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Abstract: Nonlinear interaction between the magnon mode and the mechanical mode in a mag-

nomechanical system is treated analytically where the magnon mode is coherently driven by a

bichromatic microwave drive field consisting of a strong pumping field and a weak probe field and

that works within a perturbative regime. Using experimentally achievable parameters, we show that

the magnonic second-order sideband is generated and can be considerably enhanced by increasing

the power of the pumping field. The suppression of the magnonic second-order sideband generation

at the resonance point is discussed. Furthermore, the efficiency of magnonic second-order sideband

generation can be well controlled by adjusting the applied bias magnetic field strength, which is a

particular feature compared to the optical second-order sideband. In addition to offering insights

into the magnomechanical nonlinearity, the present results have the potential to pave the way for

exploring practical applications for achieving high-precision measurement in magnonics.

Keywords: magnetostrictive effect; perturbation method; second-order sideband

1. Introduction

A spin wave is the collective excitation of magnetization in ordered magnets, and a
magnon is the spin wave quanta [1–3]. The ferrimagnetic insulator yttrium iron garnet
(YIG) with high spin density, very low magnetic damping, and a high Curie temperature
provides an alternative platform for quantum information processing [4–7]. The utilizaton
of a magnon as a carrier to transmit and process information is an emerging research
field in spintronics [1]. Coherent coupling between magnons and microwave photons
through magnetic dipole interaction has been demonstrated experimentally in a three-
dimensional microwave cavity coupled with a YIG sphere [6], where the interplay can
achieve a strong and even an ultrastrong coupling regime, leading to cavity-magnon
polaritons [7]. Many important physical phenomena, such as Rabi oscillation, magnetically
induced transparency, the Purcell effect [4], and magnon gradient memory [8], have been
reported in cavity magnonics based on coherent coupling. Moreover, due to the powerful
compatibility of magnons, optical photons [9–15] and superconducting qubits [16–18] can
be coherently coupled to magnons, which offers the prospect of fabricating new hybrid
quantum systems.

The magnetostrictive effect describes the phenomenon that, when the magnon mode
in the YIG sphere is excited, the varying magnetization induced by the magnon exci-
tation leads to geometrical deformation of the YIG sphere, which can be treated as a
mechanical resonator [19]. Currently, the magnomechanical system [20–24], which de-
scribes the coherent coupling between magnon modes and mechanical modes (phonons)
in the YIG sphere via the magnetostrictive effect, has attracted extensive attention in the
magnonic field and many exciting advances have been achieved, These include achieving
magnon–photon–phonon entanglement [25–27], mechanical bistability [28], nonrecipro-
cal transmission [29–32], squeezing of the microwave field [33], and magnonic frequency
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combs [34–36]. On the other hand, non-Hermitian cavity magnonics has also aroused
considerable interest and has emerged as a new frontier in the magnonic field [37–40].
Non-Hermitian cavity magnomechanical systems have been proposed to generate magnon
chaos [41], enhance sideband responses [42], and manipulate optical transmission [43]. It is
well known that nonlinear phenomena can offer insights into understanding of the magnon–
phonon interaction and can help promote the development of cavity magnomechanics.

In the present work, we theoretically investigate an important nonlinear effect, the
second-order sideband in a magnomechanical system. We obtain the analytical expression
for the amplitude of the magnonic second-order sideband by employing a perturbation
technique. We show that the efficiency of the second-order sideband generation exhibits a
strong dependence on the microwave driving field. Moreover, we show that the second-
order sideband control can be achieved by adjusting the external magnetic field. All the
relevant parameters are well within current experimental reach. Our work establishes a
theoretical framework for generating a magnonic second-order sideband and provides a
way to study other nonlinear phenomena induced by the magnetostrictive effect and to
explore corresponding applications.

2. Physical Setup and Dynamical Equation

We consider a magnomechanical system, as shown in Figure 1a, where a YIG sphere
is placed near a port, which is designed for inputting a microwave field to drive the YIG
sphere via a superconducting microwave line with a loop antenna. The YIG sphere is
magnetized by a uniform bias static magnetic field (along the z direction, i.e., H = Hẑ) to
induce the magnon mode. Due to the finite geometry, the magnetized YIG sphere confines
the magnon modes and acts as a magnonic resonator. As a fundamental magnon mode,
the Kittel mode is a uniform magnetization precession. The frequency of the Kittel mode is
determined by the external bias magnetic field H, viz. ωm = γH, where γ/2π = 28 GHz/T
is the gyromagnetic ratio and H denotes the magnetic field strength [6]. For the bias
magnetic field ranging from 0 from 1 T, the resonance frequency of the Kittel magnon
mode corresponds to 0 to 28 GHz. The quantum mechanical Hamiltonian of the Kittel
mode can be expressed as Ĥm = h̄ωmm̂†m̂ via the Holstein–Primakoff transformation [44],
where m̂ = Vm

2h̄γMs
(Mx − iMy) is the annihilation operator of the Kittel mode, with Vm the

YIG sphere volume, Ms is the saturation magnetization, and Mx,y are the magnetization
components. Here, we assume that the Kittel magnon mode of the YIG sphere is excited
by a bichromatic microwave drive field, and setting of the magnetic component of the
microwave drive field in the x − y plane. The Hamiltonian of the driving of the Kittel
mode by the microwave drive fields consisting of the pumping and probe fields is of the
form Ĥd = ih̄Ω0(m̂

†e−iω0t − m̂eiω0t) + ih̄Ωp(m̂†e−iωpt − m̂eiωpt) within the condition of

the low-lying excitations [25], where Ωi =
√

5
4 γ

√
NBi (i = 0, p) are the Rabi frequencies

denoting the coupling strength between the drive magnetic fields and the magnon mode,
where N = ρVm is the total number of spins in the YIG sphere, with ρ = 4.22 × 1027 m−3

the spin density of the YIG sphere, and B0 and Bp are the amplitudes of the drive magnetic
fields, with frequencies ω0 and ωp corresponding to the pumping field and the probe field,

respectively. The power of the microwave drive field Pi =
B2

i
2µ0

Sc (i = 0, p), where µ0 is

the vacuum magnetic permeability, c is the speed of an electromagnetic wave propagating
through the vacuum, and S = πR2 is the cross-sectional area, with R the radius of the YIG

sphere; therefore, Bi =
1
R

√

2Piµ0
πc .
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Figure 1. (Color online) (a) Schematic diagram of a magnomechanical system. A uniform bias static

magnetic field (H) is applied along the z-direction to magnetize the YIG sphere. The magnon mode

is directly driven via a microwave antenna. The varying magnetization causes the deformation of

the YIG sphere. (b) Frequency spectrum of the output fields. The yellow line indicates the frequency

of the pumping field ω0, the red line is the frequency of the Stokes field ω0 − δ, and the blue line is

the frequency of the anti-Stokes field (the probe field) ω0 + δ. The frequency of the probe field is ωp,

and the detuning between the pumping field and the probe field is δ = ωp − ω0. The violet line is

the second-order sideband ω0 + 2δ. The frequency of the magnon mode is ωm.

According to the magnetostrictive effect, the varying magnetization induced by the
microwave magnetic field causes deformation of the YIG sphere and the deformation can
also change the magnetization, which leads to a nonlinear interaction between the Kittel
magnon mode and the vibrational mode. The Hamiltonian of the magnetostrictive interac-
tion can be written as Ĥint = h̄gmbm̂†m̂(b̂ + b̂†) [20], where b̂ is the annihilation operator of
the phonon (the quantum of the mechanical vibration mode) and gmb is the single magnon–
phonon coupling strength, which is simmlar to the optomechanical interaction [45,46].
In sum, the Hamiltonian of the system includes three parts, i.e., Ĥ = Ĥm + Ĥd + Ĥint,
which is the starting point of the following discussion.

Based on the above Hamiltonian and by introducing the dissipation with the Markov
approximation [47] in a frame rotating with frequency ω0, i.e., a unitary transformation
Û(t) = exp

(

−iω0m̂†m̂t
)

is applied, the Heisenberg–Langevin equations ( ˙̂o = i
h̄ [Ĥ, ô]) [48]

describing the system dynamics are given by:

dm̂

dt
= (−i∆m − κm)m̂ − igmbm̂(b̂ + b̂†) + Ω0 + Ωpe−iδt

+
√

2κmm̂in, (1a)

db̂

dt
= (−iωb − κb)b̂ − igmbm̂†m̂ +

√

2κb b̂in, (1b)

where ∆m = ωm − ω0 is the detuning between the pumping field and the magnon mode,
δ = ωp − ω0 is the detuning between the pumping field and the probe field, ωb is the fre-
quency of the mechanical mode, and κm and κb are, respectively, the decay rate of the magnon
and the mechanical mode; min and bin are the noise operators for the magnon and mechanical
modes, respectively, which are zero mean, i.e., 〈m̂in(t)〉 = 0 and 〈b̂in(t)〉 = 0, and are character-
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ized by the correlation functions 〈m̂in(t)m̂
†
in(t

′)〉 = [Nm(ωm) + 1]δ(t − t′), 〈m̂†
in(t)m̂in(t

′)〉 =
Nm(ωm)δ(t − t′), and 〈b̂in(t)b̂

†
in(t

′)〉 = [Nb(ωb) + 1]δ(t − t′), 〈b̂†
in(t)b̂in(t

′)〉 = Nb(ωb)δ(t −
t′) [47], where Nm(b)(ωm(b)) =

[

exp(h̄ωm(b)/kBT)− 1
]−1

are the equilibrium mean thermal

magnon (phonon) number, with kB the Boltzmann constant and T the environmental tempera-
ture. Within the semiclassical approximation, the magnon and phonon operators are reduced
to their expectation values [34,49], viz., m = 〈m̂〉, m∗ = 〈m̂†〉, b = 〈b̂〉, and b∗ = 〈b̂†〉, and the
quantum noise terms can be safely dropped. In addition, the mean-field approximation by
factorizing averages, i.e., 〈m̂†m̂〉 = m∗m, is used to deal with the nonlinear term igmbm̂†m̂.
Then, the Heisenberg–Langevin equations read

dm

dt
= (−i∆m − κm)m − igmbm(b + b∗) + Ω0 + Ωpe−iδt, (2a)

db

dt
= (−iωb − κb)b − igmbm∗m. (2b)

Assuming that the pumping field is much stronger than the probe field, we can em-
ploy the perturbation method for solving the evolution Equations (2a) and (2b); that is,
the solution of the Equations (2a) and (2b) can be written as the sum of the steady-state
values and the small perturbations. Physically, the strong pumping field provides the
steady-state solutions (m0, b0) of the system, and the weak probe field provides the pertur-
bations around the stable states. Accordingly, the total solutions of Equations (2a) and (2b)
can be described by m = m0 + δm and b = b0 + δb. Setting dm0/dt = 0 and db0/dt = 0,
the steady-state solutions of Equations (2a) and (2b) can be obtained as

m0 =
−Ω0

i∆m + κm − igmb(b0 + b∗0)
, (3a)

b0 =
−igmb|m0|2

iωb + κb
. (3b)

|m0|2 and |b0|2 denote, respectively, the steady-state average magnon number and the
phonon number provided by the pumping field Ω0. According to Equations (3a) and (3b),
we can obtain the following function relationship of |m0|2:

4g4
mbω2

b

(ω2
b + κ2

b)
2
(|m0|2)3 +

4∆mg2
mbωb

ω2
b + κ2

b

(|m0|2)2 + (κ2
m + ∆

2
m)|m0|2

=
5γ2Nµ0P0

8Sc
. (4)

3. Results and Discussion

We display the steady-state magnon number |m0|2 as a function of the power of the
microwave drive field P0 for different values of the magnomechanical coupling strength
gmb in Figure 2. As shown by the red line in Figure 2, without the magnomechanical
coupling, i.e., gmb = 0, the steady-state magnon number |m0|2 undergoes linear growth
with increase in the power of the microwave drive field P0. Interestingly, the steady-
state magnon number |m0|2 experiences a bistable behavior of P0 in a certain parameter
region when we consider the magnomechanical coupling, implying that the magnonic
response exhibits two different stable states. As shown by the blue line (corresponding
to the magnomechanical coupling strength gmb/2π = 9.88 mHz) in Figure 2, for the case
where P0 < 143.1 mW, only one solution exists and the system has no bistability. For the
case where 143.1 mW < P0 < 8.867 W, the cubic Equation (4) for the steady-state magnon
number |m0|2 yields three real roots. The largest and smallest roots are stable, and the
middle one is unstable, which is indicated by the dashed line. The system gives rise to
bistability in this region [6,50]. The magnonic bistability can be seen from the hysteresis
loop. Specifically, the steady-state magnon number |m0|2 initially lies in the lower stable
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branch (corresponding to the smallest root). When the power of the microwave drive field
is gradually increased, the steady-state magnon number |m0|2 scans the lower stable branch.
When the steady-state magnon number |m0|2 arrives at the end of the lower stable branch,
i.e., the first critical point, it jumps to the upper stable branch. After jumping to the upper
stable branch, the steady-state magnon number |m0|2 starts decreasing and still follows the
upper stable branch when the power of the microwave drive field is decreased. When the
steady-state magnon number |m0|2 reaches to the second critical point, it jumps down to
the lower stable branch. Furthermore, when we increase the magnomechanical coupling
strength gmb to 1.1 × 9.88 mHz, the power of the microwave drive field needed to observe
the bistability is relatively lower, as shown by the black line in Figure 2. Here, the power of
the pumping field is kept below 10 mW throughout this work to avoid bistability in the
system. Specifically, the low-lying excitations indicate 〈m̂†m̂〉 ≪ 2Ns, where s = 5/2 is
the spin number of the ground state Fe3+ ion in the YIG sphere. For a 250-µm-diameter
YIG sphere, the total number of spins N ≈ 3.5 × 1016 [20]. The magnon number for
P0 = 10 mW is about 1.1 × 1014, which satisfies the assumption of the low-lying excitations
|m|2 ≪ 5N = 17.5 × 1016.

0 2 4 6 8 10

P
0
 (W)

0

2

4

6

8

10

|m
0
|2

1017

g
mb

=0

g
mb

/2 =9.88 mHz

g
mb

/2 =1.1 9.88 mHz

Figure 2. (Color online) Magnon bistability as seen through the steady-state magnon number |m0|2
varied with the power of the microwave drive field P0 for the three different magnomechanical cou-

pling strengths gmb/2π = 0, 9.88 mHz, and 1.1 × 9.88 mHz, corresponding to the red, blue, and black

lines, respectively. The other system parameters we use are ωb/2π = 11.42 MHz, κm/2π = 0.56 MHz,

κb/2π = 150 Hz, and ∆m = ωb, respectively, which are chosen from the recent experiment [20].
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By substituting the ansatzs m = m0 + δm and b = b0 + δb into the Equations (2a) and (2b),
we can obtain the evolution equation of the perturbations δm and δb made by the probe
field:

zφ = Mφ +N φ∗ + Ωpe−iδtσ, (5)

where φ = (δm, δb)T , σ = (1, 0)T , and

z =

(

i∆m + κm + d/dt 0
0 iωb + κb + d/dt

)

,

M =

( −igmb(b0 + b∗0 + δb + δb∗) −igmbm0

−igmb(m
∗
0 + δm∗) 0

)

,

N =

(

0 −igmbm0

−igmbm0 0

)

.

In the perturbative regime, we assume that the perturbations δm and δb can be ex-
pressed in the following series form [50]:

δm = m+
1 eiδt + m−

1 e−iδt + m+
2 e2iδt + m−

2 e−2iδt, (6a)

δb = b+1 eiδt + b−1 e−iδt + b+2 e2iδt + b−2 e−2iδt, (6b)

where the coefficients m±
1 and m±

2 are the amplitude of the magnonic first- and second-
order sideband components with the frequency ω0 ∓ δ and ω0 ∓ 2δ, respectively. m+

1 (m+
2 )

and m−
1 (m−

2 ) correspond to the lower and upper sidebands, respectively. The physical
picture of such ansatzes Equations (6a) and (6b) can be understood as follows: When
the Kittel mode in the YIG sphere is excited by the pumping field and the probe field,
there are sidebands generated with a series of frequencies ω0 ± nδ, where the integer n
is the order of the sideband. These frequency components are generated by the para-
metric frequency conversion stemmed from the nonlinear terms −igmbδm(δb + δb∗) and
−igmbδm∗δm, which is quite similar to second- and high-order harmonics generation in
a nonlinear medium [51,52]. The first-order upper sideband ω0 + δ is referred to as the
anti-Stokes field, and the first-order lower sideband ω0 − δ is known as the Stokes field.
The output field with a frequency ω0 + 2δ is the second-order upper sideband, and the
frequency ω0 − 2δ is the second-order lower sideband. The third-order sideband and the
other higher-order sideband components are very weak in contrast to the second-order
sideband and are validly ignored in the perturbative regime. By substituting the ansatzes
Equations (6a) and (6b) into the Equation (5), we can obtain

m−
1 =

Ωp

Ξ(δ)− igmbλm0
, (7a)

m−
2 =

igmbm0(Θ + Υ)

̟(ψ−, θ)− ρ(δ)
(7b)

where Ξ(δ) = i∆m + κm − iδ− igmb(b
∗
0 + b0), λ = −igmbm∗

0 [1/(−iωb − iδ+ κb)− 1/(iωb −
iδ + κb)], m+

1 = igmbm0λ∗(m−
1 )

∗/Ξ(−δ), ̟(x, y) = x − igmb(b0 + b∗0) − igmbm0y, θ =
π−m∗

0 + (π+m0)
∗, π± = ig/(iωb + κb ± 2iδ), ψ± = i∆m + κb ± 2iδ, τ1 = (π∗

− + π+)m∗
0 ,

τ2 = (π− + π+)m0, Υ = (π− + π∗
+)(m

+
1 )

∗m−
1 + igmbλ(m−

1 )
2, and

ρ(δ) =
−g2

mb|m0|2τ2(π
∗
−m0 + π+m0)

̟(ψ+, τ1)
,
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Θ =
iτ2gmbm∗

0Υ − igmbλ(m+
1 )

∗m−
1

̟∗(ψ+, τ1)
.

Using the input–output relation [48] sout = (Ω0 + Ωpe−iδt)/
√

κm −√
κmm, we can

obtain the output fields of the magnons:

sout =Ω0/
√

κm −√
κmm0 + (Ωp/

√
κm −√

κmm−
1 )e

−iδt

−√
κmm+

1 eiδt −√
κmm−

2 e−2iδt −√
κmm+

2 e2iδt, (8)

where the coefficients Ω0/
√

κm −√
κmm0, Ωp/

√
κm −√

κmm−
1 , and −√

κmm+
1 denote the

amplitude of the output fields at the frequencies ω0, ωp, and 2ω0 −ωp, respectively, and the
amplitude of the output fields at the second-order lower sideband with the frequency
3ω0 − 2ωp and the second-order upper sideband with the frequency 2ωp − ω0 can be
obtained as −√

κmm+
2 and −√

κmm−
2 , respectively. Here, we focus on the generation of the

second-order upper sideband. To reveal substantially the second-order upper sideband
generation process, we define the transmission of the probe field as tp =

√
κm(Ωp/

√
κm −√

κmm−
1 )/Ωp = 1 − κmm−

1 /Ωp, and the dimensionless quantity η = | − κmm−
2 /Ωp| as the

efficiency of the second-order upper sideband generation. Specifically, we scale the output
intensity of the second-order upper sideband generation with respect to the intensity of the
probe field.

In order to better understand the physical process of the second-order sideband
induced by the magnomechanical nonlinearity, in Figure 3a, we plot the transmission ratio
of the probe field |tp|2 as a function of the detuning δ and the power of the pumping
field P0. As shown in Figure 3b, a transmission peak appears at δ/ωb = 1, and we
find that the transmission characteristics of the probe field exhibit a strong dependence
on the pumping field. In detail, when we increase the power of the pumping field to
0.5 mW and 5 mW, the peak values reach about 0.8 and 1, as shown in Figure 3c,d. This
implies that the generation efficiency of the first-order upper sideband becomes higher with
increase in the power of the pumping field P0. The first-order upper sideband is derived
from the one-phonon upconversion of the pumping field, which is called an anti-Stokes
process [46,53,54]. In addition, Figure 3a shows that the transmission peak of the probe
field becomes wider and wider with increase in the power of the pumping field. The width
of the transmission peak of the probe field is proportional to the steady-state magnon
number, i.e., Γm = κm + 4g2

mb|m0|2/κm [45], and the steady-state magnon number |m0|2 can
be enhanced by increasing the power of the pumping field.

Figure 4 shows that the efficiency η of the magnonic second-order sideband generation
varies with the detuning δ for different magnomechanical coupling strengths gmb. We
can see that the value of η is zero in the case of gmb = 0, which means that no magnonic
second-order sideband is generated due to the nonlinear terms [i.e., −igmbδm(δb + δb∗)
and −igmbδm∗δm] are absent. When the magnomechanical interaction is considered,
i.e., gmb/2π = 9.88 mHz, one can find that an obvious magnonic second-order sideband
generation can be observed, i.e., η = 1.3 × 10−3, which means that the amplitude of the
output magnonic second-order sideband is 1.3 × 10−3 of the amplitude of the probe field.
The linewidth of the second-order sideband is about 4.2 × 103 Hz, arising from the intrinsic
mechanical damping rate and the microwave drive field induced damping rate, which can
be obtained as κm + 4g2

mb|m0|2/κm [45] and is consistent with the first-order sideband spec-
trum. The increase in the magnomechanical coupling strength gmb enhances the generation
efficiency of the magnonic second-order sideband. By experimentation, the improvement
in the magnomechanical coupling strength can be realized by scaling down the YIG sphere
size [20].
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Figure 3. (Color online) (a) The transmission spectrum |tp|2 of the probe field as a function of δ and the

power of the pumping field P0. (b–d) plot the transmission spectrum |tp|2 in the case of P0 = 10µW,

0.5 mW, and 5 mW, respectively. The magnomechanical coupling strength gmb/2π = 9.88 mHz. We

use Ωp/Ω0 = 0.05, and the other parameters are the same as in Figure 2.
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Figure 4. (Color online) The efficiency η of the magnonic second-order sideband generation as

a function of the detuning δ for different values of the magnomechanical coupling strength gmb.

The power of the pumping field is P0 = 10 µW. The other parameters are the same as in Figure 2.

Figure 5a plots the efficiency η of the magnonic second-order sideband generation
varying with the detuning δ and the power of the pumping field. We can see that the
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increased pumping field intensity can result in considerable enhancement of the efficiency
η. In detail, as shown in Figure 5b–d, the maximum values of the efficiency η are about
4 × 10−3, 6 × 10−3, and 6.4 × 10−3, which correspond to the power of the pumping field
P0 = 0.1 mW, 1 mW, 5 mW, respectively. On the other hand, one can find that the efficiency
η becomes very small at the resonance point δ/ωb = 1. The physical reason for this
phenomenon can be understood as follows: The fundamental mechanism for second-order
sideband generation is that the anti-Stokes field and the probe field undergo a one-phonon
upconverted process. However, destructive interference occurs between the probe field
and the anti-Stokes field, which leads to a transparency window at δ/ωb = 1, as shown
in Figure 3a. Then the generation process of the second-order sideband is subdued at
δ/ωb = 1 [50]. The linewidth of the second-order sideband becomes wider with increase in
the power of the pumping field P0, while it is much less than the linewith of the magnon
resonance mode (∼κm), such that the magnonic second-order sideband may provide a tool
to achieve high-precision measurement.
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Figure 5. (Color online) (a) The contour map of the efficiency η as a function of the detuning δ and

the power of the pumping field P0. (b–d) plot the spectrum of the magnonic second-order sideband

in the case of P0 = 0.1 mW, 1 mW, and 5 mW, respectively. The magnomechanical coupling strength

gmb/2π = 9.88 mHz. The other parameters are the same as Figure 2.

Finally, we discuss the influence of the applied bias magnetic field on the magnonic
second-order sideband generation. Figure 6 shows that the efficiency η can be tuned by
adjusting the bias magnetic field strength H. For a certain pumping power, we find that the
efficiency of second-order sideband generation can be enhanced by tuning the bias magnetic
field. The maximum value of the efficiency η is about 15.4 × 10−3 when the bias magnetic
field strength H ≈ 280.67 mT, while the efficiency η is about 6 × 10−3 when P0 = 1 mW,
as shown in Figure 5c. This implies that the nonlinear magnetostrictive interaction between
the magnon mode and the mechanical mode in the YIG sphere is extremely enhanced. It
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can be seen that the sideband efficiency is asymmetric, and the critical value H = 280.71 mT
corresponds to the frequency of the magnon mode ωm/2π = 7.86 GHz. The generation of
the magnonic second-order sideband can be well controlled by only tuning the applied bias
magnetic field without changing the other system parameters, which provides an effective
and feasible way to manipulate the magnetostrictive effect and to realize convenient
magnomechanical control.

0.998 0.999 1 1.001 1.002

/
b

280.5

280.6

280.7

280.8

280.9

H
 (

m
T

)

2

4

6

8

10

12

14

10
-3

Figure 6. (Color online) The efficiency η as a function of the detuning δ and the bias magnetic field

strength H. The power of the pumping field is P0 = 1 mW. The other parameters are the same as

Figure 5.

4. Conclusions

In conclusion, we have theoretically studied the nonlinear interaction between the
magnon mode and the mechanical mode and discussed the generation and control of the
magnonic second-order sideband in a magnomechanical system by using the perturbation
method. We have shown that the magnomechanical nonlinearity makes the system bistable,
and that the magnonic second-order sideband can be tuned by the microwave drive field
and the external magnetic field. Based on the low damping and the flexible controllability
of the system, the magnonic second-order sideband presented here possesses the features
of narrow linewidth and convenient control. Beyond fundamental scientific significance,
our results may have potential applications in high-precision measurement, such as force
sensors [55], magnetostrictive transducers [56] and actuators [57].
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