ambiguity by picking

a specific quasibreather out of this manifold: the minimum radiation quasibreather, whose radiative

tails are the smallest. Instead, we pick the physical quasibreather (PQB), defined below, which is

perturbatively close to a radiating solution.

4.1.2 The deformed mode equations

A localized field configuration with a finite lifetime necessarily radiates its energy to spatial infinity,

and therefore satisfies radiative boundary conditions at spatial infinity. In this section, we introduce

the concept of the physical quasibreather (PQB), which is, in a precise sense, the quasibreather

closest to a physical configuration satisfying radiative boundary conditions.

First, we define the orthogonal deformation (OD) of the quasibreather (4.5), which consists of

adding 90◦ out-of-phase components sn and cn to the radiative harmonics in order to satisfy radiative

boundary conditions

θ =
∑

n∈Nodd

Sn(t, r, ω) sinnωt+
∑

n∈Neven

Cn(t, r, ω) cosnωt∑
n∈N≥n0

even

sn(t, r, ω) sinnωt+
∑

n∈N≥n0
odd

cn(t, r, ω) cosnωt .
(4.8)

Notice that here we’ve introduced a time dependence to the modes, which accounts for the fact that

a radiating solution cannot have a stationary profile. This formulation will be useful for studying

initial conditions of interest, namely, those which specify a quasibreather and orthogonal deformation

that together satisfy outgoing boundary conditions. Although (4.8) is a vast overparametrization of
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a single field, we recognize that a solution of the deformed mode equations (4.9)

0 = S̈n − 2nωċn − (nω)2Sn − S′′
n − d− 1

r
S′
n + V ′

Sn
,

0 = c̈n + 2nωṠn − (nω)2cn − c′′n − d− 1

r
c′n + V ′

cn ,

0 = C̈n + 2nωṡn − (nω)2Cn − C ′′
n − d− 1

r
C ′
n + V ′

Cn
,

0 = s̈n − 2nωĊn − (nω)2sn − s′′n − d− 1

r
s′n + V ′

sn , (4.9)

is also a solution of the full equation of motion (4.1). Equation (4.9) is obtained from the equations

of motion (4.1) by substituting (4.8) and collecting the terms proportional to sinnωt or cosnωt for a

given n, setting them independently to zero. Intuitively, when the time dependence of the harmonic

functions S,C, s, c is slow, they have the usual interpretation as the profiles of quasistationary modes.

Here the functions V ′
X = V ′

X(Sn, Cn, sn, cn), are the mode potentials, in which we have suppressed

functional dependence for brevity. The mode potentials are defined by the equation

V ′(θ) =
∑

n∈Nodd

V ′
Sn

sinnωt+
∑

n∈Neven

V ′
Cn

cosnωt+
∑

n∈Neven

V ′
sn sinnωt+

∑
n∈Nodd

V ′
cn cosnωt ,

(4.10)

where θ is written in the form of equation (4.8), and V ′
Sn
, V ′
Cn
, V ′
sn , V

′
cn are pure functions of

Sn, Cn, sn, cn.

During the evolution of equation (4.9), ω is treated as a constant. This is not in contradiction to

the usual understanding that the fundamental frequency of the oscillon increases with time. For the

purpose of the mode equations (4.9), ω is understood as a choice of a fixed parameter, independent

of the time variation of the modes S,C, s, c themselves. For certain initial conditions, and for certain

choices of ω, there will be periods of time over which S,C, s, c vary slowly, and it is during these

periods that ω may be interpreted as the instantaneous frequency of the oscillon.

In other words, there is no a priori reason to choose a particular ω for a particular field configu-

ration, and one may only think of ω as an instantaneous frequency in the context of certain initial

conditions. Thus, the following paragraphs are dedicated to specifying initial conditions which allow

ω to be interpreted as the instantaneous frequency of an oscillon, where the oscillon is perturbatively

close to a quasibreather. The smaller the orthogonal deformation, the better this interpretation is,

and the longer it holds. In this sense, ω may be conceptualized as an adiabatic parameter, al-

though one should not confuse it with an externally controlled parameter — in our framework, it is

a constant that parametrizes the decomposition (4.8) of solutions to (4.1).

We now specify the following consistent set of initial and boundary conditions, in which we

treat sn and cn as linear perturbations. Here, we take V ′
X = V ′

X(Sn(0, r), Cn(0, r), 0, 0), and we

define δV ′
X ≡

∑
n≥n0

sn(0, r)∂snV
′
X + cn(0, r)∂cnV

′
X (note the absence of a constant term in δV ′

X

is a consequence of (a), below). A complete and consistent set of initial and boundary conditions
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associated with (4.9), that exactly specify a quasibreather and orthogonal deformation at t = 0 is

(a) Initial Quasibreather:

0 = −(nω)2Sn(0, r)− S′′
n(0, r)−

d− 1

r
S′
n(0, r) + V ′

Sn
,

0 = −(nω)2Cn(0, r)− C ′′
n(0, r)−

d− 1

r
C ′
n(0, r) + V ′

Cn
,

(b) Initial Deformation:

0 = −(nω)2cn(0, r)− c′′n(0, r)−
d− 1

r
c′n(0, r) + δV ′

cn ,

0 = −(nω)2sn(0, r)− s′′n(0, r)−
d− 1

r
s′n(0, r) + δV ′

sn ,

(c) Maximally stationary:

0 = Ṡn≥n0
(0, r) = +2nωṠn<n0

(0, r) + δV ′
cn ,

0 = Ċn≥n0(0, r) = −2nωĊn<n0(0, r) + δV ′
sn ,

0 = ṡn(0, r) = ċn(0, r) ,

(d) Regularity:

0 = S′
n(t, 0) = C ′

n(t, 0) = s′n(t, 0) = c′n(t, 0) ,

0 = S′
n<n0

(t,∞) = C ′
n<n0

(t,∞) ,

(e) Radiative:

0 = lim
r→∞

r
1−d
2 (r

d−1
2 cn(t, r))

′ +
√
(nω)2 − 1Sn(t, r) ,

0 = lim
r→∞

r
1−d
2 (r

d−1
2 Sn(t, r))

′ −
√
(nω)2 − 1cn(t, r) ,

0 = lim
r→∞

r
1−d
2 (r

d−1
2 Cn(t, r))

′ +
√

(nω)2 − 1sn(t, r) ,

0 = lim
r→∞

r
1−d
2 (r

d−1
2 sn(t, r))

′ −
√
(nω)2 − 1Cn(t, r) .

Our initial condition (a) selects Sn and Cn which specify a quasibreather. This quasibreather is

one which may be orthogonally deformed to satisfy radiative boundary conditions, and it is this

quasibreather which we call the PQB.

Because we have broken the time translation symmetry of the quasibreather by satisfying radia-

tive boundary conditions, the modes S,C, s, c are endowed with an irreducible time dependence. The

maximally stationary condition (c) shows that this time dependence is proportional to the pointwise

small deformations s and c. Since s and c obey a homogeneous system of equations (b), their am-

plitude everywhere must uniformly go to zero as their amplitude at r = ∞ goes to zero. From (e),

we see that cn ∝ Sn and sn ∝ Cn at spatial infinity. Thus we conclude that if Sn and Cn possess

small radiative tails, then sn and cn become pointwise small everywhere, and the time variation

of the modes uniformly approaches zero. This is the limit in which the oscillon is long-lived, and
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Figure 4.1: The asymptotic attractor (red) is approached as the inhomogeneous solution goes to zero.
The homogeneous terms, representing the initial conditions at t = −t0 cannot converge exactly to
zero by the time the inhomogeneous solution passes through zero, and therefore the perturbation
never exactly reaches the asymptotic attractor.

approaches the quasibreather; in this same limit, the interval over which this approximation is valid,

during which ω may be thought of as an instantaneous frequency, becomes longer.

4.1.3 The asymptotic attractor

The initial conditions (a-e) specify a solution to the nonlinear wave equation that, at t = 0 is exactly

an orthogonally deformed physical quasibreather (to linear order in the deformation). More prac-

tically, we want to understand the evolution of the oscillon in the neighborhood of this deformed

physical quasibreather, before and after this particular point. To this end, we introduce the per-

turbation δθ(t, r), which simultaneously absorbs the time dependence of the modes in (a-e), and

deviations from the orthogonally deformed physical quasibreather. Specifically, a field configuration

θ describing a physical oscillon can be expanded as

θ = θPQB + θOD + δθ , (4.11)
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Figure 4.2: Here we have a schematic Power Radiated (as a proxy for field-space) vs Oscillon
Frequency plot for the family of deformed PQB (red) and an oscillon trajectory (dashed grey). Each
ellipse centered on a deformed PQB represents the domain of frequencies and field values over which
that specific quasibreather is an asymptotic attractor. As the oscillon trajectory enters an attractive
region, it moves closer to the attractive deformed PQB. Consequently, it is also drawn into the
attractive vicinity of the neighboring PQBs. Therefore, the oscillon is forced to approach the red
trajectory as the radii of attraction get larger and larger towards the bottom of the dip. After
traversing the dip, the deformed PQB radii of attraction begin to shrink, and the oscillon trajectory
begins to diverge from the deformed PQB trajectory. In this latter half of the evolution, we see
how the deformed PQB trajectory does not act as a standard attractor, but can still be described
as an asymptotic attractor. To see this, notice how the oscillon instantaneously moves closer to the
quasibreather when entering each new attractive bubble.
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with

θPQB =
∑

n∈Nodd

Sn(0, r, ω) sinnωt+
∑

n∈Neven

Cn(0, r, ω) cosnωt , (4.12)

θOD =
∑

n∈N≥n0
even

sn(0, r, ω) sinnωt+
∑

n∈N≥n0
odd

cn(0, r, ω) cosnωt . (4.13)

Crucially, θPQB is exactly a quasibreather solution, and θOD is exactly periodic in time, as opposed

to δθ, which characterizes the secular evolution of the oscillon in the vicinity of the physical qua-

sibreather at ω. Inserting (4.11) into (4.1), we arrive at the following equation for δθ at linear

order,

0 = δθ̈ −∇2δθ + V ′′(θPQB)δθ +
∑
n<n0

(δV ′
cn cosnωt+ δV ′

sn sinnωt) . (4.14)

This is a sourced equation, representing the fact that the physical quasibreather with orthogonal

deformation does not conserve energy on its own. As a linear equation, δθ may be decomposed into

a sum of homogeneous terms, which obey the homogeneous equation

0 = δθ̈H −∇2δθH + V ′′(θPQB)δθH , (4.15)

and one particular solution δθP , that obeys the sourced equation (4.14), which we take to be iden-

tically zero at t = 0. In the absence of homogeneous terms, it is this particular solution δθP which

satisfies the initial conditions (a-e). Therefore, the homogeneous terms represent perturbations

around those initial conditions. If the homogeneous solutions of (4.14) are stable, then we say that

θPQB + θOD is an asymptotic attractor.

The usefulness of the construction δθ is that it contains all information about the linear stability

of the oscillon 1. Just like in a standard damped oscillator, linear stability represents an exponential

approach to the inhomogeneous solution. In other words, it is enough to study the stability of the

homogeneous equation (4.15) with the tools of Floquet theory. The full picture of how the one-

parameter family of deformed physical quasibreathers, parametrized by the frequency ω, acts like

an attractor may be understood in the following picture. Before t = 0, the particular solution δθP is

approaching 0 (see Figure 4.1). If the homogeneous terms are stable, then the field θ is approaching

the deformed physical quasibreather at frequency ω. However, past t = 0, δθP begins to grow

again, causing the field to diverge from this temporary quasibreather partner. This story repeats

by choosing the next physical quasibreather to expand around at a nearby frequency ω + dω, such

that the attractive region of this new quasibreather has some overlap with the repulsive region of

1This is an oversimplification, since equation (4.15) cannot be stable in the sense that it only has decaying modes.
Stability will emerge out of nonlinear corrections, but for the sake of a simple discussion, we save this technicality for
appendix 4.3.
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the previous quasibreather at ω (see figure 4.2). The term “asymptotic attractor” is chosen because

of its likeness to the concept of asymptotic series, in which increasing the order of an expansion

increases its precision until, at some point, it begins to diverge.

4.1.4 Energetic instability

The physical quasibreather background around which we expand the perturbation δθ is one among

a continuum of quasibreathers, parametrized by their fundamental frequency ω. Thus, when we

talk about a perturbation δθ, we introduce the notation δθω in order to talk about “the pertur-

bation relative to (the deformed physical quasibreather of frequency) ω,” where we may omit the

parenthetical when it is unambiguous to do so.

In the previous section, we introduced the concept of asymptotic attraction, in which an oscil-

lon may be viewed as approaching a physical quasibreather for a finite period of time. For each

quasibreather, there is an epoch of attraction, during which the particular solution δθP is shrinking

towards zero, and an epoch of repulsion, during which δθP is growing away from zero. Neighboring

quasibreathers at ω and ω + dω have particular solutions that cross zero at different absolute times

t = tω and t = tω+dω respectively; whether tω < tω+dω determines whether ω + dω is attractive

for some time after ω becomes repulsive. Because the particular solution δθP encodes the energy

flow out of the oscillon, the relative timing of the zero crossings of δθωP and δθω+dωP may be viewed

as a reflection of energy conservation, defining an arrow of time. That is, the oscillon at ω + dω is

energetically accessible from ω if tω < tω+dω.

This time ordering implies the existence of a relative energy function, whose local monotonicity

encodes whether ω+dω is accessible from ω. In other words, the physical quasibreather at ω+dω is

energetically accessible from ω if there is a time when δθω is a negative energy perturbation relative

to ω and δθω+dω is a positive energy perturbation relative to ω + dω. However, the energy of the

total field configuration is ill-behaved because of the divergent radiative tails. Strictly speaking,

because the quasibreather at ω has a different amplitude radiative tail than the quasibreather at

ω + dω, δθ cannot be a finite energy perturbation of both quasibreathers. However, the tails are

decoupled and do not influence the dynamics of the oscillon bulk. Therefore, our measure of the

perturbation energy must be agnostic to the radiation tails.

One might be inclined to count only the energy inside some finite box containing the oscillon

bulk. However, such a measure still grows polynomially with the size of the box. One may also

try to subtract the radiative tails by removing the 1/r (in d = 3) asymptotic, although again, this

depends on an explicit cutoff between the bulk and the tails. Our framework provides a natural

resolution to this ambiguity. Specifically, the orthogonal deformation θOD provides a measure of the

radiative tail of θPQB valid everywhere. It is the energy associated with this orthogonal deformation
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that we subtract, leading to our definition of the bound energy in the PQB

EB ≡ lim
r→∞

[∫ r

0

dV

(
1

2
θ̇2PQB +

1

2
(∇θPQB)

2 + V (θPQB)

)
−
∫ r

0

dV

(
1

2
θ̇2OD +

1

2
(∇θOD)

2 + V (θOD)

)]
.

(4.16)

Note, because θOD and θPQB are out of phase, this difference will oscillate around an average value,

reflecting the uncertainty principle. This definition has the virtue of converging to the deformed

physical quasibreather energy when the oscillon is infinitely long-lived, i.e. when all harmonics are

confined.

Having provided an unambiguous measure of the bound energy of the physical quasibreather, we

may now address the question of when the perturbation δθ may flow between nearby quasibreathers.

Because the frequency of the quasibreather, ω, is a decreasing function of the bound energy, a family

of physical quasibreathers is energetically stable where

dEB
dω

< 0 . (4.17)

Inside a region of asymptotic attraction, the radiation power P of the physical quasibreathers is a

good approximation for the radiation power of the oscillon. This leads to a standard approximation

for the oscillon lifetime, under the assumption that the perturbation δθ may completely relax (the

adiabatic assumption)

T ≈
∫

dEB
P (EB)

. (4.18)

As the oscillon becomes increasingly long-lived, and thus approaches the physical quasibreather, this

prediction becomes increasingly precise.

4.2 Quasibreather numerical methods

In the previous section, we arrive at the physical quasibreather as the main object of study which may

be used to derive the properties of oscillons in a physical potential. In this section, we develop the

numerical tools which enable the efficient calculations of physical quasibreathers and their orthogonal

deformations.

4.2.1 Linear radiation

Let us begin by supposing that Sn and Cn are known for n < npert, and that the remaining Sn and

Cn are perturbatively small everywhere, so that they obey linear equations. Define the perturbation
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vector and the deformation vector respectively

C⃗ = r(d−1)/2


Cnpert

Snpert+1

...

 , s⃗ = r(d−1)/2


snpert

cnpert+1

...

 , (4.19)

the diagonal matrix of frequencies

Ω =


npertω

(npert + 1)ω

. . .

 , (4.20)

the source vector J⃗ (S1, C2, . . . ) and the mass matrices VC⃗(S1, C2, . . . ),Vs⃗(S1, C2, . . . ), which are

functions of the non-perturbative harmonics. Finally, we define the Sommerfeld operator S, which

together with the Dirichlet-Neumann 1D flat Laplacian acting on each diagonal block ∇2 2, contains

the Sommerfeld radiation condition (e), provided in appendix 4.4.1. In this notation, the equations

of motion for the perturbation and the deformation can be written as a sparse linear system(
J⃗C⃗
J⃗s⃗

)
=

(
−Ω2 −∇2 +VC⃗ S

−S −Ω2 −∇2 +Vs⃗

)(
C⃗

s⃗

)
. (4.21)

This form, in which C⃗ and s⃗ only couple through the boundary term S, is guaranteed because C⃗

on its own solves the equations of motion, and hence any backreaction from a perturbation s⃗ must

come at second order. The explicit forms of S, VC⃗ , Vs⃗ and JC⃗ , Js⃗ are provided for several cases

of interest in the appendix 4.4.1. Note, Js⃗ is proportional to the orthogonal deformation of the

non-perturbative modes, and is therefore zero when all radiative modes are perturbative.

The fact that we may write the equations for the perturbative modes as a well-determined

system of equations is a reflection of the fact that the radiative boundary conditions and regularity

conditions completely (and uniquely, for the linear modes) specify the physical quasibreather.

4.2.2 Nonlinear harmonics

The perturbative method in the previous section amounts to solving a sparse linear system, a process

that is computationally efficient. Thus, given the knowledge of the non-perturbative background

harmonics, we can compute the contribution of arbitrarily many additional harmonics at almost no

computational cost.

Now we must do the dirty work of computing the nonlinear harmonics. Computing npert − 1

non-perturbative harmonics will amount to shooting a point particle in npert − 1 dimensions, and

2In d ̸= 1, 3 one must remember to add (d− 1)(d− 3)/(4r2) to account for the change of variables.
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tuning its initial condition so that it lands on the saddle-top at the origin.

The physical quasibreather only feels the orthogonal deformation at second order, and therefore

we may use the following procedure to compute the deformed PQB to leading order:

1. Choose Sn(0) and Cn(0) from the npert − 1 dimensional space of initial conditions.

2. Shoot the harmonics Sn, Cn from r = 0 to some large finite radius rout by evolving the mode

equations (a).

3. Use the radiative boundary conditions (e) to convert the Sn to cn and Cn to sn at r = rout.

4. Shoot the cn, sn back to the origin in the background resulting from step 2.

5. Check for regularity at the origin for the cn and sn, and regularity at rout for the bound

harmonics. If not regular, adjust Sn(0) and Cn(0) and repeat from step 2. Since regularity is

equivalent to minimizing the first derivative, this can be implemented by a variant of a binary

search procedure, e.g. golden section search.

6. Compute any number of perturbative harmonics using the procedure from the previous section

in the background of the non-perturbative harmonics.

7. To account for linear backreaction of the perturbative harmonics, re-shoot the non-perturbative

harmonics in the background of the perturbative harmonics. This last step is repeated until

convergence.

In practice, it is helpful to break down the npert− 1 dimensional search into npert− 1 linear searches

that are performed hierarchically. The process of nonlinear shooting is sped up by precomputing the

potential functions and using table-lookup. This kind of optimization is especially important when

dealing with periodic potentials where repeatedly computing Bessel functions is costly.

4.2.3 Branching of the fundamental mode

In section 2.1, we reduce the problem of finding the radial profile of the oscillon to a classical-

mechanical ‘shooting’ problem. In its simplest case of one non-perturbative harmonic S1, the problem

further simplifies to the rolling of a massive ball in a double-welled potential VS1
(S1) in the presence

of 2/r friction. A shooting solution is one which starts at rest at an initial displacement S1(0) and

ends at S1 = 0 at r = ∞.

In linear equations, such as the radial hydrogen atom problem, there is exactly one solution

for each integer number of nodes (i.e. zero-crossings) of the radial profile S1. In our PQB mode

equations, strong nonlinearities break this intuition, as depicted in figure 4.3. Specifically, a small

change in the oscillon frequency ω can change the number of solutions with zero nodes by an

increment of two, introducing new branches of oscillon solutions (or eliminating them) when the
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Figure 4.3: The emergence of two new zero-node solutions in the potential defined by Fourier
coefficients V⃗ = {1, 0.5,−1, 0.5} at large oscillon frequencies. The plot shows the effective potential
VS1

(S1) as a function of S1 for positive values of S1; since the potential is parity-symmetric, the
S1 < 0 region is the mirror opposite with respect to the S1 = 0 axis. We have adjusted the
vertical axis to better illustrate the qualitative features of the potential. Different regions are colored
according to the sign of S1(∞) when launched from that location. A shooting solution is represented
by a point on the boundary between a black and magenta region. Whereas initially there was only
one zero-node shooting solution (marked by the circle), the new potential adds two more zero-node
solutions, marked by the stars. Intuitively, the higher the starting point, the further the particle will
travel, causing successive solutions to have an increasing number of nodes. However, the combination
of 2/r friction and nonlinearities in the potential breaks this intuition. Depending on the potential’s
convexity at the initial point, the oscillon may lose a widely variable amount of energy to friction.
Therefore, it is at these regions of varying curvature that we expect these new solutions to emerge.
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potential possesses non-trivial convexity. If this new branch consists of quasibreathers with lower

bound energy, then the original branch may jump to the low-energy branch after the original branch

experiences energetic death. In the reverse scenario, oscillons may form on the high-energy branch

but the low-energy branch is energetically forbidden from reaching the high-energy branch.

In the oscillons that we study in e.g. figure 2.1a, many of the longer-lived potentials contain

a high-energy branch of very large, low-amplitude oscillons which only exists in a small range of

frequencies close to m. One such example is shown in figure 4.3. All the examples studied in section

2.3 are the result of purposefully introducing these branches at a specific frequency ω ≈ mf .

4.3 Floquet analysis

In appendix 4.1 we introduced the notion of asymptotic attraction to describe physical oscillons

as perturbations of PQBs. From this expansion, we have reduced the problem of oscillon stability

to the study of the linear stability of equation (4.15). Standard Floquet theory tells us that the

result of this analysis can have two outcomes: the equation is linearly unstable, or it possesses

oscillatory states exclusively (modulo boundary effects). In other words, the existence of a stable

decaying mode implies the existence of a growing mode, and stability must emerge at higher order

in perturbation theory, if at all. Here, we address the linear stability of perturbations δθ, and later

argue that nonlinear terms stabilize linearly oscillatory modes.

4.3.1 Linear stability analysis

Let us begin by reproducing equation (4.15) for ease of reference: the linearized homogeneous

equation for the perturbation δθ in the background of θPQB is,

0 = δθ̈ −∇2δθ + V ′′(θPQB)δθ . (4.22)

Recall that θPQB is a periodic solution of the equations of motion, and therefore can induce para-

metric resonances. Substituting in the form of the quasibreather (4.5), we find

V ′′(θPQB) =
∑

m∈Neven

V ′′
m(S,C) cosmωt+

∑
m∈Nodd

V ′′
m(S,C) sinmωt , (4.23)

which, under parity symmetry of V , further simplifies to

V ′′(θPQB) =
∑

m∈Neven

V ′′
m(S) cosnωt , (4.24)

where V ′′
m is defined by (4.23). We will leave specific formulae for V ′′

m to appendix 4.4.3.

Since (4.15) is linear, we may Fourier transform t→ Ω, and decompose δθ in spherical harmonics.
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Because the quasibreather background is periodic, it induces couplings between frequencies separated

by integer multiples of the fundamental frequency ω. Therefore, let us restrict our analysis to the

values of the Fourier transform δθ(Ω, r) at the discrete tower of harmonics defined as Ωn ≡ Ω0+nω,

n ∈ Z, where the base frequency Ω0 can be assumed to lie in the interval (0, ω). Therefore, the

Fourier components on this tower, denoted δθn(Ω0, r) ≡ δθ(Ωn, r), will respect a matrix-differential

equation:

0 = −(Ω0 + nω)2δθn − δθ′′n − d− 1

r
δθ′n +

ℓ(ℓ+ d− 2)

r2
δθn + V ′′

0 (S,C)δθn+

+
1

2

∑
m∈N>0

even

V ′′
m(S,C)(δθn+m + δθn−m) +

1

2i

∑
m∈Nodd

V ′′
m(S,C)(δθn+m − δθn−m) , (4.25)

where ℓ is the angular momentum number. This is apparently a quadratic eigenvalue problem

in the fundamental frequency Ω0 [232], although as we will see, it becomes an irrational eigenvalue

problem upon imposing transparent boundary conditions [233, 234]. The eigenvalue solutions Ω0

characterize the stability or instability of the system: real eigenvalues corresponding to oscillatory

motion; if solutions pick up an imaginary part, the mode will be exponentially growing (if Im(Ω0) <

0) or exponentially decaying (if Im(Ω0) > 0). In the absence of transparent boundary conditions,

the solutions come in pairs of complex conjugates; in this closed-box scenario, the existence of a

stable (i.e. decaying) mode implies the existence of an unstable mode.

An instructive example We may gain some insight into the eigenvalues Ω0 by studying the

simpler case of perturbations inside a box for a potential with parity. The matrix differential

equation simplifies such that only the sum over even terms in (4.25) survives. At leading order we

only include the first harmonic’s n = ±1 terms; the reason is that large-n harmonics both decouple

from the fundamental and become unbound. This allows us to keep only the V ′′
0 and V ′′

2 terms

in the equation. Moreover, we make the assumption that Ω0 is small compared to ω, representing

solutions to the perturbation equations with a separation between the fast and slow timescales; this

is relevant when we focus on the boundary between periodicity and instability, where Ω0 will be

small in magnitude. This assumption will be supported by the result of the analysis.

The result is the following 2× 2 matrix-differential equation

0 =
[
2ωΩ0σz + σxV

′′
2 + I(ω2 −∇2 + V ′′

0 )
]
δθ⃗ , (4.26)

where we have suppressed the argument of V ′′
0 , V

′′
2 for brevity and σi are the Pauli matrices with

entries of magnitude 1. We may phrase this as a typical eigenvalue problem in Ω0 by multiplying

through with σz/2ω, leading to

0 = det (H+A− Ω0I) , (4.27)
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Figure 4.4a: The Lyapunov characteristic exponent (the eigenvalue Ω0 of (4.25) with maximum
imaginary part) for the sine-Gordon deformed physical quasibreather (with an error of ±0.005).
The perturbation δθ becomes linearly unstable at ω ≈ 0.88. The nearest asymptotically attractive
quasibreather is always finitely far away from the oscillon. When ω > 0.88, the linearly unstable
mode is therefore always excited, leading to growing quasiperiodic oscillations on top of the deformed
quasibreather background (see figure 4.4b). Note, throughout this band of linear instability, the mass
energy

∫
dV 1

4m
2S2

1 is monotonically decreasing, in contradiction with [64]. On the plot, we denote
the energetic death at ω ≈ 0.94, where the oscillon is forced off the quasibreather trajectory by
energy conservation.

where H and A are Hermitian and anti-Hermitian matrices defined by

H =
1

2ω
σz(ω

2 −∇2 + V ′′
0 ) , A =

i

2ω
σyV

′′
2 . (4.28)

In other words, the Ω0 eigenvalues are the roots of the characteristic polynomial with all-real

coefficients defined by the matrix with all-real entries H +A. Consider the case A = 0; the eigen-

values Ω0 are the eigenvalues of H, which is composed of two mirrored copies of the real spectrum of

the single-block operator 1
2ω (ω

2 −∇2 + V ′′
0 ). The addition of A only introduces couplings between

these two sectors; since it is also antisymmetric, these couplings are equal and opposite in sign. If

we start from a spectrum of H with no overlap between its two sectors, the addition of A will bring

the two mirrored ‘ground states’ together from Ω0 = ±Eground to the value of Ω0 = 0. From the

perspective of the characteristic polynomial, this corresponds to the two roots becoming degenerate
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Figure 4.4b: The power radiated by a simulated sine-Gordon oscillon versus the central fundamental
frequency. On this plot, we’ve indicated the onset of linear instability ω ≈ 0.88 calculated using our
eigenvalue code described in appendix 4.3, and the instance of energetic death ω ≈ 0.94 described in
appendix 4.1.4. This figure represents the a consequence of linear instability: growing quasiperiodic
oscillations. The specific magnitude of this effect depends on initial conditions and environmental
perturbations (see figure 2.11 for an example where oscillations are suppressed). Whether or not
the unstable mode can become large enough to destroy the oscillon, the perturbation itself has
a radiation component, which may significantly modify the lifetime. In this particular case, the
unstable mode’s frequency ω ± ReΩ0 approaches the oscillon frequency ω towards the end of life,
leading to growing beats (see figure 4.4a). The loop of death at the end of the evolution occurs
because the central oscillon rapidly becomes a mix of first and third harmonic, causing the central
frequency to be larger than 1.
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before turning imaginary. In other words, complex eigenvalues must appear by first passing through

an inter-block degeneracy. Therefore, the meeting of the two ground states defines the boundary

between periodicity (i.e. an all-real spectrum) and instability (i.e. complex spectrum). If the spec-

trum of H is bounded below by 0, then the meeting of the two states will produce purely imaginary

eigenvalues. This result should be compared to [64]. In general, the symmetries of (4.27) that led to

this result are only approximate, and therefore we should expect the first nearly-stable eigenvalue

to be close to zero in general.

However, because the oscillon lives in an open box, we must ensure that (4.25) is endowed with

transparent boundary conditions. Such radiative boundary conditions depend on the momentum

of the outgoing mode
√
(Ω0 + nω)2 − 1. Eigenvalue problems with radiative boundary conditions

have been studied in the non-relativistic limit in [233]. Crucially, the calculations of [233] depend on

the existence of a uniformizing variable u(Ω0) in which the outgoing momentum becomes a rational

function of u. As far as we are aware, no such uniformization procedure is known for the relativistic

case with two channels, or more generally for any case with more than two channels.

Using series approximations and a uniformizing variable u(Ω0), we show in appendix 4.4.3 that it

is possible to express the boundary condition as a polynomial for |Ω0| < 1/2 for ω > 1/2 in the case

of parity or ω > 3/4 without parity. Using standard linearization techniques, we may reduce this

polynomial eigenvalue problem to a generalized eigenvalue problem, for which numerical software is

plentiful. This is the method applied to the stability analysis in Figure 4.4a.

4.3.2 Nonlinear stabilization

In the previous section, we laid out our numerical method for computing the linear stability of the

homogeneous perturbation δθ in the background of the deformed physical quasibreather. Modulo

technicalities at the boundary, we found that all linear perturbations either are oscillatory, or come

in pairs of exponentially growing and decaying modes. The result is that stability, understood to

mean that all homogeneous perturbations shrink, cannot be fully explained at the level of linear

Floquet analysis.

Thus, stability must originate at higher order in perturbation theory, if it exists at all. In

this section, we identify radiation as the mechanism of stabilization accessible to small oscillatory

perturbations; specifically, modes which are periodic in the linear stability analysis will couple to

radiative modes at higher orders, providing a channel for dissipation. Therefore, we conclude that

a sufficient condition for full nonlinear stability is that all modes are oscillatory at the level of

linear perturbation theory. Furthermore, we will see that linear instability does not imply nonlinear

instability.

We will explore the effect of adding a nonlinear term to a Floquet-type problem by studying the

toy example of the Mathieu equation with a quadratic nonlinear term. To simplify our analysis,
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Figure 4.5: A visualization of how linear instability emerges in the simplified model of appendix
4.3. The boundary of stability is described by eigenvalues meeting at zero. The plot describes
the solutions to the eigenvalue equation (4.27) in the case of a simple Gaussian background, in
which the fundamental oscillon mode is taken to be S1(r) = A exp

{
−r2/2σ2

}
. The plot background

describes stability as a function of the two Gaussian parameters, the oscillon amplitude A and width
σ; for oscillons of sufficient width and amplitude, there are eigenvalues Ω0 with negative imaginary
part, and thus the oscillon is unstable. We show the eigenvalues nearest to zero for three points
in this parameter space: stable (green), borderline unstable (yellow), and unstable (red). The real
eigenvalues closest to the origin become degenerate at zero on the boundary of stability; they further
split into purely imaginary conjugates in the instability region.
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Figure 4.6: Here we plot the maximum stable amplitude of y in the nonlinear Mathieu equation (4.29)
for small ϵ, and we’ve indicated the instability band of the linear Mathieu equation in red. Outside
the red region, the nonlinear oscillations are centered on y = 0, representing that the oscillations stay
bounded independent of phase. However, for |α| < 0.5, only oscillations of a particular phase remain
bounded, indicating that y = 0 has become hyperbolic (see left inset). Inset in the plot are two
examples of the slow oscillation trajectories. For |α| < 0.5, the red stable trajectories have amplitude
larger than 0 and are restricted to a finite interval of phase. This generally nonlinear phenomenon
represents a special region of stability within the otherwise unstable phase of the Mathieu parameter
space. For |α| > 0.5, the red stable oscillations are restricted to a finite amplitude, but are allowed
to have any phase. In both cases, large enough amplitude perturbations grow without bound,
represented by the black trajectories.
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we begin by studying potentials with parity, so that the leading order oscillating contribution to

V ′′(θPQB) is proportional to cos 2ωt. The leading nonlinear term is then proportional to sinωt.

Thus, we will study the nonlinear generalizations of the Mathieu equation of the form

0 = ÿ + (1 + ϵ(α+ cos 2t+ y sin t))y . (4.29)

In this toy problem, y represents the perturbation δθ to a physical quasibreather whose potential

conserves parity. The fact that the linear term is proportional to cos 2t and the quadratic term y2

is proportional to sin t is a consequence of the symmetry of the potential, which guarantees that

polynomials in y of certain parity have the corresponding oscillatory terms.

A standard two-timing analysis, along the lines of [235], with ϵ ≪ 1 demonstrates that the

Mathieu instability bifurcation at |α| = 1/2 is unchanged by the nonlinearity around y = 0. However,

one difference is the appearance of regions of stability inside the linearly unstable region |α| < 1/2,

although large enough y always implies instability, regardless of α 3. When y is the smallest scale in

the problem, we recover the usual Mathieu equation behavior (see figure 4.6). In summary, linear

periodicity is unchanged for small enough y, although linearly unstable modes may become periodic.

Thus, we should expect that the oscillatory modes of the linear equation (4.25) remain oscillatory

upon introduction of a nonlinear term as long as they are of small enough amplitude. Moreover, the

nonlinear terms may convert an otherwise linearly unstable mode into an oscillatory one. Further,

the nonlinear interactions of linearly oscillatory modes will necessarily produce radiation, carrying

away energy, causing their amplitude to shrink. Thus, sufficiently small linearly oscillatory modes

are stabilized by radiation.

4.3.3 Angular perturbations

In appendix 4.4.3, we develop a calculation scheme to solve for the perturbation δθ as a function of

t and r. In order to obtain the perturbation equations for δθ, we performed a spherical harmonic

decomposition, resulting in a set of decoupled equations for each mode of angular momentum number

ℓ. These equations differ by the coefficient of the angular momentum effective potential

Vangular =
ℓ(ℓ+ d− 2)

r2
. (4.30)

Because this potential is positive, it acts as a repulsive centrifugal term, reducing the perturbation

density at the origin. Hence, we expect that perturbations with more angular momentum are

typically more linearly stable, since less of the perturbation lies inside the oscillon bulk, although for

low angular momentum, the conclusion is case-dependent. An intuition for this comes from applying

3Indeed, this example is illustrative for much of the behavior we observe in numerical simulations of oscillons.
Large quasiperiodic oscillations, arising from a linear instability, do not blow up like the linear analysis would suggest,
but rather persist because of nonlinear regions of stability.
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the stability phases of the standard Mathieu equation (see figure 4.7).

A similar 1/r2 term appears in the effective potential for the perturbation upon removing the

(d− 1)/r friction term through a change of variables δθ → r(d−1)/2δθ. This introduces the effective

potential

Vgeometric = − (d− 1)(d− 3)

4r2
. (4.31)

This term differs from the angular momentum term in two important ways. First, it can be of either

sign: for d = 1, 3 it vanishes, for d = 2, it is repulsive, and for d ≥ 4 it is attractive. Second, it also

influences the quasibreather background itself, whereas the angular momentum terms only influence

the non-spherical perturbations. Because this potential influences both the background and the

perturbation, its effect on stability depends on the specifics of the nonlinear potential.

4.4 Technical formulae

In this section, we provide a detailed description of the formulae and numerical techniques used to

compute physical quasibreather properties.

4.4.1 Perturbative harmonic formulae

Once we have computed the oscillon’s non-perturbative modes Sn<npert , Cn<npert and their orthogo-

nal deformations cn<npert
, sn<npert

, we may compute the perturbative modes Sn≥npert
, Cn≥npert

and

their orthogonal deformations cn≥npert
, sn≥npert

using the procedure outlined in section 4.2.1. Here,

we provide explicit formulae for the Sommerfeld matrix S and the block Laplacian operator ∇2.

Upon discretizing space such that r = [0,dr, . . . , (N − 1) dr], the matrix S is comprised of all zeros,

except for the lower right entry in each diagonal block. To describe this object, we introduce the

following notation. The matrix S has four indices: two upper indices labelling the block, and two

lower indices labeling the location within that block. In this notation, the entries in the matrix S

in (4.21) may be written

Snmab = (−1)n
√

(nω)2 − 1δnmδaNδbN . (4.32)
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Figure 4.7: Effective Mathieu equation parameters 0 = ÿ + (a − 2q cos 2kωt)y for integer k, where
we associate a pair (ar, qr) to each radius r of the sine-Gordon quasibreather background (4.25) for
ω = 0.95, ignoring the gradient term. This picture is meant to guide our intuition of the Mathieu
equation into the less-familar Floquet problem (4.25). Intuitively, a mode can be understood as
more unstable if more of its volume lies in the Mathieu instability bands. This plot, although not
quantitatively precise, provides intuition for why the lowest angular momentum states are more
susceptible to instabilities, since they have the most overlap with the dominant instability bands.
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In the same notation, we may describe the Dirichlet-Neumann block Laplacian operator

[∇2]nm =
1

dr2



−2 1

1

. . . 1

1 −2 dr

1 −dr


δnm . (4.33)

4.4.2 Potentials with parity

As described in section 2.4, the Fourier basis is a natural basis to describe any scalar potential,

since it is not plagued by the same radius-of-convergence issues of, say, the Taylor basis. Here we

provide the harmonic factorization of a general scalar potential with parity (2.43). Taking the first

derivative of (2.43) with respect to θ, we arrive at the following expression for the self-interaction

terms in the non-linear wave equation

V ′(θ) =

∞∑
m=1

Vm
m

sinmθ . (4.34)

This expression is specific to the case of a potential with 2π periodicity. To accommodate poten-

tials without periodicity, simply replace θ → θ/θmax where θ ∈ [−πθmax, πθmax] and
∑

Vm = θ2max.

In order to keep the following expressions from getting any more unruly, we will present the ex-

plicit formulae for 2π-periodic potentials, since the reader may easily convert these expressions to

accommodate general periodicity.

By virtue of the Jacobi-Anger expansion [236]

eia sin b =

∞∑
k=−∞

Jk(a)e
ikb , (4.35)

we may compute the harmonic expansion of the potential, evaluated as a function of the PQB

harmonics

V ′

( ∞∑
n=1

Sn sin(nωt)

)
=

∞∑
m=1

Vm
m

∑
k⃗∈Z⃗

[( ∞∏
n=1

Jkn(mSn)

)
sin

( ∞∑
n=1

nknωt

)]
, (4.36)

where k⃗ = (k1, k2, . . . ). One may write this more compactly in terms of generalized Bessel functions

[236]. From this formula, we obtain the expressions for VSn in (4.9)

V ′(θ) ≡
∞∑
n=1

V ′
Sn

(S1, . . . , ) sin(nωt) . (4.37)
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In general, we may evaluate the full non-perturbative formulae for the mode-potential derivatives

V ′
SN

and V ′
cN ,

V ′
SN

=

∞∑
m=1

Vm
m

∑
ks1,...,k

c
1,...

( ∞∏
n=1

Jksn(mSn)Jkcn(mcn)

)
cos

( ∞∑
n=1

kcnπ/2

)

×

[
δ

(
N −

∞∑
n=1

n(ksn + kcn)

)
− δ

(
−N −

∞∑
n=1

n(ksn + kcn)

)]
,

V ′
cN =

∞∑
m=1

Vm
m

∑
ks1,...,k

c
1,...

( ∞∏
n=1

Jksn(mSn)Jkcn(mcn)

)
sin

( ∞∑
n=1

kcnπ/2

)

×

[
δ

(
N −

∞∑
n=1

n(ksn + kcn)

)
+ δ

(
−N −

∞∑
n=1

n(ksn + kcn)

)]
.

(4.38)

Note, the δs in this equation are Kronecker δs, but we use a parenthetical argument to keep

the expression readable. From these expressions, we may derive useful formulae for important cases

of interest. Here, we present two examples for illustration, and because the reader may find them

particularly useful in generating oscillon profiles of their own. First, in the case that the fundamental

mode S1 dominates and all other modes are perturbative, we have the following source term

J⃗C⃗ = r(d−1)/2
∞∑
m=1

2
Vm
m


J3(mS1)

J5(mS1)
...

 , (4.39)

with J⃗s⃗ = 0 and the following mass matrices

VC⃗ =

∞∑
m=1

Vm


(J3−3(mS1)− J3+3(mS1)) (J3−5(mS1)− J3+5(mS1)) · · ·
(J5−3(mS1)− J5+3(mS1)) (J5−5(mS1)− J5+3(mS1))

...
. . .

 ,

Vs⃗ =

∞∑
m=1

Vm


(J3−3(mS1) + J3+3(mS1)) (J3−5(mS1) + J3+5(mS1)) · · ·
(J5−3(mS1) + J5+3(mS1)) (J5−5(mS1) + J5+3(mS1))

...
. . .

 ,

(4.40)

to be inserted into equation (4.21). The case where S1 and S3 are non-perturbative and all other

harmonics are perturbative everywhere has a similarly clean form
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V =

∞∑
m=1

Vm

∞∑
k=−∞

Jk(mS3)


(J5−5−3k(mS1)∓ J5+5−3k(mS1)) (J5−7−3k(mS1)∓ J5+7−3k(mS1)) · · ·
(J7−5−3k(mS1)∓ J7+5−3k(mS1)) (J7−7−3k(mS1)∓ J7+7−3k(mS1))

...
. . .

 ,

J⃗C⃗ = r(d−1)/2
∞∑
m=1

Vm
m

∞∑
k=−∞

Jk(mS3)


J5−3k(mS1)− J−5−3k(mS1)

J7−3k(mS1)− J−7−3k(mS1)
...

 ,

J⃗s⃗ = r(d−1)/2c3

∞∑
m=1

Vm

∞∑
k=−∞

Jk−1(mS3)


J5−3k(mS1) + J−5−3k(mS1)

J7−3k(mS1) + J−7−3k(mS1)
...

 ,

(4.41)

with − corresponding to VC⃗ and + corresponding to Vs⃗. The formulae when there are more

non-perturbative harmonics follow the same pattern.

4.4.3 Formulae for linear stability analysis

Here we provide the mathematical details to accompany appendix 4.3. We restrict ourselves to

ω > 1/2 in the case of parity and ω > 3/4 otherwise. This restriction is to ensure that the following

series approximation converges on the disc |Ω0| < 1/2. If one is certain that the unstable eigenvalues

occur in a smaller disc, the restrictions on ω may be weakened significantly, and indeed, this is often

the case.

The outgoing boundary conditions depend on the momentum of the outgoing mode, which is

an irrational function of Ω0. In order to convert the irrational eigenvalue problem (4.25) into a

polynomial eigenvalue problem that may be solved with standard techniques, we need to approximate

the momentum
√

(Ω0 ± nω)2 − 1 by a polynomial. One’s first intuition might be that the Taylor

series of the momentum expanded about Ω0 = 0 would be a good approximation. This intuition is

good for the higher harmonics, since Ω0 is often much smaller than nω. However, this series only

converges inside the disc |Ω0| < 1 − ω for n = 1, which is not sufficient to compute the Lyapunov

exponent of the linear perturbation δθ. A more sophisticated approximation is necessary in order

to capture the behavior of the momentum as a function of Ω0 on a disc that remains finite size as

ω → 1.

To this end, we define

x = Ω2
0 − (1− ω)2 , (4.42)
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so that

√
(Ω0 ± ω)2 − 1 =

√
x+ 2ω(ω − 1± Ω0) . (4.43)

We then Taylor expand around x = 0, yielding the following series that converges on the disc of

radius 1/2 centered on Ω0 = 0 for ω > 1/2

√
(Ω0 ± ω)2 − 1 =

√
2ω(ω − 1± Ω0)

1− ∞∑
j=0

(
2j

j

)
1

(j + 1)22j+1

(
(1− ω)2 − Ω2

0

2ω(ω − 1± Ω0)

)j+1
 ,

√
(Ω0 ± nω)2 − 1 =

√
(nω)2 − 1

1− ∞∑
j=0

(
2j

j

)
1

(j + 1)22j+1

(
− (Ω0 ± nω)2 − (nω)2

(nω)2 − 1

)j+1
 ,
(4.44)

where the second equation is just the ordinary Taylor expansion centered on Ω0 = 0 for n ≥ 2.

The factor
√
2ω(ω − 1± Ω0) is not yet a polynomial. We utilize the technique of uniformization

[233], where we define the complex variable u such that
√

2ω(ω − 1± Ω0) becomes a polynomial in

u,

Ω0 =
1− ω

2

(
u2 + u−2

)
. (4.45)

This definition turns (4.44) into rational functions of u, allowing us to rephrase (4.25) as a polynomial

eigenvalue problem. The zero eigenvalues now live at the four roots of the equation u4 = −1, around

which we perform a small eigenvalue search using the Krylov subspace methods implemented in

Matlab. Once the u eigenvalues and eigenvectors have been computed, we must convert back to

check that they correspond to eigenvalues of the original irrational eigenvalue problem. In short, we

have reduced the original irrational eigenvalue to a polynomial eigenvalue problem of degree at-least

4, depending on the degree of accuracy one wants to achieve.

Finally, we define the matrix S which encodes the non-derivative term in the Sommerfeld radi-

ation condition, which can be written as a sum of the matrices Ŝλ, which are matrices of all zeros

except for the lower right entry of the λth diagonal block, which is 1. This entry corresponds to the

outer boundary of the grid, with λ ranging from −L to L, and the upper left block corresponding to

λ = −L, where L is the chosen order of the Floquet expansion. In this notation, the non-derivative

part of the Sommerfeld boundary conditions may be written

S =

∞∑
λ=−∞

√
(Ω0 + λω)2 − 1Ŝλ ≈

L∑
λ=−L

2M+1∑
i=0

cλ,iu
iŜλ , (4.46)

where M = min(2jmax,1 + 3, 4jmax,n + 4), where jmax,n is the order of the Taylor expansion of the
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nth momentum eigenvalue.

Collecting terms in (4.44), we have the following expressions for the coefficients of the Ŝλ matrices,

for λ = 1 and λ = n > 1 respectively

c±1,i =
√
±ω(1− ω) [(δ1+M−i ∓ δ−1+M−i)−

−
jmax,1∑
j=0

(
2j

j

)
1

(j + 1)22j+1

(
±ω − 1

4ω

)j+1 2(j+1)∑
k=0

(
2j + 2

k

)
(±1)k

(
δ2(j−k)+3+M−i ∓ δ2(j−k)+1+M−i

) ,
cn,i =

√
(nω)2 − 1

δi−M −
jmax,n∑
j=0

(2j)!

(j!)2
2−3j−2

(j + 1)

(
(1− ω)2

1− (nω)2

)j+1

×

∑
k−4+k−2+k0+k2+k4=j+1

(j + 1)!

k−4!k−2!k0!k2!k4!

(
1

2

)k4+k−4
(

2nω

ω − 1

)k2+k−2

δ4k4−4k−4+2k2−2k−2+M−i

 .
(4.47)

Finally, we define the matrix of frequencies

Ω =



. . .

ω

0

−ω
. . .


, (4.48)

where the even entries are dropped when V has parity. These versions of Ω and S are not to be

confused with those used to solve for the physical quasibreather (4.21), as the correct version to use

will always be clear from context.

With these definitions, the irrational eigenvalue problem (4.25) has been reduced to the polyno-

mial eigenvalue problem

0 =

N∑
i=0

uiMi , (4.49)

where the matrices Mi are defined
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Mi = −i

L∑
λ=−L

cλ,iŜλ +

[
2

(
1− ω

2

)2

I+Ω2 + L

]
δM−i+

+

(
1− ω

2

)2

I (δM+4−i + δM−4−i) + (1− ω)Ω (δM+2−i + δM−2−i) , (4.50)

L = ∇2 − ℓ(ℓ+ d− 2)

r2
+

(d− 1)(d− 3)

4r2
− V ′′

0 −

− 1

2

∞∑
m∈Neven

V ′′
m (D−m +Dm)− 1

2i

∞∑
m∈Nodd

V ′′
m (Dm −D−m) , (4.51)

where displacement matrices Dm are the matrices consisting of all 1’s on the diagonal of the mth

block diagonal. Thus, we have reduced the computation of the Lyapunov exponents to computing

the eigenvalues of the generalized eigenvalue problem

0 =



uI −I

uI −I

. . .
. . .

uI −I

M0 M1 . . . MN−2 MN−1 + uMN




δθ

uδθ
...

uN−1δθ

 . (4.52)

To summarize, the precision of this approximation can be increased to the desired level by

1. increasing the resolution of the radial grid by reducing dr,

2. increasing the physical radius of the simulation rout,

3. increasing the number L of Floquet blocks kept in the expansion,

4. increasing the order jmax,λ of the momentum expansions,

5. increasing the number of PQB harmonics kept in the background.

4.5 Explicit time evolution — numerical methods

Throughout the text, we refer to explicit numerical simulations for validation of our results. Here

we outline the numerical setup used to compute the time evolution of the field θ in the equations of

motion (2.2), and the methodology used to measure oscillon frequency ω and radiated power P .

The radial equation of motion for the field θ(t, r) in 3 + 1 dimensions is

0 =
∂2θ(t, r)

∂t2
− ∂2θ(t, r)

∂r2
− 2

r

∂θ(t, r)

∂r
+ F (θ(t, r)) . (4.53)
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We introduce the variable v = rθ, which eliminates the friction term. We now discretize time and

space, with time steps dt and radial steps dr, and introduce the notation

v(N dt,M dr) = vN (M) (4.54)

Finally, we define the ratio ξ ≡ (dt/dr)2. In this notation, the equations of motion lead to the

following leading-order finite difference equation

vN+1(M) = ξ(vN (M + 1) + vN (M − 1)) + 2(1− ξ)vN (M)

− vN−1(M)− (dt2 drM)F (vN (M)/(drM)) . (4.55)

Dirichlet boundary conditions are imposed at the origin by fixing vN (0) = 0. The oscillon is assumed

to be evolving in empty space, and therefore the box size must be chosen large enough that the

radiation from the oscillon reflected off the outer boundary does not propagate backwards and

interfere with the oscillon itself.

The length scale of the nth harmonic is 2π/
√
(nω)2 −m2. During an instance of destructive

interference, typically the fifth harmonic dominates, and in rare cases the seventh may contribute

significantly. Since 2π/
√
72 − 1 ≈ 0.9, we choose a safe value of dr = 0.1/m, about 10 times smaller

than the length scale of radiation at the highest possible frequency. We find that ξ = 1/4 leads to

stable evolution for dr of order 0.1/m. To check that this choice of dr is good, we increased the

resolution by a factor of 2 and 4 which resulted in marginal discrepancies.

The frequency of the oscillon is then measured by tracking the times at which vN (1) crosses

through zero. The outgoing flux is measured outside the oscillon bulk, typically between 20 and

100 in units of the mass. We do not measure the flux too far from the source, since the different

frequency modes travel at different velocities, and the PQB formalism does not account for this

dispersion.

4.6 Mass vs. interaction basis

The ϕS and ϕL fields in Eq. 3.4 are not mass eigenstates (i.e. they are not stable under propagation

in the non-interacting limit). They are, however, the natural basis in which to consider most of the

early-time dynamics and the late-time signatures (since any couplings to the SM likely descend from

the UV theory). In this appendix we clarify this point and include the transformation from the

interaction basis (ϕS , ϕL) to the mass basis. For F ≫ 1/(1−µ2) the two bases are quite similar and

so this discussion has very little effect on the interpretation of the dynamics studied in this paper,

although we have included it in our results where relevant.

We wish to find the propagation eigenstates of ϕL and ϕS . Expanding the potential of Eq. 3.4
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to quadratic order yields a mass mixing matrix:

V (ϕL, ϕS) ≈
1

2
m2

(
ϕ2S +

1

F2
ϕ2L +

2

F
ϕSϕL + µ2ϕ2L

)
=

1

2
m2
(
ϕS ϕL

)( 1 F−1

F−1 µ2 + F−2

)(
ϕS

ϕL

)
(4.56)

which has off-diagonal elements suppressed by the ratio of decay constants. This matrix is easy to

diagonalize, yielding the following basis of heavy and light fields νh and νl:

νh ≡ ϕS cos η + ϕL sin η (4.57)

νl ≡ −ϕS sin η + ϕL cos η (4.58)

m2
h = m2

0 +∆m2 (4.59)

m2
l = m2

0 −∆m2 (4.60)

m2
0 ≡ 1

2
m2(1 + µ2 + F−2) (4.61)

∆m2 =
1

2
m2(1− µ2 −F−2) sec 2η (4.62)

sin η ≡ 1√
2

√
1− 1− µ2 −F−2√

4F−2 + (1− µ2 −F−2)2
(4.63)

For the late-time Newtonian evolution of the axion energy density, it is most useful to describe the

system in this basis, since the energy densities in the fields νl and νh are constant in the small-

amplitude limit. As mentioned above, for F ≫ (1 − µ2)−1 we have sin η ≈ 0 and so νl ≈ ϕL

and νh ≈ ϕS . The effects of this basis rotation are thus very slight for most of the parameter space

discussed in this paper, but we nevertheless use this basis when performing the analysis of Sec. 3.2.4.

In rotating to the mass basis, we have also modified the quartic interactions

Vint(νh, νl) =
1

4!
λhhν

4
h +

1

3!
λhhhlν

3
hνl +

1

4
λhlν

2
hν

2
l

+
1

3!
λhlllνhν

3
l +

1

4!
λllν

4
l , (4.64)

where the even-interactions are

f2

m2
λhh = −b4µ2F−2 − (a+ bF−1)4 , (4.65)

f2

m2
λhl = −a2b2µ2(F−2 + µ2) , (4.66)

f2

m2
λll = −a4µ2F−2 − (b− aF−1)4 , (4.67)
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with

a2 = cos2 η , b2 = sin2 η . (4.68)

It turns out that the leading order self-interactions in the non-relativistic theory only come from those

terms that conserve parity under νh → −νh and νl → −νl independently. Odd-parity interactions

enter at the next-to-leading order in the non-relativistic approximation and so we do not take them

into account in this work, but for completeness, we list them here:

f2

m2
λhhhl = −(a+ bF−1)3(aF−1 − b)− ab3µ2F−2 , (4.69)

f2

m2
λhlll = −(aF−1 − b)3(a+ bF−1)− a3bµ2F−2 . (4.70)

4.7 A more detailed study of autoresonance

The dynamics of autoresonating axions are rich, and in this appendix we focus on building analytic

intuition for their behavior. Even though the oscillators are quite nonlinear, it turns out that we

can get good approximations for several interesting quantities by searching for stable autoresonant

solutions and perturbing around them.

4.7.1 Adiabatic evolution of resonance curves

Here we review the details of the calculations behind the resonance curve results in Sec. 3.1. For

this purpose, we are interested in the F → ∞ limit, for which ΘL decouples from ΘS and obeys a

simple pendulum equation of motion:

Θ̈L +
3

2t
Θ̇L + µ2 sinΘL = 0 . (4.71)

For small initial conditions sinΘL ≈ ΘL, the solutions can be obtained analytically:

ΘL(t) = ΘL(0) Γ(5/4)2
1/4 J1/4(µt)

(µt)1/4
, (4.72)

which, at late times, is approximately:

ΘL(t) =
ΘL(0)Γ(

5
4 )2

3/4

√
π

sin
(
µt+ π

8

)
(µt)3/4

. (4.73)

At large initial conditions comparable to π, this approximation fails and we must correct the initial

amplitude ΘL(0) to account for the delay in oscillations caused by the flatness of the cosine potential.

To this end, we define the function Θlin→cos, which takes as input the initial amplitude of a linear
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Figure 4.8: The set of parameters for which ΘS ends up autoresonating for ΘS(0) = 0 in the F → ∞
limit. We compare a numerical evaluation (Blue) to the analytic adiabatic prediction of the critical
driver amplitude. The numeric autoresonance region corresponds to those parameters for which ΘS
has finite amplitude as t→ ∞. The analytic contour is obtained as the minimum driver amplitude
for which a quasi-equilibrium configuration connects the zero amplitude linear resonance at t = 0
with the finite amplitude nonlinear resonance at t = ∞ as in Fig. 3.3. Note that the analytic
estimate improves as µ→ 1, where the evolution of the resonance curve is slowest, and thus is most
accurately described by an adiabatic approximation. Inset: A plot of the function Θlin→cos, which
takes as input the initial misalignment of a harmonic oscillator, and outputs the misalignment of
a cosine oscillator that yields the same late-time relic abundance. Note that this function is the
identity at small Θlin.
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Figure 4.9: Short axion resonance curves over a sequence of times for two different values of initial
long amplitude σL(0). Black dots represent the adiabatic evolution of an axion system with µ =
0.95. The short axion always begins on the linear branch at early times, but its final amplitude is
determined by the evolution of the resonance curve. Top: For σL(0) = 0.55, the resonance curve
“tongue” grows over the instantaneous equilibrium, leaving σS on the linear branch. Bottom: For
σL(0) = 0.65, the resonance curve narrows under the instantaneous equilibrium, leaving σS elevated
on the nonlinear branch (autoresonance). Note: these resonance curves are made using Eq. 3.15 to
enable direct comparison with Fig. 3.3; utilizing Eq. 4.78 does not change the qualitative features
of these two classes of evolution history.
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oscillator, and returns the corresponding initial amplitude of a cosine oscillator which results in

the same energy density at late times. This function is shown in the inset of Fig. 4.8. At small

amplitudes it is approximately the identity, while at large amplitudes it asymptotes to π. The

late-time amplitude of the full non-linear solution for ΘL in the cosine potential can be written as:

σL(t) = Θ−1
lin→cos(ΘL(0))

Γ( 54 )2
3/4

√
π(µt)3/4

. (4.74)

This instantaneous amplitude σL will drive the short axion ΘS at the long frequency µ. Specifically,

the equation of motion for ΘS , obtained in the small-ΘL regime from Eq. 3.8, becomes:

Θ̈S +
3

2t
Θ̇S + sinΘS = − cosΘS σL cos(µt− Φ) , (4.75)

where Φ is the relative phase between ΘS and ΘL (which is constant at leading order in the adiabatic

approximation). Note that compared to a standard driven pendulum (Eq. 3.13), the driver is

suppressed by a cosΘS correction. To leading order, the resonance curve can be obtained by only

treating the terms oscillating at the driver frequency µ, which is equivalently thought of as the

small-amplitude limit. We thus take ΘS ≈ σS cos(µt) and expand sinΘS and cosΘS using the

Jacobi-Anger formulae:

cos(σS cosµt) = J0(σS) + 2

∞∑
n=1

(−1)nJ2n(σS) cos(2nµt) , (4.76a)

sin(σS cosµt) = 2

∞∑
n=0

(−1)nJ2n+1(σS) cos((2n+ 1)µt) . (4.76b)

Keeping only terms of frequency µ, we collect the terms proportional to sinµt and cosµt, leading

to the equations

− µ2σS + 2J1(σS) + J0(σS)σL cosΦ = 0 , (4.77a)

3µ

2t
σS − J0(σS)σL sinΦ = 0 , (4.77b)

which, upon eliminating the phase shift Φ, lead to the condition defining the resonance curve:

(
2J1(σS)− µ2σS

)2
+

(
3µ

2t

)2

σ2
S = J0(σS)

2σ2
L . (4.78)
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Expanding the Bessel function to leading non-linear order we arrive at the following approximate

small-amplitude resonance curve:

σS =
σL(t)

(
1− σ2

S

4

)
√(

1− σ2
S

8 − µ2
)2

+ 9µ2

4t2

. (4.79)

Given a fixed frequency µ, we are interested in tracking the equilibrium solution of σS given by this

resonance condition when the driver amplitude σL also varies slowly with time, as given by Eq. 4.74.

At small t friction dominates, and there is only one real solution to Eq. 4.79. At large t, the

curve narrows around the free frequency curve as shown in Fig. 3.2 and, over a range of frequencies

µ < 1, can support two stable solutions on either the nonlinear branch (which asymptotes to a finite

amplitude σS ≈ 4
√
(1− µ)), or on the linear branch (which tends to zero). In this adiabatic view

of the evolving resonance curve, autoresonance is considered to occur when the early-time solution,

which starts on the linear branch, is continuously connected to a late-time solution on the upper,

non-linear branch. Autoresonance does not happen if the system remains on the linear branch. To

find the critical point between these two regimes, it suffices to look for the largest ΘL(0) for which

the linear branch at µ never becomes complex. Solving for this condition in Eq. 4.79 leads to the

ΘL(0) amplitude cutoff

ΘL(0) ≥ Θlin→cos

[
23/4

√
8π

33/8Γ( 54 )
(1− µ)3/4

]
. (4.80)

We plot the resulting critical initial misalignment ΘL(0) versus µ in Fig. 4.8, where we find excel-

lent agreement between the analytical threshold (Magenta) and the numerical threshold (Blue). In

Fig. 4.9 we show an explicit comparison between an initial ΘL(0) amplitude that results in autores-

onance and one that does not. The values are chosen to match those shown in Fig. 3.3.

4.7.2 Expected relic density ratio

In this section, we derive the maximum relic abundance ratio at the end of autoresonance. In

essence, this calculation assumes that autoresonance carries on until θL is small enough that flavor

oscillations dominate its energy density ρL. Thus our goal in this section is to calculate the minimal

size of flavor oscillations.

To begin, consider the mass eigenstates νl and νh with masses ml and mh respectively (see

App. 4.6). We will assume that the total energy density is fixed at a constant ρ0:

ρ0 =
1

2
⟨ν̇2l ⟩+

1

2
m2
l ⟨ν2l ⟩+

1

2
⟨ν̇2h⟩+

1

2
m2
h⟨ν2h⟩ (4.81)

= m2
l ⟨ν2l ⟩+m2

h⟨νh⟩2 . (4.82)
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We will maximize the ratio ρS/ρL subject to fixed ρ0. Using our definition of ρS and ρL in Eq. 3.19,

expanding in the small ΘS ,ΘL limit, and using the fact that ml ̸= mh so that ⟨νlνh⟩ = 0, we have

ρS =
1

4
⟨ν2l ⟩

(
2(1− sin(2η)) +m2

l (1− cos(2η))
)
+

1

4
⟨ν2h⟩

(
2(1 + sin(2η)) +m2

h(1 + cos(2η))
)
,

(4.83)

ρL =
1

2
⟨ν2l ⟩(m2

l + µ2) cos2 η +
1

2
⟨ν2h⟩(m2

h + µ2) sin2 η . (4.84)

One can check that the ratio ρS/ρL is maximized for νl = 0 provided µ < 1,

max
ρS
ρL

=
(1 +m2

h) csc
2 η + 2 cot η −m2

h

µ2 +m2
h

. (4.85)

Expanding for F ≫ (1− µ2)−1 and 1− µ→ 0, we find

max
ρS
ρL

≈ 4F2(1− µ)2 . (4.86)

This estimate is essentially the envelope of the hourglass shape in Fig. 3.5. Our numeric results

nearly saturate this bound, indicating that autoresonance transfers virtually all energy density out

of the long field. An additional factor of 1/2 appears to do a good job matching the measured final

ratio:
ρS
ρL

∣∣∣∣
observed

≈ 2F2(1− µ)2 . (4.87)

4.7.3 Stability of autoresonance

We now derive a set of equations for the amplitude and phase of both axions during autoresonance

and use them to compute the evolution of excitations on top of the autoresonance solution. We

begin with the coupled equations of motion of Eq. 3.8, where we are measuring time in units of m−1.

Because we are expecting approximately periodic solutions, we make the following ansatz for ΘL(t)

and ΘS(t):

ΘS = σS Re[e
iφS ] , (4.88a)

ΘL = σLRe[eiφL ] . (4.88b)

We will assume that σS , σL, φ̇S , φ̇L (where dots denote time derivatives) all vary slowly compared

to the oscillatory timescale 1/m. We can then insert our ansatz into the equations of motion and

expand, keeping only the lowest order in σL and only the lowest harmonics of φS to obtain:

σ̈L + 2iφ̇Lσ̇L + iφ̈LσL − φ̇2
LσL +

3

2t
(σ̇L + iφ̇LσL) + (µ2 + F−2)σL = −2

1

F2
J1(σS)e

iΦ , (4.89a)
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σ̈S + 2iφ̇S σ̇S + iφ̈SσS − φ̇2
SσS +

3

2t
(σ̇S + iφ̇SσS) + 2J1(σS) = −σLJ0(σS)e−iΦ , (4.89b)

where Φ ≡ φS − φL is the relative phase of the two oscillators, Jn are Bessel functions, and we

have used the Jacobi-Anger identities Eq. 4.76. Note that from Eq. 4.89b we can see that if σS

becomes so large that J0(σS) = 0, then σS is no longer driven. This critical σS determines a critical

driving frequency µ ≈ 0.64 below which autoresonance is no longer possible, given by the first zero

of J0(4
√
1− µ).

Now we may take the real and imaginary parts of Eq. 4.89 to obtain a set of four coupled

equations:

σ̈L − φ̇2
LσL +

3

2t
σ̇L + (µ2 + F−2)σL = − 2

F2
J1(σS) cosΦ , (4.90a)

φ̈L +

(
3

2t
+ 2

σ̇L
σL

)
φ̇L = − 2

F2

J1(σS)

σL
sinΦ , (4.90b)

σ̈S − φ̇2
SσS +

3

2t
σ̇S + 2J1(σS) = −σLJ0(σS) cosΦ , (4.90c)

φ̈S +

(
3

2t
+ 2

σ̇S
σS

)
φ̇S = σL

J0(σS)

σS
sinΦ . (4.90d)

These equations are interesting in their own right, and can be numerically integrated more efficiently

than a rapidly-oscillating system such as Eq. 3.8, but for now we will focus on further simplification.

We wish to find the state of the system when it is stably autoresonating, by which we mean we

are looking for a solution for which σS is roughly constant and φ̇S ≈ φ̇L so the oscillators are

synchronized with each other. We thus approximate σ̇S ≈ σ̈S ≈ φ̈S ≈ φ̈L ≈ 0 and obtain:

(φ̇2
L − µ2 −F−2) =

3

2t

σ̇L
σL

+
2

F2

J1(σS)

σL
cosΦ , (4.91a)

(
3

2t
+ 2

σ̇L
σL

)
φ̇L = − 2

F2

J1(σS)

σL
sinΦ , (4.91b)

2
J1(σS)

σS
− φ̇2

S = −σLJ0(σS) cosΦ , (4.91c)

3

2t
φ̇S = σL

J0(σS)

σS
sinΦ . (4.91d)

From these equations we may read off a few things. First, provided t≫ σL/σ̇L and F2 ≫ σ−1
L , the

long oscillator undergoes roughly free motion at its fundamental frequency: φ̇2
L = µ2 + F−2 ≈ µ2.

If we demand that φ̇S ≈ φ̇L to ensure we are in autoresonance, that then implies that φ̇S ≈ µ, and

from Eq. 4.91d we can read off an expression for the relative phase of the two oscillators:

sin Φ̄ ≈ 3µ

2t

σS
σL

1

J0(σS)
, (4.92)
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where we have used the bar to denote the fact that this is the relative phase in steady-state autores-

onance.

We now turn to the question of how excitations on top of this steady-state solution behave.

This will provide an analytic justification for the numeric observation that autoresonance is a stable

condition. We work in the limit F → ∞, which implies φ̇L = µ and σ̇L/σL = −3/(4t). We may

then combine Eqs. 4.90b, 4.90c, and 4.90d to obtain:

σ̈S +
3

2t
σ̇S − φ̇2

SσS + 2J1(σS) + σL cosΦ = 0 , (4.93a)

Φ̈ +
3

2t
Φ̇− σL

σS
sinΦ +

3µ

2t
+ 2φ̇S

σ̇S
σS

= 0 . (4.93b)

We now perturb around the equilibrium autoresonance solution, defining:

Φ ≡ Φ̄ + δΦ , (4.94a)

σS ≡ σ̄S + δS , (4.94b)

with Φ̄ defined in Eq. 4.92 and σ̄S defined by the autoresonance condition:

2J1(σ̄S)

σ̄S
= µ2 . (4.95)

Expanding and linearizing yields the pair of equations:

δ̈S +
3

2t
δ̇S − 2µσ̄S δ̇Φ − 2J2(σ̄S)δS − 3µ

2t
σ̄SδΦ = −σL cos Φ̄ , (4.96a)

δ̈Φ +
3

2t
δ̇Φ − σL

σ̄S
cos Φ̄δΦ + 2µ

δ̇S
σ̄S

+
3µ

2t

δS
σ̄S

= 0 , (4.96b)

where we have substituted in for sin Φ̄ with Eq. 4.92 and approximated J0(σ̄S) ≈ σ̄S . For t≫ 1, we

may neglect several terms, simplifying to:

δ̈S − 2J2(σ̄S)− 2µσ̄S δ̇Φ − 3µ

2t
σ̄SδΦ = 0 , (4.97a)

δ̈Φ − σL
σ̄S
δΦ + 2µ

δ̇S
σ̄S

+
3µ

2t
.
δS
σ̄S

= 0 (4.97b)

To analyze the stability of autoresonance we can search for first-order perturbative solutions of the

form:

δS = |δS |eiωf.o.t δΦ = |δΦ|eiωf.o.t , (4.98)

where we will assume (and then confirm) that |ωf.o.| ≪ 1. Plugging this into the above relations and



CHAPTER 4. APPENDIX 130

solving yields:

ωf.o.
t≫1
≈
(
2σL
σ̄S

J2(σ̄S)

4µ2 − 2J2(σ̄S)

)1/2

+ i
3

4t
, (4.99)

where the imaginary part in particular demonstrates that fluctuations about the autoresonant so-

lution should damp away as t−3/4 at large times. As predicted, |ωf.o.| ≪ 1 so our approximations

above were safe.

4.7.4 Chaotic parameter space

As we’ve discussed in the previous sections, there is a wide range of parameter space where the

zero-mode is well-described by a slowly varying amplitude and phase. This description neglects

the initial phase of transient oscillations, and as we have seen in App. 4.7.1, transients often do

not play a significant role in the evolution of ΘS . This is no longer true if the long axion delivers

enough energy to the short axion that it can roll over many vacua, exploring the saddle points of

the potential. If ΘS happens to slow down near one of the saddle points, the direction it rolls off

will depend sensitively on the details of its trajectory, and consequently, on its initial conditions. In

other words, if ΘL starts with enough energy, then the short axion exhibits classical chaos, leading

to the intricate striations in Fig. 3.6 near ΘL = π. The possibility of chaotic evolution in this type

of potential was first pointed out in Ref. [224,226].

During chaotic evolution, the short axion receives substantial energy from the long axion, leading

to many of the same signatures we have described in Sec. 3.3. In particular, the chaotic rolling of

ΘS necessarily delays the onset of near-harmonic oscillations, generating large ΘS perturbations, as

described in Sec. 3.2. Further, although it is no longer guaranteed, an O(1) fraction of chaotic initial

conditions lead to autoresonance, and consequently enhanced direct detection prospects.

A new behavior is also possible for initial conditions sufficiently close to the boundary between

striations in Fig. 3.6. For these initial conditions, ΘS spends a long time very close to the apex of

the saddle point, causing rapid perturbation growth. If ΘS gets close enough to the hilltop for long

enough, the axion field in different parts of space can roll off to either side, creating a network of

vacuum bubbles. The cosmological implications of this scenario require further investigation.

4.8 Perturbations in detail

In this section, we provide the details of the perturbation growth rate calculations referenced in

Sec. 3.2. We first review the general formalism to numerically compute the full spectrum of axion

perturbations. We then go on to describe the analytic approximations made in Sec. 3.2.1 and

Sec. 3.2.2.
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4.8.1 General formalism

Consider a theory of N interacting axions ϕ1, . . . , ϕN with scalar potential V

L(ϕ1, . . . , ϕN ) =
1

2

(
N∑
i=1

∂µϕi∂
µϕi

)
− V (ϕ1, . . . , ϕN ) . (4.100)

To study the strongly self-interacting regime of this theory, it is helpful to change variables from

the canonically normalized fields ϕi to the fields θi ≡ ϕi/fi, where fi is chosen so that θi ≈ 1 is the

scale of self-interaction. In the two-axion model, there is no ambiguity regarding the choice of fi.

However, one generally must take more care in choosing the scales fi if there are more instantons

than axions [172].

The axion field evolves in the background of the perturbed FLRWmetric Eq. 3.24 where Φ(t,x) =∑
k Φk(t,k)e

ik·x is the adiabatic scalar perturbation with spectral components given by Eq. 3.30.

Breaking θi down into homogeneous modes Θi and perturbations δθi

θi(t,x) = Θi(t) +
∑
k

δθi(t,k) , (4.101)

we arrive at the following set of equations of motion

0 = Θ̈i + 3HΘ̇i +
1

f2i

∂V

∂Θi
, (4.102a)

Si = δθ̈i + 3Hδθ̇i +
k̃2

t
δθi +

1

f2i

∂2V

∂Θi∂Θj
δθj , (4.102b)

Si ≡ 2

(
tk
t

dΦk
dtk

Θ̇i − Φk
1

f2i

∂V

∂Θi

)
, (4.102c)

where we’ve specialized to the case of radiation domination, and k̃ and tk are defined in Eq. 3.26

and Eq. 3.30 respectively. For definiteness, we assume that inflation lasts long enough that the δθi

initial conditions are well approximated as δθi = δθ̇i = 0.

4.8.2 Analytical approximations

Having reviewed the full set of perturbation equations, we now specialize to the case of the one-axion

potential Eq. 3.23. As we have described in Sec. 3.2.1, perturbations do not grow at an appreciable

rate until after the homogeneous oscillations have settled down near the vacuum. At this point, the

potential is well approximated by the leading nonlinear terms

1

f2
V (fθ) =

1

2
θ2 +

1

3!
Aθ3 +

1

4!
Bθ4 , (4.103)
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where A and B are constants that may be determined from the full potential by Taylor expanding

around the vacuum. The homogeneous mode Θ then satisfies the following equation of motion

0 = Θ̈ +
3

2t
Θ̇ +

(
1 +

1

2
AΘ+

1

3!
BΘ2

)
Θ . (4.104)

For Θ oscillating with small amplitude σ, its waveform and frequency at leading nontrivial order in

σ are

Θ(t) = −1

4
Aσ2 + σ cosωt+

1

12
Aσ2 cos 2ωt , (4.105)

δω =
3B − 5A2

48
σ2 . (4.106)

From these formulas, we see that the cubic and quartic interactions have qualitatively distinct effects

on the Θ oscillations. The sign of B controls whether the quartic interaction is attractive or repulsive,

leading to slower or faster oscillations respectively. On the other hand, A always works to decrease

the fundamental frequency of the oscillations. For positive A, the cubic interaction is repulsive for

positive Θ and attractive for negative Θ, ultimately causing Θ to spend more time at negative values

where it is oscillating slower. For negative A the sides are switched, but in either case the net effect

is to decrease the oscillator’s frequency.

In the background of the homogeneous Θ oscillations, the equation of motion for the perturbation

δθ is

S = δθ̈(t, k̃) +
3

2t
δθ̇(t, k̃) +

(
1 +

k̃2

t
+AΘ+

1

2
BΘ2

)
δθ(t, k̃) , (4.107a)

S ≡ 2

[
tk
t

dΦk
dtk

Θ̇ + Φk

(
Θ+

1

2
AΘ2 +

1

3!
BΘ3

)]
. (4.107b)

The source S provides the axion with the initial fluctuations that will grow because of parametric

resonance. Soon after the exponential growth starts, S becomes irrelevant and the perturbation

growth rate may be computed from the homogeneous equation

0 ≈ δθ̈ +
3

2t
δθ̇ +

(
1 +

k̃2

t
+AΘ+

1

2
BΘ2

)
δθ . (4.108)

Modes will only grow once Hubble friction is small H ≪ 1, i.e. once t ≫ 1. This allows us to treat

the time variation of the Hubble friction, the zero-mode amplitude σ ∝ t−3/4, and the changing

frequency δω ∝ σ2 ∝ t−3/2 adiabatically. Thus, we may change variables

δθ = e−
3
4tψ , (4.109)

so that ψ obeys the frictionless version of Eq. 4.108 up to order t−2. Inserting the known zero-mode
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evolution Eq. 4.105, we arrive at the following equation for ψ

0 = ψ̈ + (1 + α+ 2β cos t+ 2γ cos 2t)ψ , (4.110)

where

α =
k̃2

t
− 1

24

(
A2 − 3B

)
σ2 , (4.111a)

β =
1

2
Aσ , (4.111b)

γ =
1

24

(
A2 + 3B

)
σ2 . (4.111c)

This Mathieu-type equation can be solved directly by applying a Fourier transformation t→ ωt:

0 = −ω2
tψ(ωt) + (1 + α)ψ(ωt) + β(ψ(ωt + 1) + ψ(ωt − 1)) + γ(ψ(ωt + 2) + ψ(ωt − 2)) . (4.112)

In this equation, only frequencies related by integer multiples of m couple to one another, and thus

this problem can be rephrased in terms of an infinite matrix. To see this, we define Γψ ∈ [0, 1)+ iR,
so that its real part represents the non-integer real part of ωt. We can then label harmonics as:

ψn(Γψ) ≡ ψ(Γψ + n) = ψ(ωt) . (4.113)

The Fourier transformed Eq. 4.112 is thus equivalent to the matrix equation

0 =
(
−(Γψ + n)2 + 1 + α

)
ψn + β (ψn+1 + ψn−1) + γ (ψn+2 + ψn−2) .

The eigenvalues Γψ characterize the growth-rate ImΓψ and frequency ReΓψ of the ψ oscillations.

To solve for Γψ, we look for solutions with |Γψ| → 0, which corresponds to the principal instability

branch of the Mathieu-type equation Eq. 4.110. Thus, we approximate (Γψ + n)2 ≈ 2nΓψ + n2,

leading to the following eigenvalue problem
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0 = det



. . .

−4 + 4Γψ + 1 + α β γ

β −1 + 2Γψ + 1 + α β γ

γ β 1 + α β γ

γ β −1− 2Γψ + 1 + α β

γ β −4− 4Γψ + 1 + α

. . .


.

(4.114)

By truncating Eq. 4.114 at the leading 5× 5 elements, we arrive at the following expression for

the ψ growth rate

Γψ = −i

√(
γ2

4
− α2

4

)
+
(α
3
− γ

2

)
β2 +

5

36
β4 +O(σ5) ,

= −i|δω|

√√√√1−

(
1 +

k̃2

2tmδω

)2

, (4.115)

to order σ4 in the root (using the fact that k̃2/t ∼ σ2), and where δω is as in Eq. 4.106. Re-

introducing the −3/4t term we had absorbed into ψ, we arrive at Eq. 3.34 for the growth rate of δθ:

Γ = Re(−3/4t+ iΓψ).

The perturbations begin growing when Γ ≥ 0, which we define as the time tinit. Prior to t = tinit,

the source term S holds δθ at an approximately constant initial amplitude given by Eq. 3.36, and

thus we arrive at the expression Eq. 3.35 for the amplitude of δθ, which we reproduce here for ease

of reference:

⟨δθ(t, k̃)2⟩ ≈ ⟨δθ(tinit, k̃)2⟩ exp
[
2

∫ t

tosc

dt′Γ(t′, k̃)

]
, (4.116a)

⟨δθ(t, k̃)2⟩ ≈
Φ2
k,0(

1 + mtk̃2

π2

)2 . (4.116b)

The integral in Eq. 4.116a can be evaluated exactly, but the resulting expression is hardly useful. To

make clean analytic progress, it is helpful to first compute the integral by ignoring Hubble friction,

and then to re-introduce Hubble friction at the end by adding −(3/4) log(tend/tinit). Because Θ

is oscillating at the bottom of the potential with decaying amplitude proportional to t−3/4, the

frequency shift is δω = δωosc(t/tosc)
−3/2, where tosc represents the time at which the zero-mode
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amplitude starts decaying as σ ∝ t−3/4, and thus tosc = tinit for the single axion model. In the

case of autoresonant axions, tosc is the time at which autoresonance ends, which is in general much

larger than the time tinit when perturbations start growing. Substituting our expression for δω into

Eq. 4.115 and plugging into Eq. 4.116a we arrive at the integrated growth rate (neglecting Hubble

friction):

∫ ∞

tosc

dt′ Re

(
Γ(t′, k̃) +

3

4tm

)
= 2k̃2

((
4(1− µ)tosc

k̃2
− 1

)1/2

− arccot

[(
4(1− µ)tosc

k̃2
− 1

)−1/2
])

.

(4.117)

The parametric resonance ends at the time

tend =
t3oscδωosc

(k̃/2)4
, (4.118)

so we add −(3/4) log
(
t2oscδωosc/(k̃/2)

4
)
to account for Hubble damping.

We have thus accounted for perturbation growth in the single-particle model Eq. 3.23. As we

discussed in Sec. 3.2.2, this calculation carries through unchanged in the two-axion model (Eq. 3.5)

for the perturbations of θS that accrue after the end of autoresonance, where δω = (µ−1)(t/tosc)
−3/2.

Further, the same physics applies to perturbations that grow during autoresonance, except that δω(t)

is simply constant, fixed by the frequency shift between the long axion and short axion δω(t) = µ−1.

In our approximate treatment of Hubble friction, the integrated growth rate during autoresonance

turns out to be exactly one half the integrated growth rate after autoresonance, although this growth

occurs over only roughly 2% of the time.

4.9 Simulations of non-perturbative structure growth during

radiation domination

In Sec. 3.2.3, we outlined the results of 3 + 1d numerical simulations in which the collapse of non-

perturbative fluctuations lead to the breakdown of autoresonance. In this appendix, we provide the

details of these simulations and outline improvements that can be made in future work.

4.9.1 Metric perturbations and the equations of motion

In this first section, we review the equations of motion for a set of scalar particles ϕ1, . . . , ϕn in

a potential V (ϕ1, . . . , ϕn) in the background of an FLRW spacetime in the presence of adiabatic

scalar perturbations Φ(t,x) Eq. 3.24. As in previous sections, we work in terms of the variables
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θi(t,x) = ϕi(t,x)/fi, where fi is the scale of self-interaction for ϕi. Treating the metric perturbations

at first order, the θi equations of motion are

0 =

[
(1− 2Φ) ∂2t +

(
3H (1− 2Φ)− 4Φ̇

)
∂t − (1 + 2Φ)

1

a2
∇2

]
θi +

1

f2i

∂V

∂θi
. (4.119)

The axion fields θi are endowed with order 1 initial misalignment and homogeneous initial con-

ditions by a sufficiently long period of inflation.

Unlike in the linearized equations, where each wavelength of θi evolves independently, large θi

fluctuations couple different modes, and therefore the relative size of perturbations on different scales

becomes important. In other words, we may no longer be agnostic to the phase and amplitude of the

metric perturbations Φk: a particular realization of the metric perturbation Φ must be generated

from its dimensionless power spectrum inside our integration volume.

Our simulation takes place inside a symmetric box of size 2L and resolution dL, corresponding to

a momentum resolution of kmax = π/dL and dk = π/L. The dimensionless metric power spectrum

is defined in terms of Φk as

PΦ(k) =

(
k

k0

)ns−1

Φ2
k , (4.120a)

PΦ̇(k) =

(
k

k0

)ns−1(
tk
2t

)2(
dΦk
dtk

)2

, (4.120b)

(see discussion around Eq. 3.30 for definitions of Φk, ns, and tk). The dimensionful power spectrum

P is defined in terms of the dimensionless power spectrum P as

P =
2π2

k3
P . (4.121)

A particular realization of the field is then generated from the dimensionful power spectrum with

the procedure of Ref. [237]. First, for each point k in the momentum grid, generate two random

numbers R1(k) and R2(k) uniformly distributed on the interval [0, 1]. Then define

ρk = −2 logR1(k) , φk = 2πR2(k) . (4.122)

A particular realization of the Φ and Φ̇ Fourier coefficients is then computed as

Φk(t) = s
√
V ρkPΦ(t,k)e

iφk , (4.123a)

Φ̇k(t) = s′
√
V ρkPΦ̇(t,k)e

iφk , (4.123b)

where s and s′ denote the signs of Φk(tk) and dΦk(tk)/dtk respectively and V = (2L)3 is the
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comoving integration volume. The zero-momentum terms represent a constant shift of Φk and Φ̇k,

which we remove by setting Φ0 = Φ̇0 = 0. The real-space fields Φ(t,x) and Φ̇(t,x) are then

Φ(t,x) = Re

(
dk

2π

)3∑
k

Φk(t)e
−ik·x , (4.124a)

Φ̇(t,x) = Re

(
dk

2π

)3∑
k

Φ̇k(t)e
−ik·x . (4.124b)

These expressions can be written in terms of the fast Fourier transform (FFT), or fftn(fftshift(Φk))

in Matlab.

Finally, we discuss the process of measuring the power spectrum of a real field F (x) at an instant

in time. Measuring the density power spectrum is especially important when verifying the 3 + 1d

code, since the density power spectrum can be directly compared to the output of the linearized

theory of Sec. 4.8.

In order to measure the power spectrum of a real field F (x), we first compute its Fourier transform

Fk = dL3
∑
k

F (x)e−ik·x . (4.125)

The power spectrum of F (x) is the average of F 2
k over concentric spherical momentum shells. The

fact that small |k| shells contain fewer momentum grid points means that the one should not trust

the the low-frequency power spectrum to reflect the statistical properties of the field. Define the

magnitude of the momentum vector kr =
√
k2. Let kr(n) = kr when kr is in the interval [(n−1), n]dk,

and zero otherwise. Let Nn be the number of non-zero elements in kr(n). The power spectrum is

then

PF (ndk) =
∑

k∈kr(n)

|Fk|2

NnV
. (4.126)

4.9.2 Numerical methods

To evolve the equations of motion Eq. 4.119, we use Runge-Kutta 4th-order (RK4) time-integration,

with pseudospectral derivative operators. Here, we provide a brief review of pseudospectral methods.

The Laplacian operator in Eq. 4.119 poses a computational challenge: in position space, it

represents matrix multiplication, which can be an inefficient process. The pseudospectral method

recognizes that the potential is best computed in position-space, where it acts as a pointwise operator,

and derivatives are best computed in momentum space, where they acts as pointwise operators. The

pseudospectral algorithm to compute derivatives is as follows:
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1. compute the FFT of θi,

2. apply the derivative operator in momentum space (pointwise multiplication),

3. compute the inverse FFT (IFFT).

We note that the pseudospectral method is well suited to GPU acceleration, since it makes use of

pointwise matrix multiplication and the FFT, both of which have efficient GPU implementations.

Because the FFT is an extremely optimized algorithm, converting between position space and mo-

mentum space is an extremely efficient process, in essence making the pseudospectral method an

efficient implementation of multiplication that would otherwise need to take place to compute the

action of a differential operator. The numerical Laplacian is computed as:

∇2θ =
1

V

∑
k

(−k2)e−ik·x
∑
k

θeik·x . (4.127)

We note that to ensure convergence of the pseudospectral method, it is often helpful to suppress

the numerical instability of high-frequency modes by truncating momentum space somewhat below

the maximum possible resolution of the spatial grid (kmax = π/dL). In our calculations, we take

this cutoff to be kmax/2.

4.9.3 Future directions

While our preliminary simulations shed some light on the possible consequences of nonlinear fluctu-

ations during autoresonance, we recognize an opportunity to develop higher resolution simulations

in order to reach a definitive conclusion. In particular, our simulations are limited in the range of

comoving momenta they can resolve, |k̃| ∈ [m, 30m], which is particularly restrictive at the time of

oscillon formation. Because our simulations take place on a comoving grid, oscillons, whose physical

size does not redshift, appear to get smaller, requiring higher and higher momenta to fully resolve.

This, combined with the fact that oscillons already have very broad momentum spectra, means that

our simulations are substantially less reliable after oscillons have formed, and our observation that

autoresonance is terminated by oscillon formation may not hold up to higher resolution simulations.

We end on a tangentially related note that there are additional questions which will only be

resolved by 3+ 1d simulations. In particular, it need not be the case that the axion rolls to the true

vacuum. For example, the potential Eq. 3.23 will in general have many false vacua, and it may be

more likely that the axion rolls there than the true vacuum. In this case, there are two possibilities.

First, the axion can quantum tunnel out of the false vacuum into the true vacuum, nucleating vacuum

bubbles that quickly expand to fill the universe. Second, the axion can classically tunnel out of the

false vacuum, also nucleating vacuum bubbles that expand to fill the universe, but potentially on

a very different timescale. Classical tunnelling occurs when the axion perturbations become large

enough that the field must explore adjacent vacua, and the rapid perturbation growth experienced
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in potentials such as Eq. 3.23 may make this the dominant tunneling mechanism. Both classical

and quantum tunnelling require detailed simulations to resolve signatures such as gravitational wave

production and the matter power spectrum.
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mona, JF Castel, SA Cetin, F Christensen, et al. New cast limit on the axion–photon inter-

action. Nature Physics, 13(6):584, 2017.

[70] Jae Hyeok Chang, Rouven Essig, and Samuel D McDermott. Supernova 1987a constraints on

sub-gev dark sectors, millicharged particles, the qcd axion, and an axion-like particle. Journal

of High Energy Physics, 2018(9):1–45, 2018.

[71] Frank Wilczek. Problem of strong p and t invariance in the presence of instantons. Physical

Review Letters, 40(5):279, 1978.

[72] Steven Weinberg. A new light boson? Physical Review Letters, 40(4):223, 1978.

[73] Asimina Arvanitaki, Savas Dimopoulos, Sergei Dubovsky, Nemanja Kaloper, and John March-

Russell. String axiverse. Physical Review D, 81(12):123530, 2010.

[74] John Preskill, Mark B Wise, and Frank Wilczek. Cosmology of the invisible axion. Physics

Letters B, 120(1-3):127–132, 1983.



BIBLIOGRAPHY 146

[75] Laurence F Abbott and P Sikivie. A cosmological bound on the invisible axion. Physics Letters

B, 120(1-3):133–136, 1983.

[76] Michael Dine and Willy Fischler. The not-so-harmless axion. Physics Letters B, 120(1-3):137–

141, 1983.

[77] Michael S Turner. Windows on the axion. Physics Reports, 197(2):67–97, 1990.

[78] Pierre Sikivie. Axion cosmology. In Axions, pages 19–50. Springer, 2008.

[79] Alberto Salvio, Alessandro Strumia, and Wei Xue. Thermal axion production. Journal of

Cosmology and Astroparticle Physics, 2014(01):011, 2014.

[80] Giovanni Grilli di Cortona, Edward Hardy, Javier Pardo Vega, and Giovanni Villadoro. The

qcd axion, precisely. Journal of High Energy Physics, 2016(1):34, 2016.

[81] Lawrence J Hall, Keisuke Harigaya, et al. Axion kinetic misalignment mechanism. Physical

review letters, 124(25):251802, 2020.

[82] Lam Hui, Jeremiah P Ostriker, Scott Tremaine, and Edward Witten. Ultralight scalars as

cosmological dark matter. Physical Review D, 95(4):043541, 2017.
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