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Constraining New Physics with Neutrino and Collider

Chen Sun

(ABSTRACT)

In this work, we examine how neutrino and collider experiments can each and together put
constraints on new physics more stringently than ever. Constraints arise in three ways. First,
possible new theoretical frameworks are reviewed and analyzed for the compatibility with
collider experiments. We study alternate theories such as the superconnection formalism and
non-commutative geometry (NCG) and show how these can be put to test, if any collider
excess were to show up. In this case, we use the previous diboson and diphoton statistical
excess as examples to do the analysis. Second, we parametrize low energy new physics in
the neutrino sector in terms of non-standard interactions (NSI), which are constrained by
past and proposed future neutrino experiments. As an example, we show the capability
of resolving such NSI with the OscSNS, a detector proposed for Oak Ridge National Lab
and derive interesting new constraints on NSI at very low energy (. 50 MeV). Apart from
this, in order to better understand the NSI matter effect in long baseline experiments such
as the future DUNE experiment, we derive a new compact formula to describe the effect
analytically, which provides a clear physical picture of our understanding of the NSI matter
effect compared to numerical computations. Last, we discuss the possibility of combining
neutrino and collider data to get a better understanding of where the new physics is hidden.
In particular, we study a model that produces sizable NSI to show how they can be con-
strained by past collider data, which covers a distinct region of the model parameter space
from the DUNE experiment. In combining the two, we show that neutrino experiments are
complementary to collider searches in ruling out models such as the ones that utilize a light
mediator particle. More general procedures in constructing such models relevant to neutrino
experiments are also described.

This work was partially support by U.S. Department of Energy grant DE-FG05-92ER40677,
task A, by Virginia Tech Sigma Xi PhD Research Award, and by the Clayton D. Williams
Graduate Fellowship in Theoretical Physics, Virginia Tech.



Constraining New Physics with Neutrino and Collider

Chen Sun

(GENERAL AUDIENCE ABSTRACT)

As we know, all matter in our daily life is made of particles called atoms and molecules, which
are in turn formed by subatomic particles: protons, neutrons, and electrons. If one further
divides the former two with certain technology, such as using a proton collider to smash
one into another, it goes to the regime of elementary particles. It is shown experimentally
that all matter we know is made of elementary particles that cannot be further divided.
They include quarks and leptons. Together with the force carrier particles (also called gauge
bosons) and the Higgs scalar, they form the Standard Model of particle physics. In this work,
we study the properties of elementary particles and the way they interact with each other
that are different from the Standard Model predictions. We conduct the research study in
the following two aspects: collider phenomena and neutrino phenomena. These two aspects
cover the high energy regime of particle scattering process and low energy regime of neutrino
propagation, which are two important sectors of great interest recently. As a result of the
analysis, we discuss possible ways that the new physics is hidden yet can be detected with
next generation experiments.



Dedication

to my parents
for raising me to believe that anything was possible.

and to zhulin
for making everything possible.

iv



Acknowledgments

I would like to thank my advisor, Prof. Tatsu Takeuchi. This work would not have been
done without his continuous help and encouragement. When my research slows or even halts
by unexpected difficulties, Prof. Takeuchi is always there to work it out with me, to guide
me through details to see the big picture, as a mentor and also a reliable friend. During the
years of studying with him, I learned much more than just physics expertise.

I am grateful for insightful discussions with Prof. Djordje Minic on various advanced topics
and physics history, on which I had little knowledge otherwise. In addition to the shared
experience as a researcher, this exposure to real world research is valuable in helping me
decide and plan my future career. Special thanks go to Profs. Lay Nam Chang and Patrick
Huber, both of whom lent helping hands and gave me solid support during the time of job
search. I am grateful for their wisdom on making choices, and the initiative to interact with
people. I would also like to thank my committee members for reviewing this work in such a
short notice and the comments for revision.

I would like to acknowledge the ideas and inspirations from communications with Profs.
Sajib Agarwalla, Pilar Coloma, James Gray, Peter Haskell, Yee Kao, Cecilia Lunardini,
Irina Mocioiu, Leo Piilonen, Eric Sharpe, Uwe Täuber, Devin Walker, and Hanqing Zheng.
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Introduction

After decades of experimentation, the Standard Model (SM) of particle physics is verified
to unprecedented precision. At this point, two questions remain particularly intriguing. 1)
In which sector might new physics be hidden? 2) What principle requires the SM to be a
gauge theory of the given form with the observed parameters? For the first question, the
neutrino sector has large uncertainty in regards to determining the SM parameters due to
the nature of the weak interaction. A thorough study of these parameters and the possible
non-standard interaction (NSI) is crucial for any constraints or probes of physics beyond the
SM. However, for the second question, although the gauge field theory framework is verified
by data from various experiments during the past few decades, the fundamental reason that
fixes the SM to the specific form we observe remains unexplained. For example, it is not
understood what theory fixes the boundary value of Yukawa couplings; what the source of
baryon asymmetry of the universe is; why the gauge group is chosen to be U(1)× SU(2)×
SU(3); how the hypercharge is quantized, which in turn leads to anomaly cancellation;
what principle determines the number of families of fermionic particles; and whether the
SM Higgs is the only scalar responsible for spontaneous symmetry breaking (SSB). In short,
an understanding of the principle that dictates the SM does not yet exist. On the other
hand, although the origin of the SM remains unclear, past attempts show that an arbitrary
modification of the SM will likely cause problems either experimentally or theoretically,
which hints for the existence of a fundamental theory that leads to the SM.

At this point, a different perspective may provide us with new insights that are not available
with conventional approaches. Different from most formal theories, as a reformulation of the
SM in terms of geometry, noncommutative geometry (NCG) provides a new way of looking
at the SM while building directly upon low energy particle data. Because of its geometric
structure, this approach leads to more restrictive model building than other approaches, and
implicitly proposes some relations between different sectors, relations which are not visible
in the SM itself. In addition, because the geometry is built directly on particle data, models
derived from NCG usually share specific collider signatures. Therefore, a good understanding
of the collider data may help us understand the structure of new physics and finally shed
some light on the origin of the SM.

With two sets of data, one from neutrino experiments and the other from collider experi-
ments, one may ask how to combine them to get extra information which otherwise would
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remain obscure. In particular, whenever a new particle model is proposed, one should be
able to constrain the new model with both sets of particle data. To address this question,
an example is worked out explicitly. Our message is that, even from a practical viewpoint,
particle models motivated by specific problems should still be tested with all available data.
In particular, collider experiments put strong bound on models that predict sizable NSI. As
a result, it is non-trivial to build a model that generate flavor changing NSI large enough
to be observed at long baseline neutrino experiments such as DUNE using light mediator
particles, while it survives all the current bounds from particle data. In this analysis, we list
possible constraints for such model building for future reference.

To summarize, in this work constraints on new physics are studied from two directions:
neutrino measurements and collider signals. On the collider side we consider the signature
of physics from exotic structures, e.g., NCG; on the neutrino side, we study constraints on the
NSI. In the end, we use collider data to constrain neutrino models. Data from complementary
sources such as current and future colliders and long-baseline neutrino experiments will guide
future model building.

The rest of the thesis is organized as follows. In Part I, collider experiments are applied to
constrain NCG-motivated models. In Chapters 2 and 3, collider signatures of superconnec-
tions and NCG motivated models are discussed. In each chapter we start with a brief review
on the superconnection formalism and the NCG respectively. Without going into details of
the formalism, we investigate the phenomenological consequences based on each approach,
and compare with current bounds from various process. Inspired by the previous statistical
excess from LHC, Chapter 4 serves as an example of using collider signals to test such NCG
motivated models. In Part II, neutrino experiments are studied to constrain NSI. In Chapter
6, a previously-proposed neutrino detector, OscSNS at Oak Ridge National Lab is studied.
Constraints on εee are worked out explicitly based on the proposal. In Chapter 7, an analytic
way to understand the neutrino matter effect in the presence of εµτ NSI is proposed. As a
check of the validity of the formula, it is demonstrated how to use it to understand the NSI
matter effect at long-baseline neutrino experiments such as DUNE. In Chapter 8 of Part III,
we list some of the models that reproduce sizable NSI. We investigate the constraints on one
particular model and show the relevant channels for model building of this type.



Part I

Constraining New Physics with
Collider Experiments
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Chapter 1

Evidence for the Standard Model and
Beyond

1.1 The Standard Model and Why We Believe It

Although we still have a lot of unanswered questions such as the solution of QCD at low
energy [10–15] and naturalness of the SM [16–20], etc., the SM packaged in effective field
theory (EFT) [21–25] language is verified to high precision at low energy. We will elaborate
on the SM, after first explaining what it means to verify a theory.

Any theory comes with a certain number of free parameters as input and makes predictions
of certain number of observables as output. The difference of these two numbers1 describes
the predictive power. If one is not concerned about the predictive power of the theory but
only cares about the viability of the theory, he/she can cook up a theory with infinite free
parameters so that, in principle, this theory can accommodate any experimental outcome –
it works as the ‘theory of everything’. However, in reality a theory like that requires infinitely
many terms to describe thus will take infinite amount of time to reach. To make it worse,
the number of free parameters being infinity makes the theory neither falsifiable nor able to
predict anything; hence, it cannot be counted as a real theory in the context of science.

With a finite number of free parameters and a finite number of observables, a theory expresses
the latter in terms of the former. In a simplified situation, if each experiment measures
one observable, we need P independent measurements to determine the theory with P free
parameters. Suppose the theory predicts O independent observables; if O > P , it is possible
to over-constrain the theory with independent experiments. In this case we say the theory
is verifiable. In this case, we are able to fit the parameters of the theory with a set of P

1Actually we should only count the number of independent free parameters and observables. Therefore
it is the difference in dimensions of the parameter space and the ‘observable space’ that amounts to the
capability of making predictions.

4
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observables and to make predictions for the remaining (O − P ) observables. By comparing
these predictions with the independent measurement of each observable, we can either verify
or rule out the theory. Equivalently, when O > P , what a theory does is to find P observables
and express the (O−P ) variables in terms of them. Therefore, it is safe to think of a theory as
a set of relations among observables. Whether it ‘explains’ the relations well is a philosophical
question and we refrain ourselves from further discussion on it. In general, only verifiable
theories (O > P ) are of interest.

In the real world, verifiability is also limited by experimental conditions. At any certain
point of time only certain experiments are complete, in progress, or being planned in the
near future. Our ability to verify theories is thus limited by the experimental conditions.
Therefore, we phenomenologists are more interested in the type of theories that can be
verified with data from past, current or near-future experiments. The SM is a theory that is
commonly believed for particle physics at or below a few TeV. To show why we believe the
SM to be true, let us take the electroweak sector of the SM as an example.

The electroweak sector of SM is verified to a high precision by several precision measurements.
In this sector, we have the following very well measured observables:

α̂, ĜF , m̂Z , m̂W , Γ̂`+`− , ŝ
2
eff , etc... (1.1)

where they are, in order of appearance: the fine structure constant from γ∗ → e+e−, the
Fermi constant from muon decay, the Z boson mass, the W boson mass, the leptonic par-
tial width of Z boson, and the effective sin2 θW from the left-right asymmetry ÂLR. For
electroweak theory, we have three (most relevant) free parameters:

g, g′, v, (1.2)

viz., the U(1)Y coupling, SU(2)L coupling, and the vacuum expectation value (VEV) of the
Standard Model (SM) Higgs. In electroweak analysis, it is easier to express two of these in
terms of the QED coupling e and the weak angle θW by

e ≡ gg′√
g2 + g′2

,

s ≡ sin θW =
g′√

g2 + g′2
, (1.3)

with v unchanged. The relation among the observables and the SM parameters, up to one



6

loop, are given as

(α̂)th =
e2

4π

[
1 +

Πγγ(m
2
Z)

m2
Z

]
,

(ĜF )th =
1√
2v2

[
1− ΠWW (0)

m2
W

]
,

(m̂2
Z)th =

e2v2

4s2c2
+ ΠZZ(m2

Z),

(m̂2
W )th =

e2v2

4s2
+ ΠWW (m2

W ),

(ŝ2
eff)th = s2 − scΠγZ(m2

Z)

m2
Z

,

(Γ̂`+`−)th ≈ e2

48πs2c2
mZ

(
1 +

ΠZZ(m2
Z)

2m2
Z

)
×

[(
−1

2
+ 2s2 − 2sc

ΠγZ(m2
Z)

m2
Z

)2

+
1

4

] (
1 + Π′ZZ(m2

Z)
)
, (1.4)

where the parts involving a vacuum polarization amplitude Π are the one-loop corrections.
In order to test the SM, we need to fit g, g′, and v in terms of three of the observables, say
α̂, ĜF , and m̂2

Z
2, predict the remaining observables, and then compare the predictions with

the measurements3.

In Table 1.1, we show the measured and the SM-predicted values of a few observables. As
we can see, the deviation between them is small in general, and the SM is verified to great
precision. Part of this can also be seen from Fig. 1.2 of the uncertainty in the plane of
Higgs mass vs the top-quark mass, which is verified by the discovery of Higgs boson [32, 33].
As a result, theoretically it is reasonable to ask about the origin of the SM. There are
theoretical structures that beg for an explanation, such as what dictates the SM gauge
group, whether the coupling constants of the three gauge sectors unify at a certain scale as
hinted in Fig. 1.1, what guarantees the anomaly cancellation of the SM, without which the
theory would be rendered invalid, etc. The structure of the SM seems unnatural if all of this
is just a coincidence without further fundamental reasons [16–20]. This motivates a number
of ingenious ideas perceived to explain the naturalness of the SM, which will be discussed in
the next section.

2These three observables are usually chosen because of their small uncertainties.
3 This is essentially using observables α̂, ĜF , and m̂2

Z to express the rest of observables and check this
relation predicted by the SM and measured by experiments. That is the reason that in literature such as
Ref. [26–31] it is often mentioned to ‘expression observables in terms of observables’ to test the theory.
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Quantity Value Standard Model Pull
mt [GeV] 173.34± 0.81 173.76± 0.76 -0.5
MW [GeV] 80.387± 0.016 80.361± 0.006 1.6

80.376± 0.033 0.4
ΓW [GeV] 2.046± 0.049 2.089± 0.001 -0.9

2.195± 0.083 1.3
MH [GeV] 125.09± 0.24 125.11± 0.24 0.0

gνeV −0.040± 0.015 −0.0397± 0.0002 0.0
gνeA −0.507± 0.014 −0.5064 0.0

MZ [GeV] 91.1876± 0.0021 91.1880± 0.0020 -0.2
ΓZ [GeV] 2.4952± 0.0021 91.1880± 0.0020 0.4

Γ(had) [GeV] 1.7444± 0.0020 1.7420± 0.0008 −
Γ(inv) [MeV] 449.0± 1.5 501.66± 0.05 −

Γ(`+`−) [MeV] 83.984± 0.086 83.995± 0.010 −

Table 1.1: Observables compared with the SM best fit predictions. Result is taken from
PDG.

1.2 Energy vs. Intensity and What Has Been Attempted

According to the Wilsonian picture, in the IR limit the set of physically relevant operators
is formed by normalizable operators whose mass dimension is lower than four. Any effects
from higher dimensional operators are suppressed. Taking scalar theory as an example,

L =
1

2
(∂µφ)2 − 1

2
m2φ2 − λ3

3!
φ3 − λ4

4!
φ4︸ ︷︷ ︸

Lrenorm

+
∑
n>4

λn
n!

φn

Λn−4︸ ︷︷ ︸
Lnon-renorm

, (1.5)

where Λ is the cutoff of the theory. The non-renormalizable part of the Lagrangian gets
suppressed by powers of 1

Λ
. To study the non-renormalizable part of the Lagrangian, exper-

imentally two directions are pursued: One either goes to the high energy regime in the hope
of resolving the non-renormalizable operator in terms of renormalizable pieces as suggested
in Ref. [34–38], or one generates an enormous amount of data hoping to see the suppressed
effect from the high-dimensional operators in Lnon-renorm as attempted in Ref. [39–47]. These
two directions correspond to the so-called ‘energy frontier’ and ‘intensity frontier,’ respec-
tively. These two methods both played important roles in the history of particle physics:
in 1934, Enrico Fermi proposed ‘An attempt of a theory of beta radiation’ in Ref. [48, 49],
and ‘characteristically swept what was unknowable at that time under the rug, and focused
on what can be calculated.’ [50] Because the energy scale at which the β decay happens is
so low, the W propagator is impossible to resolve. Therefore, a contact interaction model
that uses non-renormalizable high dimensional operators explains nuclear β decay to a good
precision and inspired later studies on weak interaction and the proposal of V −A structure.
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Figure 1.1: The running of the Standard Model gauge coupling. Plot is used with permission
of PDG [1].

[51–53] It remains a nice approximation and a good tool for calculation until the modern
formulation of gauge theory was proposed [54–56] and verified by the W and Z discoveries
at CERN [57, 58].

Besides the success in gauge sector, another important part of the SM is the Yukawa inter-
action. A similar story happened in formulating the Yukawa interaction: it was proposed
in 1935 by Hideki Yukawa [59] that the nuclear binding energy is dominated by exchanging
a ‘new’ particle, the pion, where the energy potential characteristic length of the potential
is interpreted as m−1

π . By fitting data of the nuclei binding energy, one could estimate the
mass of the pion, which was later verified by the discovery of the pion [60, 61], which is itself
explained as a bound state of more fundamental particles – the quarks.

This motivates people to focus on the following ‘standard’ procedures of modeling new
physics: a) describe the new physics in terms of high-dimensional operators such as in Ref.
[62–77] and constrain these effective operators with data from experiments; or, b) construct
models based on local quantum field theories to generate such operators and avoid the bounds
from a), and maybe also provide features such as grand unification theory (GUT) and answers
to the hierarchy problem, with examples such as SUSY [78–80]; small, large, or non-compact
extra dimension [81–85]; conformity [86, 87]; technicolor [88–99]; and other paradigms [100].
However, with null observation of any above models, it revives a few interesting old questions
rather than providing answers to them, namely

• Does grand unification occur?
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Figure 1.2: The fit result of (MH ,mt) and one-standard deviation uncertainty, with various
input. Plot is used with permission of PDG [1].

• Is the hierarchy problem a (well-defined) problem?

• If grand unification does occur and hierarchy problem is a real problem, then why do
we not see the extra degrees of freedom after the breaking of the extra structure (e.g.
GUT gauge fields, SUSY partners, etc.)?

• Without the number of extra degrees of freedom, how do we ever (elegantly) address
the naturalness of the Higgs mass?

In this work, we take a different philosophy to address the questions raised above and the
questions on the origin of the SM raised in section 1.1, which is to be elaborated in the next
section.

1.3 Physics Beyond the Standard Model and Where to

Find It

The aforementioned attempts are mostly based on the assumption that the new physics
responsible for generating the SM and perhaps addressing the hierarchy problem and grand
unification can also be described in terms of effective field theory. However, this is not
necessarily true from either the experimental or the theoretical viewpoint. Although effective
field theory works surprisingly well at the current energy scale, it is expected to break down
ultimately due to the non-local effect of quantum gravity [101–119] and the breaking scale is
ΛNP . ΛPl. Therefore, there remains the possibility that the theory that describes the new
physics above the scale ΛNP is not a local quantum field theory, and below ΛNP effective
field theory works just fine.
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According to the Wilsonian picture, there are two ways an ‘advanced’ theory above a certain
scale controls the effective field theories below that scale: either through directly fixing the
degrees of freedom below the cut off scale, i.e., affecting the renormalization group equation
(RGE); or by imposing boundary conditions of the RGE. Since effective field theory works
well below ΛNP and the structure is fairly rigid against arbitrary modifications, it must be
determined in both ways.

In this scenario, the effect of the new physics above ΛNP is not described by local oper-
ators nor usual renormalization group equation (RGE) flow. As a consequence, the non-
renormalizable effective operators below ΛNP is not a direct result of any local operators
above ΛNP . This is no longer an analog of, say, resolving Fermi interaction in terms of the
W propagator. As a result, a theory built in this fashion usually does not have the large
number of extra degrees of freedom as in SUSY or SU(5)/SO(10) GUT theories, where the
extra degrees of freedom below ΛNP are inevitable since the theory above ΛNP is a local
quantum field theory and the degrees of freedom just propagate through ΛNP . This is not
true in our case.

Now that new physics does not manifest itself through a direct generation of local operators
below ΛNP , the only way it controls low energy effective field theory is via the boundary
relations imposed at ΛNP . Given the evidence of the SM being so robust against any modi-
fication at the electroweak (EW) scale and the almost unification of the coupling constants
at some higher scale as shown in Fig. 1.1, we conjecture that the boundary condition4 at
ΛNP is the SM spectrum itself with a GUT relation, plus a minimal extension in order to
reconcile the GUT relation with EW measurements at low energy. In this context, the ques-
tions raised in section 1.1 and section 1.2 indicate answers to each other: the robustness of
the SM against modifications with arbitrary local quantum field operators hints at a theory
that may not be Wilsonian, which is why we do not observe the extra degrees of freedom
inherited from any local field theory extension. On the other hand, because of the lack of
observation of extra quantum field theoretical degrees of freedom, the advanced theory can
only dictates the low energy theory through some boundary relation, which itself is the SM
up to a minimal extension at a certain scale. We call this picture a quasi-desert picture.

To summarize, here is the logic we follow. Being an effective theory, the SM plus any
extension can only be explained by the advanced theory from which it is derived. In the
past, the full theory is conjectured to be also a local quantum field theory; therefore, a large
number of degrees of freedom propagate into the SM as an extension to it. Due to the null
observation of any of these degrees of freedom, we provide a picture different from the above
one. Instead of having the full theory as another local quantum field theory, we argue that it
is possible the theory above ΛNP is not fully describable in terms of local quantum operators.
Thus new physics manifests itself only through a set of relations dictated at ΛNP , i.e., the
SM-like spectrum plus the GUT relation. As a result, we can predict the extra degrees of

4We take the broader meaning of boundary condition as a constraint imposed at a certain scale, which is
not necessarily a formal boundary condition of a differential equation.
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freedom we need to maintain the compatibility between the GUT relation at ΛNP . ΛPl

and the low energy phenomena at ΛEW . Please note that, in this picture, the GUT relation
is not the result of a local quantum field theory with GUT gauge group. Instead, it is the
result of the theory above ΛNP . We can therefore look at theories below ΛNP that contains
SM but do not have a GUT gauge group since the GUT gauge group itself is no longer the
reason of the unification.

1.4 Noncommutative Theories as a Framework for Po-

tential Candidates

To understand possible candidate theories above ΛNP , let us look at the requirement we
have so far. Because of the non-locality due to aforementioned quantum gravity effects
and the possible breakdown of effective field theory, the full theory above ΛNP is unknown.
However, just as the Fermi interaction provides a good low energy approximation of the weak
interaction, the theory that approximates the full theory should at least share some features
of the full theory, such as non-locality. On the other hand, as we discussed it should give
a SM-like spectrum as the boundary condition, which includes the GUT relation, anomaly
cancellation, a different way of looking at the hierarchy problem, and an indication of the
extension needed to achieve the above. As examples, we try two theories here: the super-
connection formalism and the NCG, both of which share a non-commutative nature and
accommodate the particle spectrum of the SM yet provide interesting boundary conditions
for the coupling constants. In addition, both indicate a left-right symmetric completion of
the SM as the extension to maintain the compatibility between the boundary conditions and
the low energy phenomena. With details to be discussed at length in the following chapters,
we briefly summarize the features of these two theories.

The super-connection formalism is applied to non-supersymmetric particle physics in Ref. [120–
146]. Although it resembles usual gauge theories in many ways, the main differences are the
following.

• Instead of being Lie-algebra valued, the connection is now valued in super Lie algebra,
such as su(2|1) or su(2|2).

• A ‘matrix derivative’ is introduced due to the non-commutativity of the matrix basis,
as an analog of the usual derivative. It is shown to be responsible for the spontaneous
symmetry breaking.

• The SM Higgs field is part of the gauge field, in order to maintain the gauge invariance
of terms involving the matrix derivative.

• The super-connection generates the usual Yang-Mills sector of the SM plus the Higgs
potential.
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• The super-connection only provides an emergent structure at a certain scale to encode
the non-commutativity and the spectrum. It is an effective way of parametrizing our
ignorance of new physics above ΛNP . It does not necessarily lead to an extra symmetry.
As a result, no redundant degrees of freedom are needed.

• As we articulated in previous sections, interesting boundary conditions for the gauge
couplings are imposed.

• The proper prediction for the Higgs mass necessitates a minimal extension of the SM.

The NCG is applied to particle physics by Connes et al. in Ref. [147–156]. Similar to the
super-connection formalism, NCG has the following features.

• Instead of using the super algebra to encode the non-commutativity, we use an almost
commutative geometry defined by C ⊕ H ⊕M3(C). Again, it does not directly lead
to extra unobserved degrees of freedom but merely works as a framework at a certain
scale to describe how physics above ΛNP determines the effective field theory below it.

• The geometry related to C⊕H⊕M3(C) is interpreted physically as a structure with
two sheets. In general, fermions of one chirality live on one sheet and fermions of the
opposite chirality live on the other5. The sheet separation determines the electroweak
scale. The discrete derivative resulting from the non-commutativity connects the two
sheets.

• In addition to the ordinary Dirac operator, a matrix derivative is included. In order
to retain gauge invariance of terms involving the discrete derivative, a gauge field in
the discrete direction must be included, which serves as the Higgs field. Similarly, a
regular gauge field is needed due to the regular derivative in the continuous direction.
As a result, both the Higgs field and the (non-abelian) gauge fields are the result of
non-commutativity.

• The GUT relation arises from the geometry.

• Because the Higgs and regular gauge fields are the results of gauge invariance in two
different directions, the hierarchy problem is reformulated as relating the characteristic
lengths in the discrete and continuous directions. This is similar to asking why the
speed of light is ∼ 3× 108 m/s in Minkowski spacetime, which is essentially a constant
that relates the time and space directions.

• The NCG also provides extra relations beyond the SM such as a mass relation between
the fermionic and bosonic sectors.

5This depends on how the spectrum is embedded and the specific representation being used. There are
more complicated versions such as fermions living on one sheet and anti-fermions on the other. However, in
this case there is no gauge field in the discrete direction, i.e., Majorana mass naturally remains a c-number
until manually promoted to a field as in Refs. [2, 156].



13

• It seems that the NCG dictates anomaly cancellation [142, 157, 158]. Whether this is
a general feature of the NCG remains an open question worthy of future investigation.

Compared to the super-connection formalism, the algebraic structure of the connection is
relaxed. There is no demand of the Higgs sector being part of a superalgebra. Also, the super
traceless condition is replaced to regular traceless condition of C⊕H⊕M3(C) (unimodularity
condition).

With the nice features of the super-connection and the NCG satisfying the requirements
posed in section 1.3, we take the two approaches seriously and study the physics consequences
of imposing such structures. Since the NP above ΛNP is unknown and likely to require drastic
modification of current theories, we mainly focus on the phenomenological aspects of such
frameworks. We hope to shed light on possible ways of looking for NP and indications of
modification of current theories. The rest of this part is organized as follows. Chapter
2 is dedicated to superconnection formalism and its physical interpretation, as well as its
indication of a left-right completion. In Chapter 3, the collider signature of NCG by Connes
et al. is studied. Chapter 4 serves as an example to show the restrictive feature of NCG
and hint for new physics in case some collider signal shows up. This part is based on our
published work in Refs. [159–161] and our in-preparation work in Ref. [162].



Chapter 2

Left-right symmetric model motivated
by super-connection

In this chapter, we review the superconnection formalism and its application to particle
physics as discussed in our work, Ref. [159] published in Physical Review D. The phenomenol-
ogy bounds on the superconnection formalism are also discussed in length. In particular, we
observe the necessity of including a matrix derivative and the effect of that in generating
SSB. This hints at a geometric structure that fixes the SM particle spectrum at a certain
scale.

2.1 Introduction to the Superconnection Formalism

2.1.1 A Brief Review

In Ref. [163], the authors investigated the possibility of reviving the superconnection formal-
ism first discussed in 1979 by Ne’eman [164], Fairlie [165, 166], and others [167–169]. The
original observation of Ne’eman was that the SU(2)L × U(1)Y gauge fields and the Higgs
doublet in the SM could be embedded into a single su(2/1) superconnection [170, 171] with
the SU(2)L × U(1)Y gauge fields constituting the even part of the superconnection and the
Higgs doublet φ constituting the odd part, to wit:

J = i

[
W − 1√

3
B · 12×2

√
2φ√

2φ† − 2√
3
B

]
, (2.1)

where W = Wiτi. This embedding predicts sin2 θW = 1/4 as well as the Higgs quartic
coupling, the latter leading to a prediction for the Higgs mass [172–174]. The leptons and
quarks could also be embedded into irreducible representations of su(2/1) [175–178], thereby

14
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fixing their electroweak quantum numbers in a natural fashion. Fairlie started from a six-
dimensional gauge-Higgs unified theory reduced to four dimensions and arrived at a similar
observation.1 Subsequently, suggestions have been made to incorporate QCD into the for-
malism by extending the superalgebra to su(5/1) [180–182].

Though the appearance of the su(2/1) superconnection suggested an underlying ‘internal’
SU(2/1) supersymmetry, gauging this supersymmetry to obtain the superconnection proved
problematic as discussed in Refs. [183, 184]. For instance, the Higgs doublet is a boson
whereas an SU(2/1) supersymmetry would demand the off-diagonal scalar components of
the superconnection be fermionic with the wrong spin-statistics. Interpreting these degrees
of freedom as ghosts would render the model non-unitary, and though attempts have been
made to deal with this problem [185, 186] the issue has never been completely resolved. It
is also clear that the quarks and leptons placed in SU(2/1) representations cannot all be
fermions [185, 187]. The SU(2/1) supersymmetry must also be broken by hand to give the
gauge boson kinetic terms the correct signs [188]. Due to these, and various other problems,
interest in the approach waned.

2.1.2 Relation to Noncommutative Geometry

It was subsequently recognized, however, that the appearance of a superconnection does
not necessarily require the involvement of the familiar boson↔fermion supersymmetry. This
development follows the 1990 paper of Connes and Lott [147] who constructed a new descrip-
tion of the SM using the framework of noncommutative geometry (NCG) in which the Higgs
doublet appears as part of the Yang-Mills field (i.e. connection) in a spacetime with a modi-
fied geometry. The full Yang-Mills field in this approach was described by a superconnection,
the off-diagonal elements of which were required to be bosonic.

The NCG-superconnection approach to the SM was studied by many authors and a vast
literature on the subject exists, e.g. Refs. [120–145] to give just a representative list.2 Though
these works differ from each other in detail, the basic premise is the same. The models are
all of the Kaluza-Klein type in which the extra dimension is discrete and consists of only
two points. In other words, the model spacetime consists of two 3 + 1 dimensional ‘branes.’
In such a setup, the connection must be generalized to connect not just points within each
brane, but also to bridge the gap between the two. If the left-handed fermions live on one
brane and the right-handed fermions on the other, then the connections within each brane,
i.e. the even part of the superconnection, will involve the usual SM gauge fields which couple
to fermions of that chirality. In contrast, the connection across the gap, i.e. the odd part of
the superconnection, connects fermions of opposite chirality and can be identified with the
Higgs doublet.

1See also Ref. [179].
2See Ref. [146] for a collection of lectures from 1999 by various authors.
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In this approach, both the even and odd parts of the superconnection are bosonic, the Z2-
grading of the superalgebra resulting not from fermionic degrees of freedom but from the
existence of the two ‘branes’ (on which the chirality γ5 provides the Z2 grading operator),
and the definition of the generalized exterior derivative d in the discrete direction.3 That is,
the superconnection emerges from the ‘geometry’ of the discrete extra dimension.

In algebraic geometry, the geometric properties of a manifold M are studied via the algebraic
properties of the commutative algebra of smooth functions C∞(M) defined on it. If this
algebra is allowed to be noncommutative in general, one has a NCG [147–149, 152–156,
189, 190]. In the discrete extra dimension case, one usually starts with the algebra A =
C∞(M)⊗ (C⊕H), and the fermions on the branes are required to lie in representations of
this algebra. Gauge transformations correspond to the unitary inner automorphisms of the
algebra,4 which in this case is U(1)× SU(2). The exterior derivative d is defined via

dα = [D,α]s , α ∈ A , (2.2)

where [·, ·]s is the super-commutator, and the operator D includes the usual exterior deriva-
tive acting on the C∞(M) part of the algebra, as well as a ‘matrix derivative’ [120, 121, 130]
which acts on the C⊕H part. QCD can be included in the model by extending the algebra
to A = C∞(M) ⊗ (C ⊕ H ⊕M3(C)), where M3(C) is the algebra of 3 × 3 matrices with
elements in C. Indeed, Connes et al. have shown that the entire SM can be rewritten in the
NCG language [147, 153].

The extra-discrete-dimension interpretation of the superconnection model also solves the
problem that the prediction sin2 θW = 1/4 is not stable under renormalization group running
and can only be imposed at one scale [191, 192]. That scale can be interpreted as the scale
at which the SM with sin2 θW = 1/4 emerges from the underlying discrete extra dimension
model. The same scale should also characterize the separation of the two ‘branes’ in the
discrete direction. Given the current experimental knowledge of the SM, this scale turns out
to be ∼ 4 TeV [163], suggesting a phenomenology that could potentially be explored at the
LHC, as well as the existence of a new fundamental scale of nature at those energies. We
will have more to say about this later.

These developments notwithstanding, a definitive recipe for constructing a NCG Kaluza-
Klein model for a given algebra still seems to be in the works. Different authors use different
definitions of the exterior derivative d, which, naturally, lead to different Higgs sectors and
different predictions. In the Spectral SM of Connes et al. [149, 152–156], for instance, the
prediction for the U(1) × SU(2) × SU(3) gauge couplings are of the SO(10) GUT type,
pushing up the scale of emergence to the GUT scale. The Spectral SM is not particularly
predictive, either: the fermionic masses and mixings must all be put by hand into the
operator D. Thus, the NCG-superconnection approach still leaves much to be desired and
further development is needed.

3Since d2 = 0, the exterior derivative is intrinsically ‘fermionic.’
4The unitary condition renders the resulting gauge theory anomaly free [142].
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Despite the still incomplete nature of the NCG-superconnection approach, one can still make
predictions and assessments based on the SM which we assume to emerge from it at the
emergence scale. We have already commented on the fact that the prediction sin2 θW = 1/4
leads to an emergence scale of ∼4 TeV. The su(2/1) superconnection also predicts the Higgs
quartic coupling at that scale, from which in turn one can predict the Higgs boson mass to be
∼170 GeV. As discussed in Ref. [163], lowering this prediction down to ∼126 GeV requires
the introduction of extra scalar degrees of freedom which modify the renormalization group
equations (RGE) of the Higgs couplings. Those degrees of freedom would be available,
for instance, if the su(2/1) superconnection were extended to su(2/2). The extra-discrete-
dimensional su(2/2) model shares the same prediction for sin2 θW as the su(2/1) version,
and therefore the same scale (∼4 TeV) at which an effective SU(2)L × SU(2)R × U(1)B−L
gauge theory can be expected to emerge. Thus, explaining the Higgs mass within the NCG-
superconnection formalism seems to demand an extension of the SM gauge group.

Curiously, Connes et al.’s Spectral SM with a GUT emergence scale also predicts the Higgs
mass to be ∼170 GeV. Lowering this to ∼126 GeV requires the introduction of extra scalar
degrees of freedom as discussed above [155, 156]. See also Refs. [193, 194]. Here, too, the
Higgs mass seems to suggest that the SM gauge group needs to be extended to SU(2)L ×
SU(2)R × U(1)B−L, or, including the QCD sector, to SU(2)L × SU(2)R × SU(4).

Thus, the NCG-superconnection formalism already requires the extension of the SM gauge
group to that of the left-right symmetric model (LRSM), or that of Pati-Salam [195].5 Here,
we will take a look at some of the phenomenological consequences of a NCG-superconnection
motivated LRSM, in anticipation of the start of the upgraded LHC program in 2015, and
various experiments at the intensity frontier which will be able to constrain new physics via
rare decay processes.

This chapter is organized as follows. In section 2.2, we first review the su(2/1) superconnec-
tion approach to the SM. We follow the bottom-up approach of Ne’eman et al. [129, 164, 173],
Coquereaux et al. [120], and Haussling et al. [121], in which we start with the superconnection
and build up the theory around it. This review goes into some pedagogical detail, and also
shows where the Higgs mass prediction of ∼170 GeV comes from. In section 2.3, we extend
the formalism developed in section 2.2 to the su(2/2) superconnection into which the LRSM
gauge group SU(2)L × SU(2)R × U(1)B−L is embedded. Again, the model is reviewed in
some detail to clearly present the assumptions that go into its construction, and the resulting
predictions including that of the Higgs mass. Section 2.4 discusses how fermion masses and
mixings can be incorporated into the model. Section 2.5 discusses whether the new particles
predicted by the su(2/2) superconnection motivated LRSM are accessible at the LHC and
other experiments. Section 2.6 concludes with a summary of what was discovered, a review
of the remaining questions, and some speculation on what all this could mean. The review
of the Spectral SM of Connes et al. is relegated to a subsequent paper [162].

5Coincidentally, the analysis of possible string compactifications by Dienes [196] also finds frequent oc-
currence of the Pati-Salam group.
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2.2 The su(2/1) Superconnection Formalism of the Stan-

dard Model

We begin by reviewing the su(2/1) superconnection formalism of Ne’eman et al. [129, 164,
173], supplemented by the matrix derivative of Coquereaux et al. [120] and Haussling et
al. [121], and some of our own observations. This will be done in some detail to dispel
many misconceptions that exist concerning the formalism, while at the same time to expose
its weaknesses. For a pedagogical introduction to superconnections, we point the reader to
Ref. [171] by Sternberg.

2.2.1 Superalgebras

Let K be a field such as R or C. A superalgebra A over K is a vector space over K with a
direct sum decomposition

A = A0 ⊕ A1 , (2.3)

together with a bilinear multiplication A× A→ A such that

Ai · Aj ⊆ A(i+j) mod 2 . (2.4)

The subscripts 0 and 1 of A0 and A1 are known as the ‘grading’ of each space and its
elements. The above relation indicates that when two elements of A are multiplied together,
the gradings of the elements add as elements of the group Z2. Consequently, superalgebras
are also known as Z2-graded algebras. If we call the elements of A0 and A1 respectively
‘even’ and ‘odd,’ then Ai · Aj ⊆ A(i+j) mod 2 means that

even · even = even ,
even · odd = odd ,
odd · even = odd ,
odd · odd = even . (2.5)

Some texts use the symbols + and − instead of 0 and 1 for the Z2 gradings

A = A+ ⊕ A− , (2.6)

so that
Ai · Aj ⊆ Aij , (2.7)

in which case Eq. (2.5) can also be written

+ ·+ = + ,
+ · − = − ,
− ·+ = − ,
− · − = + , (2.8)

and the analogy with regular multiplication is manifest. Here, we will stick to 0 and 1 for
notational convenience.
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2.2.2 The Commutative Superalgebra of Differential Forms

Consider the vector space of differential forms Ω(M) on the manifold M , which decomposes
as:

Ω(M) = Ω0(M)⊕ Ω1(M) , (2.9)

where

Ω0(M) =
⊕
n=even

Ωn(M) ,

Ω1(M) =
⊕
n=odd

Ωn(M) . (2.10)

Here, Ωn(M) is the vector space of n-forms on M . Ω0(M) is the vector space of even-
order differential forms, while Ω1(M) is the vector space of odd-order differential forms.
Ω(M) = Ω0(M)⊕ Ω1(M) is a superalgebra under the wedge product ∧ since, clearly,

Ωi(M) ∧ Ωj(M) ⊆ Ωi+j(M) (2.11)

implies
Ωi(M) ∧ Ωj(M) ⊆ Ω(i+j) mod 2(M) . (2.12)

Furthermore, for any a, b ∈ Ω(M) with definite gradings |a| and |b|, we have

a ∧ b = (−1)|a||b| b ∧ a , (2.13)

that is,
a ∧ b− (−1)|a||b| b ∧ a = 0 . (2.14)

For generic superalgebras, when

a · b− (−1)|a||b| b · a = 0 , (2.15)

the superalgebra is said to be commutative. Thus, Ω(M) is a commutative superalgebra.

2.2.3 The Lie Superalgebra su(2/1)

Formally, a Lie superalgebra is a superalgebra whose product a · b satisfies the relations

a · b = −(−1)|a||b| b · a ,
a · (b · c) = (a · b) · c+ (−1)|a||b| b · (a · c) .

(2.16)

Elements of the real Lie superalgebra su(N/M) are represented by (N + M) × (N + M)
supertraceless Hermitian matrices of the form [177, 178]

H =

[
H(N) θ
θ† H(M)

]
=

[
H(N) 0

0 H(M)

]
︸ ︷︷ ︸

H0

+

[
0 θ
θ† 0

]
︸ ︷︷ ︸
H1

,
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(2.17)

where H(N) and H(M) are, respectively, N×N and M×M Hermitian matrices and constitute
the even (grading 0) part of the superalgebra, while θ (θ†) is an N ×M (M × N) matrix
and constitutes the odd (grading 1) part. The ‘supertrace’ of H is defined as

STrH = TrH(N) − TrH(M) , (2.18)

and the elements of su(N/M) all have vanishing supertrace. Note that the traceless parts of
H(N) and H(M) respectively generate SU(N) and SU(M), while the non-vanishing trace part
generates U(1). Therefore, the even part of the su(N/M) superalgebra generates SU(N)×
SU(M)× U(1) upon exponentiation.

The product of X, Y ∈ su(N/M) in the matrix representation is given by

1

i
[X, Y ] if |X||Y | = 0 ,

{X, Y } if |X||Y | = 1 , (2.19)

where [∗, ∗] and {∗, ∗} respectively denote the standard commutator and anti-commutator
between two matrices. Note that the factor of i−1 for the |X||Y | = 0 case is necessary to
render the product Hermitian. Ref. [121] denotes the two cases collectively as

1

i
[X, Y ]s (2.20)

where [X, Y ]s is the ‘supercommutator.’ Given the even-odd decompositions X = X0 + X1

and Y = Y0 + Y1, it is defined as [121]

[X, Y ]s
= [X0 +X1, Y0 + Y1 ]s
= [X0, Y0 ] + [X0, Y1 ] + [X1, Y0 ] + i{X1, Y1 } .

(2.21)

In the literature, the supercommutator is also defined as

[X, Y ]s = XY − (−1)|X||Y | Y X , (2.22)

which, when written out explicitly, reads

[X, Y ]s
= [X0 +X1, Y0 + Y1 ]s
= [X0, Y0 ] + [X0, Y1 ] + [X1, Y0 ] + {X1, Y1 } .

(2.23)

Though we will be using the first definition to express multiplication in Lie superalgebras, we
will also have a use for the latter definition later in the text, so we request the reader to keep
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in mind that the i in front of the anti-commutator terms may or may not be there depending
on the context. It is straightforward to check that both definitions of the supercommutator
satisfy Eq. (2.16), that is:

[X, Y ]s = −(−1)|X||Y | [Y,X]s ,
[X, [Y, Z]s]s = [[X, Y ]s, Z]s + (−1)|X||Y | [Y, [X,Z]s]s .

(2.24)

Let us look at a specific case. The Lie superalgebra su(2/1) is the algebra of 3 × 3 super-
traceless Hermitian matrices, the basis for which can be chosen as

λs1 =

0 1 0
1 0 0
0 0 0

 , λs2 =

0 −i 0
i 0 0
0 0 0

 , λs3 =

1 0 0
0 −1 0
0 0 0

 ,
λs4 =

0 0 1
0 0 0
1 0 0

 , λs5 =

0 0 −i
0 0 0
i 0 0

 , λs6 =

0 0 0
0 0 1
0 1 0

 ,
λs7 =

0 0 0
0 0 −i
0 i 0

 , λs8 =
1√
3

−1 0 0
0 −1 0
0 0 −2

 . (2.25)

These are the usual su(3) Gell-mann matrices except for the eighth (λs8) due to the require-
ment of vanishing supertrace. Of these, λs1, λ

s
2, λ

s
3, λ

s
8 span the even part of the superalgebra

while λs4, λ
s
5, λ

s
6, λ

s
7 span the odd part. They close under commutation and anti-commutation

relations as [164]

1

i

[
λsi , λ

s
j

]
= 2 fijkλ

s
k ,

[λsi , λ
s
8] = 0 ,

1

i
[λsi , λ

s
m] = 2 fimlλ

s
l ,

1

i
[λs8, λ

s
m] =

2

3
f8mlλ

s
l ,

{λsm, λsn} = 2 dmnkλ
s
k −
√

3 δmnλ
s
8 , (2.26)

where i, j, k denote the even indices 1, 2, 3, 8 and m,n, l denote the odd indices 4, 5, 6, 7. The
f ’s and the d’s are the same as the su(3) structure constants defined in Ref. [197]. Note that
the odd matrices close into the even ones under anti-commutation (instead of commutation),
which is the main difference from the su(3) case. Note also that we have chosen to normalize
the above matrices, including λs8, in the usual way

Tr(λsaλ
s
b) = 2δab , (2.27)

and not via the supertrace.



22

2.2.4 Tensor Product of Superalgebras

If A and B are superalgebras, then the tensor product A ⊗ B is also a superalgebra under
the multiplication

(a⊗ b) · (a′ ⊗ b′) ≡ (−1)|b||a
′|(a · a′)⊗ (b · b′) , (2.28)

where a, a′ ∈ A and b, b′ ∈ B. In constructing this product, elements of A and B are assumed
to (super)commute, cf. Eq. (2.15). The grading of the element a⊗ b ∈ A⊗B is given by

|a⊗ b| = |a|+ |b| mod 2 , (2.29)

and the even-odd decomposition A⊗B = (A⊗B)0 ⊕ (A⊗B)1 is

(A⊗B)0 = (A0 ⊗B0)⊕ (A1 ⊗B1) ,
(A⊗B)1 = (A0 ⊗B1)⊕ (A1 ⊗B0) , (2.30)

where A = A0 ⊕ A1 and B = B0 ⊕B1.

In particular, the tensor product of a commutative superalgebra of differential forms Ω(M)
and a Lie superalgebra L is again a Lie superalgebra with product

[ a⊗X, b⊗ Y ]S = (−1)|X||b|(a ∧ b)⊗ [X, Y ]s , (2.31)

where a, b ∈ Ω(M) and X, Y ∈ L. The tensor product Ω(M) ⊗ L is the space of L valued
differential forms.

2.2.5 Superconnection

Just as the gauge connection in QCD is given by G = i
∑8

a=1Gaλa, where Ga = Gµ
adxµ are

one-forms corresponding to the gluon fields, we construct the su(2/1) superconnection J
using the λs matrices as6

J = i

8∑
a=1

Jaλ
s
a

= i
∑

i=1,2,3,8

Ji λ
s
i + i

∑
m=4,5,6,7

Jmλ
s
m . (2.32)

For the terms multiplying the even su(2/1) matrices, we make the identifications Ji = Wi

(i = 1, 2, 3) and J8 = B, where Wi = W µ
i dxµ and B = Bµdxµ are respectively the one-form

6We take the elements of su(2/1) to be Hermitian, but the superconnection J and the supercurvature
F , to be defined in section 2.2.6, are taken to be anti-Hermitian.
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fields corresponding to the SU(2)L and U(1)Y gauge fields. The terms multiplying the odd
su(2/1) matrices are identified with zero-form fields corresponding to the Higgs doublet:

J4 ∓ iJ5 =
√

2φ± , (2.33)

J6 − iJ7 =
√

2φ0 , (2.34)

J6 + iJ7 =
√

2φ0∗ . (2.35)

Then, the superconnection can be written as

J = i

[
W − 1√

3
B · 12×2

√
2φ√

2φ† − 2√
3
B

]
, (2.36)

where, W = Wi τi (where τi are the Pauli matrices), and

φ =

[
φ+

φ0

]
. (2.37)

Note that the superconnection J is an odd element of Ω(M)⊗su(2/1), where M is the (3+1)
dimensional spacetime manifold. Though φ by itself is a zero-form, the superconnection J as
a whole is actually a generalized one-form, the odd grading of λsm (m = 4, 5, 6, 7) supplying
the extra grading associated with every application of the exterior derivative operator.

Note also that the one-forms Wi = W µ
i dxµ and B = Bµdxµ are dimensionless, so the zero-

form φ which appears together with them in the superconnection must also be dimensionless.
To give φ its usual mass dimension of one, some authors replace φ with φ/µ, where µ is a
mass scale. However, for notational simplicity we will not do this. We request the reader to
assume that, not just φ, but all dimensionful quantities are multiplied by the appropriate
(but invisible) powers of µ to make them dimensionless, e.g., Bν → Bν/µ, dxν → µ dxν . In
particular, the Hodge dual should not change the dimension of the operand: ∗1 = µ4d4x,
∗(µ dxν) = 1

6
µ3 εκλµνdxκ ∧ dxλ ∧ dxµ, etc. Once all the dust has settled, the powers of µ will

disappear from the final expression for the action, and we will then be free to think of all
quantities to have their usual dimensions.

As stated in the introduction, we are considering a model space consisting of two 3 + 1
dimensional branes separated by a gap. We interpret the even part of the superconnection
J as connecting points within the two 3+1 dimensional branes, the one-formW− 1√

3
B ·12×2

acting on the left-handed brane, and the one-form − 2√
3
B acting on the right. The zero-form√

2φ connects the left-handed brane to the right, and
√

2φ† the right-handed brane to the
left.
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2.2.6 Supercurvature

Extension of the Exterior Derivative

In usual differential geometry, the curvature of the connection ω is given by (dω) + ω ∧ ω,
and in QCD the curvature of the gauge connection G is given by FG = (dG) + 1

2
[G,G]. We

would like to calculate the supercurvature from the superconnection J via the analogous
expression

F = (dS J ) +
1

2
[J , J ]S , (2.38)

where dS is the extension of the usual exterior derivative operator d to the superalgebra
Ω(M)⊗ su(2/1). Let us define it.

The exterior derivative operator d = dxµ ∧ ∂µ is a map from Ωi(M) to Ωi+1(M):

Ωi(M)
d−→ Ωi+1(M) , (2.39)

or in terms of the Z2-grading decomposition Ω(M) = Ω0(M) + Ω1(M), it maps from one
grading to the other:

Ω0(M)
d←→ Ω1(M) . (2.40)

Since it changes the Z2 grading of differential forms by 1, it carries grading 1 itself. Its
characteristic properties are that it satisfies the super-Leibniz rule

d(a ∧ b) = (da) ∧ b+ (−1)|a|a ∧ (db) . (2.41)

and that it is nilpotent:
d2 = 0 . (2.42)

The extension dS operating on Ω(M)⊗ su(2/1) should also be a grading-switching operator

[Ω(M)⊗ su(2/1)]0
dS←→ [Ω(M)⊗ su(2/1)]1 , (2.43)

and should possess the same properties of obeying the super-Leibniz rule and nilpotency. To
this end, let us write

dS = d + dM , (2.44)

where

Ω0(M)⊗ su(2/1)
d←→ Ω1(M)⊗ su(2/1) ,

Ω(M)⊗ su(2/1)0
dM←→ Ω(M)⊗ su(2/1)1 , (2.45)

that is, d switches the grading of the Ω(M) part while dM switches the grading of the su(2/1)
part, and consider the two operators separately. Since the operators themselves have grading
1 in Ω(M)⊗ su(2/1), they should anti-commute:

ddM + dMd = 0 . (2.46)
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From the model building perspective, the d operator generates translations within each of
the two 3 + 1 dimensional branes while the ‘matrix derivative’ dM [120, 121] accounts for
transitions between the two branes.

The operator d

We define the action of the operator d on a⊗X ∈ Ω(M)⊗ su(2/1) by

d(a⊗X) = (da)⊗X . (2.47)

It is straightforward to show that d satisfies the super-Leibniz rule given by

d
([
a⊗X, b⊗ Y

]
S

)
=

[
d(a⊗X), b⊗ Y

]
S

+(−1)|a|+|X|
[
a⊗X, d(b⊗ Y )

]
S
. (2.48)

Nilpotency d2(a ⊗ X) = 0 also follows immediately from (d2a) = 0. From Eqs. (2.41) and
(2.47), we infer

d(a⊗X) =
[
da− (−1)|a|ad

]
⊗X

= da⊗X − (−1)|a|ad⊗X
= da⊗X − (−1)|a|+|X|a⊗Xd , (2.49)

or using the second definition of the supercommutator, Eq. (2.23), we can write

d(a⊗X) =
[
d, a⊗X

]
S
. (2.50)

The Matrix Derivative dM

Let us first find an operator dM which acts on su(2/1) such that

su(2/1)0
dM←→ su(2/1)1 (2.51)

with the required properties. For X, Y ∈ su(2/1), the super-Leibniz rule demands

(dM [X, Y ]s) = [ (dMX), Y ]s + (−1)|X|[X, (dMY ) ]s . (2.52)

Comparing with the second line of Eq. (2.24), we see that such an operator can be realized
as 7

(dMX) = i [ η, X ]s , (2.53)

7The supercommutator that appears here is that of the first definition, Eq. (2.21).
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where η is any odd element of su(2/1). It is clear that this operator switches the grading of
X.

Nilpotency is more difficult to realize and how it is treated is an important consideration of
the entire formalism. It was shown in Ref. [121] that for a generic Lie superalgebra su(N/M),
demanding d2

M(X) = 0 with dM defined as above for all X ∈ su(N/M) leads to the condition
N = M . Indeed, since η is an odd element of su(N/M) it has the form

η =

[
0N×N ζ
ζ† 0M×M

]
(2.54)

where ζ is an N ×M matrix. To impose (d2
MX) = 0 we must have

(d2
MX) = −[ η, [ η, X ]s ]s = −i[ η2, X ] = 0 , (2.55)

which means that

η2 =

[
ζζ† 0N×M

0M×N ζ†ζ

]
(2.56)

must commute with all elements of su(N/M). This requires η2 to be a multiple of a unit
matrix, that is

ζζ† = v21N×N , ζ†ζ = v21M×M , (2.57)

with v2 a constant, which is possible only when N = M .

Because of this, Coquereaux et al. in Ref. [120] work in 4 dimensions by adding an extra
row and column of zeroes to the su(2/1) matrices to make them into 4× 4 su(2/2) matrices.
The η-matrix for su(2/2) will have the form of Eq. (2.54) with ζ a multiple of a 2×2 unitary
matrix. The supercommutator of η and a generic su(2/1) matrix embedded into su(2/2)
will have non-zero elements in the fourth row and fourth column, but these are dropped,
projecting the result back into su(2/1).

Haussling et al. in Ref. [121] take a different approach and work in 3 dimensions throughout
by dropping the fourth row and fourth column from the η matrix for su(2/2).8 Writing the
first column of ζ as ξ, the η-matrix used in Ref. [121] is

η =

[
02×2 ξ
ξ† 0

]
, (2.58)

where ξ†ξ = v2. Since the condition N = M is not met, dM defined with this η is not
nilpotent.

Thus, to define a matrix derivative for su(2/1), one must either work in su(2/2) and project
back into su(2/1), or forgo nilpotency. However, it turns out that, either way, the resulting

8In the representation, we use for su(2/2) in a later section, so it is more precise to say that Ref. [121]
drops the third row and third column corresponding to the right-handed neutrino.
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supercurvature and other physical quantities will be the same, so we will adopt the three
dimensional version, Eq. (2.58), in our definition of dM on su(2/1).

We extend dM acting on su(2/1) to dM acting on Ω(M)⊗ su(2/1) by defining the operation
of dM on a⊗X ∈ Ω(M)⊗ su(2/1) to be given by

dM(a⊗X) = (−1)|a|a⊗ (dMX) , (2.59)

which can also be written as

dM(a⊗X) =
[
dM , a⊗X

]
S
, (2.60)

where the supercommutator here is that of Eq. (2.21). It is straightforward to show that dM
satisfies the super-Leibniz rule.

Short note on nilpotency

At this point, we would like to bring to the reader’s attention the fact that the statements
d2
M = 0 and (d2

MX) = 0 are not equivalent. While the first guarantees the second, the
converse is not true. Indeed, using Eq. (2.24), we can rewrite Eq. (2.55) as

(d2
MX) =

[
dM ,

[
dM , X

]
s

]
s

=
1

2

[[
dM , dM

]
s
, X
]
s
, (2.61)

and we can make the identification

1

2

[
dM , dM

]
s

= d2
M = −iη2 , (2.62)

where η2 is a non-zero even element of su(N/M). For the N = M case, it becomes a
multiple of the unit matrix which constitutes the center of the superalgebra (λs15 in the case
of su(2/2) to be discussed later). Thus, it is not clear whether dM as defined here truly
qualifies as a generalization of the ‘exterior derivative’ operator. Furthermore, whether d2

M ,
and consequently d2

M , can be considered to vanish or not is an important consideration when
calculating the supercurvature, as we will see in the following.
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Derivation of F

Let us now look at the terms contributing to Eq. (2.38) one by one. (dJ ) is simply9

(dJ ) = i

[
dW − 1√

3
dB · 12×2

√
2 dφ√

2 dφ† − 2√
3
dB

]
. (2.64)

while (dMJ ) is given by

(dMJ ) = i
[
η, J

]
S

= i

 −√2
(
ξφ† + φξ†

)
i
(
Wξ + 1√

3
Bξ
)

−i
(
ξ†W + 1√

3
ξ†B

)
−
√

2
(
ξ†φ+ φ†ξ

)
 .

(2.65)

To calculate the supercommutator of J with itself, we decompose J into two parts as

J = i

[
W − 1√

3
B · 12×2 02×1

01×2 − 2√
3
B

]
︸ ︷︷ ︸

J10

+ i

[
02×2

√
2φ

√
2φ† 0

]
︸ ︷︷ ︸

J01

,

(2.66)

where the two subscripts refer to the gradings in Ω(M) and su(2/1), respectively, in that
order. Keeping in mind the product rule given in Eq. (2.31) for Ω(M)⊗ su(2/1), we find

[J10, J10 ]S = −2i

[
εijk(Wi ∧Wj)τk 02×1

01×2 0

]
,

[J01, J01 ]S = −4i

[
φφ† 02×1

01×2 φ†φ

]
, (2.67)

and10

[J10, J01 ]S = [J01, J10 ]S

9If the superconnection J is considered an element of su(2/1)⊗ Ω(M) instead of Ω(M)⊗ su(2/1), then
the result of d acting on J will be

(dJ ) = i

[
dW − 1√

3
dB · 12×2 −

√
2 dφ

−
√

2 dφ† − 2√
3
dB

]
. (2.63)

Note the minus signs on the off diagonal terms which results when d commutes through the odd su(2/1)
matrix multiplying the zero-form fields. This choice is a matter of convention and does not affect the final
results.

10As mentioned in footnote 9, we are assuming that the supercurvature is an element of Ω(M)⊗ su(2/1),
not su(2/1)⊗ Ω(M). The latter choice would reverse the signs of [J10, J01 ]S and [J01, J10 ]S . Again, this
is a matter of convention and does not affect the final result as long as the convention is consistently applied.
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=
√

2i

 02×2 i
(
Wφ+ 1√

3
Bφ
)

−i
(
φ†W + 1√

3
φ†B

)
0

 .

(2.68)

Therefore,11

[J , J ]S
= [J10, J10 ]S + [J10, J01 ]S

+[J01, J10 ]S + [J01, J01 ]S

= 2i

−εijk(Wi ∧Wj)τk − 2φφ† +
√

2i
(
Wφ+ 1√

3
Bφ
)

−
√

2i
(
φ†W + 1√

3
φ†B

)
−2φ†φ

 .

(2.69)

Putting everything together, the supercurvature reads as

F = dJ + dMJ +
1

2
[J , J ]S

= i

FW − 1√
3
FB · 12×2 − 2φφ† −

√
2
(
ξφ† + φξ†

) √
2Dφ+

(
iWξ + i√

3
Bξ
)

√
2(Dφ)† −

(
iξ†W + i√

3
ξ†B

)
− 2√

3
FB − 2φ†φ−

√
2
(
ξ†φ+ φ†ξ

)


= i

[
FW − 1√

3
FB · 12×2 − 2φ̂φ̂† + ξξ†

√
2Dφ̂√

2(Dφ̂)† − 2√
3
FB − 2φ̂†φ̂+ v2

]
, (2.70)

where we have introduced the shifted zero-form field

φ̂ = φ+
ξ√
2
, (2.71)

and

Dφ = dφ+

(
iWφ+

i√
3
Bφ

)
,

11 Instead of calculating the supercommutator 1
2 [J ,J ]S as we have done here, some papers treat the

superconnection J as a super-endomorphism of a superspace and calculate the product J � J , using the
Ne’eman-Sternberg rule for supermatrix multiplication [129, 171, 173]:[

A C
D B

]
�
[
A′ C ′

D′ B′

]
=

[
A ∧A′ + (−1)|D

′|C ∧D′ A ∧ C ′ + (−1)|B
′|C ∧B′

(−1)|A
′|D ∧A′ +B ∧D′ (−1)|C

′|D ∧ C ′ +B ∧B′

]
.

The resulting supercurvature F is not an element of Ω(M)⊗su(2/1), and the definition of the inner product
of F with itself must be changed accordingly in the calculation of the action. However, the resulting action
turns out to be the same. The above multiplication rule is derived in Appendix A.1.
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Dφ̂ = dφ̂+

(
iWφ̂+

i√
3
Bφ̂

)
,

FW = (FW )k τk = (dWk − εijkWi ∧Wj) τk ,

FB = dB . (2.72)

We have also used ξ†ξ = v2.

Gauge Transformation Properties

Recall that, in the case of QCD, the curvature FG = dG+ 1
2
[G,G] transforms as

FG → UFGU
† (2.73)

under SU(3) gauge transformations:

U = exp

[
i

8∑
j=1

θjλj

]
. (2.74)

Let us see whether the supercurvature F derived above transforms in an analogous fashion
under SU(2)L × U(1)Y gauge transformations generated by the even part of the su(2/1)
superalgebra:

U = exp

[
i
∑

j=1,2,3,8

θjλ
s
j

]
=

[
u e−iθ/

√
3 02×1

01×2 e−2iθ/
√

3

]
, (2.75)

where

u = exp

[
i
∑
j=1,2,3

θjτj

]
∈ SU(2)L , θ = θ8 . (2.76)

The one-form gauge fields transform as

W → uWu† + i du u† ,
B → B − dθ . (2.77)

For the zero-form field, we assume that it is the shifted field φ̂ = φ+ ξ/
√

2 which transforms
as

φ̂ → u eiθ/
√

3 φ̂ . (2.78)

The interpretation is that ξ/
√

2 is the vacuum expectation value (VEV) of φ̂ and φ is the
fluctuation around that VEV. Then,

FW → uFWu
† ,

FB → FB ,

Dφ̂ → u eiθ/
√

3Dφ̂ . (2.79)
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Unfortunately, the ξξ† term in the upper-left block of F is a constant projection matrix which
does not transform under gauge transformations. This term prevents F from transforming
analogously to Eq. (2.73) as F → UFU †. Since this transformation law would guarantee the
gauge invariance of the action, which we will derive in the next subsection, the lack of such a
law is somewhat problematic (though, in fact, it is found that the problem cures itself in the
sense that the action derived from this supercurvature is still manifestly gauge invariant).
In the following, we trace this problem back to the non-nilpotency of the matrix derivative
dM in su(2/1). However, this can already be seen by noticing that the problem would not
exist if we could replace ξξ† with v212×2.

Covariant Derivative

Given d, dM , and the superconnection J , we can construct a covariant derivative operator
via

D = d + dM + J . (2.80)

Let α ∈ Ω(M) ⊗ su(2/1) be an object which gauge transforms as α → α′ = UαU †. Then,
(dα) transforms as

(dα) → (dα′)
= d(UαU †)
= (dU)αU † + U(dα)U † + (−1)|α|Uα(dU †)
= (dU)U †α′ + UdU †(α′) + (−1)|α

′|α′U(dU †)
= (dU)U †α′ + UdU †(α′)− (−1)|α

′|α′(dU)U †

=
[
UdU † + (dU)U †, α′

]
S
, (2.81)

and we can see that d transforms as

d → d′ = UdU † + (dU)U † . (2.82)

On the other hand, from the gauge transformation properties we introduced in Eqs. (2.77)
and (2.78), we can infer that the combination

dM + J = iη + J

= i

[
W − 1√

3
B · 12×2

√
2 φ̂√

2 φ̂† − 2√
3
B

]
, (2.83)

transforms as
dM + J → U(dM + J )U † − (dU)U † . (2.84)

Therefore, the covariant derivative D = d + dM + J transforms as

D → UDU † , (2.85)

and consequently, if α→ UαU † then

(Dα) → U(Dα)U † . (2.86)
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Supercurvature from the Covariant Derivative

The supercurvature can be defined as the supercommutator of the covariant derivative with
itself:

F =
1

2

[
D, D

]
S

=
1

2

[
dS + J , dS + J

]
S

= d2
S + (dS J ) +

1

2

[
J , J

]
S
. (2.87)

From Eq. (2.85), we can infer that F gauge transforms as F → UFU †.

In the above expression for F , it is usually assumed that

d2
S = (d + dM)2 = d2 + d2

M = 0 , (2.88)

and the d2
S term is dropped, recovering Eq. (2.38). However, we have found that the super-

curvature calculated without the first term in the su(2/1) case did not gauge transform as
F → UFU †. This can be understood as due to the non-vanishing of d2

M , and the mixing of
dM and J under gauge transformations as shown in Eq. (2.84). Indeed, in the current case,
d2
M is represented by the matrix

d2
M = −iη2 = −i

[
ξξ† 0
0 v2

]
, (2.89)

which precisely cancels the problematic terms if added to Eq. (2.70):

F + d2
M

= i

[
FW − 1√

3
FB · 12×2 − 2φ̂φ̂†

√
2Dφ̂√

2(Dφ̂)† − 2√
3
FB − 2φ̂†φ̂

]
.

(2.90)

Thus, keeping the d2
M term will give us a supercurvature with the desired gauge transfor-

mation property. However, we nevertheless argue that the d2
M term should be dropped. In

the following, we calculate the action for F of Eq. (2.70), without the addition of d2
M , and

find that adding d2
M will lead to inconsistencies which we would like to avoid.

Before continuing, we note that the situation is somewhat different in the su(2/2) case to
be considered in section 2.3. There, the matrix derivative is nilpotent in the sense that
(d2

MX) = 0 for all X ∈ su(2/2), and d2
M ∝ λs15 = − 1√

2
14×4 which belongs to the center of

the superalgebra. Despite the mixing between dM and J as given in Eq. (2.84), d2
M ∝ 14×4

is invariant under gauge transformations by itself and can be dropped without any ill effects.
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2.2.7 Inner Product and the Action

In QCD, the action is given by the inner product of the gauge connection FG = dG+ 1
2
[G,G]

with itself:

SQCD =
1

4
〈FG, FG〉 . (2.91)

Note that FG is an element of Ω(M)⊗ su(3). For a, b ∈ Ω(M) and X, Y ∈ su(3), the inner
product of the elements a⊗X and b⊗ Y is given by

〈a⊗X, b⊗ Y 〉 = 〈a, b〉Ω(M)〈X, Y 〉su(3) . (2.92)

The inner product in su(3) is simply

〈X, Y 〉su(3) = Tr(XY ) . (2.93)

For Ω(M) = ⊕4
i=0Ωi(M), the inner product in each of the subspaces Ωi(M) is given by

〈ai, bi〉Ωi(M) =

∫
∗ai ∧ bi , (2.94)

where ∗ indicates the Hodge dual, that is:

∗1 =
1

24
εκλµνdxκ ∧ dxλ ∧ dxµ ∧ dxν = d4x ,

∗dxν =
1

6
εκλµνdxκ ∧ dxλ ∧ dxµ ,

∗(dxµ ∧ dxν) =
1

2
εκλµνdxκ ∧ dxλ ,

∗(dxλ ∧ dxµ ∧ dxν) = εκλµνdxκ ,

∗(dxκ ∧ dxλ ∧ dxµ ∧ dxν) = εκλµν , (2.95)

where we assume the metric gµν = diag(1,−1,−1,−1) and ε0123 = 1. For a, b ∈ Ω(M), we
decompose a =

∑
i ai, b =

∑
i bi, where ai, bi ∈ Ωi(M), and define

〈a, b〉Ω(M) =
∑
i

〈ai, bi〉Ωi(M) =

∫ ∑
i

∗ai ∧ bi . (2.96)

In the case of FG, which is an su(3) valued two-form, we can write (with a slight abuse of
notation)

〈FG, FG〉 =

∫
Tr
[
∗FG ∧ FG

]
. (2.97)

Note that Tr[ ∗FG ∧ FG ] is a real scalar-valued 4-form which is gauge invariant. This guar-
antees the Lorentz and gauge invariance of the action SQCD.
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Let us rewrite the above action in terms of the field strength tensor. Since G = iGaλa =
i(Ga

µ dx
µ)λa, we have

FG = dG+
1

2
[G, G ] =

i

2

(
Ga
µν dx

µ ∧ dxν
)
λa ,

∗FG =
i

4

(
Gb
ρσ ε

ρσ
κλdx

κ ∧ dxλ
)
λb , (2.98)

with
Ga
µν = ∂µG

a
ν − ∂νGa

µ + ifabcGb
µG

c
ν , (2.99)

from which we find

∗FG ∧ FG = −1

2

(
Ga
µνG

bµνd4x
)
λaλb . (2.100)

Recalling the normalization Tr(λaλb) = 2δab for the su(3) Gell-Mann matrices, we obtain

Tr
[
∗FG ∧ FG

]
= −Ga

µνG
aµν d4x , (2.101)

and therefore

SQCD = −1

4

∫
Ga
µνG

aµν d4x , (2.102)

which is the more familiar form.

In an analogous fashion, let us write the action for F , Eq. (2.70), as

S =
1

4
〈F ,F〉S . (2.103)

Note that F is an element of Ω(M) ⊗ su(2/1). For a, b ∈ Ω(M) and X, Y ∈ su(2/1), the
inner product of the elements a⊗X and b⊗ Y is given by

〈a⊗X, b⊗ Y 〉S
= (−1)|b||X|〈a, b〉Ω(M)〈X, Y 〉su(2/1) . (2.104)

The inner product in Ω(M) is the same as before. For the inner product on su(2/1), we
define it to be

〈X, Y 〉su(2/1) = Tr(XY ) , (2.105)

just as in su(3). Note that our use of a trace instead of a supertrace here in this definition
has phenomenological significance. First, it would break any internal SU(2/1) symmetry
that may exist, but maintain the diagonal SU(2)L × U(1)Y gauge invariance. But, more
significantly, it provides all the gauge boson kinetic terms with the correct signs, and also
demands φ to be bosonic (commuting) instead of fermionic (anti-commuting) to prevent the
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φ-dependent terms in the action from vanishing. Had a supertrace been used, φ would have
been required to be fermionic.12

Unlike FG of QCD, F is a linear combination of su(2/1) valued zero-, one-, and two-forms.
Let us write

F =
2∑
i=0

F i , (2.106)

where F i ∈ Ωi(M)⊗ su(2/1). Then,

〈F ,F〉S =

∫
Tr

[
2∑
i=0

∗F i ∧ F i
]

=
2∑
i=0

〈F i,F i〉S . (2.107)

Explicitly, we have

F0 = i

[
(−2φ̂φ̂† + ξξ†) 02×1

01×2 (−2φ̂†φ̂+ v2)

]
,

F1 =
√

2i

[
02×2 (Dφ̂)

(Dφ̂)† 0

]
,

F2 = i

[
FW − 1√

3
FB · 12×2 02×1

01×2 − 2√
3
FB

]
, (2.108)

and

12We have been unable to find any mention in the literature of the connection between the choice of
trace or supertrace in the inner product with the bosonic or fermionic nature of φ. Perhaps this is a new
observation. Mathematically, the choice of trace or supertrace is related to the KO dimension of the cyclic
(co-)homology. See, for example, Refs. [157, 189, 198] for a mathematical description.
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Tr
[
∗F0 ∧ F0

]
= −Tr

[
∗(−2φ̂φ̂† + ξξ†) 02×1

01×2 ∗(−2φ̂†φ̂+ v2)

]
∧
[
(−2φ̂φ̂† + ξξ†) 02×1

01×2 (−2φ̂†φ̂+ v2)

]
= −Tr

[
∗(−2φ̂φ̂† + ξξ†) ∧ (−2φ̂φ̂† + ξξ†) 02×1

01×2 ∗(−2φ̂†φ̂+ v2) ∧ (−2φ̂†φ̂+ v2)

]
= −8

(
φ̂†φ̂− v2

2

)2

d4x ,

Tr
[
∗F1 ∧ F1

]
= +2 Tr

[
02×2 ∗(Dφ̂)

∗(Dφ̂)† 0

]
∧
[

02×2 (Dφ̂)

(Dφ̂)† 0

]
= +2 Tr

[
∗(Dφ̂) ∧ (Dφ̂)† 02×1

01×2 ∗(Dφ̂)† ∧ (Dφ̂)

]
= +4(Dµφ̂)†(Dµφ̂) d4x ,

Tr
[
∗F2 ∧ F2

]
= −Tr

[
∗FW − 1√

3
∗FB · 12×2 02×1

01×2 − 2√
3
∗FB

]
∧

[
FW − 1√

3
FB · 12×2 02×1

01×2 − 2√
3
FB

]

= −Tr

[(
∗FW − 1√

3
∗FB · 12×2

)
∧
(
FW − 1√

3
FB · 12×2

)
02×1

01×2
4
3
∗FB ∧ FB

]
= −Tr

[
∗FW ∧ FW − 1√

3
(∗FB ∧ FW + ∗FW ∧ FB) + 1

3
∗FB ∧ FB · 12×2 02×1

01×2
4
3
∗FB ∧ FB

]
= −

(
F i
WµνF

iµν
W + FBµνF

µν
B

)
d4x . (2.109)

Notice that, when calculating the traces of the 0- and 1- form contributions, one respectively
needs to commute φ̂ through φ̂†φ̂φ̂†, and (Dφ̂) through (Dφ̂)†, and φ̂ must be bosonic to
prevent the trace from vanishing.

Putting everything together, we find:

S =
1

4
〈F ,F〉S

=

∫
d4x

[
− 1

4

(
F i
WµνF

iµν
W + FBµνF

µν
B

)
+(Dµφ̂)†(Dµφ̂)− V (φ̂, φ̂†)

]
, (2.110)

where

F i
Wµν = ∂µW

i
ν − ∂νW i

µ + 2iεijkW j
µW

k
ν ,

FBµν = ∂µBν − ∂νBµ ,

Dµφ̂ = ∂µφ̂− i (τ ·Wµ) φ̂− i√
3
Bµφ̂ . (2.111)

and

V (φ̂, φ̂†) = 2

(
φ̂†φ̂− v2

2

)2

. (2.112)
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Note that the above action is manifestly SU(2)L × U(1)Y gauge invariant as required, even
though F did not have the desired gauge transformation property. Furthermore, the Higgs
potential is minimized when φ†φ = v2/2, consistent with our assumption that

〈φ̂〉 =
ξ√
2
, (2.113)

and that φ is the fluctuation around it. Had we used F+d2
M instead of F , the Higgs potential

would have been 2(φ̂†φ̂)2 and φ̂ would not have developed a VEV. So, for the consistency of
the formalism, we will drop the d2

M term from our supercurvature.

The resulting model is quite interesting in that spontaneous symmetry breaking is built
into the model from the beginning. The φ field appearing in the superconnection is already
the fluctuation around a symmetry-breaking vacuum. In other words, as emphasized in
Refs. [120, 121], the superconnection J already ‘knows’ about the breaking of the symmetry.
Eq. (2.84) suggests that the development of the Higgs VEV can be interpreted as due to
the separation of the matrix derivative dM from the superconnection J , which would be the
consequence of the two branes separating from each other. Thus, the spontaneous breaking
of the gauge symmetry could be the result of the brane dynamics at work.

2.2.8 Symmetry Breaking

Let us analyze the model further. We take

〈φ̂〉 =
ξ√
2

=
v√
2

[
0
1

]
, (2.114)

so that

〈φ̂†τ 1φ̂〉 = 〈φ̂†τ 2φ̂〉 = 0 , 〈φ̂†τ 3φ̂〉 = −v
2

2
. (2.115)

Then, the linear combinations

W± =
W 1 ∓W 2

√
2

, Z =

√
3W 3 −B

2
(2.116)

obtain masses given by

MW = v , MZ =
2v√

3
, (2.117)

while the linear combination

A =
W 3 +

√
3B

2
(2.118)

remains massless and couples to

λs3 +
√

3λs8
2

=

0 0 0
0 −1 0
0 0 −1

 = Q , (2.119)
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which corresponds to the electromagnetic charge. Comparison with the SM will be made
after the introduction of the coupling constant in the next subsection.

2.2.9 The Coupling Constants and the Value of sin2 θW

The Higgs Quartic Coupling and the Higgs Mass

We introduce the SU(2)L coupling constant g by rescaling the superconnection J , the action
S, and the matrix-derivative matrix η as

J → g

2
J , S → g2

4
S , η → g

2
η . (2.120)

Extracting the Lagrangian from the action, we find

L = −1

4
F i
W µν F

i µν
W − 1

4
FB µνF

µν
B

+
(
Dµφ̂

)† (
Dµφ̂

)
− g2

2

(
φ̂†φ̂− v2

2

)2

, (2.121)

with

F i
W µν = ∂µW

i
ν − ∂νW i

µ + igεijkW j
µW

k
ν ,

FB µν = ∂µBν − ∂νBµ ,

Dµφ̂ = ∂µφ̂− i
g

2
(τ ·Wµ) φ̂− i g

2
√

3
Bµφ̂ .

(2.122)

The Higgs quartic coupling, which we normalize to

V (φ̂†, φ̂) = λ(φ̂†φ̂)2 + · · · , (2.123)

can be read off from Eq. (2.121) to be

λ =
g2

2
. (2.124)

Rewriting the Higgs field φ̂ as

φ̂ =

 π+

v + h+ iπ0

√
2

 , (2.125)

we find

V (φ̂†, φ̂) =
1

2
(2λv2)h2 + · · · (2.126)

so the Higgs mass (at tree level) is

Mh =
√

2λ v = gv . (2.127)
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sin2 θW from the Coupling to Higgs

Since the Higgs doublet φ̂ has hypercharge +1, we can make the identification

g′ =
g√
3
, (2.128)

so that

Dµφ̂ = ∂µφ̂− i
g

2
(τ ·Wµ) φ̂− ig

′

2
Bµφ̂ . (2.129)

Also, after symmetry breaking, the photon field A couples to (g/2)Q, where Q is given in
Eq. (2.119). Therefore,

e =
g

2
= g sin θW . (2.130)

This relation can also be confirmed from the matching condition of the gauge couplings:

1

e2
=

1

g2
+

1

g′2
=

4

g2
. (2.131)

Thus, this formalism predicts

sin2 θW =
g′2

g2 + g′2
=

e2

g2
=

1

4
. (2.132)

Using g and g′, the masses of the W and Z we listed earlier in Eq. (2.117) can be written

MW =
gv

2
, MZ =

√
g2 + g′2 v

2
, (2.133)

while the linear combinations of W 3 and B that constitute the Z and the photon listed in
Eqs. (2.116) and (2.118) can be written

Z = W 3 cos θW −B sin θW ,
A = W 3 sin θW +B cos θW , (2.134)

just as in the SM. Note that, together with Eq. (2.127), this model predicts

Mh

MW

= 2 . (2.135)

This is clearly problematic, since it leads to the prediction Mh ≈ 160 GeV. However, we
could argue that these tree level predictions are those that are valid at the scale at which
the SM emerges from the underlying NCG theory. The question is whether renormalization
group running from this emergence scale to the electroweak scale will cure the Higgs mass.
This will be addressed in the next subsection.
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sin2 θW from the Coupling to Fermions

The value of sin2 θW can also be checked by looking at the gauge couplings of the fermions [164].
The interaction of the leptons with the SU(2)L×U(1)Y gauge bosons in the SM is given by

−LSM
` =

g

2

(
`Lγ

µτi`L
)
W i
µ

−g
′

2

(
`Lγ

µ`L + 2 `Rγ
µ`R

)
Bµ, (2.136)

where

`L =

[
νL
`−L

]
, `R = `−R . (2.137)

In the su(2/1) embedding, we demand invariance only under transformations generated by
the even part of the superalgebra, which leads to the interaction

Leven
` = −g

2

∑
i=1,2,3,8

(
ψγµλsiψ

)
J iµ (2.138)

where

ψ =

[
`L
`R

]
=

νL`−L
`−R

 (2.139)

is a triplet under su(2/1), and J iµ is the vector field associated with the one-form J i = J iµdx
µ.

Recalling that J1,2,3 are identified with W 1,2,3 = W 1,2,3
µ dxµ, while J8 is identified with B =

Bµdx
µ, this interaction can be written out as

−Leven
` =

g

2

(
`Lγ

µτi`L
)
W i
µ

− g

2
√

3

(
`Lγ

µ`L + 2 `Rγ
µ`R

)
Bµ . (2.140)

Comparing Eqs. (2.136) and (2.140) we reproduce Eq. (2.128).

Here the requirement of SU(2)L×U(1)Y gauge invariance was used to determine the couplings
between the even part of the su(2/1) superconnection and the fermion fields. The couplings
between the odd part of the superconnection, namely the Higgs doublet φ, and the fermion
fields must reproduce the SM Yukawa couplings. How these can be accommodated within
the superconnection formalism will be discussed in section 2.4.

2.2.10 The Emergence Scale and the Higgs Boson Mass from su(2/1)

Let us now address the prediction for the Higgs mass including radiative corrections. In
what follows, we assume the relation

M2
h

M2
W

=
8λ

g2
(2.141)
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to be invariant under renormalization group flow, and follow the evolutions of the coupling
constants λ and g assuming the SM particle content below the scale at which the SM emerges
from some underlying NCG theory.

The renormalization group equation (RGE) for λ is coupled to those of the fermion Yukawa
couplings, of which we only take that of the top quark to be relevant. The RGE’s for λ and
the top Yukawa coupling ht are [199]

µ
dht
dµ

=
ht

(4π)2

[
9

2
h2
t −

(
17

12
g′2 +

9

4
g2 + 8g2

s

)]
,

µ
dλ

dµ
=

1

(4π)2

[{
12h2

t −
(
3g′2 + 9g2

)}
λ− 6h4

t

+24λ2 +
3

8

(
g′4 + 2g′2g2 + 3g4

) ]
,

(2.142)

where g′, g, and gs are the U(1)Y , SU(2)L and SU(3)c coupling constants, respectively, and
the top Yukawa coupling ht is normalized to

mt =
htv√

2
. (2.143)

The most recent value of the top quark mass is mt = 173.21± 0.51± 0.71 GeV [1].

We follow Ref. [164] to find the boundary condition on λ. To fix the scale of emergence
Λs of the su(2/1) structure, we look for the scale at which the relation g =

√
3g′ (i.e.,

sin2 θW = 1/4) holds. We use the 1-loop relations

1

[gi(Λs)]2
=

1

[gi(Λ0)]2
− 2bi ln

Λs

Λ0

(i = 1, 2, 3) (2.144)

where g1 = g′, g2 = g, g3 = gs, and the respective constants bi read as [200]:

b1 =
1

16π2

(
20nf

9
+
nH
6

)
,

b2 = − 1

16π2

(
−4nf

3
− nH

6
+

22

3

)
,

b3 = − 1

16π2

(
−4nf

3
+ 11

)
. (2.145)

We will only need to look at the runnings of g1 and g2 to find Λs, but will also need to look at
the running of g3 in the RGE’s listed in Eq. (2.142). Setting the number of fermion families
to nf = 3, and the number of Higgs doublets to nH = 1, we have

b1 =
1

16π2

(
41

6

)
, b2 =

1

16π2

(
−19

6

)
, b3 = − 7

16π2
. (2.146)
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The numerical values (MS) of the coupling constants at the scale Λ0 = MZ are given in
Ref. [1] as α−1

1 (MZ) = 98.36, α−1
2 (MZ) = 29.58, and α−1

3 (MZ) = 8.45, where α−1
i = 4π/g2

i .
Note that α−1

1 (MZ)/α−1
2 (MZ) = 3.325. Running this ratio up to where α−1

1 (Λs)/α
−1
2 (Λs) = 3,

we find the scale of emergence to be

Λs ' 4 TeV . (2.147)

Since this is the energy where the structure associated with su(2/1) emerges, the constraint
Eq. (2.124), λ = g2

2/2, is also expected to hold at this energy. This predicts the Higgs mass
value as Mh = 2MW ' 160 GeV, which should also be interpreted as the Higgs mass value
at Λs ' 4 TeV. Using Eq. (2.142) with the boundary conditions λ = g2

2/2 at 4 TeV and
ht =

√
2mt/v at MZ , we find λ(MZ) ' 0.24 (Fig. 2.1) and

Mh(MZ) ' 170 GeV . (2.148)

Thus, the predicted Higgs mass is incorrect and it cannot be remedied within the su(2/1)
superconnection framework. However, as we will show in the next section, lowering it to 126
GeV can be realized in the su(2/2) extension which predicts the emergence of the left-right
symmetric model (already broken to the SM) at the TeV scale.
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Figure 2.1: The behavior of the top Yukawa coupling (ht), which is represented as the dashed
line, and the Higgs quartic coupling (λ).

2.2.11 su(2/1) Summary

In this section, we have reviewed the su(2/1) superconnection formalism into which the SM
is embedded in some detail, including some sticking points, and looked at its predictions.
The embedding enforces the relations sin2 θW = 1/4 and λ = g2/2. The first is valid at the
scale of Λs ∼ 4 TeV, which we interpret as the scale at which the su(2/1) formalism emerges
from a yet unknown underlying NCG theory. Assuming the second relation is also valid at
that scale, we obtain Mh ∼ 170 GeV as the prediction for the Higgs mass.
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Though the Higgs mass prediction is clearly problematic, the formalism has a couple of
interesting and attractive features which deserve attention. First and foremost, we note that
the generalized exterior derivative in the discrete direction, i.e., the matrix derivative, carries
in it information on the Higgs VEV 〈φ̂〉 = ξ/

√
2. The zero-form field φ which appears in

the superconnection J is the fluctuation of φ̂ around this VEV: φ̂ = 〈φ̂〉 + φ. Thus, the
SU(2)L × U(1)Y gauge symmetry is spontaneously broken to U(1)em from the beginning,
and there is, in fact, no need to shift the field from φ to φ̂, only to shift it back again to
account for the physical degrees of freedom in the broken phase. Since the matrix derivative
is necessitated by the existence of the discrete extra dimension, one could argue that it is the
dynamical separation of the two branes itself that broke the symmetry and shifted the Higgs
field. In other words, it is the dynamics of the discrete geometry of the two branes that is
responsible for spontaneous symmetry breaking, and the Higgs field is just one manifestation
of the phenomenon. This is in contrast to the usual SM point of view in which the Higgs
dynamics is independent of any dynamics of the background geometry.

Second, since the formalism fails to predict the correct Higgs mass, it begs an extension to
a formalism that would. This can be viewed as an advantage instead of a drawback of the
model since it points us to new directions. As it has been pointed out in Ref. [155, 156, 163],
an additional singlet scalar degree of freedom in the Higgs sector would mix with the Higgs
boson to brings its mass down, and a simple way to introduce such a degree of freedom
would be to extend the SM electroweak gauge group to SU(2)L×SU(2)R×U(1)B−L. In the
superconnection formalism, this gauge group can be embedded into su(2/2). Thus, despite
the absence of our understanding on how these structures arise from an underlying NCG
theory, the data already suggest an extension from su(2/1) to su(2/2).

2.3 Embedding of the Left-Right Symmetric Model

into su(2/2)

Given the limitations of the su(2/1) superconnection model outlined above, here we explore
the possibility of using an su(2/2) superconnection to embed the SM electroweak gauge fields
and the Higgs. The gauge group embedded will be SU(2)L×SU(2)R×U(1)B−L with the same
gauge couplings for SU(2)L and SU(2)R. Thus, we are working with the left-right symmetric
model (LRSM) [201–214]. We will assume the breaking of SU(2)L×SU(2)R×U(1)B−L down
to U(1)em so that the electromagnetic charge Q will be given by

Q = IL3 + IR3 +
B − L

2
, (2.149)

where IL3 and IR3 are respectively the third components of the left- and right-handed isospins.

We follow the same route as in the previous section: we will first work out the superconnec-
tion J of the model and find that an bi-doublet scalar field Φ appears in the odd part. The
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supercurvature F and action S are derived from the superconnection J ; in the process, it is
discovered that the matrix derivative dM in this case can be made nilpotent, and as a conse-
quence, the supercurvature F has a simple gauge transformation property, which guarantees
the gauge invariance of the action S. To achieve the breaking of SU(2)L×SU(2)R×U(1)B−L
down to U(1)em, two complex triplet scalar fields ∆L and ∆R are introduced as matter fields
living, respectively, on the left- and right-handed branes. We find that ∆L,R can naturally
be placed in an su(2/2) representation, suggesting that their introduction is not entirely
ad-hoc. The formalism predicts the ratios of gauge coupling constants, and thus the value
of sin2 θW , and the self-couplings of the Φ, but not the various couplings involving ∆L,R in
the most generic Higgs potential [208]. However, this is sufficient to fix the scale Λs at which
the structure is expected to emerge from an underlying NCG theory, and also suggests that
the measured Higgs mass can be accommodated within the framework.

2.3.1 su(2/2) Superalgebra

The superalgebra su(2/2) consists of 4× 4 supertraceless Hermitian matrices, in which the
even and odd parts are 2× 2 submatrices. The basis for su(2/2) can be chosen to be

λs1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , λs2 =


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 ,

λs3 =


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 , λs4 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 ,

λs5 =


0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

 , λs6 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 ,

λs7 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 , λs8 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

 ,

λs9 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 , λs10 =


0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

 ,

λs11 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 , λs12 =


0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

 ,
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λs13 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , λs14 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 ,

λs15 = − 1√
2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (2.150)

These matrices are normalized to satisfy the orthogonality condition

Tr(λsaλ
s
b) = 2δab , where a, b = 1 , 2 , · · · 15 . (2.151)

The even elements of the superalgebra are spanned by λs1, λs2, λs3, λs8, λs13, λs14, λs15, while the
odd elements are spanned by λs4, λs5, λs6, λs7, λs9, λs10, λs11, λs12. The only matrix different from
its su(4) counterpart is λs15 due to the supertracelessness condition. These matrices close
under commutation and anti-commutation relations as

1

i
[λsi , λ

s
j ] = 2 fijkλ

s
k ,

1

i
[λsi , λ

s
m] = 2 fimlλ

s
l ,

{λsm, λsn} = 2 dmnkλ
s
k −
√

2 δmnλ
s
15 , (2.152)

where i, j, k denote the even indices 1, 2, 3, 8, 13, 14, 15, while m,n, l denote the odd indices
4, 5, 6, 7, 9, 10, 11, 12. The f ’s and d’s are the same as the structure constants for su(4):

1

i
[λa, λb] = 2 fabcλc ,

{λa, λb} = 2 dabcλc + δab , (2.153)

where λa = λsa for a = 1, 2, · · · 14, and

λ15 =
1√
2


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (2.154)



46

2.3.2 su(2/2) Superconnection

The superconnection J of this model is expressed as J = iJaλ
s
a, where a = 1, 2, · · · 15. We

make the identifications13

J1,2,3 = W 1,2,3
L , J13,14,8 = W 1,2,3

R ,

J4 − iJ5 =
√

2φ0
1 , J4 + iJ5 =

√
2φ0∗

1 ,

J6 − iJ7 =
√

2φ−1 , J6 + iJ7 =
√

2φ+
1 ,

J9 − iJ10 =
√

2φ+
2 , J9 + iJ10 =

√
2φ−2 ,

J11 − iJ12 =
√

2φ0
2 , J11 + iJ12 =

√
2φ0∗

2 ,
J15 = WBL ,

(2.155)

where W i
L = W iµ

L dxµ, W i
R = W iµ

R dxµ, and WBL = W µ
BLdxµ are one-form fields while the φ’s

are zero-form fields, corresponding, respectively, to the SU(2)L × SU(2)R × U(1)B−L gauge
fields and the bi-doublet Higgs field:14

Φ =

[
φ0

1 φ+
2

φ−1 φ0
2

]
. (2.156)

The resulting superconnection has the form

J = i

[
WL − 1√

2
WBL · 12×2

√
2 Φ√

2 Φ† WR − 1√
2
WBL · 12×2

]
,

(2.157)

where
WL = W i

L τ
i , WR = W i

R τ
i . (2.158)

In this assignment, we have assumed that the ordering of the rows of the su(2/2) matrix,
from top to bottom, correspond to left-handed isospin up, left-handed isospin down, right-
handed isospin up, then right-handed isospin down. So the leptons will be placed in a 4
dimensional representation of su(2/2) in the order

ψ =

[
`L
`R

]
=


νL
`−L
νR
`−R

 . (2.159)

13We switch from subscripts to superscripts for the SU(2) indices to make room for the subscripts L and
R.

14Here, we use the subscripts 1 and 2 to label the two SU(2)L doublets embedded in Φ. Some papers
in the literature use subscripts to label SU(2)R doublets, e.g., Refs. [207, 208], so care is necessary when
comparing formulae.
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2.3.3 su(2/2) Supercurvature

As reviewed in the discussion of the su(2/1) case, the supercurvature is given by

F = (dJ ) + (dMJ ) +
1

2
[J , J ]S , (2.160)

where the d2
M term has been assumed not to contribute and has been dropped.

The (dJ ) term is

(dJ )

= i

[
dWL − 1√

2
dWBL · 12×2

√
2 dΦ√

2 dΦ† dWR − 1√
2
dWBL · 12×2

]
.

(2.161)

The matrix derivative is defined with the 4× 4 η-matrix given by

η =

[
02×2 ζ
ζ† 02×2

]
, (2.162)

where ζ is a multiple of a 2 × 2 unitary matrix, that is ζ†ζ = ζζ† = v212×2. This time, the
matrix derivative is nilpotent: (d2

MX) = 0 for all X ∈ su(2/2). We find

(dMJ )
= i[ η, J ]S

= i

[
−
√

2(ζΦ† + Φζ†) +i(WLζ − ζWR)

−i(ζ†WL −WRζ
†) −

√
2(ζ†Φ + Φ†ζ)

]
.

(2.163)

To calculate the supercommutator of J with itself, we separate it into the 1-0 and 0-1 parts
as before:

J = i

[
WL − 1√

2
WBL · 12×2 02×2

02×2 WR − 1√
2
WBL · 12×2

]
︸ ︷︷ ︸

J10

+ i

[
02×2

√
2 Φ

√
2 Φ† 02×2

]
︸ ︷︷ ︸

J01

. (2.164)

We find:

[J10, J10 ]S
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= −2i

[
εijk(W i

L ∧W
j
L)τ k 02×2

02×2 εijk(W
i
R ∧W

j
R)τ k

]
,

[J01, J01 ]S = −4i

[
ΦΦ† 02×2

02×2 Φ†Φ

]
,

[J10, J01 ]S = [J01, J10 ]S

=
√

2i

[
02×2 +i(WLΦ− ΦWR)

−i(Φ†WL −WRΦ†) 02×2

]
.

(2.165)

Putting everything together, we obtain

F = i

[
FL − 1√

2
FBL − 2ΦΦ† −

√
2(ζΦ† + Φζ†)

√
2DΦ + i(WLζ − ζWR)√

2(DΦ)† − i(ζ†WL −WRζ
†) FR − 1√

2
FBL − 2Φ†Φ−

√
2(ζ†Φ + Φ†ζ)

]

= i

[
FL − 1√

2
FBL − 2Φ̂Φ̂† + v212×2

√
2DΦ̂√

2(DΦ̂)† FR − 1√
2
FBL − 2Φ̂†Φ̂ + v212×2

]
, (2.166)

where we have introduced the shifted Higgs field

Φ̂ = Φ +
ζ√
2
, (2.167)

and

FL,R = (FL,R)aτa = (dW i
L,R − (WL,R ∧WL,R)i)τ i

= (dW i
L,R − εijkW

j
L,R ∧W

k
L,R)τ i ,

FBL = dWBL · 12×2 ,

DΦ = dΦ + iWLΦ− iΦWR ,
DΦ̂ = dΦ̂ + iWLΦ̂− iΦ̂WR . (2.168)

We have also used ζ†ζ = ζζ† = v212×2.

2.3.4 Gauge Transformation Properties

The even part of su(2/2) generate the gauge transformations in SU(2)L×SU(2)R×U(1)B−L:

U = exp

[
i

∑
i=1,2,3,8,13,14,15

θiλ
s
i

]
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=

[
uL e

−iθ/
√

2 02×2

02×2 uR e
−iθ/

√
2

]
, (2.169)

where

uL = exp
[
i(θ1τ1 + θ2τ2 + θ3τ3)

]
∈ SU(2)L ,

uR = exp
[
i(θ13τ1 + θ14τ2 + θ8τ3)

]
∈ SU(2)R ,

θ = θ15 . (2.170)

The one-form gauge fields transform as

WL → uLWLu
†
L + i duLu

†
L ,

WR → uRWRu
†
R + i duRu

†
R ,

WBL → WBL − dθ . (2.171)

For the zero-form field, we assume that it is the shifted field Φ̂ which transforms as

Φ̂ → uLΦ̂u†R . (2.172)

ζ/
√

2 is interpreted as the VEV of Φ̂, and Φ as the fluctuation around it. Thus,

FL → uLFLu
†
L ,

FR → uRFRu
†
R ,

FBL → FBL ,
DΦ̂ → uL(DΦ̂)u†R . (2.173)

This time, the terms coming from ζ causes no problems due to ζ†ζ = ζζ† = v212×2, and F
can be seen to transform as

F → UFU † . (2.174)

2.3.5 The Action

Following the same procedure as the su(2/1) case, we find that the action in the su(2/2)
case is given by

S =
1

4
〈F ,F〉S

=

∫
d4x

[
− 1

4

(
F i
LµνF

iµν
L + F i

RµνF
iµν
R + FBLµνF

µν
BL

)
+ Tr

[
(DµΦ̂)†(DµΦ̂)

]
− V (Φ̂†, Φ̂)

]
,

(2.175)
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where

F iµν
L = ∂µW iν

L − ∂νW
iµ
L + 2iεijkW jµ

L W kν
L ,

F iµν
R = ∂µW iν

R − ∂νW
iµ
R + 2iεijkW jµ

R W kν
R ,

F µν
BL = ∂µW ν

BL − ∂νW
µ
BL ,

DµΦ̂ = ∂µΦ̂− iW iµ
L τ

iΦ̂ + iW iµ
R Φ̂ τ i ,

V (Φ̂†, Φ̂) = 2 Tr

[(
Φ̂†Φ̂ − v2

2
12×2

)2
]
. (2.176)

Thus, we obtain a manifestly gauge invariant action as required. The Higgs potential is
minimized when

Φ̂†Φ̂ =
v2

2
12×2 , (2.177)

which is consistent with our interpretation that the VEV of Φ̂ is given by

〈Φ̂〉 =
ζ√
2
. (2.178)

2.3.6 Symmetry Breaking

Breaking with the Bi-doublet

It is a well known fact that the bidoublet Φ̂ alone acquiring a vacuum expectation value
(VEV) will not break SU(2)L × SU(2)R × U(1)B−L all the way down to U(1)em. Indeed, if
we assume non-zero VEV’s for the (would-be) neutral components of Φ as

〈Φ̂〉 =
ζ√
2

=
1√
2

[
κ1 0
0 κ2

]
, (2.179)

where κ1 and κ2 are in general complex, then the unitarity of ζ demands

|κ1| = |κ2| = v . (2.180)

So, up to a possible relative phase between κ1 and κ2, we have

〈Φ̂〉 =
v√
2

[
1 0
0 1

]
. (2.181)

Since Φ̂ transforms as Φ̂ → uLΦ̂u†R under local gauge transformations, this VEV remains
invariant under U(1)B−L, and under the vectorial combination of SU(2)L and SU(2)R, that
is, when uL = uR. Thus 〈Φ̂〉 only breaks SU(2)L × SU(2)R × U(1)B−L down to SU(2)V ×
U(1)B−L, providing only three massive gauge bosons.
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Introduction of Triplets

To achieve the symmetry breaking we need, we follow Mohapatra and Senjanovic [204] and
introduce the scalar fields ∆L(3, 1, 2) and ∆R(1, 3, 2), where the first two numbers indicate
the dimensions of the SU(2)L and SU(2)R representations these fields belong to, and the
third number is the B − L charge. We advocate the picture that ∆L lives on the left-
handed brane while ∆R lives on the right-handed brane as matter fields and are not part of
a generalized connection.

These triplet fields are often represented in the literature as 2×2 complex traceless matrices:

∆L,R =
1√
2

(
δ1
L,R τ

1 + δ2
L,R τ

2 + δ3
L,R τ

3
)

=

[
δ+
L,R/
√

2 δ++
L,R

δ0
L,R −δ+

L,R/
√

2

]
, (2.182)

where

δ++
L,R =

1√
2

(
δ1
L,R − iδ2

L,R

)
,

δ+
L,R = δ3

L,R ,

δ0
L,R =

1√
2

(
δ1
L,R + iδ2

L,R

)
. (2.183)

These fields transform as

∆L → e+i
√

2θuL∆Lu
†
L ,

∆R → e+i
√

2θuR∆Ru
†
R , (2.184)

where the U(1)B−L phase will be shown to correspond to B − L = 2 later.

It is instructive to rewrite the ∆L,R fields as complex symmetric matrices:

∆̃L,R ≡ iτ 2∆∗L,R

=

[
δ0∗
L,R −δ−L,R/

√
2

−δ−L,R/
√

2 −δ−−L,R

]
. (2.185)

These fields transform as

∆̃L → e−i
√

2θuL∆̃Lu
T
L ,

∆̃R → e−i
√

2θuR∆̃Ru
T
R . (2.186)

Let us place these fields into a single 4× 4 matrix as

∆̃ =

[
∆̃L 02×2

02×2 ∆̃R

]
. (2.187)
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Then under SU(2)L × SU(2)R × U(1)B−L gauge transformations, Eq. (2.169), it transforms
as

∆̃ → U∆̃UT , (2.188)

which shows that ∆̃ provides a module for an su(2/2) representation. The even elements of
su(2/2) correspond to the gauge transformations, while the odd elements would interchange

∆̃L and ∆̃R. Since the leptons ψ and its charge conjugate ψc = Cψ̄T transform as

ψ → Uψ , ψc → U∗ψc , (2.189)

we can construct the gauge invariant interaction

LM = yM

(
ψ̄c ∆̃† ψ + ψ̄ ∆̃ψc

)
= yM

[(
`T
L C ∆Liτ

2`L + `T
R C ∆Riτ

2`R
)

+ h.c.
]
,

(2.190)

which will lead to Majorana masses for the neutrinos after symmetry breaking. Thus, the
triplet scalars have a natural place in the su(2/2) framework, as do Majorana neutrinos.

The Higgs Potential

Reverting to the original traceless matrix representation, the Lagrangian for the ∆L,R is
given by

L = Tr
[
(Dµ∆L)†(Dµ∆L) + (Dµ∆R)†(Dµ∆R)

]
−V (∆†L,∆L,∆

†
R,∆R, Φ̂

†, Φ̂) , (2.191)

where the covariant derivatives are given by

Dµ∆L = ∂µ∆L − iW iµ
L

[
τ i,∆L

]
− i
√

2W µ
BL∆L ,

Dµ∆R = ∂µ∆R − iW iµ
R

[
τ i,∆R

]
− i
√

2W µ
BL∆R .

(2.192)

The most general form of the Higgs potential V (∆†L,∆L,∆
†
R,∆R, Φ̂

†, Φ̂) which respects the
SU(2)L × SU(2)R × U(1)B−L gauge symmetry and the discrete left-right symmetry under
the interchanges

∆L ↔ ∆R , Φ̂ ↔ Φ̂† , (2.193)

and is at most quartic in the fields is given in Ref. [208] as

V = −µ2
1Tr
[
Φ†Φ

]
− µ2

2

(
Tr
[
Φ†Φ̃

]
+ Tr

[
Φ̃†Φ

])
− µ2

3

(
Tr
[
∆†L∆L

]
+ Tr

[
∆†R∆R

])
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+λ1

(
Tr
[
Φ†Φ

])2

+ λ2

{(
Tr
[
Φ†Φ̃

])2

+
(

Tr
[
Φ̃†Φ

])2
}

+λ3 Tr
[
Φ†Φ̃

]
Tr
[
Φ̃†Φ

]
+ λ4 Tr

[
Φ†Φ

] (
Tr
[
Φ†Φ̃

]
+ Tr

[
Φ̃†Φ

])
+ρ1

{(
Tr
[
∆†L∆L

])2

+
(

Tr
[
∆†R∆R

])2
}

+ ρ2

(
Tr
[
∆L∆L

]
Tr
[
∆†L∆†L

]
+ Tr

[
∆R∆R

]
Tr
[
∆†R∆†R

])
+ρ3 Tr

[
∆†L∆L

]
Tr
[
∆†R∆R

]
+ ρ4

(
Tr
[
∆L∆L

]
Tr
[
∆†R∆†R

]
+ Tr

[
∆†L∆†L

]
Tr
[
∆R∆R

])
+α1 Tr

[
Φ†Φ

] (
Tr
[
∆†L∆L

]
+ Tr

[
∆†R∆R

])
+ α2

(
Tr
[
Φ†Φ̃

]
Tr
[
∆†L∆L

]
+ Tr

[
Φ̃†Φ

]
Tr
[
∆†R∆R

])
+α∗2

(
Tr
[
Φ†Φ̃

]
Tr
[
∆†R∆R

]
+ Tr

[
Φ̃†Φ

]
Tr
[
∆†L∆L

])
+ α3

(
Tr
[
ΦΦ†∆L∆†L

]
+ Tr

[
Φ†Φ∆R∆†R

])
+β1

(
Tr
[
Φ∆RΦ†∆†L

]
+ Tr

[
Φ†∆LΦ∆†R

])
+ β2

(
Tr
[
Φ̃∆RΦ†∆†L

]
+ Tr

[
Φ̃†∆LΦ∆†R

])
+β3

(
Tr
[
Φ∆RΦ̃†∆†L

]
+ Tr

[
Φ†∆LΦ̃∆†R

])
, (2.194)

where we have denoted Φ̂ simply as Φ, and Φ̃ = τ 2Φ∗τ 2. As we can see, it is fairly complicated
with 18 free parameters: 3 negative mass-squared parameters µ2

i (i = 1, 2, 3), 4 parameters
λi (i = 1, 2, 3, 4) for the quartic self-couplings of Φ, 4 parameters ρi (i = 1, 2, 3, 4) for the
quartic couplings of ∆L,R, 4 parameters αi (i = 1, 2, 3 with α2 complex) that couple Φ to
∆L or ∆R, and 3 parameters βi (i = 1, 2, 3) which couple all three. The possible phase of α2

breaks CP explicitly.

Using the identity15

Tr
[
(Φ†Φ)2

]
=
(

Tr
[
Φ†Φ

])2

− 1

2
Tr
[
Φ†Φ̃

]
Tr
[
Φ̃†Φ

]
, (2.195)

we can see that the Higgs potential of Eq. (2.176) corresponds to

λ1 = 2 , λ3 = −1 , λ2 = λ4 = 0 , (2.196)

with
µ2

1 = 2v2 , µ2
2 = 0 . (2.197)

We envision that the NCG theory from which the effective su(2/2) model emerges will
determine all the other parameters in the potential as well. For now, we follow Ref. [204]
and simply assume that the (would be) neutral components of the triplets acquire VEV’s
given by

〈∆L〉 =
1√
2

[
0 0
vL 0

]
, 〈∆R〉 =

1√
2

[
0 0
vR 0

]
, (2.198)

where we set vL = 0 to avoid it from breaking SU(2)L. This breaks SU(2)R×U(1)B−L down
to U(1)Y . The linear combinations

W±
R =

W 1
R ∓W 2

R√
2

, Z ′ =

√
2W 3

R −WBL√
3

(2.199)

15See Appendix B.1 for a collection of useful identities of this type.
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obtain masses given by

MWR
=
√

2vR , MZ′ =
√

6vR , (2.200)

while the linear combination

B =
W 3
R +
√

2WBL√
3

(2.201)

remains massless and couples to

λs8 +
√

2λs15√
3

=
1√
3


−1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 −2

 =
Y√

3
, (2.202)

which corresponds to the hypercharge Y embedded in su(2/1).

The presence of the VEV of Φ̂, Eq. (2.179), breaks the remaining SU(2)L × U(1)Y down
to U(1)em. We have noted earlier that the nilpotency of the matrix derivative demands
the unitarity of the ζ matrix, which in turn would demand |κ1| = |κ2|. If the underlying
NCG requires this condition to be maintained under the introduction of the triplet fields,
it would constitute a robust prediction of the formalism and provide an extra condition on
the emergent LRSM. However, such a condition is phenomenologically problematic. If we
generate the quark masses via Yukawa couplings with the bi-doublet field Φ, that is, the
interaction of the form

LY = qLi

(
yijΦ + ỹijΦ̃

)
qRj + h.c. , (2.203)

where yij and ỹij are the Yukawa coupling matrices, it would lead to mass matrices of the
form

√
2Mu = κ1 y + κ∗2 ỹ = |κ1| y + |κ2|e−iαỹ ,√
2Md = κ2 y + κ∗1 ỹ = |κ2|eiαy + |κ1| ỹ , (2.204)

where α is a possible CP violating phase difference between κ1 and κ2. The condition
|κ1| = |κ2| would imply

Mu = e−iαMd , (2.205)

leading to both Mu and Md being diagonalized in the same basis with the same eigenvalues.
For this reason, it is normally assumed that |κ1| � |κ2|, which would provide an explanation
of mt � mb, and CKM mixing16. Moreover, |κ1| and |κ2| being hierarchical is also required
by the suppression of the flavor changing neutral-currents (FCNC) [208]. Therefore, we will
allow for |κ1| 6= |κ2| though the nilpotency of the matrix derivative is destroyed.

We have seen in the su(2/1) case that the lack of nilpotency of the matrix derivative could
lead to the gauge transformation property of the supercurvature F becoming non-standard,

16The assumption |κ1| � |κ2| is not mandatory in order to realize mt � mb. The smallness of the CP
violating parameter can be established by the interplay of sinα, |κ1|, and |κ2| [215].
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though otherwise it did not seem to have any ill effects. However, it is somewhat worrisome
that an exterior derivative is not nilpotent. We conjecture a couple of reasons why this
may be permissible. First, the dynamics necessary for the breaking of the gauge symmetries
may be accompanied by some type of ‘phase’ transition in the NCG from one in which the
matrix derivative is nilpotent to one in which it is not. Second, the su(2/2) formalism is not
a complete description of the NCG (we are yet to include SU(3) color or the generational
structure) and needs to be extended to a larger superalgebra in which the matrix derivative
maintains nilpotency even after symmetry breaking, just as the su(2/1) formalism needed
to be extended to su(2/2). The two possibilities we have listed here could actually be com-
patible. Recalling that the exterior derivative operator d in standard differential geometry is
the dual of the boundary operator ∂ [216], d2 6= 0 would imply ∂2 6= 0, that is, the boundary
of a boundary does not vanish. That could imply the appearance of some type of singularity
in the geometry, which can be removed by going to higher dimensions.

The massive gauge bosons are now linear combinations of W±
L , Z, W±

R , and Z ′ defined in
Eqs. (2.116) and (2.199). Taking both κ1 and κ2 to be real for the moment, and setting
κ+ =

√
κ2

1 + κ2
2, they are

W±
2 = W±

R cosχ−W±
L sinχ ,

W±
1 = W±

R sinχ+W±
L cosχ , (2.206)

where

tan 2χ =
2κ1κ2

v2
R

, (2.207)

with masses

M2
W1,2

= (v2
R + κ2

+)∓
√
v4
R + 4κ2

1κ
2
2 , (2.208)

and

Z2 = Z ′ cosϕ− Z sinϕ ,
Z1 = Z ′ sinϕ+ Z cosϕ , (2.209)

where

tan 2ϕ =
4
√

2κ2
+

9v2
R − 2κ2

+

, (2.210)

with masses

M2
Z1

=
(
3v2

R + κ2
+

)
−
√

9v4
R − 2v2

Rκ
2
+ + κ4

+ ,

M2
Z2

=
(
3v2

R + κ2
+

)
+
√

9v4
R − 2v2

Rκ
2
+ + κ4

+ .

(2.211)

When vR � κ+, the masses are approximately

M2
W1

= κ2
+ −

2κ2
1κ

2
2

v2
R

+ · · · ,
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M2
W2

= 2v2
R + κ2

+ +
2κ2

1κ
2
2

v2
R

+ · · · ,

M2
Z1

=
4κ2

+

3
−

4κ4
+

27v2
R

+ · · · ,

M2
Z2

= 6v2
R +

2κ2
+

3
+

4κ4
+

27v2
R

+ · · · . (2.212)

The remaining massless gauge boson is

A =
WL +

√
3B

2
=

W 3
L +W 3

R +
√

2WBL

2
, (2.213)

coupled to

λs3 + λs8 +
√

2λs15

2
=


0 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 −1

 = Q . (2.214)

For the model to be phenomenologically viable, we need vR � κ+ ≈ 246 GeV to suppress
the mixing between WL and WR, and that between Z and Z ′. The current experimental
bounds on the LRSM parameters will be discussed in section 2.5.

2.3.7 The Coupling Constants and the Value of sin2 θW

Introduction of the Coupling Constant and sin2 θW from the Coupling to Triplet
Higgs

We introduce the gauge coupling constant g by rescaling the superconnection J , the action
S, and the matrix-derivative matrix η as in Eq. (2.120). The expression for the resulting
action is the same as before except with the following replacements:

F iµν
L = ∂µW iν

L − ∂νW
iµ
L + igεijkW jµ

L W kν
L ,

F iµν
R = ∂µW iν

R − ∂νW
iµ
R + igεijkW jµ

R W kν
R ,

DµΦ̂ = ∂µΦ̂− ig
2
W iµ
L τ

iΦ̂ + i
g

2
W iµ
R Φ̂ τ i ,

V (Φ̂†, Φ̂) =
g2

2
Tr

[(
Φ̂†Φ̂ − v2

2

)2
]
. (2.215)

Note that the gauge couplings for SU(2)L and SU(2)R are the same. Thus, we have a
left-right symmetric model (LRSM). The ratio of the U(1)B−L coupling to the SU(2)L,R
couplings cannot be determined from the gauge couplings of the bi-doublet Φ̂ since it does
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not couple to WBL. It can, however, be read off from the covariant derivatives of the triplet
fields which are changed to:

Dµ∆L = ∂µ∆L − i
g

2
W iµ
L

[
τ i,∆L

]
− i g√

2
W µ
BL∆L ,

Dµ∆R = ∂µ∆R − i
g

2
W iµ
R

[
τ i,∆R

]
− i g√

2
W µ
BL∆R .

(2.216)

Since the triplets are assigned the charge B − L = 2, these need to be compared with the
expressions

Dµ∆L = ∂µ∆L − i
g

2
W iµ
L

[
τ i,∆L

]
− igBLW µ

BL∆L ,

Dµ∆R = ∂µ∆R − i
g

2
W iµ
R

[
τ i,∆R

]
− igBLW µ

BL∆R ,

(2.217)

from which we conclude17

gBL
g

=
1√
2
. (2.218)

The Z ′ and B fields in Eqs. (2.199) and (2.201) can then be written as

Z ′ =
gW 3

R − gBLWBL√
g2 + g2

BL

,

B =
gBLW

3
R + gWBL√
g2 + g2

BL

. (2.219)

The value of g′ can then be obtained from the matching condition associated with the
breaking SU(2)R × U(1)B−L → U(1)Y :

1

g′2
=

1

g2
+

1

g2
BL

=
3

g2
→ g′

g
=

1√
3
. (2.220)

Note also that the B field couples to (g/2)(Y/
√

3), where Y/
√

3 is defined in Eq. (2.202),
and the photon field of Eq. (2.213) couples to (g/2)Q, where Q is defined in Eq. (2.214).
Therefore,

g′ =
g√
3
, e =

g

2
, (2.221)

17Where this relation comes from can also seen by the requirement that the mass of Z,

M2
Z1
' g2

4
κ2+

[
1 + 4v2L/κ

2
+ +O(κ2+/v

2
R)
](g2 + 2g2BL

g2 + g2BL

)
should match the SM one M2

Z = (g2 +g′2)v2/4 at the scale where SU(2)R is broken. Basically, the Weinberg

angle in the LRSM is defined as cos2 θW =
g2+g2BL
g2+2g2BL

, which is matched to the SM definition cos2 θW =

g2

g2+g′2 [207].



58

and thus sin2 θW = 1/4, just as in the su(2/1) case. Perhaps this is not surprising given that
our su(2/1) embedding is a sub-embedding of the su(2/2) embedding.

The masses of the massive gauge bosons are now expressed as

M2
W1

=
g2κ2

+

4
− g2κ2

1κ
2
2

2v2
R

+ · · · ,

M2
W2

=
g2(2v2

R + κ2
+)

4
+
g2κ2

1κ
2
2

2v2
R

+ · · · ,

M2
Z1

=
(g2 + g′2)κ2

+

4
−
g2κ4

+

27v2
R

+ · · · ,

M2
Z2

=
g2(9v2

R + κ2
+)

6
+
g2κ4

+

27v2
R

+ · · · , (2.222)

and we can see that κ+ plays the role of the SM Higgs VEV and thus κ+ ≈ 246 GeV.

sin2 θW from the Coupling to Fermions

The value of sin2 θW can also be determined from the gauge coupling of the fermions. Col-
lecting the lepton fields into an su(2/2) quartet as shown in Eq. (2.159), the requirement of
SU(2)L × SU(2)R × U(1)B−L gauge invariance leads to the interaction

−Leven
` =

g

2

∑
i=1,2,3,8,13,14,15

(
ψγµλsiψ

)
J iµ

=
g

2

[
`Lγµ (τ ·W µ

L ) `L + `Rγµ (τ ·W µ
R) `R

− 1√
2
`LγµW

µ
BL`L −

1√
2
`RγµW

µ
BL`R

]
.

(2.223)

This should be compared with the leptonic part of the SU(2)L × SU(2)R × U(1)B−L La-
grangian in which the left- and right-handed leptons are assigned the representations `L(2, 1,−1)
and `R(1, 2,−1):

−L221
` = `Lγµ

[
gL
2
τ ·W µ

L −
gBL
2
W µ
BL

]
`L

+ `Rγµ

[
gR
2
τ ·W µ

R −
gBL
2
W µ
BL

]
`R .

(2.224)

Identifying g = gL, we find gR = g and
√

2gBL = g, leading to the same result as above.
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The Higgs Quartic Couplings and the Higgs Mass

With a bi-doublet Φ̂ and two complex triplets ∆L,R, the Higgs sector of the model has 20
degrees of freedom, of which 6 are absorbed into the massive gauge bosons, while 14 remain
physical [207, 208]. Of these, 4 are doubly charged, 4 are singly charged, and 6 are neutral.
We identify the observed Higgs boson with the lightest neutral member.

The masses of the physical Higgs sector particles naturally depend on the parameters in the
Higgs potential, Eq. (2.194). Of these, we are aware of the self-couplings of Φ̂, which, due
to the introduction of the coupling constant, are rescaled from Eq. (2.196) to

λ1 =
g2

2
, λ3 = −g

2

4
, λ2 = λ4 = 0 , (2.225)

as are the mass parameters to

µ2
1 =

g2v2

2
, µ2

2 = 0 . (2.226)

The other parameters are unknown except for requirement that they must lead to vR �
κ+ =

√
κ2

1 + κ2
2 ≈ 246 GeV � vL ≈ 0, and κ1 � κ2. Let us approximate κ2 ≈ 0. In this

case, the mass of the lightest neutral scalar, which consists mostly of the real part of φ0
1, is

given approximately by [207, 208]

M2
h ≈ κ2

1

(
2λ1 −

α2
1

2ρ1

)
. (2.227)

The first term is what the Higgs mass would be if the couplings to the triplets were non-
existent:

Mh =
√

2λ1κ1 = gκ1 . (2.228)

Given that the prediction for the left-handed W mass would be MWL
= MW1 = gκ1/2 in this

case, this would lead to the prediction Mh/MW = 2 as in the su(2/1) case. The existence
of the second term shows that mixing with the neutral components of ∆L,R could lower
the mass to a more realistic value. Renormalization group running could further lower Mh

toward 126 GeV. We examine this possibility in subsection 2.3.9.

2.3.8 The Emergence Scale and the Right-Handed Breaking Scale

Let us now determine the scale Λs at which we envision the su(2/2) ∼ SU(2)L × SU(2)R ×
U(1)B−L structure to emerge from an underlying NCG theory. This is the scale at which we
expect the relation gBL/g = 1/

√
2 to hold.

When one imagines the emergence of an LRSM from an underlying UV theory at some scale
Λs, one usually thinks of the subsequent breaking of the gauge symmetry down to U(1)em
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to occur in steps at several scales, a schematic diagram of which would be:

NCG theory?

↓ Λs

su(2/2) ∼ SU(2)L × SU(2)R × U(1)B−L

↓ ΛR ∼ gvR

su(2/1) ∼ SU(2)L × U(1)Y

↓MW ∼ gv

U(1)em

Thus, the theory would be effectively SU(2)L × SU(2)R × U(1)B−L between Λs and ΛR,
and SU(2)L × U(1)Y between ΛR and MW , that is, the gauge couplings would run with the
LRSM particle content between Λs and ΛR, and with the SM particle content below ΛR.
The boundary condition we would like to impose at Λs is

gBL(Λs)

g(Λs)
=

1√
2
, (2.229)

while the matching condition at ΛR requires

1

g′2(ΛR)
=

1

g2(ΛR)
+

1

g2
BL(ΛR)

. (2.230)

Therefore, we have, up to one-loop, the relations

1

g2
L(Λs)

=
1

g2
2(ΛR)

− 2bL ln
Λs

ΛR

=

(
1

g2
2(MW )

− 2b2 ln
ΛR

MW

)
− 2bL ln

Λs

ΛR

,

1

g2
BL(Λs)

=
1

g2
BL(ΛR)

− 2bBL ln
Λs

ΛR

=

(
1

g′2(ΛR)
− 1

g2
2(ΛR)

)
− 2bBL ln

Λs

ΛR

,

1

g′2(ΛR)
=

1

g′2(MW )
− 2b1 ln

ΛR

MW

. (2.231)

The bi’s are given by Ref. [200]

bi =
1

16π2

[
−11

3
C2(Gi) +

2

3

∑
f

Ti(f) +
1

3

∑
s

Ti(s)

]
, (2.232)

where the summation is over Weyl fermions in the second term and over scalars in the third.
The index i labels the gauge groups and we have i = 1, 2 below ΛR, and i = L,R,BL above
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it, and i = 3 for QCD. C2(Gi) is the quadratic Casimir for the adjoint representation of
the group Gi, and Ti is the Dynkin index of each representation. For SU(N), C2(G) = N ,
T = 1/2 for doublet representations and T = 2 for triplets. For U(1), C2(G) = 0 and

∑
f,s

T =
∑
f,s

(
Y

2

)2

, (2.233)

where Y/2 is the U(1) charge, the factor of 1/2 coming from the traditional normalizations
of the hypercharge Y and B − L charges. In the LRSM, we have, for each generation, 6
left-handed and 6 right-handed quarks with B − L = 1/3, 2 left-handed and 2 right-handed
leptons with B−L = −1, 6 complex scalars (coming from the two triplets) with B−L = 2,
and a bi-doublet with B − L = 0.

Therefore, we have

bL = bR =
1

16π2

(
−7

3

)
, bBL =

1

16π2

(
14

3

)
. (2.234)

The values of b1, b2, and b3 for the SM particle content have been listed earlier in Eq. (2.146).
Using the above RGE relations Eq. (2.231), we look for the scale Λs at which the constraint
Eq. (2.229) is satisfied as a function ΛR. The results are shown in Fig. 2.2.

One possible solution is, of course, Λs = ΛR ≈ 4 TeV since that was the scale at which
g′/g = 1/

√
3 when the couplings run with the SM particle content, and this automatically

leads to gBL/g = 1/
√

2. When ΛR is increased above 4 TeV, however, as we can see from
Fig. 2.2, we find that the scale Λs at which Eq. (2.229) is satisfied is actually lower than
ΛR. That is, we must run the couplings up to ΛR with the SM particle content, and then
run back down to a lower energy with the LRSM particle content to satisfy the required
boundary condition. Obviously, this is an unphysical situation. So we are led to conclude
that our formalism demands Λs = ΛR ≈ 4 TeV. That is, the SU(2)L × SU(2)R × U(1)B−L
gauge theory emerges already broken to SU(2)L × U(1)Y of the SM at that scale. In fact,
it is already broken all the way down to U(1)em due to the non-zero VEV of the bi-doublet
field Φ, though it may not necessarily be manifest at Λs due to Λs = ΛR �MW .

This result is not inconsistent with the view we have been advocating based on our su(2/1) ∼
SU(2)L × U(1)Y model. There, the theory emerged already broken to U(1)em at the emer-
gence scale Λs, with the Higgs field already shifted to fluctuations around its non-zero VEV.
So schematically, we had:

NCG theory?

↓ Λs ≈ 4 TeV

Broken SU(2)L × U(1)Y
MW−−→ U(1)em
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Figure 2.2: The behavior of Λs
ΛR

above 4 TeV, where it is exactly equal to unity.

For the su(2/2) case, the breaking schematic is

NCG theory?

↓ Λs = ΛR ≈ 4 TeV

Broken SU(2)L × SU(2)R × U(1)B−L
MW−−→ U(1)em

These schematics suggest that the physics responsible for the emergence of the su(2/1) or
su(2/2) patterns from the underlying theory may also be responsible for the spontaneous
breaking of the chiral gauge symmetries. A possible and attractive scenario would be that
this new physics is geometric in nature and is triggered by the separation of the two branes
from each other, as evidenced in the fact that the matrix derivative encodes information on
the Higgs VEV.

Another attractive point about the scale ΛR being on the order of 4 TeV is that it would
place the masses of all the new particles associated with the LRSM at that scale, perhaps
light enough to be discovered just beyond their current experimental limits. We will return
to this observation in section 2.5.

2.3.9 The Higgs Boson Mass from su(2/2)

Let us now discuss how the observed Higgs mass can be accommodated in our su(2/2)
framework. We have seen that both su(2/1) and su(2/2) embeddings place the emergence
scale at ∼ 4 TeV. Moreover, they demand the same boundary condition on the Higgs quartic
coupling (λ for su(2/1), λ1 for su(2/2)) at that scale. In the su(2/1) case, this led to a
prediction of the Higgs mass of Mh(MZ) ∼ 170 GeV. In the su(2/2) case, however, the
Higgs mass prediction can be lowered due to the mixing of the Higgs with other neutral
scalars available in the model.
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Figure 2.3: A patch of the parameter space which gives the observed Higgs mass.

In this section, we will investigate the simplest option as an example. We will assume that
only a SM singlet scalar S survives dominantly at low energies (∼MZ), which is responsible
for the mass of the right handed neutrino. In our su(2/2) embedding, this can be taken to
be the real part of δ0

R:

δ0
R =

vR + S + iT√
2

. (2.235)

We assume that S couples to the SM Higgs field H via

LS =
1

2
∂µS∂

µS − m2

2
S2 − λS

4
S4 − λHSH†HS2 . (2.236)

This model, in which the SM is extended with a singlet scalar S, has been analyzed in detail
previously in the contexts of the vacuum stability of the SM [217, 218], and dark matter
[219, 220]. In the su(2/2) framework, terms in the above Lagrangian result from the terms
with coefficients ρ1 and α1 in Eq. (2.194), provided that

λS = ρ1 , λHS =
α1

2
. (2.237)

A similar singlet field is found in the Spectral SM [155]. See also Refs. [193, 194].

Assuming that in addition to S, the right-handed neutrino survives a low energies, we obtain
the following renormalization group equations (RGE’s) for the evolution of the relevant
parameters [219, 221]:

µ
dht
dµ

=
ht

(4π)2

[
9

2
h2
t + h2

ν −
(

17

12
g′2 +

9

4
g2 + 8g2

s

)]
,

µ
dhν
dµ

=
hν

(4π)2

[
3h2

t +
5

2
h2
ν −

(
3

4
g′2 +

9

4
g2

)]
,

µ
dλ

dµ
=

1

(4π)2

[{
12h2

t + 4h2
ν −

(
3g′2 + 9g2

)}
λ
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−2h4
ν − 6h4

t + 24λ2 + 2λ2
HS

+
3

8

(
g′4 + 2g′2g2 + 3g4

)]
,

µ
dλHS
dµ

=
λHS
(4π)2

[
6h2

t + 2h2
ν −

(
3

2
g′2 +

9

2
g2

)
+2 (6λ+ 3λS + 4λHS)

]
,

µ
dλS
dµ

=
1

(4π)2

(
8λ2

HS + 18λ2
S

)
, (2.238)

where ht and hν are the top-quark and right-handed neutrino Yukawa couplings, λ and λS
are the Higgs and the singlet quartic couplings, and λHS is the Higgs-singlet coupling. The
boundary conditions we use are ht(MZ) = 0.997, obtained from ht(MZ) =

√
2mt/v, and

λ(ΛR) = g2(ΛR)/2, where the latter is fixed by our su(2/2) construction. We also assume
hν ∼ 10−6, which is necessary to generate the correct light neutrino mass from the TeV scale
seesaw, if the Dirac mass MD ≈ Me. We also need the values of λS(ΛR) and λHS(ΛR) as
boundary conditions for our RGE’s, but these are not fixed by our su(2/2) framework (yet).
Thus, we allow these values to float to find the conditions that lead to the correct Higgs
mass. The mass of the Higgs is determined from [155]

M2
h = λv2 + λSv

2
R −

√
(λv2 − λSv2

R)
2

+ 4λ2
HSv

2v2
R

' 2v2λ

(
1− λ2

HS

λλS

)
, (2.239)

consistent with Eq. (2.227). We have also set vR = ΛR ' 4 TeV in this calculation.

The resulting range of values for λS(ΛR) and λHS(ΛR) which reproduce the correct Higgs
mass is shown in Fig. 2.3. The plot shows the range of values (0.15 ∼ 0.25) in the perturbative
region, but larger values for these couplings are also possible as long as (1− λ2

HS/λ λS) ≥ 0,
while λ remains small. Thus, the su(2/2) structure can accommodate the correct Higgs
mass, provided the parameters in the Higgs potential are in the appropriate ranges.

2.3.10 su(2/2)ummary

In this section, we have applied the formalism developed for the su(2/1) embedding of
the SM in the previous section to an su(2/2) superconnection into which the SU(2)L ×
SU(2)R × U(1)B−L gauge bosons of the LRSM were embedded in its diagonal even part,
and a bi-doublet Higgs field Φ in its off-diagonal odd part. Unlike the su(2/1) case, the
matrix derivative could be made nilpotent, and the supercurvature F followed a simple
transformation law under gauge transformations. To the gauge invariant but spontaneously
broken (to SU(2)V ×U(1)B−L) action derived from F , in which the bi-doublet Φ was already
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the shifted field fluctuating around the VEV ζ/
√

2, we introduced two triplet fields ∆L,R to
achieve the breaking sequence SU(2)L × SU(2)R × U(1)B−L → SU(2)L × U(1)Y → U(1)em.

The predictions of the formalism were gBL/g = 1/
√

2 (or, equivalently, g′/g = 1/
√

3) and
λ1 = −2λ3 = g2/2, λ2 = λ4 = 0, where the λi’s are quartic self couplings of the bi-doublet
Φ. Of these, λ1 corresponds to the quartic self coupling λ of the SM Higgs. Assuming the
above symmetry breaking sequence, it was found that the condition gBL/g = 1/

√
2 could

only be imposed if the emergence scale Λs of the su(2/2) structure and the breaking scale
ΛR of the LRSM down to the SM were the same and at ∼ 4 TeV. Thus, the formalism
demands that the LRSM emerge from the hypothetical underlying NCG theory already fully
broken. Despite the formalism’s predictions including the emergence scale being essentially
the same as in the su(2/1) case, the observed Higgs mass could still be accommodated due
to the availability of other neutral scalar degrees of freedom in the model which mixed with
the Higgs.

2.4 Fermions

For the superconnection formalism presented here to be taken seriously, we must have the
freedom to couple fermions to the Higgs field with arbitrary Yukawa couplings, or the for-
malism must be able to predict what these Yukawa couplings should be. This is a difficult
problem given that the superconnection formalism is essentially a gauge-Higgs unified the-
ory, and, as with any such scenario, if one naively couples the superconnection J to the
fermions, the Yukawa couplings are forced to be equal to the gauge couplings [222–228].

To see how this comes about in the su(2/1) case, let us assume that the Lagrangian of the
lepton su(2/1) triplet ψ coupled to the superconnection J is given, schematically, by

L` = iψ̄Dψ = iψ̄
[
d +

g

2
(dM + J )

]
ψ , (2.240)

where all the operators within the parentheses must be placed in the appropriate represen-
tations. In the spinorial representation, the one-form dxµ is represented by the Dirac matrix
γµ [229–232]. Thus, we have the replacements

d = dxµ ∧ ∂µ → γµ∂µ = /∂ ,

W i = W i
µdx

µ → W i
µγ

µ = /W
i
,

B = Bµdx
µ → Bµγ

µ = /B , (2.241)

and consequently,

d → /∂ · 13×3 ,

J → i

[
τ · /W − 1√

3
/B · 12×2

√
2φ√

2φ† − 2√
3
/B

]
≡ J .
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(2.242)

We define the Dirac operator D as

D = /∂ · 13×3 + i
g

2
η , (2.243)

to represent the generalized exterior derivative dS = d + g
2
dM . Then, the Lagrangian is

found to be

L` → iψ̄
(
D +

g

2
J
)
ψ

= `Li/∂ `L + `Ri/∂ `R

−g
2

(
`Lξ `R + `Rξ

† `L
)
− g√

2

(
`Lφ `R + `Rφ

† `L
)

−g
2

[
(`Lγ

µτi `L)W i
µ −

1√
3

(
`Lγ

µ`L + 2 `Rγ
µ`R

)
Bµ

]
= `Li/∂ `L + `Ri/∂ `R −

g√
2

(
`Lφ̂ `R + `Rφ̂

† `L

)
−g

2

[
(`Lγ

µτi `L)W i
µ −

1√
3

(
`Lγ

µ`L + 2 `Rγ
µ`R

)
Bµ

]
,

(2.244)

where we have defined φ̂ = φ + ξ/
√

2 as before. Thus, in addition to g′/g = 1/
√

3, we find
that the lepton Yukawa coupling is fixed to g/

√
2, and the matrix derivative terms couple the

leptons to the Higgs VEV and yield the charged lepton mass. Note also that this Lagrangian
is manifestly SU(2) × U(1)Y gauge invariant when written in terms of the shifted field φ̂,
but the invariance is already spontaneously broken with fermion mass terms when written
in terms of the φ field appearing in the superconnection.

In order to be able to change the Yukawa coupling to an arbitrary value, one must have the
freedom to multiply ξ in the matrix derivative, which determines 〈φ̂〉, and φ in the super-
connection J by the same constant for each fermion flavor to maintain the gauge invariance
of the Lagrangian when written in terms of φ̂. This is essentially one of the fundamental
reason we have to turn to NCG approach to have multiple lengths in the separation. Essen-
tially, one copy of the two sheets is ‘fuzzed up’ and multiple characteristic lengths can be
‘measured out’ if projected to the commutative c numbers.18 In the Spectral SM approach
[147–149, 152–156, 189], this is accomplished by writing the Dirac operator D in full fermion
flavor space, including all three generations, and inserting the complete fermion mass-mixing
matrix into the off-diagonal matrix derivative part. This is in accordance with the idea that
the matrix derivative encodes information on symmetry breaking. The superconnection J is
also defined via the generalized exterior derivative using D, which passes on the information

18We note this also shares some interesting features with quantum mechanics and quantum measurement
process as discussed in Refs. [233, 234].
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included in the matrix derivative to the couplings of the φ. The information also feeds into
the supercurvature, from which one determines the gauge-Higgs action and the Higgs VEV.
This procedure allows for the introduction of arbitrary masses and mixings into the fermion
sector.

Thus, the Spectral SM shows that it is possible to embed the required masses and mixings
of the fermions to reproduce the SM into the ‘geometry’ of the NCG discrete direction. The
interesting point is that in the Spectral SM approach, it is the fermion masses that are the
input and the Yukawa couplings the output, and not the other way around as in the standard
approach. The breaking of the gauge symmetry is encoded in the geometry, which is given
in terms of the fermion masses and from which one extracts the Higgs VEV, and one could
say that the Yukawa interactions themselves are consequences rather than the reason for
fermion mass.

It must be said, though, that this is actually a highly unsatisfactory state of affairs. One
wishes the NCG to determine the fermion masses and mixings, and not the other way around.
But, for that, a full theory of NCG dynamics would be necessary. So, for the time being, we
leave the prediction of the fermion masses and mixings to a possible future theory, and simply
deal with the problem by assuming that when the su(2/1) (or su(2/2)) structure emerges
from the underlying NCG theory at the emergence scale, the geometry, a full description of
which could be fairly complicated, in addition to breaking the gauge symmetries, also fixes
the fermion masses and mixings to the observed values.

2.5 TeV Collider Signal and Constraints

We have been led to the possibility that a LRSM emerges from an underlying NCG theory
at the scale of Λs ≈ 4 TeV, which also breaks to SU(2)L × U(1)Y with a triplet VEV of
vR = O(ΛR/g) with ΛR = Λs. An additional constraint that the model predicts is that the
Higgs quartic coupling λ1 and the SU(2) coupling g are related by λ1 = g2/2 at that scale.
In this section, let us look at what the phenomenological consequences are of such a scenario.

Since we envision that the UV theory above the emergence scale of Λs = 4 TeV is a NCG
theory with a discrete extra dimension, the existence of the extra dimension at such a low
scale should have observable consequences beyond predicting a LRSM with a particular
boundary condition. However, since the extra dimension is also discrete, it is not at all
clear what it means to have a ‘scale’ associated with it. Having zero measure, it cannot
be populated by extra degrees of freedom, which, for a continuum extra dimension model,
would lead to Kaluza-Klein states. Lacking an understanding of the hypothetical UV NCG
theory, it is difficult to state what to expect, so we will, for now, concentrate on the more
conventional phenomenology of the effective LRSM the formalism predicts. Considerations
of more exotic ‘smoking gun’ signatures will be left to future work.
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Figure 2.4: Processes that contribute to K0-K0 mixing in the LRSM. In (a), the indices i
and j run over the three generations of up-type quarks u, c, and t. Diagrams rotated by 90◦,
180◦, and 270◦ also contribute.

2.5.1 New Particles

First and foremost, the LRSM we have been considering predicts a plethora of new and heavy
particles: W±

2 (which are mostly W±
R ), Z2 (which is mostly Z ′), and a variety of neutral,

singly charged, and doubly charged scalars originating in the Higgs sector that are denoted
H0

1 , H0
2 , H0

3 , A0
1, A0

2, H±1 , H±2 , δ±±L and δ±±R in Ref. [235].19 The coupling of the triplet to the
leptons, Eq. (2.190), will also generate massive Majorana neutrinos, which we will denote N
or NR (since they are mostly νR) with a possible flavor index.

All these new particles will receive masses from the same triplet VEV, vR = O(ΛR/g), so we
can expect them all to have masses in the multi-TeV range, placing some of them, hopefully,
within LHC reach. The actual masses will depend on the many parameters of the model,
e.g., those appearing in the Higgs potential. One concrete prediction we can make is that
MZ2/MW2 ≈

√
3, so, for instance, if MW2 = 4 TeV then MZ2 ≈

√
3MW2 ≈ 7 TeV. Thus, the

actual particle masses need not all be concentrated at 4 TeV, and one expects a spread-out
spectrum. The TeV scale Majorana masses of the NR’s will also allow us to invoke a TeV
scale see-saw mechanism to suppress regular neutrino masses.

Bounds on these new particle masses exist from various low energy observables and from
direct searches at the LHC. Let us take a look at what they are.

2.5.2 Bounds from Low Energy Processes

Constraints on the LRSM from low energy processes have been heavily studied in the lit-
erature for both the non-supersymmetric LRSM [235–266] and its supersymmetric exten-
sion [267–270]. Processes and observables that have been considered include muon decay
µ → eνeνµ, neutron beta decay n → p e−νe, the neutron electric dipole moment (nEDM),
K0K0 mixing (i.e., the K0

L-K0
S mass difference ∆MK = MK0

L
−MK0

S
and the K-decay CP

violation parameters ε and ε′, c.f. Fig. 2.4), D0D0 mixing, B0B0 mixing (∆MBd , ∆MBs , and

19The lightest neutral Higgs particle, denoted h0 in Ref. [235], is identified with the SM Higgs and is not
included in this list.
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Figure 2.5: The Feynman diagram for the production of a heavy right-handed neutrino and
its decay to a dilepton and a dijet through WR exchange. MN is the Majorana mass of NR.

CP violation in hadronic B decays), b semileptonic decay, and b→ sγ.

Of the constraints thus obtained, those on the mass of W2, which is mostly WR, are fairly
robust and independent of the detailed form of the Higgs potential. This is due to the
SU(2)R gauge coupling being well known in the LRSM, and for the quark sector, if one
assumes the Yukawa interaction with the bi-doublet Φ, Eq. (2.203), to be solely responsible
for the quark masses and mixings, then the right-handed CKM matrix V R can be fairly well
constrained from quark masses and the usual left-handed CKM matrix V L. According to
the analysis of Ref. [235], ∆MK yields 2.5 TeV, while the combination of ε and nEDM yields
4 TeV, respectively, as the lower bound of MW2 . The 4 TeV bound matches precisely our
right-handed scale ΛR where we expect typical new particle masses to be.

Bounds on scalar masses are more model dependent, and can be much stronger than that on
MWR

. For instance, H0
1 and A0

1 exchange can contribute to K0K0 mixing at tree-level (see
Fig. 2.4(b)), and Ref. [235] uses ∆MK to place a lower bound of 15 TeV on their masses.

2.5.3 LHC Signatures

CMS and ATLAS have looked for BSM signals including WR, Z ′, and δ±±L,R’s of the LRSM in
proton-proton collisions of energies up to

√
s = 8 TeV, and continued their searches at the

center of mass energy of
√
s = 13 TeV. Here, we cite some of their current bounds.

WR and NR

Since the heavy neutrino NR has a large Majorana mass in our construction, a distinctive
signature for the model at the LHC is a same-sign dilepton + dijet final state with no missing
energy via W±

R → NR`
± → `±`±jj [271]. The Drell-Yan diagram for this lepton number

violating process is shown in Fig. 2.5, the violation due to the Majorana mass insertion on
the NR line. Since a Dirac mass does not violate lepton number, a Dirac neutrino would
only allow oppositely-charged dileptons in the final state. Therefore, LHC searches for the
same-sign channel are important in determining whether the heavy neutrino NR is Majorana
or Dirac.
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The cross section of the process naturally depends on both WR and NR masses, so the
searches exclude correlated regions in MWR

-MN space. In particular, if MWR
< MN then the

process will be highly suppressed and be undetectable, so certain regions cannot be probed.
If the intermediate state is Ne (Nµ), then the dilepton in the final state will be ee (µµ).
However, if the Ne and Nµ mix, then one can also have eµ final states. Thus, the bounds
could also depend on which channels are included in the analysis.

In Ref. [272], ATLAS reports that for both no-mixing and maximal-mixing scenarios (be-
tween Ne and Nµ), they have excluded WR of mass up to 1.8 TeV (2.3 TeV) at 95% C.L.,
assuming a mass difference between WR and N` larger than 0.3 TeV (0.9 TeV).

In Ref. [273], CMS reports that WR of mass up to 3.0 TeV have been excluded at 95% C.L.
for the ee and µµ channels separately, and also with the two channels combined assuming
degenerate Ne and Nµ masses.

Doubly Charged Higgs

Another signature of the LRSM which could be observed at the LHC comes from the triplet
Higgs channel. In particular, the doubly-charged Higgs of the triplet decaying to two same-
sign leptons

δ±±L,R → e±e±, µ±µ±, e±µ± (2.245)

via the Majorana interaction, Eq. (2.190), will present a very clear and distinctive signal.

In Ref. [274], ATLAS reports that δ±±L of masses up to 409 GeV, 398 GeV, and 375 GeV,
and δ±±R of masses up to 322 GeV, 306 GeV, and 310 GeV have been excluded at 95% C.L.
for the ee, µµ, and eµ final states, respectively. These results assume a branching fraction
of 100% for each final state. For smaller branching fractions, the bounds will be weaker.

In Ref. [275], CMS reports the mass bounds on the doubly charged Higgs in the left-handed
triplet extension of the SM (type II seesaw model). At the 95% C.L., the bounds are 444
GeV, 453 GeV, 373 GeV, 459 GeV, 375 GeV, and 204 GeV respectively when 100% decay
to ee, eµ, eτ , µµ, µτ , and ττ final states are assumed.

2.5.4 Neutrinoless Double-β Decay

Since the Majorana masses of the neutrinos violate lepton number by two units, their presence
will lead to lepton number violating processes such as neutrinoless double-β decay (0νββ):

(A,Z) → (A,Z + 2) + e− + e− . (2.246)

The rate of 0νββ can be written generically as

Γ0νββ

ln 2
= G

|M|2

m2
e

∣∣mββ
ν

∣∣2 , (2.247)
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Figure 2.6: Neutrinoless double-beta decay in the LRSM via the exchange of WL, WR with
νL and νR intermediate states. mD and MN are respectively the Dirac and Majorana masses
of the neutrino. Mass eigenstates are linear combinations of νL and νR, with the light state
ν consisting mostly of νL, and the heavy state N consisting mostly of νR. The double-circle
on the W propagator in (d) indicates WL-WR mixing.

where G denotes the kinematic factor,M the nuclear matrix element, me the electron mass,
and |mββ

ν | the effective neutrino mass:

mββ
ν =

∑
i

U2
eimi . (2.248)

Here, U is the PMNS mixing matrix, and mi the mass of the i-th mass eigenstate.

In the LRSM, 0νββ would occur via the WL and WR exchange processes with νL and νR
intermediate states as shown in Fig. 2.6. The dominant contributions are more likely to come
from pure left-handed currents with light neutrino intermediate states, Fig. 2.6(a), and pure
right-handed current with heavy neutrino intermediate states, Fig. 2.6(b). Contributions
from left-right mixed currents, Figs. 2.6(c) and 2.6(d), involve a suppression factor due to
the small left-right mixing (mD/MN ∼ 10−6 for the TeV scale LRSM with generic Yukawa
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Figure 2.7: Doubly-charged Higgs contributions to 0νββ in LRSM.

couplings) [276–281]. However, there is still room in the parameter space which allows
significant contributions from the mixed diagrams, as discussed in Ref. [282].

In addition, there exist contributions to 0νββ from the doubly-charged Higgs mediated dia-
grams shown in Fig. 2.7. While those involving the left-handed currents and δL are suppressed
by a factor of p2/M2

δ , those involving the right-handed currents and δR are proportional to
MN/M

2
δ , which may give significant contributions, depending on the masses in question.

The present limits on 0νββ are not in contradiction with the TeV scale LRSM. As stated in
Ref. [259], the current signal on 0νββ can be accounted by, for example, MW2 = 3 TeV and
MN = 10 GeV, where some fine-tuning is required but not by an unacceptable amount.

2.5.5 Lepton Flavor Violating Processes

µ−
R(L) e+L(R)

e−
R(L)

e−R(L)δ−−
R(L)

Figure 2.8: Doubly-charged Higgs contribution to µ− → e−e−e+ in LRSM.

The LRSM also allows for the lepton flavor violating (LFV) processes µ → eγ [283–285],
µ → 3e [285, 286], and µ → e conversion in nuclei [285, 287–290], though the predictions
for these processes are dependent on how much LFV is built into the Majorana interaction
between the leptons and the triplet scalars [277, 279, 281, 285, 291]. Current experimental
bounds on the branching fractions are [1]

B(µ→ eγ) < 5.7× 10−13 ,
B(µ→ eee) < 1.0× 10−12 ,

σ(µ−Au→ e−Au)

σ(µ−Au→ capture)
< 7× 10−13 , (2.249)
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all at 90% C.L.

Among these processes, µ → 3e is mediated by the doubly charged Higgses (δ±±L,R) at tree
level, Fig. 2.8, and can be expected to have a relatively large branching fraction. Since the
Majorana couplings at the vertices of Fig. 2.8 are proportional to the scale of the Majo-
rana masses of the N ’s, the diagram is roughly proportional to M2

N/M
2
δ , and the branch-

ing fraction to M4
N/M

4
δ . So the process provides a bound on MN/Mδ. In the analysis of

Ref. [277], the left-right symmetry operator of the model is taken to be charge conjugation
C [259] which restricts the form of the Majorana interaction and allows one to constrain the
right-handed PMNS matrix from the left-handed PMNS matrix, just as in the case of the
Yukawa interaction for quarks, providing some predictability. Assuming MW2 = 3.5 TeV and
Mmax

N = 0.5 TeV, and taking all of the above LFV processes into account, Ref. [277] reports
Mmax

N /Mδ < 0.1, which places a lower bound on Mδ of 5 TeV, right in the ballpark of our
ΛR = 4 TeV.

Belle, Babar, and LHCb have also searched for the LFV decays τ → `γ [292, 293] and
τ → ``` [294–296], where ` = e or µ and have placed bounds on the branching fractions to
these decays at around a few times 10−8 at 90% C.L. According to the analysis of Ref. [297],
the LRSM with W2, H±1 , and δ±±L,R masses all set to 3 TeV can accommodate a branching
fraction of τ → ``` as large as 10−9 which would be accessible at the next generation of
super B factories [298, 299].

2.5.6 Phenomenological Outlook

Based on these conventional phenomenological analyses, we conclude that the TeV scale
LRSM predicted by the su(2/2) superconnection formalism, possibly with an underlying
NCG, provides a wealth of new particles and predictions within reach of LHC and other
experiments. The fact that the current experimental bounds on the LRSM and the corre-
sponding predictions of the superconnection formalism are suspiciously close may be a sign
that LHC is on the brink of discovering something new and exciting.

With the center of mass energy of
√
s = 13 TeV for its second run, the LHC is well capable

of observing the new particles of the model among which the most important are the right-
handed gauge bosons (W±

R , Z ′) whose masses are fixed by the formalism and range within
the TeV scale. With the scale of 4 TeV, selected by the formalism itself, these masses will
be within reach of the LHC, provided that the right handed neutrinos (NR) are light enough
to make the corresponding channels accessible.20

A number of relevant and important observations could be delivered in the LFV branch as

20There is nothing in the model which constraints the right-handed neutrinos NR to be light. With NR
heavier than W±R , the Drell-Yan interactions will be highly suppressed and thus, although theoretically the
TeV scale LRSM could still be viable, it will be very difficult for the LHC to detect its signature through
the W±R channels.



74

well, especially in µ→ e conversion in nuclei, which we briefly discussed in an earlier section.
With the next generation of machines, the COMET [300] and Mu2e [301] collaborations
target to increase their sensitivity for this process from 10−13 to 10−17, which will significantly
improve the limits on new physics including LRSM. Moreover, the next generation of super
B factories aim to increase the limit on LFV τ decays to a level of 10−9 [298, 299], which
will also provide useful information on the nature of new physics.

Thus, the early disappointments of the LHC (lack of other discoveries except for the discovery
of the Higgs) could have been nothing but the calm before the storm.

2.6 Summary and Outlook for Superconnection For-

malism

2.6.1 Strengths and Weaknesses of the NCG-Superconnection Ap-
proach

Here, we have reviewed the su(2/1) superconnection approach to the SM of Ne’eman et al.
[129, 164, 173], supplemented by later developments by Coquereaux et al. [120] and Haussling
et al. [121]. The superconnection describes the connection in a model space in which our
3 + 1 dimensional spacetime is extended by a discrete extra dimension consisting of only two
points, i.e., the model space consists of two 3 + 1 dimensional branes separated by a gap.
The left-handed fermions are assumed to inhabit one brane, and the right-handed fermions
the other. The even part of the superconnection describes the usual gauge connection within
each 3 + 1 dimensional brane, while the odd part of the superconnection, identified with the
Higgs doublet, describes the connection in the discrete direction bridging the gap between
the two branes. Contrary to early misconceptions about the approach, the Higgs doublet
enters as a bosonic scalar, and does not violate the spin-statistics theorem.

The su(2/1) superconnection model predicts sin2 θW = 1/4, a condition which can only be
imposed on the SU(2)L × U(1)Y gauge couplings at ∼ 4 TeV. We interpret this to mean
that the SM emerges from the underlying discrete extra dimension theory at that scale. The
model also predicts the Higgs mass, which, including RGE running down from 4 TeV, is
∼ 170 GeV.

To remedy this problem, we extended the model to su(2/2), in which the SU(2)L×SU(2)R×
U(1)B−L gauge bosons and a bi-doublet field Φ were embedded into the superconnection.
This extended the SM to the LRSM, for which the emergence scale also turned out to be
4 TeV. In this case, additional gauge triplet scalars were introduced to break SU(2)R ×
U(1)B−L down to U(1)Y , and the scale of this breaking was also required to be at 4 TeV.
The bi-doublet field then broke the SU(2)L×U(1)Y symmetry down to U(1)em. It was shown
that the lightest neutral scalar in the Higgs sector could have mass as light as ∼ 126 GeV.
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The model also predicts a plethora of new particles with masses in the multi-TeV range,
within reach of the LHC run 2.

Of the several salient features of the approach, the most interesting is that the generalized
exterior derivative in the discrete direction, i.e., the matrix derivative, shifts the VEV of the
off-diagonal zero-forms to non-zero values, effectively breaking the gauge symmetries. Thus,
gauge symmetry breaking is intimately connected to the geometry of the model spacetime,
in particular, to the separation of the two branes. We envision a scenario in which the
two branes, originally overlapping, separate from each other dynamically and trigger gauge
symmetry breaking. In other words, the Higgs mechanism is not due to the Higgs dynamics
which is independent of any underlying geometry, but an integral part of the geometry itself,
and is quantum gravitational in character.

Many problems still remain for the formalism to mature into a full fledged model building
paradigm. First, the Lie superalgebra structure is assumed to emerge from some underlying
NCG theory, but we have not clarified how the geometry enforces the structure yet. We would
also like to incorporate QCD, and fermion generations into the structure. The Spectral SM
of Connes et al. supposedly has already done this, but, as commented on earlier, the Spectral
SM approach does not have much predictive power. Also, after the incorporation of QCD
into the model, we would like to unify it with the LRSM via the Pati-Salam group. The
U(1)B−L gauge boson being part of the su(2/2) superconnection, this suggests that QCD
cannot be simply tacked on to the model.

There is also the subtle problem of how the nilpotency of the matrix derivative should be
treated. In the su(2/1) case, the term d2

M in the definition of the supercurvature could not be
ignored for gauge invariance, but including it led to internal inconsistencies. In the su(2/2)
case, d2

M belongs to the center of the superalgebra, so it can be added or subtracted from the
super curvature without changing its algebraic properties. This suggests that one can decide
to ignore d2

M based on consistency requirements, but one cannot shake the impression that
the treatment is ad hoc. Furthermore, in the su(2/2) case, phenomenological requirements
demanded that the nilpotency of the matrix derivative be broken. Whether this is another
indication of a deep connection between spontaneous symmetry breaking and the geometry
of the underlying theory remains to be seen.

These and other questions will be addressed in future work.

2.6.2 Comment on the Hierarchy Problem and the Unification of
Couplings

The major appeal of the more traditional approaches to BSM model building such as super-
symmetry (as well as technicolor, extra dimensions, etc.) is that they address the hierarchy
problem, and that they shed light on the apparent unification of couplings, both within the
context of local effective field theory (EFT).
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However, this apparent theoretical appeal of supersymmetry does not exclude approaches
that do not necessarily follow the local EFT paradigm. For example, in the Spectral SM
approach of Connes et al. [147–149, 152–156, 189] the hierarchy problem can be addressed
in a completely different fashion [154]. The crucial NCG (and thus in some sense non-local)
aspect of the SM is found in the Higgs sector, which in principle comes with an extra (second)
scale, to be distinguished from the usual UV scale of local EFT. The hierarchy between the
Higgs and the UV (Planck) scale can be associated (as shown by Chamseddine and Connes
in Ref. [154]) with the natural exponential factor that comes from the dynamical discrete
geometry of the Higgs sector. Similarly, the apparent gauge unification (in the guise of an
effective SO(10) relation between the gauge couplings) is also incorporated into the Spectral
SM. These aspects of the NCG approach to the SM are almost completely unknown in
the particle physics community, and at the moment, almost completely undeveloped from a
phenomenological viewpoint.

One of our aims in our upcoming review of the Spectral SM [162] is to clarify these in-
teresting features of the NCG approach to the SM and make them palatable to the wider
phenomenological community. We are also motivated by a deeper need to understand the
limitations of the local EFT paradigm from the point of view of the physics of quantum
gravity, which is usually, rather naively, ignored at the currently interesting particle physics
scales, by invoking the concept of decoupling, which represents another central feature of
the local EFT and which is also challenged by the NCG approach to the SM. Finally, as we
discuss in the next concluding subsection of this paper, the usual RG analysis of the local
EFT should be re-examined in the new light of the non-commutative/non-local structure of
the SM, and the apparent existence of two natural (and naturally related) physics scales.

2.6.3 The Violation of Decoupling and the Possibility for UV/IR
Mixing

In this concluding subsection we would like to comment on the observation made in Ref. [302]
regarding the violation of decoupling in the Higgs sector, and how this violation may point
to the more fundamental possibility of mixing of UV and IR degrees of freedom, given our
view that a NCG underlies the Higgs sector. Such UV/IR mixing is known in the simpler
context of non-commutative field theory [303], which we review below.

First, let us briefly recall the argument made in Ref. [302]: Essentially, Senjanovic and
Sokorac found within the LRSM that the Higgs scalars do not decouple at low energy due
to the essential relation between the gauge couplings and the Higgs mass. Note that this
violation of decoupling will affect the scales of the electroweak breaking (taken as the low
energy scale) and the TeV scale (taken as the high energy scale of new physics).

Such a violation of decoupling might point to a more fundamental phenomenon of the UV/IR
mixing of the short and long distance physics. Here, we briefly recall in slightly more
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detail the UV/IR mixing found in non-commutative field theory [303]. In this particular
toy-model case (to be distinguished from NCG of Connes relevant for our discussion), the
non-commutative spatial coordinates are assumed to satisfy

[xa, xb ] = iθab , (2.250)

where θab is real and antisymmetric. Note that when this relation is taken together with the
fundamental commutation relation

[xa, pb ] = iδab , (2.251)

they imply the possibility of a fundamentally new effect: UV/IR mixing, i.e.,

δxa ∼ θab δpb . (2.252)

This would mean, contrary to the usual intuition from local effective field theory, that high
energy processes are related to low energy distances. We have argued elsewhere that the
UV/IR mixing should be a fundamental feature of quantum gravity and string theory [118,
304].

At the moment, we are not aware of an explicit UV/IR relation in the context of the NCG of
Connes that underlies the superconnection formalism and the new viewpoint on the SM and
the physics beyond it, as advocated here. However, there exists a very specific toy model of
non-commutative field theory in which such UV/IR mixing has been explicitly demonstrated.
The nice feature of this toy model is that it can be realized in a fundamental short distance
theory, such as string theory [303].

The non-commutative field theory is defined by the effective action

Snc =

∫
d4x L[φ] (2.253)

where the product of the fields φ is given by the Moyal (or star) product

(φ1 ? φ2)(x) ≡ exp

[
i

2
θab∂ya∂

z
b

]
φ1(y)φ2(z)

∣∣∣
y=z=x

. (2.254)

In what follows, motivated by the form of the Higgs Lagrangian, we take L[φ] to describe
the massive λφ4 non-commutative field theory.

The main point made in Ref. [303] is that, in the simplest case of the φ4 theory, the 1PI two
point function has the non-trivial leading form (up to an overall coefficient)

Λ2
eff −m2 log

(
Λ2

eff

m2

)
, (2.255)

where m is the mass of the φ field, and the effective cut-off Λeff is given by the following
expression:

Λ2
eff =

(
1

Λ2
− paθ2

abpb

)−1

. (2.256)
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Here, Λ is the usual UV cut-off. Note that the non-commutativity scale θ plays the role of
the natural IR cut-off.

The UV/IR mixing, characteristic of this type of non-commutative field theory leads to the
question of the existence of the proper continuum limit for non-commutative field theory.
This question can be examined from the point of view of non-perturbative Renormalization
Group (RG). The proper Wilsonian analysis of this type of non-commutative theory has been
done in Ref. [305]. The UV/IR mixing leads to a new kind of the RG flow: a double RG
flow, in which one flows from the UV to IR and the IR to the UV and ends up, generically,
at a self-dual fixed point. It would be tantalizing if the NCG set-up associated with the SM,
and in particular, the LRSM generalization discussed here, would lead to the phenomenon of
the UV/IR mixing and the double RG flow with a self-dual fixed point. Finally, we remark
that it has been argued in a recent work on quantum gravity and string theory that such
UV/IR mixing and the double RG might be a generic feature of quantum gravity coupled
to matter [118, 304].

Even though the NCG in our case is different from this toy example, the lesson in the
essential physics of the UV/IR mixing is present in our situation as well: the Higgs field can
be associated with the natural scale of non-commutativity and thus the natural IR scale,
and, therefore, even in our situation we might reasonably expect that the the Higgs scale is
mixed with the UV cut-off defined by some more fundamental theory. Needless to say, at
the moment this is only an exciting conjecture.

If this conjecture is true, given the results presented here one could expect that the appear-
ance of the LRSM degrees of freedom (as well as the embedded SM degrees of freedom) at
low energy is essentially a direct manifestation of some effective UV/IR mixing, and thus
that, on one hand, the remnants of the UV physics can be expected at a low energy scale
of 4 TeV, and, conversely, that the LRSM structure point to some unique features of the
high energy physics of quantum gravity. In this context, we recall the observations made in
Ref. [196] about the special nature of the Pati-Salam model, which unifies the LRSM with
QCD, in certain constructions of string vacua. Even though this observation is mainly based
on “groupology” and it is not deeply understood, this observation might be indicative that
the Pati-Salam model is the natural completion of the SM, as suggested here, in which the
infrared physics associated with the Higgs sector is mixed with the ultraviolet physics of
some more fundamental physics, such as string theory.



Chapter 3

Left-right Symmetric Model
Motivated by Non-Commutative
Geometry

In the last chapter, we studied the superconnection formalism, which implies a geometry
responsible for the structure of the SM particle spectrum. It was shown by Connes et al.
[190] that, in order to describe all the symmetries we observe in terms of diffeomorphisms of
a single geometric structure, the geometry cannot be a regular geometry but instead must be
NCG. In this chapter, we briefly review NCG as studied in our previous work [160] published
in International Journal of Modern Physics A, and study the phenomenology related to it.
In particular, we study the LRSM extension hinted by the NCG structure and point out
that the model would have been in tension with the previous LHC diboson excess had the
signal persisted.

3.1 Introduction and Overview of NCG Approach

Canonical discussions on possible new physics beyond the Standard Model (SM) have been
centered around the hierarchy problem and the unifications of couplings. The current fa-
vorites among various approaches to stabilizing the low Higgs mass (126 GeV, as found at the
LHC [306, 307]) are supersymmetry, technicolor, and extra dimensions. These approaches
also incorporate the philosophy of coupling unification in Grand Unified Theories (GUT’s).

To this list, we seek to add another contender, namely models based on the NCG of
Connes [152, 189]. In a series of papers starting from 1990 [147–156], Connes and col-
laborators have argued that the SM action could be derived from a particular NCG via the
construction of what they call the “spectral” action [149], in essence geometrizing the SM
and placing it on a similar footing to gravity. Several of the predictions that result from the

79
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approach, according to our current understanding, are quite remarkable:1

• The SU(2)L gauge bosons and the Higgs doublet are unified into a single “supercon-
nection,” one of the consequences being that the SU(2)L gauge coupling gL and the
Yukawa couplings are related in a particular way [147, 150–152].

• The SU(2)L × U(1)Y × SU(3)C gauge couplings satisfy an SO(10) GUT-like relation,
even though the particle content of the model is that of the SM [149, 154].

• Anomaly cancellation requires the presence of both electroweak and QCD sectors,
another GUT-like feature [150].

• The smallness of the Higgs boson mass can potentially be explained via an extra-
dimension-like mechanism involving a ‘warp’-factor [154].

The approach, of course, is not without its problems:

• The GUT-like relations on the gauge couplings can only be imposed at a single scale, so
one must interpret the NCG spectral action as that which ‘emerges’ from an underlying
NCG theory at the ‘unification’ scale.

• Quantization of the model within the NCG framework (in the sense of path integrals)
is yet to be fully explored [152, 189], so one usually treats the NCG spectral action
as an effective QFT action at the unification scale, and evolve it down to lower ener-
gies using the usual Renormalization Group (RG) equations to work out the infrared
consequences.

• The minimal version of the NCG model which describes the SM predicts a Higgs mass of
∼ 170 GeV, in clear contradiction with experiment [154]. This issue could be remedied
by turning one of the off-diagonal entries of the Dirac operator, which is responsible
for the neutrino Majorana mass, into a field. With this singlet field coupled to the SM
Higgs field, the model accommodates a 126 GeV Higgs boson [155]. This could also be
accomplished by extending the NCG to that which leads to a left-right symmetric Pati-
Salam type action with coupling unification which automatically involves this singlet
field [156].

In addition, the NCG spectral action approach to particle physics is under continued devel-
opment by Connes and collaborators, and sorting out the various versions can be difficult.

Despite these caveats, however, or any other reservation one may have about the entire ap-
proach, it is not without its merits, as explained above, and we feel that it may have the
potential to develop into a full-fledged paradigm. In particular, from the phenomenological

1We are currently working on a review article explaining how these predictions come about [162].
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standpoint, the necessity to enlarge the gauge symmetry (via an enlargement of the un-
derlying NCG) to accommodate the Higg mass can be considered a strength rather than a
weakness. It tells us that the approach is restrictive enough for the models to be confronted
by experiment, and point us in new directions to explore.

Indeed, in a recent paper [2], Chamseddine, Connes, and van Suijlekom have proposed a new
formulation of an NCG based unified left-right symmetric Pati-Salam model, which comes
in three different versions differing in Higgs content. In all three, the gauge theory which
emerges from the underlying NCG at the unification scale, which we will call MU , is that
with gauge symmetry G224 = SU(2)L × SU(2)R × SU(4)C with unified couplings:

gL(MU) = gR(MU) = g4(MU) . (3.1)

In one version, the symmetry is actually G224D = G224 ×D, where D denotes parity which
maintains left-right symmetry.2

G224 or G224D is assumed to break down to G213 = SU(2)L × U(1)Y × SU(3)C of the SM at
scale MR with matching conditions

1

[g1(MR)]2
=

2

3

1

[g4(MR)]2
+

1

[gR(MR)]2
,

1

[g2(MR)]2
=

1

[gL(MR)]2
,

1

[g3(MR)]2
=

1

[g4(MR)]2
. (3.2)

For all three versions, which differ in particle content, Ref. [2] argues that both boundary
conditions can be satisfied if MU ∼ 1015 GeV and MR ∼ 1013 GeV.

Here, we will not attempt to review or justify the derivation of these models, but look
at their consequences purely phenomenologically. From that viewpoint, the high value of
MR is problematic in light of recent hints of a WR with a mass of around 2 TeV at the
LHC. [308–313] If the LHC signal is indeed the gauge boson of the SU(2)R group, then MR

on the order of a few TeV would be more compatible with that possibility. For instance, in
Refs. [159, 163] we proposed an su(2/2) superconnection-based left-right symmetric model
for which MR = 4 TeV, placing the mass of WR in the correct range. We address the
question whether MR for Chamseddine et al.’s NCG models can be lowered by the addition
of intermediate breaking scales between MU and MR at which the symmetry breaks down
from G224D/G224 to G213 via several intermediate steps. In other words, is any symmetry-
breaking pattern compatible with a unified left-right symmetric Pati-Salam model at MU ,
and the SM below MR ∼ few TeV? We will demand that MU stay below the Planck mass

2D-parity is slightly different from the usual Lorentz (P ) parity in that the former interchanges the
SU(2)L and SU(2)R sectors completely (including the scalars), while the latter does not transform the
scalars. For example, the D-parity interchanges the SU(2)L Higgs fields and their SU(2)R counterparts,
and transforms the bidoublet φ into φ† (and vice versa), while the P -parity leaves them unchanged.
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at 1019 GeV. Similar analyses have been carried out in the context of non-supersymmetric
SO(10) GUT models in Refs. [314–321] for a variety of symmetry breaking chains.3 Our
analysis differs from these due to the NCG models considered here differing in Higgs content
since NCG does not require the Higgs fields to fall into SO(10) multiplets.

While originally motivated by the desire to confront the viability of NCG derived unified left-
right symmetric Pati-Salam models, we note in passing that similar models may emerge in a
large class of string compactifications as discovered by Dienes. [326] So the results presented
here may have a wider range of applicability.

This chapter is organized as follows. In section 2, we briefly review the current status of the
WR-like signal seen at the LHC, and phenomenological constraints. In section 3, we cover var-
ious symmetry breaking chains from G224D/G224 down to G213, and solve the renormalization
group evolution equations for breaking scales which would satisfy the boundary/matching
conditions for the given particle content. The list includes those that were considered by
Chamseddine, Connes, and van Suijlekom in Ref. [2]. We conclude in section 4 with a
discussion of what was discovered.

3.2 Example: The WR Signal at the LHC

In 2015, ATLAS reported on a search for narrow resonances hadronically decaying into a
pair of SM gauge bosons WW , WZ, or ZZ [308]. The largest excess occurs in the WZ
channel at around 2 TeV with a local significance of 3.4σ and a global 2.5σ. Moreover, both
CMS [309] and ATLAS [310] notice an excess at around 1.8 TeV in the dijet distributions,
albeit with low significance (2.2σ and 1σ). In addition, CMS observes an excess, again at
around 2 TeV, both in their search for massive WH production in the `νbb final state [311]
and in massive-resonance production decaying into two SM vector bosons (one of which is
leptonically tagged [312]), both of which have lower significance than 2σ.

It is discussed in Refs. [327–330] that these results may be interpreted in the context of the
left-right model with the gauge group SU(2)L×SU(2)R×U(1)′ and it is shown that a heavy
right-handed gauge boson WR with a single coupling gR(MR) ' 0.4 can explain the current
measurements. Note that this coupling is different from the SM left-handed WL coupling
gL(5 TeV) ' 0.63. [1, 331] Many other authors have also discussed possible phenomenological
consequences of the WR interpretation, e.g. Refs. [332–343] to list just a few, but we refrain
from reviewing them here.

Although the collider excess goes away later, we nevertheless use it as an example to demon-
strate how exotic high energy physics such as NCG can be put into test in a collider experi-
ment.

3For analyses of supersymmetric SO(10) GUT, see Refs. [322–325].
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3.3 TeV-Scale Left-Right Model in the Light of Latest

LHC Searches

3.3.1 Setup of the Problem

We would like to see whether such a WR can be accommodated within an NCG induced
unified left-right symmetric Pati-Salam model. The left-right symmetric model naturally
has gR = gL. However, one can have an asymmetry between gR and gL if one separates the
D-parity [259] breaking scale MD from the the scale MR where SU(2)R is broken [206, 344].

As an intermediate symmetry between G224D/G224 and G213 of the SM, we introduce

G2213 = SU(2)L × SU(2)R × U(1)B−L × SU(3)C , (3.3)

with gauge couplings gL, gR, gBL, and g3. The most general breaking sequence will then be

NCG
MU==⇒ G224D

MD−−→ G224
MC−−→ G2213

MR−−→ G213
MZ−−→ G13 , (3.4)

where the double-line arrow indicates the emergence of the G224D theory from the under-
lying NCG, and G13 = U(1)EM × SU(3)C is the unbroken group which remains below the
electroweak scale with couplings e and g3.

We label the energy intervals in between symmetry breaking scales starting from [MZ ,MR]
up to [MD,MU ] with Roman numerals as:

I : [MZ , MR] , G213 (SM) ,
II : [MR, MC ] , G2213 ,

III : [MC , MD] , G224 ,
IV : [MD, MU ] , G224D . (3.5)

The ordering of the breaking scales must be strictly maintained, that is

MZ ≤ MR ≤ MC ≤ MD ≤ MU . (3.6)

However, adjacent scales can be set equal, which collapses the corresponding energy interval
and skips the intermediate step. For instance, if MR = MC , then G224 breaks directly to
G213, and interval III will be followed by interval I, skipping interval II.

In the following, we investigate whether it is possible to set MR ∼ 5 TeV while maintaining
MU below the Planck scale. The IR data which we will keep fixed as boundary conditions
to the RG running are [1, 331]

α(MZ) = 1/127.9 ,
αs(MZ) = 0.118 ,

sin2 θW (MZ) = 0.2312 , (3.7)
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at MZ = 91.1876 GeV, which translates to

g1(MZ) = 0.36 , g2(MZ) = 0.65 , g3(MZ) = 1.22 . (3.8)

The coupling constants are all required to remain in the perturbative regime during the
evolution from MU down to MZ .

3.3.2 One-Loop Running and the Extended Survival Hypothesis

For a given particle content, the gauge couplings are evolved according to the 1-loop RG
relation

1

g2
i (MA)

− 1

g2
i (MB)

=
ai

8π2
ln
MB

MA

, (3.9)

where the RG coefficients ai are given by [7, 200]

ai = −11

3
C2(Gi) +

2

3

∑
Rf

Ti(Rf ) · d1(Rf ) · · · dn(Rf )

+
1

3

∑
Rs

Ti(Rs) · d1(Rs) · · · dn(Rs) . (3.10)

Here, the summation is over irreducible chiral representations of fermions (Rf ) in the second
term and those of scalars (Rs) in the third. C2(Gi) is the quadratic Casimir for the adjoint
representation of the group Gi, and Ti is the Dynkin index of each (complex) representation.4

For SU(2), C2(G) = 2, T = 1/2 for doublet representations and T = 2 for triplets. See
Table 3.1 for the Dynkin indexes of other representations. For U(1), C2(G) = 0 and∑

f,s

T =
∑
f,s

(
Y

2

)2

, (3.11)

where Y/2 is the U(1) charge, the factor of 1/2 coming from the traditional normalizations
of the hypercharge Y and B − L charges. The ai’s will differ depending on the particle
content, which changes every time symmetry breaking occurs. We will distinguish the ai’s in
different energy intervals with the corresponding roman numeral superscript, cf. Eq. (3.5).

For the particle content in each energy interval we impose the Extended Survival Hypothesis
(ESH) [345]. The ESH states that at every step of the symmetry breaking chain, the only
scalars which survive below the symmetry breaking scale are the ones which acquire vacuum
expectation values (VEV’s) at the subsequent levels of the symmetry breaking. For instance,
the only scalar assumed to survive below MR would be the SM Higgs doublet which acquires
a VEV to break G213 further down to G13 under the ESH.

4If the representation is real a factor of 1
2 comes about in the third term.
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3.3.3 Non-Unified Left-Right Symmetric Pati-Salam

We begin by looking at the Pati-Salam model [195, 201–203] without the unification of all
three couplings as demanded in the NCG approach. We impose left-right symmetry gL = gR
at scale MD, which we identify as the scale at which G224D breaks to G224, and evolve our
couplings down from MD:

G224D
MD−−→ G224

MC−−→ G2213
MR−−→ G213

MZ−−→ G13 . (3.12)

Note that energy interval IV is absent. In addition to Eq. (3.8), the boundary/matching
conditions we impose on the couplings at the symmetry breaking scales are:

MD : gL(MD) = gR(MD) , (3.13)

MC :

√
2

3
gBL(MC) = g3(MC) = g4(MC) , (3.14)

MR :
1

g2
1(MR)

=
1

g2
R(MR)

+
1

g2
BL(MR)

, g2(MR) = gL(MR) , (3.15)

MZ :
1

e2(MZ)
=

1

g2
1(MZ)

+
1

g2
2(MZ)

. (3.16)

Note that if MC = MR, then the conditions at those scales reduce to those given in Eq. (3.2).

We assume that the above breaking sequence is accomplished by a Higgs sector consisting
of scalars which transform under G224 as

φ(2, 2, 1) , ∆R(1, 3, 10) , Σ(1, 1, 15) . (3.17)

These fields decompose into irreducible representations of G2213 as:

Σ(1, 1, 15) = Σ1(1, 1, 0, 1)⊕ Σ3

(
1, 1,

4

3
, 3

)
⊕ Σ3̄

(
1, 1,
−4

3
, 3̄

)
⊕ Σ8(1, 1, 0, 8) ,

∆R(1, 3, 10) = ∆R1(1, 3, 2, 1)⊕∆R3

(
1, 3,

2

3
, 3

)
⊕∆R6

(
1, 3,
−2

3
, 6

)
,

φ(2, 2, 1) = φ(2, 2, 0, 1) . (3.18)

The breaking of G224 down to G2213 would be accomplished by the field Σ1 acquiring a VEV.
Σ3, Σ3̄, Σ8, ∆R3, ∆R6 are all colored, so they will not be acquiring VEV’s in the subsequent
steps. Thus, under ESH, all these fields will become heavy at MC and decouple from the
RG equations below MC . The remaining fields decompose into irreducible representations
of G213 as:

∆R1(1, 3, 2, 1) = ∆0
R1(1, 0, 1)⊕∆+

R1(1, 2, 1)⊕∆++
R1 (1, 4, 1) ,
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φ(2, 2, 0, 1) = φ2(2, 1, 1)⊕ φ′2(2,−1, 1) . (3.19)

The breaking of G2213 down to G213 would be accomplished by the field ∆0
R1, while that of

G213 down to G13 would be realised by the neutral (diagonal) components of φ2(2, 2, 0, 1),
acquiring VEVs. The fields ∆+

R1 and ∆++
R1 would be both charged under electromagnetism,

so they will not be acquiring VEV’s in the subsequent steps. Thus, under the ESH, these
fields will become heavy at MR. In addition, only one of the two physical states (which are
linear combinations of φ2 and φ′2) remains light while the other picks a mass at MR, unless
we apply fine-tuning [346]. The left-over field, the SM Higgs (which can be identified without
loss of generality as φ2(2, 1, 1)) is left to be the only field in the Higgs spectrum below MR.
Finally, with ESH, the particle content (other than the fermions and gauge bosons) of our
model in the three energy intervals I through III are:

III : φ(2, 2, 1) , ∆R(1, 3, 10) , Σ(1, 1, 15) ,

II : φ(2, 2, 0, 1) , ∆R1(1, 3, 2, 1) ,

I : φ2(2, 1, 1) . (3.20)

The values of the RG coefficients for this Higgs content are listed in Table 3.2.

Taking advantage of the boundary/matching conditions, the following relations can be de-
rived between the boundary values α(MZ), αs(MZ), sin2 θW (MZ), gR(MR), and the ratios of
the successive symmetry breaking scales:

2π

[
3− 6 sin2 θW (MZ)

α(MZ)
− 2

αs(MZ)

]
= (3a1 − 3a2 − 2a3)I︸ ︷︷ ︸

44

ln
MR

MZ

+ (−3aL + 3aR + 3aBL − 2a3)II︸ ︷︷ ︸
27

ln
MC

MR

+ (−3aL + 3aR)III︸ ︷︷ ︸
20

ln
MD

MC

,

2π

[
4π

g2
R(MR)

− sin2 θW (MZ)

α(MZ)

]
= (−a2)I︸ ︷︷ ︸

19/6

ln
MR

MZ

+ (aR − aL)II︸ ︷︷ ︸
2/3

ln
MC

MR

+ (aR − aL)III︸ ︷︷ ︸
20/3

ln
MD

MC

. (3.21)

The derivation is shown in the Appendix B.1. To maintain the ordering of the mass scales,
all logarithms in these expressions must be non-negative. Numerically, we have

517 = 44x+ 27 y + 20 z ,
206

g2
R(MR)

− 484 = 19x+ 4 y + 40 z , (3.22)
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(b) gR(MR) = 0.59

Figure 3.1: Running of the gauge couplings for the left-right symmetric Pati-Salam model.
The vertical dotted lines from left to right correspond to the symmetry breaking scales MZ ,
MR, and MC . MR is fixed at 5 TeV. For the U(1)B−L coupling between MR and MC , we

plot
3

2
α−1
BL(µ) =

6π

g2
BL(µ)

so that it agrees with α−1
4 (µ) at µ = MC . The two cases shown are

(a) gR(MR) = 0.4 is imposed, and (b) MD is minimized by collapsing the energy interval III.

where

x = log10

MR

MZ

, y = log10

MC

MR

, z = log10

MD

MC

. (3.23)

If we fix MR = 5 TeV, then x = log10(MR/MZ) = 1.74, and the above system of linear
equations yields

y = 27.9− 4.11

g2
R(MR)

, z = −15.7 +
5.56

g2
R(MR)

. (3.24)

Since both y and z must be positive, we must have

0.38 < gR(MR) < 0.59 . (3.25)

We would also like to impose the condition

x+ y + z = 14.0 +
1.44

g2
R(MR)

= log10

MD

MZ

< log10

1019 GeV

MZ

= 17.0 , (3.26)

which constrains gR(MR) to
gR(MR) > 0.69 , (3.27)

which is incompatible with Eq. (3.25). Thus, the system does not allow for a parity breaking
scale MD lower than the Planck mass.

Indeed, if we set gR(MR) = 0.4, as preferred by experiment [327–330], we obtain y = 2.2,
z = 19.0, which translates to

MR = 5 TeV , MC = 8× 105 GeV , MD = 8× 1024 GeV , (3.28)
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with
gL(MD) = gR(MD) = 0.48 , g4(MD) = 0.43 . (3.29)

If we allow gR(MR) to be as large as 0.59, we obtain y = 16.3, z = 0, which translates to

MR = 5 TeV , MC = MD = 1× 1020 GeV , (3.30)

with
gL(MD) = gR(MD) = 0.50 , g4(MD) = 0.48 . (3.31)

The evolution of the couplings for these choices of scales is shown in Fig. 3.1. For each choice
of gR(MR), the value of gBL(MR) is determined from the known value of the hypercharge
coupling g1(MR) and the matching condition Eq. (3.15). Larger values of gR(MR) closer to
gL(MR) will lower the scale MD at which the RG flow of the two couplings separate. At the
same time, larger values of gR(MR) demand smaller values of gBL(MR), which pushes up the
scale MC where the RG flow of gBL bifurcates from that of g3. Since the order MC ≤ MD

cannot be violated, MD cannot be lowered further by increasing gR(MR) once the two scales
meet.

Looking at Fig. 3.1(b), however, we notice that in energy interval II gL and gR do flow
apart, but not as much as in energy interval III. A larger difference between gL and gR could
be generated in interval II if (aL − aR)II could be enhanced. To this end, let us relax the
ESH and allow some of the colored ∆R fields to survive into interval II. The RG coefficients
for three Higgs-content scenarios in interval II that differ from the ESH case are listed in
Table 3.3. Clearly, the addition of extra ∆R fields enhances (aL − aR)II.

We perform the same analyses as above for the three ESH-breaking cases, namely, the
calculation of the symmetry breaking scales to reproduce gR(MR) = 0.4, and then by allowing
the value of gR(MR) to float in order to find the lowest value of MD:

1. ∆R1 and ∆R3 survive:
To reproduce gR(MR) = 0.4, we find

MR = 5 TeV , MC = 8× 105 GeV , MD = 2× 1024 GeV , (3.32)

with
gL(MD) = gR(MD) = 0.48 , g4(MD) = 0.44 . (3.33)

If gR(MR) is allowed to float, the minimum of MD is achieved when gR(MR) = 0.53
with

MR = 5 TeV , MC = MD = 1× 1017 GeV , (3.34)

with
gL(MD) = gR(MD) = 0.52 , g4(MD) = 0.53 . (3.35)

The runnings of the couplings for these cases are shown in Fig. 3.2(a) and (b).
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2. ∆R1 and ∆R6 survive:
To reproduce gR(MR) = 0.4, we find

MR = 5 TeV , MC = 2× 106 GeV , MD = 5× 1023 GeV , (3.36)

with
gL(MD) = gR(MD) = 0.48 , g4(MD) = 0.45 . (3.37)

If gR(MR) is allowed to float, the minimum of MD is achieved when gR(MR) = 0.49
with

MR = 5 TeV , MC = MD = 8× 1015 GeV , (3.38)

with
gL(MD) = gR(MD) = 0.53 , g4(MD) = 0.62 . (3.39)

The runnings of the couplings for these cases are shown in Fig. 3.2(c) and (d).

3. All three multiplets ∆R1, ∆R3, and ∆R6 survive:
To reproduce gR(MR) = 0.4, we find

MR = 5 TeV , MC = 2× 106 GeV , MD = 8× 1022 GeV , (3.40)

with
gL(MD) = gR(MD) = 0.49 , g4(MD) = 0.46 . (3.41)

If gR(MR) is allowed to float, the minimum of MD is achieved when gR(MR) = 0.47
with

MR = 5 TeV , MC = MD = 2× 1014 GeV , (3.42)

with
gL(MD) = gR(MD) = 0.54 , g4(MD) = 0.67 . (3.43)

The runnings of the couplings for these cases are shown in Fig. 3.2(e) and (f).

These results indicate that achieving a value of gR(MR) = 0.4 at MR = 5 TeV is not trivial
in this model, requiring a very high value of the parity breaking scale MD. Lowering this
scale below the Planck mass cannot be achieved with the minimal Higgs content in energy
interval II as required by the ESH even if the value of gR(MR) were allowed to float. If
one relaxes the ESH, then MD lower than the Planck mass is possible, provided gR(MR) is
allowed to be as large as ∼ 0.5. It is also preferable for MC and MD to be degenerate, that
is, for G224D to break directly to G2213.
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3.3.4 Unified Left-Right Symmetric Pati-Salam from NCG

With the above results in mind, let us now look at the unified left-right symmetric Pati-
Salam model which we expect to emerge from an underlying NCG. The breaking pattern
now includes an emergence/unification scale as in Eq. (3.4), and all four energy intervals
listed in Eq. (3.5) must be taken into account with an extra boundary condition at MU :

MU : gL(MU) = gR(MU) = g4(MU) . (3.44)

This leads to the relations

2π

[
3− 8 sin2 θW (MZ)

α(MZ)

]
= (3a1 − 5a2)I ln

MR

MZ

+ (−5aL + 3aR + 3aBL)II ln
MC

MR

+ (−5aL + 3aR + 2a4)III ln
MD

MC

+ (−5aL + 3aR + 2a4)IV ln
MU

MD

, (3.45)

2π

[
3

α(MZ)
− 8

αs(MZ)

]
= (3a1 + 3a2 − 8a3)I ln

MR

MZ

+ (3aL + 3aR + 3aBL − 8a3)II ln
MC

MR

+ (3aL + 3aR − 6a4)III ln
MD

MC

+ (3aL + 3aR − 6a4)IV ln
MU

MD

, (3.46)

2π

[
4π

g2
R(MR)

− sin2 θW (MZ)

α(MZ)

]
= (−aI

2) ln
MR

MZ

+ (aR − aL)II ln
MC

MR

+ (aR − aL)III ln
MD

MC

. (3.47)

The derivation is given in the Appendix B.1. Note that there is no lnMU/MD term in the
last line since parity is not broken in energy interval IV and aIV

L = aIV
R . We will now look at

the three models of Chamseddine, Connes, and van Suijlekom in Ref. [2], one by one.

A. Pati-Salam with “composite” Higgs fields5

The first model of Ref. [2] emerges with symmetry G224 at MU = MD, which breaks di-
rectly to G213 of the SM at MC = MR. Only energy intervals I and III are present. The
Higgs content of this model in interval III, as specified in Ref. [2], is shown in Table 3.4.
We make a slight modification by taking the Σ(1, 1, 15) field to be real, conforming to
standard Pati-Salam literature, whereas Ref. [2] assumes it to be complex.

5The terminology of Ref. [2] may cause confusion with the standard concept of compositeness that is
found in the literature. What the authors of Ref. [2] call a “composite” field seems to be a field which does
not transform under a single irreducible representation.
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In this case, Eqs. (3.45) through (3.47) simply reduce to those with the II and IV terms

missing. Then, the system of three equations has three unknowns, namely ln
MD

MC

,

ln
MR

MZ

, and gR(MR), which allows us to determine all three. We find:

gR(MR) = 0.54 ,
MR = MC = 4.1× 1013 GeV ,
MU = MD = 3.5× 1015 GeV , (3.48)

in agreement with Ref. [2]. The unified coupling in this case is gL(MU) = gR(MU) =
g4(MU) = 0.53. The running of the couplings for this case is shown in Fig. 3.3(a).

We now allow for MC 6= MR and insert the energy interval II with symmetry G2213.
To determine the Higgs content in this interval, we again invoke the ESH. The decom-
position of Σ(1, 1, 15) into irreducible representations of G2213 was given in Eq. (3.18)
and it was concluded that all the components of Σ(1, 1, 15) become heavy and decou-
ple from the RG equations at MC . The decomposition of ∆R(1, 2, 4) into irreducible
representations of G2213 is given by

∆R(1, 2, 4) = ∆R1(1, 2, 1, 1)⊕∆R3

(
1, 2,
−1

3
, 3

)
. (3.49)

∆R3 is colored so again, by ESH, it will become heavy and only ∆R1 will survive into
II. The decomposition of ∆R1 into irreducible representations of G213 is given by

∆R1(1, 2, 1, 1) = ∆0
R1(1, 0, 1)⊕∆+

R1(1, 1, 1) . (3.50)

The breaking of G2213 down to G213 would be accomplished by the field ∆0
R1 acquiring

a VEV, while ∆+
R1 has electromagnetic charge so it must become heavy. The survival

of φ2(2, 1, 1) into I is as before. Thus, the Higgs content of the model is as shown in
Table 3.4.

Eqs. (3.45) through (3.47) now has four unknowns instead of three. Numerically, they
are given by

401 =
109

3
x+

13

2
y − 34

3
z ,

862 = 67x+
77

2
y + 42z ,

206

g2
R(MR)

− 484 = 19x− 16y + 4z , (3.51)

where x, y, and z are defined as in Eq. (3.23). Solving this system for x, y, and z we
find

x = 2.3 +
2.71

g2
R(MR)

,
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y = 30.2− 8.72

g2
R(MR)

,

z = −10.8 +
3.68

g2
R(MR)

. (3.52)

Demanding that both y and z be positive restricts gR(MR) to the range

0.54 < gR(MR) < 0.58 . (3.53)

The lower bound corresponds to the case considered in Ref. [2] at which y = 0. Since
we would like to minimize x, and thereby MR, we set gR(MR) to the upper bound of
this range where x = 10.2, y = 4.6, and z = 0. This corresponds to

MR = 1.5× 1012 GeV , MC = MD = MU = 6× 1014 GeV . (3.54)

The unified coupling in this case is gL(MU) = gR(MU) = g4(MU) = 0.52. The running
of the couplings for this case is shown in Fig. 4.2(b).

Comparing the two cases, allowing MR 6= MC has lowered MR from 1013 GeV to
1012 GeV. This is due to the bifurcation of g4 into g3 and gBL at MC . The hypercharge
coupling at MR must be matched to gR and g4 if MR = MC , but it will be matched
to gR and gBL if MR 6= MC . Since gBL decreases in II, one can allow gR to increase
further to generate the numerically correct value for g1. This lowers the scale MR.
However, 1012 GeV is still too large compared to the TeV scale. This lowering is also
at the expense of G224 breaking immediately to G2213 as the model emerges from the
underlying NCG theory.

B. Pati-Salam with fundamental Higgs fields

The Higgs content of Model B of Ref. [2] is shown in Table 3.5, together with what
the Higgs content in interval II would be under the ESH if the condition MC = MR

were relaxed. As in Model A, it is assumed that MU = MD. We first follow Ref. [2]
and also assume MC = MR and find

gR(MR) = 0.48 ,
MR = MC = 1.5× 1011 GeV ,
MU = MD = 5.4× 1016 GeV . (3.55)

The unified coupling is gL(MU) = gR(MU) = g4(MU) = 0.59. The running of the
couplings for this case is shown in Fig. 3.4(a).

Let us now relax the condition MC = MR and insert the energy interval II with
symmetry G2213 between intervals I and III. Without going into detail, we list the
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Higgs fields that survive via the ESH into II from III in Table 3.5. Note that the
Higgs content in I and II are exactly the same as the non-unified Pati-Salam model
we considered earlier. In the exact repeat of our analysis of Model A, it can be shown
that, for the ordering of the symmetry breaking scale to be maintained, gR(MR) is
restricted to the range

0.48 < gR(MR) < 0.56 , (3.56)

with the higher bound giving the smallest possible MR. This is found to be

MR = 1.1× 109 GeV , MC = MD = MU = 4.4× 1016 GeV , (3.57)

with the unified coupling gL(MU) = gR(MU) = g4(MU) = 0.52. The running of the
couplings for this case is shown in Fig. 3.4(b).

While this result is somewhat more promising than Model A, MR is still to large, as
is the value of gR(MR) necessary for MR to be pushed down to this scale. Let us see
if the situation may be improved by relaxing the ESH as we did for the non-unified
Pati-Salam case. We will allow some or all of the colored ∆R fields to survive into
interval II to enhance the difference between gL and gR. We consider the same three
cases listed in Table 3.3.

(i) ∆R1 and ∆R3 survive:

To maintain the ordering of the symmetry breaking scales, it is found that gR(MR)
is restricted to the narrow range

0.48 < gR(MR) < 0.51 . (3.58)

As gR(MR) is increased, MR/MZ and MD/MC decrease while MC/MR increases.
In terms of scale, MR decreases while bothMC andMD increase. The upper bound
of this range is when MR/MZ = 1, so this case actually allows for MR = 5 TeV.
The other parameters in this case is

gR(MR) = 0.51 ,
MR = 5× 103 GeV ,
MC = 5× 1015 GeV ,

MU = MD = 8× 1017 GeV , (3.59)

with the unified coupling gL(MU) = gR(MU) = g4(MU) = 0.54. The running of
the couplings for this case is shown in Fig. 3.5(a).

(ii) ∆R1 and ∆R6 survive:

To maintain the ordering of the symmetry breaking scales, it is found that gR(MR)
is restricted to the range

0.42 < gR(MR) < 0.48 , (3.60)
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with smaller gR(MR) associated with smaller MR, which drops down to MZ at
the lower bound. Imposing MR = 5 TeV we obtain:

gR(MR) = 0.43 ,
MR = 5× 103 GeV ,
MC = 2× 1010 GeV ,

MU = MD = 3× 1020 GeV , (3.61)

with the unified coupling gL(MU) = gR(MU) = g4(MU) = 0.63. The running of
the couplings for this case is shown in Fig. 3.5(b). Maintaining MD below 1019

requires
0.45 < gR(MR) . (3.62)

Selecting this boundary value for gR(MR), we find

gR(MR) = 0.45 ,
MR = 5× 106 GeV ,
MC = 4× 1010 GeV ,

MU = MD = 1× 1019 GeV , (3.63)

with the unified coupling gL(MU) = gR(MU) = g4(MU) = 0.62. The running of
the couplings for this case is shown in Fig. 3.5(c).

(iii) ∆R1, ∆R3, and ∆R6 all survive:

To maintain the ordering of the symmetry breaking scales, it is found that gR(MR)
is restricted to the range

0.41 < gR(MR) < 0.48 , (3.64)

while to maintain MU = MD below 1019 GeV we must have

0.44 < gR(MR) . (3.65)

If we demand MR = 5 TeV, we find

gR(MR) = 0.42 ,
MR = 5× 103 GeV ,
MC = 5× 108 GeV ,

MU = MD = 2× 1020 GeV , (3.66)

with the unified coupling gL(MU) = gR(MU) = g4(MU) = 0.66. The running of
the couplings for this case is shown in Fig. 3.5(d). If we demand MU = MD =
1019 GeV, we find

gR(MR) = 0.44 ,
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MR = 2× 106 GeV ,
MC = 4× 109 GeV ,

MU = MD = 1× 1019 GeV , (3.67)

with the unified coupling gL(MU) = gR(MU) = g4(MU) = 0.63. The running of
the couplings for this case is shown in Fig. 3.5(e).

C. Left-right symmetric Pati-Salam with fundamental Higgs fields

Finally, the last and most general scenario of Ref. [2] is where G224D instead of G224

is the emergent symmetry of the spectral action. The assumed Higgs content of the
model is shown in Table 3.6.

First, assuming MD = MC = MR as in Ref. [2], we solve Eqs. (3.45) through (3.47)
and find

gR(MR) = 0.54 ,
MD = MC = MR = 5× 1013 GeV ,

MU = 3× 1015 GeV , (3.68)

with the unified coupling gL(MU) = gR(MU) = g4(MU) = 0.58. The running of the
couplings for this case is shown in Fig. 3.6(a).

We next relax the relation MD = MC = MR and insert energy intervals II and III
in between intervals I and IV with the Higgs content listed in Table 3.6. Eqs. (3.45)
through (3.47) now read

401 =
109

3
x+ 19y +

34

3
z − 44

3
w ,

862 = 67x+ 51y + 46z + 44w ,
206

g2
R(MR)

− 484 = 19x+ 4y + 40z , (3.69)

where x, y, and z are defined as in Eq. (3.23), and w = log10MU/MD. Solving this
system for y, z, and w we find:

y = 30.3− 1.38x− 4.11

g2
R(MR)

,

z = 15.1 + 0.34x− 5.56

g2
R(MR)

,

w = 0.24 + 0.43x− 1.04

g2
R(MR)

. (3.70)

Demanding that y, z, and w are all positive restricts x = log10MR/MZ and g−2
R (MR)

to the triangular region shown in Fig. 3.7(a). It is clear from the figure that MR is
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minimized when MU = MD = MC , that is, energy regions III and IV are collapsed and
only I and II remain. On the other hand, gR(MR) is minimized when MU = MD and
MC = MR, that is, energy regions II and IV are collapsed and only I and III remain.

For the MU = MD = MC case, we find

gR(MR) = 0.56 ,
MR = 1× 109 GeV ,

MU = MD = MC = 4× 1016 GeV , (3.71)

with the unified coupling gL(MU) = gR(MU) = g4(MU) = 0.52. The running of the
couplings for this case is shown in Fig. 3.6(b).

For the MU = MD, MC = MR case, we find

gR(MR) = 0.49 ,
MC = MR = 3× 1011 GeV ,
MU = MD = 2× 1016 GeV , (3.72)

with the unified coupling gL(MU) = gR(MU) = g4(MU) = 0.52. The running of the
couplings for this case is shown in Fig. 3.6(c).

Again, the values of MR and gR(MR) thus obtained are more promising than what
could be achieved in Model A, but nevertheless both are still too large. So let us relax
the ESH in energy interval II again to see whether things are improved. As we did for
Model B, we consider the three cases listed in Table 3.3. The allowed regions in (x, g−2

R )
space are shown in Fig. 3.7(b)-(d). Taking MR to be as close to 5 TeV as possible while
minimizing gR(MR) and maintaining MU ≤ 1019 GeV leads to the following optimum
solutions:

(i) ∆1R and ∆3R survive:

gR(MR) = 0.51 ,
MR = 5× 103 GeV ,
MC = 8× 1015 GeV ,

MU = MD = 6× 1017 GeV , (3.73)

with the unified coupling gL(MU) = gR(MU) = g4(MU) = 0.52. The running of
the couplings for this case is shown in Fig. 3.6(d).

(ii) ∆1R and ∆6R survive:

gR(MR) = 0.45 ,
MR = 8× 105 GeV ,
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MC = 9× 1010 GeV ,
MU = MD = 1× 1019 GeV , (3.74)

with the unified coupling gL(MU) = gR(MU) = g4(MU) = 0.51. The running of
the couplings for this case is shown in Fig. 3.6(e).

(iii) ∆1R, ∆3R, and ∆6R survive:

gR(MR) = 0.43 ,
MR = 2× 105 GeV ,
MC = 4× 109 GeV ,

MU = MD = 1× 1019 GeV , (3.75)

with the unified coupling gL(MU) = gR(MU) = g4(MU) = 0.51. The running of
the couplings for this case is shown in Fig. 3.6(f).

3.3.5 Summary of Results

In this section, we have looked at whether the IR conditions MR = 5 TeV and gR(MR) = 0.4
could be realized within the left-right symmetric and the unified left-right symmetric Pati-
Salam models in which the unification/emergence scale is below the Planck mass. The left-
right symmetric Pati-Salam demands the unification of gL and gR, while the unified left-right
symmetric Pati-Salam demands further unification of gL and gR with g4. The requirements
that these couplings unify at a single scale, and the matching conditions between g1, gBL, and
gR at MR, and that between gBL, g3 and g4 at MC , place conflicting demands on the various
symmetry breaking scales, and it is found that the target IR conditions cannot be realized
so easily. In particular, if the Higgs content at various energy intervals is determined based
on the Extended Survival Hypothesis (ESM), MR and gR(MR) tend to be much larger than
our target values. Lowering these values requires the breaking of ESH. The most promising
cases are Models B and C of Ref. [2] with the colored ∆3R field surviving below MC . We
note that this may put the ∆3R particles within reach of the LHC. But, even for those cases,
gR(MR) cannot be made as low as 0.4. In all cases, the optimum conditions for minimum
MR and/or minimum gR(MR) require degeneracies of some of the symmetry breaking scales.

3.4 Discussion and Conclusions

In this chapter, we have initiated a purely phenomenological analysis of Connes’ NCG ap-
proach to the SM and beyond, in the light of the 2015 statistical fluctuation from the LHC.
In particular, we have concentrated on the remarkable left-right symmetric structure that
is inherent in the NCG of the SM, embodied in the unified left-right symmetric Pati-Salam
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models of Ref. [2], and explored its phenomenological consequences by concentrating on the
possible existence of a TeV scale WR boson. We find that generating a TeV scale WR boson
with the small coupling of gR = 0.4 within NCG motivated models is not trivial and places
strong constraints on the particle content and symmetry breaking scales. In this sense, the
naive version of NCG motivated LRSM would be unnatural had any signal persisted.

We note that we have also conducted a preliminary analysis of the constraints imposed by
proton stability [347], the ∆B = 2 neutron-antineutron and hydrogen-antihydrogen oscilla-
tions [346] as well as the constraints coming from the inflationary cosmological models [317].
In principle, these constraints are not prohibitive of the phenomenological analysis carried
out here.

While our analysis could suggest that the NCG motivated unified left-right Pati-Salam model
is not favored phenomenologically by the current LHC data, we note the possibility that the
current approach of grafting the NCG spectral action to RG evolution of standard QFT at
the GUT scale may not capture the true nature and predictions of NCG theories.

Finally, we address the closely related question of the hierarchy problem. One of the most
interesting aspects of the NCG of the SM and its Pati-Salam-like completion is the existence
of the GUT scale which can be found in the close proximity to the Planck scale, i.e., the scale
of quantum gravity. Given this fact as well as the presence of a hidden fundamental non-
commutative structure in this approach, this suggests that the hierarchy problem should get
a quantum gravitational rather than an effective field theory treatment. The more convincing
physical meaning of this GUT scale also comes after one realizes that Connes’ approach also
produces a gravity sector in parallel with the standard model (and its Pati-Salam completion)
and thus the GUT scale should be viewed as being close to the natural scale of gravity, i.e.,
the Planck scale, and indeed the two scales are not that far apart in the non-commutative
approach. In particular, if one views quantum gravity as having origins in metastring theory
[118, 304, 348], then one finds the fundamental non-commutative structure, and also, the
two-scale renormalization group, which sheds new light on such fundamental issues as the
hierarchy problem: the two scales that featured in Refs. [118, 304, 348] are both the UV
and the IR scales and thus the stability of the Higgs mass becomes two-fold, both with
respect to the UV and to the IR. In other words, the question is now not only why the
Higgs mass is not of the Planck scale (or the GUT scale) but also why the Higgs mass is
not of the Hubble (vacuum energy) scale. It is well known that, numerologically, the Higgs
scale (∼ 1 TeV) is the geometric mean between these two scales, at the point of a UV/IR
invariant energy scale. The Higgs scale also naturally appears as a geometric scale in Connes’
non-commutative geometry approach, in complete analogy with the geometric meaning of
the Planck and the Hubble scales. Actually, because of the appearance of gravity and the
standard model Lagrangians in the Connes’s spectral action, and because of the discrete
nature of the Higgs dimension, there is a natural Higgs-like degree of freedom on the gravity
side – a Brans-Dicke-Jordan-like scalar – which can be argued to contribute to the geometric
warping of the Higgs discrete dimension. This is similar to the infinite extra dimensional
scenarios, however, without infinite extra dimensions [152, 154].
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In our view, the approach based on NCG (and its related proposal based on the superconnec-
tion approach [159, 163]) offers a new and, phenomenologically, almost completely unexplored
view on the rationale for the SM and also for its natural completion. This approach also
offers a possibly exciting relation with the fundamental physics of quantum gravity, thus
relating the infrared physics of the current exciting experimental searches conducted at the
LHC to the hidden ultraviolet physics of quantum theory of space and time.
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Table 3.1: Dynkin index Ti for several irreducible representations of SU(2), SU(3), and
SU(4). Different normalization conventions are used in the literature. For example, there is
a factor of 2 difference between those given in Refs. [7] and [8]. Our convention follows the
former. For SU(3), there exist two inequivalent 15 dimensional irreducible representations.

Representation SU(2) SU(3) SU(4)

2
1

2
− −

3 2
1

2
−

4 5 − 1

2

6
35

2

5

2
1

8 42 3 −

10
165

2

15

2
3

15 280 10,
35

2
4

Table 3.2: The Higgs content and RG coefficients in the three energy intervals for the
non-unified left-right symmetric Pati-Salam model under the Extended Survival Hypothesis
(ESH).

Interval Higgs content RG coefficients

III φ(2, 2, 1), ∆R(1, 3, 10), Σ(1, 1, 15) (aL, aR, a4)III =

(
−3,

11

3
,−7

)
II φ(2, 2, 0, 1), ∆R1(1, 3, 2, 1) (aL, aR, aBL, a3)II =

(
−3,
−7

3
,
11

3
,−7

)
I φ2(2, 1, 1) (a1, a2, a3)I =

(
41

6
,
−19

6
,−7

)
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Table 3.3: The dependence of the RG coefficients on the Higgs content in energy interval
II where the symmetry is G2213. Relaxing the ESH will lead to different Higgs content and
different RG coefficients.

Interval Higgs content (aL, aR, aBL, a3)II

II φ(2, 2, 0, 1), ∆R1(1, 3, 2, 1)

(
−3,
−7

3
,
11

3
,−7

)
φ(2, 2, 0, 1), ∆R1(1, 3, 2, 1), ∆R3

(
1, 3,

2

3
, 3

) (
−3,
−1

3
, 4,
−13

2

)
φ(2, 2, 0, 1), ∆R1(1, 3, 2, 1), ∆R6

(
1, 3,
−2

3
, 6

) (
−3,

5

3
,
13

3
,
−9

2

)
φ(2, 2, 0, 1), ∆R1(1, 3, 2, 1), ∆R3

(
1, 3,

2

3
, 3

)
, ∆R6

(
1, 3,
−2

3
, 6

) (
−3,

11

3
,
14

3
,−4

)

Table 3.4: Higgs content of Model A of Ref. [2]. In Ref. [2], the model emerges with symmetry
G224 at MU = MD. This breaks directly to G213 of the SM at MC = MR. We modify this
process by allowing MC 6= MR, inserting energy interval II with symmetry G2213 between
intervals III and I. The Higgs content in interval II is based on the ESH.

Interval Higgs content RG coefficients

III φ(2, 2, 1), ∆R(1, 2, 4), Σ(1, 1, 15) (aL, aR, a4)III =

(
−3,
−7

3
,
−29

3

)
II φ(2, 2, 0, 1), ∆R1(1, 2, 1, 1) (aL, aR, aBL, a3)II =

(
−3,
−17

6
,
17

6
,−7

)
I φ2(2, 1, 1) (a1, a2, a3)I =

(
41

6
,
−19

6
,−7

)
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Figure 3.2: Running of the gauge couplings for the left-right symmetric Pati-Salam model
with more than ∆R1 surviving into energy interval II. Vertical dotted lines indicate symmetry
breaking scales. MR is fixed at 5 TeV. In (a), (c), and (e) gR(MR) = 0.4 is imposed, while
in (b), (d), and (d) MD is minimized by collapsing the energy interval III.
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Figure 3.3: Running of the gauge couplings for Model A of Ref. [2]. with (a) G224 breaking
directly into G213, and (b) G224 breaks immediately to G2213 as it emerges. In (a), the dashed
line indicating gL and the dot-dashed line indicating gR are almost overlapping in interval
III.

Table 3.5: Higgs content of Model B of Ref. [2]. In Ref. [2], the model emerges with symmetry
G224 at MU = MD. This breaks directly to G213 of the SM at MC = MR. We modify this
process by allowing MC 6= MR, inserting energy interval II with symmetry G2213 between
intervals III and I. The Higgs content in interval II is based on the ESH. The particle content
and RG coefficients in intervals I and II are the same as those listed in Table 3.2.

Interval Higgs content RG coefficients

III φ(2, 2, 1), H(1, 1, 6), ∆R(1, 3, 10), (aL, aR, a4)III =

(
2,

26

3
,−2

)
Σ̃(2, 2, 15)

II φ(2, 2, 0, 1), ∆R1(1, 3, 2, 1) (aL, aR, aBL, a3)II =

(
−3,
−7

3
,
11

3
,−7

)
I φ2(2, 1, 1) (a1, a2, a3)I =

(
41

6
,
−19

6
,−7

)
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Figure 3.4: Running of the gauge couplings for Model B of Ref. [2]. with (a) G224 breaking
directly into G213, and (b) G224 breaks immediately to G2213 as it emerges.

Table 3.6: Higgs content of Model C of Ref. [2]. In Ref. [2], the model emerges with symmetry
G224D at MU . This breaks directly to G213 of the SM at MD = MC = MR. We modify this
process by allowing MD 6= MC 6= MR, inserting energy intervals II and III with symmetries
G2213 and G224, respectively, between intervals I and IV. The Higgs content in intervals I,
II, and III are based on the ESH. An extra D-parity singlet field σ(1, 1, 1) is introduced
in interval IV to break parity spontaneously. The particle content and RG coefficients in
intervals I and II are the same as those listed in Table 3.2.

Interval Higgs content RG coefficients

IV φ(2, 2, 1), H(1, 1, 6)× 2, Σ̃(2, 2, 15) (aL, aR, a4)IV =

(
26

3
,
26

3
,
4

3

)
∆R(1, 3, 10), ∆L(3, 1, 10), σ(1, 1, 1)

III φ(2, 2, 1), H(1, 1, 6), ∆R(1, 3, 10) (aL, aR, a4)III =

(
−3,

11

3
,
−22

3

)
II φ(2, 2, 0, 1), ∆R1(1, 3, 2, 1) (aL, aR, aBL, a3)II =

(
−3,
−7

3
,
11

3
,−7

)
I φ2(2, 1, 1) (a1, a2, a3) =

(
41

6
,
−19

6
,−7

)
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Figure 3.5: Running of the gauge couplings for Model B of Ref. [2] with extended Higgs
content in energy interval II. In addition to ∆R1, the field ∆R3 survives into II in (a), (d),
and (e), while the field ∆R6 also survives into II in (b), (c), (d) and (e). In (a), (b), and (d)
we impose MR = 5 TeV. In (c) and (e) we impose MU = MD = 1019 GeV.
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Figure 3.6: (a) Running of the gauge couplings for Model C of Ref. [2] where MD = MC =
MR, (b) MU = MD = MC , (c) MU = MD, MC = MR, (d) with ∆R3 surviving in II, (e) with
∆R6 surviving in II, and (f) with ∆R3 and ∆R6 surviving in II.
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Figure 3.7: (a) For Model C, the values of x = log10MR/MZ and g−2
R (MR) must lie inside

the shaded triangle shown to maintain the ordering of the symmetry breaking scales. Ref. [2]
selects the values at point α, where MD = MC = MR. MR is minimized at point β where
MU = MD = MC , while gR(MR) is minimized at point γ where MU = MD and MC = MR.
(b), (c), and (d) show how the allowed region changes with the addition of extra colored ∆R

fields in energy interval II. The requirement that MU ≤ 1019 GeV demands that one stay to
the right of the dotted line, and this restricts us to the interiors of the shaded quadrangles.
Consequently, only case (b) allows for MR = 5 GeV. In all three cases, gR(MR) is minimized
for a given choice of MR when MU = MD. The optimum points for each case discussed in
the text are indicated by circles.



Chapter 4

Example: Addressing Potential
Collider Excess with Unified
SU(2)L × SU(2)R × SU(4) Models
from NCG

In this chapter, we continue the investigation of the NCG motivated extensions of the SM,
in particular the LRSM. After it was shown in Chapter 3 that accommodating the collider
excess in the diboson channel is non-trivial, we study the 750 GeV resonance in the diphoton
channel and check the compatibility with the NCG. We stress that the tension between the
low energy phenomenology provides an effective way to test models fixed at very high energy
scale, hence the new physics. This is partly due to the restrictive nature of the NCG. This
chapter is based on our work [161] published in Modern Physics Letters A.

4.1 Introduction

In 2015, ATLAS [349] and CMS [350] both reported a resonance in the diphoton channel
with an invariant mass around 750 GeV. The local significances were, respectively, 3.6σ and
2.6σ, assuming a narrow-width resonance. These signals were thought to be the first hint
associated with the long-anticipated physics beyond the SM. The 95% CL cross section upper
limit around 750 GeV set by ATLAS (CMS) is roughly 10 ± 2.8 fb (6.5 ± 3.5 fb) using 3.2
fb−1 (2.6 fb−1) of data at

√
s = 13 TeV, assuming the resonance is a scalar produced through

gluon-gluon fusion. When the width of the resonance is allowed to vary, a maximum local
significance of 3.9σ is attained by ATLAS at a width of 45 GeV. On the other hand, the
local significance attains its maximum for a narrow width resonance in the CMS results.
Unfortunately, the significance of the signal decreased, leaving many disappointed at the
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Figure 4.1: The Feynman diagram of the production and decay of the SM-singlet scalar S
at the LHC through colored-scalar χ in the loop.

non-discovery of new physics. However, we can still gain knowledge of what is not working.
In this chapter, we use this statistical fluctuation as another example to show how the
machinery of NCG-motivated LRSM can be tested with collider signals.

We discuss a possible identification of this resonance with SM-singlet scalars in the NCG
motivated unified G224 models [2, 156]. A plausible and economical way to realize the LHC
diphoton signal in the unified G224 context is to couple this SM-singlet scalar to gluons
and photons via loops of colored scalars, as recently discussed in Ref. [351] in the con-
text of SO(10) GUT, cf. Fig. 4.1.1 The NCG models we consider have either an SU(2)R
triplet ∆R(1, 3, 10), or an SU(2)R doublet ∆̃R(1, 2, 4) in their scalar content, where the three
numbers refer to the dimensions of the G224 = SU(2)L × SU(2)R × SU(4)C irreducible rep-
resentations. The SM-singlet scalar S, which we identify with the 750 GeV resonance, is
assumed to be the excitation of the electrically neutral component ∆0

R1 of ∆R(1, 3, 10), or

that of ∆̃R(1, 2, 4) (denoted as ∆̃0
R1), depending on the model considered. ∆0

R1 (or ∆̃0
R1)

is also the field that breaks the gauge symmetry of the G224 model to that of the SM,
by acquiring a vacuum expectation value (VEV) at the scale MC where G224 breaks to
G213 = SU(2)L×U(1)Y × SU(3)C of the SM. A color-triplet components of ∆R(1, 3, 10) (or

∆̃R(1, 2, 4)) is assumed to survive down to low energies (TeV-scale) to take on the role of
the χ-field in Fig. 4.1. This is but one way that one could embed the 750 GeV diphoton
resonance into the NCG G224 framework, and we use this as a demonstrative example.

While this identification itself is fairly straightforward, and it can already be inferred from
the similar SO(10) analysis of Ref. [351] that the cross section and width can be made to
come out in the right ballpark, the question is whether the assumed symmetry breaking
and scalar survival scenario can actually be realized in the NCG G224 models, given the
gauge-coupling-unification requirement and restricted scalar content which limit our ability
to adjust the renormalization group running of those couplings. Indeed, we have demon-
strated in Chapter 3 that realizing a 2 TeV WR, which had been suggested by the LHC
data [308–310, 312, 353, 354], in the same NCG models highly non-trivial due to the uni-

1Dasgupta et al. in Ref. [352] have shown that coupling the SM-singlet scalar to quarks and photons via
mixing with the SM Higgs boson would lead to too small a cross section.
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fication requirement applying conflicting pressure on the symmetry breaking scales. Thus,
we subject our scenarios to renormalization group equation (RGE) analyses to check their
feasibilities.

The main message of this chapter is that, even though the 750 GeV diphoton resonance
can be accommodated within the NCG motivated unified G224 models, the price one has to
pay is a certain amount of fine tuning in the sector involving the necessary colored scalars.
This is somewhat similar to the main message of last chapter, and points to the underlying
rigidity of the NCG framework. However, this conclusion is based on effective-field-theory
reasoning, which could fail in the NCG framework due to the possible mixing between the
short-distance and long-distance physics as discussed in our previous work [159, 160, 163].

This chapter is organized as follows. In section 2, we present the list of the NCG-based
unified G224 models that are analyzed, and discuss how the 750 GeV diphoton resonance
could be explained within their framework. In section 3, we address the question of whether
the unification of gauge couplings can be achieved naturally in those models. We conclude
in section 4 with an outlook on the rigid phenomenological aspects of the NCG framework.
In the process, we follow the technology discussed in our previous paper [160] to which we
refer the reader for further technical details.

4.2 Diphoton resonance in NCG based unified G224 mod-

els

Table 4.1: The scalar content of the three NCG based unified G224 models proposed by
Chamseddine, Connes, and van Suijlekom in Refs. 4 and 5, compared to the scalar content
of the SO(10) based G224 model, discussed in Ref. 16, below its unification scale where the
SO(10) symmetry is broken to G224.

Model Symmetry Higgs Content

A G224 φ(2, 2, 1), ∆̃R(1, 2, 4), Σ(1, 1, 15)

B G224 φ(2, 2, 1), H(1, 1, 6), ∆R(1, 3, 10), Σ̃(2, 2, 15)

C G224D φ(2, 2, 1), H(1, 1, 6)× 2, ∆R(1, 3, 10), ∆L(3, 1, 10), Σ̃(2, 2, 15)

SO(10) G224 φ(2, 2, 1), ∆R(1, 3, 10), Σ(1, 1, 15)

In this section, we list the three unified G224 models proposed by Chamseddine, Connes, and
van Suijlekom in Refs. [156] and [2], and specify how we fit the diphoton resonance into their
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particle content. These models emerge from an underlying NCG, which is an extension of
the NCG of the SM to that of left-right symmetric models. The three versions differ in the
scalar sector content, and the unbroken symmetry structure as listed in Table 4.1. We use
the following notation for the symmetries:

G224D = SU(2)L ⊗ SU(2)R ⊗ SU(4)C ⊗D ,

G224 = SU(2)L ⊗ SU(2)R ⊗ SU(4)C ,

G213 = SU(2)L ⊗ U(1)Y ⊗ SU(3)C ,

G13 = U(1)Q ⊗ SU(3)C , (4.1)

where D in G224D refers to the left-right symmetry, a Z2 symmetry which keeps the left
and the right sectors equivalent. The last row of Table 4.1 lists the scalar content of an
SO(10) based G224 model studied in Ref. [351], below its unification scale where the SO(10)
had broken to G224. The scalars φ(2, 2, 1), ∆R(1, 3, 10), Σ(1, 1, 15) are respectively obtained
from the SO(10) multiplets 10 (or 120), 126, and 210. The 210 also includes a (1, 1, 1)
representation, whose VEV breaks SO(10) down to G224 [8].

As in Chapter 3 we do not attempt to review the NCG foundations of these models nor to
justify their derivation, but simply look at their consequences from a purely phenomenolog-
ical viewpoint in the light of the possible 750 GeV diphoton resonance. The distinguishing
feature of NCG motivated versions of the SM [154, 155] as well as its G224 completion dis-
cussed here is that they come with GUT-like coupling unification conditions, due to the
underlying spectral action having only one overall coupling. This is not the case for the
canonical G224 constructions found in the literature [195, 201–203, 355].

The decompositions of the various scalar fields, which appear in Table 4.1, into irreducible
representations of the subgroups as the symmetry breaks from G224 (or G224D) to G2213 and
then to G213 are shown in Table 4.2. In model A, we assume that G224 is broken directly
to G213 by ∆̃0

R1(1, 0, 1) acquiring a VEV, and S is identified with the excitation of ∆̃0
R1.

In models B and C, we assume that G224/G224D is broken directly to G213 by ∆0
R1(1, 0, 1)

acquiring a VEV, while S is identified with the excitation of ∆0
R1. In all three models, the

colored field ∆
−2/3
R3 (1,−4/3, 3), which is contained in the decompositions of both ∆̃R(1, 2, 4)

and ∆R(1, 3, 10), is assumed to survive below the symmetry breaking scale.

The advantage of this choice of the surviving colored scalar is that it exists in all three models,
and that it is similar to the one considered in the SO(10) context in Ref. [351], where the
reproducibility of the reported LHC signal has been demonstrated with such a new degree
of freedom. The other colored components of ∆̃R(1, 2, 4) and ∆R(1, 3, 10) could also serve
this end. Single-step breaking from G224 to G213 is assumed for the sake of simplicity,2 and
also due to our experience in Ref. [160] telling us that introducing multi-step breaking does

2In models B and C, the breaking sequence G224 → G2213 → G213 considered in Ref. [160] requires scalar
composites acquiring a VEV in the intermediate steps.
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Table 4.2: The decomposition of various G224 representations into those of G2213 and G213

(SM).

G224 G2213 G213

φ(2, 2, 1) φ(2, 2, 0, 1) φ2(2, 1, 1), φ′2(2,−1, 1)

∆̃R(1, 2, 4) ∆̃R1(1, 2, 1, 1) ∆̃0
R1(1, 0, 1), ∆̃+

R1(1, 2, 1)

∆̃R3

(
1, 2,−

1

3
, 3

)
∆̃

1/3
R3

(
1,

2

3
, 3

)
, ∆̃
−2/3
R3

(
1,−

4

3
, 3

)
∆R(1, 3, 10) ∆R1(1, 3, 2, 1) ∆0

R1(1, 0, 1), ∆+
R1(1, 2, 1), ∆++

R1 (1, 4, 1)

∆R3

(
1, 3,

2

3
, 3

)
∆

+4/3
R3

(
1,

8

3
, 3

)
, ∆

+1/3
R3

(
1,

2

3
, 3

)
, ∆
−2/3
R3

(
1,−

4

3
, 3

)
∆R6

(
1, 3,−

2

3
, 6

)
∆

+2/3
R6

(
1,

4

3
, 6

)
, ∆
−1/3
R6

(
1,−

2

3
, 6

)
, ∆
−4/3
R6

(
1,−

8

3
, 6

)
∆L(3, 1, 10) ∆L1(3, 1, 2, 1) ∆L1(3, 2, 1)

∆L3

(
3, 1,

2

3
, 3

)
∆L3

(
3,

2

3
, 3

)
∆L6

(
3, 1,−

2

3
, 6

)
∆L6

(
3,−

2

3
, 6

)
H(1, 1, 6) H3

(
1, 1,

2

3
, 3

)
H

1/3
3

(
1,

2

3
, 3

)
H3̄

(
1, 1,−

2

3
, 3̄

)
H
−1/3

3̄

(
1,−

2

3
, 3̄

)
Σ(1, 1, 15) Σ1(1, 1, 0, 1) Σ0

1(1, 0, 1)

Σ3

(
1, 1,−

4

3
, 3

)
Σ
−2/3
3

(
1,−

4

3
, 3

)
Σ3̄

(
1, 1,

4

3
, 3̄

)
Σ

2/3

3̄

(
1,

4

3
, 3̄

)
Σ8(1, 1, 0, 8) Σ0

8(1, 0, 8)

Σ̃(2, 2, 15) Σ̃1(2, 2, 0, 1) Σ̃1(2, 1, 1), Σ̃′1(2,−1, 1)

Σ̃3

(
2, 2,−

4

3
, 3

)
Σ̃3

(
2,−

7

3
, 3

)
, Σ̃′3

(
2,−

1

3
, 3

)
Σ̃3̄

(
2, 2,

4

3
, 3̄

)
Σ̃3̄

(
2,

7

3
, 3̄

)
, Σ̃′

3̄

(
2,

1

3
, 3̄

)
Σ̃8(2, 2, 0, 8) Σ̃8(2, 1, 8), Σ̃′8(2,−1, 8)

not necessarily facilitate the grafting of the NCG models to the SM at low energies.

In the SO(10) model of Ref. [351], the 750 GeV resonance S was identified with the excitation
of the charge neutral component ∆0

R3 of ∆R(1, 3, 10), which acquires a VEV breaking G2213
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down toG213 atMR = 5 TeV, and only one of the colored components, χ = ∆
−2/3
R3 (1,−4/3, 3),

was assumed to survive below this breaking. This is the exact same identification as in models
B and C, except the assumed symmetry breaking pattern is different. Since S is a singlet
under the SM gauge group G213, it cannot directly couple to gluons or photons. The coupling
is induced by χ-loops as shown in Fig. 4.1. Assuming a coupling between S and χ of the
form

κMRSχ†χ , MR = 5 TeV , (4.2)

where κ is a dimensionless parameter, and Mχ > MS/2 so that S does not decay into a
χ pair, it has been shown in Ref. [351] that the LHC signal can be reproduced for a wide
range of (κ,Mχ) values around κ = O(1) and Mχ = O(1 TeV). Thus, without repeating
the analysis, we conclude that our NCG models can also reproduce the LHC signal provided
a similar coupling exists between S and χ, and the assumed particle content allows the
required unification of gauge couplings at a high scale.

Several comments are in order. The ∆R(1, 3, 10) scalar is associated with a rich phenomenol-
ogy, as discussed by Mohapatra and Marshak in Ref. [347], including the generation of Ma-
jorana neutrino mass and neutron-anti-neutron oscillations. These depend on the Yukawa
couplings of the ∆R(1, 3, 10) to the fermions, and the quartic coupling of the ∆R(1, 3, 10) to
itself. In the NCG approach, the Dirac operator, which includes the Yukawa couplings, is
the input from which the entire model is constructed. The scalar content of the model as
well as their quartic couplings are derived from the Dirac operator.3 Therefore, the NCG
approach can, in principle, make predictions in regards to neutron-anti-neutron oscillations.
However, it is necessary to check the viability of the model before performing such detailed
analyses, so this will not be discussed further here.

4.3 Unification of the Couplings

As discussed in the introduction, the unification of couplings in the NCG based G224 models
imposes non-trivial requirements on the symmetry breaking scales, given that the scalar
content of each model is restricted and cannot be changed at will. In this section, we
discuss whether the unification of the couplings can be achieved in the NCG based G224

models with the assumed particle content and scalar survival assumptions. In contrast to
our work in Ref. [160], we assume direct breaking of G224 to G213 at a single scale MC ,
between the unification scale MU and the electroweak symmetry breaking (EWSB) scale
MZ . Between the scales MC and MZ , in addition to the usual SM particle content we have
the χ = ∆

−2/3
R3 (1,−4/3, 3) field contributing to the RGE, which we assume is the only colored

scalar to survive below MC , and possess a mass of around a TeV. The 750 GeV scalar S is
an SM singlet and consequently does not contribute to the RG running of the SM gauge
couplings.

3See the appendix of Ref. [156].
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4.3.1 Boundary and Matching Conditions

The symmetry breaking chain of the model considered in this chapter has been discussed in
detail in our previous papers [160, 321]. The ordering of the breaking scales must be strictly
maintained in the computations, i.e.,

MU ≥ MC ≥ MZ . (4.3)

We label the energy intervals between symmetry breaking scales [MZ ,MC ] and [MC ,MU ]
with Roman numerals as

I : [MZ , MC ] , G213 (SM) ,
II : [MC , MU ] , G224 or G224D . (4.4)

The boundary/matching conditions we impose on the couplings at the symmetry breaking
scales are:

MU : gL(MU) = gR(MU) = g4(MU) ,

MC :

√
2

3
gBL(MC) = g3(MC) = g4(MC) , g2(MC) = gL(MC) ,

1

g2
1(MC)

=
1

g2
R(MC)

+
2

3

1

g2
4(MC)

,

MZ :
1

e2(MZ)
=

1

g2
1(MZ)

+
1

g2
2(MZ)

. (4.5)

The low energy data which we will use as boundary conditions to the RG running are [1, 331]

α(MZ) = 1/127.9 , αs(MZ) = 0.118 , sin2 θW (MZ) = 0.2312 , (4.6)

at MZ = 91.1876 GeV, which translates to

g1(MZ) = 0.36 , g2(MZ) = 0.65 , g3(MZ) = 1.22 . (4.7)

Note that the coupling constants are all required to remain in the perturbative regime during
the evolution from MU down to MZ .

4.3.2 One-Loop Renormalization Group Running

For a given particle content; the gauge couplings, in an energy interval [MA,MB], are evolved
according to the 1-loop RG relation

1

g2
i (MA)

− 1

g2
i (MB)

=
ai

8π2
ln
MB

MA

, (4.8)
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where the RG coefficients ai are given by [7, 200]

ai = −11

3
C2(Gi) +

2

3

∑
Rf

Ti(Rf ) · d1(Rf ) · · · dn(Rf )

+
η

3

∑
Rs

Ti(Rs) · d1(Rs) · · · dn(Rs) . (4.9)

The summation in Eq. (4.9) is over irreducible chiral representations of fermions (Rf ) in
the second term and those of scalars (Rs) in the third. The coefficient η is either 1 or
1/2, depending on whether the corresponding representation is complex or real, respectively.
C2(Gi) is the quadratic Casimir for the adjoint representation of the group Gi, and Ti is the
Dynkin index of each representation. For U(1) group, C2(G) = 0 and∑

f,s

T =
∑
f,s

(
Y

2

)2

, (4.10)

where Y/2 is the U(1) charge, the factor of 1/2 coming from the traditional normalizations
of the hypercharge and B − L charges.

The RG coefficients, ai, differ depending on the particle content in each energy interval,
changing every time symmetry breaking occurs. We will distinguish the ai’s in different
intervals with the corresponding roman numeral superscript, cf. Eq. (4.4). Together with
the matching and boundary conditions of Eqs. (4.5), (4.6), and (4.7), 1-loop RG running
leads to the following conditions on the symmetry breaking scales MU and MC :

2π

[
3− 8 sin2 θW (MZ)

α(MZ)

]
= (3a1 − 5a2)I ln

MC

MZ

+ (−5aL + 3aR + 2a4)II ln
MU

MC

,

2π

[
3

α(MZ)
− 8

αs(MZ)

]
= (3a1 + 3a2 − 8a3)I ln

MC

MZ

+ (3aL + 3aR − 6a4)II ln
MU

MC

.

(4.11)

The unified coupling αU at scale MU can then be obtained from

2π

αU
=

2π

αs(MZ)
−
(
aII

4 ln
MU

MC

+ aI
3 ln

MC

MZ

)
. (4.12)

Thus, once the RG coefficients in each interval are specified, the scales MU and MC , and the
value of αU are uniquely determined. For the computations to be meaningful, however, MU

must stay below the Planck scale, and αU must be in the perturbative regime.

4.3.3 Results

The particle content and the RG coefficients for the three models in the two energy intervals
are listed in Tables. 4.3, 4.4, and 4.5. As stated above, though S survives in the energy
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interval I, being an SM singlet, it does not contribute to the RG coefficients. The values of
MU , MC , and αU obtained using the formalism above are listed in Table 4.6. The running
of the gauge couplings for the three models are shown in Figure 4.2.

We see that, for all three models, MU is below the Planck scale and αU is perturbative,
as are all the gauge couplings during their course of running. The value of the symmetry
breaking scale MC is high in the 1010∼13 GeV range, suggesting that providing S and χ =
∆
−2/3
R3 (1,−4/3, 3) with TeV scale masses, and the TeV scale coupling κMRSχ†χ between

them would involve fine tuning.

Table 4.3: The Higgs content and the RG coefficients in the energy intervals for model A.

Interval Higgs content RG coefficients

II φ(2, 2, 1), ∆̃R(1, 2, 4), Σ(1, 1, 15) (aL, aR, a4)II =

(
−3,
−7

3
,
−29

3

)
I φ2(2, 1, 1), S(1, 0, 1), ∆̃

−2/3
R3

(
1,
−4

3
, 3

)
(a1, a2, a3)I =

(
131

18
,
−19

6
,
−41

6

)

Table 4.4: The Higgs content and the RG coefficients in the energy intervals for model B.

Interval Higgs content RG coefficients

II φ(2, 2, 1), H(1, 1, 6), ∆R(1, 3, 10), (aL, aR, a4)II =

(
2,

26

3
,−2

)
Σ̃(2, 2, 15)

I φ2(2, 1, 1), S(1, 0, 1), ∆
−2/3
R3

(
1,
−4

3
, 3

)
(a1, a2, a3)I =

(
131

18
,
−19

6
,
−41

6

)

Table 4.5: The Higgs content and the RG coefficients in the energy intervals for model C.

Interval Higgs content RG coefficients

II φ(2, 2, 1), H(1, 1, 6)× 2, Σ̃(2, 2, 15) (aL, aR, a4)II =

(
26

3
,
26

3
,
4

3

)
∆R(1, 3, 10), ∆L(3, 1, 10)

I φ2(2, 1, 1), S(1, 0, 1), ∆
−2/3
R3

(
1,
−4

3
, 3

)
(a1, a2, a3)I =

(
131

18
,
−19

6
,
−41

6

)
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Table 4.6: The predictions of Models A, B, and C.

Model A B C

Unbroken Symmetry G224 G224 G224D

log10(MU/GeV) 15.7 17.1 15.6

log10(MC/GeV) 13.3 10.5 13.4

α−1
U 45.4 34.7 36.2
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Figure 4.2: Running of the gauge couplings for models A, B, and C. The vertical dotted
lines from left to right correspond to the symmetry breaking scales MZ and MC , which also
indicate the beginning of the energy intervals I and II, respectively. For α−1

1 , we plot the

redefined quantity α̃−1
1 ≡

3

5
α−1

1 . Note that, in interval II of panel (a), α−1
L and α−1

R evolve

very closely but not identically.
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4.4 Discussion

In this chapter, we have discussed a possible interpretation of the 750 GeV diphoton reso-
nance in the framework of unified G224 models derived in the context of a left-right symmetric
extension of non-commutative geometry (NCG) of the Standard Model (SM). Our framework
is a grand unified version of G224 models, within which the corresponding Higgs content is
restrictively determined (or uniquely determined for each model) from the underlying non-
commutative geometry. This should be contrasted to the regular G224 models, discussed in
the literature, in which the corresponding Higgs context is arbitrarily selected.

We have argued that the observed cross sections involving the 750 GeV diphoton resonance
could be realized through a SM singlet scalar field and colored scalars in the NCG of unified
G224 models. However, the color scalars are light and thus fine tuned from the usual effective
field theory point of view. This indicates a certain rigidity of the NCG approach to the
Standard Model and its natural completion in the context of the unified G224 models. As
already emphasized, this conclusion is based on the effective field theory reasoning, which
might fail in the NCG framework due to the possible mixing between the short- and long-
distance physics as we have discussed in Chapter 3 and Ref. [160], as well as Refs. [159, 163].
In this chapter, we have discussed three different scenarios and their implications for the
physics beyond the Standard Model. We have concentrated on the purely phenomenological
aspects of the NCG unified G224 models without relying on their deep mathematical structure
or various novel physics aspects that go beyond the effective field theory framework.

We believe that the discussion presented in this chapter gives extra evidence to the under-
lying phenomenological rigidity of the NCG approach towards understanding of the origins
of the Standard Model and the physics beyond the Standard Model. However, this phe-
nomenological rigidity might be the price one has to pay for the non-commutative nature of
the approach, and it might be indicative of a possibly exciting relation to the non-particle
sector of high energy physics that is to be found in the context of the underlying quantum
structure of space and time.



Part II

Constraining New Physics with
Neutrino Experiments

119



Chapter 5

Constraints on New Physics at Low
Energy

5.1 Bounds of Different Sectors

In Part I, we discussed the alternative viewpoint of how new physics fundamentally incom-
patible with EFT determines the EFT, and studied the possibility of finding clues of new
physics at LHC. Since EFT works very well below ΛNP as we show in Section 1.1, in this
part, we take a step back and focus purely on the phenomenological aspect of the EFT at
an energy scale much lower than ΛNP . Let us first examine the room for new physics in this
regime.

After years of experimentation, we have set stringent bounds on various processes. In Sec-
tion 1.1, we have seen the precision electroweak measurements matches the QED predictions
extremely well. Let us examine the bounds derived from other sectors. For the flavor sector,
the bounds for unitarity of the CKM matrix are also very tight. If we denote the CKM
matrix as

V =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 , (5.1)

then checking unitarity of first two rows and first two columns of matrix V gives the following
relations [1]:

V V † =

0.9996± 0.0005 − −
− 1.002± 0.027 −
− − −

 ,
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and

V †V =

0.9975± 0.0022 − −
− 1.042± 0.032 −
− − −

 . (5.2)

which mean the CKM matrix is extremely close to unitary. Therefore, a simple fourth-
generation quark that mixes with the first three generations is largely constrained. Taking
the Wolfenstein parametrization of the CKM matrix as [356]

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4), (5.3)

geometrically we can parametrize each unitarity constraint with a triangle in a complex
plain. Using the first and third columns of VCKM , this is shown in Fig. 5.1. Therefore,

Figure 5.1: The ‘unitarity triangle’. Plot is used with permission of PDG [1].

independent measurements of the CKM matrix by various experiments can be characterized
by their consistency with this triangle. In Fig. 5.2, the results from different experiments
are combined and the global bounds are given in the (ρ, η) plane.

Next, let us look at the constraints of the charged lepton sector. In many models [76, 318,
357–367], lepton flavor violation (LFV) emerges as a result of new physics beyond the SM.
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Figure 5.2: The global fit results (shaded region) v.s. the constraints of the unitarity triangle.
Plot is used with permission of PDG. For more details of the plot see Refs. [3] and [1].

Bounds on some of these processes are summarized in the following list:

Γi
Γ

(τ− → e−γ) < 3.3× 10−8 [293],

Γi
Γ

(τ− → µ−γ) < 4.4× 10−8 [293],

Γi
Γ

(τ− → e−µ+µ−) < 2.7× 10−8 [368],

Γi
Γ

(τ− → µ−e+e−) < 1.8× 10−8 [368],

Γi
Γ

(µ− → eγ) < 2.4× 10−12 [369],

Γi
Γ

(µ− → eγγ) < 7.2× 10−11 [370–372],

Γi
Γ

(µ− → e−e+e−) < 1× 10−12 [286],

... (5.4)

which give stringent constraints on any extra particle that directly couples to charged leptons
and causes LFV, such as the ones shown in Ref. [373].

Besides these bounds, since some models allow amplitudes that potentially cause proton
decay, the bound of proton decay is carefully studied over the past a few decades. The
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current bounds are [1, 374]

τp/Br(p→ e+π0) > 1.6× 1034 yrs,

τp/Br(p→ µ+π0) > 7.7× 1033 yrs,

τp/Br(p→ K+ν) > 6.6× 1033 yrs. (5.5)

which makes the suppression of proton decay a non-trivial practice that requires extra care
in many model building, such as demonstrated in Refs. [76, 318, 357–367]. Contrary to the
tight bounds shown above, constraints on the neutrino sector are not comparably strong yet.
For example, the allowed region of some of the standard-neutrino oscillation parameters are
shown in Fig. 5.3. The parameters relevant to the oscillation are listed in Table 5.1. With
new data from various current neutrino experiments and from others being planned for the
near future, these bounds are likely to improve. As a result, there is a significant possibility
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Figure 5.3: The uncertainty on sin2(2θ13)− δCP plane and sin2(θ23)− |∆m2
32| plane. Plot is

used with permission of PDG [1].

to reveal new physics beyond the SM in the neutrino sector, which will be addressed in the
next section.

5.2 What Is of Interest in the Neutrino Sector

It is known that the existing uncertainties of the measurements provide room for higher-
dimensional operators. These operators potentially arise as a result of new physics at higher



124

Parameter Best-fit Value & 1σ Range Benchmark Value

δm2
21 (7.50± 0.185)× 10−5 eV2 7.50× 10−5 eV2

δm2
31 (2.47+0.069

−0.067)× 10−3 eV2 2.47× 10−3 eV2

sin2 θ23 0.41+0.037
−0.025 ⊕ 0.59+0.021

−0.022 0.41
θ23/

◦ 40.0+2.1
−1.5 ⊕ 50.4+1.2

−1.3

θ23/rad 0.698+0.037
−0.026 ⊕ 0.880+0.021

−0.023

sin2 θ12 0.30± 0.013 0.30
θ12/

◦ 33.3± 0.8
θ12/rad 0.580± 0.014
sin2 θ13 0.023± 0.0023 0.023
θ13/

◦ 8.6+0.44
−0.46

θ13/rad 0.15± 0.01
δ/◦ 300+66

−138 0
δ/π 1.67+0.37

−0.77

Table 5.1: Second column shows the best-fit values and 1σ uncertainties on the oscillation
parameters taken from Ref. [9]. We use the values listed in the third column as benchmark
values for which we calculate our oscillation probabilities in this work.

scale and can be parameterized by the non-standard interaction parameters (NSI). As a direct
analog of the Fermi-interaction development, any discovery of the NSI would be definite
evidence of new physics deviating from the SM expectations. Therefore, searching for nsi in
the neutrino sector is of theoretical interest. For a recent analysis on the bounds of NSI, see
Ref. [375].

Besides, measuring the SM parameters precisely is important in pointing to the direction of
new physics in a broader context. For example, the neutrinos are the only fermions of which
only one chirality is observed. On the other hand, neutrino oscillation experiments show
that the mass of neutrinos is non-zero albeit tiny. Therefore, it is natural to ask about the
origin of this smallness [204, 283, 376–378]. Models such as the see-saw mechanism provide
solutions to address the smallness of the SM neutrino using new physics. In order to form
a mass term, a right handed partner is needed. If this right handed neutrino is not charged
under any gauge group, it is allowed to have a Majorana mass without directly breaking any
gauge symmetry, which makes the see-saw mechanism possible. As a result, a sub-eV SM
neutrino mass requires the right handed partner to be ∼ TeV to 1016 GeV, depending on
the Dirac coupling chosen. On the other hand, as an alternative to regular see-saw models,
if the right handed particle is not Majorana, it is a hint for some new symmetry beyond
the SM that forbids it, such as the left-right symmetry models we studied in Part I and the
inverse see-saw in Refs. [379–384].

Experimentally, a light sterile neutrino that has large mixing with the active neutrinos are
subject to the constraints from unitarity [385–387]. Possible observables related to the
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unitarity violation due to the extra particle content is also studied in Refs. [388, 389]. As
a result, models in this class will be affected by the measurement of the oscillation angles
and the mass parameters. It is known that the phenomenological effect of NSI and different
values of the standard parameters are degenerate in many processes [375, 390–397]. In
this context, understanding the effect of NSI’s is important in determining the standard
parameters of the neutrino sector. A careful study of the effects of NSI gives us insight on
what the degeneracy is and under what circumstances it gets lifted, as shown in Fig. 5.4. In
short, a good understanding of the effect of NSI helps us interpret the experimental outcome
correctly.

Figure 5.4: The degeneracy between εµµ and θ23 gets partially lifted after combining the
DUNE and T2HK data. This figure is from Ref. [4], courtesy of Pilar Coloma.

With this in mind, we study a specific proposed neutrino detector in Chapter 6, which is
specifically sensitive to e−νe NSI. We point out the advantage of such a detector and also the
issues of potential backgrounds, which should be considered with care. In order to better
understand the effect of NSI in neutrino-oscillation experiments, we develop a theoretical
tool in Chapter 7 to analytically parametrize the matter effect with the presence of NSI by
modifying the vacuum oscillation parameters to run. In this formalism, the physics of NSI
is more transparent with little loss of accuracy – at a level that is negligible for experiments
such as DUNE. This part is based on our work [398–400] to appear as future publications.



Chapter 6

Constraining Neutrino Non-standard
Interaction with OscSNS

In this chapter, we work out the capability of constraining NSI with the proposed OscSNS
neutrino detector. We point out the advantage of this detector and possible backgrounds.
A goodness-of-fit analysis is performed with projections of one and two years of data.

6.1 Introduction

The proposed OscSNS experiment [401–405] aims to use the Spallation Neutron Source (SNS)
[406] at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, USA, as a
neutrino source to search for oscillations of the active neutrinos to sterile ones [386, 407–409].
Though the main stated objective of OscSNS is the search for sterile neutrinos, the setup can
be utilized to measure the neutrino cross sections on electrons and carbon as well. In this
chapter, we analyze the potential of the OscSNS experiment to constrain the coupling of the
neutrino via the measurement of the neutrino-electron elastic cross section. If one assumes
the SM, a precise measurement of the νe− cross section would allow one to determine the
effective value of sin2 θW at low momentum transfer. If one fixes the value of sin2 θW to that
determined from other experiments, then the measurement will constrain the sizes of possible
non-standard interactions (NSI’s) of the neutrino. One should note that the analysis is only
valid if all backgrounds are known and under control. In particular, there is a potential
background from the non-detection of the excited nitrogen final state in the process

νe + 12C → e+ 12N∗. (6.1)

This can be suppressed through an angular cut of the electron events, as the ones from νe
scattering are strongly forward peaked. Therefore, in this work we assume this background
is under control. More details about this are shown in Section 6.4.3.
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Figure 6.1: The energy spectra of νe (blue) and νµ (purple) in µ+ decay at rest.

We will not consider the neutrino magnetic dipole moment (MDM) since its presence can
only be detected via a steep increase in the νe− cross section at low energies, and OscSNS
cannot compete with other detectors that have a much lower detection threshold.

6.2 Neutrinos at the SNS

The SNS at ORNL consists of an H− ion source, a linear accelerator system for accelerating
the H− ions to 1 GeV a stripper that removes the two electrons, and a proton accumulator
ring which stores the resulting 1 GeV protons and releases them in short 695 ns-long pulses
at a rate of 60 Hz onto a liquid Hg target.1

In addition to 20 to 30 neutrons being spalled from the Hg nuclei per proton on target
(POT), the collisions produce charged pions. The π− are attracted to nuclei and quickly
absorbed, while the π+ come to rest inside the target and decay predominantly via

π+ → µ+ + νµ (6.2)

with a lifetime of τπ = (2.6033 ± 0.0005) × 10−8 sec. Being a two-body decay at rest, the
µ+ and νµ from this decay are mono-energetic, with energies

Eµ =
m2
π +m2

µ

2mπ

= 109.778 MeV → Tµ = Eµ −mµ = 4.120 MeV ,

Eνµ =
m2
π −m2

µ

2mπ

= 29.792 MeV . (6.3)

The positive muons from this π+ decay-at-rest then come to rest inside the Hg target2 and
decay themselves via,

µ+ → e+ + νe + νµ , (6.4)

1About 20 tons of liquid Hg is continuously circulated inside a stainless steel target vessel.
2Ref. [401] claims that the µ+ stop within 0.2 g/cm2 from the point of π+ decay. Refs. [410, 411] give tables
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with a lifetime of τµ = (2.1969811 ± 0.0000022) × 10−6 sec. The νe and νµ from this µ+

decay-at-rest are distributed isotropically with energy spectra given by

λνe(Eνe) dEνe =
192

f(η)

x2(xmax − x)2(
1
2
− x
) θ(xmax − x) dx ,

λνµ(Eνµ) dEνµ =
64

f(η)

y2(ymax − y)2
(
y2 − 5+η

4
y + 3(1+η)

8

)
(

1
2
− y
)3 θ(ymax − y) dy , (6.5)

where x = Eνe/mµ, y = Eνµ/mµ, η = m2
e/m

2
µ = 2.339× 10−5, and

f(η) =
(
1− 8η + 8η3 − η4 − 12η2 ln η

)
≈ 1 . (6.6)

The maximum of the neutrino energies is

Eνe,max = Eνµ,max =
m2
µ −m2

e

2mµ

= 52.828 MeV , (6.7)

and thus xmax = ymax = (1− η)/2 ≈ 0.5. These distributions are shown in Fig. 6.1.

At its design power of 1.44 MW,3 the SNS delivers

1.44 MW

1 GeV
= 9.0× 1015 POT/second = 1.5× 1014 POT/pulse . (6.8)

A Geant4 [412, 413] simulation places the number of each of the neutrino flavors νµ, νe, and
νµ produced per 1 GeV POT at 0.09 [401]4. Thus, in addition to being a neutron source,
the SNS produces an equal number of the three neutrino flavors νµ, νe, and νµ emitted
isotropically from the target at the rate of

(9.0× 1015 POT/second)× (0.09/POT) = 8× 1014/second . (6.9)

Due to the large difference between τπ and τµ, the νµ flux from π+ decay and the νe and νµ
fluxes from the subsequent µ+ decay are temporally separated. Assuming a uniform pion
production rate while the proton beam is on, the time-dependence of the νµ, νe, and νµ fluxes
from the instant that the proton beam is turned on is shown in Fig. 6.2. Of the total νµ flux,
96.3% is emitted during the 695 ns while the proton beam is on, and the remaining 3.7%
is emitted after the proton beam is turned off. For the νe and νµ fluxes, the corresponding

of the muon stopping power of Hg for various muon energies, but they only go down as far as Tµ = 10.0 MeV
where the range is given as 1.5 g/cm2. Given the mass density of Hg, which is ρ = 13.5 g/cm3, the range
0.2 g/cm2 corresponds to 0.015 cm = 0.15 mm.

3The SNS has not reached its design power yet; in April 2013, it was operating at a power of about
0.85 MW [406].

4Ref. [401] quotes two different numbers for this production rate: 0.12 on page 10, and 0.09 on page
23. We use the latter value here since it seems to be the one used in the flux calculations in Chapter 8 of
Ref. [401].
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Figure 6.2: The time-dependence of the neutrino fluxes. The proton beam is on during the
initial 695 ns. The blue line indicates the time-dependence of the νµ flux, while the purple
line indicates that of the νe and ν̄µ fluxes. The total integrated fluxes are normalized to one.
Note that the νe and ν̄µ fluxes share the exact same time dependence indicated by the purple
line, which is NOT the sum of the two fluxes.

percentages are, respectively, 13.3% and 86.7%. Consequently, when the proton beam is on,
the νµ’s make up 78% of the total neutrino flux while νe’s and νµ’s contribute 11% each.5

When the beam is off, the νµ’s constitute 2% while νe and νµ contribute 49% each. If we wait
a few times τπ after the proton beam is turned off, the pions will all have decayed and the
νµ component in the flux will be completely eliminated. We take advantage of this temporal
separation later.

6.3 The OscSNS Detector

The OscSNS detector is envisioned to be a liquid scintillation detector, one similar to Mini-
BooNE, filled with mineral oil and surrounded by photomultiplier tubes (PMT’s). The size
and shape of the detector are yet to be finalized, but its location will be 60 meters away
from the Hg target, at an angle of 160 degrees from the direction of the proton beam. Since
the three neutrino flavors are emitted isotropically, the flux of each flavor at a distance of

5Ref. [401] on page 10 states that the νµ flux has 14% contamination of νe and νµ each while the proton
beam is on. This should be understood as 14% each relative to the νµ flux, that is, the ratio of the fluxes of
the three flavors νµ, νe, and νµ is 100 : 14 : 14, or 78 : 11 : 11.
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60 meters would be

Φν(60 m) =
8× 1014/second

4π(6× 103 cm)2
= 1.8× 106/second/cm2 = 1.8× 1013/ 107 seconds/cm2 .

(6.10)
Assuming that the liquid scintillator in the detector is pseudocumene6, C9H12, with mass
density 0.8761 g/cm3, molar weight 120.19 g/mol, and 66 electrons per molecule, the number
of pseudocumene molecules in 100 tons of the material is

NC9H12 =

(
100 tons

120.19 g/mol

)
×NA

= (8.32× 105 mols)× (6.022× 1023/mol)
= 5.0× 1029 , (6.11)

and the number densities of electrons, free protons (those not in the carbon), and carbon
nuclei are

ρe = Ne/100 tons = 66×NC9H12/100 tons = 3.3× 1031/100 tons ,
ρp = Np/100 tons = 12×NC9H12/100 tons = 6.0× 1030/100 tons ,
ρC = NC/100 tons = 9×NC9H12/100 tons = 4.5× 1030/100 tons . (6.12)

Multiplying by the flux from Eq. (6.10), we find

ρeΦν(60 m) = 5.9× 1044/100 tons/107 seconds/cm2 ,
ρpΦν(60 m) = 1.1× 1044/100 tons/107 seconds/cm2 ,
ρCΦν(60 m) = 8.1× 1043/100 tons/107 seconds/cm2 . (6.13)

Given that neutrino cross sections with single electrons (nuclei) are on the order of 10−44 cm2

(10−42 cm2), we need the (detector mass)× (exposure time) to be at least one order of mag-
nitude beyond 109 ton · seconds to obtain useful events yields.

In the original OscSNS White Paper [401], the detector is assumed to be spherical, with the
central part of radius 5 meters constituting the fiducial volume. The mass of pseudocumene
in the fiducial volume is

Mfid =
4π(5.0× 102 cm)3

3
× (0.8761 g/cm3) = 4.6× 108 g = 4.6× 102 ton . (6.14)

The number of estimated events in Ref. [401] is given for a flux-exposure of one full calendar
year, which is

Texp = (60 seconds/minute)× (60 minutes/hour)× (24 hours/day)× (365 days)
= 3.2× 107 seconds . (6.15)

So the reference value of (detector mass)× (exposure time) for OscSNS is

(MfidTexp)ref = (4.6× 102 ton)× (3.2× 107 seconds) = 1.5× 1010 ton · seconds . (6.16)

We use this value to calculate the benchmark constraints that we place on sin2 θW and the
neutrino NSI’s using OscSNS.

6Aka 1,2,4-Trimethylbenzene.
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Figure 6.3: The ES differential cross sections as functions of the electron recoil energy T for
νµ (yellow), νe (blue) and νµ (purple).

6.4 The Interactions

The neutrinos will interact with the electrons, free protons, and carbon nuclei in the scintil-
lator via both charged current (CC) and neutral current (NC) interactions. In the following,
we will look at the interactions of the neutrino with the three types of target particles, one
by one.

6.4.1 Interactions with Electrons

Elastic Scattering

In the SM, the interaction between neutrino flavor α (α = e, µ, τ) and the electron is de-
scribed at low energies by the effective four fermion interaction

LSM = −2
√

2GF (ν̄αγ
µPLνα)

[
gαL(ēγµPLe) + gαR(ēγµPRe)

]
. (6.17)

The coupling constants at tree level are given by gαR = sin2 θW and gαL = sin2 θW ± 1
2
, where

the lower sign applies for α = µ and τ (from Z exchange only) and the upper sign applies
for α = e (from both Z and W exchange). For anti-neutrinos, the values of gαL and gαR will
be reversed.

The differential cross section for neutrino-electron elastic scattering (ES) due to this inter-
action is given by

dσνα(Eνα , T )

dT
=

2G2
Fme

π

[
g2
αL + g2

αR

(
1− T

Eνα

)2

− gαLgαR
meT

E2
να

]
. (6.18)
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Here, me is the electron mass, Eνα is the initial energy of neutrino flavor α, and T is the
kinetic energy of the recoil electron, which has the range

0 ≤ T ≤ Tmax(Eνα) =
Eνα

1 +me/2Eνα
. (6.19)

Since the νµ from π+ decay at rest is mono-energetic, the scattering cross section is given
simply by the above expression. For the νe and νµ from µ+ decay at rest, however, we must
convolute the above expression with the energy spectra given in Eq. (6.5):

dσνe(T )

dT
=

∫ Eνe,max

0

dEνe λνe(Eνe)
dσνe(Eνe , T )

dT
θ(Tmax(Eνe)− T ) ,

dσνµ(T )

dT
=

∫ Eνµ,max

0

dEνµ λνµ(Eνµ)
dσνµ(Eνµ , T )

dT
θ(Tmax(Eνµ)− T ) . (6.20)

The shapes of these differential cross sections are shown in Fig. 6.3.

The total cross sections for νµ is given by

σνµ(ES) =

∫ Tmax(Eνµ )

0

dσνµ(Eνµ , T )

dT
dT

=
2G2

FmeTmax

π

[
g2
µL + g2

µR

(
1− Tmax

Eνµ
+
T 2

max

3E2
νµ

)
− gµLgµR

meTmax

2E2
νµ

]
= 4.48× 10−44 cm2 , (6.21)

where we have used the value sin2 θW = 0.2386 for the coupling constants. Similarly,

σνe(ES) =

∫ Tmax(Eνe,max)

0

dσνe(T )

dT
dT = 3.05× 10−43 cm2 ,

σν̄µ(ES) =

∫ Tmax(Eν̄µ,max)

0

dσν̄µ(T )

dT
dT = 5.08× 10−44 cm2 . (6.22)

Inverse Muon Decay

For an initial νµ, the CC process,

νµ + e− → µ− + νe , (6.23)

is also possible if the νµ is energetic enough. However, the threshold energy is

Eνµ,thres =
m2
µ −m2

e

2me

= 10.923 GeV , (6.24)

so this reaction cannot occur in the present context.
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6.4.2 Interactions with Protons

Elastic Scattering

Neutrinos can scatter elastically against the protons via Z exchange, but the recoil protons
are not energetic enough to be dissociated from the pseudocumene molecules and cause
scintillation light. So the ES events against protons, and similarly those against carbon, are
invisible.

Inverse Beta Decay

Anti-neutrinos can undergo the reactions

νe + p → e+ + n ,
νµ + p → µ+ + n ,

(6.25)

with the resulting neutron detected via n + p → D + γ (2.2 MeV). These reactions have
thresholds of

Eνe,thres =
(mn +me)

2 −m2
p

2mp

= 1.806 MeV ,

Eνµ,thres =
(mn +mµ)2 −m2

p

2mp

= 113.05 MeV , (6.26)

so the second reaction cannot occur. The first will be used by OscSNS to detect νe appear-
ance. For our purpose, we will simply assume that the νe contamination in the flux (from
µ− decay) is negligible and ignore this reaction.

6.4.3 Interactions with Carbon

Elastic Scattering

The elastic scattering of the neutrinos against the carbon nuclei from Z exchange cannot be
detected, as discussed above.

CC Inelastic Scattering

The νe can undergo the CC process

νe + 12C → e− + 12N (6.27)
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where the 12N in the final state can either be in the ground state 12Ngs, or one of the
short-lived, broad excited states 12N∗.

The cross section to the ground state 12Ngs can be calculated fairly reliably, since the form
factors necessary can be determined from other experiments [414, 415]. The reaction to the
ground state νe + 12C → e− + 12Ngs has a Q value 17.33 MeV, so the νe energy threshold is

Eνe,thres =
(mN +me)

2 −m2
C

2mC

=
Q(Q+ 2mC)

2mC

= 17.35 MeV . (6.28)

The ground state 12Ngs decays with a lifetime of τ(12Ngs) = 15.9 ms into7

12Ngs →

{
12C + e+ + νe (96.5%)
12C∗ + e+ + νe → 8Be+ α + e+ + νe → 3α + e+ + νe (3.5%)

(6.29)

The positrons from these decays have a maximum kinetic energy of Q− 2me = 16.33 MeV.
The process is identified via the detection of the initial prompt electron, and the delayed
coincident detection of the positron. The three α’s in the second decay cannot be detected.
The excited states 12N∗ are short-lived and decay mostly via proton emission (Table 12.22
of Ref. [416])

12N∗ → 11C + p . (6.30)

This is a potential background unless a) the proton is detected to identify this reaction,
or b) the cross section of this process is well understood theoretically through calculation.
Otherwise, this process will be a background to νe elastic scattering process. According to
Ref. [417], this proton is detectable, c.f. Fig. 21-22 therein. In the case of OscSNS, without
the direct detection of the proton, there are several ways to control the background from
this process. First, it is observed by LSND that the electrons from Eq. (6.27) with a 12N∗

final state are backward peaked. On the other hand, the differential cross section of νe+ e in
Eq. (6.31) is forward peaked as plotted in and Fig. 6.4 and measured in Fig. 9 of Ref. [418],

dσ

d cos θ
=
G2
Fme

2π

{
(cV + cA)2 + (cV − cA)2m2

e

(
1− 2meEν cos2 θ

sin2 θE2
ν + 2meEν +m2

e

)2

×−(c2
V − c2

A)
2m2

e cos2 θ

sin2 θE2
ν + 2meEν +m2

e

}
× 4meE

2
ν(Eν +me)

2 cos θ

(Eν +me)2 − E2
ν cos2 θ

, (6.31)

where cV and cA are the vector and axial charge of the electron. Therefore, it is possible to
perform an angular cut to suppress this background if d2σ

dEd cos θ
(νe+

12C → e+12N∗) is known.
Alternatively, we can subtract altogether the events from Eq. (6.27) if the cross section is
known to sufficient accuracy. In either case, it is necessary to have a cross section profile of
the process in Eq. (6.27) through theoretical estimate or measurement. The differential cross
section is not included in Ref. [417]. At the moment, we have contacted one of the authors

7See Table 12.21 of Ref. [416]. The decay to the ground state 12Cgs is 94.6% and to the first excited state
12C∗(4.44) is 1.9%, which add up to 96.5%. Decays to higher excited states of 12C result in 3α break-up.
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Figure 6.4: Differential cross section of νe + e→ νe + e scattering

of Ref. [419] for further study of this background. In the rest of the chapter, we perform the
analysis assuming this background is well-controlled.

The total cross section of the process νe + 12C → e− + 12Ngs, convoluted with the initial
neutrino energy spectrum, is given as

σ(12C(νe, e
−)12Ngs) = 9.2× 10−42 cm2 Ref. [414]

= 9.1× 10−42 cm2 Ref. [415] (6.32)

These agree very well, though the methods used are different. The experimental values are

σ(12C(νe, e
−)12Ngs) = (9.1± 0.5± 0.8)× 10−42 cm2 KARMEN [420, 421]

= (8.9± 0.3± 0.9)× 10−42 cm2 LSND [422]
= (10.5± 1.0± 1.0)× 10−42 cm2 E225 [423] (6.33)

so the agreement is good. We can conclude that the cross section is around

σ(12C(νe, e
−)12Ngs) ≈ 9× 10−42 cm2 . (6.34)

Using this value, we estimate the number of events for the reference value of the detector
mass and flux exposure, Eq. (6.16), to be:

ρCΦν(60 m)× (MfidTexp)refσ(12C(νe, e
−)12Ngs) ≈ 11, 000 . (6.35)

Given the large number of expected events, it is tempting to to use this channel to constrain
the neutrino flux. However, Ref. [414] warns that the uncertainty in its result could be
as large as 12% so it is far from clear whether the theoretical errors are completely under
control. Rather, it would better to use νe ES to constrain the flux, and use it to determine
σ(12C(νe, e

−)12Ngs). The corresponding reaction for νe would be

νe + 12C → e+ + 12B . (6.36)
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The νe energy threshold of this reaction to the ground state of 12B is

Eνe,thres =
(mB +me)

2 −m2
C

2mC

= 14.40 MeV . (6.37)

The ground state of 12B decays with a lifetime of τ(12Bgs) = 29.1 ms into8

12Bgs →

{
12C + e− + νe (98.4%)
12C∗ + e− + νe → 8Be+ α + e− + νe → 3α + e− + νe (1.6%)

(6.38)

Together with inverse beta decay, this process can be used to detect νe appearance. The CC
reactions that can be obtained by changing the lepton flavor from electron to muon in the
above interactions, i.e.

νµ + 12C → µ− + 12N
νµ + 12C → µ+ + 12B

(6.39)

have thresholds given by

Eνµ,thres =
(mN +mµ)2 −m2

C

2mC

= 123.15 MeV ,

Eνµ,thres =
(mB +mµ)2 −m2

C

2mC

= 120.18 MeV , (6.40)

so these reactions cannot occur.

NC Inelastic Scattering

All neutrino and anti-neutrino flavors can undergo the following NC processes:

ν + 12C → ν + 12C∗ . (6.41)

The cross section to the first (JP , I) = (1+, 1) excited state of Carbon-12 is well understood.
In the process

ν + 12C −→ ν + 12C∗(15.11) ,
12C∗(15.11) −→ 12C + γ , (6.42)

So the signature of this process is the mono-energetic 15.11 MeV gamma ray. Theoretical
calculations of the cross section are

σ = 4.47× 10−42 cm2 for νe, Ref. [414]
= 5.40× 10−42 cm2 for νµ, Ref. [414]

8See Table 12.14 of Ref. [416]. The decay to the ground state 12Cgs is 97.2% and to the first excited state
12C∗(4.44) is 1.2%, which add up to 98.4%. Decays to higher excited states of 12C result in 3α break-up.
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= 2.74× 10−42 cm2 for νµ, Ref. [414]
= 9.8× 10−42 cm2 for νe + νµ, Ref. [415] (6.43)

while the experimental values are

σ = (3.2± 0.5± 0.4)× 10−42 cm2 νµ, KARMEN [424]
= (11± 1.0± 0.9)× 10−42 cm2 νe + νµ, KARMEN [425, 426]. (6.44)

These are consistent with the theoretical calculations, but not that accurate yet.

6.5 Neutrino-Electron Elastic Scattering

To constrain neutrino NSI’s, we use neutrino-electron elastic scattering:

να + e− −→ να + e− . (6.45)

The signal will be scintillation light from the recoil electrons. The energy of the electrons
can be reconstructed from the collected energy of the scintillation photons as in Borexino
and MiniBooNE. Since the kinetic energy of the recoil electrons will be in the 10’s of MeV
range, backgrounds due to the β-decay of radioactive nuclei do not have to be considered
since their energies are all around an MeV or below.

6.5.1 The Interaction

In the SM, the interaction between neutrino flavor α (α = e, µ, τ) and the electron is de-
scribed at low energies by the effective four-fermion interaction

LSM = −2
√

2GF (ν̄αγ
µPLνα)

[
gαL(ēγµPLe) + gαR(ēγµPRe)

]
. (6.46)

The coupling constants at tree level are given by gαR = sin2 θW and gαL = sin2 θW ± 1
2
, where

the lower sign applies for α = µ and τ (from Z exchange only) and the upper sign applies
for α = e (from both Z and W exchange). For anti-neutrinos, the values of gαL and gαR are
reversed.

6.5.2 Differential Cross Section

The differential cross section for elastic neutrino-electron scattering due to this interaction
is given by

dσνα(Eνα , T )

dT
=

2G2
Fme

π

[
g2
αL + g2

αR

(
1− T

Eνα

)2

− gαLgαR
meT

E2
να

]
. (6.47)
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Here, me is the electron mass, Eνα is the initial neutrino energy, and T is the kinetic energy
of the recoil electron which has the range

0 ≤ T ≤ Tmax(Eνα) =
Eνα

1 +me/2Eνα
. (6.48)

Since the νµ from π+ decay is mono-energetic, the scattering cross section is given simply
by the above expression. For the νe and νµ from µ+ decay, however, we must convolute the
above expression with the energy spectra:

dσνe(T )

dT
=

∫ Eνe,max

0

dEνe λνe(Eνe)
dσνe(Eνe , T )

dT
θ(Tmax(Eνe)− T ) ,

dσνµ(T )

dT
=

∫ Eνµ,max

0

dEνµ λνµ(Eνµ)
dσνµ(Eνµ , T )

dT
θ(Tmax(Eνµ)− T ) . (6.49)

The shapes of these differential cross sections are shown in Fig. 6.3.

6.5.3 Total Cross Section

The total cross sections for νµ is given by

σνµ =

∫ Tmax(Eνµ )

0

dσνµ
dT

dT

=
2G2

FmeTmax

π

[
g2
L + g2

R

(
1− Tmax

Eνµ
+
T 2

max

3E2
νµ

)
− gLgR

meTmax

2E2
νµ

]
= 4.48× 10−44 cm2 , (6.50)

where we have used the value sin2 θW = 0.2386 for the coupling constants. Similarly,

σνe =

∫ Tmax(Eνe,max)

0

dσνe
dT

dT = 3.05× 10−43 cm2 ,

σν̄µ =

∫ Tmax(Eν̄µ,max)

0

dσν̄µ
dT

dT = 5.08× 10−44 cm2 . (6.51)

6.5.4 Expected Number of Events

According to Eq. (8.3) of Ref. [401], the expected neutrino fluxes at the OscSNS detector
are

Φ(νµ) = (5.48± 0.05)× 1013 /year/cm2 ,
Φ(νe) = (5.45± 0.05)× 1013 /year/cm2 ,
Φ(ν̄µ) = (5.51± 0.05)× 1013 /year/cm2 . (6.52)



139

The number of electrons inside a 6 meter radius (12 meter diameter) detector is estimated
to be Ne = 2.68× 1032. To calculate this number, we need the total mass of the mineral oil
inside the detector. Ref. [401] says that this is 800 tons. The “mineral oil” used in Borexino
experiment is C6H3(CH3)3, or C9H12, with a density of 0.8761 g/cm3 and a molar weight
of 120.19 g/mol . Suppose the OscSNS detector uses the same type of material. With this
data, and considering that each molecule has 66 electrons, 800 tons would contain a total
number of electrons of:

66×NA (mol−1)× 1

120.19 (g/mol)
× (800× 106 (g)) = 2.6455× 1032,

where NA is Avogadro’s number. In Borexino, they also add some (1.5 g/`) scintillator,
C15H11NO. Using the size of the detector, we get a total of 1.37× 106 g of scintillator in the
detector. One can easily compute that the total number of extra electrons introduced by the
scintillator is 4.33× 1029. The correction is small, so we use the number for pure mineral oil,
Ne = 2.65 × 1032, for the rest of the calculation. The expected total number of events per
year is, therefore,

N(νµ) = Ne Φ(νµ)σνµ = 658 /year ,
N(νe) = Ne Φ(νµ)σνµ = 4458 /year ,
N(ν̄µ) = Ne Φ(νµ)σνµ = 750 /year . (6.53)

Ref. [401] claims 4491/year for νe events, so we are close. The difference could be due to our
choice of the value of sin2 θW , and rounding off errors. Assuming a 50% detector efficiency,
εdet = 0.5, the observed yields are reduced to

N(νµ) = Ne Φ(νµ)σνµ εdet = 329 /year ,
N(νe) = Ne Φ(νe)σνe εdet = 2228 /year ,
N(ν̄µ) = Ne Φ(ν̄µ)σν̄µ εdet = 375 /year . (6.54)

Ref. [401] also claims a reduction by a factor of εfid = (5/6)3 ≈ 0.5787 due to fiducial volume
cuts.

N(νµ) = Ne Φ(νµ)σνµ εdet εfid = 190 /year ,
N(νe) = Ne Φ(νe)σνe εdet εfid = 1290 /year ,
N(ν̄µ) = Ne Φ(ν̄µ)σν̄µ εdet εfid = 217 /year . (6.55)

These numbers are for a full Julian year, so for a Snowmass year of 107 seconds we will only
get one-third of these numbers.

6.5.5 Detector Response

An actual detector cannot measure the recoil electron energy to arbitrary precision, and one
must take its finite energy resolution into account. If we denote the probability of detecting
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Figure 6.5: The differential cross sections as with the detector energy resolution included.
TA is the reconstructed electron recoil energy. The three curves are for νµ (yellow), νe (blue)
and νµ (purple).

energy TA for an electron with kinetic energy T by R(TA, T ), the differential cross section as
a function of the actual detection energy TA is given by

dσνα(TA)

dTA
=

∫ Tmax

0

R(TA, T )
dσ̃να(T )

dT
dT . (6.56)

For Borexino, we take the energy resolution function R(TA, T ) to be a Gaussian with a
T -dependent standard deviation

R(TA, T ) =
1√

2π σ(T )
exp

[
−(TA − T )2

2 [σ(T ) ]2

]
. (6.57)

For Borexino analyses, the following form is used [427]:

σ(T ) = σ0

(
T

MeV

)1/2

, σ0 = 50 keV . (6.58)

This gives a 5% error at T = 1 MeV. We use a uniform 5% error, which corresponds to

σ(T ) = 0.05T . (6.59)

Performing the integral of Eq. (6.56), we obtain the differential cross sections as functions
of TA shown in Fig. 6.5.

6.5.6 Energy Bins

The calibrated range of OscSNS is expected to be 1 ∼ 50 MeV. With a 5% error on the
energy, a 50 MeV electron will have an energy uncertainty of 2.5 MeV, so we should make
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Figure 6.6: The cross sections per 5 MeV energy bin. TA is the reconstructed electron recoil
energy. The three histograms are for νµ (yellow), νe (blue) and νµ (purple).

the widths of the energy bins larger than this. We just use 5 MeV and divide the range
0 ∼ 50 MeV into 10 bins. We ignore the 1 MeV cutoff for now. Integrating the cross sections
in these energy bins, we obtain the graph shown in Fig. 6.6. Multiplying these cross sections
per bin with

NeΦεdetεfid = (2.68× 1032)× (5.5× 1013/year/cm2)× (0.5)× (5/6)3

= 4.3× 1045/year/cm2 , (6.60)

we find the event yields per bin per Julian year. The result is plotted in Fig. 6.7. The error
bars indicate the statistical error, assuming a Poisson distribution.

6.6 NSIs

6.6.1 Effect of NSIs on the νe-electron Scattering Spectrum

With Non-Standard Interactions (NSIs), the couplings of neutrinos of flavor α are shifted:

gαL → g̃αL = gαL + εαL , gαR → g̃αR = gαR + εαR . (6.61)

The shifts in the couplings of the muon neutrino and its anti-particle are already constrained
fairly strongly by CHARM II data, so we will only consider shifts in the electron neutrino
couplings.

As we can see from Eq. (6.47), the neutrino-electron scattering cross section consists of three
terms which are, respectively, proportional to g̃2

eL, g̃2
eR, and the product g̃eLg̃eR. The g̃eLg̃eR

term is proportional to the electron mass so it is suppressed compared to the other terms.
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We just neglect it for now. We can calculate the parts of the cross section proportional to
g̃2
eL and g̃2

eR separately:
σνe = g̃2

eL σL + g̃2
eR σR . (6.62)

Calculating σL and σR separately, including convolution with the neutrino energy spectrum,
energy smearing due to detector resolution, and energy binning, we obtain the graphs shown
in Fig. 6.8.

Using σL and σR, we can calculate the cross section for arbitrary values of g̃L = gL + εL and
g̃L = gR + εR. In Fig. 6.9, we show how the cross section changes when the left and right
handed couplings are respectively shifted by ±0.1. If we convert these cross sections into
the numbers of events expected after one full Julian year of data taking, the result is shown
in Fig. 6.10. The blue and red cases can be clearly distinguished provided that the neutrino
flux uncertainty can be well constrained. To distinguish between the blue and green cases
clearly needs more data.

The graph only shows the total number of νe-electron scattering events, but does not show
what is actually measured. We need to take the timing information into account and ask
whether the neutrino flux can be well constrained by the νµ events even though the number
of events is quite limited, and there is contamination from νe which has a much larger cross
section with electrons.

6.6.2 Expected Events with Protons On and Off

We calculated earlier that 96.3% of the νµ’s will be emitted while the proton beam is on,
while 3.7% will be emitted after the proton beam is turned off. For νe and ν̄µ, the percentages
are 13.3% while the proton beam is on, and 86.7% after it is turned off.

The cross section is calculated for the energy spectra of events collected while the proton
beam is on and while it is off, as shown in Fig. 6.11. There is a significant νe contribution
while the proton beam is on due to the much larger cross section that νe has compared to
νµ. On the other hand, the contribution of νµ while the proton beam is off is negligible.

To see how these cross sections are changed in the presence of NSI’s, gL and gR are shifted
again by ±0.1 and the resulting cross sections are plotted in Fig. 6.12. The corresponding
event yields are shown in Fig. 6.13. Due to νe contamination when the proton beam is on,
a goodness-of-fit analysis is needed to see how well we can constrain the neutrino flux using
the νµ contribution. This is performed in the next section.
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6.7 Computation of the χ2

First, let’s compute the total number of events due to standard interactions only. We do it as-
suming that the beam has already been turned off, including the different weights mentioned
in the previous section for the neutrino flavors:

NSM
i = 0.867× (NSM

νe,i +NSM
ν̄µ,i ) + 0.037×NSM

νµ,i , (6.63)

where i denotes each 5 MeV bin.

Then, we do the same for the events in presence of NSI, for each pair of values (εL, εR):

NNSI
i (εL, εR) = 0.867×

(
NSM+NSI
νe,i

(εL, εR) +NSM
ν̄µ,i

)
+ 0.037×NSM

νµ,i ,

where the exact cross section is used to compute NSM+NSI
ν,e , i.e., the third term in Eq. 6.47

is not neglected.

Then we build a Poissonian χ2:

χ2(εL, εR) =
∑
i

χ2
i (εL, εR) =

=
∑
i

2

(
NSM
i −NNSI

i (εL, εR) +NNSI
i (εL, εR) ln

[
NNSI
i (εL, εR)

NSM
i

])
.(6.64)

The physical interpretation of the above χ2 is understood as follows. First, we assume that
the prediction is based on the cross section given purely by the SM. In the end, a different
number of events is observed due to the presence of NSI. The significance is then depicted by
the above χ2 expression. The plot of χ2 in the (εL, εR) plane will tell us at which point the
NSI are so large that the observed number of events are incompatible with the prediction by
the SM. The shape of this χ2 is shown in Figs. 6.14 and 6.15. As can be seen from Fig. 6.14
the χ2 is asymmetric. This is due to the interference terms between the standard and non-
standard couplings in Eq. 6.47. Since both gL,e and gR,e are defined positive, negative values
of εL or εR can, in principle, be better accommodated by the data. Fig. 6.15 shows the
contours at 1, 2 and 3σ (for 2 d.o.f.) drawn in the (εL, εR) plane. Systematic errors are to
be included in the next subsection.

6.7.1 Inclusion of a Systematic Error over the Flux

The flux uncertainty is included as an overall normalization error over the predicted number
of events from the SM, so we have to replace:

NSM
i → (1 + ξ)NSM

i .
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Now the NSI contribution can be better accommodated by simply varying this nuisance
parameter, ξ, which is unknown. As a result, the χ2 profile is degraded. The χ2

i (per bin) is
obtained as in Eq. 6.64, but now depends on (εL, εR, ξ). A penalty term needs to be added
to the total χ2 in Eq. 6.64, too:

χ2(εL, εR, ξ) =
∑
i

χ2
i (εL, εR, ξ) +

(
ξ

σξ

)2

, (6.65)

where ξ is the nuisance parameter (unknown) while σξ is the prior knowledge for the flux
uncertainty (an estimate). We assume 10%, for instance. However, we can use this χ2 to
estimate the constraint that the experiment itself would be able to put on the neutrino flux.
In order to do so, we use the first 690 ns of the pulse. The beam composition in this time
window is mainly νµ (96.3%), which can be used to normalize the flux. In this case (t < 690
ns), the χ2 profile is built following Eq. 6.65 with:

NSM
i = (1 + ξ)

[
0.133×

(
NSM
νe,i +NSM

ν̄µ,i

)
+ 0.963×NSM

νµ,i

]
,

NNSI
i (εL, εR) = 0.133×

(
NSM+NSI
νe,i

(εL, εR) +NSM
ν̄µ,i

)
+ 0.963×NSM

νµ,i . (6.66)

Ideally, we have to marginalize over εL and εR, and then plot the result as a function of ξ
in order to get an accurate value. However, we do not expect a great difference in the χ2

due to the NSI9, since they are now just a small portion of the total number of events (only
13.3% come from νe events in this time window). Therefore, we choose a pair of values and
plot the χ2 along the ξ axis. Several values of (εL, εR) are checked and they result in more
or less the same result, as shown in Fig. 6.16. As can be seen from this plot, if we cut at 1
σ (for 1 d.o.f.), we obtain σξ ∼ 0.05. In the following, this value is used for σξ as the prior
knowledge of the flux.

In order to have a χ2 in the (εL, εR) plane, we need to marginalize over the nuisance param-
eter:

χ2
min(εL, εR) = minξ

{∑
i

χ2
i (εL, εR, ξ) +

(
ξ

σξ

)2
}
. (6.67)

The resulting profile is shown in Figs. 6.17 and 6.18, as we did in the previous section. The
χ2 plot with 30% systematic error is also included for comparison. In this case, the results
are worsened, as expected, but we still have some sensitivity to the non-standard couplings.
On the other hand, this shows that the systematic error strongly affects the sensitivity.
Therefore, a good control of the flux uncertainty is critical.

9This is valid only under the assumption that NSI only enter in the νe couplings.
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6.8 Conclusion and Outlook

In this chapter, we estimate the capability of a then-proposed detector, OscSNS at Oak
Ridge National Laboratory, to constrain νe-electron NSI. The time structure of the pulsed
proton beam allows us to constrain the neutrino flux uncertainty more accurately. Because
of the different life-time of π+ and µ+, the neutrino content is quite different when the beam
is on and off. When the proton beam is turned on, a produced π+ goes through a two body
decay at rest and produces mono-energetic νµ and µ+. Because the π+ decays roughly 100
times faster than the µ+, the νe content is negligible when the beam is on. Similarly, during
the beam-off period, because most of π decay quickly, the neutrino flux is dominated by the
µ+ decay, which produces νe and νµ.

Because of this feature, it is possible to constrain the neutrino flux with data from beam-on
period since νµ-electron NSI is well constrained already. As a result, this type of design has
great potential to constrain νe-electron scattering. In our note, we show the χ2 analysis on
the (εL, εR) plane with one and two years data taking. The result is comparable to other
experiments even though the number of events is limited. On the other hand, we also observe
a degradation of sensitivity when the systematic error is included. We point out that both
the control and the estimate of systematics strongly affect the result of the analysis, hence
the capability of constraining NSI.

During the study of this topic, we noticed a technical issue which should be addressed in
the future. The material of the OscSNS detector is mineral oil, which is similar to Borexino
and MiniBooNE. Therefore, the ν − 12C scattering should be well understood; otherwise, it
is a background. Due to the difficulty in calculating ν-nuclei scattering at very low energy
[419, 428], this needs to be treated carefully to suppress the background.
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Figure 6.7: Expected number of events per 5 MeV energy bin per year. The three plots are
for νµ (yellow), νe (blue) and νµ (purple).
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Figure 6.8: The left (red) and right handed (green) cross sections per 5 MeV energy bin.
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Figure 6.9: The νe-electron cross section per 5 MeV energy bin when gL is shifted by ±0.1
(red graphs) and when gR is shifted by ±0.1 (green graphs). The blue graph is when the
NSIs are all zero.
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Figure 6.10: Number of expected νe-electron scattering events per 5 MeV energy bin after
one full Julian year of data taking when gL is shifted by ±0.1 (red graphs) and when gR is
shifted by ±0.1 (green graphs). The blue graph is when the NSIs are all zero.
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Figure 6.11: Total cross section of νµ + νe + ν̄µ scattering against electrons per 5 MeV
energy bin with proton beam on (left) and off (right). The black graph is the total cross
sections, while the blue, purple, and yellow graphs indicate the contributions of νe, ν̄µ, and
νµ, respectively. Note that there is a significant νe contribution when the proton beam is on.
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Figure 6.12: Total cross section of νµ+νe+ ν̄µ scattering against electrons per 5 MeV energy
bin with proton beam on (left) and off (right). The red graphs indicate the cases in which gL
is shifted by ±0.1 while the green graphs indicate the cases in which gR is shifted by ±0.1.
The blue graphs are when the NSIs are all zero.
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Figure 6.13: Expected total number of (νµ + νe + ν̄µ)e− scattering events per 5 MeV energy
bin with proton beam on (left) and off (right) after one full Julian year of data taking. The
red graphs indicate the cases in which gL is shifted by ±0.1 while the green graphs indicate
the cases in which gR is shifted by ±0.1. The blue graphs are when the NSIs are all zero.
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Figure 6.14: Cut of the two-dimensional χ2 in the εL (left) and εR (right) directions, assuming
the other parameter to be zero. No systematics have been included.
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Figure 6.15: ∆χ2 contours at 1,2 and 3σ (2 d.o.f.) in the (εL,εR) plane after one year of
exposure. No systematics have been included.
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Figure 6.16: ∆χ2 profile in the ξ direction for εL = εR=0.
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Figure 6.17: Cut of the two-dimensional χ2 in the εL (left) and εR (right) directions with
one year data, assuming the other parameter to be zero and for a 5% flux uncertainty.
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(a) χ2 contour with one year exposure.
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Figure 6.18: ∆χ2 contours at 1,2 and 3σ (2 d.o.f.) in the (εL,εR) plane, after one year of
exposure (upper panel) and two year exposure (lower panel). The systematic uncertainty is
assumed to be 0, 5%, 30% over the flux from left column to right column respectively.



Chapter 7

Constraining Neutrino Non-standard
Interaction with Long Baseline
Oscillation Experiments

In this chapter, we study the neutrino matter effect in the presence of non-zero εµτ NSI. In
particular, we parametrize the Hamiltonian with a matter potential in the same form as the
vacuum Hamiltonian, by changing of the vacuum parameters into running parameters that
are functions of the matter parameter a. In this approach, we get a better understanding of
the effect of the NSI, and the degeneracy with the standard oscillation parameters.

7.1 Introduction

In this chapter, we perform an analytical investigation of matter effect on neutrino oscillation
in the presence of non-standard interactions (NSI’s) of the form

LNC−NSI = −
∑
αβf

2
√

2GF ε
fC
αβ

(
ναγ

µPLνβ
)(
fγµPCf

)
, (7.1)

where the subscripts α, β = e, µ, τ label the neutrino flavor, f = e, u, d indicates the matter
fermions, C = L,R denotes the chirality of the ff current, and εfCαβ are dimensionless
quantities which parametrize the strengths of the interactions relative to the Fermi constant
GF . Hermiticity of the interaction demands

εfCβα = (εfCαβ )∗ . (7.2)

For neutrino propagation through matter, the relevant combinations are

εαβ ≡
∑

f=e,u,d

εfαβ
Nf

Ne

≡
∑

f=e,u,d

(
εfLαβ + εfRαβ

) Nf

Ne

, (7.3)
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where Nf denotes the density of fermion f . These combinations enter into the effective
Hamiltonian governing the propagation of neutrinos through matter as

H =
1

2E

U
m2

1 0 0
0 m2

2 0
0 0 m2

3

U † + a

1 + εee εeµ εeτ
ε∗eµ εµµ εµτ
ε∗eτ ε∗µτ εττ

 , (7.4)

where U is the vacuum Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [429–431], a =
2
√

2GFNeE is the matter-effect parameter, Ne is the electron density, and E is the neutrino
energy. In the Earth, we assume Nn ≈ Np = Ne, in which case Nu ≈ Nd ≈ 3Ne. Therefore,

εαβ = ε⊕αβ ≈ εeαβ + 3 εuαβ + 3 εdαβ , (7.5)

and1

a = 2
√

2GFNeE = 7.63× 10−5(eV2)

(
ρ

g/cm3

)(
E

GeV

)
. (7.6)

In Ref. [432], the off-diagonal terms of the above matter-effect matrix are set to zero, and
the effect of lepton-flavor diagonal NSI’s is studied, i.e. all matrix elements of Eq. (7.4)
are set to zero except for εee, εµµ, and εττ . In this chapter, we look at the effect of flavor
off-diagonal NSI’s, in particular, the case in which only εµτ is allowed to deviate from zero.
The cases of non-zero εeµ and εeτ will be discussed in a separate paper [399]. We adopt
the approach in which the matter effect is absorbed into the “running” of the effective
oscillation parameters (mass-squared differences, mixing angles, and CP violating phase)
with the parameter a = 2

√
2GFNeE [432–438]. The approximate analytical expressions for

the a-dependent effective oscillation parameters are derived using the Jacobi method [439],
as demonstrated in Refs. [432, 437, 438]. The oscillation probabilities in matter can then
be obtained by simply replacing the vacuum-oscillation parameters in the expressions for
the corresponding probabilities with their respective in-matter counterparts. The resulting
expressions simplify considerably in certain ranges of a as the result of the “running” of the
oscillation parameters, facilitating the analysis of NSI effects.

This chapter is organized as follows. In section 7.2, we review the current experimental
bounds on εµτ and point out that the phase of εµτ has heretofore not been the focus of
much attention. The theoretical expectation on the possible size of εµτ is also discussed.
In section 7.3, we present the derivation of our approximate expressions using the Jacobi
method and then compare the resulting approximation to the oscillation probabilities for
constant density matter with numerical calculations, and the approximation of Asano and
Minakata [5]. The approximation for the anti-neutrino case is presented in section 7.4. We
verify our approximation formula in section 7.5. We conclude in section 7.6 with a summary
and outlook for future study.

1This formula for a here assumes Ne = ρ/2mN where mN is the average nucleon mass.
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7.2 Current Experimental Bound and Theoretical Ex-

pectation

7.2.1 Experimental Bound

Bounds on the parameters εfCµτ (f = e, u, d, C = L,R) have been placed by a variety of ex-
periments as analyzed and reviewed in Refs. [440–444]. The data used include those on νµe
scattering from CHARM II [445, 446], νµq scattering from NuTeV [447–449], e+e− → νν̄γ
from the LEP experiments ALEPH [450–452], L3 [453–455] OPAL [456–459], and DELPHI
[460], and neutrino oscillation data from Super-Kamiokande [461], MACRO [462], Kam-
LAND [463], SNO [464], MINOS [465], and IceCube DeepCore [466, 467].

Ref. [442] combines the bounds on εfCµτ from various analyses to derive the 90% C.L. bound
of

|εµτ | < 0.33 . (7.7)

Refs. [468–470], in turn, place bounds on εµτ directly by looking at the matter effect on
neutrino oscillation. In Ref. [468], a 3σ bound of

− 0.03 ≤ εdµτ ≤ 0.02 , (7.8)

is obtained from the atmospheric neutrino data assuming that only the NSI with the d-quarks
in Earth matter exist. This result can be reinterpreted as the 90% C.L. bound of

− 0.05 ≤ εµτ ≤ 0.03 . (7.9)

In that analysis, εµτ was assumed to be real and no phase seems to have been considered.
The analysis of Ref. [469] allows εµτ to be complex but marginalizes over its phase to obtain
the 90% C.L. bound of

|εµτ | ≤ 0.035 . (7.10)

Ref. [470] uses the high energy neutrino data (E > 20 GeV) from IceCube DeepCore to place
the 90% C.L.

|εµτ | ≤ 0.006 . (7.11)

Bounds direct from experimental collaborations include that from Super-Kamiokande [461]
which reports

|εµτ | ≤ 0.011 , (7.12)

and MINOS [465] which reports

− 0.20 < εµτ < 0.07 . (7.13)

While these results suggest a 90% C.L. upper bound on |εµτ | of O(0.01), we will show later
that this bound could be highly sensitive to the phase of εµτ . Since all the above analyses
have either assumed εµτ to be real or marginalized the bound over its phase, the actual
bound on |εµτ | for particular choices of phase could be much larger. With this caveat in
mind, we allow |εµτ | to be as large as O(0.1) in the following.
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7.2.2 Theoretical Considerations

Another caveat one should keep in mind is that, if one attempts to generate the εµτ NSI
from an SU(2)L × U(1)Y gauge invariant interaction, stringent bounds will be introduced
from existing data involving the charged-leptons. For instance, if the interaction

L = −2
√

2GF ε
eL
µτ

(
νµγ

µPLντ
)(
eγµPLe

)
(7.14)

arose as part of the interaction(
Lµγ

µLτ
)(
LeγµLe

)
=

[(
νµLγ

µντL
)(
νeLγµνeL

)
+
(
νµLγ

µντL
)(
eLγµeL

)
+
(
µLγµτL

)(
νeLγ

µνeL
)

+
(
µLγ

µτL
)(
eLγµeL

)]
, (7.15)

where

Lα =

[
ναL
`αL

]
, `e = e , `µ = µ , `τ = τ , (7.16)

then the strength of this interaction would be constrained by the bounds on the four-charged-
lepton processes τ → µee. According to Ref. [444], the current 90% C.L. bound is |εeLµτ | <
9.9× 10−5.

Alternatively, the same interaction could also arise from an interaction of the form [75, 471](
Lµiσ2L

c
e

)(
Lcτ iσ2Le

)
=

1

2

(
νµγ

µPLντ
)(
eγµPLe

)
− 1

2

(
νeγ

µPLντ
)(
µγµPLe

)
−1

2

(
νµγ

µPLνe
)(
eγµPLτ

)
+

1

2

(
νeγ

µPLνe
)(
µγµPLτ

)
. (7.17)

The three extra terms lead, respectively, to the processes µ → eνeντ , τ → eνeνµ, and
τ → µνeνe, which add incoherently to the SM lepton-flavor conserving processes µ→ eνeνµ,
τ → eνeντ , and τ → µνµντ . The current 90% C.L. bound from µ and τ decay is |εeLµτ | <
1.9× 10−3 [471]. Note also that the extra interactions in Eq. (7.17) will give rise to NSI’s at
the source and detector.

Thus, while the actual bound on |εeLµτ | will depend strongly on the underlying interaction, the
NSI is generically more stringently bound by orders of magnitude compared to current direct
experimental bounds. So we should be mindful of the possibility that |εeLµτ |, and consequently
|εµτ |, is actually of order 10−3 or smaller.

7.3 Effective Mixing Angles and Effective Mass-Squared

Differences – Neutrino Case

We now derive our approximate expressions for the “running” effective oscillation param-
eters in the presence of εµτ utilizing the Jacobi method [439]. The process follows closely
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Parameter Best-fit Value & 1σ Range Benchmark Value

δm2
21 (7.50± 0.185)× 10−5 eV2 7.50× 10−5 eV2

δm2
31 (2.47+0.069

−0.067)× 10−3 eV2 2.47× 10−3 eV2

sin2 θ23 0.41+0.037
−0.025 ⊕ 0.59+0.021

−0.022 0.41
θ23/

◦ 40.0+2.1
−1.5 ⊕ 50.4+1.2

−1.3

θ23/rad 0.698+0.037
−0.026 ⊕ 0.880+0.021

−0.023

sin2 θ12 0.30± 0.013 0.30
θ12/

◦ 33.3± 0.8
θ12/rad 0.580± 0.014
sin2 θ13 0.023± 0.0023 0.023
θ13/

◦ 8.6+0.44
−0.46

θ13/rad 0.15± 0.01
δ/◦ 300+66

−138 0
δ/π 1.67+0.37

−0.77

Table 7.1: Second column shows the best-fit values and 1σ uncertainties on the oscillation
parameters, taken from Ref. [9]. We use the values listed in the third column as benchmark
values for which we calculate our oscillation probabilities in this work.

that already presented in Refs. [432, 437, 438], so the reader is requested to refer to those
publications for further details.

When presenting graphs showing how our effective parameters run with a, we find it conve-
nient to introduce the log-scale variable

β = − logε
a

|δm2
31|

, (7.18)

where

ε =

√
δm2

21

|δm2
31|
≈ 0.17 . (7.19)

Note that we are using a different ε here to distinguish from the NSI’s. β = −2 corresponds
to a = δm2

21, while β = 0 corresponds to a = |δm2
31|. Instead of plotting the dependence

on a, we will plot the dependence on β. We also use ε as an order parameter for the Jacobi
method. When all the rotation angles necessary to diagonalize a matrix further is O(ε3)
or smaller, we consider the matrix approximately diagonal. For the vacuum values of the
oscillation parameters that are necessary as input, we use the numbers listed in the third
column of Table 7.1 as benchmark values. Note that at these benchmark values θ13 = O(ε),
and cos(2θ23) = O(ε). We will also assume |εµτ | = O(ε2) = O(0.03) in the derivation of
our formulae, but allow it to be as large as 0.1 in our plots with the caveat mentioned in
section 2 in mind, and also to magnify its effects to make them visible. We allow the phase
of εµτ to be arbitrary.
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7.3.1 Setup of the Problem

Let us write
εµτ = |εµτ | eiω ≡ ε eiω . (7.20)

In the presence of εµτ , the effective Hamiltonian (times 2E) for neutrino propagation in
Earth matter in the flavor-eigenbasis is given by

Hµτ = Ũ

λ1 0 0
0 λ2 0
0 0 λ3

 Ũ † = U

0 0 0
0 δm2

21 0
0 0 δm2

31

U † + a

1 0 0
0 0 0
0 0 0


︸ ︷︷ ︸
≡Ma︸ ︷︷ ︸

≡ Ha

+aε

0 0 0
0 0 eiω

0 e−iω 0


︸ ︷︷ ︸
≡Mµτ

.

(7.21)
The problem is to find the diagonalization matrix Ũ , and the eigenvalues λi (i = 1, 2, 3).

In the previous paper dealing with flavor-diagonal NSI’s [432], the Standard Model part Ha

is diagonalized with two Jacobi rotations first, and then the NSI part is tacked on, which is
diagonalized by a third Jacobi rotation. While it is possible to take a similar approach here,
we elect to perform a slightly more sophisticated procedure in which Mµτ is separated into
two parts, one of which is diagonalized together with Ha, and the other which is tacked on
later to be diagonalized by further rotations. This separation of Mµτ into two parts is as
follows:

Mµτ = cω

0 0 0
0 0 1
0 1 0

+ sω

0 0 0
0 0 i
0 −i 0


= cω sin(2θ23)

0 0 0
0 − cos(2θ23) sin(2θ23)
0 sin(2θ23) cos(2θ23)


︸ ︷︷ ︸

≡M c
µτ

+ cω cos(2θ23)

0 0 0
0 sin(2θ23) cos(2θ23)
0 cos(2θ23) − sin(2θ23)

+ sω

0 0 0
0 0 i
0 −i 0


︸ ︷︷ ︸

≡M s
µτ

, (7.22)

where cω = cosω and sω = sinω. In the following, we diagonalize Ha+aεM c
µτ first, and then

deal with M s
µτ later. Note that when θ23 = π/4, we have sin(2θ23) = 1 and cos(2θ23) = 0.

Therefore, in that limit

M c
µτ = cω

0 0 0
0 0 1
0 1 0

 , M s
µτ = sω

0 0 0
0 0 i
0 −i 0

 . (7.23)
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In particular, if ω = 0 or π, we have

M c
µτ = ±

0 0 0
0 0 1
0 1 0

 , M s
µτ = 0 . (7.24)

7.3.2 Diagonalization of the Effective Hamiltonian

Review of SM case

We begin with a brief recap of the ε = 0 case discussed in Refs. [437, 438]. Define

V ≡

 cϕ sϕ 0
−sϕ cϕ 0

0 0 1

 , W ≡

 1 0 0
0 cφ sφ
0 −sφ cφ

 , Q3 ≡

 1 0 0
0 1 0
0 0 eiδ

 , (7.25)

where

cϕ = cosϕ , sϕ = sinϕ , tan 2ϕ ≡ ac2
13 sin(2θ12)

δm2
21 − ac2

13 cos(2θ12)
,
(

0 ≤ ϕ ≤ π

2
− θ12

)
,

cφ = cosφ , sφ = sinφ , tan 2φ ≡ a sin(2θ13)

(δm2
31 − s2

12δm
2
21)− a cos(2θ13)

. (7.26)

As demonstrated in Ref. [437, 438],

H ′′′a = W †V †Q†3U
†HaUQ3VW

=

 λ′− −ac′12c13s13sφ ac′12c13s13cφ
−ac′12c13s13sφ λ′′∓ 0
ac′12c13s13cφ 0 λ′′±

 , (7.27)

where the upper (lower) sign corresponds to normal (inverted) hierarchy, with

λ′± ≡
(ac2

13 + δm2
21)±

√
(ac2

13 − δm2
21)2 + 4ac2

13s
2
12δm

2
21

2
,

λ′′± ≡
[λ′+ + (δm2

31 + as2
13)]±

√
[λ′+ − (δm2

31 + as2
13)]2 + 4(as′12c13s13)2

2
, (7.28)

and s′12 = sin θ′12, c′12 = cos θ′12, θ′12 = θ12 +ϕ. The off-diagonal elements of H ′′′a in Eq. (7.27)
can be shown to be |δm2

31|O(ε3), which is negligibly small and H ′′′a can be considered ap-
proximately diagonal.

The corresponding effective mixing matrix is then Ũ = UQ3VW and can be approximated by
absorbing the extra rotations into the “running” parameters θ′12 = θ12 +ϕ and θ′13 = θ13 +φ:

Ũ ≈ R23(θ23, 0)Q3R13(θ′13, 0)R12(θ′12, 0) = R23(θ23, 0)R13(θ′13, δ)R12(θ′12, 0)Q3 , (7.29)
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where θ′12 and θ′13 can be calculated directly via

tan 2θ′12 =
δm2

21 sin 2θ12

δm2
21 cos 2θ12 − ac2

13

,
(
θ12 ≤ θ′12 ≤

π

2

)
,

tan 2θ′13 =
(δm2

31 − δm2
21s

2
12) sin 2θ13

(δm2
31 − δm2

21s
2
12) cos 2θ13 − a

. (7.30)

In Eq. (7.29), the expression Rij(θ, δ) denotes an ij-rotation matrix such that its ij submatrix
is of the form [

cos θ sin θ e−iδ

− sin θ eiδ cos θ

]
. (7.31)

Note the signs of the off-diagonal sines and those of the phases in the exponents.

Change to the Mass Eigenbasis in Vacuum

Let us now look at the ε 6= 0 case. We begin by partially diagonalizing Hµτ = Ha+aε(M c
µτ +

M s
µτ ) by going from the flavor-eigenbasis to the vacuum-mass-eigenbasis:

H ′µτ = Q†3U
†HµτUQ3

=

 0 0 0
0 δm2

21 0
0 0 δm2

31

+ aQ†3U
†

 1 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

Ma

UQ3

︸ ︷︷ ︸
≡M ′

a︸ ︷︷ ︸
≡ H ′a

+aεQ†3U
†

 0 0 0
0 0 eiω

0 e−iω 0


︸ ︷︷ ︸
M c

µτ +M s
µτ

UQ3 .

(7.32)

Note that the matrix Q3 introduced in Eq. (7.25) allows us to write

UQ3 = R23(θ23, 0)R13(θ13, δ)R12(θ12, 0)Q3

= R23(θ23, 0)Q3R13(θ13, 0)R12(θ12, 0) . (7.33)

Given that the lower-right 2×2 block of Ma is zero, it is straightforward to see that M ′
a only

depends on θ12 and θ13, and is given by

M ′
a = Q†3U

†MaUQ3 =

 c2
12c

2
13 s12c12c

2
13 c12s13c13

s12c12c
2
13 s2

12c
2
13 s12s13c13

c12s13c13 s12s13c13 s2
13

 . (7.34)

Looking at how M c
µτ and M s

µτ transform, after the first 23-rotation we find

R†23(θ23, 0)M c
µτR23(θ23, 0) =

0 0 0
0 −cω sin(2θ23) 0
0 0 cω sin(2θ23)

 ,
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Figure 7.1: The ω-dependence of (a) ϑω and (b) Ω.

R†23(θ23, 0)M s
µτR23(θ23, 0) =

0 0 0
0 0 cω cos(2θ23) + isω
0 cω cos(2θ23)− isω 0

 . (7.35)

We find it convenient to define2

cω sin(2θ23) = cos(2ϑω) ,
[
cω cos(2θ23) + isω

]
= eiΩ sin(2ϑω) . (7.36)

Choosing ϑω and Ω in the ranges

0 ≤ ϑω ≤
π

2
, −π < Ω ≤ π , (7.37)

we obtain

tan(2ϑω) ≡
√
c2
ω cos2(2θ23) + s2

ω

cω sin(2θ23)
, Ω ≡ arctan

[
sω

cos(2θ23)cω

]
. (7.38)

The ω-dependence of ϑω and Ω is shown in Fig. 7.1 for several values of θ23. Note that due

to our restriction Ω ∈ (−π, π], Ω has a discontinuity of 2π at ω = 0 if
π

4
< θ23 ≤

π

2
, and at

ω = ±π if 0 ≤ θ23 <
π

4
. For the θ23 =

π

4
case, Ω = +

π

2
, ϑω = +

ω

2
in the range 0 < ω <

π

2
,

Ω = −π
2

, ϑω = −ω
2

in the range −π
2
< ω < 0, while at ω = 0,±π, Ω is indeterminate.

2Our notation corresponds to those in Ref. [5] via ε̃ττ = ε cos(2ϑω), |ε̃µτ | = ε sin(2ϑω), and φ̃µτ = Ω.
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Note also that if ω = ±π
2

, that is, εµτ is purely imaginary, then cos(2ϑω) = cω sin(2θ23) = 0.

These definitions allow us to write

R†23(θ23, 0)M c
µτR23(θ23, 0) = cos(2ϑω)

0 0 0
0 −1 0
0 0 1

 ,

R†23(θ23, 0)M s
µτR23(θ23, 0) = sin(2ϑω)

0 0 0
0 0 eiΩ

0 e−iΩ 0

 . (7.39)

Next, we multiply with Q3 and its conjugate to find

Q†3R
†
23(θ23, 0)M c

µτR23(θ23, 0)Q3 = cos(2ϑω)

0 0 0
0 −1 0
0 0 1

 ,

Q†3R
†
23(θ23, 0)M s

µτR23(θ23, 0)Q3 = sin(2ϑω)

0 0 0
0 0 ei(δ+Ω)

0 e−i(δ+Ω) 0

 . (7.40)

From this, we can see that M c′
µτ = Q†3U

†M c
µτUQ3 will not have any δ dependence, while

M s′
µτ = Q†3U

†M s
µτUQ3 will only depend on the sum δ + Ω. Performing the remaining two

rotations, we obtain

M c′
µτ = Q†3U

†M c
µτUQ3

= cos(2ϑω)

 −s2
12 + c2

12s
2
13 s12c12(1 + s2

13) −c12s13c13

s12c12(1 + s2
13) −c2

12 + s2
12s

2
13 −s12s13c13

−c12s13c13 −s12s13c13 c2
13

 ,

M s′
µτ = Q†3U

†M s
µτUQ3

= sin(2ϑω)

 2s12c12s13 cos(δ + Ω) s13e
i(δ+Ω) − 2c2

12s13 cos(δ + Ω) −s12c13e
i(δ+Ω)

s13e
−i(δ+Ω) − 2c2

12s13 cos(δ + Ω) −2s12c12s13 cos(δ + Ω) c12c13e
i(δ+Ω)

−s12c13e
−i(δ+Ω) c12c13e

−i(δ+Ω) 0


= sin(2ϑω) cos(δ + Ω)

 s13 sin(2θ12) −s13 cos(2θ12) −s12c13

−s13 cos(2θ12) −s13 sin(2θ12) c12c13

−s12c13 c12c13 0


+i sin(2ϑω) sin(δ + Ω)

 0 s13 −s12c13

−s13 0 c12c13

s12c13 −c12c13 0

 .

(7.41)

So in this vacuum-mass-eigenbasis, the Hamiltonian is given by

H ′µτ = H ′a + aεM c′
µτ + aεM s′

µτ
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Figure 7.2: The β-dependence of ϕε (left) and θ′12 (right) for the ε = 0.1 case.

=

a[c2
12c

2
13 − εc(s2

12 − c2
12s

2
13)] ac12s12[c2

13 + εc(1 + s2
13)] ac12s13c13(1− εc)

ac12s12[c2
13 + εc(1 + s2

13)] δm2
21 + a[s2

12c
2
13 − εc(c2

12 − s2
12s

2
13)] as12s13c13(1− εc)

ac12s13c13(1− εc) as12s13c13(1− εc) δm2
31 + a(s2

13 + εcc
2
13)


+aεscδ+Ω

 s13 sin(2θ12) −s13 cos(2θ12) −s12c13

−s13 cos(2θ12) −s13 sin(2θ12) c12c13

−s12c13 c12c13 0

+ iaεssδ+Ω

 0 s13 −s12c13

−s13 0 c12c13

s12c13 −c12c13 0


=

M11 A B
A† M22 C
B† C† M33

 ,

(7.42)

where we have set εc ≡ ε cos(2ϑω), εs ≡ ε sin(2ϑω), and

M11 = a[c2
12c

2
13 − εc(s2

12 − c2
12s

2
13)] + aεscδ+Ωs13 sin(2θ12),

M22 = δm2
21 + a[s2

12c
2
13 − εc(c2

12 − s2
12s

2
13)]− aεscδ+Ωs13 sin(2θ12),

M33 = .δm2
31 + a(s2

13 + εcc
2
13). (7.43)

We now approximately diagonalize this matrix following the Jacobi diagonalization procedure
developed in Refs. [432, 437, 438].

First Rotation

We first perform a 12-rotation to diagonalize the 12 submatrix. The rotation matrix neces-
sary is given by

Vε ≡

 cϕε sϕε 0
−sϕε cϕε 0

0 0 1

 , (7.44)
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where cϕε = cos(ϕε), sϕε = sin(ϕε), and

tan 2ϕε =
a[{c2

13 + εc(1 + s2
13)} sin(2θ12)]

δm2
21 − a[{c2

13 + εc(1 + s2
13)} cos(2θ12)]

. (7.45)

Compared to Eq. (7.26), we can see that ϕε evolves more or less similarly to ϕ but with a
small shift in the resonance position. See Fig. 7.2(a). Using Vε we obtain

H ′′a + aεM c′′
µτ

= V †ε
(
H ′a + aεM c′

µτ

)
Vε

=

 λ′ε− 0 ac′12s13c13(1− εc)
0 λ′ε+ as′12s13c13(1− εc)

ac′12s13c13(1− εc) as′12s13c13(1− εc) δm2
31 + a(s2

13 + εcc
2
13)

 ,

(7.46)

where

λ′ε± =
{(δm2

21 − aεc) + a(c2
13 + εcs

2
13)}

2

±

√
{(δm2

21 − aεc)− a(c2
13 + εcs2

13)}2
+ 4as2

12 {c2
13 + εc(1 + s2

13)} δm2
21

2
.

(7.47)

and
s′12 = sin θ′12 , c′12 = cos θ′12 , θ′12 ≡ θ12 + ϕε . (7.48)

The angle θ′12, which is the approximate running θ12, can be calculated directly via

tan 2θ′12 =
δm2

21 sin 2θ12

δm2
21 cos 2θ12 − a[c2

13 + εc(1 + s2
13)]

. (7.49)

Compared to Ref. (7.30), the small correction due to εc will lead to a small shift in the solar
resonance energy, but the basic a-dependence will be the same. See Fig. 7.2(b).

At small a, the λ′ε± behave as

λ′ε+ = δm2
21 + a{s2

12c
2
13 − εc(c2

12 − s2
12s

2
13)}+ aO(a/δm2

21) ,
λ′ε− = a{c2

12c
2
13 − εc(s2

12 − c2
12s

2
13)}+ aO(a/δm2

21) , (7.50)

while at large a, we have

λ′ε+ = a(c2
13 + εcs

2
13) + s2

12δm
2
21 + δm2

21O(δm2
21/a) ,

λ′ε− = −aεc + c2
12δm

2
21 + δm2

21O(δm2
21/a) . (7.51)

Compared to the SM case, λ′ε− does not tend asymptotically to a constant except when

ω = ±π
2

, which would render εc zero even when ε 6= 0. This behavior is shown in Fig. 7.3.
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Figure 7.3: The β-dependence of λ′ε± for θ23 = 40◦ and ε = 0.1 with ω = 0 (dashed),

ω = ±π
2

(solid) and ω = ±π (dot-dashed) shown in (a) log-scale, and (b) normal scale. The

ω-dependence of λ′ε+ is weak and the curves for the three cases overlap.

Second Rotation

As a is increased, due to the running of θ′12 with a, the product as′12 will continue to in-
crease while ac′12 stops increasing. Therefore, the (23)-submatrix of H ′′a + aεM c′′

µτ must be
diagonalized next. This requires the rotation matrix

Wε =

1 0 0
0 cφε sφε
0 −sφε cφε

 , (7.52)

where sφε = sinφε, cφε = cosφε, and

tan 2φε =
as′12(1− εc) sin(2θ13)

δm2
31 + a(s2

13 + εcc2
13)− λ′ε+

≈ a(1− εc) sin(2θ13)

(δm2
31 − s2

12δm
2
21)− a(1− εc) cos(2θ13)

. (7.53)

Again, compared to Eq. (7.26), we can see that φε evolves more or less similarly to φ but
with a small shift in the resonance position. See Fig. 7.4. After the second rotation we have:

H ′′′a + aεM c′′′
µτ

= W †
ε

(
H ′′a + aεM c′′

µτ

)
Wε

=

 λ′ε− −ac′12s13c13sφε(1− εc) ac′12s13c13cφε(1− εc)
−ac′12s13c13sφε(1− εc) λ′′ε∓ 0
ac′12s13c13cφε(1− εc) 0 λ′′ε±

 ,

(7.54)
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Figure 7.4: The β-dependence of φε (left) and θ′13 (right) for ε = 0.1 both normal (NH) and
inverted (IH) hierarchies. The dependence of φε and θ′13 on ω for the inverted hierarchy case
is weak and the three curves overlap.

where

λ′′ε± =
λ′ε+ +

{
δm2

31 + a(s2
13 + εcc

2
13)
}

2

±

√[
λ′ε+ −

{
δm2

31 + a(s2
13 + εcc2

13)
}]2

+ 4
{
as′12s13c13(1− εc)

}2

2
,

(7.55)

and the upper/lower signs correspond to the normal/inverted hierarchies.

For both hierarchies, the asymptotic forms are

λ′′ε+ = a+ (s2
13δm

2
31 + s2

12c
2
13δm

2
21) + δm2

31O(δm2
31/a),

λ′′ε− = aεc + (c2
13δm

2
31 + s2

12s
2
13δm

2
21) + δm2

31O(δm2
31/a) , (7.56)

with δm2
31 taking on the appropriate sign in each case. Note that since λ′ε− ≈ −aεc +

c2
12δm

2
21, for the normal hierarchy λ′ε− and λ′′ε− repel each other with increasing a when

εc = ε cos(2ϑω) = εcω sin(2θ23) > 0, but they will attract each other with increasing a when
εc = ε cos(2ϑω) = εcω sin(2θ23) < 0. For the inverted hierarchy, it is the other way around.
This is shown in Fig. 7.5.

Inclusion of M s
µτ part

H ′′′a + aεM c′′′
µτ is approximately diagonalized since the off-diagonal elements are suppressed

by ac′12. At this point, we include M s′
µτ . After the first rotation, M s′

µτ becomes

εM s′′
µτ = V †ε

(
εM s′

µτ

)
Vε
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Figure 7.5: The β-dependence of λ′′ε± and λ′ε− for the (a) normal and (b) inverted hierarchy

cases with θ23 = 40◦ or 50◦ and ε = 0.1. Shown are the ω = 0 (dashed), ω = ±π
2

(solid)

and ω = ±π cases. The ω-dependence of λ′′ε+ is weak and the curves for the three cases are
mostly overlapping.

= εs

 2s′12c
′
12s13 cos(δ + Ω) s13e

i(δ+Ω) − 2c′212s13 cos(δ + Ω) −s′12c13e
i(δ+Ω)

s13e
−i(δ+Ω) − 2c′212s13 cos(δ + Ω) −2s′12c

′
12s13 cos(δ + Ω) c′12c13e

i(δ+Ω)

−s′12c13e
−i(δ+Ω) c′12c13e

−i(δ+Ω) 0


s′12≈1
−−−→ εs

 0 s13e
i(δ+Ω) −c13e

i(δ+Ω)

s13e
−i(δ+Ω) 0 0

−c13e
−i(δ+Ω) 0 0

 ,

(7.57)

where we have set εs = ε sin(2ϑω). After the second rotation, we have

εM s′′′
µτ = W †

ε

(
εM s′′

µτ

)
Wε

= εs

 2s′12c
′
12s13 cos(δ + Ω)

(s13cφε + c13sφεs
′
12)e−i(δ+Ω) − 2c′212s13cφε cos(δ + Ω)

−(c13cφεs
′
12 − s13sφε)e

−i(δ+Ω) − 2c′212s13sφε cos(δ + Ω)

(s13cφε + c13sφεs
′
12)ei(δ+Ω) − 2c′212s13cφε cos(δ + Ω)

−2c′12cφε(s13cφεs
′
12 + c13sφε) cos(δ + Ω)

c′12[c13e
−i(δ+Ω) − 2sφε(s13cφεs

′
12 + c13sφε)]

−(c13cφεs
′
12 − s13sφε)e

i(δ+Ω) − 2c′212s13sφε cos(δ + Ω)
c′12[c13e

i(δ+Ω) − 2sφε(s13cφεs
′
12 + c13sφε)]

2c′12sφε(c13cφε − s13sφεs
′
12) cos(δ + Ω)


≈ εs

 0 s′13e
i(δ+Ω) −c′13e

i(δ+Ω)

s′13e
−i(δ+Ω) 0 0

−c′13e
−i(δ+Ω) 0 0

 , (7.58)
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where
s′13 = sin θ′13 , c′13 = cos θ′13 , θ′13 ≡ θ13 + φε . (7.59)

The angle θ′13, which is the approximate running θ13, can be calculated directly via

tan 2θ′13 =
(δm2

31 − s2
12δm

2
21) sin(2θ13)

(δm2
31 − s2

12δm
2
21) cos(2θ13)− a(1− εc)

. (7.60)

Third Rotation

H ′′′a + aεM c′′′
µτ is approximately diagonalized since the off-diagonal elements are suppressed

by ac′12. At this point, we include M s′
µτ . After the first rotation, M s′

µτ becomes

εM s′′
µτ = V †ε

(
εM s′

µτ

)
Vε

= εs

 2s′12c
′
12s13 cos(δ + Ω) s′13e

i(δ+Ω) − 2c′212s13 cos(δ + Ω) −s′12c13e
i(δ+Ω)

s13e
−i(δ+Ω) − 2c′212s13 cos(δ + Ω) −2s′12c

′
12s13 cos(δ + Ω) c′12c13e

i(δ+Ω)

−s′12c13e
−i(δ+Ω) c′12c13e

−i(δ+Ω) 0


s′12≈1
−−−→ εs

 0 s13e
i(δ+Ω) −c13e

i(δ+Ω)

s13e
−i(δ+Ω) 0 0

−c13e
−i(δ+Ω) 0 0

 , (7.61)

where we have set εs = ε sin(2ϑω). After the second rotation, we have

εM s′′′
µτ = W †

ε

(
εM s′′

µτ

)
Wε

≈ εs

 0 s′13e
i(δ+Ω) −c′13e

i(δ+Ω)

s′13e
−i(δ+Ω) 0 0

−c′13e
−i(δ+Ω) 0 0

 , (7.62)

where
s′13 = sin θ′13 , c′13 = cos θ′13 , θ′13 ≡ θ13 + φε . (7.63)

The angle θ′13, which is the approximate running θ13, can be calculated directly via

tan 2θ′13 =
(δm2

31 − s2
12δm

2
21) sin(2θ13)

(δm2
31 − s2

12δm
2
21) cos(2θ13)− a(1− εc)

. (7.64)

The running of θ′13 depends on the mass hierarchy. For normal hierarchy, θ′13 runs to
π

2
as a

is increased, so s′13 → 1, c′13 → 0. For inverted hierarchy, θ′13 runs to 0 as a is increased, so
we have s′13 → 0, c′13 → 1. Therefore, for the normal hierarchy, we have

εM s′′′
µτ

a�δm2
31−−−−−→ εs

 0 ei(δ+Ω) 0
e−i(δ+Ω) 0 0

0 0 0

 , (7.65)
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Figure 7.6: The β-dependence of χε for ε = 0.1 and a variety of ω values for the cases (a)
θ23 = 40◦, 50◦ and (b) θ23 = 45◦ with δm2

31 > 0.

while for the inverted hierarchy we have

εM s′′′
µτ

a�|δm2
31|−−−−−→ εs

 0 0 −ei(δ+Ω)

0 0 0
−e−i(δ+Ω) 0 0

 . (7.66)

So, for the normal hierarchy case, we need to perform a 12-rotation as the third rotation,
and, for the inverted hierarchy case we need to perform a 13-rotation. In either case, λ′ε−
and λ′′ε− get mixed.

• δm2
31 > 0 Case

For the normal hierarchy, the full matrix is

H ′′′µτ = H ′′′a + aεM c′′′
µτ + aεM s′′′

µτ

=

 λ′ε− aεss
′
13e

i(δ+Ω) 0
aεss

′
13e
−i(δ+Ω) λ′′ε− 0

0 0 λ′′ε+

 , (7.67)

where we have dropped terms of order ac′12 and aεc′13. The rotation matrix necessary
to diagonalize this is

Xε =

 cχε sχεe
i(δ+Ω) 0

−sχεe−i(δ+Ω) cχε 0
0 0 1

 , (7.68)

where

tan 2χε =
2aεss

′
13

λ′′ε− − λ′ε−
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Figure 7.7: The β-dependence of λ′′′Xε± for ε = 0.1 and a variety of ω values for the two case
(a) θ23 = 40◦, 50◦ and (b) θ23 = 45◦ with δm2

31 > 0.

≈ 2aε sin(2ϑω)

[c2
13δm

2
31 − (c2

12 − s2
12s

2
13)δm2

21] + 2aε cos(2ϑω)
. (7.69)

Asymptotically, we have

χε
aε�|δm2

31|−−−−−−→ ϑω , (7.70)

for each value of ω. This behavior is shown in Fig. 7.6 for the θ23 = 40◦, 45◦, and 50◦

cases.

After the third rotation,

H ′′′′µτ = X†εH
′′′
µτXε

=

λ′′′Xε− 0 0
0 λ′′′Xε+ 0
0 0 λ′′ε+

 , (7.71)

where

λ′′′Xε± =

(
λ′′ε− + λ′ε−

)
±
√

(λ′′ε− − λ′ε−)2 + 4a2ε2
ss
′2
13

2
. (7.72)

Thus, after three rotations, our matrix is approximately diagonal. Note that if θ23 =
π

4
and ω = 0 or ±π, then εs = ε sin(2ϑω) = 0, and we will have

λ′′′Xε+ = max(λ′′ε−, λ
′
ε−) ,

λ′′′Xε− = min(λ′′ε−, λ
′
ε−) . (7.73)

Asymptotically, we have

λ′′′Xε±
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= ±εa+
1

2

[
(1± cos 2ϑω)(δm2

31c
2
13 + δm2

21s
2
12s

2
13) + (1∓ cos 2ϑω)δm2

21c
2
12

]
+ · · ·

= ±εa+

{
cos2 ϑω
sin2 ϑω

}
(δm2

31c
2
13 + δm2

21s
2
12s

2
13) +

{
sin2 ϑω
cos2 ϑω

}
δm2

21c
2
12 + · · ·

(7.74)

See Fig. 7.7.

• δm2
31 < 0 Case

For the inverted hierarchy, the full matrix is

H ′′′µτ = H ′′′a + aεM c′′′
µτ + aεM s′′′

µτ

=

 λ′ε− 0 −aεsc′13e
i(δ+Ω)

0 λ′′ε+ 0
−aεsc′13e

−i(δ+Ω) 0 λ′′ε−

 , (7.75)

where we have dropped terms of order ac′12 and aεs′13. The rotation matrix necessary
to diagonalize this is

Yε =

 cψε 0 −sψεei(δ+Ω)

0 1 0
sψεe

−i(δ+Ω) 0 cψε

 , (7.76)

where

tan 2ψε =
2aεsc

′
13

λ′′ε− − λ′ε−
≈ − 2aε sin(2ϑω)

[c2
13|δm2

31|+ (c2
12 − s2

12s
2
13)δm2

21]− 2aε cos(2ϑω)
. (7.77)

Comparing the approximate expression of tan 2ψε given in the second line of this equa-
tion to the second line of Eq. (7.69), we see that they differ in only the sign of δm2

31.
Therefore, the same approximate expression can be used to define both χε for the
δm2

31 > 0 case and ψε for the δm2
31 < 0 case. Asymptotically, we have

ψε
aε�|δm2

31|−−−−−−→ ϑω −
π

2
, (7.78)

for each value of ω. This behavior is shown in Fig. 7.8 for the θ23 = 40◦, 45◦, and 50◦

cases.

After the third rotation,

H ′′′′µτ = Y †ε H
′′′
µτYε

=

λ′′′Yε+ 0 0
0 λ′′ε+ 0
0 0 λ′′′Yε−

 , (7.79)
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Figure 7.8: The β-dependence of ψε for ε = 0.1 and a variety of ω values for the cases (a)
θ23 = 40◦, 50◦ and (b) θ23 = 45◦ with δm2

31 < 0.

where

λ′′′Yε± =

(
λ′′ε− + λ′ε−

)
±
√

(λ′′ε− − λ′ε−)2 + 4a2ε2
sc
′2
13

2
. (7.80)

Thus, after three rotations, our matrix is approximately diagonal. Note that if θ23 =
π

4
and ω = 0 or ±π, then εc = ε cos(2ϑω) = 0, and we will have

λ′′′Yε+ = min(λ′′ε−, λ
′
ε−) ,

λ′′′Yε− = max(λ′′ε−, λ
′
ε−) . (7.81)

Note that the min and max are inverted from the normal hierarchy case. Asymptoti-
cally, we have

λ′′′Yε±

= ±εa+
1

2

[
(1± cos 2ϑω)(δm2

31c
2
13 + δm2

21s
2
12s

2
13) + (1∓ cos 2ϑω)δm2

21c
2
12

]
+ · · ·

= ±εa+

{
cos2 ϑω
sin2 ϑω

}
(δm2

31c
2
13 + δm2

21s
2
12s

2
13) +

{
sin2 ϑω
cos2 ϑω

}
δm2

21c
2
12 + · · ·

(7.82)

These expressions are the same as Eq. (7.74), except δm2
31 is negative here. This

behavior is shown in Fig. 7.9.

Absorption into Effective Mixing Angles

• δm2
31 > 0 Case
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Figure 7.9: The β-dependence of λ′′′Yε± for ε = 0.1 and a variety of ω values for the two case
(a) θ23 = 40◦, 50◦ and (b) θ23 = 45◦ with δm2

31 < 0.

As we have seen above, the effective mixing matrix is well approximated by the product
of matrices given by

Ũ = UQ3VεWεXε

= R23(θ23, 0)Q3R13(θ13, 0)R12(θ12, 0)︸ ︷︷ ︸
UQ3

R12(ϕε, 0)︸ ︷︷ ︸
Vε

R23(φε, 0)︸ ︷︷ ︸
Wε

R12(χε,−δ − Ω)︸ ︷︷ ︸
Xε

≈ R23(θ23, 0)Q3R13(θ′13, 0)R12(θ′12, 0)R12(χε,−δ − Ω)
≈ R23(θ23, 0)Q3R23(χε,−δ − Ω)R13(θ′13, 0)R12(θ′12, 0) , (7.83)

where, in going from the second to the third line, we use the argument presented in
Refs. [437, 438], and, in going from the third to the fourth, we follow the argument in
section 3.3 of Ref. [432].

Let us look at the 23 submatrix of the product R23(θ23, 0)Q3R23(χε,−δ−Ω). We have[
c23 s23

−s23 c23

] [
1 0
0 eiδ

] [
cχε sχεe

i(δ+Ω)

−sχεe−i(δ+Ω) cχε

]
=

[
c23 s23

−s23 c23

] [
1 0
0 e−iΩ

] [
cχε sχε
−sχε cχε

] [
1 0
0 ei(δ+Ω)

]
. (7.84)

The product of the three matrices on the left can be rewritten as[
c23 s23

−s23 c23

] [
1 0
0 e−iΩ

] [
cχε sχε
−sχε cχε

]
=

[
eiα1 0
0 eiα2

] [
c′23 s′23

−s′23 c′23

] [
1 0
0 eiγ

]
, (7.85)

where

c′23 = cos θ′23 =
√
c2

23c
2
χε − 2c23s23cχεsχε cos Ω + s2

23s
2
χε
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=
√

cos2(Ω/2) cos2(θ23 + χε) + sin2(Ω/2) cos2(θ23 − χε) ,

α1 = arctan

[
s23sχε sin Ω

c23cχε − s23sχε cos Ω

]
,

α2 = arctan

[
− c23sχε sin Ω

s23cχε + c23sχε cos Ω

]
,

γ = arctan

[
− sin(2θ23) sin Ω

sin(2χε) cos(2θ23) + cos(2χε) sin(2θ23) cos Ω

]
= arctan

[
− sω tan(2θ23)

cos 2(χε − ϑω)

]
. (7.86)

The branches of the arctangents must be chosen judiciously for this to work. Using
this result, we can write[

c23 s23

−s23 c23

] [
1 0
0 e−iΩ

] [
cχε sχε
−sχε cχε

] [
1 0
0 ei(δ+Ω)

]
=

[
eiα1 0
0 eiα2

] [
c′23 s′23

−s′23 c′23

] [
1 0
0 eiδ

′

]
, (7.87)

where
δ′ = δ + Ω + γ . (7.88)

The sum Ω + γ can also be calculated directly via the relation

tan(Ω + γ) =
sΩcΩ [ cos 2(ϑω − χε)− cos 2ϑω ]

c2
Ω cos 2(ϑω − χε) + s2

Ω cos 2ϑω
. (7.89)

At aε� δm2
31 we know that χε → ϑω, cf. Eq. (7.70), so

cos 2(χε − ϑω)
aε�δm2

31−−−−−→ 1 , (7.90)

and

δ′
aε�δm2

31−−−−−→ δ + Ω + arctan
[
−sω tan(2θ23)

]
= δ + arctan

[
s2
ϑω

sin 2Ω

c2
ϑω

+ s2
ϑω

cos 2Ω

]
. (7.91)

Let us look at a few specific cases.

A. θ23 =
π

4
: In this case, we have

ϑω = +
ω

2
, Ω = +

π

2
for 0 < ω <

π

2
,

ϑω = −ω
2
, Ω = −π

2
for −π

2
< ω < 0 ,

(7.92)
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Figure 7.10: The β-dependence of θ′23 for ε = 0.1 and a variety of ω values for the two cases
(a) θ23 = 40◦ and (b) θ23 = 50◦ with δm2

31 > 0.

and this leads to [
c23 s23

−s23 c23

] [
1 0
0 e−iΩ

] [
cχε sχε
−sχε cχε

]
=

1√
2

[
1 1
−1 1

] [
1 0
0 ∓i

] [
cχε sχε
−sχε cχε

]
=

1√
2

[
e±iχε 0

0 e∓iχε

] [
1 1
−1 1

] [
1 0
0 ∓i

]
=

[
e±iχε 0

0 e∓iχε

] [
c23 s23

−s23 c23

] [
1 0
0 e−iΩ

]
. (7.93)

Therefore, α1 = ±χε, α2 = ∓χε, γ = −Ω, and

θ′23 = θ23 , δ′ = δ , (7.94)

that is, when θ23 =
π

4
, even though χε runs with a, neither θ23 nor δ will run.

B. θ23 <
π

4
: Let us consider a few specific values for ω :

(a) If ω = 0, then Ω = 0, ϑω =
π

4
− θ23, and

cos θ′23 = c23cχε − s23sχε = cos(θ23 + χε) , δ′ = δ . (7.95)

As a is increased χε increased monotonically from 0 to ϑω =
π

4
− θ23. There-

fore, θ′23 runs up from θ23 to
π

4
. Looking at tan γ, it is zero since sω = 0 at

ω = 0, and consequently γ = Ω = 0 and δ′ does not run.
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Figure 7.11: The β-dependence of δ′ − δ for ε = 0.1 and a variety of ω values for the two
cases θ23 = 40◦ (left) and θ23 = 50◦ (right). with δm2

31 > 0. The solid lines indicate positive
ω and the dashed lines indicate negative ω.

(b) If ω = ±π/2, then Ω = ±π/2, ϑω =
π

4
, and

cos θ′23 =
√
c2

23c
2
χε + s2

23s
2
χε ,

γ = arctan

[
∓tan(2θ23)

sin(2χε)

]
. (7.96)

Since χε runs from 0 to ϑω = π/4 in this case as β is increased, cos θ′23 runs
from c23 to 1/

√
2, so, again, θ′23 runs from θ23 to π/4.

Looking at tan γ, since tan(2θ23) > 0 when θ23 < π/4, tan γ runs from ∓∞
to ∓ tan(2θ23). So γ runs from ∓π/2 = −Ω to ∓2θ23, which in turn means

that δ′ − δ runs from 0 to ±2
(π

4
− θ23

)
.

(c) If ω = ±π, then Ω = ±π, ϑω =
π

4
+ θ23, and

cos(θ′23) = c23cχε + s23sχε = cos(θ23 − χε) . (7.97)

As a is increased, χε increases monotonically from 0 to ϑω =
π

4
+ θ23. So the

difference θ23 − χε decreases monotonically from θ23 to −π
4

, going through

zero at χε = θ23. Since we restrict θ′23 to the range 0 ≤ θ′23 ≤
π

4
, it will run

from θ23 down to zero, and then back up to
π

4
.

Looking at tan γ, since sω = 0 at ω = ±π, tan γ is always zero. However, for
ω slightly off of ±π, yet in the range −π ≤ ω ≤ π, we have sω = ±0, and

since tan(2θ23) > 0 for θ23 <
π

4
, when cos 2(χε−ϑω) = cos 2

(
χε − θ23 −

π

4

)
=
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sin 2 (χε − θ23) goes through zero as χε goes through θ23, tan γ jumps from
±∞ to ∓∞ thereby jumps from one branch to another. So in the limit

ω = ±π, γ at χε = 0 and χε = θ23 +
π

4
differ by ±π, making the jump at

χε = θ23.

The behavior of θ′23 and δ′ for these, and other values of ω are shown in Figs. 7.10(a)
and 7.11(a).

C. θ23 >
π

4
: As above, let us consider a few specific values for ω :

(a) If ω = 0, then Ω = π, ϑω = θ23 −
π

4
, and

cos θ′23 = c23cχε + s23sχε = cos(θ23 − χε) , δ′ = δ . (7.98)

As a is increased χε increased monotonically from 0 to ϑω = θ23 −
π

4
. There-

fore, θ′23 runs from θ23 down to
π

4
. Looking at tan γ, it is zero since sω = 0

at ω = 0. We take γ = −π so that γ + Ω = 0 and δ′ does not run.

(b) If ω = ±π/2, then Ω = ±π/2, ϑω =
π

4
, and

cos θ′23 =
√
c2

23c
2
χε + s2

23s
2
χε ,

γ = arctan

[
∓tan(2θ23)

sin(2χε)

]
. (7.99)

Since χε runs from 0 to ϑω = π/4 in this case as β is increased, cos θ′23 runs
from c23 to 1/

√
2, so, again, θ′23 runs from θ23 to π/4.

Looking at tan γ, since tan(2θ23) < 0 when θ23 > π/4, tan γ runs from ±∞
to ∓ tan(2θ23). We take γ to run from ∓π/2 = −Ω to ∓2θ23, which in turn

means that δ′ − δ runs from 0 to ±2
(
θ23 −

π

4

)
.

(c) If ω = ±π, then Ω = 0, ϑω =
3π

4
− θ23, and

cos(θ′23) = |c23cχε − s23sχε | = | cos(θ23 + χε)| . (7.100)

As a is increased, χε increases monotonically from 0 to ϑω =
3π

4
− θ23. So

the sum θ23 +χε increases monotonically from θ23 to
3π

4
, going through

π

2
at

χε =
π

2
− θ23. Since we restrict θ′23 to the range 0 ≤ θ′23 ≤

π

4
, it will run from

θ23 down to zero, and then back up to
π

4
.

Looking at tan γ, since sω = 0 at ω = ±π, tan γ is always zero. However, for
ω slightly off of ±π, but in the range −π ≤ ω ≤ π, we have sω = ±0, and since
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tan(2θ23) < 0 for θ23 >
π

4
, when cos 2(χε − ϑω) = cos 2

(
χε + θ23 −

3π

4

)
=

− sin 2 (χε + θ23) goes through zero as χε goes through
π

2
− θ23, tan γ jumps

from ∓∞ to ±∞ thereby jumps from one branch to another. So in the limit

ω = ±π, γ at χε = 0 and χε =
3π

4
− θ23 differ by ∓π, making the jump at

χε =
π

2
− θ23.

The behavior of θ′23 and δ′ for these, and other values of ω are shown in Figs. 7.10(b)
and 7.11(b).

• δm2
31 < 0 Case

In this case, the effective mixing matrix is well approximated by the product of matrices
given by

Ũ = UQ3VεWεYε
= R23(θ23, 0)Q3R13(θ13, 0)R12(θ12, 0)︸ ︷︷ ︸

UQ3

R12(ϕε, 0)︸ ︷︷ ︸
Vε

R23(φε, 0)︸ ︷︷ ︸
Wε

R13(−ψε,−δ − Ω)︸ ︷︷ ︸
Yε

≈ R23(θ23, 0)Q3R13(θ′13, 0)R12(θ′12, 0)R13(−ψε,−δ − Ω)
≈ R23(θ23, 0)Q3R23(ψε,−δ − Ω)R13(θ′13, 0)R12(θ′12, 0) , (7.101)

where, in going from the second to the third line, we use the argument presented in
Refs. [437, 438], and, in going from the third to the fourth, we follow the argument in
section 3.3 of Ref. [432].

From this point on, we follow the same procedure as the δm2
31 > 0 case discussed above,

and we argue that the effective running values of θ23 and δ are obtained from

θ′23 = arccos

[√
c2

23c
2
ψε
− 2c23s23cψεsψε cos Ω + s2

23s
2
ψε

]
,

δ′ = δ + Ω + arctan

[
− sω tan(2θ23)

cos 2(ψε − ϑω)

]
.

(7.102)

For aε� δm2
31, we know from Eq. (7.78) that ψε → ϑω −

π

2
. Therefore,

δ′
aε�δm2

31−−−−−→ δ + Ω + arctan
[
sω tan(2θ23)

]
. (7.103)

As in the δm2
31 > 0 case, we can show that θ′23 and δ′ do not run when θ23 =

π

4
, and

that θ′23 will run toward
π

4
for both the θ23 <

π

4
and θ23 >

π

4
cases. Omitting details,

we show the behavior of θ′23 and δ′ for various values of ω in Figs. 7.12 and 7.13 when

θ23 6=
π

4
.
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Figure 7.12: The β-dependence of θ′23 for ε = 0.1 and a variety of ω values for the two cases
(a) θ23 = 40◦ and (b) θ23 = 50◦ with δm2

31 < 0.

7.3.3 Summary of the Neutrino Case

We find that the matter effect due to εµτ = εeiω can be absorbed into the running of the
effective mixing angles θ′12, θ′13, θ′23, the effective CP violating phase δ′, and the effective
mass-squared eigenvalues λ1, λ2, and λ3. The definitions of ϑω and Ω that appear in what
follows have been given in Eq. (7.38). First, θ′12 and θ′13 are given by

tan 2θ′12 =
δm2

21 sin 2θ12

δm2
21 cos 2θ12 − a[c2

13 + εc(1 + s2
13)]

,

tan 2θ′13 =
(δm2

31 − s2
12δm

2
21) sin(2θ13)

(δm2
31 − s2

12δm
2
21) cos(2θ13)− a(1− εc)

, (7.104)

where εc = ε cos(2ϑω). Next, θ′23 ∈ [0, π/2] and δ′ ∈ [−π, π] are given by

θ′23 = arccos
[√

c2
23c

2
χε − 2c23s23cχεsχε cos Ω + s2

23s
2
χε

]
,

δ′ = δ + Ω + arctan

[
− sω tan(2θ23)

cos 2(χε − ϑω)

]
, (7.105)

where

tan 2χε =
2aε sin(2ϑω)

[c2
13δm

2
31 − (c2

12 − s2
12s

2
13)δm2

21] + 2aε cos(2ϑω)
. (7.106)

Note that the same expression can be used for both the δm2
31 > 0 and δm2

31 < 0 cases, cf.
Eqs. (7.69) and (7.77). For the normal hierarchy (δm2

31 > 0), the effective mass-squared
eigenvalues are

λ1 =
(λ′′ε− + λ′ε−)−

√
(λ′′ε− − λ′ε−)2 + 4a2ε2

ss
′2
13

2
,
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λ2 =
(λ′′ε− + λ′ε−) +

√
(λ′′ε− − λ′ε−)2 + 4a2ε2

ss
′2
13

2
,

λ3 = λ′′ε+ , (7.107)

while, for the inverted hierarchy (δm2
31 < 0), they are given by

λ1 =
(λ′′ε− + λ′ε−) +

√
(λ′′ε− − λ′ε−)2 + 4a2ε2

sc
′2
13

2
,

λ2 = λ′′ε+ ,

λ3 =
(λ′′ε− + λ′ε−)−

√
(λ′′ε− − λ′ε−)2 + 4a2ε2

sc
′2
13

2
, (7.108)

where εs = ε sin(2ϑω), and

λ′ε± =
{(δm2

21 − aεc) + a(c2
13 + εcs

2
13)}

2

±

√
{(δm2

21 − aεc)− a(c2
13 + εcs2

13)}2
+ 4as2

12 {c2
13 + εc(1 + s2

13)} δm2
21

2
,

λ′′ε± =
λ′ε+ +

{
δm2

31 + a(s2
13 + εcc

2
13)
}

2

±

√[
λ′ε+ −

{
δm2

31 + a(s2
13 + εcc2

13)
}]2

+ 4
{
as′12s13c13(1− εc)

}2

2
. (7.109)
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7.4 Effective Mixing Angles and Effective Mass-Squared

Differences – Anti-Neutrino Case

In this section, we study the matter effect due to the anti-neutrino NSI’s. We again utilize
the Jacobi method to estimate how the NSI parameter η alters the ‘running’ of the effective
mixing angles, effective mass-squared differences, and the effective CP-violating phase δ in
matter for the anti-neutrinos.

7.4.1 Differences from the Neutrino Case

For the anti-neutrinos, the effective Hamiltonian is given by

Hµτ = Ũ∗

λ1 0 0

0 λ2 0

0 0 λ3

 ŨT = U∗

0 0 0
0 δm2

21 0
0 0 δm2

31

UT − a

1 0 0
0 0 0
0 0 0


︸ ︷︷ ︸
≡Ma︸ ︷︷ ︸

≡ Ha

−aε

0 0 0
0 0 e−iω

0 e+iω 0


︸ ︷︷ ︸

≡Mµτ

.

(7.110)
The differences from the neutrino case are the reversal of signs of the CP-violating phase δ
(and thus the complex conjugation of the PMNS matrix U), the matter interaction parameter
a, and the NSI phase ω.

The separation of Mµτ into two parts is as follows:

Mµτ = cω

0 0 0
0 0 1
0 1 0

− sω
0 0 0

0 0 i
0 −i 0


= cω sin(2θ23)

0 0 0
0 − cos(2θ23) sin(2θ23)
0 sin(2θ23) cos(2θ23)


︸ ︷︷ ︸

≡M c
µτ

+ cω cos(2θ23)

0 0 0
0 sin(2θ23) cos(2θ23)
0 cos(2θ23) − sin(2θ23)

− sω
0 0 0

0 0 i
0 −i 0


︸ ︷︷ ︸

≡M s
µτ

, (7.111)

where cω = cosω and sω = sinω. In the following, we diagonalize Ha + aεM c
µτ first, and

then deal with M s
µτ later.



181

7.4.2 Diagonalization of the Effective Hamiltonian

Change to the Mass Eigenbasis in Vacuum

We begin by partially diagonalizing Hµτ by going from the flavor-eigenbasis to the vacuum-
mass-eigenbasis:

H ′µτ = Q3U
THµτU

∗Q∗3

=

 0 0 0
0 δm2

21 0
0 0 δm2

31

− aQ3U
T

 1 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

Ma

U∗Q∗3

︸ ︷︷ ︸
≡M

′
a︸ ︷︷ ︸

≡ H
′
a

−aεQ3U
T

 0 0 0
0 0 e−iω

0 e+iω 0


︸ ︷︷ ︸

M c
µτ +M s

µτ

U∗Q∗3 . (7.112)

Where M
′
a only depends on θ12 and θ13 and is given by

M
′
a = Q3U

TMaU
∗Q∗3 =

 c2
12c

2
13 s12c12c

2
13 c12s13c13

s12c12c
2
13 s2

12c
2
13 s12s13c13

c12s13c13 s12s13c13 s2
13

 . (7.113)

Looking at how M c
µτ and M s

µτ transform, after the first 23-rotation we find

R†23(θ23, 0)M c
µτR23(θ23, 0) =

0 0 0
0 −cω sin(2θ23) 0
0 0 cω sin(2θ23)

 ,

R†23(θ23, 0)M s
µτR23(θ23, 0) =

0 0 0
0 0 cω cos(2θ23)− isω
0 cω cos(2θ23) + isω 0

 . (7.114)

We find it convenient to define

cω sin(2θ23) = cos(2ϑω) ,
[
cω cos(2θ23)− isω

]
= e−iΩ sin(2ϑω) . (7.115)

Choosing ϑω and Ω in the ranges

0 ≤ ϑω ≤
π

2
, −π < Ω ≤ π , (7.116)

we obtain

tan(2ϑω) ≡
√
c2
ω cos2(2θ23) + s2

ω

cω sin(2θ23)
, Ω ≡ arctan

[
sω

cos(2θ23)cω

]
. (7.117)
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Figure 7.14: The ω-dependence of (a) ϑω and (b) Ω.

The ω-dependence of ϑω and Ω is shown in Fig. 7.14 for several values of θ23. Note that due

to our restriction Ω ∈ (−π, π], Ω has a discontinuity of 2π at ω = 0 if
π

4
< θ23 ≤

π

2
, and at

ω = ±π if 0 ≤ θ23 <
π

4
. For the θ23 =

π

4
case, Ω = +

π

2
, ϑω = +

ω

2
in the range 0 < ω <

π

2
,

Ω = −π
2

, ϑω = −ω
2

in the range −π
2
< ω < 0, while at ω = 0,±π, Ω is indeterminate.

Note also that if ω = ±π
2

, that is, εµτ is purely imaginary, then cos(2ϑω) = cω sin(2θ23) = 0.

These definitions allow us to write

RT
23(θ23, 0)M c

µτR
∗
23(θ23, 0) = cos(2ϑω)

0 0 0
0 −1 0
0 0 1

 ,

RT
23(θ23, 0)M s

µτR
∗
23(θ23, 0) = sin(2ϑω)

0 0 0
0 0 e−iΩ

0 eiΩ 0

 . (7.118)

Next, we multiply with Q3 and its conjugate to find

Q3R
T
23(θ23, 0)M c

µτR
∗
23(θ23, 0)Q∗3 = cos(2ϑω)

0 0 0
0 −1 0
0 0 1

 ,

Q3R
T
23(θ23, 0)M s

µτR
∗
23(θ23, 0)Q∗3 = sin(2ϑω)

0 0 0
0 0 e−i(δ+Ω)

0 ei(δ+Ω) 0

 . (7.119)
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From this, we see that M
c′
µτ = Q3U

TM c
µτU

∗Q∗3 will not have any δ dependence, while M
s′
µτ =

Q3U
TM s

µτU
∗Q∗3 will only depend on the sum δ+Ω. Performing the remaining two rotations,

we obtain

M
c′
µτ = Q3U

TM c
µτU

∗Q∗3

= cos(2ϑω)

 −s2
12 + c2

12s
2
13 s12c12(1 + s2

13) −c12s13c13

s12c12(1 + s2
13) −c2

12 + s2
12s

2
13 −s12s13c13

−c12s13c13 −s12s13c13 c2
13

 ,

M
s′
µτ = Q3U

TM s
µτU

∗Q∗3

= sin(2ϑω)

 2s12c12s13 cos(δ + Ω) s13e
−i(δ+Ω) − 2c2

12s13 cos(δ + Ω) −s12c13e
−i(δ+Ω)

s13e
i(δ+Ω) − 2c2

12s13 cos(δ + Ω) −2s12c12s13 cos(δ + Ω) c12c13e
−i(δ+Ω)

−s12c13e
i(δ+Ω) c12c13e

i(δ+Ω) 0

 .

(7.120)

So in this vacuum-mass-eigenbasis, the part of the Hamiltonian we diagonalize first is given
by

H
′
a − aεM

c′
µτ

=

−a[c2
12c

2
13 − εc(s2

12 − c2
12s

2
13)] −ac12s12[c2

13 + εc(1 + s2
13)] −ac12s13c13(1− εc)

−ac12s12[c2
13 + εc(1 + s2

13)] δm2
21 − a[s2

12c
2
13 − εc(c2

12 − s2
12s

2
13)] −as12s13c13(1− εc)

−ac12s13c13(1− εc) −as12s13c13(1− εc) δm2
31 − a(s2

13 + εcc
2
13)

 ,

(7.121)

where we have set εc ≡ ε cos(2ϑω). We now approximately diagonalize this matrix following
the Jacobi diagonalization procedure.

First Rotation

We first perform a 12-rotation to diagonalize the 12 submatrix. The rotation matrix neces-
sary is given by

Vε ≡

 cϕε sϕε 0
−sϕε cϕε 0

0 0 1

 , (7.122)

where cϕε = cos(ϕε), sϕε = sin(ϕε), and

tan 2ϕε =
−a[c2

13 + εc(1 + s2
13)] sin(2θ12)

δm2
21 + a[c2

13 + εc(1 + s2
13)] cos(2θ12)

. (7.123)

See Fig. 7.15(a). Using Vε we obtain

H
′′
a − aεM

c′′
µτ



184

-Θ12

-4 -3 -2 -1 0 1 2

0

-
Π

8

-
Π

4

0

-
Π

8

-
Π

4

Β

j-

¶

Θ23=40°, 50°, ¶=0.1

-4 -3 -2 -1 0 1 2

0

Π

8

Π

4

0

Π

8

Π

4

Β

Θ
1
2

¢

Θ23=40°, 50°, ¶=0.1

Ω=±0 Ω=±Π�2 Ω=±Π

Figure 7.15: The β-dependence of ϕε (left) and θ′12 (right) for the ε = 0.1 case.

= V †ε

(
H
′
a − aεM

c′
µτ

)
Vε

=

 λ
′
ε− 0 −ac′12s13c13(1− εc)
0 λ

′
ε+ −as′12s13c13(1− εc)

−ac′12s13c13(1− εc) −as′12s13c13(1− εc) δm2
31 − a(s2

13 + εcc
2
13)

 ,

(7.124)

where

λ
′
ε± =

{(δm2
21 + aεc)− a(c2

13 + εcs
2
13)}

2

±

√
{(δm2

21 + aεc) + a(c2
13 + εcs2

13)}2 − 4as2
12 {c2

13 + εc(1 + s2
13)} δm2

21

2
.

(7.125)

and
s′12 = sin θ′12 , c′12 = cos θ′12 , θ′12 ≡ θ12 + ϕε . (7.126)

The angle θ′12, which is the approximate running θ12, can be calculated directly via

tan 2θ′12 =
δm2

21 sin 2θ12

δm2
21 cos 2θ12 + a[c2

13 + εc(1 + s2
13)]

, (7.127)

which is shown in Fig. 7.15(b).

At small a, the λ
′
ε± behave as

λ
′
ε+ = δm2

21 − a{s2
12c

2
13 − εc(c2

12 − s2
12s

2
13)} − aO(a/δm2

21) ,
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Figure 7.16: The β-dependence of λ
′
ε± for θ23 = 40◦ and ε = 0.1 with ω = 0 (dashed),

ω = ±π
2

(solid) and ω = ±π (dotted) shown in (a) log-scale, and (b) normal scale. The

ω-dependence of λ
′
ε− is weak and the curves for the three cases overlap.

λ
′
ε− = −a{c2

12c
2
13 − εc(s2

12 − c2
12s

2
13)} − aO(a/δm2

21) , (7.128)

while at large a, we have

λ
′
ε− = −a(c2

13 + εcs
2
13) + s2

12δm
2
21 + δm2

21O(δm2
21/a) ,

λ
′
ε+ = aεc + c2

12δm
2
21 + δm2

21O(δm2
21/a) . (7.129)

Compared to the SM case, λ
′
ε− does not asymptote to a constant except when ω = ±π

2
which would render εc zero even when ε 6= 0. This behavior is shown in Fig. 7.16.

Second Rotation

As a is increased, due to the running of θ′12 with a, the product as′12 will continue to in-

crease while ac′12 stops increasing. Therefore, the (23)-submatrix of H
′′
a − aεM

c′′
µτ must be

diagonalized next. This requires the rotation matrix

Wε =

 cφε 0 sφε
0 1 0
−sφε 0 cφε

 , (7.130)

where sφε = sinφε, cφε = cosφε, and

tan 2φε =
−ac′12(1− εc) sin(2θ13)

δm2
31 − a(s2

13 + εcc2
13)− λ′ε−

≈ −a(1− εc) sin(2θ13)

(δm2
31 − s2

12δm
2
21) + a(1− εc) cos(2θ13)

. (7.131)
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Figure 7.17: The β-dependence of φε (left) and θ′13 (right) for ε = 0.1 both normal (NH) and
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Again, compared to Eq. (7.26), we can see that φε evolves more or less similarly to φ but
with a small shift in the resonance position. See Fig. 7.17. After the second rotation we
have:

H
′′′
a − aεM

c′′′
µτ

= W †
ε

(
H
′′
a − aεM

c′′
µτ

)
Wε

=

 λ
′′
ε∓ as′12s13c13sφε(1− εc) 0

as′12s13c13sφε(1− εc) λ
′
ε+ −as′12s13c13cφε(1− εc)

0 −as′12s13c13cφε(1− εc) λ
′′
ε±

 ,

(7.132)

where

λ
′′
ε± =

λ
′
ε− +

{
δm2

31 − a(s2
13 + εcc

2
13)
}

2

±

√[
λ
′
ε− −

{
δm2

31 − a(s2
13 + εcc2

13)
}]2

+ 4
{
ac′12s13c13(1− εc)

}2

2
,

(7.133)

and the upper/lower signs correspond to the normal/inverted hierarchies.

For both hierarchies, the asymptotic forms are

λ
′′
ε− = −a+ (s2

13δm
2
31 + s2

12c
2
13δm

2
21) + δm2

31O(δm2
31/a),
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Figure 7.18: The β-dependence of λ
′′
ε± and λ

′
ε− for the (a) normal and (b) inverted hierarchy

cases with θ23 = 40◦ or 50◦ and ε = 0.1. Shown are the ω = 0 (dashed), ω = ±π
2

(solid)

and ω = ±π cases. The ω-dependence of λ
′′
ε+ is weak and the curves for the three cases are

mostly overlapping.

λ
′′
ε+ = −aεc + (c2

13δm
2
31 + s2

12s
2
13δm

2
21) + δm2

31O(δm2
31/a) , (7.134)

with δm2
31 taking on the appropriate sign in each case. This is shown in Fig. 7.18.

Third Rotation

H
′′′
a − aεM

c′′′
µτ is approximately diagonalized since the off-diagonal elements are suppressed

by as′12. At this point, we include M
s′
µτ . After the first rotation, M

s′
µτ becomes

εM
s′′
µτ = V †ε

(
εM

s′
µτ

)
Vε

= εs

 2s′12c
′
12s13 cos(δ + Ω) s′13e

−i(δ+Ω) − 2c′212s13 cos(δ + Ω) −s′12c13e
−i(δ+Ω)

s13e
i(δ+Ω) − 2c′212s13 cos(δ + Ω) −2s′12c

′
12s13 cos(δ + Ω) c′12c13e

−i(δ+Ω)

−s′12c13e
i(δ+Ω) c′12c13e

i(δ+Ω) 0


c′12≈1
−−−→ εs

 0 −s13e
i(δ+Ω) 0

−s13e
−i(δ+Ω) 0 c13e

−i(δ+Ω)

0 c13e
i(δ+Ω) 0

 , (7.135)

where we have set εs = ε sin(2ϑω). After the second rotation, we have

εM
s′′′
µτ = W †

ε

(
εM

s′′
µτ

)
Wε

≈ εs

 0 −s′13e
i(δ+Ω) 0

−s′13e
−i(δ+Ω) 0 c′13e

−i(δ+Ω)

0 c′13e
i(δ+Ω) 0

 , (7.136)
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Figure 7.19: The β-dependence of χε for ε = 0.1 and a variety of ω values for the cases (a)
θ23 = 40◦, 50◦ and (b) θ23 = 45◦ with δm2

31 > 0.

where
s′13 = sin θ′13 , c′13 = cos θ′13 , θ′13 ≡ θ13 + φε . (7.137)

The angle θ′13, which is the approximate running θ13, can be calculated directly via

tan 2θ′13 =
(δm2

31 − s2
12δm

2
21) sin(2θ13)

(δm2
31 − s2

12δm
2
21) cos(2θ13) + a(1− εc)

. (7.138)

The running of θ′13 depends on the mass hierarchy. For inverted hierarchy, θ′13 runs to
π

2
as

a is increased, so s′13 → 1, c′13 → 0. For the normal hierarchy, θ′13 runs to 0 as a is increased,
so we have s′13 → 0, c′13 → 1. Therefore, for the inverted hierarchy, we have

εM s′′′
µτ

a�δm2
31−−−−−→ εs

 0 −ei(δ+Ω) 0
−e−i(δ+Ω) 0 0

0 0 0

 , (7.139)

while, for the normal hierarchy, we have

εM s′′′
µτ

a�|δm2
31|−−−−−→ εs

0 0 0
0 0 e−i(δ+Ω)

0 ei(δ+Ω) 0

 . (7.140)

So, for the normal hierarchy case, we need to perform a 23-rotation as the third rotation,
and, for the inverted hierarchy, case we need to perform a 12-rotation. In either case, λ′ε+
and λ′′ε+ get mixed.

• δm2
31 > 0 Case
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Figure 7.20: The β-dependence of λ
′′′
Xε± for ε = 0.1 and a variety of ω values for the two case

(a) θ23 = 40◦, 50◦ and (b) θ23 = 45◦ with δm2
31 > 0.

For the normal hierarchy, the full matrix is

H
′′′
µτ = H

′′′
a − aεM

c′′′
µτ − aεM

s′′′
µτ

=

λ
′′
ε− 0 0

0 λ
′
ε+ −aεsc′13e

−i(δ+Ω)

0 −aεsc′13e
i(δ+Ω) λ

′′
ε+

 , (7.141)

where we have dropped terms of order as′12 and aεs′13. The rotation matrix necessary
to diagonalize this is

Xε =

1 0 0
0 cχε sχεe

−i(δ+Ω)

0 −sχεei(δ+Ω) cχε

 , (7.142)

where

tan 2χε = − 2aεsc
′
13

λ
′′
ε+ − λ

′
ε+

≈ −2aε sin(2ϑω)

[c2
13δm

2
31 − (c2

12 − s2
12s

2
13)δm2

21]− 2aε cos(2ϑω)
. (7.143)

Asymptotically, we have

χε
aε�|δm2

31|−−−−−−→ ϑω −
π

2
, (7.144)

for each value of ω. This behavior is shown in Fig. 7.19 for the θ23 = 40◦, 45◦, and 50◦

cases.

After the third rotation,

H
′′′′
µτ = X†εH

′′′
µτXε
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=

λ
′′
ε− 0 0

0 λ
′′′
Xε− 0

0 0 λ
′′′
Xε+

 , (7.145)

where

λ
′′′
Xε± =

(
λ
′′
ε+ + λ

′
ε+

)
±
√(

λ
′′
ε+ − λ

′
ε+

)2

+ 4a2ε2
sc
′2
13

2
. (7.146)

Thus, after three rotations, our matrix is approximately diagonal. Note that if θ23 =
π

4
and ω = 0 or ±π, then εs = ε sin(2ϑω) = 0, and we will have

λ
′′′
Xε+ = max(λ

′′
ε−, λ

′
ε−) ,

λ
′′′
Xε− = min(λ

′′
ε−, λ

′
ε−) . (7.147)

Asymptotically, we have

λ
′′′
Xε∓

= ∓εa+
1

2

[
(1± cos 2ϑω)(δm2

31c
2
13 + δm2

21s
2
12s

2
13) + (1∓ cos 2ϑω)δm2

21c
2
12

]
+ · · ·

= ∓εa+

{
cos2 ϑω
sin2 ϑω

}
(δm2

31c
2
13 + δm2

21s
2
12s

2
13) +

{
sin2 ϑω
cos2 ϑω

}
δm2

21c
2
12 + · · ·

(7.148)

See Fig. 7.20.

• δm2
31 < 0 Case

For the inverted hierarchy, the full matrix is

H
′′′
µτ = H

′′′
a − aεM

c′′′
µτ − aεM

s′′′
µτ

=

 λ
′′
ε+ aεss

′
13e

i(δ+Ω) 0

aεss
′
13e
−i(δ+Ω) λ

′
ε+ 0

0 0 λ
′′
ε−

 , (7.149)

where we have dropped terms of order as′12 and aεc′13. The rotation matrix necessary
to diagonalize this is

Yε =

 cψε sψεe
i(δ+Ω) 0

−sψεe−i(δ+Ω) cψε 0
0 0 1

 , (7.150)

where

tan 2ψε =
2aεss

′
13

λ′ε+ − λ′′ε+
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Figure 7.21: The β-dependence of ψε for ε = 0.1 and a variety of ω values for the cases (a)
θ23 = 40◦, 50◦ and (b) θ23 = 45◦ with δm2

31 < 0.

≈ 2aε sin(2ϑω)

[c2
13|δm2

31|+ (c2
12 − s2

12s
2
13)δm2

21] + 2aε cos(2ϑω)
. (7.151)

Comparing the approximate expression of tan 2ψε given in the second line of this equa-
tion to the second line of Eq. (7.143), we see that they differ in only the sign of δm2

31.
Therefore, the same approximate expression can be used to define both χε for the
δm2

31 > 0 case and ψε for the δm2
31 < 0 case. Asymptotically, we have

ψε
aε�|δm2

31|−−−−−−→ ϑω , (7.152)

for each value of ω. This behavior is shown in Fig. 7.21 for the θ23 = 40◦, 45◦, and 50◦

cases.

After the third rotation,

H
′′′′
µτ = Y †ε H

′′′
µτYε

=

λ
′′′
Yε+ 0 0

0 λ
′′′
Yε− 0

0 0 λ
′′
ε−

 , (7.153)

where

λ
′′′
Yε± =

(
λ
′′
ε+ + λ

′
ε+

)
±
√(

λ
′′
ε+ − λ

′
ε+

)2

+ 4a2ε2
ss
′2
13

2
. (7.154)

Thus, after three rotations, our matrix is approximately diagonal. Note that if θ23 =
π

4
and ω = 0 or ±π, then εc = ε cos(2ϑω) = 0, and we will have

λ
′′′
Yε+ = max(λ

′′
ε+, λ

′
ε+) ,
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Figure 7.22: The β-dependence of λ
′′′
Yε± for ε = 0.1 and a variety of ω values for the two case

(a) θ23 = 40◦, 50◦ and (b) θ23 = 45◦ with δm2
31 < 0.

λ
′′′
Yε− = min(λ

′′
ε+, λ

′
ε+) . (7.155)

Note that the min and max are inverted from the normal hierarchy case. Asymptoti-
cally, we have

λ
′′′
Yε∓

= ∓εa+
1

2

[
(1± cos 2ϑω)(δm2

31c
2
13 + δm2

21s
2
12s

2
13) + (1∓ cos 2ϑω)δm2

21c
2
12

]
+ · · ·

= ∓εa+

{
cos2 ϑω
sin2 ϑω

}
(δm2

31c
2
13 + δm2

21s
2
12s

2
13) +

{
sin2 ϑω
cos2 ϑω

}
δm2

21c
2
12 + · · ·

(7.156)

These expressions are the same as Eq. (7.148), expect δm2
31 is negative here. This

behavior is shown in Fig. 7.22.

Absorption into Effective Mixing Angles

• δm2
31 > 0 Case

As we have seen above, the effective mixing matrix is well approximated by the product
of matrices given by

Ũ∗ = U∗Q∗3VεWεXε

= R23(θ23, 0)Q∗3R13(θ13, 0)R12(θ12, 0)︸ ︷︷ ︸
U∗Q∗3

R12(ϕε, 0)︸ ︷︷ ︸
Vε

R13(φε, 0)︸ ︷︷ ︸
Wε

R23(χε, δ + Ω)︸ ︷︷ ︸
Xε

≈ R23(θ23, 0)Q∗3R13(θ′13, 0)R12(θ′12, 0)R23(χε, δ + Ω)
≈ R23(θ23, 0)Q∗3R23(χε, δ + Ω)R13(θ′13, 0)R12(θ′12, 0) . (7.157)
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Let us look at the 23 submatrix of the product R23(θ23, 0)Q∗3R23(χε, δ + Ω). We have[
c23 s23

−s23 c23

] [
1 0
0 e−iδ

] [
cχε sχεe

−i(δ+Ω)

−sχεei(δ+Ω) cχε

]
=

[
c23 s23

−s23 c23

] [
1 0
0 eiΩ

] [
cχε sχε
−sχε cχε

] [
1 0
0 e−i(δ+Ω)

]
. (7.158)

The product of the three matrices on the left can be rewritten as[
c23 s23

−s23 c23

] [
1 0
0 eiΩ

] [
cχε sχε
−sχε cχε

]
=

[
e−iα1 0

0 e−iα2

] [
c′23 s′23

−s′23 c′23

] [
1 0
0 e−iγ

]
, (7.159)

where

c′23 = cos θ′23 =
√
c2

23c
2
χε − 2c23s23cχεsχε cos Ω + s2

23s
2
χε

=
√

cos2(Ω/2) cos2(θ23 + χε) + sin2(Ω/2) cos2(θ23 − χε) ,

α1 = arctan

[
s23sχε sin Ω

c23cχε − s23sχε cos Ω

]
,

α2 = arctan

[
− c23sχε sin Ω

s23cχε + c23sχε cos Ω

]
,

γ = arctan

[
− sin(2θ23) sin Ω

sin(2χε) cos(2θ23) + cos(2χε) sin(2θ23) cos Ω

]
= arctan

[
− sω tan(2θ23)

cos 2(χε − ϑω)

]
. (7.160)

The branches of the arctangents must be chosen judiciously for this to work. Using
this result, we can write[

c23 s23

−s23 c23

] [
1 0
0 eiΩ

] [
cχε sχε
−sχε cχε

] [
1 0
0 e−i(δ+Ω)

]
=

[
e−iα1 0

0 e−iα2

] [
c′23 s′23

−s′23 c′23

] [
1 0
0 e−iδ

′

]
, (7.161)

where
δ′ = δ + Ω + γ . (7.162)

At aε� δm2
31 we know that χε → ϑω −

π

2
, cf. Eq. (7.144), so

cos 2(χε − ϑω)
aε�δm2

31−−−−−→ −1 , (7.163)

and

δ′
aε�δm2

31−−−−−→ δ + Ω + arctan
[
sω tan(2θ23)

]
. (7.164)
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Figure 7.23: The β-dependence of θ′23 for ε = 0.1 and a variety of ω values for the two cases
(a) θ23 = 40◦ and (b) θ23 = 50◦ with δm2

31 > 0.

The behavior of θ′23 and δ′ are shown in Figs. 7.23 and 7.24.

• δm2
31 < 0 Case

In this case, the effective mixing matrix is well approximated by the product of matrices
given by

Ũ∗ = U∗Q∗3VεWεYε
= R23(θ23, 0)Q3R13(θ13, 0)R12(θ12, 0)︸ ︷︷ ︸

U∗Q∗3

R12(ϕε, 0)︸ ︷︷ ︸
Vε

R23(φε, 0)︸ ︷︷ ︸
Wε

R13(ψε,−δ − Ω)︸ ︷︷ ︸
Yε

≈ R23(θ23, 0)Q3R13(θ′13, 0)R12(θ′12, 0)R13(ψε,−δ − Ω)
≈ R23(θ23, 0)Q3R23(ψε, δ + Ω)R13(θ′13, 0)R12(θ′12, 0) , (7.165)

From this point on, we follow the same procedure as the δm2
31 > 0 case discussed above,

and we argue that the effective running values of θ23 and δ are obtained from

θ′23 = arccos

[√
c2

23c
2
ψε
− 2c23s23cψεsψε cos Ω + s2

23s
2
ψε

]
,

δ′ = δ + Ω + arctan

[
− sω tan(2θ23)

cos 2(ψε − ϑω)

]
.

(7.166)

For aε� δm2
31, we know from Eq. (7.152) that ψε → ϑω. Therefore,

δ′
aε�δm2

31−−−−−→ δ + Ω− arctan
[
sω tan(2θ23)

]
. (7.167)

As in the δm2
31 > 0 case, we can show that θ′23 and δ′ do not run when θ23 =

π

4
, and

that θ′23 will run toward
π

4
for both the θ23 <

π

4
and θ23 >

π

4
cases. Omitting details,
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Figure 7.24: The β-dependence of δ′ − δ for ε = 0.1 and a variety of ω values for the two
cases θ23 = 40◦ (left) and θ23 = 50◦ (right), both with δm2

31 > 0. The solid lines indicate
positive ω and the dashed lines indicate negative ω.

we show the behavior of θ′23 and δ′ for various values of ω in Figs. 7.25 and 7.26 when

θ23 6=
π

4
.
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Figure 7.25: The β-dependence of θ′23 for ε = 0.1 and a variety of ω values for the two cases
(a) θ23 = 40◦ and (b) θ23 = 50◦ with δm2

31 < 0.

7.4.3 Summary of Anti-neutrino Case

We find that the matter effect due to εµτ = εeiω can be absorbed into the running of the
effective mixing angles θ′12, θ′13, θ′23, the effective CP violating phase δ′, and the effective
mass-squared eigenvalues λ1, λ2, and λ3. The definitions of ϑω and Ω that appear in what
follows have been given in Eq. (7.117). First, θ′12 and θ′13 are given by

tan 2θ′12 =
δm2

21 sin 2θ12

δm2
21 cos 2θ12 + a[c2

13 + εc(1 + s2
13)]

,

tan 2θ′13 =
(δm2

31 − s2
12δm

2
21) sin(2θ13)

(δm2
31 − s2

12δm
2
21) cos(2θ13) + a(1− εc)

, (7.168)

where εc = ε cos(2ϑω). Next, θ′23 ∈ [0, π/2] and δ′ ∈ [−π, π] are given by

θ′23 = arccos
[√

c2
23c

2
χε − 2c23s23cχεsχε cos Ω + s2

23s
2
χε

]
,

δ′ = δ + Ω + arctan

[
− sω tan(2θ23)

cos 2(χε − ϑω)

]
, (7.169)

where

tan 2χε =
−2aε sin(2ϑω)

[c2
13δm

2
31 − (c2

12 − s2
12s

2
13)δm2

21]− 2aε cos(2ϑω)
. (7.170)

Note that the same expression can be used for both the δm2
31 > 0 and δm2

31 < 0 cases, cf.
Eqs. (7.143) and (7.151). For the normal hierarchy (δm2

31 > 0), the effective mass-squared
eigenvalues are

λ1 = λ′′ε− ,

λ2 =
(λ′′ε+ + λ′ε+)−

√
(λ′′ε+ − λ′ε+)2 + 4a2ε2

sc
′2
13

2
,
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λ3 =
(λ′′ε+ + λ′ε+) +

√
(λ′′ε+ − λ′ε+)2 + 4a2ε2

sc
′2
13

2
, (7.171)

while, for the inverted hierarchy (δm2
31 < 0), they are given by

λ1 =
(λ′′ε+ + λ′ε+) +

√
(λ′′ε+ − λ′ε+)2 + 4a2ε2

ss
′2
13

2
,

λ2 =
(λ′′ε+ + λ′ε+)−

√
(λ′′ε+ − λ′ε+)2 + 4a2ε2

ss
′2
13

2
,

λ3 = λ′′ε− , (7.172)

where εs = ε sin(2ϑω), and

λ′ε± =
{(δm2

21 + aεc)− a(c2
13 + εcs

2
13)}

2

±

√
{(δm2

21 + aεc) + a(c2
13 + εcs2

13)}2 − 4as2
12 {c2

13 + εc(1 + s2
13)} δm2

21

2
,

λ′′ε± =
λ′ε− +

{
δm2

31 − a(s2
13 + εcc

2
13)
}

2

±

√[
λ′ε− −

{
δm2

31 − a(s2
13 + εcc2

13)
}]2

+ 4
{
ac′12s13c13(1− εc)

}2

2
, (7.173)

where εc = ε cos(2ϑω).
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7.5 Comparison with the Numerical Result at the Prob-

ability Level

To show this approximation works properly, in this section we show the probability calculated
with the running parameters and compare this with the probability calculated using numer-
ical diagonalization of the Hamiltonian. In Fig. 7.29, we show the probability of νµ → νe for
different ω’s. In the case of ω = ±π, our approximation is better than Ref. [5] while in the
case of ω = ±π

2
, our approximation is worse. In other cases, they are about the same. The

νµ survival probability and the τ appearance probability are shown in Figs. 7.30 and 7.31,
respectively. In the case of even longer baseline such CERN to Super-Kamiokande, Fig. 7.32
shows that our approximation formula is significantly better than the one in Ref. [5].

For the specific energy and baseline length of the DUNE experiment, we stress that there
is a degeneracy between the δCP and the NSI phase ω. Our approximation captures this
degeneracy very well, as shown in Figs. 7.27 and 7.28. On the other hand, if ε is small, the
effect will not be observed at the expected precision of DUNE.
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Figure 7.27: The degeneracy band of ω for different ε’s. The upper panel is for νe appearance
and the lower for νµ disappearance.
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Figure 7.28: Degeneracy contour from this approximation (left) and numerical result (right)
for DUNE at E = 2.5 GeV, assuming ε = 0.1 and θ23 = 40◦.

7.6 Summary and Outlook

In this chapter, we studied the analytical expression of the neutrino matter effect with non-
zero εµτ . The idea is similar to renormalization in quantum field theory: first, we write the
‘bare’ Hamiltonian H0 for neutrino propagation in the vacuum. Then we add terms for the
matter effect to the vacuum Hamiltonian as δH. We then absorb the extra term δH of the
matter effect into the ‘bare’ parameters of H0. The Jacobi method is used to absorb δH
with certain rotations to restore the form of H0.

The advantage of this method is to make the effect of the neutrino matter interaction trans-
parent. In this formalism, the ‘matter effect running’ expression shows that θ12 and θ13

run mostly due to the SM effect while θ23 and δCP run mainly due to the presence of a
nonzero |εµτ | and its phase. As a result, it is obvious to see which part of εµτ– norm or
phase, affects which parameter, hence which type of experiments. For example, atmospheric
neutrinos are able to constrain εµτ as long as we do not go to the regime of a� |δm2

32|, i.e.,
where the energy of atmospheric neutrino is high, which is consistent with the analysis in
Refs. [469, 472].

This formalism allows us to study the neutrino–matter effect at the level of modified vacuum
parameters instead of solely the probability level. In this sense, the analysis of neutrino long
baseline experiments is no longer a ‘trial-and-error’ type of analysis of probability output
for various tweaks of the baseline length, matter density, beam energy, etc. Instead, we
can express the oscillation angles as functions of NSI. Once the effect of a type of NSI is
understood, deciding which experiment is more sensitive to it is straightforward.

In addition, because the running parameters distinguish between mass hierarchies and also
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Figure 7.29: Probability of νµ → νe at the first oscillation peak of DUNE, assuming δ =
0, θ = 40◦, ε = 0.1, and normal hierarchy. The dashed curves correspond to the exact value
from numerical calculation. The solid curve is our approximation. They are compared with
the approximation formula from Ref. [5], which is shown as dotted curves. Different colors
correspond to different values of the NSI phase, ω.
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Figure 7.31: Probability of νµ → ντ at DUNE energy, assuming δ = 0, θ = 40◦, ε = 0.1, nor-
mal hierarchy. The dashed curves correspond to the exact value from numerical calculation.
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NSI phase, ω.
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depends on the ‘bare’ vacuum oscillation angles, it is easier to analyze the degeneracy between
uncertainties of the standard oscillation parameters and the effect of NSI. For example, it is
observed that the phase of εµτ plays an important role in modifying θ23 and δCP . An easy
understanding of the large degeneracy of uncertainties between θ23, δCP , and ε is achieved.

The price we pay for this clean picture is a slight loss of precision due to the approximation
where we use the Jacobi method to transform H0 + δH into the form of H0. The approxi-
mation is expected to be improved in future studies. On the other hand, since εµτ is already
tightly bounded, any error introduced by the approximation is negligible at the current or
near-future level of accuracy. Thus, it is more important to focus on understanding of the
physics of NSI and its consequences to various experiments using our formalism, which we
expect to expand further in a future publication.



Part III

Confronting Neutrino Models with
Collider Data

205



Chapter 8

Constrainting Models of Sizable NSI
with Particle Data

In the previous chapters, we have shown the imprints of new physics in collider experiments
as TeV-scale signals, and in neutrino oscillation experiments as NSI. In this section, we
examine the question of how to combine the treatments of collider and neutrino experiments
in order to constrain new physics with more power than ever before. In particular, at one
loop level, quantum correction is likely to bring back small or even couplings forbidden at
tree level if not protected by any symmetry, which in turn is subject to stringent bounds.
On the other hand, if there is no SM process that could generate the quantum correction,
the smallness can be stable up to the one-loop correction.

8.1 Introduction

As we showed in previous chapters, the NSI formalism is an efficient way of parametrizing
our ignorance of new physics in the effective field theory framework. With the help of the
NSI parametrization, we can put bounds on a large class of models in which the deviation
from the SM at low energies is described by the size of NSI of the neutrino sector, even
though we do not yet know the full theory. On the other hand, with the bounds on NSI
improving over the years, we are at a point that the results from neutrino experiments put
real constraints on certain particle models. Therefore, it is of importance to look into models
that can actually generate such NSI’s, thus being testable in neutrino experiments. By this,
we gain knowledge of what types of models can be actually constrained by current and future
neutrino experiments.

It is shown that gauge invariance, together with low energy particle data, puts severe con-
straints on the size of NSI’s: see, for example, Refs. [75, 440, 444, 473–481]. In particular,
models with gauged lepton and baryon number are carefully examined such as in Refs. [482–
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496]. Among the proposed models, very light Z ′s that couple to neutrinos are discussed
in Refs. [497–503]. As a result of the loop effects, the light Z ′s often mix with either the
SM photon, the Z boson, or both, through kinetic mixing. This results in effects that are
forbidden at tree level. In this chapter, we focus on the model in Ref. [504]. It is noticed
that, although NSI parametrizes the forward scattering with zero momentum transfer, the
free parameters of the theory are constrained due to the kinetic mixing present in the model,
which is strongly scale dependent as opposed to the usual simplification in some analyses.
Since collider experiments are sensitive to the squared momentum transfer q2, we point out
that the scale dependence of the kinetic mixing is important when we apply the collider
data to constrain NSI. In the end, we briefly mention the constraints from nuclear binding
energy, neutron star properties, and accelerator synchrotron radiation. This chapter is based
on Ref. [505]. We continue with the same notation of NSI used in previous chapters.

8.2 Model and Notation

In Ref. [504], a model is built to generate sizable non-standard interactions for neutrino
scattering. The idea is to gauge the second and third lepton number, Lµ−τ , while all quarks
couple to the extra U(1)′ diagonally. It is designed this way to avoid stringent bounds from
electron scattering measurements. The details of the model, including symmetry breaking
and anomaly cancellation, are shown in appendix G. Here we briefly show the field content of
the model. The gauge group of the Farzan-Shoemaker model is SU(3)C×SU(2)L×U(1)Y ×
U(1)′. We denote the gauge boson and the gauge coupling of the extra U(1)′ respectively as
Z ′ and g′. The U(1)Y gauge coupling is denoted g1 to distinguish it from the U(1)′ coupling.
The charge assignment of the quarks are

Qi =

[
uLi
dLi

]
∼
(

3, 2,+
1

6
, η

)
, uRi ∼

(
3, 1,+

2

3
, η

)
, dRi ∼

(
3, 1,−1

3
, η

)
, (8.1)

for the three generations i = 1, 2, 3. For the leptons, we assign

Li =

[
νLi
`Li

]
∼
(

1, 2,−1

2
, iζ

)
, `Ri ∼ (1, 1,−1, iζ) , (8.2)

with i = 0,+,−. No right-handed neutrino is introduced. The hypercharge Y is normalized
so that the electromagnetic charge is given by

Qem = I3 + Y . (8.3)

We need three Higgs fields with charge assignment

H ∼
(

1, 2,+
1

2
, 0

)
, H++ ∼

(
1, 2,+

1

2
,+2ζ

)
, H−− ∼

(
1, 2,+

1

2
,−2ζ

)
. (8.4)
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H is the SM Higgs doublet. Farzan and Shoemaker also introduce two more Higgs doublets
which we denote

H−+ ∼
(

1, 2,+
1

2
, 0

)
, H+− ∼

(
1, 2,+

1

2
, 0

)
, (8.5)

but these have the same quantum numbers as the SM Higgs doublet H and are redundant
and unnecessary. The coupling of the quarks to Z ′ is vectorial and is given by

g′ηZ ′µ

3∑
i=1

(
uiγ

µui + diγ
µdi
)
, (8.6)

while the coupling of the leptons to Z ′ is chiral and is given by

g′ζZ ′µ
(
L+γ

µL+ − L−γµL−
)

+ g′ζZ ′µ
(
`R+γ

µ`R+ − `R−γµ`R−
)
. (8.7)

Since all the quarks fields have the same U(1)′ charge η, the usual Yukawa interaction terms
of the quarks with the Higgs doublet H are U(1)′ invariant:∑

i,j

(
λijdRiH

†Qj + λ̃ijuRiH̃
†Qj

)
+ h.c. (8.8)

where λij and λ̃ij are the Yukawa coupling constants, and

H =

[
H+

H0

]
, H† =

[
H− H0∗] , H̃ =

[
H0∗

−H−
]
, H̃† =

[
H0 −H+

]
. (8.9)

The Yukawa interactions of the leptons to H, on the other hand, are restricted to∑
i=0,+,−

(
fi `RiH

†Li
)

+ h.c. (8.10)

where f0, f+, and f− are the Yukawa coupling contants. With this interaction alone, we can
only generate charged-lepton-mass eigenstates that are also U(1)′ charge eigenstates.

In order to generate mixings among the leptons with opposite U(1)′ charges, we use the
doubly-U(1)′-charged Higgs fields H++ and H−−(

c−`R+H
†
−−L− + c+`R−H

†
++L+

)
+ h.c. (8.11)

Farzan and Shoemaker also introduce U(1)′-invariant Yukawa interactions of the forms

`R+H
†
−+L+ , `R−H

†
+−L− , (8.12)

but these are unnecessary.
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After the neutral (under U(1)em) components of the Higgs doublets obtain VEV’s, the mass
matrix of the +− charged lepton sector is given by[

`R+ `R−
]
M

[
`L+

`L−

]
+ h.c. (8.13)

where

M =

[
f+〈H0〉 c−〈H0

−−〉
c+〈H0

++〉 f−〈H0〉

]
=

1

2

[√
2f+v c−w

c+w
√

2f−v

]
, (8.14)

where we have used the notation introduced in the previous section: v/
√

2 = 〈H0〉 and
w/2 = 〈H0

++〉 = 〈H0
−−〉. (Note that our definition of v differs from that of Farzan and

Shoemaker by a factor of
√

2.)

To find the mass eigenstates, we need to find the unitary matrices UL and UR such that

URMU †L =

[
mα 0
0 mβ

]
, (8.15)

so that if we define [
`Rα
`Rβ

]
= UR

[
`R+

`R−

]
,

[
`Lα
`Lβ

]
= UL

[
`L+

`L−

]
, (8.16)

we have [
`R+ `R−

]
M

[
`L+

`L−

]
=
[
`Rα `Rβ

] [mα 0
0 mβ

] [
`Lα
`Lβ

]
. (8.17)

Note that

ULM
†MU †L = URMM †U †R =

[
m2
α 0

0 m2
β

]
. (8.18)

M †M and MM † are given by

M †M =

[
f 2

+〈H0〉2 + c2
+〈H0

++〉2 〈H0〉
(
f+c−〈H0

−−〉+ f−c+〈H0
++〉
)

〈H0〉
(
f+c−〈H0

−−〉+ f−c+〈H0
++〉
)

f 2
−〈H0〉2 + c2

−〈H−−〉2
]
,

MM † =

[
f 2

+〈H0〉2 + c2
−〈H0

−−〉2 〈H0〉
(
f+c+〈H0

++〉+ f−c−〈H0
−−〉
)

〈H0〉
(
f+c+〈H0

++〉+ f−c−〈H0
−−〉
)

f 2
−〈H0〉2 + c2

+〈H0
++〉2

]
.

(8.19)

Assuming that the elements are all real (for the sake of simplicity), we can set

UL =

[
cos δL − sin δL
sin δL cos δL

]
, UR =

[
cos δR − sin δR
sin δR cos δR

]
, (8.20)

where

tan(2δL) =
〈H0〉

(
f+c−〈H0

−−〉+ f−c+〈H0
++〉
)

(f 2
− − f 2

+)v2 + c2
−〈H−−〉2 − c2

+〈H++〉2
≈
〈H0〉

(
f+c−〈H0

−−〉+ f−c+〈H0
++〉
)

m2
β

,
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tan(2δR) =
〈H0〉

(
f+c+〈H0

++〉+ f−c−〈H0
−−〉
)

(f 2
− − f 2

+)v2 − c2
−〈H−−〉2 + c2

+〈H++〉2
≈
〈H0〉

(
f+c+〈H0

++〉+ f−c−〈H0
−−〉
)

m2
β

.

(8.21)

We have assumed that mβ � mα to simplify the denominators. Define[
Lα
Lβ

]
= UL

[
L+

L−

]
,

[
`Rα
`Rβ

]
= UR

[
`R+

`R−

]
, Lγ = L0 , `Rγ = `R0 . (8.22)

The subscripts α, β, and γ label charged-lepton mass eigenstates so they correspond to e,
µ, and τ (in some order). The coupling of the Z ′ to the leptons are

g′ζZ ′µ
[
L+ L−

]
γµσ3

[
L+

L−

]
+ g′ζZ ′µ

[
`R+ `R−

]
γµσ3

[
`R+

`R−

]
= g′ζZ ′µ

[
Lα Lβ

]
γµULσ3U

†
L

[
Lα
Lβ

]
+ g′ζZ ′µ

[
`Rα `Rβ

]
γµURσ3U

†
R

[
`Rα
`Rβ

]
= g′ζZ ′µ

[
Lα Lβ

]
γµ
[
cos(2δL) sin(2δL)
sin(2δL) − cos(2δL)

] [
Lα
Lβ

]
+g′ζZ ′µ

[
`Rα `Rβ

]
γµ
[
cos(2δR) sin(2δR)
sin(2δR) − cos(2δR)

] [
`Rα
`Rβ

]
, (8.23)

and we can see that flavor-changing couplings to the Z ′ have been generated. In particular,
this interaction includes the neutrino-flavor-changing term

g′ζZ ′µ sin(2δL) (νLαγ
µνLβ + νLβγ

µνLα) , (8.24)

as well as diagonal couplings to the charged leptons

g′ζZ ′µ
[
cos(2δL)

(
`Lαγ

µ`Lα − `Lβγµ`Lβ
)

+ cos(2δR)
(
`Rαγ

µ`Rα − `Rβγµ`Rβ
)]
. (8.25)

So if α = τ , for instance, Z ′-exchange will lead to a NSI of the form

g′2ζ2

q2 −M2
Z′

sin(2δL) (ντγ
µνβ + νβγ

µντ )
[

cos(2δL) τLγµτL + cos(2δR) τRγµτR

]
. (8.26)

The NSI matter effect is the result of the following interaction term:

g′2ζη

q2 −M2
Z′

sin(2δL) (ντγ
µνµ + νµγ

µντ )
[
uγµu+ dγµd

]
. (8.27)

Because g′ always comes with either ζ or η, without loss of generality we can rescale them
and retain only two variables. As in Ref. [504], we let η = 1. The NSI matter effect is the
process with squared momentum transfer q2 = 0. We express the usual NSI parameter as

2
√

2GF ε
qP
µτ =

g′2ζ

M2
Z′

sin(2δP ) ≤ g′2ζ

M2
Z′
. (8.28)

Next, we focus on the constraints on g′, ζ, and MZ′ . Besides the bounds discussed by Farzan
and Shoemaker, which is summarized in appendix G.4, we mainly consider the constraints
from the following sectors: τ → Z ′µ, τ → µee, and τ → µνν processes.
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8.3 Constraints from τ Decay

As shown in Ref. [504], the measurement involving the electron final state is very constrain-
ing. Therefore, only the α = µ, β = τ case is viable in this model. Because of the extra
coupling with τ , the model is expected to affect the τ decay spectrum, in principle. In this
section, we study several τ decay channels to put constraints on the free parameters g′, ζ,
and MZ′ . We first look at the τ → µZ ′ two body decay bound from ARGUS and Belle in
Section 8.3.1, which applies for the long-lived Z ′. Next, in Section 8.3.2, we study bounds
on the τ → µee mode, which applies to the short-lived Z ′. Finally, in Section 8.3.3, we
study the τ → µνν decay mode, which interferes with the W -exchange SM process, and the
corresponding constraints.

8.3.1 τ → µZ′ Two Body Decay

If the Z ′ is fairly stable, then we can have 2-body τ decays τ → `α+Z ′, where Z ′ is invisible.
These processes can be constrained by looking at the energy spectrum of the `α in the decay
product since the more dominant τ → `ανν process is a 3-body decay leading to a different `α
energy spectrum. These were extracted from the τ+τ− pair creation data in e+e− collisions.
One of the τ ’s of the pair is tagged, and the energy of the e or the µ coming from the decay
of the other τ in its rest frame is measured.

According to the Review of Particle Properties [1], we have the bounds

B(τ → e+ Z ′) < 2.7× 10−3 ,
B(τ → µ+ Z ′) < 5× 10−3 , (8.29)

at 95% C.L., which are based on ARGUS data [506]. This gives

Γ(τ → e+ Z ′)

Γ(τ → eνν)
< 0.015 ,

Γ(τ → µ+ Z ′)

Γ(τ → µνν)
< 0.029 , (8.30)

at 95% C.L. for mZ′ = 0. Looking at Fig. 4 of Ref. [506], we conclude that these bounds are
valid for mZ′ up to a few 100 MeV. The SM decay widths (without radiative corrections) are

Γ(τ → eνν) =
G2
Fm

5
τ

192π3
,

Γ(τ → µνν) =
G2
Fm

5
τ

192π3
f(m2

µ/m
2
τ ) , (8.31)

where
f(η) ≡ 1− 8η + 8η3 − η4 − 12 η2 ln η . (8.32)
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Substituting the values we find

Γ(τ → eνν) =
G2
Fm

5
τ

192π3
= 4.05× 10−13 GeV ,

Γ(τ → µνν) =
G2
Fm

5
τ

192π3
f(m2

µ/m
2
τ ) = 3.94× 10−13 GeV , (8.33)

which translates to

Γ(τ → e+ Z ′) < 6.1× 10−15 GeV ,
Γ(τ → µ+ Z ′) < 1.1× 10−14 GeV . (8.34)

The coupling that would cause the τ → `α + Z ′ decay is

g′ζZ ′µ
[
sin(2δL)

(
`Lαγ

µτL + τLγ
µ`Lα

)
+ sin(2δR)

(
`Rαγ

µτR + τRγ
µ`Rα

)]
. (8.35)

For the sake of simplicity, let us set δL = δR =
π

4
so that we have

g′ζZ ′µ
(
`αγ

µτ + τγµ`α
)
. (8.36)

The decay width will be given by

Γ(τ → `α + Z ′)

= (g′ζ)2 mτ

16π

λ1/2(m2
τ ,m

2
α,m

2
Z′)

m2
τ

{(mτ +mα)2 + 2m2
Z′}{(mτ −mα)2 −m2

Z′}
m2
Z′m

2
τ

,

(8.37)

where
λ(a, b, c) = a2 + b2 + c2 − 2ab− 2bc− 2ca . (8.38)

If we set mα = 0, we have

Γ(τ → `α + Z ′) = (g′ζ)2 mτ

16π

(
2 +

m2
τ

m2
Z′

)(
1− m2

Z′

m2
τ

)2

. (8.39)

It is argued in Ref. [504] that this places a very strong constraint on ζ due to the m2
τ/m

2
Z′

term enhancing this width. Indeed, for both the α = e and α = µ cases, we can approximate

Γ(τ → `α + Z ′) ≈
(
g′ζ

mZ′

)2
m3
τ

16π
(8.40)

and also

Γ(τ → `α + Z ′)

Γ(τ → `ανν)
≈
(
g′ζ

mZ′

)2
12π2

G2
Fm

2
τ

= (2.76× 1011 GeV2)×
(
g′ζ

mZ′

)2

, (8.41)



213

so we find

g′ζ < 2.3× 10−7mZ′/GeV from Γ(τ → e+ Z),
g′ζ < 3.2× 10−7mZ′/GeV from Γ(τ → µ+ Z). (8.42)

Please note that
mZ′ = 2g′ζw , (8.43)

where w is the VEV of the extra Higgs. See appendix G for more details of the spontaneous
symmetry breaking in this model. The above contraints lead to

w =
mZ′

2g′ζ
> 2.1× 106 GeV from Γ(τ → e+ Z),

w =
mZ′

2g′ζ
> 1.5× 106 GeV from Γ(τ → µ+ Z), (8.44)

which is far too large since we need
√
v2 + w2 = 246 GeV to get the correct W and Z masses.

Putting that constraint aside, we draw the following constraints for NSI based on Eq. (8.42).
For ζ = 10−6, we have

εqPµτ ≤
(ζg′)2

M2
Z′

(
ζ−1 1

2
√

2GF

)
< 1.6× 10−3, from Γ(τ → e+ Z),

< 3.1× 10−3, from Γ(τ → µ+ Z). (8.45)

For ζ = 10−3, we have

εqPµτ ≤
(ζg′)2

M2
Z′

(
ζ−1 1

2
√

2GF

)
< 1.6× 10−6, from Γ(τ → e+ Z),

< 3.1× 10−6, from Γ(τ → µ+ Z). (8.46)

This is close to the bounds shown in Ref. [504]. On the other hand, Belle has 2000 times
more statistics, which puts a more stringent bound on NSI models with light mediators. In
particular, Ref. [507] shows a preliminary result of B(Γ → µ + Z ′) < 1 × 10−4. With this
result, we repeat the above analysis for ARGUS, which gives the following bounds on ε. For
ζ = 10−6,

εqPµτ ≤ 6.1× 10−5, (8.47)

and for ζ = 10−3,

εqPµτ ≤ 6.1× 10−8, (8.48)

which is much stricter and renders the NSI beyond the reach of long-baseline oscillation
experiments such as DUNE.
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(mτ , 0) pµ

q

k1
k2

Z ′

γ

τ µ

e

e

Figure 8.1: Z ′ coupling to electrons through Z ′ − γ mixing at one loop level that leads to
τ → µee.

8.3.2 τ → µee Three Body Decay

As mentioned above, eeZ ′ coupling at tree level is forbidden to avoid serious bounds on
process with electron final states. Even with this, we observe that Z ′ mixes with γ through
hadron loops and couples to electrons anyway, as shown in Fig. 8.1. This process violates
lepton flavor and is not allowed in the SM. As a result, we can calculate the partial decay
width Γ(τ → µee) due to the presence of Z ′ and place bounds on g′,MZ′ , and ζ, hence the
NSI ε. Please note there is an caveat for using such bounds. That is, Z ′ must be short lived so
that decays within the detector. In this sense, the analysis of this section is complementary
to the two body decay bound in section 8.3.1.

Charge Renormalization up to One-Loop

Let us denote Q′0 as the bare U(1)′ charge of electron. At the tree level, it is chosen to be
zero. The running due to the hadron loop correction can be parametrized as follows:

g′0Q
′
0 7→ g′0(Q′0 + e2(q2)

ΠQQ′(q
2)

q2
ζ)

= g′0(Q′0 + e2(q2)Π′QQ′(q
2)ζ︸ ︷︷ ︸

Q′∗

), (8.49)

where Q′∗ is the running U(1)′ charge of electron, and ΠQQ′ is the vacuum polarization
amplitude that mixes Z ′ with γ. Thus, the problem of solving Q′∗ is equivalent to getting the
vacuum polarization amplitude ΠQQ′ , which can be calculated from the photon self-energy
ΠQQ by a simple shift of charge from Q′ to Q. Let us examine the current structure of ΠQQ

and ΠQQ′ :

igµνΠIJ = (−i)2(−1)

∫
d4k

(2π)4
Tr

[
γµ

i

/k −m
γν

i

/k + /q −m

]
≡ 〈JµI J

ν
J 〉 , (8.50)
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with I, J being Q or Q′. With 0 < q < mτ ≈ 1.78 GeV, the lightest charmed meson being
mD ≈ 1.86 GeV, only u, d, and c run in the hadron loop. However, based on the calculation
in appendix E.1, ΓZ′ is very small. Therefore, the partial decay width Γ(τ → µee) receives
most of the contribution from process τ → Z ′µ, followed by Z ′ → ee with Z ′ being on-shell.
In this case, the transferred energy is q ∼ mZ′ < 200 MeV, with mZ′ chosen in Ref. [504] in
order to avoid bounds from processes such as Z ′ → ππ. With the mass of lightest meson with
strangeness being mK ≈ 0.49 GeV, we only need to consider the light unflavored mesons
running in the loop. The vacuum polarization amplitude of photon propagator is

igµνΠQQ =

〈(
2

3
uγµu− 1

3
dγµd

)(
2

3
uγνu− 1

3
dγνd

)〉
=

〈[
1

6

(
uγµu+ dγµd

)
+

1

2

(
uγµu− dγµd

)] [1

6

(
uγνu+ dγνd

)
+

1

2

(
uγνu− dγνd

)]〉
≈ (

1

6
)2
〈(
uγµu+ dγµd

) (
uγνu+ dγνd

)〉
+ (

1

2
)2
〈(
uγµu− dγµd

) (
uγνu− dγνd

)〉
≡ igµνΠS

QQ + igµνΠV
QQ, (8.51)

where the isospin symmetry is assumed in the limit of mu ≈ md ≈ 0. We see that the
vacuum polarization of the photon self-energy receives contribution from both the isoscalar
and isovector currents. Next, let us study the current structure of the vacuum polarization
for the γZ ′ mixing:

igµνΠQQ′ =

〈(
2

3
uγµu− 1

3
dγµd

)(
uγνu+ dγνd

)〉
≈ 1

6

〈
(uγµu+ dγµd)(uγµu+ dγµd)

〉
,

(8.52)

which only receives contribution from the isoscalar current. Due to the universal structure of
current current correlation function in field theory, ΠQQ′ can be written as a shift of charge
of ΠS

QQ:

ΠQQ′ = 6ΠS
QQ. (8.53)

We show how to get ΠS
QQ from electron-positron annihilation data in the next section.

Separating the Isoscalar Contribution of the R Ratio

At the energy range lower than mτ , we cannot rely on perturbative QCD, so ΠQQ′ cannot
be calculated based on first principle. On the other hand, because of the universality of
the vacuum polarization amplitude, we can extract ΠQQ from electron-positron annihilation
data using the following formula:

Π′QQ(q2)− Π′QQ(0) = − 1

12π2

∫ ∞
4m2

π

q2

x(x− q2)
R(h)(

√
x)dx, (8.54)
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the derivation of which is shown in appendix D. Then we can shift the charge of ΠQQ

accordingly to get ΠQQ′ . Because we need ΠS
QQ, the isoscalar part of photon self-energy, the

right hand side of Eq. (8.54) should also be replace with the R ratio due to the isoscalar
contribution. We use data taken from Ref. [6] to model the continuous isoscalar contribution
to the R ratio, in the energy range 0.81 − 1.39 GeV, as shown in Table 8.1. This result is
compared with the latest R ratio measurement from PDG [1], in Fig. 8.2. Similar to

R ratio from PDG

Dolinsky R ratio

Dolinsky Isoscalar

0.5 1.0 1.5 2.0
0.1

1

10

100

1000

s /GeV

R

Figure 8.2: The plot is produced with data from the following sources: the total R ratio
measurement from PDG (blue curve), the R ratio data from Ref. [6] as listed in the second
column of Table 8.1 (orange curve), and the R ratio of the isoscalar contribution from Ref. [6]
as shown in third column of Table 8.1 (green curve).

Ref. [508], we add ω and φ resonance using the Breit-Wigner approximation to account for
the bound-states contribution from φ, and ω. This is shown in Fig. 8.3.

Putting this result for the R ratio into Eqs. (8.53) and (8.54), we get the running of the Q′∗,
which is shown in Fig. 8.4. We stress that even though the coupling of eeZ ′ is chosen to be
zero in the Lagrangian, it runs up to 10−3 due to the γ − Z ′ mixing.

Bounds from τ → µee

Now that we have the running of U(1)′ of the electron, we use it to calculate the partial
decay width of τ → µee. The effective Lagrangian contains the following terms:

Leff ⊃ (g′Q′∗)(eγ
µe)Z ′µ + (g′ζ)(τγµµ)Z ′µ(sin(2δL) + sin(2δR)) + h.c.

(8.55)

Setting δL = δR = π
4

for simplicity, the amplitude is written as

MZ′ = [uτ (pτ )γ
κPLuµ(pµ)][ue(k1)γµPLue(k2)]

(
g′2Q′∗ζ

q2 −M2
Z′ + iMZ′ΓZ′

)
. (8.56)
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√
q2/GeV R R Isoscalar

0.81 5.545 0.385
0.83 4.204 0.196
0.85 3.219 0.117
0.87 2.516 0.081
0.89 1.958 0.085
0.91 1.617 0.071
0.93 1.355 0.131
0.95 1.134 0.075
0.97 1.018 0.098
0.99 0.93 0.118
1.05 1.492 0.526
1.07 1.245 0.358
1.09 1.118 0.228
1.11 1.056 0.079
1.13 0.998 0.096
1.15 0.995 0.097
1.17 1.09 0.103
1.19 1.14 0.123
1.21 1.021 0.082
1.23 1.264 0.109
1.25 1.32 0.084
1.27 1.257 0.204
1.29 1.424 0.141
1.31 1.486 0.129
1.33 1.622 0.149
1.35 1.774 0.255
1.37 1.789 0.243
1.39 1.877 0.219

Table 8.1: The total R ratio and the R ratio from the isoscalar-current contribution. Data
is taken from Ref. [6].
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Dolinsky Isoscalar + BW resonance
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Figure 8.3: The isoscalar contribution to the R ratio (blue), modeled with continuous part
from Ref. [6] and bound states using Breit-Wigner resonance formula, compared to the R
ratio data from PDG (orange).
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Figure 8.4: Running of Q′∗ due to γZ ′ mixing.

Integrating over momentum, the differential partial width is expressed as follows:

dΓ

dEµ
=

(g′2Q′∗ζ)2

128π3

1

q2 +M2
Z′Γ

2
Z′

(
−4

3
mτE

2
µ +m2

τEµ −
2

3
m2
µmτ +m2

µEµ

)√
E2
µ −m2

µ, (8.57)

where q2 = mτ +m2
µ −M2

Z′ − 2mτEµ. Obviously, when ΓZ′ is small, the total partial width
is dominated by the region around q = 0, which corresponds to Z ′ being on-shell. From
Ref. [368], we find the bound on the rare decay process τ → µee is Γi/Γ ≤ 1.8× 10−8 at the
90% confidence level, where Γi is the partial width and Γ is the total width. The total width
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can be obtained from the τ lifetime:

Γ =
~
τ

= 1.05× 10−34(J · s)/(2.90× 10−13s)× (1.60× 10−19J/eV)−1

≈ 2.3× 10−3 eV. (8.58)

Therefore, the bound for the decay width Γi is

Γi ≤ 1.8× 10−8Γ = 4.1× 10−11 eV. (8.59)

Based on this bound, we get the bounds on g′,MZ′ , and ζ, shown in the upper panel of Fig.
8.5. The bound on εqPµτ is shown in the lower panel of Fig. 8.5.

As we pointed out, the bounds from Sections 8.3.1 and 8.3.2 apply to long-lived and short-
lived Z ′, respectively. To be specific, the bound from Section 8.3.2 is from Belle [509]. The
tracking chamber of Belle covers the polar angular range of 17◦ to 150◦, with an outer radius
of 0.88 m. The longest reach is about 1.7 m (at the 17◦ direction). Next, let us look at the
lifetime of Z ′.

According to the calculation of Appendix E.1, the total decay width of Z ′ can be estimated
as ΓZ′ ≈ 1.4 × 10−6 eV. This translates to τ ≈ 4.7 × 10−10 s. We convert this to a decay
length. Since most of Z ′ is produced on shell due to the mass resonance, the energy is
about EZ′ = mτ

2
= 0.89 GeV. This gives us the relativistic factor of γ = 4.5 ∼ 180 for

5 MeV ≤MZ′ ≤ 200 MeV. This translates to a decay length of

0.6 m ≤ (βc)(γτ) ≤ 20 m. (8.60)

This verifies our previous concern of the applicability of the Belle constraint on the LFV
three-body decay process. On the other hand, since the bound from either τ → µZ ′ or
τ → µee is strong, we conclude that εqPµτ in this model is strongly bounded.

8.3.3 τ → µνν Three Body Decay

In this section, we consider the bounds from τ → µνµντ . In the SM, this process happens
through a W boson exchange as shown in Fig. 8.6. In this model, the Z ′ exchange also
contributes to the same process, which interferes with the SM process. To be specific, the
Lagrangian for the SM τ → µνµντ process is expressed as follows:

L ⊃ −2
√

2GF

(
ντγ

µPLτ
)(
`αγµPLνα

)
, (8.61)

which results in the transition amplitude:

MSM = −2
√

2GF

[
uντ (kντ )γ

κPLuτ (pτ )
][
uα(pα)γκPLvνα(kνα)

]
. (8.62)
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Adding Z ′ to the SM will create an extra contribution:

MZ′ = 2
√

2GF
εM2

Z′

q2 −M2
Z′

[
uα(pα)γκPLuτ (pτ )

][
uντ (kντ )γκPLvνα(kνα)

]
= −2

√
2GF

εM2
Z′

q2 −M2
Z′

[
uντ (kντ )γ

κPLuτ (pτ )
][
uα(pα)γκPLvνα(kνα)

]
, (8.63)

where we parametrize the strength of this interaction with the dimensionless parameter ε,

2
√

2GF
εM2

Z′

q2 −M2
Z′

=
(ζg′)2

q2 −M2
Z′
, (8.64)

which implies

ε = −2
M2

W

M2
Z′

(ζg′)2

g2
W

. (8.65)

Please note that, in this notation, even though ζg′ is tiny compared to the weak coupling gW ,
ε can still be fairly large due to the enhancement from small MW

MZ′
. The squared momentum

transfer is

q2 = (pτ − pα)2 = (kντ + kνα)2

= (mτ − Eα)2 − p2
α = 2|kντ ||kνα |(1− cos θ) , (8.66)

where the second line is in the rest frame of the decaying τ , and the angle θ is the angle
between the momenta of the two outgoing neutrinos in that frame1. So with the Z ′ exchange
contribution, the amplitude and its square become

MSM +MZ′ = MSM

(
1 +

εM2
Z′

q2 −M2
Z′

)
↓

|MSM +MZ′ |2 = |MSM|2
[
1 +

2εM2
Z′

q2 −M2
Z′

+O(ε2)

]
, (8.67)

Note that, due to the interference, the Z ′ exchange contributes an O(ε) correction, not an
O(ε2) correction. Also, the correction term blows up at q2 = M2

Z′ (which could happen if
MZ′ < mτ ) so we may need to include the width of the Z ′ in the Z ′ propagator:

1

q2 −M2
Z′

→ 1

q2 −M2
Z′ + iMZ′ΓZ′

. (8.68)

in which case the correction term becomes

2εM2
Z′

q2 −M2
Z′

→ 2εM2
Z′(q

2 −M2
Z′)

(q2 −M2
Z′)

2 +M2
Z′Γ

2
Z′
. (8.69)

1We treat the neutrinos as massless.
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After integrating over kντ , kνα , and the angle of pα, we have the differential decay rate

dΓ

dEα
=
G2
F

π3

(
1 +

2εM2
Z′(m

2
τ +m2

α −M2
Z′ − 2mτEα)

(m2
τ +m2

α −M2
Z′ − 2mτEα)2 +M2

Z′Γ
2
Z′

)
×
(

1

4
(m2

τ −m2
α)(mτ − Eα)

√
E2
α −m2

α −
1

4
mτ

(
(mτ − Eα)2 +

1

3
(E2

α −m2
α)

)√
E2
α −m2

α

)
=
G2
F

4π3

(
1 +

2εM2
Z′(m

2
τ +m2

α −M2
Z′ − 2mτEα)

(m2
τ +m2

α −M2
Z′ − 2mτEα)2 +M2

Z′Γ
2
Z′

)
×
(
−4

3
mτE

2
α +m2

τEα −
2

3
m2
αmτ +m2

αEα

)√
E2
α −m2

α.

(8.70)

According to Ref. [504], the Z ′ mass is chosen to be lighter than 2mµ to avoid bounds from
Z ′ → µµ. Therefore, for the Z ′ decay width, we consider Z ′ → νν, and Z ′ → e+e− only.
The details of the calculation are shown in Appendix E.1.

According to the Particle Data Group, the branching ratio of τ− → µ−νµντ is (17.39±0.04)%.
Defining r to be the ratio of Γ within this model and taking Γ from the SM prediction, the
bounds on Γ(τ− → µ−νµντ ) corresponds to r = 1± 0.0023. From this, we infer the bounds
on g′,MZ′ , and ζ in Fig. 8.7(a) and on εqPµτ in Fig. 8.7(b)(c). It is observed that τ → µνν does
not impose a strong bound on the NSI in this model. The reason is that ζ stays small and
does not run due to the lack of a quantum correction. On the other hand, the dependence
of the bound on ζ is the same.

8.4 Constraints from Other Sectors

8.4.1 Nuclear Binding Energy

In order to generate sizable NSI while avoiding constraints from the lepton sector, the cou-
pling between Z ′ and quarks is set to be large and MZ′ to be small. In this case, the Z ′

exchange between nucleons generates an extra Yukawa potential for the nuclear binding en-
ergy. Because u, d quarks share the same U(1)′ charge, the mass number dependence of the
Yukawa potential is different from the Coulomb potential, both of which are calculable. As
a result, the nuclear binding energy profile constrains the coupling g′. In this section, we
briefly study the binding energy of the nuclear system using the semi-empirical formula, and
draw bounds on g′ and MZ′ .
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Semi-empirical Mass Formula

The semi-empirical mass formula is given by

E = cVA− cSA
2
3 − cC

Z(Z − 1)

A
1
3

− cA
(A− 2Z)2

A
+ δ(A,Z), (8.71)

where Z is the atomic number, andA is the mass number. The fitting coefficients cV , cS, cC , cA
are the volume, surface, Coulomb, asymmetry terms, respectively. The pairing term δ(A,Z)
is a correction arising from the phenomenon that the nuclear binding energy is lower when
neutrons (protons) form pairs. It is expressed in Table 8.2, where kP is fixed to 1/2 or 3/4

(A− Z) even (A− Z) odd

Z even +cPA
−kP 0

Z odd 0 −cPA−kP

Table 8.2: Paring term expression in the semi-empirical Mass Formula.

for fitting purpose, such as in the least-squares fit in Ref. [510]. If we assume the error of the
energy binding for each element is the same, we can perform a least square fit of the semi-
empirical formula to the measured binding energy of nuclei. According to Wikipedia [511],
the best fit is given in Table 8.3. Using Mathematica isotope data (excluding the first four

kP cV cS cC cA cP
3
4

15.76 17.81 0.711 23.702 34
1
2

15.8 18.3 0.714 23.2 12

Table 8.3: Best fit value of the semi-empirical formula from Wikipedia.

light nuclei, i.e. requiring A > 4), one of the authors of Ref. [505] finds the fit shown in
Table 8.4, which agrees with the result of Table 8.3 within the uncertainties. Since the ref-

cV cS cC cA

Best Fit 15.474 17.280 0.694 21.876

1σ error 0.067 0.199 0.006 0.217

Table 8.4: Fitting the nuclear binding energy of the stable isotopes with 4 < A < 293 using
the semi-empirical mass formula. We fix kP = 1

2
and cP = 12.

erence of Table 8.3 is not included nor is the error estimated, we refrain from discussing the
small disagreement between that and our fit.
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Modified Semi-Empirical Mass Formula with Z′ Term

The potential of Z ′ can be modeled with a Yukawa potential, for which

∆E ∝ A
5
3f(µr0A

1
3 ), (8.72)

where r0 is the charge radius of the nucleus, µ is the mass of Z ′, and

f(x) ≡ 1− 5x

6
+

3x2

7
− x3

6
+ ... (8.73)

For the derivation of this potential, see Appendix F.2. With the presence of Z ′, the semi-
empirical mass formula is modified by an extra term, as follows

E ′ = cVA− cSA
2
3 − cC

Z(Z − 1)

A
1
3

− cA
(A− 2Z)2

A
+ δ(A,Z) + c′A

5
3f(µr0A

1
3 )︸ ︷︷ ︸

∆E

. (8.74)

Because the Coulomb-term coefficient is calculable, we add a penalty term during the fitting
to restrict it from floating far away from the calculated value. The constraints on g′ are
shown in Fig. 8.8.

8.4.2 Neutrino Scattering at IceCube

The IceCube experiment [512] is sensitive to ultra high energy (UHE) neutrinos from sources
at cosmological distances. With the presence of Z ′, it is possible to generate a new contri-
bution to cascade events through deep inelastic scattering (DIS), shown in Fig. 8.9. The
current track-to-cascade ratio is already in tension with the null hypothesis of neutrinos at
the source being νe : νµ : ντ = 1 : 1 : 12. The DIS-induced cascade events aggravate this
tension.

On the other hand, while the UHE neutrinos propagate to the Earth, the scattering with
relic neutrinos may be enhanced by a Z ′ resonance, as discussed in Ref. [513]. Assuming the
relic neutrino has mass matm = 0.1 eV, the resonance requires

MZ′ =
√

2mνEν =
√

2 · 0.1 · 6.3× 1015 eV ≈ 35 MeV, (8.75)

which is within the proposed energy range 5 MeV ∼ 200 MeV. The non-observation of the
Glashow resonance at IceCube might be explained by UHE neutrinos being converted to
hadrons by this resonance. Given the current IceCube statistics not being sensitive enough
to determine the neutrino source, we leave the detailed analysis for future work.

2The current best fit is νe : νµ : ντ = 1 : 2 : 0.
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8.4.3 Neutron-Star Cooling

For neutron-star cooling process [514], the presence of a light long-lived Z ′ might affect the
cooling rate. The radius of a neutron star is of the order of 10 km. Based on our calculations,
the lifetime of Z ′ is around 1.4 × 10−6 s. Depending on the energy of the neutron star, it
might be possible for the Z ′ to travel far enough before it decays into neutrino pair. If Z ′

decays after it escapes the neutron star, it prevents the produced neutrinos being trapped
in the star and hence opens a new channel for neutron-star cooling. We leave the details of
the estimation to Ref. [505].

8.4.4 Synchrotron Radiation

When charged particles are moving in a circular orbit, i.e., accelerating, they lose energy
through radiation of gauge particles. With the presence of a Z ′ particle, in principle it is
possible to put constraints on the gauge coupling through synchrotron radiation. The energy
of photon is calculated through the following formula:

Eγ =
3γ3~c

2R
, (8.76)

where R is the radius of the synchrotron and γ is the relativistic factor. For LHC, R ≈
4.3 km, γ = 7000/0.938 ≈ 7500, so Eγ ≈ 30 eV. Therefore, it does not apply to this
particular model. On the other hand, models that contain ultra-light gauge mediators might
be subject to this bound.

8.5 Conclusion

With data from recent long baseline neutrino experiments [515–521] and plans for future
experiments [522], models are proposed to produce non-standard interactions (NSI) that
can be tested in these experiments. In past studies such as in Refs. [4, 75, 440, 444, 473–
475, 480, 481, 523], it is assumed that the NSI is led by dimension-six or -eight operators.
Most of the effort was put on directly constraining the effective coupling of such interactions,
usually denoted as εGF . However, it turns out to be non-trivial to achieve such high-order
operators with light mediators in the EFT framework while surviving all existing bounds
from particle data. In this chapter, we focused on the model from Ref. [504] as an example
and study constraints of the model beyond the ones discussed in the original paper.

Based on our analysis, τ decay puts severe constraints on such models utilizing light particles
as mediators. In particular, τ → `Z ′ two-body decay puts stringent constraints when Z ′ is
long-lived, where ` is µ or e, and τ → µee puts constraints in the case Z ′ is short-lived.
We point out that in some cases such as the model we analyzed, even if we set certain tree
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level couplings to zero, the effective couplings can still be significant due to the quantum
loop effect, such as in eeZ ′ coupling. On the other hand, if there is no such mixing allowed
through the loop effect, the coupling can be protected up to one loop even though it is small,
such as in µτZ ′ coupling.

To close, we discussed other constraints on this model in passing, including the constraints
from nuclear binding energy and neutron star dynamics. In addition, synchrotron radiation
also puts constraints on super-light mediator fairly model independently, which might be
useful for constraining ultra-light mediators.
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Figure 8.5: Contour (blue shaded region) corresponds to the upper bound of partial decay
Γ(τ → µee). Upper panel: contour on MZ′ , g

′ plane. Lower panel: contour on MZ′ , ε
u,d
µτ

plane.
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Figure 8.6: The SM process of τ− → µ−ντνν .
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Figure 8.7: Blue shaded region corresponds to the upper bound of partial decay width
Γ(τ → µνν). Upper panel: contour on MZ′ , g

′ plane. Lower panel: contour on MZ′ , ε
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plane.
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Figure 8.8: Constraints of g′,MZ′ from nuclear binding energy at 90% confidence level. The
blue (orange) shaded region is for r0 = 1.22 fm (1.30 fm).
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Figure 8.9: DIS process at IceCube.



Conclusions

In this work, we started with discussions on the possibility of new physics not being compat-
ible with a local EFT framework. After summarizing the problems encountered in the SM in
the EFT picture, we drew a list of requirements based on what was already known and what
was needed to achieve understanding of the new physics. As a first attempt, we found a class
of noncommutative theories (NCG) that exhibited the behavior of these requirements quite
well. To study the new physics, we investigated the low energy EFT allowed by the NCG,
which contained the SM plus a minimal extension. We describe this picture as a quasi-desert
due to the lack of proliferation of particles in the extension.

Due to the presence of the NCG, the EFT at low energy is fixed by the boundary condition
dictated by the NCG. In Part I, we studied the EFT dictated by NCG type of theories and
the collider signatures of the EFT at the TeV scale. To our surprise, it was noticed that
this boundary condition of gauge couplings turned out to be very restrictive in accommo-
dating low energy collider signals, if any such signals arise. Therefore, it is possible to use
collider signals to test this class of models derived from NCG, and hence improve the way we
understand the new physics through NCG. As an example, we used the ephemeral collider
anomalies in the diphoton and diboson channels to show how the collider signals favor or
rule out such models. In addition, we pointed out in passing that the embedding of the SM
in the NCG framework hinted at extensions of the SM through anomaly cancellation. A
thorough understanding of the anomaly cancellation condition within the NCG framework
and a classification of the NCG framework itself remain open for future study.

Because new field operators at high energy can be parametrized as effective operators of
a high mass dimension in the Wilsonian picture, a careful study of low energy EFT is of
importance to find clues of new physics. Besides the constraints obtained from the collider
experiments, at low energy the neutrino sector has large uncertainty due to the nature of
weak interaction. In order to carefully examine the EFT at low energy, in Part II we looked
into the neutrino sector and studied the possibilities of finding new physics parametrized
as NSI. To be specific, we studied the sensitivity of putting constraints on εeL,Ree using the
neutron spallation source for the neutrinos and a mineral oil neutrino detector. Because
of the pulsed time structure of the proton beam, we separated the νµ flux from the νe, νµ
flux, which in turn constrained the neutrino flux and NSI separately. We observed that the
sensitivity to NSI was strongly affected by the control of the uncertainty in the neutrino
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flux. We also mentioned in passing that, at very low energy range (Eν < 50 MeV), one
of the largest backgrounds is still from the theoretical estimate of ν − 12C cross section.
In Chapter 7, we worked out an analytic approximation of the NSI matter effect for εµτ .
With this expression, the term of the matter effect in the Lagrangian is absorbed into the
vacuum oscillation parameters by analogy with the idea of renormalization group flow. In
this approach, it is clear to observe the physical effect of NSI. Therefore, it is easy to analyze
the degeneracy of parameters such as the proper octant of θ23, the mass hierarchy, and NSI.

In Part III, we studied the models that generate sizable NSI with a light gauge boson.
We showed that even though certain interaction terms are turned off at tree level to avoid
stringent bounds, it is inevitably pulled back through quantum loop effect. This puts strong
bounds on the model, which otherwise is not applicable at tree level. In addition, we briefly
discussed bounds from other sectors, such as the change of nuclear binding energy, neutron
star cooling, and the high energy neutrino scattering and synchrotron radiation. Although
the bounds are model dependent, we observed that, in general, the bounds listed above
put strong constraints on models that utilize light mediator particles to generate large NSI.
Further investigation on other models are left for future studies.
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Appendix A

Formula for the Superconnection
Formalism

A.1 The Ne’eman-Sternberg Rule for Supermatrix Mul-

tiplication

As stated in Footnote 11 on Page 29, some papers in the literature treat the superconnection
J as a super-endomorphism of a superspace and calculate the supercurvature F differently.
In this appendix, we derive the multiplication rule for super-endomorphisms with differential
forms as elements (or super-endomorphism valued differential forms). We will follow the
notation of Sternberg [171] in which the Z2 gradings with be denoted with ± superscripts
instead of 0, 1 subscripts.

A superspace E is simply a vector space with a Z2 grading:

E = E+ ⊕ E− . (A.1)

We denote the set of all endomorphisms, i.e., linear transformations, on E with End(E),
which is already an associative algebra. In the matrix representation, the product of End(E)
is just standard matrix multiplication.

When E is provided with a Z2 grading as above, a Z2 grading can also be introduced into
End(E) by simply letting End(E)+ consist of all endomorphisms that map E± to E±, and
End(E)− consist of all endomorphisms that map E± to E∓. That is:

End(E)+ : E+ → E+, E− → E− ,
End(E)− : E+ → E−, E− → E+ . (A.2)

In matrix representation, the elements of End(E)+ consist of matrices of the form[
A 0
0 B

]
, A : E+ → E+, B : E− → E−, (A.3)
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while elements of End(E)− consist of those of the form[
0 C
D 0

]
, C : E− → E+, D : E+ → E−. (A.4)

Then, clearly
End(E) = End(E)+ ⊕ End(E)− , (A.5)

and End(E) can be viewed as a superalgebra, its product satisfying Eq. (2.7). Note that the
product of the superalgebra here is just the product of the associative algebra from which
it was derived, i.e., standard matrix multiplication. So far, nothing has changed by viewing
End(E) as a superalgebra.

The multiplication rule changes when the superalgebra End(E) = End(E)+ ⊕ End(E)−

is tensored with the commutative superalgebra of differential forms Ω(M) = Ω+(M) ⊕
Ω−(M), yielding a superalgebra of super-endomorphism valued differential forms, or super-
endormorphisms with differential forms as elements. The rule depends slightly on whether
we view super-endomorphism valued differential forms as elements of the tensor product
End(E) ⊗ Ω(M), or the tensor product Ω(M) ⊗ End(E), since this affects the sign in the
definition of the product for tensored superalgebras, Eq. (2.28).

For elements of End(E) ⊗ Ω(M), we have the Ne’eman-Sternberg multiplication rule given
in Refs. [120, 129, 171, 173] as:[

A C
D B

]
�
[
A′ C ′

D′ B′

]
:=

[
A ∧ A′ + (−1)|C|C ∧D′ C ∧B′ + (−1)|A|A ∧ C ′
D ∧ A′ + (−1)|B|B ∧D′ B ∧B′ + (−1)|D|D ∧ C ′

]
, (A.6)

where A, B, C, D, A′, B′, C ′, and D′ are all matrices themselves whose elements are
differential forms of a definite grading. For the elements of Ω(M)⊗ End(E), we have[

A C
D B

]
�
[
A′ C ′

D′ B′

]
:=

[
A ∧ A′ + (−1)|D

′|C ∧D′ A ∧ C ′ + (−1)|B
′|C ∧B′

(−1)|A
′|D ∧ A′ +B ∧D′ (−1)|C

′|D ∧ C ′ +B ∧B′
]
. (A.7)

These relations are simple consequences of Eq. (2.28). First, rewrite each matrix in tensor
product form, schematically, as[

A C
D B

]
= A⊗

[
1 0
0 0

]
+B ⊗

[
0 0
0 1

]
+ C ⊗

[
0 1
0 0

]
+D ⊗

[
0 0
1 0

]
,[

A′ C ′

D′ B′

]
= A′ ⊗

[
1 0
0 0

]
+B′ ⊗

[
0 0
0 1

]
+ C ′ ⊗

[
0 1
0 0

]
+D′ ⊗

[
0 0
1 0

]
.

(A.8)
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Note that we are using tensor products in Ω(M)⊗End(E) with the differential form on the
left and the supermatrix on the right. Then, we multiply the tensor products together, term
by term. For instance, (

A⊗
[
1 0
0 0

])
�
(
A′ ⊗

[
1 0
0 0

])
= (−1)0×|A′| (A ∧ A′)⊗

([
1 0
0 0

]
·
[
1 0
0 0

])
= (A ∧ A′)⊗

[
1 0
0 0

]
=

[
A ∧ A′ 0

0 0

]
, (A.9)

and (
C ⊗

[
0 1
0 0

])
�
(
D′ ⊗

[
0 0
1 0

])
= (−1)1×|D′| (C ∧D′)⊗

([
0 1
0 0

]
·
[
0 0
1 0

])
= (−1)|D

′| (C ∧D′)⊗
[
1 0
0 0

]
=

[
(−1)|D

′|C ∧D′ 0
0 0

]
. (A.10)

Summing, we obtain the 1-1 element of Eq. (A.7). All other elements can be derived in a
similar fashion.



Appendix B

Formula for LRSM RGE running

B.1 Useful Identities for Higgs Bidoublets

To compare Eq. (2.9) of Ref. [207] and Eq. (A2) of Ref. [208], we need the following identities:

Tr
[(

Φ†Φ
)2
]

=
(

Tr
[
Φ†Φ

])2

− 1

2
Tr
[
Φ†Φ̃

]
Tr
[
Φ̃†Φ

]
,

1

2

(
Tr
[
Φ†Φ̃

]
+ Tr

[
Φ̃†Φ

])2

=
1

2

{(
Tr
[
Φ†Φ̃

])2

+
(

Tr
[
Φ̃†Φ

])2
}

+ Tr
[
Φ†Φ̃

]
Tr
[
Φ̃†Φ

]
,

1

2

(
Tr
[
Φ†Φ̃

]
− Tr

[
Φ̃†Φ

])2

=
1

2

{(
Tr
[
Φ†Φ̃

])2

+
(

Tr
[
Φ̃†Φ

])2
}
− Tr

[
Φ†Φ̃

]
Tr
[
Φ̃†Φ

]
,

Tr
[
Φ†ΦΦ̃†Φ̃

]
=

1

2
Tr
[
Φ†Φ̃

]
Tr
[
Φ̃†Φ

]
,

Tr
[
Φ†Φ̃Φ†Φ̃

]
+ Tr

[
Φ̃†ΦΦ̃†Φ

]
=

1

2

{(
Tr
[
Φ†Φ̃

])2

+
(

Tr
[
Φ̃†Φ

])2
}
,

Tr
[(

∆†L∆L

)2
]

=
(

Tr
[
∆†L∆L

])2

− 1

2
Tr
[
∆L∆L

]
Tr
[
∆†L∆†L

]
,

Tr
[
Φ̃Φ̃†∆L∆†L

]
= Tr

[
Φ†Φ

]
Tr
[
∆†L∆L

]
− Tr

[
Φ†Φ∆†L∆L

]
,

Tr
[
Φ̃†Φ̃∆R∆†R

]
= Tr

[
ΦΦ†

]
Tr
[
∆†R∆R

]
− Tr

[
ΦΦ†∆†R∆R

]
. (B.1)

B.2 Derivation of Relations Between Symmetry Break-

ing Scales

1
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ln
MR

MZ
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+
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MR

+
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8π2
ln
MR

MZ
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e2(MZ)
=
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+
1
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+
aI

3

8π2
ln
MR

MZ

=
1

g2
3(MC)
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. (B.2)

If we impose the condition

gL(MU) = gR(MU) = g4(MU) ≡ gU , (B.3)

then it is straightforward to show that

2π

[
3− 8 sin2 θW (MZ)

α(MZ)

]
= 8π2

[
3

e2(MZ)
− 8

g2
2(MZ)

]
=
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MD
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+ (−5aL + 3aR + 3aBL)II ln
MC
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+ (3a1 − 5a2)I ln
MR

MZ

]
,

2π

[
3

α(MZ)
− 8

αs(MZ)

]
= 8π2

[
3

e2(MZ)
− 8

g2
3(MZ)

]
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=
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=
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+
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=
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)
. (B.4)

Note that aIV
L = aIV

R since parity is not broken in energy interval IV.

If instead, we impose the conditions

gL(MD) = gR(MD) ≡ gLR , g4(MD) ≡ g4D , (B.5)

where gLR and g4D are not necessarily equal, then the relations will be

2π

[
3− 6 sin2 θW (MZ)
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=
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=
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− 1

g2
L(MR)
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2(MZ)
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=
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,
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MD
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3 ln
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MR
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3 ln
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)
. (B.6)



Appendix C

Formula for OscSNS Phenomenology

C.1 Pion and Muon Decay Energy Spectra

At the SNS at the Oak Ridge National Laboratory, a proton beam is shot into a liquid
mercury target creating both positively and negatively charged pions. The negatively charged
pions are attracted to nuclei and quickly absorbed, while the positively charged pions come
to rest in the target and decay:

π+ → µ+ + νµ . (C.1)

The mean lifetime of the charged pions is τπ = (2.6033 ± 0.0005) × 10−8 sec ≈ 26 ns. The
µ+ and νµ from this decay are mono-energetic and have the energies

Eµ =
m2
π +m2

µ

2mπ

= 109.778 MeV ,

Eνµ =
m2
π −m2

µ

2mπ

= 29.792 MeV . (C.2)

The momentum of the positive muon is

pµ =
Eνµ
c

= 29.792 MeV/c , (C.3)

and its velocity is

βµ =
vµ
c

=
pµc

Eµ
= 0.2714 . (C.4)

These positive muons also come to rest inside the Hg target and decay via

µ+ → e+ + νe + νµ . (C.5)

The mean lifetime of the muon is τµ = (2.1969811± 0.0000022)× 10−6 sec ≈ 2200 ns. Thus,
it lives two orders of magnitude longer than the charged pion. The differential decay widths

240



241

are

dΓ

dx
=

G2
Fm

5
µ

π3

x2(xmax − x)2(
1
2
− x
) θ(xmax − x) ,

dΓ

dy
=

G2
Fm

5
µ

π3

y2(ymax − y)2
(
y2 − 5+η

4
y + 3(1+η)

8

)
3
(

1
2
− y
)3 θ(ymax − y) . (C.6)

where x = Eνe/mµ, y = Eνµ/mµ, η = m2
e/m

2
µ = 2.339× 10−5, and

xmax = ymax =
1− η

2
≈ 0.5 . (C.7)

The total width is

Γ =

∫ xmax

0

dΓ

dx
dx =

∫ ymax

0

dΓ

dy
dy =

G2
Fm

5
µ

192π3
f(η) , (C.8)

where
f(η) =

(
1− 8η + 8η3 − η4 − 12η2 ln η

)
≈ 1 . (C.9)

Thus, the energy spectra of the νe and νµ in µ+ decay are given by

λνe(Eνe) =
1

mµΓ

dΓ

dx
, λνµ(Eνµ) =

1

mµΓ

dΓ

dy
. (C.10)

These functions are shown in Fig. 6.1.

C.2 SNS Source Timing

The proton beam at the SNS is provided at a pulse length of Tp = 695 ns and a repetition rate
of 60 Hz (Ref. [401]: Page 11 and Table 3.1 on page 13). According to page 10 of Ref. [401],
there is a yield of 0.12 neutrinos per proton on target (POT). However, according to page
23 of Ref. [401], the number of π+’s created per POT is 0.116 ≈ 0.12, but the resulting
yields of νe, νµ, and νµ are quoted as 0.09. The reason that the pion and neutrino yields on
page 23 do not agree remains unclear. As we discussed with Dr. Pilar Coloma in several
email exchanges that were shared with the proponents, it was conjectured that 0.09 was the
number they used.

On page 37, the proton beam intensity at the SNS with 1.4 MW of power is quoted as
8.7 × 1015 POT/second or 2.74 × 1023 POT/year. Page 10 mentions a planned upgrade to
3 MW, which means that this intensity can be more than doubled in the near future. We
will use the value of 1.4 MW in the following.
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From the above numbers, we can see that “1 year” for the SNS is defined as

2.74× 1023 POT/year

8.7× 1015 POT/second
=

3.1× 107 seconds

year
, (C.11)

which is basically one full Julian year:

365.25 days

year
× 24 hours

day
× 60 minutes

hour
× 60 seconds

minute
=

3.15576× 107 seconds

year
. (C.12)

We need to keep this in mind since in many accelerator based experiments “1 year” is defined
as 1 × 107 seconds (Europe) or 2 × 107 seconds (USA), not 3 × 107 seconds. The POT per
107 seconds (1 European year) is:

(8.7× 1015 POT/second)× (107 seconds/107 seconds) = 8.7× 1022 POT/107 seconds .
(C.13)

Since the pulse rate is 60 Hz, the number of POT per pulse is

8.7× 1015 POT/second

60 pulses/second
= 1.5× 1014 POT/pulse , (C.14)

which agrees with the number of protons per pulse (ppp) listed in Table 3.1 on page 13.
Using a π+ production rate of 0.12/POT, this leads to the production of (1.5× 1014 ppp)×
(0.12/POT) = (1.8×1013 πpp). But since we are only interested in the decays of these pions
that lead to neutrinos detected at the detector, we should be using the production rate of
0.09/POT which would give us (8.7× 1015 POT/second)/(60 pulse/second)× (0.09/POT) =
(1.3 × 1013 πpp). Assuming that the production of π+ is uniform during the proton pulse
duration, the production rate is

Aπ =
1.3× 1013

695 ns
= 1.9× 1010 /ns . (C.15)

If we write the numbers of π+ and µ+ in the Hg target at time t as Nπ(t) and Nµ(t), their
time derivatives are given by

Nπ(t)

dt
=


Aπ −

Nπ(t)

τπ
if 0 < t < Tp ,

−Nπ(t)

τπ
if Tp < t ,

Nµ(t)

dt
=

Nπ(t)

τπ
− Nµ(t)

τµ
, (C.16)

where τπ = 26 ns and τµ = 2200 ns. Imposing the initial condition Nπ(0) = Nµ(0) = 0, the
solution to the above pair of differential equations is

Nπ(t)

τπ
= Aπ

(
1− e−t/τπ

)
,
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Nµ(t)

τµ
= Aπ

[
1−

(
τµ

τµ − τπ

)
e−t/τµ +

(
τπ

τµ − τπ

)
e−t/τπ

]
, (C.17)

in the range 0 < t < Tp, and

Nπ(t)

τπ
=

Nπ(Tp)

τπ
e−(t−Tp)/τπ

= Aπ
(
1− e−Tp/τπ

)
e−(t−Tp)/τπ = Aπ

(
eTp/τπ − 1

)
e−t/τπ ,

Nµ(t)

τµ
=

[
Nπ(Tp)

τµ − τπ
+
Nµ(Tp)

τµ

]
e−(t−Tp)/τµ − Nπ(Tp)

τµ − τπ
e−(t−Tp)/τπ

= Aπ

[(
τµ

τµ − τπ

)(
1− e−Tp/τµ

)
e−(t−Tp)/τµ +

(
τπ

τµ − τπ

)(
1− e−Tp/τπ

)
e−(t−Tp)/τπ

]
= Aπ

[(
τµ

τµ − τπ

)(
eTp/τµ − 1

)
e−t/τµ −

(
τπ

τµ − τπ

)(
eTp/τπ − 1

)
e−t/τπ

]
, (C.18)

in the range Tp < t. The total flux of νµ, νe, and νµ can be obtained from

φνµ(t) =
Nπ(t)

τπ
, φνe(t) = φνµ(t) =

Nµ(t)

τµ
. (C.19)

The time-dependence of these fluxes are shown in Fig. 6.2 (cf. Figure 3.1 on page 11 of
Ref. [401]). As can be seen, there is a clear temporal separation of νµ’s from π+ decay, and
νe and νµ’s from µ+ decay.

The total numbers of neutrinos of each flavor from t = 0 to t = Tp are∫ Tp

0

dt φνµ(t) = Aπ
[
Tp +

(
e−Tp/τπ − 1

)
τπ
]
,

= Aπ × (669 ns) = 1.3× 1013 ,∫ Tp

0

dt φνe(t) =

∫ Tp

0

dt φνµ(t)

= Aπ

[
Tp +

(
e−Tp/τµ − 1

) τ 2
µ

τµ − τe
+
(
1− e−Tp/τπ

) τ 2
π

τµ − τe

]
= Aπ × (92.3 ns) = 1.8× 1012 . (C.20)

So the ratio of the numbers of νe or νµ to νµ is

92.3

669
= 0.138 = 14% . (C.21)

This is the number quoted on page 10, but we now understand that 14% is not the fraction
of νe’s and νµ’s in the total flux but rather the ratio to the νµ count alone. The fraction of
the total yield is

0.14

1 + 0.14 + 0.14
= 0.11 = 11% . (C.22)
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So during the time that the proton beam is on, νµ’s make up 78% of the flux while νe’s and
νµ’s make 11% each.

On the other hand, the total numbers of neutrinos of each flavor from t = Tp to t =∞ are∫ ∞
Tp

dt φνµ(t) = Aπ
(
1− e−Tp/τπ

)
τπ ,

= Aπ × (26.0 ns) = 4.9× 1011 ,∫ ∞
Tp

dt φνe(t) =

∫ ∞
Tp

dt φνµ(t)

= Aπ

[(
1− e−Tp/τµ

) τ 2
µ

τµ − τe
+
(
e−Tp/τπ − 1

) τ 2
π

τµ − τe

]
= Aπ × (603 ns) = 1.1× 1013 . (C.23)

Thus, the ratio of the numbers of νµ to νe or νµ during the interval from t = Tp to t =∞ is

26.0

603
= 0.043 = 4% , (C.24)

and the fraction of νµ’s in the total flux is

0.04

1 + 1 + 0.04
= 0.02 = 2% , (C.25)

while νe and νµ contribute 49% each. The fraction of νµ’s can be made negligibly small
by moving the initial time of the interval away from Tp. For instance, the fraction can be
reduced from 2% to 0.04% by moving the start of the interval to 800 ns.

The total number of neutrinos of each flavor from t = 0 to t =∞ is, of course,∫ ∞
0

dt φνµ(t) =

∫ ∞
0

dt φνe(t) =

∫ ∞
0

dt φνµ(t) = AπTp = Aπ × (695 ns) = 1.3× 1013 .

(C.26)
For νµ, 96.3% of the total flux is emitted during the duration of the proton pulse, while 3.7%
is emitted after the pulse is turned off:

669.0 ns

695 ns
= 0.963 ,

26.0 ns

695 ns
= 0.037 . (C.27)

For νe and ν̄µ, the percentages are 13.3% and 86.7%:

92.3 ns

695 ns
= 0.133 ,

602.7 ns

695 ns
= 0.867 . (C.28)



245

C.3 SNS Neutrino Fluxes

The total number of neutrinos of each flavor created per pulse is

1.3× 1013/pulse . (C.29)

With a pulse rate of 60 Hz, the number of neutrinos created per second would be

(1.3× 1013/pulse)× (60 pulses/second) = 7.8× 1014/second . (C.30)

This is, of course, what one gets from 8.7 × 1015 POT/second with a neutrino produc-
tion rate of 0.09/POT. The number of neutrinos created per 107 seconds would be 7.8 ×
1021/107 seconds. In one Julian year, the number will be

(7.8× 1014/second)× (3.16× 107 seconds/year) = 2.5× 1022/year . (C.31)

These neutrinos are spread out over a sphere of radius 60 meters, so the flux at the detector
will be

Φ =
(2.5× 1022/year)

4π(6000 cm)2
= 5.5× 1013/year/cm2 , (C.32)

which agrees with the numbers cites on page 37 of Ref. [401]. For 107 seconds, the flux would
be:

Φ =
(7.8× 1021/107 seconds)

4π(6000 cm)2
= 1.7× 1013/107 seconds/cm2 . (C.33)



Appendix D

R Ratio, Self-Energy, Running of
Coupling, and All That

In this section we summarize the relation between the R ratio, the self-energy Π(h)(q2), the
running of the coupling δα. The picture can be described by the following relation:

∆α(q2)
reparametrizing←−−−−−−−→

I
Π′(q2)− Π′(0)

dispersion relation←−−−−−−−−−→
II

∫
(ImΠ′(q2)− ImΠ′(0))

optical theorem←−−−−−−−→
III

∫
σ(h) write out σµµ←−−−−−−→

IV

∫
R. (D.1)

Next, we show each one of the double arrows.

D.1 ∆α(q2)←→ Π′(q2)− Π′(0)

Just as in the usual one loop calculation, the QED coupling constant is shifted by vacuum
polarization by

α̂(q2) =
e2

4π

[
1 +

Πγγ(q
2)

q2

]
, (D.2)
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where the blue part is dependent on the vacuum polarization and not necessarily calculable.
To write it in the way it is usually formulated,

α̂(0) =
e2

4π

(
1 + Π′γγ(0)

)
=
e2

4π

(
1 +

Πγγ(q
2)

q2
+ Π′γγ(0)− Πγγ(q

2)

q2︸ ︷︷ ︸
−∆α(q2)

)

=
e2

4π

(
1 +

Πγγ(q
2)

q2

)
− e2

4π
∆α(q2)

= α̂(q2)(1−∆α(q2)) +O(α2), (D.3)

which gives us the familiar α̂(q2) =
α̂(0)

1−∆α(q2)
, where ∆α(q2) = Π′γγ(q

2)− Π′γγ(0).

D.2 Π′(q2)− Π′(0)←→
∫

(ImΠ′(q2)− ImΠ′(0))

Essentially, this is just a Cauchy integral. It is also referred to as dispersion relation for
some reason. The Cauchy integral is the following contour integral:

f(a) =
1

2πi

∮
f(z)

z − a
dz. (D.4)

Replacing f(a) with Π(x), we have

Π(h)
γγ (q2) =

1

2πi

∮
Π(h)(x)

x− q2
dx. (D.5)

Due to the cut structure of Π(q2), the contour cannot be closed for the whole q2 complex
plane. The cut on the real axis starting at 4m2

π has to be excluded. Due to Jordan’s lemma,
the contour around infinity vanishes. Therefore, the right side of the above equation becomes
a ‘C’ shaped integral along the ray [4m2

π,+∞). The nature of the branch cut dictates the
discontinuity of Π to be twice the imaginary part of Π, i.e.

Disc. Π(q2) = Π(q2 + iε)− Π(q2 − iε) = 2iImΠ(q2 + iε), (D.6)

when Im(q2) ≥ 4m2
π and ε→ 0. Therefore, we have the following expression for Π

(h)
γγ (q2).

Π(h)
γγ (q2) = − 1

2πi

∫ ∞
4m2

π

1

q2 − x
(2i)ImΠ(h)

γγ (x+ iε)dx

= − 1

π

∫ ∞
4m2

π

1

q2 − x
ImΠ(h)

γγ (x+ iε)dx. (D.7)
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D.3
∫

(Im Π′(q2)− Im Π′(0))←→
∫
σ(h)

The optical theorem is just unitarity rephrased in field theory language. With the definition
of the T matrix, S = 1 + iT , the following statements are equivalent:

S†S = 1,

(1− iT †)(1 + iT ) = 1 + i(T − T †) + T †T = 1,

T †T = −i(T − T †). (D.8)

The last equation corresponds to two types of processes. As in Ref. [524], the matrix element
corresponding to T †T can be decomposed by summing over intermediate states,

〈
p1p2|T †T |k1k2

〉
=
∑
n

(
n∏
i=1

∫
d3qi

(2π)3

1

2Ei

)〈
p1p2|T †|{qi}

〉︸ ︷︷ ︸
M∗(p1p2→{qi})

〈{qi}|T |k1k2〉︸ ︷︷ ︸
M(k1k2→{qi})

, (D.9)

which physically corresponds to the matrix element of two particles with momentum k1,k2

going to any arbitrary final states, multiplied by the conjugate of the matrix element of two
particles with momentum p1,p2 going to the same arbitrary final states. Letting |p1,p2〉 =
|k1,k2〉, i.e., elastic forward scattering process, the two matrix elements under the curly
brackets are conjugate to each other and lead to the differential cross section

dnσ

dq1...dqn
= |M(p1p2 → {qi})|2 . (D.10)

Therefore the right side of Eq.(D.9) is the sum over the final states of total cross section
|p1p2〉 → |{qi}〉, i.e., an inclusive cross section with initial state |p1p2〉. On the other hand,
when sandwiched by initial and final states the right side of Eq.(D.8) leads to

− i
(
〈p1p2|T |k1k2〉 −

〈
p1p2|T †|k1k2

〉 )
=− i

(
M(k1k2 → p1p2)−M∗(p1p2 → k1k2)

)
. (D.11)

Again, letting |p1,p2〉 = |k1,k2〉, we end up with the difference of two matrix elements

− i
(
M(p1p2 → p1p2)−M∗(p1p2 → p1p2)

)
=2ImM(p1p2 → p1p2). (D.12)

Putting them together, we have

2ImM(p1p2 → p1p2) =
∑
n

(
n∏
i=1

∫
d3qi

(2π)3

1

2Ei

)
|M(p1p2 → {qi})|2

=
∑
X

σ(p1p2 → X), (D.13)
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which indicates the imaginary part of an amplitude can be related to the total cross section
of ‘half’ of the same process. Next, let us work out an explicit example relevant to our study
of the e+e− → hadrons process.

p1

p2 q q k1

k2

e

e

e

e

For the above process, we cut it in half and apply the optical theorem. In four-vectors, it is
expressed in the following way.

σtot(e
+e− → had) =

1

2E12E2|v1 − v2|

(
n∏
i=1

∫
d3qi

(2π)3

1

2Ei

)
× 1

4

∑
spins

|M|2(2π)4δ4(k1 + k2 −
∑

qi)

=
1

2E12E2|v1 − v2|

(
1

4

∑
spins

)(
n∏
i=1

∫
d3qi

(2π)3

1

2Ei

)
|M|2(2π)4δ4(k1 + k2 −

∑
qi)

=
1

2E12E2|v1 − v2|

(
1

4

∑
spins

)
(−i) (M−M∗)

=
1

2E12E2|v1 − v2|

(
1

4

∑
spins

)
2ImM(e+e− → e+e−).

(D.14)

It is useful to extract the vacuum polarization function out of the hadron process. To express
M, we follow the Feynman rules.∑

spins

iM =
∑
spins

ψ(p2)γµψ(p1)(−ie)−igµν
q2

(
iΠνρ(q2)

) −igρσ
q2

(−ie)ψ(k2)γσψ(k1)

=
∑
spins

ψ(p2)γµψ(p1)(e2)
1

q4

(
iΠµσ(q2)

)︸ ︷︷ ︸
iq2gµσΠ′γγ(q2)

ψ(k2)γσψ(k1)

=
∑
spins

ψ(p2)γµψ(p1)ψ(k2)γσψ(k1)(e2)
1

q2
iΠ′γγ(q

2)

= −q2 e
2

q2
iΠ′γγ(q

2)

= −ie2Π′γγ(q
2). (D.15)
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We list in the following the trick for handling the prefactor in Eq.(D.14). In the CM frame,

E1E2|v1 − v2| = |E2|p1| − E1|p2||
= (E2 + E1)|p1|
= Ecm|pcm|. (D.16)

Neglecting the mass of electron, me ≈ 0, we have

Ecm = 2|p1| =
√
q2,

|pcm| =
1

2
|p1 − p2| = |p1| =

1

2

√
q2. (D.17)

Substituting Eq.(D.15)-(D.17) into Eq.(D.14), we get

σtot(e
+e− → had)(q2) =

1

q2

∑
spins

ImM(e+e− → e+e−)

= −4πα

q2
ImΠ′γγ(q

2). (D.18)

Please note that there is a little cheat we have done (and everybody does) in the previous
proof. In order to decompose as in Eq.(D.9), the intermediate states {qi} must form a
complete basis. However, when we talk about the ‘hadronic intermediate states,’ it is not
obvious how they form a complete basis. Since there is a mathematical complication in
defining quantum field theory with interactions in the first place, we ignored such subtlety
even when the perturbation fails for QCD at low energy.

D.4
∫
σ(h) ←→

∫
R

This is the easy part. Write out the e+e− → µ+µ− total cross section and convert σ(h) into
R ratio. Up to leading order, we have

σ(e+e− → µ+µ−) =
4πα2

3q2

√
1−

4m2
µ

q2

(
1 +

2m2
µ

q2

)
. (D.19)

Taking mµ → 0,

R =
σ(h)

σµµ

=
3q2σ(h)

4πα2
. (D.20)
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D.5 Combinations

Playing with the I - IV relations, we can write out various combinations relating different
quantities, some of which are quite powerful. For example, combining III and IV, we have

ImΠ′γγ(x) = −α
3
R(h)(x). (D.21)

Combining II to IV, we have

Π′γγ(q
2)− Π′γγ(0) = − 1

π

∫ ∞
4m2

π

(
1

q2 − x
+

1

x

)
ImΠ′γγ(x)dx

= − 1

π

∫ ∞
4m2

π

q2

x(q2 − x)

(
−x
4πα

)
σ(h)(x)dx

= − 1

π

∫ ∞
4m2

π

q2

x(q2 − x)

(
−x
4πα

)(
4πα2

3x

)
R(h)(x)dx

=
α

3π

∫ ∞
4m2

π

q2

x(q2 − x)
R(h)(x)dx

= − e2

12π2

∫ ∞
4m2

π

q2

x(x− q2)
R(h)(

√
x)dx, (D.22)

which is how we extract the vacuum polarization function out of the R ratio. Also, we can
combine relations I - IV, which gives the following expression.

∆α(q2) = − e2

12π2

∫ ∞
4m2

π

q2

x(x− q2)
R(h)(

√
x)dx, (D.23)

which enables us to calculate the QED coupling constant running due to hadronic loop
effects.

D.6 Remarks

Please note there is a loophole in deriving the above relations. In Eq. (D.7) Π is related
to Im Π, while in Eq. (D.22) the Cauchy integral is applied on Π′. Let us now show it is
valid without going through the pole/ cut structure of Π′. In order to do this, we take the
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derivative after Πγγ(q
2) is expressed in the integral form.

Π′γγ(q
2) =

1

π

∫ ∞
4m2

π

1

(q2 − x)2
Im Πγγ(x)dx

≈ 1

π

∫ ∞
4m2

π

1

(q2 − x)2
xImΠ′γγ(x)dx

≈ 1

π

∫ ∞
4m2

π

1

(q2 − x)(−x)
xImΠ′γγ(x)dx

= − 1

π

∫ ∞
4m2

π

1

(q2 − x)
ImΠ′γγ(x)dx. (D.24)

Please note the second and the third line only work for small q2; thus, only the region of
small x matters. On the other hand, for small q2 we often write Π′ as Π(q2)/q2. Let us show
that is also compatible.

Πγγ

q2
= − 1

π

∫ ∞
4m2

π

1

q2(q2 − x)
Im Πγγ(x)dx

= − 1

π

∫ ∞
4m2

π

(
1

q2 − x
− 1

q2

)
1

x
Im Πγγ(x)dx

≈ − 1

π

∫ ∞
4m2

π

Im Π′γγ(x)dx+
1

π

∫ ∞
4m2

π

1

q2
Im Π′γγ(x)dx︸ ︷︷ ︸
=0

. (D.25)

The second term of last line vanishes because of the following.

1

π

∫ ∞
4m2

π

1

q2
Im Π′γγ(x)dx =

1

q2

1

π

∫ ∞
4m2

π

Im Πγγ(x)

x− 0
dx

=
1

q2
Πγγ(0)

= 0. (D.26)



Appendix E

Formulas for Decay Width and
Approximation

In this appendix we show the decay width expression of Z ′, and use the two-body decay
formula to approximate three-body decay process in the case where the mediator particle is
very long-lived.

E.1 Z′ Decay Width

kνα

kνβ

Z ′

να

νβ

Figure E.1: The process of Z ′ → νανβ.

Assuming Z ′ → νν mode only for simplification, we can write out the matrix element as

M = (Q′g′)2

[
να(kνα)γµ

(
1− γ5

2

)
νβ(kνβ)

]
. (E.1)
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The average over final spin reads∑
f. s.

|M|2 =
∑
f. s.

(Q′g′)2

[
να(kνα)γµ

(
1− γ5

2

)
νβ(kνβ)

] [
να(kνα)γµ

(
1− γ5

2

)
νβ(kνβ)

]∗
=
∑
f. s.

(Q′g′)2να(kνα)γµ
(

1− γ5

2

)
νβ(kνβ)ν†β(kνβ)

(
1− γ5

2

)
γµ†γ0†να(kνα)gµν

= (Q′g′)2Tr
(
γµ/kναγ

0γµ†γ0/kνβ

)
= (Q′g′)2Tr (γµγ

ργµγσ) (kνα)ρ
(
kνβ
)
σ

= (Q′g′)2gµνTr (γνγργµγσ) (kνα)ρ
(
kνβ
)
σ

= (Q′g′)2gµν 4 (gνρgµσ − gνµgρσ + gνσgρµ) (kνα)ρ
(
kνβ
)
σ

= (Q′g′)2 4
(
kνα · kνβ − 4kνα · kνβ + kνα · kνβ

)
= − 8(Q′g′)2

(
kνα · kνβ

)
. (E.2)

The decay width of Z ′ reads

ΓZ′ =

∫
1

2|kνβ |
1

2|kνα|
d3kνα
(2π)3

d3kνβ
(2π)3

S

2MZ′
(2π)3δ(3)(kνβ + kνα)(2π)δ(MZ′ − |kνα| −

∣∣kνβ ∣∣) 〈|M|2〉
=

∫
1

4|kνα |2
d3kνα
(2π)3

1

2MZ′
(2π)δ(MZ′ − 2|kνα|)(Q′g′)2(|kνα |2 + |kνα|2)(8)

=

∫
d3kνα
(2π)3

1

2MZ′
(2π)δ(MZ′ − 2|kνα |)

1

2
(Q′g′)2(8)

=

∫
1

2MZ′
(2π)δ(MZ′ − 2|kνα |)

1

2
(Q′g′)2|kνα |2

1

2π2
d|kνα|(8)

=
1

4π
(Q′g′)2MZ′ .

(E.3)

Next, let us calculate ΓZ′ taking into account both Z ′ → νν and Z ′ → e+e− processes.
Neglecting the electron mass, since me � mZ′ in most cases, we get almost exactly the same
result for Z ′ → e+

Re
−
L :

Γ(Z ′ → e+
Re
−
L) =

1

4π
(Q′g′)2MZ′ , (E.4)

where Q′ is the U(1)′ effective charge of electrons. It is the same as in Z ′ → e+
Le
−
R, modulo

a change of the coupling. For example, in the model of Ref. [504], the decay width of Z ′ is

ΓZ′ = Γ(Z ′ → νν) + Γ(Z ′ → e+
Le
−
R) + Γ(Z ′ → e+

Re
−
L)

=
1

4π
(ζg′)2MZ′X

L
µτ +

1

4π
(Q′∗(MZ′ ,0)g′)2MZ′X

L
µτ +

1

4π
(Q′∗(MZ′ ,0)g′)2MZ′X

R
µτ .

(E.5)
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As we can see, the decay width of Z ′ is very small compared to its mass. Therefore, the
τ → µee process with Z ′ as intermediate particles can be seen as τ → Z ′µ with Z ′ produced
on-shell most of the time, followed by Z ′ → ee. In next section, we show how to do the
approximation.

E.2 Approximating τ → µee with Two Body Decays

In this section, we show the decay width of τ in the presence of Z ′. Since the Z ′ decay
width is very small, as is shown in section E.1, we model τ → `αβ by two sequential 2-body
decays. First of all, we count the degrees of freedom of different objects to make sure they
match. For the 1→ n decay process, we have

dΓ =
1

2ma

(∏
f

d3pf
(2π)3

1

2Ef

)
|M(1→ n)|2(2π)4δ(4)(

∑
pf − pa), (E.6)

from which we get

[M(pa → p1p2)] = 1,

[M(pa → p1p2p3)] = 0,

... (E.7)

For the 2→ n scattering process, the cross section reads

dσ =
1

2EaEb|va − vb|

(∏
f

d3pf
(2π)3

1

Ef

)
|M(2→ n)|2(2π)4δ(4)(pa + pb −

∑
pf ). (E.8)

Therefore, the dimension of M is

[M(pa, pb → p1, p2)] = 0,

[M(pa, pb → p1, p2, p3)] = −1,

... (E.9)

[M(pa, pb → p1, p2)] = [M(pa → p1, p2, p3)] as it should. Next, we show how to decompose
the three-body decay into two-body decays.

Γτ→µαβ =
1

2mτ

∫
d4kµ
(2π)4

d4kα
(2π)4

d4kβ
(2π)4

(2π)δ(k2
µ −m2

µ)(2π)δ(k2
α −m2

α)(2π)δ(k2
β −m2

β)

× (2π)4δ(4)(kµ + kα + kβ − pτ )
〈
|M(τ → µαβ)|2

〉
. (E.10)
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In order to decompose Γτ→µαβ in terms of Γτ→µZ′ and ΓZ′→αβ, we need to decompose the
matrix element M. Suppose the states form a complete basis of the interacting particle
space (which is a big ‘if’ by itself), we have

〈µαβ|τ〉 =

∫
d4qµ
(2π)4

d4qZ′

(2π)4
〈µαβ|qµqZ′〉 〈qµqZ′ |τ〉

=

∫
d4qZ′

(2π)4
〈αβ|qZ′〉 〈µqZ′|τ〉

=

∫
d4qZ′

(2π)4
iM(qZ′ → αβ)(2π)4δ(4)(kα + kβ − qZ′)

× iM(τ → µqZ′)(2π)4δ(4)(kµ + qZ′ − pτ )
= iM(τ → µqZ′)iM(qZ′ → αβ)(2π)4δ(4)(kµ + kα + kβ − pτ )
= iM(τ → µαβ)(2π)4δ(4)(kµ + kα + kβ − pτ ), (E.11)

from which we derive iM(τ → µαβ) = iM(τ → µqZ′)iM(qZ′ → αβ), where qZ′ = kα + kβ
and may not be on-shell. However, the mass dimension does not add up. By dimensional
analysis, the intermediate integral should be replaced with on-shell variables. We change it
to

〈µαβ|τ〉 =

∫
d3qµ

(2π)32Eµ

d3qZ′

(2π)32EZ′
〈µαβ|qµqZ′〉 〈qµqZ′|τ〉

=

∫
d3qZ′

(2π)32EZ′
〈αβ|qZ′〉 〈µqZ′ |τ〉

=

∫
d4qZ′

(2π)4
iM(Z ′ → αβ)(2π)3δ(4)(kα + kβ − qZ′)

× iM(τ → µZ ′)(2π)4δ(4)(kµ + qZ′ − pτ )(2π)δ(q2
Z′ −M2

Z′)

= iM(τ → µZ ′)(2π)δ(q2
Z′ −M2

Z′)iM(Z ′ → αβ)(2π)4δ(4)(kµ + kα + kβ − pτ )
= iM(τ → µαβ)(2π)4δ(4)(kµ + kα + kβ − pτ ), (E.12)

which gives us iM(τ → µαβ) = iM(τ → µZ ′)(2π)δ(q2
Z′−M2

Z′)iM(Z ′ → αβ), which implies,
loosely speaking,

|M(τ → µαβ)|2 = |M(τ → µZ ′)|2|M(Z ′ → αβ)|2(2π)2(δ(q2
Z′ −M2

Z′))
2. (E.13)

We cannot just plug it into Eq. (E.10) yet because M is squared there, while a square of
the delta function (distribution) is impossible to define mathematically. That is the reason
that generally prevents the factorization of a 3-body decay into 2-body decays. However,
because of the small mass and small decay width, the intermediate Z ′ are mostly produced
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on-shell. Because of this, we can factorize out a δ function from |M(τ → µαβ)|2 as follows.

M(τ → µαβ) =M0

(
εM2

Z′

q2
Z′ −M2

Z′ + iΓZ′MZ′

)
,

|M(τ → µαβ)|2 = |M0|2
(

ε2M4
Z′

(q2
Z′ −M2

Z′)
2 +M2

Z′Γ
2
Z′

)
= |M0|2

πε2M4
Z′

MZ′ΓZ′

(
1

π

MZ′ΓZ′

(q2
Z′ −M2

Z′)
2 +M2

Z′Γ
2
Z′

)
, (E.14)

where M0 is the part that has no poles nor zeroes. One of the definitions of the δ function
is expressed as follows:

δ(x) =
1

π
lim
ε→0

ε

x2 + ε2
. (E.15)

When MZ′ and ΓZ′ are small, Eq. (E.14) is approximated by

|M(τ → µαβ)|2 = |M0|2
πε2M4

Z′

MZ′ΓZ′
δ(q2

Z′ −M2
Z′). (E.16)

Combining with Eq. (E.13) gives

|M(τ → µαβ)|2 = |M0|2
πε2M4

Z′

MZ′ΓZ′
δ(q2

Z′ −M2
Z′)

= |M(τ → µZ ′)|2|M(Z ′ → αβ)|2(2π)2(δ(q2
Z′ −M2

Z′))
2, (E.17)

which leads to

|M0|2 =
2MZ′ΓZ′

ε2M4
Z′
|M(τ → µZ ′)|2|M(Z ′ → αβ)|2(2π)δ(q2

Z′ −M2
Z′), (E.18)
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which satisfies a dimensional-analysis check. Substitute into Eq. (E.10):

Γτ→µαβ =
1

2mτ

∫
d4kµ
(2π)4

d4kα
(2π)4

d4kβ
(2π)4

(2π)δ(k2
µ −m2

µ)(2π)δ(k2
α −m2

α)(2π)δ(k2
β −m2

β)

× (2π)4δ(4)(kµ + kα + kβ − pτ )
〈
|M0|2

〉( ε2M4
Z′

(q2
Z′ −M2

Z′)
2 +M2

Z′Γ
2
Z′

)
≈ 1

2mτ

∫
d4kµ
(2π)4

d4kα
(2π)4

d4kβ
(2π)4

d4qZ′

(2π)4

× (2π)δ(k2
µ −m2

µ)(2π)δ(k2
α −m2

α)(2π)δ(k2
β −m2

β)(2π)δ(q2
Z′ −M2

Z′)

× (2π)4δ(4)(kµ + qZ′ − pτ )(2π)4δ(4)(kα + kβ − pZ′)
〈
|M(τ → µZ ′)|2

〉 〈
|M(Z ′ → αβ)|2

〉
×
(

2MZ′ΓZ′

(q2
Z′ −M2

Z′)
2 +M2

Z′Γ
2
Z′

)
=

(
4

ΓZ′

)
1

2MZ′

1

2mτ

∫
d4kµ
(2π)4

d4kα
(2π)4

d4kβ
(2π)4

d4qZ′

(2π)4

× (2π)δ(k2
µ −m2

µ)(2π)δ(k2
α −m2

α)(2π)δ(k2
β −m2

β)(2π)δ(q2
Z′ −M2

Z′)

× (2π)4δ(4)(kµ + qZ′ − pτ )(2π)4δ(4)(kα + kβ − pZ′)
〈
|M(τ → µZ ′)|2

〉 〈
|M(Z ′ → αβ)|2

〉
=

4Γ(τ → µZ ′)Γ(Z ′ → αβ)

ΓZ′
. (E.19)

Please note that the above formula only works well when ΓZ′ is very small due to the
definition of the δ function in Eq. (E.15).



Appendix F

Coulomb Potential and Yukawa
Potential in the Semi-empirical Mass
Formula

F.1 Coulomb Potential

The Coulomb electrostatic term is due to the electrostatic potential energy which, for a
uniformly charged sphere of radius R and total charge Q, is given by

E =
3

5

(
1

4πε0

)
Q2

R
. (F.1)

With the replacements R = r0A
1/3 and Q2 = e2Z(Z − 1), we obtain:

E =
3e2

20πε0r0

Z(Z − 1)

A1/3
= aC

Z(Z − 1)

A1/3
. (F.2)

The above expression for the potential energy is obtained via the following integration:

E =
1

2

∫
d3r1

∫
d3r2

ρ(r1)ρ(r2)

|r1 − r2|

= 4π2ρ2

∫ R

0

dr1r
2
1

∫ R

0

dr2r
2
2

∫ 1

−1

d cos θ
1√

r2
1 − 2r1r2 cos θ + r2

2

= 4π2ρ2

∫ R

0

dr1r
2
1

∫ R

0

dr2r
2
2

[
− 1

r1r2

√
r2

1 − 2r1r2 cos θ + r2
2

]1

−1

= 4π2ρ2

∫ R

0

dr1r1

∫ R

0

dr2r2

[√
(r1 + r2)2 −

√
(r1 − r2)2

]
259
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= 4π2ρ2

∫ R

0

dr1r1

∫ R

0

dr2r2

[
(r1 + r2)− |r1 − r2|

]
= 8π2ρ2

∫ R

0

dr1r1

∫ R

0

dr2r2 min(r1, r2)

= 8π2ρ2

∫ R

0

dr1r1

[∫ r1

0

dr2r
2
2 + r1

∫ R

r1

dr2r2

]
= 8π2ρ2

∫ R

0

dr1r1

[
1

3
r3

1 +
1

2

(
R2 − r2

1

)
r1

]
= 8π2ρ2

∫ R

0

dr1r1

[
1

2
R2r1 −

1

6
r3

1

]
= 8π2ρ2

[
1

2
R2

∫ R

0

dr1r
2
1 −

1

6

∫ R

0

dr1r
4
1

]
= 8π2ρ2

[
1

6
R5 − 1

30
R5

]
=

16π2ρ2

15
R5 =

3

5

(
4πR3

3
ρ

)2
1

R
=

3

5

Q2

R
. (F.3)

To use it for a real fit, we need to relate the above parameters to dimensionless couplings e
and g′, and the mass mZ′ . First, we wrote the Coulomb electrostatic energy using MKSA
units as

E =
3

5

(
1

4πε0

)
Q2

R
=

3ẽ2

20πε0r0

Z(Z − 1)

A1/3
, (F.4)

where I use the symbol ẽ = 1.602× 10−19 C for the proton charge to distinguish it from the
dimensionless version which is

e =
ẽ√
ε0~c

= 0.303 , α =
e2

4π
=

1

137
. (F.5)

The constant r0 = 1.25 fm can be converted to MeV−1 via

ρ0 ≡
r0

~c
=

(1.25 fm)

(197.327 MeV · fm)
= 0.00633 MeV−1 . (F.6)

So the prefactor in Eq. (F.4) can be written as

3ẽ2

20πε0r0

=
3(ẽ2/ε0~c)
20π(r0/~c)

=
3e2

20πρ0

=
3α

5ρ0

= 0.691 MeV . (F.7)

This agrees with the result in Ref. [511].
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F.2 Yukawa Potential

For a Yukawa potential, the above calculation is modified to

E =
1

2

∫
d3r1

∫
d3r2

ρ(r1)ρ(r2)

|r1 − r2|
e−µ|r1−r2|

= 4π2ρ2

∫ R

0

dr1r
2
1

∫ R

0

dr2r
2
2

∫ 1

−1

d cos θ
e−µ
√
r2
1−2r1r2 cos θ+r2

2√
r2

1 − 2r1r2 cos θ + r2
2

= 4π2ρ2

∫ R

0

dr1r
2
1

∫ R

0

dr2r
2
2

[
1

µr1r2

e−µ
√
r2
1−2r1r2 cos θ+r2

2

]1

−1

=
4π2ρ2

µ

∫ R

0

dr1r1

∫ R

0

dr2r2

[
e−µ|r1−r2| − e−µ(r1+r2)

]
=

4π2ρ2

µ

[∫ R

0

dr1r1

∫ R

0

dr2r2 e
−µ|r1−r2| −

∫ R

0

dr1r1

∫ R

0

dr2r2 e
−µ(r1+r2)

]
=

4π2ρ2

µ

[∫ R

0

dr1r1

{
e−µr1

∫ r1

0

dr2r2 e
µr2 + eµr1

∫ R

r1

dr2r2 e
−µr2

}
−
∫ R

0

dr1r1 e
−µr1

∫ R

0

dr2r2 e
−µr2

]

=
4π2ρ2

µ

[∫ R

0

dr1r1

{
e−µr1

[
− 1

µ2
(1− µr2) eµr2

]r1
0

+ eµr1
[
− 1

µ2
(1 + µr2) e−µr2

]R
r1

}

−
[
− 1

µ2
(1 + µr1) e−µr1

]R
0

[
− 1

µ2
(1 + µr2) e−µr2

]R
0

]

=
4π2ρ2

µ

[
1

µ2

∫ R

0

dr1r1

{
e−µr1 + 2µr1 − (1 + µR) e−µReµr1

}
− 1

µ4

{
1− (1 + µR) e−µR

}2
]

=
4π2ρ2

µ

[
1

µ2

{∫ R

0

dr1r1 e
−µr1 + 2µ

∫ R

0

dr1r
2
1 − (1 + µR) e−µR

∫ R

0

dr1r1 e
µr1

}
− 1

µ4

{
1− (1 + µR) e−µR

}2
]

=
4π2ρ2

µ

[
1

µ2

{[
− 1

µ2
(1 + µr1) e−µr1

]R
0

+
2µR3

3
− (1 + µR) e−µR

[
− 1

µ2
(1− µr1) eµr1

]R
0

}

− 1

µ4

{
1− (1 + µR) e−µR

}2
]
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Figure F.1: Plot of the function f(x).

=
4π2ρ2

µ5

[{[
1− (1 + µR) e−µR

]
+

2(µR)3

3
− (1 + µR) e−µR

[
1− (1− µR) eµR

]}
−
{

1− (1 + µR) e−µR
}2
]

=
4π2ρ2

µ5

[{
1− 2(1 + µR) e−µR +

2(µR)3

3
+ (1 + µR)(1− µR)

}
−
{

1− 2(1 + µR) e−µR + (1 + µR)2e−2µR
}]

=
4π2ρ2

µ5

[
1− (µR)2 +

2(µR)3

3
− (1 + µR)2e−2µR

]

=

[
3

5

(
4πR3

3
ρ

)2
1

R

]
15

4(µR)5

[
1− (µR)2 +

2(µR)3

3
− (1 + µR)2e−2µR

]
=

3Q2

5R
f(µR) , (F.8)

where

f(x) ≡ 15

4x5

[
1− x2 +

2x3

3
− (1 + x)2e−2x

]
= 1− 5x

6
+

3x2

7
− x3

6
+ · · · (F.9)

The plot of f(x) is shown in Figure F.1.

Since both protons and neutrons have the same U(1)′ charge, we have

Q ∝ A , R = r0A
1/3 . (F.10)

Therefore, the binding energy due to the extra U(1)′ interaction would scale as

E ′ ∝ A5/3f(µr0A
1/3) . (F.11)



Appendix G

Farzan-Shoemaker Model

G.1 Notation of Farzan and Shoemaker

Farzan and Shoemaker express the left-handed leptons with the fields

L̃ ≡
[
L̃α
L̃β

]
≡ V

[
L+

L−

]
, V =

1√
2

[
1 −1
1 1

]
. (G.1)

Note that L̃α and L̃β do not have definite U(1)′ charges. This demands that L̃ transform
in the way shown in Eq. (2.2) of Ref. [504]. (I am using the equation numbers from the
published JHEP version, not the arXiv eprint.) That is, since[

L+

L−

]
→ eig

′ζσ3α

[
L+

L−

]
(G.2)

under a U(1)′ phase transformation, we find

L̃ →
(
V eig

′ζσ3αV †
)
L̃ = eig

′ζσ1αL̃ ≡ U1(α)L̃ . (G.3)

The matrix which relates L̃ to the flavor eigenstates is given in Eq. (2.4) as[
Lα
Lβ

]
=

[
cos θL − sin θL
sin θL cos θL

] [
L̃α
L̃β

]
. (G.4)

Therefore, [
Lα
Lβ

]
=

[
cos θL − sin θL
sin θL cos θL

] [
L̃α
L̃β

]
=

[
cos θL − sin θL
sin θL cos θL

]
V

[
L+

L−

]
263
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=

cos
(
θL +

π

4

)
− sin

(
θL +

π

4

)
sin
(
θL +

π

4

)
cos
(
θL +

π

4

) [L+

L−

]
= UL

[
L+

L−

]
, (G.5)

and we find that Farzan and Shoemaker’s θL is related to our δL via

δL = θL +
π

4
. (G.6)

For the right-handed charged leptons Farzan and Shoemaker use two different notations
which are actually equivalent. R̃ defined in Eq. (2.6) of Ref. [504] is given by

R̃ ≡
[

˜̀
Rα

˜̀
Rβ

]
≡ V

[
`R+

`R−

]
. (G.7)

This transforms as
R̃ → = U1(α)R̃ , (G.8)

just like L̃. Noting that

U †1(α)U1(α) = 1 , U †1(α)σ1U1(α) = σ1 , (G.9)

we can write the U(1)′ invariant Yukawa interactions shown in Eq. (2.7) of Ref. [504]:

b0R̃
†H†L̃+ b1R̃

†σ1H
†L̃

= b0

[
`R+ `R−

]
V †V H†

[
L+

L−

]
+ b1

[
`R+ `R−

]
V †σ1V H

†
[
L+

L−

]
= b0

[
`R+ `R−

]
H†
[
L+

L−

]
+ b1

[
`R+ `R−

]
σ3H

†
[
L+

L−

]
= (b0 + b1)︸ ︷︷ ︸

= f+

`R+H
†L+ + (b0 − b1)︸ ︷︷ ︸

= f−

`R−H
†L− . (G.10)

The Φ field introduced in the un-numbered equation after Eq. (2.8) is related to our extra
Higgs fields via

Φ ≡
[
Φ11 Φ12

Φ21 Φ22

]
≡ V

[
H†−+ H†−−
H†++ H†+−

]
V †

=
1

2

[
H†−+ +H†+− −H

†
++ −H

†
−− H†−+ −H

†
+− −H

†
++ +H†−−

H†−+ −H
†
+− +H†++ −H

†
−− H†−+ +H†+− +H†++ +H†−−

]
. (G.11)
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This relation can be inverted to give[
H†−+ H†−−
H†++ H†+−

]
≡ V †

[
Φ11 Φ12

Φ21 Φ22

]
V

=
1

2

[
Φ11 + Φ12 + Φ21 + Φ22 −Φ11 + Φ12 − Φ21 + Φ22

−Φ11 − Φ12 + Φ21 + Φ22 Φ11 − Φ12 − Φ21 + Φ22

]
. (G.12)

The transformation property of Φ can be shown to be

Φ → U1(α)ΦU †1(α) . (G.13)

Four U(1)′ invariant Yukawa couplings can be constructed from Φ, L̃, and R̃:

R̃†ΦL̃ = `R+H
†
−+L+ + `R−H

†
+−L− + `R+H

†
−−L− + `R−H

†
++L+ ,

R̃†Φσ1L̃ = `R+H
†
−+L+ − `R−H†+−L− − `R+H

†
−−L− + `R−H

†
++L+ ,

R̃†σ1ΦL̃ = `R+H
†
−+L+ − `R−H†+−L− + `R+H

†
−−L− − `R−H

†
++L+ ,

R̃†σ1Φσ1L̃ = `R+H
†
−+L+ + `R−H

†
+−L− − `R+H

†
−−L− − `R−H

†
++L+ . (G.14)

Of these, Farzan and Shoemaker only mention the first one:

c0R̃
†ΦL̃ = c0

[
`R+ `R−

]
V †V

[
H†−+ H†−−
H†++ H†+−

]
V †V

[
L+

L−

]
= c0

(
`R+H

†
−+L+ + `R−H

†
+−L− + `R+H

†
−−L− + `R−H

†
++L+

)
, (G.15)

which includes the redundant couplings with H−+ and H+−. The above relations can be
inverted to yield

`R+H
†
−+L+ =

1

4

(
R̃†ΦL̃+ R̃†Φσ1L̃+ R̃†σ1ΦL̃+ R̃†σ1Φσ1L̃

)
,

`R−H
†
+−L− =

1

4

(
R̃†ΦL̃− R̃†Φσ1L̃− R̃†σ1ΦL̃+ R̃†σ1Φσ1L̃

)
,

`R+H
†
−−L− =

1

4

(
R̃†ΦL̃− R̃†Φσ1L̃+ R̃†σ1ΦL̃− R̃†σ1Φσ1L̃

)
,

`R−H
†
++L+ =

1

4

(
R̃†ΦL̃+ R̃†Φσ1L̃− R̃†σ1ΦL̃− R̃†σ1Φσ1L̃

)
. (G.16)

So it is always possible to choose the Yukawa couplings in such a way that only the bottom
two linear combinations survive, e.g.,

c0

(
`R+H

†
−−L− + `R−H

†
++L+

)
=

c0

2

(
R̃†ΦL̃− R̃†σ1Φσ1L̃

)
. (G.17)

Our expression for tan(2δL) with c+ = c− = c0 reads

tan(2δL) ≈
c0〈H0〉

(
f+〈H0

−−〉+ f−〈H0
++〉
)

m2
β
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=
c0〈H0〉

[
(b0 + b1)〈H0

−−〉+ (b0 − b1)〈H0
++〉
]

m2
β

=
c0〈H0〉

[
b0〈H0

−− +H0
++〉+ b1〈H0

−− −H0
++〉
]

m2
β

=
2c0〈H0〉 [b0〈Φ0

22 − Φ0
11〉+ b1〈Φ0

12 − Φ0
21〉]

m2
β

. (G.18)

Assuming that δL is small, we can argue that

tan(2δL) ≈ sin(2δL) = sin 2
(
θL +

π

4

)
= sin

(
2θL +

π

2

)
= cos 2θL , (G.19)

and we recover the expression for cos 2θL given in the next equation.

The other notation used for the charged right-handed leptons is that given in Eq. (2.12):

˜̀
Rα = `R+ , ˜̀

Rβ = `R− . (G.20)

The Higgs doublets of Eq. (2.13) are related to our fields via

Φ1 ≡
[
φ1α

φ1β

]
≡ V

[
H−+

H−−

]
, Φ2 ≡

[
φ2α

φ2β

]
≡ V

[
H++

H+−

]
. (G.21)

These transform as

Φ1 → e−ig
′ζαU1(α)Φ1 , Φ2 → e+ig′ζαU1(α)Φ2 . (G.22)

The transformations shown in Eq. (2.13) are actually incorrect if one wants the Yukawa
couplings shown in Eq. (2.14) to be U(1)′ invariant:

˜̀†
RαΦ†1L̃ = `R+

[
H†−+ H†−−

]
V †V

[
L+

L−

]
= `R+H

†
−+L+ + `R+H

†
−−L− ,

˜̀†
RαΦ†1σ1L̃ = `R+

[
H†−+ H†−−

]
V †σ1V

[
L+

L−

]
= `R+H

†
−+L+ − `R+H

†
−−L− ,

˜̀†
RβΦ†2L̃ = `R−

[
H†++ H†+−

]
V †V

[
L+

L−

]
= `R−H

†
++L+ + `R−H

†
+−L− ,

˜̀†
RβΦ†2σ1L̃ = `R−

[
H†++ H†+−

]
V †σ1V

[
L+

L−

]
= `R−H

†
++L+ − `R−H†+−L− . (G.23)

As we can see, the so called “two solutions” of Ref. [504] are actually exactly the same model
which becomes obvious if we write the model in terms of fields with definite U(1)′ charges.

G.2 Anomaly Cancellation in the Farzan and Shoe-

maker Model

When gauging baryon and lepton numbers as a U(1) symmetry with only the SM fermion
content, it is known that the anomaly-free combinations are B − (aLe + bLµ + cLτ ) with



267

a+b+c = 3, or Lα−Lβ for some pair of flavors α and β (see Ref. [491] and references therein).
The new U(1)′ gauge group considered here corresponds to gauging 3ηB+ζ(Lα−Lβ), which
is only anomaly-free when η = 0.

Farzan and Shoemaker propose to cancel the unwanted anomalies by the introduction of new
leptons. First, let’s see what anomalies need to be canceled. Following Refs. [494] and [496],
we use the notation

A(G1 ⊗G2 ⊗G3) =
1

2
Tr
[
T1 {T2, T3}

]
, (G.24)

where Ti is the generator of the group Gi. The anomalies in the baryon sector are

A1

(
SU(3)2

C ⊗ U(1)′
)

= 0 ,

A2

(
SU(2)2

L ⊗ U(1)′
)

=
9η

2
,

A3

(
U(1)2

Y ⊗ U(1)′
)

= −9η

2
,

A4

(
U(1)Y ⊗ U(1)′2

)
= 0 ,

A5 (U(1)′) = 0 ,
A6

(
U(1)′3

)
= 0 , (G.25)

while those in the lepton sector are

A7

(
SU(3)2

C ⊗ U(1)′
)

= 0 ,
A8

(
SU(2)2

L ⊗ U(1)′
)

= 0 ,
A9

(
U(1)2

Y ⊗ U(1)′
)

= 0 ,
A10

(
U(1)Y ⊗ U(1)′2

)
= 0 ,

A11 (U(1)′) = 0 ,
A12

(
U(1)′3

)
= 0 . (G.26)

So we need to cancel A2 and A3 without introducing new ones. Ref. [504] argues that the
introduction of one extra lepton generation with charge

L4 =

[
νL4

`L4

]
∼
(

1, 2,−1

2
,−9η

)
, `R4 ∼ (1, 1,−1,−9η) , (G.27)

would do the job, but opts for two generations with charges

L4 =

[
νL4

`L4

]
∼
(

1, 2,−1

2
,−9

2
η

)
, `R4 ∼

(
1, 1,−1,−9

2
η

)
,

L5 =

[
νL5

`L5

]
∼
(

1, 2,−1

2
,−9

2
η

)
, `R5 ∼

(
1, 1,−1,−9

2
η

)
, (G.28)

so that the Witten anomaly [525] is also taken care of. Unfortunately, the introduction of
these lepton generations will reintroduce the following anomalies per generation:

A
(
SU(2)2

L ⊗ U(1)Y
)

= −1

4
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A
(
U(1)3

Y

)
= +

3

4
. (G.29)

Within the SM, these anomalies are canceled by the quarks. So introducing lepton genera-
tions without the corresponding quark generations does not work.

In any case, in order to obtain an anomaly-free theory with η 6= 0, we need to introduce new
fermions which are required to be very heavy to avoid constraints from direct searches.

G.3 Symmetry Breaking in the Farzan and Shoemaker

Model

The neutral components of the Higgs doublets H, H++, and H−− are assumed to develop
VEV’s. If we assume the standard Mexican hat potential for each, this will lead to nine
Goldstone bosons, of which only four can be absorbed into the W±, Z, and Z ′. So we need
a way to make the unwanted Goldstone bosons heavy.

Let’s first take a look at what the mass spectrum of the gauge bosons will be. The gauge
coupling of the Higgses are given by

(DµH)†(DµH) + (DµH++)†(DµH++) + (DµH−−)†(DµH−−) , (G.30)

where

DµH =
(
∂µ − i

g2

2
~Wµ · ~σ − i

g1

2
Bµ

)
H ,

DµH++ =
(
∂µ − i

g2

2
~Wµ · ~σ − i

g1

2
Bµ − 2iζg′Z ′µ

)
H++ ,

DµH−− =
(
∂µ − i

g2

2
~Wµ · ~σ − i

g1

2
Bµ + 2iζg′Z ′µ

)
H−− . (G.31)

Write the components of H, H++, and H−− as

H =

[
H+

H0

]
, H++ =

[
H+

++

H0
++

]
, H−− =

[
H+
−−

H0
−−

]
, (G.32)

and assume 〈H0〉 = v/
√

2, 〈H0
++〉 = v+/

√
2, and 〈H0

−−〉 = v−/
√

2 will be non-zero. Then,
the following gauge boson mass terms will be generated:

g2
2

4
W+
µ W

−µ (v2 + v2
+ + v2

−
)

+
(g2

2
W3µ −

g1

2
Bµ

)(g2

2
W µ

3 −
g1

2
Bµ
) v2

2

+
(g2

2
W3µ −

g1

2
Bµ − 2ζg′Z ′µ

)(g2

2
W µ

3 −
g1

2
Bµ − 2ζg′Z ′µ

) v2
+

2
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+
(g2

2
W3µ −

g1

2
Bµ + 2ζg′Z ′µ

)(g2

2
W µ

3 −
g1

2
Bµ + 2ζg′Z ′µ

) v2
−

2
, (G.33)

where

W±
µ =

1√
2

(W1µ ∓W2µ) . (G.34)

So the mass of W± in this model is

MW =
g2

2

√
v2 + v2

+ + v2
− . (G.35)

The mass matrix for the neutral gauge bosons is

M =
1

4

 g2
1

(
v2 + v2

+ + v2
−
)

−g1g2

(
v2 + v2

+ + v2
−
)

4ζg1g
′ (v2

+ − v2
−
)

−g1g2

(
v2 + v2

+ + v2
−
)

g2
2

(
v2 + v2

+ + v2
−
)

−4ζg2g
′ (v2

+ − v2
−
)

4ζg1g
′ (v2

+ − v2
−
)

−4ζg2g
′ (v2

+ − v2
−
)

16ζ2g′2
(
v2

+ + v2
−
)
 , (G.36)

where the rows and columns correspond to B, W3, and Z ′ in this order. If v+ = v− ≡ w/
√

2,
this reduces to

M =
1

4

 g2
1 (v2 + w2) −g1g2 (v2 + w2) 0

−g1g2 (v2 + w2) g2
2 (v2 + w2) 0

0 0 16ζ2g′2w2

 . (G.37)

Note that this would prevent the Z ′ from mixing with the B or the W3, and not change
the value of the Weinberg angle or the linear combinations of W3 and B that constitute the
photon and the Z.

Indeed, to diagonalize this matrix, we define

tan θW =
g1

g2

, U =

cos θW − sin θW 0
sin θW cos θW 0

0 0 1

 . (G.38)

Then

M ′ = U †MU

=
1

4

 0 0 0
0 (g2

1 + g2
2) (v2 + w2) 0

0 0 16ζ2g′2w2


=

0 0 0
0 M2

Z 0
0 0 M2

Z′

 . (G.39)

So the masses of the massive gauge bosons are

MW =
g2

2

√
v2 + w2 , MZ =

√
g2

1 + g2
2

2

√
v2 + w2 , MZ′ = 2ζg′w . (G.40)
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The mass eigenfields areAµZµ

Z ′µ

 = U †

Bµ

W µ
3

Z ′µ

 =

 Bµ cos θW +W µ
3 sin θW

−Bµ sin θW +W µ
3 cos θW

Z ′µ

 , (G.41)

and the currents that couple to these bosons are eJµQgZJ
µ
Z

g′JµZ′

 = U †

g1J
µ
Y

g2J
µ
3

g′JµZ′


=

 g1J
µ
Y cos θW + g2J

µ
3 sin θW

−g1J
µ
Y sin θW + g2J

µ
3 cos θW

g′JµZ′


=


g1g2√
g2

1 + g2
2

(JµY + Jµ3 )√
g2

1 + g2
2

(
Jµ3 − sin2 θWJ

µ
Q

)
g′JµZ′

 , (G.42)

that is

e =
g1g2√
g2

1 + g2
2

, gZ =
√
g2

1 + g2
2 , JµQ = Jµ3 + JµY , JµZ = Jµ3 − sin2 θWJ

µ
Y . (G.43)

The only difference from the SM is that the Higgs VEV v is replaced by
√
v2 + w2.

This is a nice result since the Z ′ does not mix with the photon or the Z at tree level, and we
can make the Z ′ light by taking ζg′w to be small. This can be accomplished by either taking
the coupling ζg′ too be small, or the U(1)′-charged Higgs VEV w to be small. However, if ζ
is tiny, one may need to take w to be large to obtain the MZ′ that one wants.

G.4 Bounds of Z′ Studied in the Original Model

In Ref. [504], the experimental bounds considered are in two categories, with Z ′ being pro-
duced on-shell and with virtual Z ′ being a mediator of the process, respectively. We first
look at the on-shell Z ′ production. Since the coupling constant for the new gauge sector is
different for quarks and leptons, being g′ and ζg′ respectively, we need to constrain the quark
vertex and lepton vertex separately. Diagrams in the upper panel of Fig. G.1 correspond to
the Z ′ decay processes Z ′ → `+`−, Z ′ → νν, and Z ′ → qq. In the lower panel of Fig. G.1,
the diagrams correspond to the Z ′ production processes `β → `αZ

′ and π0 → Z ′γ. Not all
processes are kinematically allowed when a specific value of mZ′ is chosen. As a result, not all
the experimental bounds apply to constrain g′ and ζg′. The Z ′ decay modes kinematically al-
lowed with the choice of MZ′ are listed in Table G.1. The corresponding production processes
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Z ′

`α/να

`α(β)/να(β)

(a)

Z ′

qα

qα

(b)

`β
`α

Z ′

(c)

qα

qα

Z ′

qα

γ

(d)

Figure G.1: Upper panel: the vertices responsible for Z ′ decay. (a) Z ′ decays to a pair of
leptons. (b) Z ′ decays to hadrons. Lower panel: the vertices for Z ′ production. (c) lepton
decays to Z ′. (d) π0 decays to Z ′.

of Z ′ are listed in Table G.2. The processes that are considered in Ref. [504] are highlighted
in red in Tables G.1 and G.2. Combining these production/decay modes, we get the pro-
cesses that might be affected by the introduction of Z ′, with expreimental data from Ref. [1].

{α, β} = {e, µ},
mZ′ < mµµ→ Z ′e→ eee, (< 10−12, CF = 90%)

mZ′ < mπ0π0 → γZ ′ → γee, (1.174± 0.035)%

{α, β} = {µ, τ},
mZ′ > 2mµτ → Z ′µ→ µµµ, (< 2.1× 10−8, CL = 90%)

mZ′ < mπ0π0 → γZ ′ → γ + inv., (< 6× 10−4)

τ → µZ ′, (< 5× 10−3, CL = 95%)

{α, β} = {e, τ},
all regionτ → eZ ′ → eee, (< 2.7× 10−8)

τ → eZ ′, (< 2.7× 10−3)

mZ′ < mπ0π0 → γZ ′ → γee. (1.174± 0.035)%

Next, the authors of Ref. [504] translate the bounds to constraints on g′, ζ, and εqPij at the
end, at different mZ′ . Since {α, β} = {e, τ} and {α, β} = {e, µ} are heavily constrained by
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α = e α = µ α = e
β = µ β = τ β = τ

2mµ < mZ′ � mτ ee, eµ, µµ, νν + had µµ, νν + had ee, νν + had
mµ < mZ′ < 2mµ ee, eµ, νν + had νν + had ee, νν + had
mπ0 < mZ′ < mµ ee, νν + had νν + had ee, νν + had

mZ′ < mπ0 ee, νν νν ee, νν

Table G.1: The decay modes of Z ′.

α = e α = µ α = e
β = µ β = τ β = τ

2mµ < mZ′ � mτ τ → µZ ′ τ → eZ ′

mµ < mZ′ < 2mµ τ → µZ ′ τ → eZ ′

mπ0 < mZ′ < mµ µ→ eZ ′ τ → µZ ′ τ → eZ ′

mZ′ < mπ0 µ→ eZ ′ τ → µZ ′ τ → eZ ′

π0 → γZ ′ π0 → γZ ′ π0 → γZ ′

Table G.2: The production modes of Z ′.

electron final state, the only option is {α, β} = {µ, τ}.

Bounds on the qqZ ′ vertex:

• When mZ′ < mπ0 , with π0 → γZ ′ → γνν, we have

Br(π0 → γZ ′) ≤ Br(π0 → γνν) < 6× 10−4. (G.44)

This translates to

g′ < 2× 10−3, when mZ′ < mπ0 = 135MeV. (G.45)

• For mπ0 < mZ′ < 2mµ, all current bounds of g′ are for the leptonic coupling ζg′, so
it does not apply. The only requirement is (g′)2/4π < α, i.e. it is smaller than strong
coupling.

• For mZ′ > 2mµ, the bounds are from Z ′ → µµ, from BaBar and KLOE-2, which is
fairly tight.
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Bounds on the ``Z ′ vertex:

The lepton vertex is determined by the process `β → Z ′`α, which gives

Γ(`β → Z ′`α) =
(g′)2ζ2

32π

m3
`β

m2
Z′

(sin2 2δL + sin2 2δR). (G.46)

• mZ′ < mπ0 , the bound for g′ is strong. For example, for mZ′ = 10 MeV, we can
generate εqPµτ ∼ 10−3 and

∣∣εqPττ − εqPµµ∣∣ ∼ 0.01.

• mπ0 < mZ′ < 2mµ, the bound on g′ is relaxed quite a bit so we have larger NSI. For
example, for mZ′ = 140 MeV, we can generate εqPµτ ∼ 5× 10−3 and

∣∣εqPττ − εqPµµ∣∣ ∼ 0.05.

• mZ′ > 2mµ, the bounds on Z ′ → µµ is too tight.
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limits on the doubly charged Higgs boson masses in the minimal left-right symmetric
model. Phys. Rev., D90(9):095003, 2014.

[214] G. Bambhaniya, J. Chakrabortty, J. Gluza, M. Kordiaczyńska, and R. Szafron. Left-
Right Symmetry and the Charged Higgs Bosons at the LHC. JHEP, 05:033, 2014.
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