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Abstract

This thesis analyses the behaviour of a real massive scalar �eld in BTZ space-
time, a 2+1-dimensional black hole solution of the Einstein's �eld equations
with a negative cosmological constant.

The analysis is performed for a large class of Robin boundary conditions
that can be imposed at in�nity and we show whether, for a given boundary
condition, there exists a ground state by constructing explicitly its two-point
function. We demonstrate that, for a subclass of such boundary conditions,
it is possible to construct a ground state that locally satis�es the Hadamard
property. In all other cases we show that bound state mode solutions exist, a
novel feature in literature. Moreover we show that the presence of bound state
mode solutions prevents the construction of a physically acceptable ground
state.

Subsequently we focus our attention in a neighborhood of a Killing horizon
in a 2+1-dimensional spacetime, so to analyse the local behaviour of the two-
point correlation function of a quantum state for a scalar �eld. In particular
we show that, if the state is of Hadamard form in such neighbourhood, the
two-point correlation function exhibits a thermal behaviour at the Hawking
temperature, under a suitable scaling limit towards the horizon. This results
are then speci�ed to the case of a massive, real scalar �eld subject to Robin
boundary conditions in the the non-extremal, rotating BTZ spacetime.
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Notation

ā Complex conjugate of a
ΩH Angular velocity of the black hole horizon
TM The tangent bundle of the manifold M
TpM The tangent space at p ∈M
κ The surface gravity of a black hole
κB Boltzmann constant

gµν , gµν Metric and inverse metric matrix elements
aµaµ Repeated indices mean summation

∑
gµνaµaµ

J±(p) Causal future (+), resp. Causal past (−) of p ∈M
J±(K)

⋃
j{J±(qj) | qj ∈ K}

D±M(A) Future (+), resp. Past (−), domain of dependence. For any A ∈ M,
the collection of all points q ∈M such that every past (+), resp. future
(−) inextensible causal curve passing through q intersects A

DM(A) Domain of dependence D+
M(A) ∪D−M(A)

The 2 + 1 dimensional BTZ metric adopts the signature convention (− + +).
The AdS3 singature convention is (− − ++). We also adopt the subsequent
simpli�ed notation for the following notable constants by setting c = ~ = 1.
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Chapter 1

Introduction

In the framework of General relativity, the geodesics describing the motion of
free falling particles are deformed by gravity or, to be more accurate, gravity
is the result of the geometrical curvature of the spacetime. In this picture,
a black hole can be naively described as a region of no escape, in which the
gravitational acceleration produces an escape velocity greater than the speed
of light. When this condition applies, neither matter nor light can break out
of such region, which appears completely black for any external observer. The
seed of this notion turns out to be surprisingly old. In 1784 Rev. John Michell
submitted a paper to Philosophical Transactions [3] in which he attempted to
couple a rudimental corpuscular description of light with Newton gravitational
laws. At the time the speed of light had been estimated by analysing the
aberration of light coming from �xed stars, and was assessed around 0.3× 106

kilometers per second [4]. Far from understanding the invariance of the speed
of light or the real nature of photons, Mitchell pondered the existence of a
cosmological object with enough mass (1.25×108M�) to attract light particles
to its surface.

After being ignored for almost 300 years, the notion of black hole reap-
peared as a consequence of gravitational collapse of matter in General relativ-
ity. A �rst encounter occurs when studying the interior solutions of Einstein
�eld equations for a static (that is, non-rotating), spherically symmetric, per-
fect �uid body. Here, su�ciently massive objects are unable to support them-
selves against their own gravitational attraction and they undergo a complete
collapse. In 1916 Karl Schwarzschild published a paper showing what would
then become the �rst static vacuum solution for Einstein �eld equations: a
static spherically symmetric metric describing the behaviour of a gravitational
�eld around a spherical body of mass M . This metric, when imposing an
asymptotical Newtonian (�at) behaviour, reads the well-known expression

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2) . (1.1)

The Schwarzschild solution is valid only in the exterior region (r > 2M) of
the spherical body. However, if one presumes that the whole mass is concen-
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1. Introduction

trated in the central point, called singularity, one can interpret (1.1) as a black
hole solution where the surface at r = 2M plays the role of a event horizon.
This solution can then be continuously extended to the interior region of the
black hole (r < 2M) by means of a coordinate transformation. This extension,
named after Kruskal and Szekeres, re�ects the fact that the domain of validity
of (1.1) is bounded by a singular point, r = 2M , dominated by coordinate
artifacts and makes the singular nature of the black hole horizon disappear
(see Fig. 1.1).

X

T

II

IIV

III

r = 0

r = 0

Figure 1.1: Kruskal-Szekeres extension of Schwarzschild spacetime. Any point
of the diagram represents a two-dimensional sphere. Dashed lines represent
surfaces at constant t. Thick lines describe the singularity r = 0. Diagonal
continuous lines identify the horizon and anti-horizon surfaces T − X = 0
and T + X = 0 respectively. The coordinates X and T span all the original
spacetime region r > 0, that is X2 − T 2 > −1, T > −X, X ∈ R. Moreover a
brand new region appears which duplicates the universe structure for T < −X.
Region I, −X < T < +X, comprises the exterior region of the spacetime,
Region II, |X| < T <

√
1 +X2, the no escape region of the spherical body

and is referred as a black hole. Regions IV and III duplicate a time reversed
version of the spacetime

From a physical point of view it is very unlikely that such extended solu-
tion, which assumes the existence of two asymptotically �at regions connected
by a unique singularity acting as a causal "wormhole", can be observed in our
universe. A reasonable scenario to achieve the formation of a black hole is in
fact the collapse of a spherical body. Most likely, then, Regions III and IV
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in Fig. 1.1 are unphysical, while Regions I and II are partially overlaid by
collapsing matter, as in Fig. 1.2.
On the other hand, in 1967, W. Israel proved that, given an asymptotically
�at spacetime, any static1 vacuum solution of Einstein �eld equations exhibit-
ing a bifurcate Killing horizon2 reduces to the Schwarzschild solution [5, 6].
In this sense, the maximally extended Kruskal-Szekeres solution remains the
only spherically symmetric, static vacuum solution of Einstein �eld equation.
Therefore, as long as we consider static con�gurations, there is no reason to
believe that any gravitational collapse would lead to a di�erent equilibrium
state.

II

I

r = 2M

collapsing matter

r = 0

Figure 1.2: The complete gravitational collapse of a spherical body.

Of course these comments are no more valid whenever we are considering
non-static, but stationary solutions. Non-static solutions are of particular
interest, since one expects any black hole to rotate, especially in the unveri�ed
hypothesis that this con�guration is the result of a collapse of rotating spherical
body. As found by Kerr, there exists a two-parameter family of black hole
solutions, characterised by an angular momentum J and a massM , and it was
possible to prove that this is the only vacuum stationary family of solutions of

1The term static refers to the existence of a non-vanishing, irrotational, timelike Killing
vector �eld.

2From a mathematical point of view, other solutions, such as those leading to naked

singularities, are possible. Those cases can be excluded by asking for the existence of the
horizon.
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1. Introduction

Einstein �eld equations [7] [8] when the spacetime describes an asymptotically
�at black hole. Kerr-like solutions [9] [10] might be regarded as the prototypical
physical models for black holes, but they are quite convoluted. They are all
axisymmetric, asymptotically �at (and of course stationary), with two Killing
vector �elds. Any non extremal Kerr black hole has an inner horizon, an
outer horizon and an ergosphere. The inner horizon acts as a Cauchy horizon.
The outer horizon is a Killing horizon and the Killing parameter associated to
its Killing vector �eld can be interpreted, in analogy with the Schwarzschild
solution, as a natural time coordinate. The ergosphere is the surface where the
purely temporal component of the metric in Boyer�Lindquist coordinates [11]
changes sign. Moreover its maximally extended solution comprises a globally
hyperbolic black hole spacetime (see Fig. 1.3).

This last consideration is of notable importance if one wants to deal with
quantum physics in the presence of a gravitational �eld, since the study of
quantum �eld theory on a curved background often relies on the assumption
that the underlying manifold is globally hyperbolic. In particular if one con-
siders a dynamical �eld ruled by some normally hyperbolic equation (wave
equation) and that the spacetime is globally hyperbolic, then the associated
Cauchy problem is well-posed and there exists a unique solution, as well as
unique advanced and retarded fundamental solutions [12].

Quantum �eld theory on curved backgrounds is nowadays a well-established
branch of theoretical and mathematical physics [13] and it is quite suitable for
studying �elds in presence of black holes, permitting to unveil non classical
phenomena, such as the Hawking radiation [14], which have no analogue in
the �at case. The main assumption behind this approach is neglecting quan-
tum gravitational e�ects as well as any backreaction e�ect in Einstein �eld
equations.

Concerning the black hole scenarios, many results have been derived under
the hypothesis of spherical symmetry. This assumption allowed to understand
almost completely the structure of these matter systems and their physical
behaviour [15, 16, 17, 18, 19, 20, 21].

One of the building block in the quantization of free �eld theories on curved
spacetimes is the identi�cation of a physical relevant state, which is used to
construct the algebra of Wick polynomials and the multi-particle states under
the action of the creation and annihilation operators. In the trivial case of
a �eld theory in Minkowski spacetime, this is represented by the Poincaré
invariant vacuum state, often dubbed by the quantum mechanical label |0〉.

The situation is totally di�erent in curved spacetime, since we cannot rely
on the Poincaré symmetry group and, as a consequence, there is no clear way
to select a single state above another. A constructive way to select a physical
relevant state for a free �eld theory is to identify an associated two-point
function, that is a certain bisolution of the �eld equations, satisfying proper
initial conditions and support properties while exhibiting the same short-range
behaviour of the Poincaré vacuum.
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Generally speaking, the two-point functions, such as the Feynman propagator,
are expressed as a product of �eld con�gurations Φ(x)Φ(x′). As an example,
if one considers the scalar �eld on �at spacetime, the Feynman propagator
associated to the vacuum state |0〉 is de�ned as

GF (x, x′) = i 〈0|T (Φ(x)Φ(x′))|0〉 ,

where T is the time ordering product and it plays a dominant role in the
renormalization of the vacuum polarization 〈Φ2〉.

The selection of a physical relevant state and the construction of the associ-
ated two-point function is moreover one of the fundamental constituents to im-
plement the dynamics while imposing canonical (anti-)commutation relations.
This allows us to introduce a Fock quantization of the dynamics [22, 23, 24]
and, consequently, to reconstruct the constitutive elements of quantum me-
chanics. This procedure does not only account for a complete description of
quantum free �eld theories, but it is also useful to implement perturbative
quantum models [25, 26, 27].

Unfortunately, the construction of a full-�edged physical state on a Kerr-
like spacetime, is non trivial at all. The main obstacle is provided by the fact
that the timelike Killing �eld normal to the horizon becomes spacelike at large
distances. This undermines the possibility to unambiguously de�ne the notion
of positive frequencies and it prevents the explicit construction of the state
by means of a distinguished two-point function. If a complete, everywhere
timelike Killing �eld existed, it would allow for the identi�cation of a unique
full-�edged quantum state, dubbed the ground state, guaranteeing that all
quantum observables have �nite �uctuations and allowing the construction
the algebra of all Wick polynomials [28, 29].

As we said, this is not the case for Kerr-like models. Even considering
the extended Kerr spacetime (see Fig. 1.3), it can be proven [30, Section
6] that, whenever superradiant modes are present, there does not exist any
proper ground state on the region which is invariant under the isometries
generating the event horizon of the Kerr black hole (the grey area in Fig.
1.3). In this context, a proper ground state is asked to be a Hadamard state.
Hadamard states are de�ned as those states whose two-point function exhibits
the same short-range behaviour of the Poincaré vacuum. A thorough de�nition
can be found in Chapter 3. As a consequence, the computation of physical
observables, as well as the introduction of a legitimate renormalization scheme,
is non straightforward [31, 32, 33, 34] and only in recent years a promising
renormalization procedure has been introduced [35, 36].

Despite this dismal situation, an interesting case study for a non static
black hole solutions is provided by solving the vacuum Einstein �eld equations
in 2 + 1 dimensions. General relativity in 2 + 1 dimensions is indeed simpler.
Generally speaking, the spacetime geometry is described by the Riemann cur-
vature tensor Rαβµν and it is possible to extract three important quantities:
the Weyl tensor Cαβµν , the Ricci tensor Rµν and the Ricci scalar R. In a 2 + 1
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r+r+

r−r−

r−r−

r+r+

r
=

0

r
= −∞

r
=
−∞

r
=∞

r
=
∞

Black Hole

White Hole

Figure 1.3: Portion of the Penrose diagram for the extended Kerr spacetime.
Whenever the classical Hamiltonian exhibit a superradiant behavior, no proper
physical state exists in the globally hyperbolic portion highlighted grey area.
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dimensional scenario, the Weyl tensor vanishes identically. This entails that
any solution of the vacuum Einstein �eld equations is �at, while any solu-
tion with non vanishing cosmological constant Λ has constant curvature. As a
result, the Riemann curvature tensor in 2 + 1 dimensions can be written as

Rαβµν = gαµRβν + gβνRαµ − gβµRαν − gανRβµ −
1

2
(gαµgβν − gανgβµ)R .

In 1991, Bañados, Teitelboim and Zanelli [37] proved that there exists a
2 + 1 dimensional black hole solution for negative values of the cosmological
constant Λ. This solution, which goes under the name of BTZ spacetime,
represents a 2 + 1 dimensional rotating black hole in an asymptotically AdS3

spacetime.
This setting presents many analogies with the 3 + 1 dimensional Kerr space-
time: it is stationary and axisymmetric and it possesses an inner and an outer
horizon, as well as two canonical Killing �elds associated to the mentioned
symmetries. Nonetheless it has some peculiar features that distinguish it from
Kerr-like models. First of all it is locally isometric to AdS3 and, as a result,
it is locally of constant curvature. This also implies that there is no curva-
ture singularity at the radial origin. Secondly, and this is the most notable
di�erence, it is not extensible to a globally hyperbolic spacetime, since it pos-
sesses a conformal boundary at radial in�nity. This major setback is somehow
compensated by the fact that, even though none of the two Killing �elds is ev-
erywhere timelike, there exists a suitable linear combination which is timelike
in the whole exterior region of the black hole. This last property essentially
allows to unambiguously de�ne the notion of positive frequencies and, in the
end, it might lead to explicitly construct a full-�edged ground state, if it exists.
This is the main reason to try to consider the BTZ spacetime as an interesting
arena to analyse the behaviour of quantum �elds in a stationary black hole
setting.

Given the multiple similarities with Kerr, the BTZ spacetime is still a
debated topic in relation to various issues, as for example the AdS/CFT cor-
respondence [38], the analysis of acoustic black hole simulators [39] or used as
a test environment for probing the physics of quantum �elds [40].
Regarding the construction of quantum states, it has been already proven that,
when Dirichlet or Neumann boundary conditions are imposed at radial in�n-
ity, there exists a Hartle-Hawking state for the massless conformally coupled
scalar �eld on the 2 + 1 dimensional static hole background [41]. Further at-
tention has been also devoted to the analysis of quasinormal modes [42], of
superradiant modes [43] and of stationary clouds [44].

One of the main di�culties in studying quantum �elds on BTZ background
is related to the analysis of the spectrum associated to the equation of motion.
Even when a mode-decomposition of the �eld equation is possible it happens
that, whenever the black hole spacetime is rotating, the angular and temporal
coordinates couple together and they produce a non-linear dependence on the
spectral parameter which might not be eliminable.
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1. Introduction

As presented in this work, this is indeed the case when facing the problem of
a real massive scalar �eld on a stationary BTZ spacetime. We will consider a
real massive scalar �eld in the exterior region of a stationary 2+1 dimensional
black hole and we will show under which circumstances a full-�edged ground
state exists. We will perform this analysis for a large class of boundary condi-
tions of Robin type which, as we will see, guarantees that the spacetime can be
regarded as an isolated system. The Robin boundary conditions comprise the
particular cases of Dirichlet and Neumann boundary conditions. Moreover we
will show that, when a ground state does not exist, this is due to the presence
of bound states, that are solutions to the dynamical equation with non-real
frequency which seem to appear in the spectrum as a result of the background
rotation.
In order to obtain these results, the equation of motion, a Klein-Gordon equa-
tion, is solved by applying a mode-decomposition, which exploits the symmetry
properties of the BTZ spacetime, so to obtain a one-dimensional radial di�er-
ential equation. The spectrum analysis is then performed taking into account
that the radial equation exhibits both a linear and a quadratic dependence on
the spectral parameter. After that, the two-point functions associated to some
physical states are constructed and we see that, when no bound states are
present, these two-point function represent a full-�edged ground state. Lastly,
we tackle the problem of analysing the high-energy behaviour of Hadamard
states in the proximity of the black hole horizon and we show that they ex-
hibit a thermal spectrum at the Hawking temperature TH . As a result, we
identify two Kubo�Martin�Schwinger (KMS) states [45] [46], global thermal
equilibrium states generalising the notion of Gibbs ensemble, which seem to
be intertwined with some tunnelling e�ect through the black hole horizon and
which appear to be somehow related to the local formulation of the Hawking
radiation proposed by Parikh and Wilczek [47].

Following the present introduction, in Chapter 2 one can �nd a general
presentation of the 2 + 1 black hole geometry. According to the original paper
[37], the BTZ black hole is here de�ned as a quotient space of AdS3 with respect
to a suitable group of identi�cations. In particular, Section 2.3 presents some
relevant properties of the BTZ spacetime, by analysing its causal structure
and its symmetries. In Section 2.3.3 we also introduce the notion of bifurcate
horizon, which will play a relevant role in Chapter 4. Moreover, Section 2.3.4
details the global structure of the spacetime, highlighting the presence of a
timelike conformal boundary at radial in�nity, which spoils the property of
BTZ of being globally hyperbolic. The last part of the section is then devoted
to the construction of a particular chart of Kruskal-like coordinates, needed in
Chapter 4.

In Chapter 3 we tackle the problem of the construction of a two-point func-
tion for the ground state of a real, massive, scalar �eld in the external region
of the BTZ black hole spacetime. In Section 3.1.2 the Klein-Gordon equation,
which rules the dynamics of the �eld, is mode-expanded by exploiting the two
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Killing vector �elds of the underlying background. As a result we obtain a one-
dimensional radial di�erential equation, which is reduced to a Sturm-Liouville
problem. A brief overview of Sturm-Liouville problems and their relation to
the two-point functions is presented in Appendix A.
In Section 3.2.1 the radial di�erential equation is solved and the radial mode
solutions are expressed in terms of Gaussian hypergeometric functions. Gaus-
sian hypergeometric functions are parametric one-dimensional solutions of a
Gaussian hypergometric equation. An introduction to their properties can be
found in Appendix B.
In order to understand, whether and which boundary conditions need to be
applied at the conformal boundary so to obtain a unique and general solu-
tion, the asymptotic behaviour and the square integrability of radial modes
is studied. Finally in Section 3.2.5 Robin boundary conditions are applied.
Robin boundary conditions, which are a large class of non-dynamical bound-
ary conditions imposing zero energy �ux at the boundary, guarantee that the
spacetime can be treated as an isolated system.
Section 3.3 is then completely devoted to the construction of the scalar �eld
two-point function. After a general introduction to the role of the two-point
functions in the quantization scheme for free �elds, see Section 3.3.1, we fo-
cus the attention of the speci�c case of the scalar �eld on BTZ. In particular
in Section 3.3.3 we identify the correct notion of "positive-frequency" and we
show how to perform the spectral resolution of the identity operator in the
case of a quadratic operator pencil, that is in the case of a di�erential equa-
tion with a linear and quadratic dependence on the spectral parameter. This
procedure is presented in general in Appendix C, where we also prove that it
is applicable in our case. Finally, see Sections 3.3.4 and 3.3.5, we explicitly
display two ground state candidates, relative to two range values of the �eld
parameters, while a third two-point function exhibits bound states mode solu-
tions. The presence of bound states is discussed in Section 3.4, where we also
debate whether the ground state candidates actually represent a full-�edged
ground state, satisfying the so-called Hadamard condition.

In Chapter 4 the attention is devoted to the analysis of the high-energy
behaviour of the two-point functions in proximity of the black hole horizon.
In this chapter we �rst generalise to 2 + 1 dimension the approach proposed
by Moretti and Pinamonti [48] and we see that, under these circumstances,
any physical state exhibits a short-range thermal distribution at the Hawking
temperature TH and that this thermal behaviour seems to be related to some
tunnelling processes through the horizon. Therefore, in Section 4.2.1 we inquire
whether this approach is applicable to the speci�c case of a scalar �eld on a
BTZ background and we argue that this is indeed the case if one considers
a KMS state. Finally in Section 4.2.1 we show the explicit form of such a
thermal state in the exterior region of the spacetime.

In the Conclusion one can �nd some �nal remarks. The mentioned Appen-
dices follow.
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Chapter 2

Black holes in 2 + 1 dimensions

In this chapter we are going to de�ne the BTZ black hole, listing its fundamen-
tal geometrical properties and its physical features. The geometry of the 2 + 1
dimensional BTZ black hole has been widely analysed by Bañados, Henneaux,
Zanelli and Teitelboim [37] and a comprehensive review can be found in [49].
One of the most notable properties of BTZ is that it can be constructed as
a quotient space starting from AdS3 spacetime. This feature will play a dis-
tinguished role in Chapter 4 of this work, where we will present the results
published in [2]. Another key geometrical feature is the presence of an inner
r− and an outer horizon r+ when the black hole spacetime is rotating, which
roughly mimics the behaviour of the most notable Kerr black hole. Moreover
we will introduce a Killing vector �eld, timelike in the whole exterior region of
the black hole, which will prove to be of primary importance when trying to
build the two-point functions of the scalar �eld in Chapter 3.

In Section 2.1 the AdS3 spacetime, as well as its universal covering CAdS3,
is de�ned. In Section 2.2, the BTZ spacetime is introduced as a quotient
space of CAdS3 with respect to a certain group of isometries and a natural
set of coordinates is presented. In Section 2.3 we review some key features of
BTZ, including some comments about the causal structure of the spacetime,
the relation between the timelike Killing vector �eld and the event horizon
and we will introduce various coordinate sets, which will become useful in the
forthcoming chapters.

2.1 The AdS3 spacetime

Let us consider R4 equipped with Cartesian coordinates (u, v, x, y) and with a
symmetric covariant di�erentiable non degenerate tensor �eld g ∈ T ∗pR4⊗T ∗pR4

of signature (−−++), whose line element reads

ds2 = −du2 − dv2 + dx2 + dy2 . (2.1)

Given a positive constant `2, the hypersurface

− v2 − u2 + x2 + y2 = −`2 (2.2)

11



2. Black holes in 2 + 1 dimensions

endowed with the induced metric is called three-dimensional Anti-de Sitter
space and it is denoted as AdS3. By construction, AdS3 has a negative cur-
vature with curvature radius ` and it is a maximally symmetric solution of
vacuum Einstein �eld equations with negtive cosmological constant Λ = − 1

`2
.

The induced metric on AdS3 is nondegenerate and it has Lorentzian signature
(−+ +). A global chart (µ, λ, θ) can be introduced by setting

u = ` coshµ sinλ , v = ` coshµ cosλ , x = ` sinhµ cos θ , y = ` sinhµ cos θ ,

with 0 ≤ µ < ∞, 0 ≤ λ < 2π and 0 ≤ θ < 2π. Using this global chart, the
metric of AdS3 can be derived from (2.1) and (2.2) as

ds2 = `2[− cosh2 µ dλ2 + dµ2 + sinh2 µ dθ2] , (2.3)

where dθ2 is the standard line element of the unit 1-sphere. Here we notice
that the time coordinate λ is periodic and hence AdS3 admits closed timelike
curves, for example all those identi�ed by �xing µ = µ0 and θ = θ0. A common
approach to overcome this situation is to unwrap the coordinate λ, avoiding to
identify any λ ∈ [0, 2π) with the value λ+ 2π. The spacetime obtained in this
way is called universal covering of AdS3, denoted as CAdS 3 and it has locally
the same metric (2.3), though with λ ∈ R. Eventually, one can set λ = t/`
and r = ` sinhµ and the line element can be written in the more common form

ds2 = −
(

1 +
r2

`2

)
dt2 +

(
1 +

r2

`2

)−1

dr2 + r2dθ2 . (2.4)

Isometries

The AdS3 spacetime is invariant1 under the action of the isometry group
SO(2, 2), which preserves any vector product η̃µνvµvν , with η̃ = diag(−1,−1, 1, 1).
Given the set of coordinates (v, u, x, y), the algebra of SO(2, 2), so(2, 2), is gen-
erated by the Killing vector �elds in the form

Jµν = xν
∂

∂xµ
− xµ

∂

∂xν
.

As we will see in the Section 2.2, the metric of a BTZ black hole will be locally
invariant under the same algebra of isometries, though not all of them will be
associated to a one-parameter symmetry group.

2.2 The BTZ black hole as a quotient of AdS3

Starting from the realization of CAdS3 spacetime as in the previous section,
it is possible to derive the whole BTZ solution by patching three coordinate

1AdS3 inherits its isometry group from the isometries of the original spacetime, which
preserve the hyperboloid equation (2.2).

12



2.2. The BTZ black hole as a quotient of AdS3

transformations covering separate regions. The black hole solution is indeed
obtained via suitable identi�cations provided by the isometry subgroups of
anti-de Sitter space.

Here we sketch the procedure. Let χ be a Killing vector for the AdS3 space
and let us introduce the one parameter subgroup ϕ : R→ SO(2, 2) de�ned by
ϕ(s) = exp[sχ] and

ϕ(s) : CAdS3 → CAdS3

P 7→ ϕ(s)P .

Eventually, one would like to identify equivalent classes of orbits in CAdS3.
Given p, q ∈ CAdS3 and the equivalence relation p ∼ q if q = esχp, the relevant
space will be the quotient space

CAdS′3 :=
CAdS3

∼ (2.5)

or, equivalently, CAdS3/{esχ}s∈R.
Since this quotienting procedure closes all the curves joining equivalent

points of AdS3, it is imperative to check that those curves are not causal, that
is neither timelike nor null.

The BTZ black hole can be in fact obtained by quotienting CAdS3 by the
equivalence relation built out of the isometry subgroup of SO(2, 2) generated
by the Killing vector

χ =
r+

`
J12 −

r−
`
J03 − J13 + J23 (2.6)

where Jµν = xν
∂
∂xµ
−xµ ∂

∂xν
and xµ = (u, v, x, y). Here we focus our attention on

the non extreme case2 r2
+−r2

− > 0. The antisymmetric tensor ωµν associated to
the Killing vector χ via the relation χ = 1

2
ωµνJµν has real eigenvalues ±r±/`.

Therefore, it is possible to apply an SO(2, 2) isometry transformation reducing
χ to

χ′ =
r+

`
J12 −

r−
`
J03 .

The Lorentzian norm of χ′ is

χ′ · χ′ = r+

`2
(u2 − x2) +

r−
`2

(v2 − y2).

In order to avoid the creation of closed causal curves in the quotient space
(2.5), we need to impose that

χ′ · χ′ > 0 ,

2In the extremal case r+ = r− a di�erent argument applies, though it leads to the same
result [37].
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2. Black holes in 2 + 1 dimensions

which reduces to the inequality

−u2 + x2 <
r2
−`

2

r2
+ − r2

−
.

Given this bound, it is possible to identify three types of regions, corresponding
to these sectors:

� the inner region, for which 0 < χ′ · χ′ < r2
−;

� the intermediate region, for which r2
− < χ′ · χ′ < r2

+;

� the outer region, for which r2
+ < χ′ · χ′.

As a matter of fact there is an in�nite number of these regions. They are
bounded by the null surfaces u2 − x2 = 0, `2 − (u2 − x2) = 0 and v2 − y2 = 0
and divided by the lightlike surfaces r = r+ and r = r−, which, as we will see,
can be interpreted as the horizons of the BTZ black hole. The fact that we are
dealing with an in�nite number of regions separated by an in�nite number of
lightlike surfaces, is due to the fact that we started the realization of the BTZ
black hole from the universal covering of the anti-de Sitter spacetime CAdS3.

We select three neighbouring regions: an inner, an intermediate and an
outer one. On these three regions we de�ne a coordinate chart (t, r, φ) de�ned
as follows. Set

A(r) = `2

(
r2 − r2

−

r2
+ − r2

−

)
, B(r) = `2

(
r2 − r2

+

r2
+ − r2

−

)
,

t̃ =
1

`

(
r+
t

`
− r−φ

)
, φ̃ =

1

`

(
−r−

t

`
+ r+φ

)
with t ∈ (−∞,∞), φ ∈ (−∞,∞). In the outer region, for r > r+, selected by
u, y > 0, we set

u =
√
A(r) cosh φ̃(t, φ)

v =
√
B(r) sinh t̃(t, φ)

x =
√
A(r) sinh φ̃(t, φ)

y =
√
B(r) cosh t̃(t, φ) .

In the intermediate region, for r ∈ (r−, r+), selected by u > and v < 0, we �x

u =
√
A(r) cosh φ̃(t, φ)

v = −
√
−B(r) cosh t̃(t, φ)

x =
√
A(r) sinh φ̃(t, φ)

y = −
√
−B(r) sinh t̃(t, φ) .
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2.3. Properties of BTZ

In the inner region, for r ∈ (0, r−), selected by x > 0 and v < 0, we set

u =
√
−A(r) sinh φ̃(t, φ)

v = −
√
−B(r) cosh t̃(t, φ)

x =
√
−A(r) cosh φ̃(t, φ)

y = −
√
−B(r) sinh t̃(t, φ) .

Using these coordinate patches, one obtains the line element for the anti-de
Sitter metric in CAdS′3 in the form

ds2 = −N(r)2dt2 +N−2(r)dr2 + r2(Nφ(r)dt+ dφ)2 , (2.7)

where N(r) and Nφ(r) are smooth functions of r ∈ (0,∞), as it can be veri�ed
by inserting (2.7) in the 2+1 dimensional Einstein �eld equations with negative
cosmological constant Λ = − 1

`2
.

We also see that χ′ and ∂
∂t

are both Killing vectors for the quotient space.
Moreover we can write χ′ with respect to the new (t, r, φ) as

χ′ =
∂

∂φ
.

In order to obtain the BTZ black hole we need to make a further identi�ca-
tion to interpret the coordinate φ as an angle. Therefore, given the Killing vec-
tor ∂

∂φ
, we further quotient the space via the of the symmetry group {e2kπ ∂

∂φ}k∈Z
so that p ≈ q if φ 7→ φ+ 2kπ.

The BTZ spacetime is therefore the quotient space

BTZ :=
CAdS′3
≈ .

2.3 Properties of BTZ

The BTZ black hole, as derived in Section 2.2 is written in Schwarzschild-like
coordinates (t, r, φ). One can easily check by direct inspection that this is
indeed a vacuum solution of Einstein �eld equations with a negative cosmo-
logical constant Λ = − 1

`2
, whose curvature tensor is completely determined by

the Ricci tensor Rµν = 2Λgµν . The BTZ line element is

ds2 = −N2dt2 +N−2dr2 + r2
(
dφ+Nφdt

)2
(2.8)

with the lapse and the shift functions being

N(r)2 =
(r2 − r2

+)(r2 − r2
−)

`2r2
, Nφ(r) = −r+r−

`r2
,

respectively. We can de�ne two parameters

M =
r2

+ + r2
−

`2
, J =

2r+r−
`
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2. Black holes in 2 + 1 dimensions

to be interpreted as the total mass and the angular momentum of the black
hole. By the constraints given in Section 2.2, they satisfy the bounds M > 0
and |J | < M`. The lapse and the shift functions become

N(r) =

(
−M +

r2

`2
+
J2

4r2

)1/2

, Nφ(r) = − J

2r2

and the outer and inner horizons can be de�ned in terms of the zeros of the
lapse function N . One gets

r2
± =

`2

2

(
M ±

√
M2 − J2

`2

)
.

2.3.1 Absence of closed timelike curves

The BTZ black hole spacetime has no closed causal curves, meaning that,
when considering the Killing vector χ de�ned in Eq. (2.6) and its SO(2, 2)
transformation χ′ and when restricting our attention to the region of CAdS′3
where χ′ · χ′ > 0, there is no timelike nor null future-directed curve, joining a
point and its image generated by the isometry transformation e2πχ.

This is a direct result of the construction obtained by the quotienting pro-
cedure. When J > 0, the outer region r > r+, region I in Fig. 2.2, has the
intermediate region II, r− < r < r+, lying in its future. Conversely the inner
region III, 0 < r < r−, has the intermediate region II lying in its past. As we
said, the horizon surfaces r = r± are lightlike, therefore a causal curve leaving
one of these regions through a horizon surface cannot re-enter it. This already
guarantees that there is no closed timelike curve across the horizon surface.
Anyway, one needs to check that no closed timelike curve is generated by ∼
and ≈. First of all, we notice that the quotienting procedure ∼ does not sep-
arate points belonging to the same regions, meaning that the image of any
point p ∈ BTZ built out of an isometry transformation esχ, s = 0,±2π, . . .
belongs to the same region of p. Therefore, the causal structure of BTZ can
be discussed for each region separately. Moreover, the identi�cation ∼ does
not create closed causal curve, since we restricted our focus to the regions of
CAdS3 where χ′ · χ′ > 0. As for the second quotient, which leads to inter-
pret the coordinate φ as an angle, it is su�cient to consider a causal curve
Γλ = (tλ, rλ, φλ), smoothly parametrized in such a way that its tangent vec-
tor ( dt

dλ
, dr
dλ
, dφ
dλ

) does not vanish for any λ. Given the CAdS′3 metric (2.7), the
causal property of this curve is

N2

(
dt

dλ

)2

−N−2

(
dr

dλ

)2

− r2

(
Nφ dt

dλ
+
dφ

dλ

)2

≤ 0 .

Therefore, this causal curve joins the points (t0, r0, φ0) and (t0, r0, φ0 + 2kπ)
only if dt

dλ
= 0 for a given lambda λ. A timelike curve would join these points
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2.3. Properties of BTZ

only if

−N−2

(
dr

dλ

)2

− r2

(
dφ

dλ

)2

= 0 .

Since N2 > 0, this is possible only when dr
dλ

= 0 = dφ
dλ
, leading to a contradic-

tion.
On the other hand, if N2 < 0, the two points would be joined by a causal
curve only if dr

dλ
= 0 for some value of λ. If one considers timelike curves only,

one gets that dt
dλ

= 0 and dφ
dλ

= 0, which is again a contradiction.

2.3.2 Killing vector and symmetries

The AdS3 spacetime, de�ned in Section 2.1 is by construction invariant under
the transformations of the SO(2, 2) isometry group, which is generated by the
Killing vectors in the form

Jµν = xν
∂

∂xµ
− xµ

∂

∂xν
.

Before the quotienting procedures, there are six linearly independent Killing
vectors, which are

J01 = v
∂

∂u
− u ∂

∂v
J02 = x

∂

∂v
+ v

∂

∂x

J03 = y
∂

∂v
+ v

∂

∂y
J12 = x

∂

∂u
+ u

∂

∂x
(2.9)

J13 = y
∂

∂u
+ u

∂

∂y
J23 = y

∂

∂x
− x ∂

∂y
.

The aim is now to determine how many linearly independent Killing vectors
BTZ has. Since BTZ is constructed directly from CAdS3, we expect them to
be induced directly by (2.9) and to be no more than six. In order to identify
a well de�ned vector �eld in BTZ, we ask an AdS3 Killing vector �eld ζ to
be invariant under the isometry transformation generated by the identi�cation
subgroup introduced in Eq. (2.5), that is we ask that the pullback of e2πχ

leaves ζ unchanged
(esχ)∗ζ = ζ ,

where (esχ)∗η := (e−sχ)∗η. Here, by looking at the Lie algebra so(2, 2), the Lie
algebra h of the quotient group SO(2, 2)/{esχ}s, and considering the adjoint
map adχ : so(2, 2)→ h, we see that

esχζe−sχ = exp[s adχ(ζ)] = (esχ)∗ζ = ζ .

In particular, this means that, given e2πχ, ζ ∈ so(2, 2), then [e2πχ, ζ] = 0.
For χ, one can apply the Jordan-Chevalley decomposition theorem [50] so

to split it in a semisimple and a nilpotent part

χ = S +N ,
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2. Black holes in 2 + 1 dimensions

where [S,N ] = 0. Consequently, the exponential e2πχ satis�es the decomposi-
tion

e2πχ = e2πS + e2πS(e2πN − 1) .

Any element ζ commuting with e2πχ must therefore commute with e2πS and
e2πN separately. By inspecting the polynomial de�nition of the exponentials,
one gets that this holds true when [S, ζ] = 0 and [N, ζ] = 0, therefore we derive
that

[χ, ζ] = 0 .

Therefore, if one wants to to �nd which AdS3 Killing vectors (2.9) induce a
legitimate vector �eld in the quotient space, one needs to check those commut-
ing with the vector χ. By observing that so(2, 2) = so(2, 1)⊕ so(2, 1), we can
decompose both χ and ζ in their selfdual and anti-selfdual decomposition

χ = χ+ + χ− ζ = ζ+ + ζ− ,

and the equation becomes

[χ+, ζ+] = 0 [χ−, ζ−] = 0 .

Observe that χ+ and χ− are non zero for any value of the black hole parameters
and everywhere in the manifold. The only admissible solutions in so(2, 1) are
the real multiples

ζ+ = aχ+, ζ− = bχ−

.
Thus, we can conclude that the BTZ spacetime has at most two linearly

independent Killing vectors associated with a one-parameter symmetry group,
respectively.

In Section 2.2 we already identi�ed ∂
∂t

and of course ∂
∂φ

as two linearly
independent Killing vectors. Therefore the most general Killing vector is a
linear combination of those two vectors. As we will see, the linear combination

∂

∂t
+Nφ(r+)

∂

∂φ

will play a distinguished role in the forthcoming chapters. In particular this
is the Killing vector �eld generating the event horizon r = r+. Moreover,
this turns out to be a well-de�ned, global, timelike Killing vector �eld across
the whole exterior region r > r+ of BTZ spacetime. This is possibly the
most notable di�erence in comparison to other models of rotating black hole
spacetimes like, for example, the Kerr solution of the Einstein's �eld equations
with vanishing cosmological constant.
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2.3. Properties of BTZ

2.3.3 Horizons

In order to analyse the relevant surfaces of the BTZ black hole we write the
line element (2.8) in the more convenient form

ds2 =

(
M − r2

`2

)
dt2 − J dtdφ+

1

−M + r2

`2
+ J2

4r2

dr2 + r2dφ2 (2.10)

The component gtt vanishes for

rerg = M1/2`

and can be interpreted as an ergosphere surface. The Killing vector ∂
∂t

is
timelike for r > rerg, null at r = rerg, spacelike for r ∈ (r+, rerg) and no static
observer on integral curves of ∂

∂t
can exist for r < rerg.

On the other hand, the component grr of (2.8) vanishes for two values,
identifying two surfaces at r = r+ and r = r−.
In particular, r = r+ is a Killing horizon for the Killing vector �eld

ξ =
∂

∂t
+Nφ(r+)

∂

∂φ
. (2.11)

This surface acts as a boundary between region I and region II in Fig. 2.2,
from which null curves do not escape to in�nity. Therefore it can be considered
as the event horizon for the BTZ black hole3. The constant ΩH := Nφ(r+) is
called the angular velocity at the horizon. Since ξµξµ = 0 constantly on the
horizon, ∇ν(ξµξµ) is normal to the horizon. Therefore there exists a function
κ such that

∇ν(ξµξµ) = −2κξν ,

which is a non vanishing constant on all the orbits of ξ. This constant function,
called the surface gravity, plays a dominant role in identifying the thermody-
namic properties of the black hole. Its value for the BTZ black hole will be
speci�ed in Section 2.3.4.
The inner surface r = r− is a Cauchy horizon and it is unstable, meaning that
it exhibits mass in�ation similarly to the one of Kerr or Reissner-Nordström
spacetimes [51, 52, 53]. In the static case J = 0, the inner horizon coincides
with the singualirity r− = 0.

Bifurcate horizon

The BTZ spacetime exhibits a bifurcate Killing horizon, that is a union of
two intersecting Killing horizons [54]. As we will see later, the BTZ bifurcate
horizon is generated by the Killing vector ξ.

Moreover, any bifurcate Killing horizon contains a C1, spacelike, totally
geodesic surface B called bifurcation surface. Around the surface B, the

3Notice that in the static case J = 0, the component of the metric grr and g
tt are equal,

and the outer horizon r = r+ coincides with the ergosphere surface r = rerg.
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2. Black holes in 2 + 1 dimensions

branches of the horizon divide the BTZ spacetime into four disjoint parts
such that ξ is spacelike in two of these regions and timelike in the others.

These notions will be particularly useful in Chapter 4. An explicit realiza-
tion of the bifurcated horizon is proposed in Section 2.3.4.

2.3.4 Global structure

Kruskal-like coordinates

Let us start from the line element (2.8). We might consider a Kruskal-like
coordinate patch around each root of the lapse function, that is the solutions
of N(r)2 = 0.

If we consider a neighborhood around r = r+, the Kruskal-like coordinate
patch can be de�ned as

r− < r ≤ r+


U+ =

[(
r+−r
r+r+

)(
r+r−
r−r−

)r−/r+]1/2

sinhA+t

V+ =

[(
r+−r
r+r+

)(
r+r−
r−r−

)r−/r+]1/2

coshA+t

(2.12)

r+ ≤ r <∞


U+ =

[(
r−r+
r+r+

)(
r+r−
r−r−

)r−/r+]1/2

coshA+t

V+ =

[(
r−r+
r+r+

)(
r+r−
r−r−

)r−/r+]1/2

sinhA+t

where the frequency A+ is de�ned as

A+ =
r+ − r2

−

`2r+

and the angular coordinate of the metric, call it φ+, is chosen on the patch
such that the component Nφ+dt is regular at r+ and we impose

Nφ+(r+) = 0 .

Using this coordinate patch around r = r+, the line element becomes

ds2 = Ω2(dU2
+ − dV 2

+) + r2(Nφ+dt+ dφ+)2 (2.13)

where r = r(U, V ) and t = t(U, V ) are now to be considered smooth functions
of the coordinates, while

Ω2(r) =
(r2 − r2

−)(r + r+)2

A2
+r

2`2

(
r − r−
r + r−

)r−/r+
for r− < r <∞

We also notice that for J = 0, the Kruskal-like coordinates completely cover
the space. On the other hand, for J = M`, the two roots r+ = r− coincide
and it is impossible to de�ne Kruskal-like coordinates [55].
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2.3. Properties of BTZ

Conversely, around the other root r−, one can use the coordinate patch

0 < r ≤ r−


U− =

[(
r−−r
r+r−

)(
r+r+
r+−r

)r+/r−]1/2

coshA−t

V− =

[(
r−−r
r+r−

)(
r+r+
r+−r

)r+/r−]1/2

sinhA−t

(2.14)

r− ≤ r < r+


U− =

[(
r−r−
r+r−

)(
r+r+
r+−r

)r+/r−]1/2

sinhA−t

V− =

[(
r−r−
r+r−

)(
r+r+
r+−r

)r+/r−]1/2

coshA−t

where the frequency A− is de�ned as

A− =
r2
− − r2

+

`2r−
.

Again we de�ne the angular coordinate, call it φ−, so that the term Nφ−dt is
regular at r− and we impose

Nφ−(r−) = 0 .

Using this coordinate patch around r = r−, the line element becomes

ds2 = Ω2(dU2
− − dV 2

−) + r2(Nφ−dt+ dφ−)2 (2.15)

where r = r(U, V ) and t = t(U, V ) are again to be considered smooth functions
of the coordinates, while this time

Ω2(r) =
(r2

+ − r2)(r + r−)2

A2
−r

2`2

(
r+ − r
r+ + r

)r+/r−
for 0 < r < r+ .

As self-evident by (2.13) and (2.13), these patches are never lightlike in the
domain of de�nition. A simple way to obtain a set of null coordinates is to
de�ne some linear combinations of them [56]. In the following we will introduce
a di�erent set of null coordinates, adapted to analyse the behaviour of �elds
in a neighbourhood of the horizon surface r = r+.

Penrose diagrams and compacti�cation

The most convenient way to visualise the causal structure of the spacetime
is to adopt the point of view proposed by Roger Penrose [57], by drawing its
conformal diagrams. Starting from the coordinate patch (U, V, φ) presented in
the previous section, one can arrange the following change of coordinates

U + V = tan

(
p+ q

2

)
U − V = tan

(
p− q

2

)
(2.16)
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2. Black holes in 2 + 1 dimensions

that is

p+ q = 2 tan−1(U + V )

p− q = 2 tan−1(U − V ) (2.17)

for U + V, U − V ∈ (−π
2
, π

2
).

If one considers the static case J = 0, then r− = 0 and the surface r =∞
are mapped onto the lines p = ±1

2
π, while the singularity is mapped onto the

lines q = ±1
2
π. The one-dimensional vertices i+ and i− are excluded from the

diagram, so to avoid any arti�cial intersection between the conformal boundary
r = ∞, the horizon r = r+ and the singularity r = 0. This is represented in
Fig. 2.1. Here we also see that the horizon is now represented by the diagonal
lines p = ±q.

r = r+

r
=

∞

r = 0

1

Figure 2.1: Penrose diagram showing the causal structure of the BTZ black
hole, with an inner and an outer region only. Null curves move diagonally
at 45° from the upward vertical. The surface r = ∞ will act as a conformal
boundary for the spacetime.

In the non static case J 6= 0 |J | < M`, when applying (2.16) to the Kruskal-
like patches (2.12) and (2.14), one obtains one Penrose diagram each. The
maximal causal extension is obtained by gluing together an in�nite sequence
of regions. The result is shown in Fig. 2.2, where again the vertices i+ and i−
are excluded from the diagram, so to avoid any arti�cial intersection between
the conformal boundary r =∞, the horizon r = r+ and the singularity r = 0.
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2.3. Properties of BTZ

ii

i

iii

r = r+

r
=

∞

r = r− r
=

0

1
Figure 2.2: Penrose diagram showing the causal structure of the rotating BTZ
black hole, with an inner, an intermediate and an outer region. Null curves
move diagonally at 45° from the upward vertical. The surface r = ∞ again
acts as a conformal boundary for the spacetime and has no intersection with
r = 0 and r = r+ .

Ingoing and null coordinates

In this section we are going to introduce a particular set of null coordinates
for the BTZ spacetime. These can be considered a second version of Kruskal-
like coordinates. Nevertheless, the coordinate patches (2.12) and (2.14) are not
null, therefore they are not adapted to analyse any physical phenomenon across
the horizons. Eventually in Chapter 4 we are going to study the behaviour of
�elds across the surface r = r+ and in particular the shape of the scalar �eld
two-point function in a neighborhood sharpened around the event horizon.
The realisation of this set of null coordinates start by imposing the following
general conditions4. Let N be the Killing horizon generated by a Killing vector

4Notice that all these conditions are satis�ed for the BTZ spacetime, when setting ξµ =
( ∂∂t + ΩH

∂
∂φ )µ.
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2. Black holes in 2 + 1 dimensions

�eld ξµ, such that all the orbits of ξµ on N are di�eomorphic to R. Moreover
we demand that N admits a smooth cross section, call it Σ, such that each
orbit intersects Σ precisely one time. This last condition, in particular, implies
that the topology of N is Σ× R. Note that, in the static case J = 0, Σ ' S1.
Let us assume that the surface gravity κ, de�ned by

∇ν(ξµξµ) = −2κξν ,

is non vanishing.
Under these hypotheses, any open neighborhood U of N can be extended to a
spacetime (M∗, g∗) that contains a bifurcate Killing horizon H, such that the
image of N comprises a portion of H.

The realisation works as follows. We cover Σ, with chart Σ̃ and we extend
the coordinate x3 on Σ̃ to Ñ by keeping it constant on the null geodesics
generators of Ñ .

On Ñ we de�ne a function τ by{
ξµ∇µτ = 1

τ = 0 on Σ̃
,

so that ξµ = (∂/∂τ)µ, that is u is a Killing parameter for ξ. We also recall
that ξµξµ = 0 on Ñ .

At each p ∈ Ñ , let ηµ be the unique null vector satisfying:{
ηµξµ = 1 on Ñ
ηµXµ = 0 for all vectors Xµ which are tangent to Ñ with Xµ∇µτ = 0

.

We aim at �nding the a�ne parameter ρ associated to the vector ηµ, that
is a parameter spanning the null geodesics starting at p ∈ Ñ with tangent ηµ.
Therefore we ask 

ρ(p) = 0 for p ∈ Ñ
ηµ = ( ∂

∂ρ
)µ

∇ηη = 0

.

Once ρ and τ are found we shall use the chart (τ, ρ, x3) on an open neigh-
borhood O ⊂ Ñ . These coordinates will be of Eddington-Finkelstein type.

In the rotating BTZ spacetime, all hypotheses are full�lled with ξµ = ( ∂
∂t

+
ΩH

∂
∂φ

)µ and κ 6= 0. Using the chart (t, r, φ) and the vector basis (∂t, ∂r, ∂φ), we
know that ηµ = (A∂t+B∂r+C∂φ)µ with A,B,C depending on the coordinates.

We want to check that
ηµ∇µη

ν = 0

or at least ηµ∇µη
ν = βηµ where β is a non vanishing constant. In that case

the parameter spanning the geodesics can be rescaled as ρ′ =
∫

exp(βλ′)dλ′.
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2.3. Properties of BTZ

The local properties ηµηµ = 0 and ηµξµ = 1 lead to the following solutions

η± =

(
− 1

N2
,±1,

Nφ

N2

)
, i.e. ηµ± =

(
− 1

N2
∂t ± ∂r +

Nφ

N2
∂φ

)µ
Let us choose η = η−. We can see that the parameter describing the

geodesics generated by this vector is linear in r. In fact setting

η− =
∂

∂λ
=
∂t

∂λ

∂

∂t
− ∂r

∂λ

∂

∂r
+
∂φ

∂λ

∂

∂φ
≡
(
− 1

N2
,−1,

Nφ

N2

)
we see that ∂r

∂λ
= −1 that is r = −λ+ α.

We can also check that η− satis�es the null geodesic equation

ηµ−∇µη
ν
− = 0

This is tantamount to saying that the geodesic parameter λ is precisely the
a�ne parameter ρ that we were searching for. In fact we expect it to be
ρ =

∫ λ
0

exp(0)dλ′ = −
∫ −r

0
dr′ ≡ r + const. Condition ρ(p) = 0 for p ∈ Ñ

implies that ρ = r − r+

To complete the coordinate chart of Eddington-Finkelstein type, we need
also the Killing parameter τ .

If we complete the parametrization of the geodesics in terms of r, we get

∂t

∂r
= − 1

N2

∂φ

∂r
=
Nφ

N2

We want these geodesics to be coordinate lines of our new system. Thus, one
of our coordinates is ρ, while the others are quantities which are constant along
a geodesic of the family. One of the remaining two coordinates is in fact τ , the
Killing parameter of the Killing vector ξ = ∂

∂τ
. By comparison

ξ =
∂

∂τ
=
∂t

∂τ

∂

∂t
− ∂r

∂τ

∂

∂r
+
∂φ

∂τ

∂

∂φ
≡ (1, 0,ΩH)

and we obtain ∂t
∂τ

= 1, that is t = τ + β. The vector ξ satis�es the geodesic
equation, allowing us to identify the Killing parameter, which in this case is
τ =

∫ τ
0

exp(0)dτ ′ =
∫ t

0
dt′ ≡ t+ const. From the comparison we also have

∂r

∂τ
= 0

∂φ

∂τ
= ΩH

The remaining two coordinates will be

u = t+ T (r, φ) θ = φ+ Φ(t, r)

The conditions to �nd T and Φ are given by the requirement that u and θ are
constant along the geodesics parametrized by ρ and that ρ and θ are constant
along the geodesics parametrized by u.

∂u

∂r
= 0

∂θ

∂r
= 0
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2. Black holes in 2 + 1 dimensions

∂r

∂τ
= 0

∂θ

∂τ
= 0

Setting
∂T

∂r
= − ∂t

∂r
=

1

N2

∂Φ

∂r
= −∂φ

∂r
= −N

φ

N2

and
∂T

∂τ
= − ∂t

∂τ
= 0

∂Φ

∂τ
= −∂φ

∂τ
= −Ω

we achieve the desired result.
Therefore, the new coordinate chart (τ, ρ, θ) is obtained by the following

transformation. 
dt = dτ + 1

N2 dρ

dr = dρ

dφ = dθ − ΩHdτ − Nφ

N2 dρ

In this chart, the tangent vector of the ingoing null geodesics written above
is

ηµ = (0,−1, 0)

while the Killing vector is
ξµ = (1, 0, 0).

We can now compute the line element of the metric in Eddington-Finkelstein
coordinates (τ, ρ, θ):

ds2 =−N2dτ 2 − 2dτdρ+ (ρ+ r+)2((Nφ − ΩH)dτ + dθ)2

=(−N2 + (ρ+ r+)2(Nφ − ΩH)2)du2 − 2dudρ (2.18)

+ 2(ρ+ r+)2(Nφ − ΩH)dudθ + (ρ+ r+)2dθ2 .

Now we will show how, starting from (2.18), it is possible to build a chart
of null coordinates of Kruskal type, highlighting the presence of a bifurcate
Killing horizon.

By using the functions N(ρ), Nφ(ρ) and r(ρ) one can build the auxiliary
function

F = −ξµξµ = −(−N2 + (ρ+ r+)2(Nφ − ΩH)2) =
ρ(r2

+ − r2
−)(2r+ + ρ)

r2
+`

2

As expected limr→r+ F = 0. We also see that the surface gravity of the BTZ
black hole can be calculated directly as

κ =
1

2

∂F

∂ρ |ρ=0

=
1

2

∂F

∂r |r=r+
= r(`−2 − Ω2

H)|horizon =
r2

+ − r2
−

`2r+

,
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2.3. Properties of BTZ

which is a non vanishing constant. It also holds that

f :=
F

ρ
=

(r2
+ − r2

−)(2r+ + ρ)

r2
+`

2
f(0) = 2

(r2
+ − r2

−)

r2
+`

2
= 2κ .

We can now de�ne the function g(ρ) as

ρg(ρ) =
1

f
− 1

2κ
= − r+`

2ρ

2(r2
+ − r2

−)(2r+ + ρ)

that is

g(ρ) = − r+`
2

2(r2
+ − r2

−)(2r+ + ρ)

Finally we de�ne two null coordinates of Kruskal type U and V as{
U = eκτ

V = −e−κτρ exp
[
2κ
∫ ρ

0
g(ρ′)dρ′

] , (2.19)

where ∫ ρ

0

g(ρ′)dρ′ = −r+`
2 log(2r+ + ρ)

2(r2
+ − r2

−)
.

Hence

2κ

∫ ρ

0

g(ρ′)dρ′ = − log(2r+ + ρ) ,

which yields {
U = eκτ

V = −e−κτρe− log(2r++ρ) = −e−κτ ρ
(2r++ρ)

(2.20)

or, equivalently, {
dU = κeκτdτ

dV = κe−κτ ρ
(2r++ρ)

dτ − e−κτ 2r+
(2r++ρ)2

dρ
. (2.21)

In these coordinates, the surface {U = 0}∪{V = 0} is the bifurcate Killing
horizon generated by ξ and it comprises the horizonN = {V = 0}. The Killing
vector ξ now reads

ξ = −κ
(
U
∂

∂U
− V ∂

∂V

)
and vanishes for the surface Σ̃ := {U = V = 0}, which is the bifurcation
surface B.

As a �nal part of this Chapter, we complete the null chart and we write
the corresponding line element. Be

ϕ := UV = −ρe− log(2r++ρ) = − ρ

2r+ + ρ
.

There exists a function ψ such that

ψ(ϕ) =
ρ(ϕ)

ϕ
= − 2r+

1 + ϕ
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2. Black holes in 2 + 1 dimensions

with d ρ = UV ψ(UV ). Let

G =
F

κUV
=

ρf

κ2UV
=

1

κ2
fψ = − 4`2r2

+

(r2
+ − r2

−)

1

(1 + ϕ)2
,

then
ds2 = GdUdV + V HdUdθ + gθθdθ

2

where

gθθ = r2 = (ρ+ r+)2 = r2
+

(
1− ϕ
1 + ϕ

)
G = − 4r2

+`
2

(1 + ϕ)2(r2
+ − r2

−)

ϕ = UV

H = 2

[
h

κ
− ψf

κ

∫ ρ

0

∂g

∂θ
dρ′
]

= 2
ψh

κ

(2.22)

with ∂g
∂θ

= 0 and ψ = − 2r+
1+ϕ

, while h is de�ned by guθ = ρh(ρ). Here guθ =

2(ρ+ r+)2(Nφ − Ω), thus

ψh = −r+r−
`ϕ

[
1−

(
1− ϕ
1 + ϕ

)2
]
.

The metric in Kruskal-like coordinates (U, V, θ) is therefore

ds2 =− 4r2
+`

2

(r2
+ − r2

−)

1

(1 + ϕ)2
dUdV

− 4r+`

(r2
+ − r−)

r+r−
U

(
1−

(
1− ϕ
1 + ϕ

)2
)

dUdθ + r2
+

(
1− ϕ
1 + ϕ

)2

dθ2 .
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Chapter 3

Scalar �eld around a BTZ black

hole

The aim of this chapter is the construction of a two-point function for the
ground state of a real, massive, scalar �eld in the external region of the BTZ
black hole. As will become clear in Section 3.3, two-point functions play a
distinguished role in the quantization of �eld, especially when dealing with
quantum �eld theory in curved spacetime. The construction of a two-point
function associated to a �eld theory often presuppose the knowledge of the
basis of solutions for the equation of motion.

The equation of motion encoding the dynamics of the scalar �eld is the
Klein-Gordon equation. The identi�cation of a solution for the Klein-Gordon
equation over a curved spacetime usually asks for the solution of a initial-
valued Cauchy problem. As we will see in Section 3.1.1, the geometry of BTZ
spacetime and in particular the presence of a timelike conformal boundary in
the exterior region of the black hole poses the question of whether and which
boundary conditions should be imposed so to have a unique solution. In Section
3.2.5 we will identify a speci�c class of boundary conditions, those of Robin
type, as a distinguished class of non-dynamical boundary conditions ensuring
the absence of energy �ux through the boundary. This feature essentially
guarantees that the spacetime can be interpreted as an isolated system.

In Section 3.1.2, the scalar �eld equation is solved by exploiting the symme-
tries of the background spacetime reconducing it to a one-dimensional radial
di�erential equation, which can be expressed in Sturm-Liouville form and fur-
ther reduced to a Gaussian hypergeometric di�erential equation. In Section
3.2.1, the set of radial solutions are then expressed in terms of Gaussian hy-
pergeometric functions. The properties of the solutions are studied in Section
3.2.3 and in 3.2.4.

Finally in Section 3.3, a quantization scheme for the scalar �eld is presented.
This quantization procedure essentially relies on the construction of a two-
point function associated to a ground state. In Sections 3.3.4 and 3.3.5, two
di�erent ground states candidates, corresponding to two di�erent ranges of
value of the �eld parameters, are presented, while a third prototype fails to
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3. Scalar �eld around a BTZ black hole

describe a ground state due to the presence of bound state mode solutions.
Finally in Section 3.4 we argue whether the two two-point functions mentioned
above actually describe a physically acceptable ground state, by verifying if
they satisfy the Hadamard condition and we discuss the bound states and their
physical meaning in this picture.

3.1 The Scalar �eld equation

3.1.1 The Cauchy problem

Let us consider the BTZ spacetime as de�ned in Chapter 2 with metric g
provided by (2.8), restricted to regions I, II and III of Fig. 2.2, and a real,
massive scalar �eld Φ : BTZ→ R, whose action is given by

S = −1

2

∫
BTZ

dµg
(
∇µΦ∇µΦ + (m2 + ξR)Φ2

)
, (3.1)

where m2 ∈ R is the mass parameter of the scalar �eld, R = − 6
`2
is the Ricci

scalar curvature built out of g, ξ ∈ R is the curvature coupling constant and
dµg(x) =

√
| det g|d3x. The dynamics is ruled by the Klein-Gordon equation

PΦ := (�g −m2 − ξR)Φ = 0 , (3.2)

where �g is the D'Alembert wave operator. This equation is often solved for
globally hyperbolic spacetimes [58, 27].

A spacetime (M, g), dimM≥ 2, is called globally hyperbolic if and only if it
admits a Cauchy surface1, that is a subset Σ ⊂M such that any inextensible
(continuous, locally Lipschitz) timelike curve intersects Σ exactly once and
such that its domain of dependence is DM(Σ) =M.

For any globally hyperbolic spacetime, a solution for the di�erential equa-
tion (3.2) is in fact uniquely determined by assigning initial data on a Cauchy
surface Σ 

PΦ = 0
Φ|Σ = f0

∇nΦΣ = f1

, (3.3)

where f0, f1 ∈ C∞(Σ) and n is the future directed unit normal vector on Σ
[59, �3.5.3].
However BTZ spacetime is not globally hyperbolic. This is manifest from the
Penrose diagrams in Fig. 2.1 and 2.2, since in both cases the spatial in�n-
ity surface r = ∞ is a timelike conformal boundary through which data can
propagate [60]. This property is essentially inherited by the universal covering
CAdS3, through the identi�cations of Section 2.2.

1An equivalent de�nition states that a time-oriented spacetime is globally hyperbolic if
J+(p) ∩ J−(p) = {p} for any p ∈ M (causality) and, for any two p, p′ ∈ M, the causal
diamond J+(p) ∩ J−(p′) is either compact or empty.
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3.1. The Scalar �eld equation

In order to �nd a general and unique solution for (3.2), one must consequently
impose boundary conditions at the conformal boundary. For a scalar �eld,
this problem is usually analysed by considering three types of boundary condi-
tions: Dirichlet, Neumann, and the so called transparent boundary conditions
[41] [61] which simulate the absence of the boundary.
In the following, the analysis will be performed for all admissible boundary
conditions of Robin type (see Section 3.2.5). For later convenience, we intro-
duce the dimensionless parameter

µ2 :=
m2

`2
− 6ξ ,

with µ2 > −1.

3.1.2 Scalar �eld expansion in (t, r, φ)

In order to solve the Cauchy problem, we work with coordinates (t, r, φ) as
de�ned in Section 2.2. Starting from the line element (2.8), and knowing that

det g = −r2

(gµν)µν =

 −N−2 0 N−2Nφ

0 N2 0
N−2Nφ 0 r−2 − (N−1Nφ)2

 ,

the di�erential equation (3.2) reads

1

r
∂r[rN

2]∂rΦ +N2∂2
rΦ−N−2∂2

t Φ+

2N−2Nφ∂t∂φΦ +
1

r2
∂2
φΦ− (N−1Nφ)2∂2

φΦ− µ2

`2
Φ = 0 ,

with µ2 := m2

`2
− 6ξ, µ2 > −1.

Since ∂
∂t

and ∂
∂φ

are both Killing vectors �elds for (2.8), we can Fourier
expand the scalar �eld Φ as

Φ(t, r, φ) =
1

2π

∑
k∈Z

∫
R

dω e−iωt+ikφ Ψωk(r) .

Therefore, one can reduce the di�erential equation to a one-dimensional ordi-
nary di�erential equation (ODE)

1

r
∂r[rN

2]∂rΨωk(r) +N2∂2
rΨωk(r) +N−2ω2Ψωk(r)+2N−2NφωkΨωk(r)

− 1

r2
k2Ψωk(r) + (N−1Nφ)2k2Ψωk(r)−

µ2

`2
Ψωk(r) = 0 .

Since we are mainly interested in �nding solutions for the external region
r+ < r <∞ of BTZ spacetime, we will need to clarify which are the admissi-
ble boundary conditions that can be assigned at the horizon or at the radial
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3. Scalar �eld around a BTZ black hole

in�nity. For ordinary di�erential equations this problem can be solved in full
generality by using Sturm-Liouville theory (see e.g. [62, 63, 64] or [65] for an
application to the study of a real, massive scalar �eld in the Poincaré patch of
anti-de Sitter spacetime of arbitrary dimension). It is therefore convenient to
introduce a new radial coordinate z ∈ (0, 1),

z =
r2 − r2

+

r2 − r2
−
. (3.4)

This change of variable identi�es the event horizon r = r+ with z = 0 and
radial in�nity r =∞ with z = 1.

The relevant functions now reduce to

r =

√
zr2
− − r2

+

z − 1
N2 =

z(r2
+ − r2

−)2

(z − 1)(zr2
− − r2

+)
Nφ =

r+r−(z − 1)

zr2
− − r2

+

and the di�erential equation for Ψωk(z) can be written as

LΨωk(z) :=
d

dz

(
z

dΨωk(z)

dz

)
+ q(z)Ψωk(z) = 0 , (3.5)

with

q(z) =
1

4(1− z)

[
`2(ω`r+ − kr−)2

(r2
+ − r2

−)2z
− `2(ω`r− − kr+)2

(r2
+ − r2

−)2
− µ2

1− z

]
.

Eq. (3.5) is a second order ODE in Sturm-Liouville form with domain
z ∈ (0, 1). This will be particularly useful in Section 3.3, when we will deal
with the construction of the two-point function in the exterior region of the
black hole spacetime. A brief recap of Sturm-Liouville problems is in Appendix
A, while a more complete presentation can be found in [62]. We point out that
the endpoints of the Sturm-Liuoville (3.5) problem are not included in the
domain. This will be of particular importance in Section 3.2.5 when imposing
some boundary conditions to identify the most general solution.

3.2 Solutions

3.2.1 Radial solutions

In order to obtain a basis of the vector space of solutions for Eq. 3.5 we apply
Froebenius method [66] and we set

Ψωk(z) = zα(1− z)βFωk(z) . (3.6)

Here the parameters α and β satisfy the second order algebraic equations

α2 = − `4r2
+ω̃

2

4(r2
+ − r2

−)2
, β2 + β − µ2

4
= 0 , (3.7)
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where we de�ne ω̃ := ω − kΩH to be the square root ω̃ =
√
ω̃2, with Im{ω̃} =

Im(ω) ≥ 0. Four possible equivalent pairs of values (α, β) are admissible. Here
we choose

α = −i `2r+ω̃

2(r2
+ − r2

−)
, β =

1

2

(
1 +

√
1 + µ2

)
. (3.8)

It is important to notice that by picking a root for α, we are choosing one
of the possible branch cuts of the square root in the complex plane. Up to
strictly positive multiplicative constants, this choice is ruled only by ω̃, which,
as we will see in the following, is the Fourier parameter naturally associated
to the Killing �eld ξ de�ned in (2.11).

When (3.6) is plugged into Eq. (3.5), one obtains the following Gaussian
hypergeometric equation [67]

z(1− z)∂2
zFωk + [c− (a+ b+ 1)z]∂zFωk − abFωk = 0 , (3.9)

where 

a =
1

2

(
1 +

√
1 + µ2 − i` ω`− k

r+ − r−

)
,

b =
1

2

(
1 +

√
1 + µ2 − i` ω`+ k

r+ + r−

)
,

c = 1− i `2r+ω̃

r2
+ − r2

−
.

(3.10)

The hypergeometric di�erential equation (3.9) has analytic solutions in the
domain (0, 1), which can be expressed in closed form by means of Gaussian
hypergeometric functions, depending on the three parameters a, b and c.

Gaussian hypergeometric functions are special functions represented by a
Gauss series which include other special functions such as the rising factorial2

(x)s or the Euler Gamma functions, i.e.

F (a, b, c; z) =
∞∑
s=0

(a)s(b)s
(c)ss!

zs =
Γ(c)

Γ(a)Γ(b)

∞∑
s=0

Γ(a+ s)Γ(b+ s)

Γ(c+ s)s!
zs (3.11)

which is analytic in the region |z| < 1. Moreover Eq. (3.9) has regular singu-
larities at z = 0, 1, therefore one can �nd pairs of linearly independent regular
solutions around the poles at the endpoints. A brief review of hypergeometric
function is presented in Appendix B, while a complete review can be found in
[67].

When choosing a vector basis of solutions, the dependence of the solu-
tions on the three parameters a, b and c forces us to distinguish two cases,
discriminated by the values of µ2.

2The rising factorial, also known also Pochhammer's symbol, is de�ned as (x)s := x(x+
1) . . . (x+ s− 1), with x0 := 1.
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3. Scalar �eld around a BTZ black hole

General case

When none of c, c − a − b, a − b is an integer, an admissible and convenient
basis of solutions is given by

Ψ1(z) = zα(1− z)βF (a, b, a+ b− c+ 1; 1− z) , (3.12a)

Ψ2(z) = zα(1− z)1−β

× F (c− a, c− b, c− a− b+ 1; 1− z) . (3.12b)

From (3.10), we get that the conditions on a, b and c identify exactly the special
range of values for µ2 which must be been excluded. The general case holds
therefore for all the values µ2 6= (n− 1)2 − 1, n = 1, 2, 3, . . . , with µ2 > −1.

The fundamental solutions Ψ1(z) and Ψ2(z) enjoy several useful properties.
Using the conjugation identities (B.8), the symmetry F (a, b, c; z) = F (b, a, c; z)
and the second equality in (B.2) it is possible to check that Ψ1 7→ Ψ1 and
Ψ2 7→ Ψ2, if ω̃ 7→ ω̃.

They are also regular at the endpoint z = 1, corresponding to radial in�nity
r =∞, where, as we will show, they behave as

Ψ1(z) ≈1 (1− z)β , (3.13)

Ψ2(z) ≈1 (1− z)1−β . (3.14)

Notably, the behaviour at in�nity is dominated by the sole parameter β and,
therefore, by the value of µ2 only. This is not surprising since one expects that
the behaviour at in�nity is not a�ected by the local properties of the black
hole, such as the parameter ΩH describing its angular velocity at the horizon.

Special case

In the special case µ2 = (n− 1)2− 1, n = 2, 3, . . . , solutions (3.12) cease to be
analytic in (0, 1) and must be replaced. An admissible and convenient basis of
solutions for (3.5) (see [67, �15.10.8]) is

Ψ1(z) = zα(1− z)βF (a, b, n; 1− z) , (3.15a)

Ψ2(z) = zα(1− z)β

× [F (a, b, n; 1− z) log(1− z) +Kn(z)] , (3.15b)

where

Kn(z) := −
n−1∑
p=1

(n− 1)!(p− 1)

(n− p− 1)!(1− a)p(1− b)p
(z − 1)−p

+
∞∑
p=0

(a)p(b)p
(n)pp!

fp,n (1− z)p , (3.16)

while
(a)p = Γ(a+ p)/Γ(a) ,
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fp,n = ψ(a+ p) + ψ(b+ p)− ψ(1 + p)− ψ(n+ p) ,

and ψ is the digamma function

ψ(x) :=
Γ′(x)

Γ(x)
. (3.17)

Note that Ψ1 7→ Ψ1 under the replacement ω̃ 7→ ω̃. Once more this is proven by
using the conjugation identities (B.8), the symmetry F (a, b, c; z) = F (b, a, c; z)
and the second equality in (B.2). This property is not needed for Ψ2 since, as
it will be clear in next section, Ψ1 is the only solution which will play a role
for the admissible boundary conditions.

3.2.2 The asymptotic behaviour of the solutions and the

principal solution

Inspired by the fact that the Gaussian hypergeometric equation (3.9) can be
written in Sturm-Liouville form as in (3.5), we borrow the terminology used
for Sturm-Liouville problems [62], introducing the notion of principal solution.
We call a solution Ψ of (3.9) the principal solution at z = 1, if it is the unique3

solution up to scalar multiples such that limz→1 Ψ(z)/Φ(z) = 0 for every solu-
tion Φ that is not a scalar multiple of Ψ. As we will see in Section 3.2.5, the
identi�cation of the principal solution plays a primary role to determine which
boundary conditions are admissible at the radial in�nity z = 1.

As we will see, the Principal Solution at z = 1 will provide a straightforward
generalization of the Dirichlet boundary conditions for a singular boundary
value problem.

It is checked by direct inspection that the function Ψ1 in (3.12a) and (3.15a)
is the principal solution at z = 1, in the general and in the special case,
respectively.

Proofs In the general case, the Principal solution is

Ψ1(z) = zα(1− z)βF (a, b, a+ b+ 1; 1− z) . (3.18)

Notice that, by De�nition 3.11, any hypergeometric function is de�ned in the
disk |z| < 1 (and by analytic continuation, everywhere) and it holds that

lim
z→0

F (a, b, c, z) = 1

or, equivalently
lim
z→1

F (a, b, c, 1− z) = 1

3See Appendix A for some insights.
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3. Scalar �eld around a BTZ black hole

for any a, b and c for which F is properly de�ned. Bearing in mind this prop-
erty, it is manifest that the solutions in (3.12) are asymptotically equivalent
to

Ψ1(z) ≈1 (1− z)β

Ψ2(z) ≈1 (1− z)1−β

and we see that

Ψ1(z)

Ψ2(z)
≈1 (1− z)2β−1 →1 0 for β >

1

2
that is µ2 > −1 .

So, it follows that

lim
z→1

Ψ1(z)

AΨ1(z) +BΨ2(z)
= 0 , for B 6= 0 .

Analogously, in the special case the principal solution is

Ψ1(z) = zα(1− z)βF (a, b, n; 1− z) .

The solutions in (3.15) are in fact asymptotically equivalent to

Ψ1(z) ≈1 (1− z)β

Ψ2(z) ≈1+ (1− z)β
[

log(1− z)− (n− 1)!(n− 2)

(1− a)n−1(1− b)n−1

(z − 1)1−n

+ [ψ(a) + ψ(b)− 1− ψ(n)]

]
≈1

[
(1− z)β log(1− z)− (n− 1)!(n− 2)

(1− a)n−1(1− b)n−1

(−1)1−n(1− z)1+β−n+

+ [ψ(a) + ψ(b)− 1− ψ(n)](1− z)β
]

And we see that that

lim
z→1

Ψ1(z)

AΨ1(z) +BΨ2(z)
= 0 for B 6= 0

Stability of solutions

We call a solution stable, when its asymptotic behaviour at the boundary is
not dominated by a complex power of z, such as ziϕ, ϕ ∈ R.
By looking at the solutions (3.12) and (3.15) we notice that their asymptotic
behaviours at z = 1 are dominated by the factors (1 − z)β and (1 − z)1−β,
depending only on

β =
1

2
(1 +

√
1 + µ2).
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3.2. Solutions

In the considered case, a solution is therefore stable whenever β is real, that
is when µ2 ≥ −1. This constraint is in agreement with the Breitenlohner-
Freedman bound [68] for having stable solutions. This bound was originally
derived [68] in the AdSd+1 picture by demanding positivity of the conserved
energy functional for scalar �uctuations vanishing su�ciently fast at radial
in�nity. For the AdS3 case, the Bretenlohner-Freedman bound is µ2 ≥ µ2

BF =
−1.

3.2.3 Square-integrability at the endpoint z = 1

Having speci�ed a basis of solutions of (3.5), we shall proceed to identify all
the admissible boundary conditions at the end point4 z = 1 for (3.2). These
boundary conditions will depend on the square integrability of the solutions
(3.12) and (3.15) in a neighborhood of the considered end point.

In particular we classify end points in the following way: We call an end
point z = 1 limit circle if, for some ω̃ ∈ C, all solutions of (3.5) lie in
L2((z1, 1);J (z)dz) for some z1 ∈ (0, 1), otherwise, we call it limit point. The
measure J (z)dz, with

J (z) =
1

1− z +
r2

+

z(r2
+ − r2

−)
, (3.19)

is π∗Idν(g), where, dν(g) = r/N2 drdϕ and πI : M → I is the projection along
the r-direction. Notice that the measure J (z)dz has been �xed so that the
operator L in (3.5) is Hermitian with respect to it.

A direct inspection of (3.12a) and (3.12b) as well as of (3.15a) and (3.15b),
and the analysis of the asymptotic behaviour of the solutions, implies that a
Robin boundary condition can only be applied when µ2 ∈ (−1, 0).

In fact, as already anticipated in Section 3.2.2, since any hypergeometric
function F (1 − z) equals 1 when evaluated at z = 1, the behavior of (3.12a)
and (3.12b) can be inferred from that of (1− z)β and (1− z)1−β respectively.
By accounting for the integration measure and using again (3.8), one �nds
that (3.12a) lies in L2((z1, 1);J (z)dz) for all values of µ2 > −1 for any z1 ∈
(0, 1) and any ω̃. On the contrary, (3.12b) lies in L2((z1, 1);J (z)dz) if and
only if µ2 ∈ (−1, 0). According to the nomenclature introduced, z = 1 is
therefore limit circle if µ2 ∈ (−1, 0) while it is limit point if µ2 > 0. Hence,
no boundary condition is required for µ2 > 0 and everything works as if the
Dirichlet boundary condition had been chosen.

For the special case µ2 = (n− 1)2− 1, n = 2, 3, . . ., the �rst element of the
basis Ψ1, as in (3.15a), behaves exactly like (3.12a). On the contrary, Ψ2, as
in (3.15b), never lies in L2((z1, 1);J (z)dz) on account of the singularities of
K(z). Hence, whenever µ2 > 0, z = 1 is always limit point and no boundary
condition is required.

4A similar reasoning will be applied at z = 0 but, if one focuses only on square integrable
solutions, only one exists, provided that Im[ω̃] 6= 0. Therefore, no boundary condition needs
to be applied at z = 0.
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3. Scalar �eld around a BTZ black hole

Range of µ2 Range of ω̃ L2 at z = 0 L2 at z = 1

Im[ω̃] < 0 Ψ4 Ψ1 and Ψ2

−1 < µ2 < 0 Im[ω̃] = 0 none Ψ1 and Ψ2

Im[ω̃] > 0 Ψ3 Ψ1 and Ψ2

Im[ω̃] < 0 Ψ4 Ψ1

µ2 > 0 Im[ω̃] = 0 none Ψ1

Im[ω̃] > 0 Ψ3 Ψ1

Table 3.1: Square integrability at the endpoints z = 0 and z = 1 of a basis
of solutions for (3.5) depending on the parameters µ2 and ω̃ of the equation.
The integration measure is dν(z) = J (z)dz as per (3.19).

3.2.4 Square-integrability at the endpoint z = 0

The behaviour of the solutions of (3.5) at z = 0 can be analysed by considering
a more convenient basis of solutions

Ψ3(z) = zα(1− z)βF (a, b, c; z) , (3.20a)

Ψ4(z) = z−α(1− z)β

× F (a− c+ 1, b− c+ 1, 2− c; z) , (3.20b)

where again a, b, c are the parameters de�ned in (3.10). The vectors Ψ3 and
Ψ4 form a well-de�ned basis of solutions for all µ2 > −1, except when c = 1,
corresponding to the value α = 0.

Since the hypergeometric functions in the form F (z) are equal to 1 when
evaluated at z = 0, the leading behaviour of the two solutions at the ori-
gin is ruled by zα and by z−α, respectively. It is easy to verify that Ψ3 ∈
L2((0, z0),J (z)dz) for Im[ω̃] > 0, independently on z0 ∈ (0, 1), while Ψ4 ∈
L2((0, z0),J (z)dz) whenever Im[ω̃] < 0. On the other hand, none of the solu-
tions is square integrable for Im[ω̃] = 0, since a logarithmic singularity dom-
inates the leading term of the asymptotic behaviour. Since only one square
integrable solution exists, provided that Im[ω̃] 6= 0, no boundary condition
needs to be applied at z = 0. Therefore, we say that z = 0 is limit point.

The case c = 1 deserves a special mention. This value corresponds to
ω = k r−

`r+
= kΩH . This relation satis�es a synchronization condition with the

black hole angular velocity and it has been extensively studied in [44]. In this
case, the solutions Ψ3 and Ψ4 no longer form a basis of solutions of (3.5),
hence, we consider the following new basis [67, �15.10.8]:

(1− z)βF (a, b, 1; z) ,

(1− z)β [F (a, b, 1; z) log(z) +K1(1− z)] ,
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3.2. Solutions

where K1 is as in (3.16). The leading behaviour at z = 0 of these two solutions
is dominated by a constant in the �rst case and by log(z) in the second one.
Therefore, none of them lies in L2((0, z0),J (z)dz) independently from z0 ∈
(0, 1).

Note that for ω̃ 6∈ R, hence excluding the case c = 1, the above de�ni-
tions obey Ψ3 7→ Ψ4 and Ψ4 7→ Ψ3 under the replacement ω̃ 7→ ω̃. This
can be checked using again the symmetry F (a, b, c; z) = F (b, a, c; z) and the
conjugation identities (B.8).

3.2.5 Robin boundary conditions

In the following we will focus on identifying which class of boundary conditions
can be applied at the timelike conformal boundary z = 1 of the BTZ spacetime,
so to obtain a general and unique solution for the Klein-Gordon equation (3.2).
From a physical point of view, we would like to deal with a thermodynamical
isolated system and the presence of the boundary might spoil this property.
Therefore, the reasonable physical request is to impose that the boundary
behaves like a perfect mirror, that is to impose that the energy �ux through
the boundary is zero [69, 70]). In the end, this approach is more general than
the usual practice to impose Dirichlet boundary conditions.

Let us consider the the action (3.1)

S = −1

2

∫
BTZ

dµg

(
∇µΦ̄∇µΦ +

µ2

`2
Φ2

)
,

with stress-energy tensor

T µν = (gµαgνβ + gµβgνα − gµνgαβ)∂αΦ̄∂βΦ− gµνΦ̄Φ .

The radial energy �ux is

Fr =

∫
S1
T rt

√
| det g|grrdφ . (3.22)

Let us consider the asymptotic behaviour of (3.5) for z → 1 (r → ∞), with
an expansion of the form

Φ(t, r, φ) =
1

2π

∑
k∈Z

∫
R

dω e−iωt+ikφ Ψωk(r) .

As we have seen in Section 3.2.3, if z is as in (3.4), one �nds that boundary con-
ditions are required only for −1 < µ2 < 0 and the principal and non-principal
solutions (3.12) asymptotically behave as (3.13) and (3.14), respectively. In
terms of the natural radial coordinate r one has that

Ψ1(r) ≈∞ r−1−
√

1+µ2 , (3.23)

Ψ2(r) ≈∞ r−1+
√

1+µ2 . (3.24)
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3. Scalar �eld around a BTZ black hole

A general solution can therefore be written as Ψ = AΨ1 + BΨ2 for some
complex constants A and B. For convenience, here we introduce a new basis
of solutions, given by

Ψ+ := Ψ1 − iΨ2 ,

Ψ− := Ψ1 + iΨ2 .

The general solution becomes Ψ = C+Ψ+ + C−Ψ− and we substitute it into
(3.22), so to obtain

Fr =

∫
S1
T rt

√
| det g|grrdφ ∝ (|C+|2 − |C−|2) .

We then make the hypothesis that the conformal boundary of BTZ may be
regarded as a perfectly re�ecting mirror, asking for the energy �ux to vanish
asymptotically when r →∞, that is

lim
r→∞

Fr→∞ = 0 .

This requirement is satis�ed for |C+| = |C−|. Writing the complex constants
in polar coordinates as C± = ρeiθ± , one obtains that

B

A
= −iC+ − C−

C+ + C−
= tan

(
θ+ − θ−

2

)
and we can de�ne a variable ζ := θ+−θ−

2
, ζ ∈ [0, π) \ {π

2
}, such that

tan(ζ) =
B

A
.

Therefore, imposing zero energy �ux at the boundary is equivalent to ask for
a general solution to be in the form

cos(ζ)Ψ1(z) + sin(ζ)Ψ2(ζ), ζ ∈ [0, π) \ {π
2
} ,

that is to satisfy Robin boundary conditions. Robin boundary conditions are
usually introduced as a constraint over some linear combination between a
solution of the di�erential equation and its derivative and, in this sense, they
behave as a generalization of Dirichlet and Neumann boundary conditions.

The implementation of Robin boundary conditions at the conformal bound-
ary z = 1 of BTZ spacetime is not straightforward since, as already pointed out
in Section 3.2.1, the radial di�erential equation is singular at the endpoints.
A brief comparison between the procedure to impose boundary conditions in
a regular di�erential equation and in a singular one is presented in Appendix
A. Here we just stress that it would be improper to specify the boundary con-
ditions by assigning speci�c values at the boundary. These kind of problems
are known as singular or non regular problems.
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3.3. The two-point functions

A convenient generalization is provided by the following approach.
We �rst choose as primary solution Ψ1 of the basis the principal solution at
the boundary identi�ed in Section 3.2.2, while Ψ2 can be any other linearly
independent solution. Secondly, given the set Sol of solutions of (3.2), we
introduce the notion of Wronskian between two solutions

Wz[ϕ, ψ] := ϕ(∂zψ)− (∂zϕ)ψ .

Then we say that a solution Ψζ of (3.9) satis�es the boundary conditions of
Robin type at z = 1 if

lim
z→1
{cos(ζ)Wz[Ψ,Ψ1](z) + sin(ζ)Wz[Ψ,Ψ2](z)} = 0 ζ ∈ [0, π) , (3.25)

where Ψ is any solution of the di�erential equation, while the linear combina-
tion has been written in terms of a parameter ζ spanning all admissible values
up to a normalization constant.

In Appendix A we show that this procedure also applies for a regular di�er-
ential problem and reduces to the usual notion of Robin boundary conditions

cos(ζ)Ψζ(1) + sin(ζ)∂zΨζ(1) = 0 ζ ∈ [0, π) ,

up to a normalization constant.

Boundary conditions at z = 1 and general solution

At the singular point z = 1 we can apply boundary conditions (3.25) for a pair
of solutions of the general case (3.12).

Given the boundary conditions (3.25), for any value of ζ ∈ [0, π) the most
general solution of equation (3.9) with parameters (3.10) is then

Ψζ(z) = N{sin(ζ)Ψ2(z) + cos(ζ)Ψ1(z)} . (3.26)

The same holds for the special case, where the basis of solutions (3.12) is
replaced by (3.15).

The value ζ = 0 in (3.25) provides a generalization of the concept of Dirich-
let boundary condition, since it guarantees that the general solution in that
case is Ψ(z) = NΨ1(z). For any ζ ∈ (0, π) we have the Robin boundary con-
ditions.
We stress that the notable case ζ = π

2
cannot be unambiguously interpreted

as a generalization of the Neumann boundary conditions, since it depends on
the choice of Ψ2.

3.3 The two-point functions

In �eld theory, a particular interest is given to the construction of two-point
functions

〈Φ(x)Φ(x′)〉 .
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3. Scalar �eld around a BTZ black hole

In our picture, we will read this object as an integral kernel built out of a
real, massive, scalar �eld Φ : M → R whose dynamics is ruled by a generic
Klein-Gordon equation

PΦ := (�g −m2 − ξR)Φ = 0 , (3.27)

with m2, R, ξ ∈ R over a 2 + 1 dimensional, connected Lorentzian manifold
(M, g).
The quantization of (3.27) has been studied in great details in the literature,
both for �at and curved globally hyperbolic spacetimes. As a reference, one can
refer for example to [71], while in [13] one can �nd a recent review, which adopts
an algebraic point of view based on a set of axioms, �rst spelt out by Haag and
Kastler [72]. This second approach gives an algebraic formulation to quantum
�eld theory (AQFT) and it is particularly suitable for curved backgrounds,
expecially when dealing with globally hyperbolic spacetimes [12].
This quantization scheme does not focus directly on �elds. Instead it relies
on the construction of an algebra of observables A(M) compatible with the
dynamics of the system and satisfying the canonical commutations relations
(CCRs). This abstract algebra of observables is then related to a Hilbert space
and to a vector space of operators over it, by the identi�cation of a positive
and normalized linear functional ω : A(M)→ C dubbed algebraic state. This
realization is provided by the renown Gelfand-Naimark-Segal (GNS) theorem
[29].
In this picture, expectation values of observables are computed in terms of
correlation functions. These are distributions acting on the generators of the
algebra of observables

ωn : C∞0 (M)⊗n → C .

A distinguished role is indeed played by the two-point correlation function ω2.
One the one hand, in non interacting �eld theory, it solely determines the n-
point functions for Gaussian (quasifree) states by means of the Wick theorem
[71]. On the other hand, the CCRs over the algebra are imposed in a covariant
way [22, 58] by means of a bidistribution G dubbed causal propagator, whose
integral kernel can be split in a symmetric and antisymmetric part

iG(x, x′) = ω2(x, x′)− ω2(x′x) ,

where ω2(x, x′) = 〈Φ(x)Φ(x′)〉.
In the following, after an introduction to the general quantization scheme,

we specialise the discussion to the case of a BTZ spacetime, aiming to construct
a class of two-point functions de�ning a ground state for a real, massive, scalar
�eld.

3.3.1 Quantum �eld theory in curved spacetime

Eq. (3.27) can be solved in terms two fundamental solutions, called the ad-
vanced (A) and the retarded (R) solutions respectively,

GA/R : C∞0 (M)→ C∞(M)
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3.3. The two-point functions

such that

� P ◦GA/R = GA/R ◦ P = id|C∞0 (M) ,

� supp(GA/R(f)) ⊆ J∓(supp(f)) for all f ∈ C∞0 (M) .

These solutions exist for any normally hyperbolic di�erential operator acting
over a globally hyperbolic Lorentzian manifold [13]. They are unique when
the operator P and its formal adjoint P ∗, de�ned by 〈P ∗f, g〉 = 〈f, Pg〉 for all
f, g ∈ C∞0 (M), 〈f, g〉 :=

∫
fg, both admit5 advanced and retarded solutions.

A partial second order di�erential operator over a 2+1 dimensional Lorentzian
manifold is called normally hyperbolic if it can be written in the form

PΦ =

[
−

3∑
i,j=1

gij∂i∂j +
3∑
i=1

Ai∂i + A

]
Φ ,

for some smooth functions A, Ai, i = 1, 2, 3 and a partial di�erential equation

PΦ = J ,

where J is a compactly supported smooth function, is called wave-like equation
if P is normally hyperbolic. The prototypical example of a wave-like equation
is therefore the Klein-Gordon equation (3.27).

Given the advanced and retarded solutions, one can introduce the causal
propagator

G := GA −GR

out of which one associates to the scalar �eld Φ an algebra of observables
A(M), constructed as follows:

1. We de�ne T (M) :=
⊕∞

n=0(C∞0 (M))⊗n, where C∞0 (M)⊗0 ≡ C, as the
universal tensor algebra of test-functions, endowed with the ∗-operation
induced from complex conjugation,

2. We call I(M) the ∗-ideal of T (M) generated by elements of the form Pf ,
so to implement the dynamics of the equation of motion in the quantum
system

3. For any f, f ′ ∈ C∞0 (M) we impose the canonical commutation relations
(CCRs) f ⊗ f ′ − f ′ ⊗ f − iG(f, f ′)I, where I is the identity of T (M),

4. We de�ne A(M) = T (M)
I(M)

, to be the algebra of observables.

Notice that any f ∈ C∞0 (M), the following properties hold true for G:

� P ◦Gf = G ◦ Pf = 0,

5An operator admitting advanced and retarded solutions is sometimes referred as Green-
hyperbolic [12].
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3. Scalar �eld around a BTZ black hole

� supp(G(f)) ⊆ J(supp(f)),

where J(K) := J+(K) ∪ J−(K) is the union of the causal future and the
causal past of K. Furthermore, the causal propagator can be regarded as a
bi-distribution, where

G ∈ C∞0 (M×M)′ = {T : C∞0 (M×M)→ C | T is continuous and linear}

and, for all f, f ′ ∈ C∞0 (M)

G(f, f ′) :=

∫
M

dvolM(x)f(x)(Gf ′)(x) ,

with (Gf)(x) :=
∫
M dvolM(x)f(x)G(x, x′)f ′(x) and G(x, x′) is interpreted in

a distributional sense.
It is worth noticing that the algebra of observables A(M) is nothing but an
abstract generalization of the algebra of second quantized �elds Φ̂(f), with
f ∈ C∞0 (M)C ' C∞0 (M;C):

1. Φ̂(af + bf ′) = aΦ̂(f) + bΦ̂(f ′) for all a, b ∈ C, f, f ′ ∈ C∞0 (M),

2. Φ̂(Pf) = 0, for all f ∈ C∞0 (M),

3. Φ̂(f)∗ = Φ̂(f̄), for all f ∈ C∞0 (M), where f̄ denotes the complex conju-
gate of f ,

4. [Φ̂(f), Φ̂(f ′)] := Φ̂(f)Φ̂(f ′)− Φ̂(f ′)Φ̂(f) = iG(f, f ′)I.

At this point, it is possible to de�ne an algebraic state, that is a linear
functional ω : A(M)→ C such that

ω(I) = 1 ω(aa∗) ≥ 0 ∀a ∈ A(M) ,

which allows to realize a suitable Hilbert Hω space and to interpret the algebra
of observables in terms of linear operators acting on it. This realization is
provided by the Gelfand-Naimark-Segal (GNS) theorem [29], which states that,
given a state ω on a unital ∗-algebra A, there exist a quadruple (Hω,D, π,Ψω)

· (Hω, 〈−|−〉) is a Hilbert space,
· D ⊂ Hω is a dense subspace,

· π : A → L(D) is a ∗-representation of A on the linear operators over D,
that is a linear map such that π(a)†|D = π(a∗).

· π(A)Ψω = D
· ω(a) = 〈Ψω|π(a)Ψω〉, for all a ∈ A .
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Expectation values of observables can then be computed in terms of correlation
functions. These are distributions acting on the generators of the algebra of
observables

ωn : C∞0 (M)⊗n → C .

Knowing a state ω is therefore equivalent to knowing all its correlation func-
tions. As already anticipated, a distinguished role is indeed played by the
two-point correlation function ω2. If one considers the integral kernel of the
causal propagator G one can split it in a symmetric and antisymmetric part

iG(x, x′) = ω2(x, x′)− ω2(x′x) ,

where the functions ω2, usually called Wightman functions, are given by

ω2(x, x′) = 〈Φ(x)Φ(x′)〉 .

In particular, G and ω2 all satisfy the Klein-Gordon equation both for x and
x′, that is they are bisolutions for (3.27).

In the following, we specialise the discussion to the case of a BTZ black hole
background with the aim to construct a class of two-point functions de�ning
a state for the real massive scalar �eld of (3.2). In particular we would like
to de�ne a ground state, that is a state built out only of positive frequencies
with respect to a preferred timelike Killing �eld. As we discussed in the Intro-
duction, in curved spacetime we cannot rely on the Poincaré simmetry group
and, as a consequence, there is no clear way to select a single vacuum state
above another. Nevertheless, if a complete, everywhere timelike Killing �eld
exists, it allows for the identi�cation of a unique full-�edged quantum state,
dubbed the ground state, guaranteeing that all quantum observables have �nite
�uctuations [28, 29].

3.3.2 Quantum �eld theory in BTZ spacetime

As already pointed out in Chapter 2, the BTZ spacetime is not globally hy-
perbolic due to the presence of the timelike surface r =∞ acting as conformal
boundary, while the quantization scheme presented in Section 3.3.1 is partic-
ularly suitable for globally hyperbolic spacetimes. Despite this discrepancy,
our �nal interest will be to evaluate physical quantities de�ned in geodesically
convex neighbourhoods of points on the Killing horizon. This will become
clear in Chapter 4, where we will analyse the tunnelling processes through the
black hole horizon and the local thermal behaviour of the two-point function.
With regards to the quantization procedure, if one is interested in the local
properties of the system in a submanifold Õ ⊂ M, one might as well de�ne
a local algebra of observable as the restriction of A(M) on Õ. This is indeed
the case of the present work, since we are only interested in studying local
quantities. Nonetheless, the construction of a global algebra might be possible
by adopting the approach used for the counterpart of a real, massive scalar
�eld in the Poincaré patch of a (d+ 1)−dimensional AdS spacetime [73].
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3. Scalar �eld around a BTZ black hole

Given the Klein-Gordon �eld equation (3.2), we aim to build its Wightman
function, that is a bidistribution G+ ∈ D′(BTZ× BTZ) such that

(P ⊗ I)G+ = (I⊗ P )G+ = 0 ,

G+(f, f) ≥ 0 , ∀f ∈ C∞0 (BTZ)

and supp(G+(f,−)) ⊆ J(supp(f)) for all f ∈ C∞0 (BTZ) in a distributional
sense. Let us then consider the coordinate system (t, z, φ) introduced in (2.8)
with r replaced by the new radial coordinate z as in (3.4). When imposing the
canonical commutation relations (CCRs), one requires that the antisymmetric
part of the integral kernel of G+,

iG(x, x′) = G+(x, x′)−G+(x′, x) with x, x′ ∈ BTZ

satis�es (3.3.2) together with the initial conditions

G(x, x′)|t=t′ = 0 , (3.28a)

−∂tG(x, x′)|t=t′ = ∂t′G(x, x′)|t=t′ =
δ(z − z′)δ(φ− φ′)

J (z)
, (3.28b)

with J (z) as in (3.19). That is, the antisymmetric part of G+ is constrained
to coinciding with the commutator distribution if one wants to account for the
CCRs of the underlying quantum �eld theory. In order to construct explicitly
the two-point function we assume that G+ can be mode expanded in the form

G+(x, x′) = lim
ε→0+

∑
k∈Z

∫
R

dω

(2π)2
e−iω(t−t′−iε)+ik(φ−φ′)Ĝωk(z, z

′) , (3.29)

where x, x′ ∈ BTZ. Notice that a term iε has been added as a regularization,
while the limit must be interpreted in the weak sense.

3.3.3 The resolution of the identity

Initial conditions

As we already anticipated in Section 2.3, the Killing vector �eld (2.11)

ξ =
∂

∂t
+Nφ(r+)

∂

∂φ

plays a prominent physical role: it is timelike in the whole external region
of the BTZ black hole and it generates the Killing horizon. Moreover, it is
of paramount importance for the construction of a ground state, providing a
preferred direction to de�ne the notion of positive frequencies. In fact, the
positive frequencies can be identi�ed by its Killing parameter ω̃ = ω − kΩH.
This can be seen by changing the two-point function parameters from (ω, k)
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3.3. The two-point functions

to (ω̃, k) and by introducing a new coordinate system (t̃, r, φ̃), which is related
to (t, r, φ) so that ∂t̃ = ξ. The simplest choice consists in de�ning6

t =t̃

φ =φ̃+ ΩHt̃ .

Using this new coordinate chart, the line element becomes

ds2 = −N2dt̃2 +N−2dr2 +
(

dφ̃+ (Nφ + ΩH)dt̃
)2

. (3.30)

Since only the positive ω̃-frequencies contribute to the two-point function of
the ground state, one can write Ĝωk(z, z

′) := G̃ω̃k(z, z
′)Θ(ω̃), with G̃ω̃k(z, z

′)
de�ned for all ω̃ ∈ R.

In order to build the ground state, since the antisymmetric part must sat-
isfy (3.28a), a natural requirement consists of looking for a two point func-
tion G̃ω̃k(z, z

′) which is symmetric under exchange of z and z′ and such that
G̃−ω̃,−k(z, z

′) = −G̃ω̃k(z, z
′). With this requirement, the commutator distribu-

tion reads

iG(x, x′) = lim
ε→0+

∑
k∈Z

∫
R

dω̃

(2π)2
e−iω̃(t−t′−i|ω̃|ε)+ik(φ̃−φ̃′) G̃ω̃k(z, z

′) . (3.31)

Here, from Eq. (3.28b), one has that G̃ωk(z, z
′) is a mode bidistribution chosen

in such a way that ∫
R

dω̃

2π
ω̃ G̃ω̃k(z, z

′) =
δ(z − z′)
J (z)

. (3.32)

Quadratic operator pencils

Provided that positivity as in (3.3.2) is satis�ed, the identity (3.32) and the
Fourier series for the delta distribution along the angular coordinates

1

2π

∑
k∈Z

eik(φ̃−φ̃′) = δ(φ− φ′)

ensure that �nding G̃ω̃k(z, z
′) is equivalent to constructing a full-�edged two-

point function G+.
Moreover (3.3.2) entails that the mode bidistribution is such that

(Lω̃ ⊗ I)G̃ω̃k(z, z
′) = (I⊗ Lω̃)G̃ω̃k(z, z

′) = 0 ,

where Lω̃ is de�ned in (3.5).

6Notice that, while the range of t̃ is still R, that of φ̃ appears to be no longer the
interval (0, 2π), but (−ΩH t̃, 2π−ΩH t̃) instead. Eventually, this choice is purely a matter of
convention: the interval 0 ≤ φ̃ < 2π would be equivalently suited.
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3. Scalar �eld around a BTZ black hole

Our aim is now to obtain an integral representation for the delta distribu-
tion on the right hand side of (3.32), from which one can read o� G̃ω̃k(z, z

′).
This result is quite straightforward when dealing with the static case J = 0.

The ODE (3.5) is indeed an eigenvalue problem with spectral parameter ω̃2 and
if the operator Lω̃ is self-adjoint, for example by imposing suitable boundary
conditions [74], one can express the delta distribution as an expansion in terms
of the eigenfunctions of Lω̃. This procedure, known in literature as resolution
of the identity, is not possible when dealing with the non static case J 6= 0
since, when the black hole is rotating, the ODE (3.5) presents both a quadratic
and a linear term in ω̃.

Therefore, the particular from of equation (3.5), forces us to treat Lω̃ as a
quadratic operator pencil. Quadratic operator pencils are di�erential operators
with quadratic dependence on the spectral parameter.

Quadratic operator pencils are a family of operators de�ned on a Hilbert
space H of the form

Sω̃ = P + ω̃R1 + ω̃2R2 , (3.33)

where R1, R2 and R−1
2 are all bounded and self-adjoint operators, while P is

unbounded, closed and hermitian on a dense domain D(Sω̃) ⊂ H. In our case,
Sω̃ = J −1Lω̃ on H = L2((0, 1);J (z) dz), where Lω̃ is de�ned by (3.5) and
J (z) is as in (3.19).

A detailed spectral analysis of this family of operators is presented in Ap-
pendix C.1. In the following we show what is the procedure to obtain the
expansion of the delta distribution in terms of eigenfunctions of an operator
of this type and, hence, the mode expansion of the two-point function (3.29)
for the case in which the mass parameter is such that −1 < µ2 < 0 and Robin
boundary conditions apply at the conformal boundary z = 1. The results for
the range µ2 > 0 may be simply obtained by setting ζ = 0.

Explicit calculation of the delta integral representation The strategy
is to apply the discussion from Appendix C.1 to the di�erential operator Lω̃
introduced in (3.5)

Lω̃Ψ(z) =
d

dz

(
z

dΨ(z)

dz

)
−
[
`2k2(1− z) + r2

+µ
2

4r2
+(1− z)2

− ω̃`3kr−
2r+(r2

+ − r2
−)(1− z)

− ω̃2`4J (z)

4(r2
+ − r2

−)

]
Ψ(z), (3.34)

with J (z) again as in (3.19). As already stated, the Hilbert space is H =
L2((0, 1);J (z) dz) and the quadratic operator pencil is

Sω̃Ψ(z) =
1

J (z)
Lω̃Ψ(z). (3.35)

This operator satis�es the hypotheses (S1), (S2) and (S3) from Appendix C.1.
The veri�cation of the hypotheses is relegated to Appendix C.2, C.3 and C.4,
respectively.
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3.3. The two-point functions

Let us now focus the attention on the Green distribution Gω̃,ζ associated
to the operator Lω̃. Such bidistribution can be constructed as a product of
square integrable solutions of Lω̃Ψ = 0 at both the endpoints z = 0 and z = 1.
For this reason we introduce the function

uω̃(z) =

{
Ψ3(z) , Im[ω̃] > 0 ,

Ψ4(z) , Im[ω̃] < 0 ,
(3.36)

with Ψ3 and Ψ4 de�ned in (3.20). This function is chosen so as to be square
integrable at z = 0. Analogously we introduce the function

Ψω̃,ζ(z) = cos(ζ)Ψ1(z) + sin(ζ)Ψ2(z) , (3.37)

with Ψ1 and Ψ2 de�ned either by (3.12) or (3.15), accordingly to the values
of µ2. This function is chosen so as to be square integrable at z = 1 when
−1 < µ2 < 0 and satisfying Robin boundary conditions parametrized by ζ ∈
[0, π). Note that, given the identity Lω̃ = Lω̃, it follows that uω̃ = uω̃ and
Ψω̃,ζ = Ψω̃,ζ .

The Green distribution Gω̃,ζ associated to the operator Lω̃ is therefore

Gω̃,ζ(z, z′) =

{
N−1
ω̃,ζ uω̃(z)Ψω̃,ζ(z

′) , z 6 z′ ,

N−1
ω̃,ζ uω̃(z′)Ψω̃,ζ(z) , z > z′ ,

(3.38)

where the normalization constant Nω̃,ζ , depends on the parameter ζ spanning
all admissible boundary conditions. Knowing that

Wz[Ψ1,Ψ2] =
a+ b− c

z
=

√
1 + µ2

z
,

and using formulae (B.3) of hypergeometric functions listed in Appendix B, a
direct calculation provides the following values for Nω̃,ζ

Nω̃,ζ = −zWz [uω̃,Ψζ ] (3.39)

=



cos(ζ)
Γ(c)Γ(a+ b− c+ 1)

Γ(a)Γ(b)

+ sin(ζ)
Γ(c)Γ(c− a− b+ 1)

Γ(c− a)Γ(c− b) , Im[ω̃] > 0 ,

cos(ζ)
Γ(2− c)Γ(a+ b− c+ 1)

Γ(a− c+ 1)Γ(b− c+ 1)

+ sin(ζ)
Γ(2− c)Γ(c− a− b+ 1)

Γ(1− a)Γ(1− b) , Im[ω̃] < 0 ,

where the parameters a, b, c are again as in (3.10).
By inspection of (3.38) and (3.39), it follows thatNω̃,ζ = Nω̃,ζ and Gω̃,ζ(z, z′) =

Gω̃,ζ(z′, z). Furthermore, as made explicit in Appendix C.3, Nω̃ is analytic on
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3. Scalar �eld around a BTZ black hole

Im[ω̃] 6= 0 and it has at most two isolated zeros. These, called the bound state
frequencies, are symmetric with respect to the real axis and they form a set
BSζ ⊂ C, such that BSζ = BS+

ζ ∪BS+
ζ with Im[BS+

ζ ] > 0.
The integral representation of the delta distribution can therefore be writ-

ten by applying formula (C.2):

4(r2
+ − r2

−)

`4J (z)
δ(z − z′) = −

∫
R

dω̃

2πi
ω̃∆Gω̃,ζ(z, z′)

+

∮
C̊

dω̃

2πi
ω̃Gω̃,ζ(z, z′) , (3.40)

where the positively oriented contour C̊, illustrated in Figure C.1, encircles
the bound state frequencies in BSζ , while

∆Gω̃,ζ(z, z′) := lim
ε→0+

[Gω̃+iε,ζ(z, z
′)− Gω̃−iε,ζ(z, z′)] (3.41)

has to be interpreted as a distribution in ω̃.
An application of Cauchy residue theorem leads to the following integral rep-
resentation

δ(z − z′)
J (z)

= − `4

4(r2
+ − r2

−)

[∫
R

dω̃

2πi
ω̃∆Gω̃,ζ(z, z′) +

∑
ω̃′∈BSζ

Resω̃=ω̃′ [ω̃ Gω̃,ζ(z, z′)]
]
.

(3.42)

Both integrands in (3.42) can be computed rather explicitly, except for
analytic expressions for the bound state frequencies (see Appendix C.3). In-
troducing the constants

A =
Γ(c− 1)Γ(c− a− b)

Γ(c− a)Γ(c− b) , B =
Γ(c− 1)Γ(a+ b− c)

Γ(a)Γ(b)
,

and using formulas (B.3a) and (B.3b), it is possible to write

uω̃(z) =

{
(c− 1) [AΨ1(z) +BΨ2(z)] , Im[ω̃] > 0 ,

(1− c)
[
AΨ1(z) +BΨ2(z)

]
, Im[ω̃] < 0 ,

and

Nω̃,ζ =

{
(1− c)

√
1 + µ2

[
cos(ζ)B − sin(ζ)A

]
, Im[ω̃] > 0,

(c− 1)
√

1 + µ2
[
cos(ζ)B − sin(ζ)A

]
, Im[ω̃] < 0.

Hence, for z < z′, the distribution (3.41) can be written as

∆Gω̃(z, z′) = − 1√
1 + µ2

[
AΨ1(z) +BΨ2(z)

cos(ζ)B − sin(ζ)A

−AΨ1(z) +BΨ2(z)

cos(ζ)B − sin(ζ)A

]
Ψζ(z

′)

=
AB − AB

|cos(ζ)B − sin(ζ)A|2
Ψζ(z)Ψζ(z

′)√
1 + µ2

, (3.43)
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3.3. The two-point functions

and the result still holds for z > z′.
A separate analysis is needed when considering the possible presence of

residues at a bound state frequency ω̃ζ ∈ BS+
ζ . In fact, when it exists, it is an

isolated root of Nω̃,ζ = 0 and

Resω̃=ω̃ζ [ω̃Gω̃,ζ(z, z′)] =
ω̃ζ
2
D(ω̃ζ)Ψω̃ζ ,ζ(z)Ψω̃ζ ,ζ(z

′), (3.44)

where D(ω̃ζ) = D2(ω̃ζ)/D1(ω̃ζ). Expanding Nω̃,ζ in the Laurent series, one
gets that

D1(ω̃ζ)
.
=
`2
√

1 + µ2

i(r2
+ − r2

−)

{
sin(ζ)A

[
(r+ + r−)ψ(c− a)

+ (r+ − r−)ψ(c− b)− 2r+ψ(c)
]
(1− c)

− cos(ζ)B
[
(r+ + r−)ψ(b) + (r+ − r−)ψ(a)

− 2r+ψ(c)
]
(1− c)

}
|ω̃=ω̃ζ ,

where ψ is again the digamma function introduced in (3.17). Since in this
case Nω̃ζ ,ζ = 0, the solutions uω̃ζ and Ψω̃ζ ,ζ are no longer linearly independent.
Recalling that Im[ω̃ζ ] > 0, their ratio is

D2(ω̃ζ)
.
=

uω̃ζ(z)

Ψω̃ζ ,ζ(z)

=

{
sec(ζ)(c− 1)A|ω̃=ω̃ζ , cos(ζ) 6= 0 ,

csc(ζ)(c− 1)B|ω̃=ω̃ζ , sin(ζ) 6= 0 .

Finally, the spectral resolution of the delta distribution is

δ(z − z′)
J (z)

=
`4

4(r2
+ − r2

−)

×
[∫

R

dω̃

2πi
ω̃

AB − AB
|cos(ζ)B − sin(ζ)A|2

Ψζ(z)Ψζ(z
′)√

1 + µ2

+
∑

ω̃ζ∈BS+
ζ

Re
[
ω̃ζD(ω̃ζ)Ψω̃ζ ,ζ(z)Ψω̃ζ ,ζ(z

′)
]]
, (3.45)

where we have taken advantage of two facts. Firstly the bound state fre-
quencies appear in complex conjugate pairs, BSζ = BS+

ζ ∪BS+
ζ . Secondly

D(ω̃ζ) = D(ω̃ζ) and Ψω̃ζ ,ζ(z) = Ψω̃ζ ,ζ
(z).

In the following sections, we present the results for the resolution of the
identity and for the mode expansion of the two-point function for certain �xed
Robin boundary conditions, identifying in which cases it is possible to construct
a full-�edged ground state for the scalar �eld in the external region of BTZ.
In the simplest scenario, corresponding to the range of values µ2 > 0, no
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3. Scalar �eld around a BTZ black hole

boundary condition needs to be imposed at z = 1 and it is always possible
to construct a ground state. In the second case, corresponding to the range
of values −1 < µ2 < 0 a ground state will be admissible only for certain
boundary conditions. The full details of the calculation can be consulted in
Appendix 3.3.3.

3.3.4 The two point function for µ2 > 0

As shown in Sections 3.2.3 and 3.2.4, for the range of values µ2 > 0 both z = 0
and z = 1 are of limit point type. Using the results of Section 3.3.3 in the case
ζ = 0, it is possible to obtain an integral representation of δ(z − z′) in terms
of eigenfunctions of Lω̃,

δ(z − z′)
J (z)

=

∫
R

dω̃

2πi
ω̃

(
A

B
− A

B

)
C Ψ1(z)Ψ1(z′) ,

where the constants A, B and C are de�ned as

A =
Γ(c− 1)Γ(c− a− b)

Γ(c− a)Γ(c− b) , (3.46a)

B =
Γ(c− 1)Γ(a+ b− c)

Γ(a)Γ(b)
, (3.46b)

C =
`4

4(r2
+ − r2

−)
√

1 + µ2
. (3.46c)

Comparing this integral representation with (3.32), we can read o� the formula
for G̃ω̃k(z, z

′) and write the two-point function as

G+(x, x′) = lim
ε→0+

∑
k∈Z

eik(φ̃−φ̃
′)
∫ ∞

0

dω̃

(2π)2
e−iω̃(t̃−t̃′−iε)

(
A

B
− A

B

)
C Ψ1(z)Ψ1(z′) .

(3.47)

3.3.5 The two-point function for −1 < µ2 < 0

For the range of values −1 < µ2 < 0, a Robin boundary condition needs
to be imposed on solutions at z = 1 and we obtain a di�erent two-point
function for each possible Robin boundary condition. Two separate regimes
must be considered. The boundary conditions identi�ed by ζ ∈ [0, ζc) and
those identi�ed by ζ ∈ [ζc, π), where ζc is a critical value of ζ. As we will show
shortly, for ζ ≥ ζc bound state frequencies ω̃ζ ∈ BS+

ζ will be present, while
no bound state occurs in the regime ζ ∈ [0, ζc). The search for bound states
is performed by looking at the isolated roots of Nω̃,ζ = 0, by reversing the
formula

tan(ζ) =
B

A

∣∣∣∣
ω̃=ω̃ζ

. (3.48)
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In particular, the critical value ζc is

ζc
.
= arctan

Γ (2β − 1)
∣∣∣Γ(1− β + i` k

r+

)∣∣∣2
Γ (1− 2β)

∣∣∣Γ(β + i` k
r+

)∣∣∣2
 , (3.49)

where β = 1
2

+ 1
2

√
1 + µ2 is the Frobenius parameter de�ned in (3.8). Notice

that µ2 ∈ (−1, 0), therefore β ∈ (1
2
, 1) and ζc ∈ (π

2
, π). The subsequent results

follow.

Case ζ ∈ [0, ζc)

For Robin boundary conditions identi�ed by ζ ∈ [0, ζc), the spectrum of the
operator Lω̃ in (3.5) is only ω̃ ∈ R and it does not include any isolated eigen-
value in C\R. Therefore no pole is present in the Green distribution associated
with Lω̃ calculated at the beginning of Section 3.3.3. Since the value ζc lies in
the range (π

2
, π), this regime includes both the Dirichlet and the Neumann-like

boundary conditions. In this case, therefore, the result is structurally identical
to the one investigated in the previous section for µ2 > 0 and we obtain the
following resolution of the identity

δ(z − z′)
J (z)

=

∫
R

dω̃

2πi
ω̃

(
AB − AB

)
C

|cos(ζ)B − sin(ζ)A|2 Ψζ(z)Ψζ(z
′) , (3.50)

where the constants A, B and C are the same as in (3.46).
Combining this result with (3.29) and (3.32) one obtains, for each ζ ∈

[0, ζc),

G+
ζ (x, x′) = (3.51)

lim
ε→0+

∑
k∈Z

eik(φ̃−φ̃
′)
∫ ∞

0

dω̃

(2π)2
e−iω̃(t̃−t̃′−iε)

(
AB − AB

)
C

|cos(ζ)B − sin(ζ)A|2 Ψζ(z)Ψζ(z
′) .

Not surprisingly, if ζ = 0 (that is, for Dirichlet boundary conditions), this two-
point function structurally coincides with the one for scalar �elds with µ2 > 0
obtained in (3.47).

Case ζ ∈ [ζc, π)

For Robin boundary condition in the regime ζ ∈ [ζc, π), the spectrum of the
operator Lω̃ in (3.5) contains all ω̃ ∈ R and also two isolated eigenvalues
in C \ R. These eigenvalues are complex conjugate to each other and they
correspond to poles in the Green distribution associated with Lω̃. We denote
such eigenvalues by ω̃ζ and ω̃ζ so that Im[ω̃ζ ] > 0. We call them bound state
frequencies. Consequently, their corresponding eigensolutions are called bound
state mode solutions. An analytic expression for ω̃ζ cannot be found since, for
Im[ω̃ζ ] > 0 and �xed ζ, one needs to invert the equality (3.48) for ω̃ζ .
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3. Scalar �eld around a BTZ black hole

This operation can only be completed numerically (except in very particular
cases such as ζ = 0 and ζ = π/2. A representative example is shown in Fig. 3.1.

As a consequence of the presence of these bound state frequencies, the
resolution of the identity acquires an extra term, which, accordingly to the
procedure presented in Section 3.3.3, can be computed via Cauchy residue
theorem. One obtains

δ(z − z′)
J (z)

=

∫
R

dω̃

2πi
ω̃

(
AB − AB

)
C

|cos(ζ)B − sin(ζ)A|2 Ψζ(z)Ψζ(z
′)

+ Re
[
ω̃ CD(ω̃)Ψζ(z)Ψζ(z

′)
]∣∣
ω̃=ω̃ζ

, (3.52)

where we used the identity Ψζ(z)|ω̃=ω̃ζ
= Ψζ(z)|ω̃=ω̃ζ . The remaining term

D(ω̃ζ) cannot be expressed analytically, but it can be de�ned implicitly by
means of equation (3.44).

The bound state mode solutions will also contribute to the two-point func-
tion so that its antisymmetric part still obeys (3.28), so to guarantee that
the CCRs are satis�ed. The mode expanded two-point function, for each
ζ ∈ [ζc, π), is therefore

G+
ζ (x, x′) =

lim
ε→0+

∑
k∈Z

eik(φ̃−φ̃
′)
∫ ∞

0

dω̃

(2π)2
e−iω̃(t̃−t̃′−iε)

(
AB − AB

)
C

|cos(ζ)B − sin(ζ)A|2 Ψζ(z)Ψζ(z
′)

+ i
∑
k∈Z

eik(φ̃−φ̃
′)
(
e−iω̃ζ(t̃−t̃′) + e−iω̃ζ(t̃−t̃′)

)
Re
[
CD(ω̃)Ψζ(z)Ψζ(z

′)
]∣∣
ω̃=ω̃ζ

.

(3.53)

In the special case of ζ = ζc, the frequency of both bound states becomes
ω̃ = 0. One should interpret the integral over the positive ω̃-frequencies as the
Cauchy principal value for ω̃ = 0, and use the Sokhotsky-Plemelj formula for
distributions in order to account for bound state mode solutions.

3.4 Ground states and bound states

3.4.1 The Hadamard condition

One of the most important questions about G+ is if it represents a physically
reasonable state. To this end, one might want to look at the situation in �at
Minkowski spacetime. In this background, some examples of physically inter-
esting states include the Fock vacuum state, the corresponding multiparticle
states and states describing systems at thermal equilibrium. The main char-
acteristics shared by all these states is the short-distance behaviour, that is
they exhibit the same ultraviolet properties. As we will see, the Hadamard
condition requires that a two-point function describing a physical state ω on
some (curved) background must undergo the same high-energy behaviour of
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3.4. Ground states and bound states

the Poincaré vacuum [71], ensuring the presence of �nite quantum �uctuations
for all the observables. Moreover, it is deeply connected to the presence of
Hawking radiation [18].

In quantum �eld theory, the product Φ(x)Φ(x) or any other pointwise
product of �elds like Φ(x) among themseleves, which is the building block of the
Wick polynomial expansion for perturbative theory, might be ill-de�ned. The
usual procedure to overcome this problem, known as normal ordering, consists
in expanding the �eld into creation and annihilation operators and then to
rearrange them in such a way to preserve the commutation relations between
operators. This procedure usually leads to a well-de�ned object, denoted with
the symbol

: Φ(x)2 : .

If one considers the Minkowski vacuum state |0〉 for the scalar �eld, then the
normal ordered product can be written as

: Φ(x)2 := lim
x′→x

(Φ(x)Φ(x′)− 〈0|Φ(x)Φ(x′)|0〉 I) .

In order for this product to make sense over a physical state |ω〉, one needs
〈ω|Φ(x)Φ(x′)|ω〉 and 〈0|Φ(x)Φ(x′)|0〉, to have the same singularities.

Let (M, g) be a smooth, D dimensional, connected Lorentzian manifold
spacetime, Õ ⊂ M a geodesically convex open set and Ũp ⊂ TpM an open
set in which the exponential map exp : Ũp → Õ is well de�ned. For any pair
of points p and p′ in Õ, with coordinates x and x′ respectively, one can de�ne
the half squared geodesic distance σ(p, q), also called Synge world function as

σ(x, x′) :=
1

2
g(exp−1

x (x′), exp−1
x (x′)) , (3.54)

which is both smooth and symmetric in Õ × Õ. Let us now introduce the
function

σε(x, x
′) := σ(x, x′) + 2iε(T (x)− T (x′)) + ε2 , (3.55)

where ε > 0 while T is any, but �xed time function onM.
We say that a two-point function ω2 is of local Hadamard form, namely it

satis�es the Hadamard condition if, for every x ∈M there exists a geodesically
convex neighbourhood Õ such that the restriction of its integral kernel to Õ×Õ
reads [30]

ω2,ε(x, x
′) =β

(1)
D

U(x, x′)

σ
D/2−1
ε (x, x′)

+ β
(2)
D V (x, x′) ln

|σε(x, x′)|
λ2

+ w(x, x′) if D is even ,

ω2,ε(x, x
′) =β

(1)
D Θ(σε(x, x

′))
U(x, x′)

σ
D/2−1
ε (x, x′)

+ w(x, x′) if D is odd ,

(3.56)
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3. Scalar �eld around a BTZ black hole

where x, x′ are two arbitrary points in Õ, Θ is the Heaviside function, the
functions U and V are de�ned by recursive expansions [75] in powers of σ and
are completely determined by the metric g and by the equations of motion,
β

(i)
D are numerical coe�cients λ > 0 is an arbitrarily �xed length scale, while

w(x, x′) is a smooth function on Õ × Õ. The bidistributions

β
(1)
D

U(x, x′)1/2

σ
D/2−1
ε (x, x′)

+ β
(2)
D V (x, x′) ln

|σε(x, x′)|
λ2

if D is even ,

β
(1)
D Θ(σε(x, x

′))
∆(x, x′)1/2

σ
D/2−1
ε (x, x′)

if D is odd ,

(3.57)

are calledHadamard parametrices and they are bisolutions of theD-dimensional
Klein-Gordon equation up to smooth terms. States of local Hadamard form
are a special case of the global Hadamard form, which requires that there ex-
ist no spacelike singularities other to the lighlike shown in the local form [30].
States of global Hadamard form are often referred as Hadamard states and they
are usually characterized with advanced techniques of microlocal analysis [76].
Even though we are not going to introduce this topic in the present work, it is
important to mention that these techniques allowed to build speci�c examples
of Hadamard states, such as the Unruh state in Schwarzschild spacetime [77]
or the asymptotic vacuum and KMS states in certain classes of Friedmann-
Robertson-Walker spacetimes [78]. Eventually, all the ground states and the
thermal equilibrium states on ultrastatic spacetimes are Hadamard states and
consequently Hadamard states exist on any globally hyperbolic spacetime by
means of a spacetime deformation argument [79]. The local and the global def-
initions are equivalent for globally hyperbolic spacetime. This is not the case
of BTZ spacetime because of the presence of the timelike conformal bound-
ary. Nonetheless an abstract characterisation by Sahlmann and Verch [28,
Appendix A] proves that a ground state built out of positive frequencies is
always of local Hadamard form and it identi�es a Hadamard state in every
globally hyperbolic subregion of BTZ [29]. Bearing in mind these considera-
tions, it is possible to comment on the results obtained in Sections 3.3.4 and
3.3.5. In the following, will adopt the following de�nition of ground state, as
stated by Sahlmann and Verch [28, Appendix A]. Given the function

αt̃ : C∞0 (BTZ)→ C∞0 (BTZ) (3.58)

such that, for all f ∈ C∞0 (BTZ) and for all t ∈ R,

αtf(x) = f(α̃−t(x)) , (3.59)

where α̃−t(x) indicates the �ow of a point p ∈ BTZ with coordinates x built
out of the integral curves of a timelike Killing vector ξ of Eq. (2.11) and given
f̂(t) := 1√

2π

∫
e−iptf(p)dp, f ∈ C∞0 (R), a state ω : C∞0 (BTZ) → C is called a

ground state if R 3 t → ω(f ′αt(f)) is, for each g, h ∈ C∞0 (BTZ), a bounded

56



3.4. Ground states and bound states

function and if
∞∫

−∞

dt ω(g, αt(h))f̂(t) = 0

for all f ∈ C∞0 ((−∞, 0)).
As we have seen, the mode decomposition of G+ in (3.47) contains only pos-

itive ω̃-frequencies. Moreover its antisymmetric part satis�es (3.28). Hence,
comparing it to the previous de�nition, it is legitimate to call the state asso-
ciated with G+ the ground state for a real, massive scalar �eld in the BTZ
spacetime with µ2 > 0 and it is of Hadamard form in any globally hyperbolic
subregion of the exterior region of the black hole spacetime.
Regarding the two-point functions obtained in (3.51) and (3.53), a distinction
is needed. In the �rst case, we are dealing with a generalization of (3.47) to
Robin boundary conditions. Hence, (3.51) is a genuine ground state built only
out of positive ω̃-frequencies satisfying the local Hadamard condition in the
exterior region of the black hole spacetime. The same can not be stated for
(3.53), where an additional contribution related to the presence of bound state
frequencies ω̃ζ in the spectrum spoils the property of G+

ζ being a ground state.
In Chapter 4, we will focus our attention on the interplay between local

Hadamard states just obtained and the thermal properties of �elds in a neigh-
bourhood of the BTZ Killing horizon.

3.4.2 Bound states

As we have seen, the resolution of the identity and the construction of a mode
expanded two-point function take di�erent form depending on the presence
of bound state frequencies ω̃ζ ∈ BS+

ζ . To each bound state frequency is then
associated a bound state mode solution, that is an exponentially decaying
solution in t̃, such as

Φ ∝ eiω̃ζ t̃

for Im ω̃ζ < 0. Bound state frequencies are complex frequencies of Eq. (3.5)
and they occur in the range value −1 < µ2 < 0 for a speci�c regime of Robin
boundary conditions. Essentially, they start to appear in fact at the critical
value ζc ∈ (π

2
, π) in (3.49), while on the contrary no bound states occur in the

regime ζ ∈ [0, ζc). A plot of the dependence of the bound state frequency ωζ
as a function of ζ can be found in Fig. 3.1 for some test values of the system
parameters.
In principle, bound state frequencies can be found by looking for isolated roots
of Nω̃,ζ = 0, i.e. by reversing the formula

sin(ζ)
Γ(c− a− b)

Γ(c− a)Γ(c− b) = cos(ζ)
Γ(a+ b− c)

Γ(a)Γ(b)
, (3.60)

where a, b and c are as in (3.10) and ζ ∈ [0, π). Unfortunately this equation
can be solved analytically only for the Dirichlet (+) and Neumann (−) case,
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Figure 3.1: Real and imaginary part of the bound state frequency ωζ as a
function of ζ for a sample BTZ black hole with ` = 1, r+ = 5 and r− = 3 and
a scalar �eld with µ2 = −0.65 and k = 1. The bound state mode solutions
occurr for values of ζ between ζc ≈ 0.5625π and π.

for which one gets

ωζ =
κ

`
− i(r+ − r−)

`2
(3±

√
1 + µ2) ,

while all the other cases must be studied numerically [43].
The presence of such complex frequencies for −1 < µ2 < 0 implies that the

bare Fourier reconstruction of the two-point function G+ does not represent
the full solution to the equation when ζ ∈ [ζc, π). A general solution for this
class of boundary conditions must include bound state mode solutions, along
the usual propagating modes, see (3.53).

As already stated, the presence of bound state mode solutions directly
spoils the property of G+ being a ground state for the system. Nonetheless
the physical reason for their appearance is still unclear. In [43] it was observed
that their presence is coupled to the presence of superradiant modes, extract-
ing energy from the black hole, with a non vanishing energy �ux through the

58



3.4. Ground states and bound states

horizon towards the exterior region. More interestingly, it was observed that
only a subset of all modes growing up exponentially in time are superradi-
ant, a feature possibly related to the bulk instability of the underlying AdS
background itself [43].
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Chapter 4

Thermal e�ects and tunnelling

processes in 2 + 1 dimensions

This chapter is devoted to analyzing the local thermal behaviour of the two-
point correlation functions for the massive scalar �eld (3.2) in a neighbor-
hood of the bifurcate Killing horizon of the BTZ spacetime introduced in
Section 2.3.3, wondering if they can be related to some tunnelling processes
through the horizon. The results are obtained by generalizing to 2 + 1 dimen-
sions the approach proposed in [48], which adopts the local point of view �rst
proposed by Parikh and Wilczeck in [47]. The work of Parikh and Wilczeck
has its roots in the founding paper of Stephen Hawking [14], which describes
a thermal radiation detected at future null in�nity of a collapsing black hole
spacetime, but focuses instead on the local properties of the spacetime mod-
els. This local approach also relates the radiation to thermal e�ects, which
seem to emerge as a result of a tunnelling process through the horizon. If one
performs a WKB approximation, it is in fact possible to relate the tunnelling
probability through the horizon to the characteristic Boltzmann thermal form
e−ETH , where E describes the amount of energy coming out of the black hole
horizon and TH the so-called Hawking temperature. In recent years, this strat-
egy, which involves a limit towards the horizon for an endpoint of the path of
the classical particle of the �eld, has been applied to various scenarios, BTZ
included [80], and some interesting results have been found also considering
the backreaction on the event horizon [81, 82]. Rather than relying on a semi-
classical framework, the approach proposed by Moretti and Pinamonti in [48]
adopts the point of view of quantum �eld theory in curved spacetime and anal-
yses the local behaviour of Hadamard states in a neighborhood smeared to the
horizon of a 3 + 1 dimensional spacetime. The limiting procedure, which shall
be regarded as a limit towards the horizon, is particularly �exible, and can be
adapted also to settings in which the horizon exists just locally and therefore
momentarily. Moreover it seems particularly �t to be used in our scenario,
since it focuses directly on the behaviour of the two-point correlation function
ω2 associated to a quantum state ω satisfying the local Hadamard condition.

In the following, see Section 4.1, we will extend the work of Pinamonti and
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4. Thermal e�ects and tunnelling processes in 2 + 1 dimensions

Moretti to a 2+1 dimensional spacetime. In Section 4.1.1 the basic setting and
some notations are presented. Section 4.1.2 we analyse the limiting behaviour
of the two-point correlation function of a Hadamard state in a neighborhood of
a bifurcate horizon. In Section 4.1.3 we show that the two-point function ac-
tually exhibits a thermal behaviour exactly at the Hawking temperature and
that this thermal behaviour might be associated to some tunnelling process
through the horizon. In the second part of the chapter, see Section 4.2, the
results are applied to the speci�c case of the BTZ spacetime, by taking ad-
vantage of some results outlined in Chapter 3. In particular we will prove the
existence of a thermal Hadamard state in the considered neighborhood of the
bifurcate horizon and we will show its two-point function in the exterior region
of the spacetime.

4.1 Thermal e�ects near a bifurcate horizon

In the following, tunnelling processes are studied for any 2 + 1 dimensional
spacetime equipped with a (local) bifurcate Killing horizon.

4.1.1 Basic setting in 2 + 1 dimensions

Let us consider a smooth, three dimensional, connected Lorentzian manifold
(M, g), assuming that there exists an open subset O ⊂M such that

(i) there exists ξ ∈ Γ(TO) for which Lξg = 0,

(ii) the orbits of ξ in O are di�eomorphic to an open interval in R,

(iii) there exists a two dimensional, connected submanifold H ⊂ O, called
local Killing horizon, invariant under the action of the group of local
isometries generated by ξ,

(iv) ξ is lightlike on H and the intersection between H and the integral curves
of ξ identi�es a smooth 2-dimensional submanifold of H,

(v) κ, the surface gravity of H is a non vanishing, positive constant.

All these hypotheses comprise the case of a manifold (M, g) endowed with
a Killing �eld ξ generating a (even local) bifurcate Killing horizon. In this case
ξ is expected to vanish on a one-dimensional acausal submanifold B and to be
lightlike on two ξ-invariant null submanifolds, H+ and H−. This is indeed the
case of BTZ spacetime, see Chapter 2, where B = H+ ∩H− is the bifurcation
surface de�ned in Section 2.3.3, while H = H+ ∪ H− is the bifurcate Killing
horizon.

As a matter of fact, any neighbourhood O ⊂ M of a point p ∈ H± with
O ∩ B = ∅, satis�es the geometric hypotheses and, whenever we consider O
ful�lling the hypotheses (i-v), it is possible to deform smoothly (M, g) so for
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4.1. Thermal e�ects near a bifurcate horizon

a bifurcate Killing horizon to exist. Therefore, it is not restrictive to focus the
analysis to these types of neighbourhoods, expecially since our interest is to
evaluate only quantities de�ned in O.

Using the structural properties of a Killing horizon [30, 83] it is possible to
identify per restriction in O a coordinate patch (V, U, x3), where

� U denotes an a�ne parameter along the null integral lines of ξ with origin
�xed at B,

� V is the a�ne parameter, with origin at B, of the integral curves of the
future-pointing lightlike vector �eld1 nH+ of H+,

� x3 denotes any, but �xed coordinate de�ned on an open neighbourhood
of a point lying in B.

The vector �eld ξ can be exprssed in terms of the local chart (U, V, x3) as

ξ = ξ1 ∂

∂V
+ ξ2 ∂

∂U
+ ξ3 ∂

∂x3
. (4.1)

If there exists a subset O′ ⊂ O with compact closure in O, for any point
p ∈ O′ one has that2 ξ1(p) = −κV + V 2R1(p), ξ2(p) = κU + V 2R2(p), ξ3(p) =
V R3(p), where R1, R2, R3 are bounded smooth functions on O′ and κ is the
surface gravity. In this subset, the line element of the metric g, restricted to a
neighbourhood of H+, reads

g�H+ = −1

2
dU ⊗ dV − 1

2
dV ⊗ dU + h(x3)dx3 ⊗ dx3 , (4.2)

where h is a strictly positive function depending only on x3.
The leading order in V of g(ξ, ξ) in a neighbourhood ofH+ can be evaluated

by combining together Eq. (4.1) and Eq. (4.2). One obtains

g�H+(ξ, ξ) = κ2UV +O(V 2) .

For now on we assume that U is of positive sign in O. Taking O small
enough we can split it as the union of three disjoint regions O = Os ∪O0 ∪Ot
where

O0 := O ∩H+

Os := {p ∈ O | V (p) < 0}
Ot := {p ∈ O | V (p) > 0}

(4.3)

In the region Os, which can be referred as the interior region of O the vector
�eld ξ is spacelike. Conversely, ξ is timelike in Ot, which can be referred as the

1This vector �eld is built as the parallel transport of n, the unique, future pointing,
lightlike vector at B such that g(n,− ∂

∂U ) = − 1
2 .

2This proposition is a straightforward generalization of [48, Prop. 2.1].
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exterior region of O. Equation (4.2) makes possible to study the properties
of the geodesic distance in O′. The following results are generalization of [48,
Prop. 2.1] to the 2 + 1 dimensional case. The proof follows exactly as in [48],
simply removing the coordinate x4 and the label i = 4 from the text.
Let p ∈ O be a point of coordinates (U, V, x3), such that p ∈ H+ if and only if
V = 0. Then the following statements hold true.

1. Let Õ ⊂ O′ be any geodesically convex neighbourhood of H+ and let
p, q ∈ H+ ∩ Õ. The squared geodesic distance between these points is

σ(x(p), x(q)) ≡ `(x3(p), x3(q)) :=

 x3(q)∫
x3(p)

dλ f(λ)


2

, (4.4)

where x(p) (respectively x(q)) indicates the representation of the point p
(respectively of the point q) in terms of the coordinates (U, V, x3). More-
over, x3(p) and x3(q) are respectively the evaluation of the points p and
q along the coordinate x3, while f 2 = h, where h is the function in
Eq. (4.2).

2. Let now p ∈ Õ, where Õ ⊂ O′ is like in 1. and, for any �xed, admissible
value of the coordinates U ′, V ′, we de�ne SU ′,V ′ as the collection of points
q lying in the cross section of Õ with V ′ and U ′ constant. For δ > 0, we
further de�ne the set of points

Gδ(p, V
′, U ′) = {q ∈ SU ′,V ′ | `(x3(p), x3(q)) < δ2} , (4.5)

where the distance ` is as in (4.4). Then δ can be chosen so that the
smooth map

Gδ(p, V
′, U ′) 3 q 7→ σ(x(p), x(q))

has minimum in a unique point q(p, V ′, U ′).
As a consequence of (4.4), x3(q) = x3(p) if p ∈ H+ ∩ Õ, although in
general, there exist three bounded functions Fi, i = 1, 2, 3, depending
smoothly on x(p), U ′, V ′ such that

σ(x(p), x(q)) = `(x3(p), x3(q))− (U − U ′)(V − V ′) +R(x(p), V, V ′, U ′)

(4.6)

where R(x(p), U ′, V ′) = F1V
2 + F2V

′2 + F3V V
′.

Hadamard states

Bearing in mind the quantisation scheme presented in Chapter 3, we focus our
attention on evaluating only quantities de�ned in geodesically convex neigh-
bourhoods of points on the Killing horizon. For any globally hyperbolic subre-
gion Õ it is indeed possible to de�ne a local algebra of observables. Nonetheless
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4.1. Thermal e�ects near a bifurcate horizon

we recall that the assignment of an algebraic state is not su�cient to identify
physically meaningful states. This statement is tantamount to saying that a
two-point function associated to a state is physically meaningful if and only if
some extra constraints on its singular structure are met. In Section 3.4.1, we
already identi�ed these constraints by introducing the Hadamard condition,
which re�ects a particular short distance behaviour of the two-point correla-
tion function. In the following we specialise the local de�nition of Hadamard
states presented in (3.56) for the 2 + 1 dimensional case. Notice that this set-
ting applies for any smooth, 2 + 1 dimensional connected Lorentzian manifold,
even though in the end we aim to analyse the case of a BTZ spacetime.

Let (M, g) be a 2 + 1 dimensional spacetime as in Section 4.1.1, Õ ⊂
M a geodesically convex open set and Ũp ⊂ TpM an open set in which the
exponential map exp : Ũp → Õ is well de�ned. For any pair of points p and p′

in Õ, with coordinates x and x′ respectively, let σ(x, x′) be the Synge world
function de�ned in 3.54, and σε(x, x′) the function in 3.55.

A two-point function ω2 is then of local Hadamard form (see Section 3.4.1,
if, for every x ∈ M there exists a geodesically convex neighbourhood Õ such
that the restriction of its integral kernel to Õ × Õ reads

ω2,ε(x, x
′) =

∆(x, x′)1/2

4π
√
σε(x, x′)

+ w(x, x′) , (4.7)

where x, x′ are two arbitrary points in Õ, ∆ ∈ C∞(Õ × Õ) is the Van Vleck-
Morette determinant

∆(x, x′) :=
det(∇α∇β′σ(x, x′))√
| det g(x)|| det g(x′)|

,

while w(x, x′) is a smooth function on Õ × Õ. Therefore the Hadamard
parametrix

hε :=
∆(x, x′)1/2

4π
√
σε(x, x′)

is a bisolution of the Klein-Gordon equation (3.2) up to smooth terms.

4.1.2 Limiting behaviour of the two-point correlation func-

tions

In between the class of admissible correlation functions, we will be focusing our
attention on those of local Hadamard form (4.7). Recall that we are considering
a convex geodesic neighbourhood Õ with non vanishing intersection with the
Killing horizon H+.

Let us now extend the approach of [48] to the 2 + 1 dimensional case3. For
that, we consider two one-parameter families of test functions fλ, f ′λ ∈ C∞(Õ),

3These results have been extensively presented in [2].
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λ ∈ R such that both obey to the constraints

fλ(V, U, x3) =
1

λ
f

(
V

λ
, U, x3

)
and f =

∂F

∂V
, with F ∈ C∞0 (Õ). (4.8)

As anticipated, we are going to evaluate the limit behaviour of the two-point
correlation function ω2 in a sharp localized region near the horizon. The aim
is to obtain the leading order of the expansion of ω2 in terms of the spacetime
coordinates, in order to study the tunnelling processes and the e�ects due to
the presence of the Killing horizon. To this end, we take into account (4.7)
and we evaluate the limit

lim
λ→0+

ω2(fλ, f
′
λ) =

lim
λ→0+

lim
ε→0+

∫
Õ×Õ

(
∆(x, x′)1/2

4π
√
σε(x, x′)

+ w(x, x′)

)
fλ(x)f ′λ(x

′)dµg(x)dµg(x
′) , (4.9)

where dµg =
√
h(x3)dx3dUdV is the volume form on Õ induced by the metric

(4.2).
In Eq. (4.9), only the contribution of the singular part of the two-point

correlation function, the one corresponding to the Hadamard parametrix hε is
relevant. In fact, due to the constraints (4.8), and being w smooth, the integral
of the second term with respect to the coordinates V or V ′ vanishes. In order
to evaluate the limit of the �rst term, we introduce an auxiliary cut-o� as
follows. Let δ > 0 and let Gδ(p, V

′, U ′) be the set de�ned in (4.5). We de�ne
a smooth and compactly supported function

Gδ(p, V
′, U ′) 3 p′ 7→ χδ(x, x

′) ≥ 0 ,

where x = (V, U, x3) indicates the coordinates of p, while x′ = (V ′, U ′, x′3)
those of p′, with constraint

χδ(x, x
′) = 1, for 0 ≤

√
`(x3(p), x3(p′)) ≤ δ

2
+

1

2

√
`(x3(p), x3(q))

Here q refers to the unique point q(p, V ′, U ′) ∈ Õ, minimizing the function
Gδ(p, V

′, U ′) 3 p′ 7→ σ(x, x′), that is the unique4 point where the function
has vanishing gradient with respect to the coordinates of p′. Hence, for any
p, p′ ∈ Õ with coordinates x, x′ respectively, we rewrite the contribution to the
two-point correlation function coming from the singular part of (4.7) as∫

Õ×Õ
dµg(x)dµg(x

′)
∆(x, x′)

1
2fλ(x)f ′λ(x

′)

4π
√
σε(x, x′)

χδ(x, x
′) + (4.10a)∫

Õ×Õ
dµg(x)dµg(x

′)
∆(x, x′)

1
2fλ(x)f ′λ(x

′)

4π
√
σε(x, x′)

(1− χδ(x, x′)) . (4.10b)

We are going now to evaluate separately the limits of the above two terms as
λ and ε tend to 0+.

4Uniqueness can be proven by taking the Taylor expansion of the gradient of σ(x, x′) and
by exploiting the Banach �x point theorem. More details can be found in [48].
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Evaluation of (4.10b) By shrinking if necessary Õ, one �nds out that the
integrand is jointly smooth in all variables, including the case ε = 0 and
therefore is nowhere singular. This allows us to apply the Lesbegue dominated
convergence theorem, so to exchange the order of both limits with the integrals.
By taking the limits �rst, one obtains an integrand, which is the derivative with
respect to V and V ′ of a compactly supported smooth function. Integration
by parts makes the overall integral vanish.

Evaluation of (4.10a) The evaluation of the �rst integral is more compli-
cated, since it involves the presence of a singularity due to

√
σε(p, p′) in the

limit ε → 0+. In order to deal with it, for every p ∈ Õ we identify a smooth
function

ρ : Gδ(p, V
′, U ′)→ [0,∞)

such that √
σ(x, x′) =

√
ρ(x′)2 + σ(x, x(q)), . (4.11)

where Gδ(p, V
′, U ′) is the set de�ned in (4.5) while q is again the point where,

for �xed p, the function σ attains its unique minimum. Moreover, in each
Gδ(p, V

′, U ′) we change coordinates from (U ′, V ′, x′3) to (U ′, V ′, ρ). This change
allows us to use (4.11) and to exploit the Taylor expansion (4.6), so that (4.10a)
reduces to∫

Õ×Õ
dµg(x)dµg(x

′)
∆(x, x′)

1
2

4π

× χδ(x, x
′)fλ(x)f ′λ(x

′)√
ρ2 + `(x3, x′3)− (U − U ′ − iε)(V − V ′ − iε) +R(x, V ′, U ′)

, (4.12)

where `(x3, x
′
3) is the squared geodesic distance de�ned in Eq. (4.4). We ob-

serve now that the denominator of (4.12) is indeed the derivative with respect
to ρ of

Ξ(ρ, V, V ′, R) =

ln
((
ρ2 + `(x3(p), x3(q))− (U − U ′ − iε)(V − V ′ − iε) +R(x, V ′, U ′)

) 1
2 + ρ

)
.

In order to write the integral (4.12) in a simpler form, we rescale (V, V ′) to
(λV, λV ′). Labelling ∆λ, Rλ, dµgλ the quantities transformed accordingly and
considering the original hypothesis (4.8) according to which f = ∂V F , f ′ =
∂V ′F

′, we get∫
Õλ×Õλ

dµgλ(x)dµgλ(x′)
∆λ(x, x

′)
1
2

4π

× χδ(x, x′) ∂V F (x) ∂V ′F
′(x′) ∂ρΞ (ρ, λV, λV ′, Rλ) .

Since the domain of de�nition of the function ρ is [0, ρ0), we can integrate
by parts in this variable. The result is that, of the ensuing boundary terms
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4. Thermal e�ects and tunnelling processes in 2 + 1 dimensions

associated with the contribution ∂ρΞ, the one due to ρ0 vanishes because F ′ is
compactly supported, while the one due to ρ = 0 yields, up to a rescaling of ε
as λε

−
∫
Õλ×Õλ

dµgλ(x)dU ′dV ′
√
| det g|

∣∣∣
ρ=0

∆λ(x, x
′)

1
2

4π

,×∂V F (x) ∂V ′F
′(x′)|ρ=0

(
Ξ

(
0, V, V ′,

Rλ

λ

)
+ lnλ

)
, (4.13)

where we have now written the volume form as dµg(x
′) =

√
| det g|dρ dU ′dV ′

and we have implicitly used that, when ρ = 0, `(x3, x
′
3) = 0.

Our goal is now to take both the limits of (4.13) as λ and ε tend to 0+. To
this end is worth noticing that the diverging term lnλ, gives no actual contri-
bution to the integral. Again we stress that F is both smooth and compactly
supported, therefore one can integrate by parts in V and the boundary terms
vanish.

The remaining term in (4.13) can be evaluated as follows. Firstly, we notice

that, because of the presence of the derivative of ∆
1
2
λ , the remaining integral

is proportional to λ lnλ. Secondly, in view of Eq. (4.6), being R quadratic in
V and V ′, there exists a constant C ∈ R such that |λ−1Rλ| < Cλ in the limit
λ→ 0+. Thirdly, by direct inspection of (4.2) one can see that, when either x
or x′ tend to the horizon as λ→ 0+,

√
| det gλ| → 1

2
while

dµg(x) =
dUdV

2
dµ(x3) where dµ(x3) =

√
h(x3)dx3 .

Finally we observe that from a distributional point of view, if z = w+ iy, then

lim
y→0+

ln(z) = ln |w|+ iπ(1−Θ(w)) ,

where Θ is the Heaviside function.

As a result of the evaluations, the remaining contribution from (4.13) in
the limit ε→ 0+, and also of (4.10) reads exactly as in the 3 + 1 dimensional
case [48]

− 1

32π
lim
ε→0+

∫
Õ×Õ

∂V F (x)∂V ′F
′(x′)

× ln(−(U − U ′)(V − V ′ − iε))dU ′dV ′dUdV dµ(x3) , (4.14)

where we used that ∆0 = 1 when x3 = x′3 and V = V ′ = 0.
The new form 4.14 of Eq. (4.9) in the form 4.14 is particularly useful

to investigate local behaviour of the two-point function in a sharpely localized
neighbourhood of the horizon. More speci�cally, it is the proper tool to analyse
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4.1. Thermal e�ects near a bifurcate horizon

the energy spectrum, as seen by an observer moving along the curves generated
by ξ with respect to the associated Killing time5 τ .

4.1.3 Thermal spectrum and tunnelling processes

In the previous section we have established the form (4.14) for the two-point
correlation function of a real, massive scalar �eld in 2+1 dimensions. What we
aim at now, is to compute the energy spectrum of (4.14) as seen by an observer
moving along the integral curves of ξ. To this end, we are going to repeat the
analysis of [48]. For the sake of clarity we summarize the most relevant point
of the procedure. Let us consider two test functions which are squeezed on
the Killing horizon as in (4.8). This is tantamount to focusing on the leading
behaviour of (4.14) as V is close to 0. By direct inspection of (4.1), if τ is
the a�ne parameter of the integral curves of ξ, then one can approximate the
coordinate V as

V ≈ −e−κτ for V < 0, V ≈ e−κτ for V > 0 . (4.15)

Therefore two cases are relevant when analysing ω2(x, x′): the �rst case consists
in both points x, x′ lying in the exterior region Ot, as de�ned in (4.3), the
second one consists of one point lying in Ot while the second lies in Os, the
interior region.

Case 1) Let us consider two 1-parameter families of test functions fλ and f ′λ
obeying the constraints (4.8) and let us replace Õ with Ot. Eq. (4.14) can
therefore be integrated by parts both in V and in V ′. Since the support of
both F and F ′ is compact, no boundary term gives contribution to the result.
Eventually, replacing V with (4.15) in the limit of sharp localization near the
horizon, we obtain

lim
λ→0

ω2(Φ(fλ)Φ(f ′λ)) = lim
ε→0+

−κ2

128π

∫
R4×B

dτdUdτ ′dU ′dx3
F (τ, U, x3)F ′(τ ′, U ′, x3)

(sinh
(
κ
2
(τ − τ ′)

)
+ iε)2

,

where we can extend6 the domain of integration for the variables τ, τ ′, U, U ′ to
the whole real axis, while B indicates a one-dimensional, connected, domain of
integration, di�eomorphic to the bifurcation surface. The last expression can
be rewritten in Fourier space with respect to τ and τ ′ as

lim
λ→0

ω2(Φ(fλ)Φ(f ′λ)) =
1

64

∫
R2×B

dUdU ′dx3

 ∞∫
−∞

dEE
F̂ (E,U, x3)F̂ ′(E,U ′, x3)

1− e−βHE

 ,

where βH = 2π
κ

while F̂ and F̂ ′ indicate the Fourier transform of F and F ′

respectively, where f = ∂V F , f ′ = ∂V ′F
′. A possible physical interpretation

5In the case of the BTZ spacetime, the Killing time associated to ξ has already been
introduced in Chapter 2.

6This is again possible because the support of both F and F ′ is compact.
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4. Thermal e�ects and tunnelling processes in 2 + 1 dimensions

of this result is that, whenever a state for a real, massive Klein Gordon �eld is
such that its two-point function is of Hadamard form in a geodesically convex
neighbourhood of a point of a Killing horizon, then the mode expanded two-
point correlation function, built with respect to the coordinate (4.15), obeys a
thermal distribution at the Hawking temperature β−1

H in the region external to
the horizon.

Case 2) Once more, let us consider two 1-parameter families of test functions
fλ and f ′λ obeying (4.8), with Õ replaced by Ot for f ′λ and by Os for fλ.
Following the same calculations as in Case 1), the result is unchanged except
for the hyperbolic sine being replaced by a hyperbolic cosine. Rewriting the
result with respect to the variables τ and τ ′ in the Fourier space, returns

lim
λ→0

ω2(Φ(fλ)Φ(f ′λ)) =
1

32

∫
R2×B

dUdU ′dx3

 ∞∫
−∞

dEE
F̂ (E,U, x3)F̂ ′(E,U ′, x3)

sinh(βHE/2)

 ,

(4.16)
where βH = 2π

κ
and F̂ and F̂ ′ indicate the Fourier transform of F and F ′,

respectively. This time, the support of the test functions and therefore the
support of the observables is located once in the interior and once the exterior
region with respect to the Killing horizon, it is possible to interpret the squared
modulus

|ω2(fλ, f
′
λ)|2

as a tunnelling probability through the horizon. If one considers wave packets
peaked around E0 � 1, it is worth noticing that Eq. (4.16) yields

lim
λ→0
|ω2(Φ(fλ),Φ

′(f ′λ))|2 ≈ E2
0e
−βHE0 ,

which is the original result provided by Parikh and Wilczek [47].

These results, therefore, suggest that the thermal behaviour of the two-
point correlation function in the proximity of a Killing horizon is somehow
connected to a non zero tunnelling probability through the horizon itself. One
might wonder whether this phenomenon is related, in the speci�c case of a
black hole spacetime equipped with a global Killing horizon, to the Hawking
radiation, at least in the local formulation proposed by Parikh and Wilczek.
As a matter of fact, in order for the underlying geometry to possess such
property, one must consider only solutions to the Einstein �eld equation with
negative cosmological constant, that is asymptotically AdS spacetimes. The
prime example is therefore the BTZ spacetime, which, as we said, is not glob-
ally hyperbolic due to the presence of a timelike, conformal boundary (see
Chapter 2).
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4.2. Thermal e�ects near a BTZ black hole and Hawking radiation

4.2 Thermal e�ects near a BTZ black hole and

Hawking radiation

Our goal now is to understand whether and under which circumstances the
results of the previous section are applicable to the speci�c case of a BTZ
spacetime. In particular we would like to �nd out if the leading behaviour of
the ground state two-point function exhibits a thermal behaviour in a neigh-
bourhood squeezed to the horizon and if it is possible to interpret it as a local
version of the Hawking radiation.

The analysis performed in the previous section rests on two main hypothe-
ses. The �rst one is the presence of a (local) Killing horizon H+, the second
one being the existence of a state for a real, massive scalar �eld satisfying the
Hadamard property in a geodesic neighbourhood of a point at H+.

While the �rst requirement seems to make black hole spacetimes particu-
larly �t structures to be considered, the second one is directly connected to
the underlying quantum theory and needs to be carefully addressed. The con-
struction of Hadamard states, for example, is an established topic when the
underlying manifold is globally hyperbolic [79]. Renown examples are the Un-
ruh [77, 84] and the Hartle-Hawking states [85, 86] for the Klein-Gordon �eld
in the four-dimensional Schwarzschild spacetime.

In 2 + 1 dimensions, the situation is more convoluted since the arising
BTZ black hole solution presented in Chapter 2 does possess a global Killing
horizon but is not globally hyperbolic, as one can easily infer by the presence
a timelike, conformal boundary.

Therefore it is not possible to invoke a general result and conclude that,
for a real, massive scalar �eld, a state satisfying the Hadamard condition in a
neighbourhood of the horizon exists. The existence of such a state is nonethe-
less granted by some speci�c conditions, as presented in the next section.

4.2.1 KMS state for a massive scalar �eld

We consider now a (rotating) BTZ black hole (2.8) and the real, massive scalar
�eld Φ : BTZ → R introduced in (3.2). Because the spacetime is not glob-
ally hyperbolic, solutions of the Klein-Gordon equation must be constructed
not only by assigning initial data on a two-dimensional, smooth, spacelike hy-
persurface, but also imposing suitable boundary conditions as r → ∞. We
identi�ed in Chapter 3 a large class of non-dynamical boundary conditions
guaranteeing that the �eld energy �ux vanishes at the conformal boundary is
the one of Robin type introduced in Section 3.2.5. This result has been studied
focusing on the stationary region r > r+, that corresponds to the outer region
coordinate patch introduced in Section 2.2.

Consequently, the space of classical solutions of the equation of motion
has been used to construct, whenever possible and for each admissible Robin
boundary condition, the two-point function of the associated ground state.
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4. Thermal e�ects and tunnelling processes in 2 + 1 dimensions

Notice that, even though BTZ is not globally hyperbolic, it is possible to
construct the algebra of observables adopting the same approach used for the
counterpart of a real, massive scalar �eld in the Poincaré patch of a (d +
1)−dimensional AdS spacetime [73].

The ground state constructed in Chapter 3 corresponds to two separate
ranges of the �eld parameter µ2 := m2

`2
− 6ξ.

1. If µ2 ≥ 0, the solutions of (3.2) possess only one admissible asymptotic
behaviour at the conformal boundary and there is no need to impose
any boundary condition at z = 1, corresponding to r → ∞. In this
case the two point function reads as in equation (3.47), which contains
only positive ω̃-frequencies. Therefore it is legitimate to call the state
associated with it a ground state for the scalar �eld.

2. If −1 < µ2 < 0, there exists a one-parameter family of admissible bound-
ary conditions which can be assigned at z = 1. These are conditions of
Robin type as in (3.25). The class of Robin boundary conditions is ruled
by a parameter ζ ∈ [0, π). By looking at the distribution of ω̃-frequencies
composing the two point function, it turns out that there exists a value
ζ∗ ∈ (0, π

2
) such that, whenever ζ ∈ [0, ζ∗), the two-point function reads

as in Eq. (3.51). This is the only case for which the two-point function
is built out of positive ω̃-frequencies and can be referred as a ground
state for the scalar �eld. On the contrary, in the range ζ ∈ [ζ∗, π), the
spectrum exhibits non real bound state frequencies and this spoils the
property of the two-point function (3.53) of being a ground state.

As previously pointed out (see Section 3.3), since (3.47) and (3.51) identify
ground states, they are all of Hadamard form as proven in full generality
in [28]. Our goal now is to build, for both (3.47) and (3.51), an associated
thermal equilibrium state, satisfying the KMS condition. Firstly introduced
by Kubo [45], Martin and Schwinger [87], as a class of boundary conditions for
thermodinamic Green functions, the KMS condition has then been reproposed
in the context of algebraic quantum �eld theory by Haag, Hugenholtz and
Winnink [46] as a condition over test functions to identify quantum states at
thermal equilibrium.

Following the standard procedure of [46] we reintroduce the function de-
�ned in (3.58) and (3.59)

αt̃ : C∞0 (BTZ)→ C∞0 (BTZ)

such that, for all f ∈ C∞0 (BTZ) and for all t̃ ∈ R,

αt̃f(x) = f(α̃−t̃(x)) ,

where α̃−t̃(x) indicates the �ow of a point p ∈ BTZ with coordinates x built
out of the integral curves of the timelike Killing vector ξ of Eq. (2.11).
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Therefore, we say that a two-point correlation function ω2,β ∈ D′(BTZ ×
BTZ) satis�es the KMS condition at inverse temperature β > 0 with respect
to αt̃ if, for every f, f

′ ∈ C∞0 (BTZ), the following relation holds∫
R

dt̃ ω2,β(f, αt̃(f
′))e−iω̃t̃ =

∫
R

dt̃ ω2,β(αt̃(f), f ′)e−iω̃(t̃+iβ). (4.17)

We already proved the existence of a ground state in the exterior region
OBTZt built out of the positive frequencies ω̃. This is given by (3.47) and (3.51),
for µ2 ≥ 0 and −1 < µ2 < 0, respectively. The construction of a two-point
correlation function obeying (4.17) goes as follows.

If µ2 ≥ 0, the integral kernel reads

ω2,β(x, x′) = lim
ε→0+

∑
k∈Z

eik(φ̃−φ̃
′)
∫ ∞

0

dω̃

(2π)2

(
A

B
− A

B

)
C

[
e−iω̃(t̃−t̃′−iε) eβω̃

eβω̃ − 1
+ eiω̃(t̃−t̃′+iε) e−βω̃

1− e−βω̃
]
Ψ1(z)Ψ1(z′), . (4.18)

while, if −1 < µ2 < 0 and if ζ ∈ [0, ζ∗],

ωζ2,β(x, x′) = lim
ε→0+

∑
k∈Z

eik(φ̃−φ̃
′)
∫ ∞

0

dω̃

(2π)2

(
AB − AB

)
C

|cos(ζ)B − sin(ζ)A|2[
e−iω̃(t̃−t̃′−iε) eβω̃

eβω̃ − 1
+ eiω̃(t̃−t̃′+iε) e−βω̃

1− e−βω̃
]
Ψζ(z)Ψζ(z

′) . (4.19)

It is worth pointing out that, for all β > 0, both (4.18) and (4.19) identify
two-point correlation functions satisfying the Hadamard condition. This can be
inferred by a straightforward application of the results of [28]. In alternative,
one could observe by direct inspection that the di�erence between ω2,β and
(3.47), as well as the di�erence between ωζ2,β and (3.51), are smooth functions.

Lastly, we wonder whether there exists a speci�c value of the inverse tem-
perature β for which both (4.18) and (4.19) are the restriction to the external
region of the BTZ black hole of the two-point correlation function of a state,
which is Hadamard also in a neighbourhood of the outer horizon.

A solution to this problem has been already pointed out by the construction
of the BTZ spacetime as described in [49, Ch. 12]. First of all let us remember
that BTZ is realized form CAdS3 (see Chapter 2), the universal cover of AdS3

via the identi�cations presented in Section 2.2. As a consequence, starting
from the integral kernel of any two-point function in CAdS3, one can build a
counterpart on BTZ by means of the method of images, which implements the
periodic identi�cation built in the relevant coordinate patches. Notice that
both AdS3 and its universal cover CAdS3 are maximally symmetric solutions
of the Einstein equations with a negative cosmological constant. In such con-
text, it has been shown [88] that one can construct the two-point correlation
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function associated to the ground state of the Klein-Gordon �eld coupled to
the scalar curvature, for a large class of Robin boundary condition and, most
notably, all these two-point functions are locally of Hadamard form thanks to
the analysis in [28]. Since the two-point function of the ground state is also
maximally symmetric, independently from the speci�c Robin boundary con-
dition, its integral kernel depends on the spacetime points x, x′ only via the
AdS3 geodesic distance σAdS3(x, x

′) [89]. Moreover, one sees7 that the result-
ing two-point function is periodic with respect to the time variable t̃ under the
shift iβH , where the constant

βH =
2πr+

r2
+ − r2

−

is proportional to the inverse Hawking temperature

TH =
κ

2π
=
r2

+ − r2
−

r+

of the BTZ black hole8. The periodicity is obtained solely as a consequence of
the explicit form of σAdS3(x, x

′) and thus it can be applied also to any two-point
correlation function depending on the spacetime points only via the geodesic
distance9. As a consequence, the restrictions of these two-point correlation
functions to the external region z ∈ (0, 1) (or equivalently r > r+) enjoy the
KMS property at the Hawking temperature and coincide with (4.18) and with
(4.19).

7In [49] this procedure is displayed for the case of a ground state for a massless, confor-
mally coupled real scalar �eld, with either Dirichlet or Neumann boundary conditions. The
states constructed with this procedure are of (local) Hadamard form and so are the ensuing
counterparts de�ned on the BTZ spacetime.

8Notice that this temperature is closely analogous to the more realistic case of a 3 + 1
dimensional black hole.

9This is for example the case for the ground states shown in [88].
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Chapter 5

Conclusions

In this thesis we have studied the behaviour of a real massive scalar �eld in the
exterior region of a rotating 2+1 dimensional BTZ black hole. The analysis has
been performed �rst by studying the classical solutions to the Klein-Gordon
equation and by explicitly constructing the two-point functions associated to
the ground states. In doing so, we have also tested some some tools that might
be useful in other physical scenarios such as Robin boundary conditions for
a singular Sturm-Liouville problem (Chapter 3, Section 3.2.1 and Appendix
A) and the resolution of the identity for quadratic operator pencils (Chapter
3, Section 3.3 and Appendix C). The main results of this thesis have been
presented in Chapters 3 and 4. Here we have shown under which conditions
it is possible to construct a full-�edged ground state for the scalar �eld and
we have also veri�ed that any global Hadamard state on BTZ exhibits a high-
energy thermal behaviour precisely at the Hawking temperature.

In detail, we presented the following results:

� we analysed a real massive scalar �eld in the exterior region of a rotating
BTZ spacetime by applying for the �rst time in literature Robin bound-
ary conditions, which guarantee that the spacetime can be regarded as
an isolated system. These are boundary conditions generalising the most
notorious Dirichlet and Neumann boundary conditions. In particular,
Robin boundary conditions are a linear combination of Dirichlet and
Neumann. The �eld equation has then been solved for any possible lin-
ear combination. We expressed all the possible linear combinations in
terms of a parameter ζ ∈ [0, π);

� we constructed the two-point correlation function associated to the �eld
equation, by means of a mode-expansion with respect to the spacetime
coordinates. In particular, this result is obtained �rst by writing the
spectral representation of the radial identity operator and then by facing
the di�culty of dealing with a quadratic eigenvalue problem. Due to the
rotation of the underlying spacetime, the radial mode equation has in fact
both a linear and a quadratic dependence on the spectral parameter;
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� the physical meaning of the constructed two-point correlation functions
has been discussed. We found that, for values of the �eld parameter
µ2 ∈ [0,∞), there is no need to imposing any boundary condition at ra-
dial in�nity and the two-point function built out of positive ω̃-frequencies
represents indeed a legitimate ground-state satisfying the Hadamard con-
dition in the external region of the black hole.
When µ2 ∈ (−1, 0), on the contrary, Robin boundary boundary con-
ditions apply and it is possible to identify two di�erent regimes: for
ζ ∈ [0, ζc), ζc ∈ (π

2
, π), the two-point function again represent a full

�edged ground state, while this is not true for the class of boundary con-
ditions ζ ∈ [ζc, π). These are indeed the �rst examples of a ground state
for a quantum �eld theory in the exterior region of a rotating black hole;

� in the case ζ ∈ [ζc, π) the two-point function fails to represent a ground
state because of the presence of bound state mode solutions. These are
mode solutions with non-real frequency ω̃ and they represent decaying
modes at radial in�nity. The presence of bound states was an unexpected
feature and they seem to appear as a result of the rotation of the black
hole, since they are not present in the static scenario;

� in the last part of the thesis we analysed the high energy behaviour of
a physical state in the proximity of the event horizon. The analysis has
been performed by generalising to 2+1 dimension the limiting procedure
proposed by Moretti and Pinamonti [48] and we found that, as for the 3+
1 dimensional case, the state exhibits a thermal spectrum at the Hawking
temperature and that this thermal behaviour seems to be related to some
tunnelling processes through the horizon, in the sense of Parikh and
Wilczeck [47];

� subsequently we showed that this result is indeed applicable to the case of
a global KMS state for the scalar �eld in a rotating BTZ spacetime and,
by retrieving the results of the previous chapters, we wrote its explicit
form in the external region of the spacetime. This result was obtained by
applying a general argument [28] to prove the existence of such a KMS
state and again it is valid for a large class of admissible Robin boundary
conditions.

Despite the encouraging results obtained in this work, many issues remain
unsolved for the rotating case. One on the main open problems is the compu-
tation of physical observables and, �rst of all, the introduction of a legitimate
renormalization procedure for 〈Φ2〉, or the expectation value of the stress-
energy tensor 〈Tµν〉. These results might be obtained by extending the work
of [90] and it could be used in the analysis of the semiclassical Einstein �eld
equations, leading to the investigation of other physical phenomena, such as
the backreaction on the event horizon.

76



Appendix A

Appendix A

A.1 Sturm-Liouville theory

In Chapter 3, the Klein-Gordon equation 3.2 is reduced to a linear second
order ODE via a Fourier mode expansion. As a result one obtains Eq. (3.5),
de�ned in the interval z ∈ (0, 1). This type of equation can be dealt with
the Sturm-Liouville theory [62, 64, 63] for formally self-adjoint second order
di�erential equations. A second order ODE is called of Sturm-Liouville type
if it reads

− d

dz

(
p(z)

du

dz

)
+ q(z)u− λs(z)u = 0, for a ≤ z ≤ b ,

where p, q and s are real valued, p, p′ and q are continuous and p and s are
positive functions. Such a problem is called regular Sturm Liouville problem.
Here, the factor λ can be interpreted as an eigenvalue parameter, that is the
equation

Lu− λu = 0 (A.1)

with

Lu :=
1

s
[−(pu′)′ + qu] (A.2)

can be treated as an eigenvalue problem1 and can be solved in terms of eigen-
functions. The operator A.2 is formally self-adjoint with respect to the inner
product

〈u, v〉 :=

∫ b

a

s(z) ū(z)v(z) dz ,

where the overline symbol denotes the complex conjugate of the eigenfunction
u. The space of solutions can therefore be equipped with the norm

||u|| :=
√
〈u, u〉 =

(∫ b

a

s(z)|u(z)|2dz

)
.

1Notice that Eq. 3.5 cannot be treated as a linear eigenvalue problem, since it has a
quadratic dependence on the parameter ω. This di�erence is deeply discussed in Section
3.3.3 and in Appendix C. Despite this complication in the spectral resolution, any other
result relative to the Sturm-Liouville theory is applicable to our case.
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The inner product, therefore, provides the space of solutions with a Hilbert
space structure. A more de�nite notation is needed when dealing with the
endpoints of the interval. As already state in Chapter 3, endpoints are classi-
�ed in the following way: we call the endpoint b (respectively a) limit cir-
cle if, for some λ ∈ C, all solutions lie in L2((z1, b); s(z)dz) (respectively
L2((a, z1); s(z)dz)) for some z1 ∈ (a, b); otherwise, we call it limit point. More-
over, if the properties about the functions p, p′, q and s hold only in the open
interval (a, b), then the problem is called singular Sturm-Liouville problem.
Singular and regular Sturm-Liouville problems must be addressed with di�er-
ent approaches, in particular when dealing with the choice of the boundary
conditions. In the following we will show how to select the principal solution
at the endpoint and how to impose boundary conditions of Robin type for a
regular problem and for a singular problem in which one of the endpoints, say
b, is limit circle.

A.2 Principal and non-principal solutions

A solution u of (A.1) is called the principal solution at one endpoint, say b, if

� u(z) 6= 0 for z ∈ [d, b), with d ∈ (a, b),

� limz→1 u(z)/Ψ(z) = 0 for every solution Ψ 6= 0 that is not a scalar
multiple of u.

By de�nition, if u is a principal solution at b, then any non zero real multiple
of u is also a principal solution. Therefore, if u1 and u2 are two linearly
independent principal solutions, then u1

u2

u2
u1

= 1 in z ∈ [d, b) for some d ∈ (a, b).
Taking the limit for z → b one gets that, if the principal solution exists, this
is unique up to real multiplicative constant factors.

A solution v of (A.1) is called non-principal solution at one endpoint, say
b, if

� v(z) 6= 0 for z ∈ [d, b), with d ∈ (a, b),

� v is not a principal solution at b.

Non-principal solutions are not unique since, if u is a principal solution and v
is a non-principal solution, then u+ cv is a non principal solution for any real
constant c 6= 0.

A.3 Robin boundary conditions for a regular prob-

lem

Let us consider a second-order regular Sturm-Liouville problem A.1 de�ned
in a closed interval [a, b] and two eigenfunctions u and v, such that one of

78



A.4. Robin boundary conditions for a singular problem

them is square-integrable at both endpoints a and b, while the other is square-
integrable only in a neighbourhood of b, but not of a.

Accordingly to the de�nition, the point a is limit point, while b is limit
circle and boundary conditions are required at b. Let us assume that we want
to identify a general solution by imposing homogeneous boundary conditions
of Robin type. This is tantamount to asking for a general solution

f = cos(ζ)u(z) + sin(ζ)v(z) ζ ∈ [0, π)

to satisfy

Bbf = cos(ζ)f(b) + sin(ζ)∂zf(b) = 0 ζ ∈ [0, π) . (A.3)

The parameter ζ spans all possible linear combinations and selects all possible
ratios ḟ(b)

f(b)
. Notice that the notable cases ζ = 0 and ζ = π

2
correspond to the

Dirichlet and Neumann boundary conditions, respectively.
Given two solutions f, g, the following property holds true

gLf − fLg =
1

s(z)
[p(z)(f(z)ġ(z)− ḟ(z)g(z))] =

1

s(z)
∂z[p(z)Wz(f, g, z)]

where Wz(f, g, z) := f∂zg − ∂zfg is the Wronskian of f and g.

A.4 Robin boundary conditions for a singular

problem

If we are dealing with a singular problem, de�ned in the open interval (a, b),
where one of the endpoints, say b is limit circle and therefore boundary con-
ditions apply. Unfortunately the condition Bbf = 0 introduced in (A.3) is
no longer valid, since one of the two solutions, say v, is expected to diverge
because of the non regularity of the endpoint. A natural way to implement a
Robin boundary condition for a singular limit circle endpoint b is to rewrite
(A.3) as

Bbf = lim
z→b

cos(ζ)Wz[u, f ](z) + sin(ζ)Wz[v, f ](z) = 0 ζ ∈ [0, π) , (A.4)

which is also valid when the endpoint b is singular, since the Wronskians in
(A.4) are non vanishing and independent from z. In particular, if one selects
u to be the principal solution, as de�ned in Section 3.2.2, then v prescribes
automatically the Dirichlet boundary condition, while u might be interpreted
as a generalization of the Neumann boundary condition, even though it is not
unique.

Notice that in the case of a regular eigenvalue problem with Robin boundary
conditions, if u(b) = ∂zv(b) = 0, ∂zu = c and v(b) = −c, Eq. (A.4) provides a
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natural generalization of Eq. (A.3):

0 = Bbf = lim
z→b

sin(ζ)Wz[v, f ](z) + cos(ζ)Wz[u, f ](z) = 0

= lim
z→b

sin(ζ)[v(z)ḟ(z)− v̇(z)f(z)] + cos(ζ)[u(z)ḟ(z)− u̇(z)f(z)] = 0

= lim
z→b

[sin(ζ)v(z) + cos(ζ)u(z)]ḟ(z)− [sin(ζ)v̇(z) + cos(ζ)u̇(z)]f(z) = 0

=− c cos(ζ)f(b)− c sin(ζ)ḟ(b)

=− c[cos(ζ)f(b) + sin(ζ)ḟ(b)] ζ ∈ [0, π) .

A.5 Green's functions and eigenfunctions

Let us consider a Green function gλ(z, z′) satisfying the equation

−∂z(p(z)∂zgλ(z, z
′)) + q(z)gλ(z, z

′)− λs(z)gλ(z, z
′) = δ(z − z′) Bb = 0

for z, z′ ∈ (a, b). The Green function can be Fourier expanded in eigenfunctions
fn(z) of Eq. (A.1) as

gλ(z, z
′) =

∑
n

gn(z′, λ)fn(z), gn = 〈gλ, fn〉 =

∫ b

a

s(z)gλ(z, z
′)fn(z)dz .

or as

gλ(z, z
′) =

∑
n

fn(z)f̄n(z′)

λ− λn
.

Such an expansion can be constructed if the sets of eigenvalues {λn} and the
corresponding eigenfunctions {fn} are known. The previous series shows that
gλ(z, z

′), as a function of the complex parameter λ has singularities at λ = λn.
The identity operator can then be expressed as

δ(z, z′)

s(z)
=

1

2πi

∫
C∞

gλ(z, z
′)dλ = −

∑
n

fn(z)f̄n(z′) ,

where the circle C∞ positively oriented surrounds all the complex λ plane.
Whenever the spectrum is only discrete, this formula takes into account all
simple poles in the complex plane, and by the residues formula one gets

1

2πi

∫
C∞

gλ(z, z
′)dλ = −

∑
n

fn(z)f̄n(z′) .

When the spectrum is at least partly continuous, a branch cut for gλ(z, z′)
must be taken into account and the integral around the large circle C∞ can be
divided in two parts: one relative to the contribution coming from the single
poles the other given by a branch-cut integral over the continuous part of the
spectrum. Hence one obtains

1

2πi

∫
C∞

gλ(z, z
′)dλ = −

∑
n

fn(z)f̄n(z′)−
∫
b.cut

fν(z)f̄ν(z
′)dν .
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The construction of gλ(z, z′) proceed by considering a product of square-
integrable solutions of the Sturm-Liouville problem at both the endpoints z =
a and z = b, so to ensure the continuity at z = z′. Let u(z) be square
integrable at z = a, v(z) square-integrable at z = b and satisfying the boundary
conditions Bbv = 0. Then

gλ(z, z
′) = Nuλ(z<)vλ(z>) ,

where z< = min(z, z′) and z> = max(z, z′). The jump condition on gλ(z, z′) is

dgλ
dz |z=z′+

− dgλ
dz |z=z′−

= − 1

p(z′)
,

or equivalently

NWz(u, v) = − 1

p(z′)
.

Finally one gets that

gλ(z, z
′) = −uλ(z<)vλ(z>)

p(z′)Wz(u, v)
.
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B.1 Hypergeometric functions and hypergeomet-

ric equation

In Chapter 3, the radial Sturm-Liouville equation (3.5) deriving from the Klein-
Gordon equation of motion is transformed, by means of the ansatz (3.6), into
a Gaussian hypergeometric equation [67] of the form

z(1−z)
d2w

dz2
+[c−(a+b+1)z]

dw

dz
−abw(z) = 0 z ∈ (0, 1), a, b, c ∈ R . (B.1)

The hypergeometric di�erential equation (B.1) has regular singualrities at
z = 0, 1. Its closed form solutions are provided by Gaussian hypergeomet-
ric functions, depending on the three parameters a, b and c.

Gaussian hypergeometric functions are special functions de�ned via a Gauss
series of other special functions via the general formula

F (a, b, c; z) =
∞∑
s=0

(a)s(b)s
(c)ss!

zs =
Γ(c)

Γ(a)Γ(b)

∞∑
s=0

Γ(a+ s)Γ(b+ s)

Γ(c+ s)s!
zs |z| < 1 ,

where (x)s := x(x+ 1) . . . (x+ s− 1) indicates the rising factorial (also known
as Pochhammer symbol) while Γ(x) is the Gamma function. Generally speak-
ing F (a, b, c; z) does not exist when c = 0,−1,−2, . . . and its de�nition can be
extended elswhere by analytic continuation. A principal branch can be intro-
duced by cutting the z plane from 1 to +∞ on the real axis, which lies in the
sector | ph(1−z)| ≤ π. Moreover, in the disk of radius |z| < 1, the Gauss series
converges absolutely whenever Re{c− a− b} > 0, converges conditionally for
−1 < Re{c− a− b} ≤ 0 and z 6= 1, diverges for Re{c− a− b} ≤ −1. The
case z = 1 takes the follwing form. If Re{c− a− b} > 0, then

F (a, b, c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) .

If c− a− b = 0, then

lim
z→1−

F (a, b, a+ b; z)

− ln(1− z)
=

Γ(a+ b)

Γ(a)Γ(b)
.
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If Re{c− a− b} = 0 and c− a− b 6= 0, then

lim
z→1−

(1− z)a+b−c
(
F (a, b, c; z)− Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

)
=

Γ(c)Γ(a+ b− c)
Γ(a)Γ(b)

.

If Re(c− a− b) < 0, then

lim
z→1−

F (a, b, c; z)

(1− z)c−a−b)
=

Γ(c)Γ(a+ b− c)
Γ(a)Γ(b)

.

Finally we stress that F (a, b, c; z) is symmetric under exchange of a and b and
we denote

F(a, b, c; z) :=
F (a, b, c; z)

Γ(c)
.

B.2 Fundamental solutions

When none of c, c − a − b, a − b is an integer, Eq. (B.1) has the following
pairs of fundamental solutions. Each of these pairs is numerically satisfactory
at the corresponding endpoint, meaning that one solution is recessive, while
the other exhibits a dominant behaviour in the limit.

Singularity at z = 0

f1(z) = F (a, b, c; z) ,

f2(z) = z1−cF (a− c+ 1, b− c+ 1, 2− c; z).

Singularity at z = 1

f3(z) = F (a, b, a+ b− c+ 1; 1− z) ,

f4(z) = (1− z)c−a−bF (c− a, c− b, c− a− b+ 1; 1− z) .

For the the case of interest it is worth noticing that if a + b + 1 − c is a
positive integer n, then the fundamental solutions at z = 1 are

Singularity at z = 1

f5(z) =F (a, b, n; 1− z) ,

f6(z) =F (a, b, n; 1− z) ln(1− z)−
n−1∑
p=1

(n− 1)!(p− 1)!

(n− p− 1)!(1− a)p(1− b)p
(z − 1)−p

+
∞∑
p=0

(a)p(b)p
(n)pp!

(1− z)p(ψ(a+ p) + ψ(b+ p)− ψ(1− p)− ψ(n+ p)) .
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Other solutions

The pairs of fundamental solutions can be transformed into other solutions,
dubbed Kummer solutions [67], via the linear transformation

F (a, b, c; z) = (1− z)−aF

(
a, c− b, c; z

z − 1

)
= (1− z)−bF

(
c− a, b, c; z

z − 1

)
= (1− z)c−a−bF (c− a, c− b, c; z) , for | arg(1− z)| < π .

In particular it is worth noticing that (see [67, Eq. 15.10.13])

F (a, b, a+ b− c+ 1; 1− z) = z1−cF (a− c+ 1, b− c+ 1, a+ b− c+ 1; 1− z)
(B.2)

and, if Ψ1,Ψ2,Ψ3 and Ψ4 are the solutions listed in 3 for the radial Sturm-
Liouville equation (3.5), then the following relations hold

Ψ3(z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)Ψ1(z)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
Ψ2(z) , (B.3a)

Ψ4(z) =
Γ(2− c)Γ(c− a− b)

Γ(1− a)Γ(1− b) Ψ1(z)

+
Γ(2− c)Γ(a+ b− c)

Γ(a− c+ 1)Γ(b− c+ 1)
Ψ2(z) . (B.3b)

B.3 Useful relations

With respect to the Gaussian hypergeometric equation (3.9), the parameters
(3.10), with α and β de�ned as (3.8), satisfy the following relations

a = α + β + γ, (B.4)

b = α + β − γ, (B.5)

c = 1 + 2α, (B.6)

γ =
i

2

r−ω − r+κ

r2
− − r2

+

. (B.7)

We also note that under the substitution ω̃ 7→ ω̃, these parameters behave
as

a 7→ b− c+ 1, α 7→ −α,
b 7→ a− c+ 1, β 7→ β,

c 7→ 2− c.
(B.8)
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Appendix C

C.1 Resolution of the identity for a quadratic

eigenvalue problem

In this appendix we build an expansion of the delta distribution for a quadratic
operator pencil [91, 92] de�ned on a Hilbert space H as in Eq. (3.33). Namely,
let us consider a family of operators de�ned on a Hilbert space H in the form

Sω̃ = P + ω̃R1 + ω̃2R2 , (C.1)

where (S1) R1, R2 and R−1
2 are bounded and self-adjoint, while P is un-

bounded, closed and hermitian on a dense domain D(Sω̃) ⊂ H. These are
di�erential operators with quadratic dependence on the spectral parameter. In
particular we are concerned with obtaining the spectral resolution of the iden-
tity operator for the case of unbounded operators [93, 94] coming from Sturm-
Liouville ODEs as in (3.5), where Sω̃ = J −1Lω̃ on H = L2((0, 1);J (z) dz) and
J (z) is as in in (3.19). We start by de�ning the resolvent set of Sω̃, dubbed
ρ(Sω̃) ⊂ C as the set of all values of ω̃ ∈ C such that Tω̃ = S−1

ω̃ exists and
is a bounded operator. Our �rst goal is to show that when (S2) the spectrum
σ(Sω̃) = C \ ρ(Sω̃) consists only of a subset of R together with a �nite number
of isolated points in C\R symmetric with respect to complex conjugation, the
identity operator can be represented by the integral

I = lim
ς→∞

∫ ς

−ς

dω̃

2πi
lim
ε→0+

ω̃(Tω̃−iε − Tω̃+iε)R2

+

∮
C̊

dω̃

2πi
ω̃Tω̃ . (C.2)

The contour C̊ is illustrated in Figure C.1. It is positively oriented and it
surrounds the non-real part of the spectrum. The inner ε→ 0+ limit is taken
in the sense of distributions in ω̃ (boundary values of holomorphic functions
de�ne a special kind of distribution [95, Ch.IX]) and the outer ς →∞ limit is
taken in the sense of the strong operator topology.

87



C. Appendix C

Re

Im

Figure C.1: Contour for the integral representation of the identity operator
in (C.2).

Following a standard approach, we linearize the quadratic operator pencil
to a linear operator pencil Sω̃, and in the process we double the size of the
Hilbert space, so that the spectral problems of Sω̃ and Sω̃ remain equivalent.

Therefore, we consider the following linear operator pencil de�ned on H2 =
H ⊕H,

Sω̃ = P + ω̃R =

[
P 0

0 −R2

]
+ ω̃

[
R1 R2

R2 0

]
, (C.3)

which is related to Sω̃ by the identities

Sω̃

[
I
ω̃

]
Ψ =

[
I
0

]
Sω̃Ψ , (C.4)

Sω̃

[
I 0

] [Ψ

Φ

]
=
[
I ω̃

]
Sω̃

[
Ψ

Φ

]
. (C.5)

Among all possibilities, this linearization preserves the following self-adjointness
properties. When R1 and R2 are bounded and self-adjoint, so is R, and when
in addition P is closed and hermitian onD(Sω̃), so is P onD(Sω̃) = D(Sω̃)⊕H.
We de�ne, when it exists, the resolvent Tω̃ = S−1

ω̃ and the ensuing spectrum
σ(Sω̃) and resolvent set ρ(Sω̃) ⊂ C are de�ned in the usual way, essentially
exactly as above. The resolvents of Sω̃ and Sω̃ are related to each other by

Tω̃ =

[
I
ω̃

]
Tω̃

[
I ω̃

]
+

[
0 0

0 −R−1
2

]

=

[
Tω̃ ω̃Tω̃

ω̃Tω̃ ω̃2Tω̃ −R−1
2

]
, (C.6)

Tω̃ =
[
I 0

]
Tω̃

[
I
0

]
=

1

ω̃

[
I 0

]
Tω̃

[
0

I

]
. (C.7)
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These formulas show that Tω̃ exists and is bounded if and only if this is true
for Tω̃. Therefore, ρ(Sω̃) = ρ(Sω̃) and, consequently, σ(Sω̃) = σ(Sω̃), and
the two spectral problems are equivalent. Once ρ(Sω̃) is found, we can use the
boundedness1 of R to show that Tω̃ is analytic on ρ(Sω̃) = ρ(Sω̃). This implies
that Tω̃ is also analytic on ρ(Sω̃).

Let ν ∈ ρ(Sω̃) = ρ(Sω̃) and let Cν ⊂ ρ(Sω̃) = ρ(Sω̃) be a contour encircling
ν in the negative direction. Upon deformation, Cν is positively oriented and
it is a simple curve which surrounds σ(Sω̃). When σ(Sω̃) is unbounded, the
deformation of the contour must go through a limiting procedure, by taking
a connected component of Cν in each connected component of ρ(Sω̃). If the
resolvent Gω̃ is analytic on ρ(Sω̃), the Cauchy residue formula yelds

TνR = −
∮
Cν

dω̃

2πi

1

ω̃ − νTω̃R . (C.8)

Multiplying both sides by R−1Sν , one gets

I =

∮
Cν

dω̃

2πi

(
Tω̃R−

I

ω̃ − ν

)
, (C.9)

where the contour Cν can be deformed at will, as long as it remains within
ρ(Sω̃) \ {ν}.

At this point, the contour Cν can be deformed to the needed limiting form
in (C.2). Let us consider the abstract spectral representation for the operator
R−1P, that is (S3) there exists a projection operator valued measure E(ν)
on σ(Sω̃), which satis�es the usual commutation and monotonicity conditions
and it gives the spectral representation R−1P =

∫
σ(Sω̃)

ν dE(ν). Consequently,

we obtain also the spectral representation Tω̃R =
∫
σ(Sω̃)

1
ν+ω̃

dE(ν). Let now
Eς = E({ν ∈ C | |ν| < ς}). Then Eς → I strongly as ς → ∞ and the set⋃
ς>0 ranEς is dense in H2.
As a consequence we also obtain that Tω̃REς is analytic for |ω̃| > ς and

it has the strong asymptotic expansion Tω̃REς = 1
ω̃
Eς + O( 1

ω̃2 ). Multiplying
both sides of (C.9) by Eς one gets

Eς =

∮
Cν

dω̃

2πi

(
EςTω̃R−

Eς

ω̃ − ν

)
−
∮
Cν

dω̃

2πi

I− Eς

ω̃ − ν .

Notice now that the contour Cν in the �rst integral can be deformed to the
contour Cς∪Cε

ς∪C̊, as illustrated in Figure C.1. Because the asymptotical eval-
uation of Eς mentioned above, the integral over anlarged circle Cς contributes
as O(1

ς
). On the other hand, the term Eς

ω̃−ν is analytic over the contours C̊, C
ε
ς

and also in their interior. Hence its contribution vanishes identically. We are
left with the follwing expression

I =

∮
Cες

dω̃

2πi
Tω̃REς +

∮
C̊

dω̃

2πi
Tω̃REς +O(ς−1). (C.10)

1See Theorem VI.5 of [93].
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We multiply both sides of (C.10) by an arbitrary vς′ ∈ H2, such that
vς′ = Eςvς′ for any ς > ς ′. In this way we obtain

vς′ =

∮
Cες

dω̃

2πi
Tω̃REςvς′ +

∮
C̊

dω̃

2πi
Tω̃REςvς′ +O(ς−1)

=

∫ ς

−ς

dω̃

2πi
lim
ε→0+

(Tω̃−iε −Tω̃+iε)REςvς′

+

∮
C̊

dω̃

2πi
Tω̃REςvς′ +O(ς−1)

= lim
ς→∞

∫ ς

−ς

dω̃

2πi
lim
ε→0+

(Tω̃−iε −Tω̃+iε)Rvς′

+

∮
C̊

dω̃

2πi
Tω̃Rvς′ .

We take the limits ε → 0+ and ς → ∞, where the �rst limit is in the distri-
butional sense with respect to ω̃ while the second is in a strong sense. The
following result is obtained2 using a variant of the Banach-Steinhaus theorem
(Theorem 2.11.4 of [96]).

R−1 = lim
ς→∞

∫ ς

−ς

dω̃

2πi
lim
ε→0+

(Tω̃−iε −Tω̃+iε) +

∮
C̊

dω̃

2πi
Tω̃ ,

The desired result (C.2) is �nally obtained by using the formula

R−1 =

[
R1 R2

R2 0

]−1

=

[
0 R−1

2

R−1
2 −R−1

2 R1R−1
2

]
(C.11)

and the second equality in (C.6). This argument for the linear operator pencil
mimicks that of [63, Ch.9], the only di�erence being that the existence of the
spectral measure E(ν) from the spectral theorem for self-adjoint operators on
a Krein space K = (H2, [−,−]), where the inner product [v,u] = (v,Ru)
is inde�nite [97, 98]. Nevertheless the spectral theorem is still applicable,
provided that the operator R−1P is de�nitizable. This is indeed the case for
the speci�c operators de�ned in Appendix 3.3.3. The hypotheses (S1,S2,S3)
are veri�ed in Appendices C.2, C.3 and C.4, respectively.

C.2 Check of hypothesis (S1)

In this Appendix we prove that hypothesis (S1) of Appendix C.1 is veri�ed
for the quadratic operator pencil Sω̃, coming from Sturm-Liouville ODEs as
in (3.5), where Sω̃ = J −1Lω̃ on H = L2((0, 1);J (z) dz) and J (z) is as in

2Here we recall that �nite linear combinations of vectors like vς′ are dense in H
2 and note

that due to (C.10) the norms of the integrals
∫ ς
−ς

dω̃
2πi limε→0+(Tω̃−iε −Tω̃+iε) +

∮
C̊

dω̃
2πi Tω̃

are uniformly bounded for large σ.
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in (3.19). We verify that R1, R2 and R−1
2 are bounded and self-adjoint, while

P is unbounded, closed and hermitian on a dense domain D(Sω̃) ⊂ H

The domain of Sω̃, D(Sω̃) ⊂ H = L2((0, 1);J (z) dz), is strictly related to
the choice of boundary conditions for Lω̃ in (3.35). In fact [63, Ch.3], each
choice of boundary conditions de�nes a closed operator on a dense domain
D(Sω̃). Let us assume that there exists at least one ω̃ ∈ C such that ω̃, ω̃ ∈
ρ(Sω̃) and that the corresponding bounded resolvents are self-adjoint T ∗ω̃ =
Tω̃. Then, the closed operator Sω̃ will be self-adjoint, that is S∗ω̃ = Sω̃ with
D(S∗ω̃) = D(Sω̃).

Therefore, we need to check the following properties:

(a) the Green distribution associated to Lω̃, dubbed Gω̃, exists for at least
one ω̃ ∈ C,

(b) Tω̃ = Gω̃J is bounded for at least one ω̃ ∈ C,

(c) Gω̃(z, z′) = Gω̃(z′, z) and consequently T ∗ω̃ = Tω̃.

Properties (a) and (c) have been veri�ed in Section 3.3.3 for each choice of
Robin boundary conditions.

In order for property (b) to hold, the resolvent Tω̃ = Gω̃J must be bounded.
Let us now consider the functions uω̃ and Ψω̃,ζ introduced in (3.36) and (3.37)
of Section 3.3.3. For any given ω̃ with Im[ω̃] 6= 0, these functions are linearly
independent, that is Nω̃,ζ in Eq. (3.39) does not vanish. Moreover let us
consider the asymptotic estimates

|uω̃(z)| . zλ(1− z)1−β−ε , (C.12a)

|Ψω̃,ζ(z)| .
{
z−λ(1− z)β , ζ = 0 ,

z−λ(1− z)1−β−ε , ζ 6= 0 ,
(C.12b)

|J (z)| . z−1(1− z)−1 . (C.12c)

where λ
.
= `2r+ |Im{ω̃}| /2(r2

+ − r2
−), the symbol . denotes an inequality up

to a multiplicative constant, uniform over z ∈ (0, 1), while the constant ε > 0
takes care of the cases with logarithmic singularities.

In order to prove the boundedness of Tω̃ we apply the weighted Schur test
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(see Theorem 5.2 of [99]). Let us consider the following chain of inequalities,

‖Tω̃Ψ‖2

=

∫ 1

0

dz J (z)

∣∣∣∣∫ 1

0

dz′ Gω̃(z, z′)J (z′)Ψ(z′)

∣∣∣∣2
6
∫ 1

0

dz J (z)

(∫ 1

0

√
|Gω̃(z, z′)| J (z′)J1(z′)

√
|Gω̃(z, z′)| J (z′)

J1(z′)
|Ψ(z′)|2 dz′

)2

6
∫ 1

0

dz J (z)

(∫ 1

0

dz′ |Gω̃(z, z′)| J (z′)J1(z′)

)(∫ 1

0

dz′ |Gω̃(z, z′)| J (z′)

J1(z′)
|Ψ(z)|2

)
6
∫ 1

0

dz′
(∫ 1

0

dz J (z)J2(z) |Gω̃(z, z′)|
) J (z′)

J1(z′)
|Ψ(z′)|2

6
∫ 1

0

dz′
J3(z′)

J1(z′)
J (z′) |Ψ(z′)|2 .

Here ‖Tω̃Ψ‖2 . ‖Ψ‖2, only if there exist three functions J1(z), J2(z), J3(z)
satisfying the following estimates∫ 1

0

dz′ |Gω̃(z, z′)| J (z′)J1(z′) . J2(z) ,∫ 1

0

dz J (z)J2(z) |Gω̃(z, z′)| . J3(z′) ,

J3(z′)

J1(z′)
. 1 .

A deeper analysis shows that the lower bounds of J2 and J3 are in fact deter-
mined by the properties of Gω̃(z, z′) and that the only free choice is actually
the function J1. Given the estimates (C.12) and formula (3.38), one sees that
boundedness is obtained with the following choices:

ζ = 0:


J1(z) = 1,

J2(z) = (1− z)min(β,1−2ε),

J3(z) = (1− z)min(β,2−4ε),

(C.13)

ζ 6= 0:


J1(z) = 1,

J2(z) = (1− z)1−β−ε,

J3(z) = (1− z)1−β−ε,

(C.14)

where, in the case ζ 6= 0, we select β ∈ (1
2
, 1) and ε < 1− β.

C.3 Check of hypothesis (S2)

In this Appendix we prove that hypothesis (S2) of Appendix C.1 is veri�ed
for the quadratic operator pencil Sω̃, coming from Sturm-Liouville ODEs as
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in (3.5), where Sω̃ = J −1Lω̃ on H = L2((0, 1);J (z) dz) and J (z) is as in
in (3.19). We verify that the spectrum of Sω̃ is real with at most two isolated
points in C \ R, displaced symmetrically with respect to the real axis.

Notice that the Green distribution Gω̃,ζ computed in Section 3.3.3 has a
branch cut at Im[ω̃] = 0 and that, only for certain values of ζ, it can have
poles with Im[ω̃] 6= 0. As seen in Section 3.3.3, these poles coincide with the
zeros of the coe�cient Nω̃,ζ in (3.39).

A direct inspection shows that the coe�cient Nω̃,ζ has at most isolated
zeros and that they are re�ection symmetric about the real axis. These zeros
can be interpreted as bound state frequencies and they form a set BSζ ⊂ C,
which can be divided in BSζ = BS+

ζ ∪BS+
ζ with Im[BS+

ζ ] > 0. Therefore,
σ(Sω̃) = R ∪ BSζ . Also notice that, by Appendix C.1, the resolvent Tω̃ = S−1

ω̃

is analytic on ρ(Sω̃) = C \ σ(Sω̃).
The structure of BSζ can be inferred by looking at the zeros of Nω̃,ζ from

Section 3.3.3, which are de�ned precisely as the solutions of the transcendental
equation3

tan(ζ) =
B

A
=: Θ(ω̃) (C.15)

in the upper half complex plane, Im[ω̃] > 0, ζ ∈ [0, π), together with their
complex conjugates.

As we will see, BS+
ζ = ∅ or BS+

ζ = {ω̃ζ}, consisting only of a single point.
In the case ζ = π/2, any ω̃ at which Θ(ω̃) has a pole can be interpreted as a
solution of (C.15). The RHS of (C.15) is a ratio of products of gamma functions
with ω̃-dependent parameters. For generic values of these parameters, the
function has only simple zeros at ω̃±(n) and simple poles at ω̃±(n) for n =
0, 1, 2, . . ., where

ω̃±(n) = ±k
`
− kΩH − 2i(n+ β)

(r+ ∓ r−)

`2
, (C.16)

ω̃±(n) = ±k
`
− kΩH − 2i(n+ 1− β)

(r+ ∓ r−)

`2
. (C.17)

Its asymptotic behaviour for |ω̃| → ∞ can be inferred from the Stirling asymp-
totic formula, which yelds4

Θ(ω̃) =
Γ(
√
µ2 + 1)

Γ(−
√
µ2 + 1)

(
`4(−iω̃)2

4(r2
+ − r2

−)

)−√µ2+1

[1 +O(|ω̃|−1)] . (C.18)

The zeros and poles of Θ(ω̃) correspond to the explicit solutions of (C.15),
for ζ = 0 (Dirichlet) and ζ = π/2 (Neumann) boundary conditions, respec-
tively.

3See Eq. (3.48). Here A and B are again as in (3.46).
4The branch of the power function must agree with the principal branch whenever −iω̃ >

0. Notice that some of the poles or zeros may merge for special values of the parameters.
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At the same time, explicit solutions5 for a generic value of ζ cannot be
obtained, due to the transcendental nature of equation (C.15). Nonetheless,
we can make few qualitative remarks.

Firstly, ζ is always real. Therefore ω̃ ∈ C for which Θ(ω̃) 6∈ R is never a
solution of (C.15). Conversely, when Θ(ω̃) is real, equation (C.15) is satis�ed
for ζ = arctan(Θ(ω̃)). Hence, given a �xed ζ, the solutions of (C.15) exist and
they lie in the regions with real phase arg[Θ(ω̃)] = 0 or π.

Physically speaking, one can reach the following conclusions.
In the case µ2 > 0, the only allowed boundary condition (see Section 3.2.3)

is the case ζ = 0 (Dirichlet), which corresponds to zeros of Θ(ω̃). As it can
be inferred from (C.16), all of the zeros lie on the lower half complex plane.
Therefore, no solutions of (C.15) with Im[ω̃] > 0 can be found and there are
no bound state frequencies, that is BS+

ζ = ∅.
In the case −1 < µ2 < 0, all the poles and zeros lie in the lower half

complex plane. The closest pole to the real axis is

ω̃+(0) =
k

`
− kΩH − i

(
1−

√
µ2 + 1

) (r+ − r−)

`2
.

In this case, the solutions with Im[ω̃] > 0 are parametrized by ζ ∈ [ζc, π) and
lie on the single line of real phase stretching from this pole. This phase line
crosses the Im[ω̃] = 0 axis at ω̃ = 0, where

Θ(0) =
Γ (2β − 1)

∣∣∣Γ(1− β + i` k
r+

)∣∣∣2
Γ (1− 2β)

∣∣∣Γ(β + i` k
r+

)∣∣∣2 = tan(ζc) .

Since −1 < µ2 < 0, then β ∈ (1
2
, 1), which implies ζc ∈ (π

2
, π). Furthermore,

we notice that the solution ω̃ = ω̃ζ is isolated and simple6. Therefore, in this
case BSζ = {ω̃ζ , ω̃ζ}. In Figure 3.1 we plotted the real and the imaginary
parts of the frequency ω̃ζ as a function of ζ for some sample values of the other
involved parameters.

C.4 Check of hypothesis (S3)

In this Appendix we prove that hypothesis (S3) of Appendix C.1 is veri�ed
for the quadratic operator pencil Sω̃, coming from Sturm-Liouville ODEs as
in (3.5), where Sω̃ = J −1Lω̃ on H = L2((0, 1);J (z) dz) and J (z) is as in

5A solution can be found numerically for any value of the parameters µ2, `, r+, r− and
k describing the scalar �eld and the BTZ black hole.

6This could be rigorously established by a careful application of the argument principle,
which we omit for brevity, to the function f(ω̃) = tan(ζ)−Θ(ω̃), which con�rms the existence

of a single simple zero ω̃ζ ∈ Im[ω̃] provided the integrals
∮ f ′(ω̃)

f(ω̃)
dω̃
2πi stabilize to the value

1 over a sequence of simple closed and positive contours whose interior exhausts the upper
half complex plane.
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in (3.19). We show that there exists a spectral measure for the linearised
pencil Sω̃ in (C.3).

In the following we adopt the notation of Appendix C.1. Therefore, let
K = (H2, [−,−]), be Krein space [97, 98] with bounded inner product [v,u] =
(v,Ru). As already stated, the spectral problem of the linear operator pencil
Sω̃ = P + ω̃R is equivalent to the spectral problem −R−1P = ω̃I, where now
the operator A

.
= −R−1P is self-adjoint with respect to the inner product

[−,−].
Even if no general spectral theorem is available for an arbitrary self-adjoint

operator on a Krein space, there are some special cases where it is possible
to prove the existence of a spectral measure E(ν). In these cases, hypothesis
(S3) of Appendix C.1 is veri�ed. As already stated, hypothesis (S3) is veri-
�able whenever the operator A is de�nitizable7, that is, when there exists a
polynomial p(ω̃) of degree k with real coe�cients such that

[u, p(A)u] > 0 for each u ∈ D(Ak) .

In order to prove that the operator A de�ned as in Appendices C.1 and Sec-
tion 3.3.3 is de�nitizable, we proceed as follows.

Firstly, since

[u, (−A0)u] > 0 for all u ∈ D(A0) ,

we suppose that there exists a de�nitizable closed restriction A0 of A to a
subdomain D(A0) ⊂ D(A). The restricted operator A0 may no longer be self-
adjoint with respect to the Krein inner product, but it is possible to �nd [101]
a Friedrichs self-adjoint extension A1 satisfying [u, (−A1)u] on its domain.
Secondly, we notice that the operator A is de�ned as an ordinary di�erential
operator. Therefore the di�erence of the resolvents

(A1 − ω̃I)−1 − (A− ω̃I) (C.19)

is a �nite rank operator8. This di�erence is therefore described by the so-called
Krein resolvent formula [102, �106].

Thirdly, we observe that [103], when at least one of the Krein self-adjoint
operators A1 or A is de�nitizable and the di�erence of their resolvents (C.19)
is of �nite rank for at least one ω̃ ∈ ρ(A1) ∩ ρ(A), then both operators are
de�nitizable.

In the case of interest, H = L2((0, 1);J (z) dz). let us consider

u := [Ψ Φ]T ∈ D(A0)

7The corresponding spectral theorem can be found in [98] and [100].
8In order to prove that the ranks is �nite, it is su�cient to notice that an ordinary

di�erential operator has a �nite dimensional space of solutions.
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consisting of smooth functions with compact support. We can then write
explicitly [u, (−A)u]. Integration by parts leads to the following result

(Ψ, (−J −1Lω̃=0)Ψ) + (Φ,R2Φ) =

∫ 1

0

dz

[
z

∣∣∣∣dΨ(z)

dz

∣∣∣∣2
+

(
`2k2(1− z) + r2

+µ
2

4r2
+(1− z)2

)
|Ψ(z)|2 +

`4J (z)|Φ(z)|2
4(r2

+ − r2
−)

]
.

Let us analyse the two relevant regimes. When −1 < µ2 < 0, since the
term proportional to k2 in the integrand is strictly greater than 0, in view of
(3.34) and of the results of Appendix C.1, −J −1Lω̃=0 is a self-adjoint operator
with strictly positive spectrum.. Therefore it is a positive operator and the
integral is non-negative When µ2 > 0, all terms appearing under the integral
are manifestly non-negative, and so is the whole integral. Thus, the restriction
of A to D(A0) satis�es the relation

[u, (−A0)u] > 0 for all u ∈ D(A0) .

This implies that A is de�nitizable.
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