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Abstract

In this thesis, we study the U -plane of rank-one 5d N = 1 superconformal field the-

ories (SCFTs), which is the one-dimensional Coulomb branch (CB) of such theories on

R4 × S1. This circle compactification gives us 4d N = 2 supersymmetric field theories of

‘Kaluza-Klein (KK) type’, and thus the Coulomb branch physics can be described by its

Seiberg-Witten (SW) geometry. The total space of the SW geometry, which consists of the

SW curve fibered over the CB, can be modelled as a rational elliptic surface. As such, a

classification of all possible Coulomb branch configurations, for the 5d field theories and

their 4d descendants, is given by Persson’s classification of rational elliptic surfaces. This

formalism trivializes renormalization group flows, while also containing information about

the global form of the flavour symmetry group and the one-form symmetry, through the

Mordell-Weil group of the SW geometry. Moreover, in a number of important instances,

the U -plane is a modular curve, and we use its beautiful modular properties to investigate

aspects of the low-energy physics, such as the spectrum of light particles at strong coupling

and the associated BPS quivers.

A related approach to studying the strong-coupling dynamics of these theories is to

consider them on curved backgroundsM5. Our focus is on closed five-manifoldsM5 which

are principal circle bundles over simply-connected Kähler four-manifolds, M4. Starting

with the topologically twisted 4d N = 2 KK theory onM4, we propose a new approach to

compute the supersymmetric partition function onM5 through the insertion of a fibering

operator in the 4d theory, which introduces a non-trivial fibration overM4. We determine

the so-called Coulomb branch partition function on any such M5, which is conjectured

to be the holomorphic ‘integrand’ of the full partition function. We precisely match the

low-energy effective field theory approach to explicit one-loop computations, and we discuss

the effect of non-perturbative 5d BPS particles in this context. WhenM4 is toric, we also

reconstruct our CB partition function by appropriately gluing Nekrasov partition functions.
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Chapter 1

Introduction

Many questions regarding the nature of our universe have been answered over the last

century, and many more have emerged due to the development of quantum field theory

(QFT). This provides a powerful framework for studying interactions of elementary particles

and their fields, the strength of which is controlled by a coupling constant. This quantity is

what determines the different regimes of a theory. In the weak-coupling regime, perturbation

theory leads to satisfying results, but non-perturbative effects remain elusive with this

technique. As such, the quest to finding novel approaches to describe the strong-coupling

regime of QFTs remains an active area of research.

Within the framework of quantum field theory, one is able to describe three of the

four fundamental forces, but gravity is not easily described in this way. One of the best

candidates for a theory of quantum gravity is string theory, which can often offer insights into

the strong-coupling regimes of certain quantum field theories, upon compactifications and

decoupling of gravity. These QFTs typically preserve an additional spacetime symmetry,

called supersymmetry, which further constrains the models and leads to more tractable

problems.

Supersymmetric quantum field theories with at least eight supercharges are particularly

amenable to exact, non-perturbative methods. In the case of 4d N = 2 supersymmetric

field theories, in particular, the strong-coupling physics is encoded in the so-called ‘Seiberg-

Witten (SW) geometry’ [7, 8]. Historically, the SW geometry also led to the discovery of

the first non-Lagrangian strongly coupled 4d N = 2 superconformal field theories (SCFTs)

– the so-called Argyres-Douglas theories – through the analysis of the full parameter space

of some of the simplest supersymmetric gauge theories [9, 10].

A large part of the thesis is devoted to such models, namely rank-one theories, where the

Coulomb branch (CB) of the vacuum moduli space is one-dimensional, meaning that the
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low-energy physics is described by a U(1) gauge theory. In these cases, the SW geometry

consists of an elliptic fibration over the Coulomb branch, and the effective gauge coupling

for the low-energy effective field theory is identified with the modular parameter of the

elliptic fiber. These geometries are rational elliptic surfaces (RES), for which a complete

classification exists in the mathematical literature [11, 12]. As such, an obvious question

that we address is how this rich mathematical formalism translates into the physics of

supersymmetric quantum field theories.

The framework of geometric engineering in Type-IIA string theory on local Calabi-Yau

threefold singularities [13, 14] provides another perspective on 4d N = 2 theories, which

turns out to be the optimal perspective for analysing the relation to rational elliptic surfaces.

In this language, the natural supersymmetric field theories are, in fact, not the purely 4d

N = 2 models, but the circle compactification of the five-dimensional superconformal field

theories with the same amount of supersymmetry [15, 16], which is a simple consequence

of the Type-IIA/M-theory duality [17, 18]. These Kaluza-Klein (KK) theories can be thus

viewed as effective 4d theories, with an infinite number of ‘fields’ organised in KK towers.

The main upshot of our analysis of the SW geometries is threefold. Firstly, we reach

a systematic understanding of the possible Coulomb branch configurations of all rank-

one theories, which allows us to find new renormalization group (RG) flows between five-

dimensional SCFTs and Argyres-Douglas theories. Additionally, we show how the global

form of the flavour symmetry group, as well as the one-form symmetries [19], is encoded

in the so-called Mordell-Weil group of the associated rational elliptic surface. Finally, we

use modularity to simplify the low-energy effective theory description on the CB and to

determine the BPS quivers for all rank-one theories that admit such a quiver description.

Another motivation behind the study of Seiberg-Witten geometry lies within the ‘sphere’

of supersymmetric localization, which can lead to further insights into the strong-coupling

dynamics of supersymmetric QFTs. Since the computation of the partition function of 4d

N = 2 theories on S4 in [20], there has been considerable progress in studying supersym-

metric QFTs on curved manifolds. A fruitful approach for constructing these models is

topological twisting, which, for 4d N = 2 theories, is implemented by turning on a back-

ground for the R-symmetry and identifying it with the spin connection. The topologically
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twisted theory is known as Donaldson-Witten (DW) theory, due to the connection to the

Donaldson invariants of four-manifoldsM4 [21, 22].

Given this second layer of motivation, it is thus natural to consider five-dimensional su-

persymmetric QFTs on curved backgroundsM5, and, in particular, to uplift the Donaldson-

Witten twist to circle-fibrations over four-manifolds. In the case of trivial fibrationsM4×S1,

the problem reduces to studying the resulting KK theory on M4, whose features are de-

scribed by its SW geometry, analogously to other 4d N = 2 theories. We then show that

the non-trivial fibration is captured by a so-called fibering operator, whose insertion in the

topologically twisted 4d N = 2 theory on M4 corresponds to introducing a non-trivial

fibration of the circle over M4. Consequently, correlators on the five-dimensional curved

backgroundM5 become observables in the 4d Donaldson-Witten theory onM4.

Our work focuses on computing the ‘integrand’ of the partition function of 5d SCFTs on

a special class of five-manifoldsM5 which are principal bundles over Kähler four-manifolds

M4. We will refer to this quantity as the Coulomb branch partition function. As such, we

use three complementary methods, which ultimately yield the same answer. The simplest

approach is a one-loop determinant computation, which, naively, would appear to only

capture the ‘perturbative’ part of the full 5d SCFT partition function. However, as argued

by Lockhart and Vafa [23], the partition function factorises into contributions from higher-

spin BPS particles, which generalise the free hypermultiplet perturbative contribution. In

the second approach, we study the low-energy effective couplings on the Coulomb branch

and we define the previously mentioned fibering operator as a background flux insertion

for the U(1)KK symmetry (that is, the conserved momentum along the circle). Thirdly, we

construct the five-dimensional partition function as a gluing of χ(M4) distinct Nekrasov

partition functions on C2 × S1, an approach which has been discussed extensively in the

literature, see e.g. [23–28].1 This approach is only valid for circle fibrations over toric Kähler

M4 but is in perfect agreement with the other computations.

For the rest of this chapter, we give more background details on the areas covered in

1The gluing approach is more general and can also be applied beyond the topological twist by

gluing ‘topological’ and ‘anti-topological’ Nekrasov partition functions, as first discussed by Pestun

for S4 [20] and later generalised in various directions [29–33].
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the thesis and elaborate on the new results summarised above.

1.1 Seiberg-Witten geometry

1.1.1 N = 2 supersymmetry

The simplest representation of the 4d N = 2 superalgebra is the vector multiplet, which

contains a scalar field ϕ, the gauge connection, as well as their fermionic superpartners.

The N = 2 super Yang-Mills (SYM) theory consists of a vector multiplet transforming in

the adjoint representation of some gauge group G, which, for the remainder of this section,

we will take to be G = SU(2). The Lagrangian of this theory contains the scalar potential:

V (ϕ) =
1

2g2
tr
(
[ϕ, ϕ̄]2

)
, (1.1)

where g is the SYM coupling. Generic vacua of such theories are described by the vanishing

of the scalar potential, in which the gauge group is broken to its maximal torus SU(2) →

U(1), while the scalar field ϕ receives a VEV via the Higgs mechanism. Semi-classically,

one has:

⟨ϕ⟩ =

(
a 0

0 −a

)
, a ∈ C . (1.2)

The vacuummoduli space (called, in this example, the Coulomb branch) is then parametrised

by the gauge invariant operator:

u = ⟨trϕ2⟩ ≈ 2a2 + . . . . (1.3)

Note, however, that this expression is only valid in the weak-coupling limit, g2 → 0, where

the path integral is dominated by the field configurations minimising the action. At the

next level of complexity, one needs to consider loop contributions, but also possibly non-

perturbative effects. Let us focus for now on the latter. In the full quantum theory, it is
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important to consider the topological θ-term, which schematically reads:2

Stop = i
θ

16π2

∫
tr (F ∧ F ) , (1.4)

where F is the field strength. This term is locally a total derivative and, thus, does not affect

the classical equations of motion. However, that is not to say that such a term is not relevant

in the quantum theory, where the Feynman path integral is a summation over all possible

field configurations. The field configurations affected by this term are the instantons, for

which the topological action evaluates to Stop = −iθk, for some integer k ∈ Z. Thus, θ

behaves as an angle, as 2π shifts do not change the path integral.

As such, in an instanton background, any supersymmetric vector-multiplet configu-

ration is weighted by a factor e−SSYM−Stop = e2πiτk, where we introduced the holomor-

phic/complexified gauge coupling τ :

τ =
θ

2π
+

4πi

g2
. (1.5)

In fact, this quantity is rather natural in supersymmetric theories, as it enters the La-

grangian when expressed in superspace coordinates.

Let us now return to the perturbative contributions to the path integral. As mentioned

earlier, this analysis relies on an expansion around classical vacua, being valid at weak-

coupling, or, equivalently, at high energies. The low-energy effective action of a 4d N =

2 theory on the Coulomb branch is obtained by integrating out the degrees of freedom

above some ultraviolet (UV) cut-off scale Λuv. The dependence on this energy scale can be

reabsorbed in a ‘renormalization’ of the couplings, leading to a one-loop running coupling

at energy scale a:

τ(a) = 2τuv −
b0
2πi

log
a

Λuv
+ . . . . (1.6)

Here b0 is the one-loop beta function coefficient, which depends on the gauge group and

the matter content.3 The factor of 2 in front of τuv is due to the fact that the UV theory

2Here we are working in flat-space R4. The full N = 2 action, as well as curved backgrounds,

will be discussed in more detail in chapter 5.
3For the pure SU(2) SYM theory, we have b0 = 4, and the theory is asymptotically free.
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has gauge group SU(2), while the effective action describes a U(1) gauge theory. It is

usually more convenient to introduce the so-called dynamical scale Λb0 = Λb0uve
2πiτuv , which

is invariant to all orders in perturbation theory. N = 2 gauge theories are one-loop exact

perturbatively, but can still receive non-perturbative corrections. These corrections can be

expressed in powers of Λkb, for some k ∈ Z, which thus carry a phase eikθuv . As such, these

corrections correspond to configurations with instanton number k. The exact coefficients of

these contributions can be, in principle, determined from a path-integral computation, but

such methods are not very tractable for higher instanton numbers. However, Seiberg-Witten

geometry provides a much faster approach, as we discuss below.

The U(1) low-energy effective action is highly constrained by the N = 2 supersymmetry.

The vacuum moduli space is a Kähler manifold, being fully determined by a holomorphic

function called the prepotential F(a), where, as before, a is the scalar of the abelian vector

multiplet on the CB. In terms of the prepotential, the effective gauge coupling and the CB

metric are given by [34]:

τ =
∂2F(a)
∂a2

, ds2(MC) = Im τ dadā . (1.7)

Note that the physical requirement of unitarity implies that Im τ > 0. But since this is

also a harmonic function, Im τ (and, implicitly, the prepotential F(a)) can only be locally

defined.

1.1.2 Electromagnetic duality and BPS states

Before discussing the Seiberg-Witten solution, let us mention a very important feature

of the low-energy effective U(1) action. This feature is, in fact, already present in the

non-supersymmetric abelian Maxwell theory: there, the equations of motion are invariant

under the exchange F ↔ ⋆F , where F is the abelian field strength and ⋆ is the Hodge

star operator. This transformation has the effect of exchanging the electric and magnetic

fields, and is often referred to as S-duality. As a result, the magnetic and electric charges

of particles, γi = (mi, qi), are not preserved under such a duality transformation, but it is
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their Dirac pairing that remains unchanged:

⟨γi, γj⟩ ≡ miqj − qimj . (1.8)

For the low-energy effective theory on the Coulomb branch, it is useful to define the quantity

aD = ∂F(a)/∂a, such that the metric on the CB becomes [8]:

ds2 = Im daD dā = − i
2
(daDdā− da dāD) . (1.9)

In this form, the metric is completely symmetric in a and aD, and, as a result, we could

describe the theory using aD as the local parameter instead of a. This is a strong indication

that the theory possesses an intrinsic duality, similar in nature to the above S-duality. For

this reason, aD is usually referred to as the ‘dual-photon’, offering another description of

the same theory, but at a different value of the coupling constant:

τD = −1

τ
. (1.10)

This is an example of a strong-weak coupling duality and allows us to gain further insight

into the strong-coupling regime of the theory.

Let us also note that due to the periodicity of the θ angle, the theory also has a symmetry

τ → τ+1. Note that this transformation is different from the S-transformation, being a true

symmetry of the theory. These two transformations are implemented through the action of

the matrices

S =

(
0 −1
1 0

)
, T =

(
1 1

0 1

)
, (1.11)

on τ by linear fractional transformations. These are, in fact, the generators of the SL(2,Z)

group, which is the full duality group of the low-energy effective field theory. Note that the

metric (1.9) is also invariant under this group. The N = 2 extended supersymmetry algebra

also involves a central charge Z ∈ C. The massive representations of this supersymmetry
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algebra satisfy the so-called Bogomonlyi-Prasad-Sommerfeld (BPS) inequality:

M ≥ |Z| , (1.12)

where M is the mass of the multiplet. The multiplets satisfying the BPS bound are short

multiplets and, thus, they also satisfy this bound once quantum corrections are taken into

account. Let us also note that the states becoming massive after the Higgs mechanism

(1.2) will also be in short multiplets, as the symmetry-breaking pattern does not generate

the additional helicity states for a long multiplet. The mass of the W-bosons generated by

the Higgs mechanism is then MW = |a|. This generalizes to states with both electric and

magnetic charges (called dyons) as follows:

Z = maD + q a , (1.13)

which, more generally, might also include flavour contributions. As such, in order to ensure

that the mass of the BPS states remains unchanged under the duality transformations acting

as (aD, a)
T →M(aD, a)

T , for some M ∈ SL(2,Z) the charge vectors also need to transform

as (m, q)→ (m, q)M. Note that in the quantum theory, the quantities a and aD should be

viewed as functions of the CB parameter u, obtained by inverting (1.3).

1.1.3 The Seiberg-Witten solution

The Seiberg-Witten proposal assigns to each point on the Coulomb branch an elliptic curve.

An elliptic curve is a non-singular (projective) cubic curve (over C, in our case), with a

marked point, described as

y2 = 4x3 − g2(u)x− g3(u) , (1.14)

where g2 and g3 are functions of the CB parameters, which might also include masses of

the matter multiplets, for instance. This form is known as the Weierstrass form of an

elliptic curve. An elliptic curve over C is, in fact, equivalent to a complex torus. That is,

given a lattice L = Z + τZ, for Im τ > 0, a complex torus is the quotient C/L. In the

SW proposal, the complex structure parameter of the elliptic fiber is identified with the
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complexified gauge coupling τ . Viewing the Coulomb branch as a complex projective plane

P1, by compactifying the point at infinity, the Seiberg-Witten geometry then corresponds

to the elliptic fibration:

E −→ S −→ P1 ∼= {u} . (1.15)

We will see, in fact, that this corresponds to a rational elliptic surface S, which have been

thoroughly studied in the mathematical literature [11, 12].4 An elliptic curve is singular

whenever its discriminant vanishes:

∆(u) ≡ g2(u)3 − 27g3(u)
2 . (1.16)

As such, points on the Coulomb branch where the discriminant vanishes need special treat-

ment. Coulomb branch singularities are rather ubiquitous, as the low-energy effective field

theory description breaks down at the loci where certain BPS states become massless. This

is a consequence of the fact that the moduli space metric Im(τ) is only locally defined, as

already alluded to. The elliptic fibers above these loci are thus singular and can be found

as the loci where the discriminant of the curve vanishes. Note that CB singularities can

emanate a Higgs branch, which is a distinct branch of the vacuum moduli space of the

theory.

The singularities can change as one varies the (mass) parameters of a theory, leading to

interesting strong-coupling phenomena. Thus, it is crucial to understand what configura-

tions might appear under such changes. The possible types of singular fibers are given by

the Kodaira classification, as shown in table 1.1, where we also indicate how the effective

gauge coupling τ transforms by some elements of SL(2,Z) under closed loops around these

singularities. We postpone a more detailed discussion of this classification to chapter 2.

Recall, first, that for the SU(2) gauge theory analysed in the previous subsection, in the

weak coupling regime u→∞ where the semi-classical picture holds, the one-loop correction

to the effective gauge coupling in (1.6) shows a logarithmic behaviour. As a result, closed

‘paths’ around this point will pick up a non-trivial monodromy. This can be interpreted as

4A rational elliptic surface is the special rank-one case of the complex integrable system of

Donagi-Witten [35].
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fiber τ ord(g2) ord(g3) ord(∆) M∗ 4d physics g flavour

Ik i∞ 0 0 k T k SQED su(k)

I∗k i∞ 2 3 k + 6 PT k SU(2), Nf = 4 + k > 4 so(2k + 8)

I∗0 τ0 ≥ 2 ≥ 3 6 P SU(2), Nf = 4 so(8)

II e
2πi
3 ≥ 1 1 2 (ST )−1 AD[A1, A2] = H0 -

II∗ e
2πi
3 ≥ 4 5 10 ST MN E8 e8

III i 1 ≥ 2 3 S−1 AD[A1, A3] = H1 su(2)

III∗ i 3 ≥ 5 9 S MN E7 e7

IV e
2πi
3 ≥ 2 2 4 (ST )−2 AD[A1, D4] = H2 su(3)

IV ∗ e
2πi
3 ≥ 3 4 8 (ST )2 MN E6 e6

Table 1.1: Kodaira classification of singular fibers and associated 4d low-energy physics.
The Ik fibers are also-called ‘multiplicative’ or ‘semi-stable’ fibers. (I0 is the ‘stable’ generic
smooth fiber.) All the other types of fibers are called ‘additive’ or ‘unstable’.

a singularity at ‘infinity’, F∞, which is characteristic of each theory. For a gauge theory,

for instance, this monodromy depends on the beta function coefficient, b0. This serves as

the starting point of our work: we identify a theory by its fiber at infinity, a proposal also

considered in [36,37]. As such, we identify the 4d SU(2) gauge theories withNf fundamental

hypermultiplets as follows:

4d SU(2) ⊕ Nf : F∞ = I∗4−Nf
. (1.17)

This prescription generalizes to theories that do not admit a gauge theory description in

the ultraviolet regime. The Coulomb branches of the 4d N = 2 rank-one SCFTs contain

only one singularity in the bulk due to scale invariance [38–42] and it is thus equivalent to

identify them by either this bulk singularity or by the singularity at infinity. One has:

II , III and IV SCFTs : F∞ = II∗ , III∗ and IV ∗ respectively ,

II∗ , III∗ and IV ∗ SCFTs : F∞ = II , III and IV respectively ,

(1.18)

while the I∗0 SCFTs have F∞ = I∗0 . These can be deduced from the rational elliptic surfaces

with only two singular fibers, which are: (II∗, II), (III∗, III), (IV ∗, IV ) and (I∗0 , I
∗
0 ). For

instance, the E8,7,6 Minahan-Nemeschansky SCFTs [43,44] are described by the bottom row

in (1.18). Let us note that a choice of F∞ should be accompanied by a choice of deformation

pattern, to fully specify a 4d N = 2 SCFT [38–41].

10



The only choice of F∞ missing at this stage corresponds to the In-type fibers. We will

show in chapter 2 that this choice extends the space of theories considered above to the

Kaluza-Klein theories obtained from the circle compactification of 5d N = 1 SCFTs.

1.2 5d SCFTs on a circle

In this section, we consider five-dimensional gauge theories with N = 1 supersymmetry.

Such theories are very similar to 4d N = 2 theories, with the important distinction that

the scalar field in the vector multiplet is now a real field. Moreover, it is not hard to notice

that the effective gauge coupling has negative mass dimensions, thus rendering the theory

non-renormalizable. As a result, such theories are not well-defined QFTs by themselves,

but, rather interestingly, they can be realised as deformations of five-dimensional super-

conformal field theories. From the gauge theory perspective, however, the existence of a

(super)conformal fixed point is highly non-trivial. Thankfully, the string theory embedding

of these theories, to be discussed below, allows us to probe the UV behaviour more directly.

1.2.1 Geometric engineering

We are interested in the small family of 10 distinct rank-one 5d SCFTs with flavour sym-

metry algebra En [15, 16], namely:

E0 = ∅ , E2 = su(2)⊕ u(1) , E5 = so(10) ,

Ẽ1 = u(1) , E3 = su(3)⊕ su(2) , En = en (n = 6, 7, 8) .

E1 = su(2) , E4 = su(5) ,

(1.19)

These 5d fixed points are all related to each other by five-dimensional RG flows, starting

from the E8 model and breaking down the flavour symmetry to En<8 by appropriate real-

mass deformations [15,16,45]. These rank-one 5d SCFTs can be ‘geometrically engineered’

as the low-energy limit of M-theory on R5 × XEn , where XEn is a canonical singularity

that admits a crepant resolution with a single exceptional divisor [16, 46]. Let B4 denote a

Fano surface – that is, either a del Pezzo surface or the Hirzebruch surface F0
∼= P1 × P1.

We consider the local Calabi-Yau threefold obtained as the total space of the canonical line

11



En E0 E1 Ẽ1 En (n = 2, · · · , 8)

B4 P2 F0
∼= P1 × P1 F1

∼= dP1 = Bl1(P2) dPn = Bln(P2) ∼= Bln−1(F0)

Table 1.2: Correspondence between En SCFTs and del Pezzo surfaces. Here, Blk(B4)
denotes the blow-up of the complex surface B4 at k generic points. Note that dP1 can also
be viewed as the Hirzebruch surface F1.

bundle over B4:

X̃En
∼= Tot (K → B4) . (1.20)

By blowing down the zero section, one obtains the canonical singularity XEn . The corre-

spondence between del Pezzo surfaces and En theories is summarized in table 1.2.

The smooth threefold (1.20) provides a crepant resolution of XEn , which corresponds

physically to going onto the extended Coulomb branch (ECB) of the 5d SCFT, by turning on

the real Coulomb branch VEV, ⟨σ⟩ ≠ 0, as well as n real mass parametersmi (i = 1, · · · , n).

The n real masses should be understood as VEVs for real scalars in vector multiplets valued

in the Cartan subalgebra ⊕ni=1u(1) of En. In the M-theory geometric point of view, the full

ECB is identified with the extended Kähler cone of X̃En [46]. The En symmetry at the

fixed point arises because of M2-branes wrapping vanishing curves. Indeed, it is a beautiful

mathematical fact that the second homology lattice of dPn can be decomposed as:

H2(B4,Z) ∼= Λ−K ⊕ E−
n , (1.21)

with Λ−K ∼= Z generated by a choice of anticanonical divisor, −K, of B4 [47]. Here, E−
n

denotes ‘minus’ the En root lattice,5 which is generated by the curves orthogonal to −K.

One can pick a basis of curves, Cαi , which are in one-to-one correspondence with the simple

roots αi of the flavour algebra En and intersect according to its Dynkin diagram [1].

The En fixed point is also the UV completion of a non-normalizable 5d gauge theory

with N = 1 supersymmetry, consisting of an SU(2) vector multiplet coupled to Nf =

n − 1 hypermultiplets6 with inverse gauge coupling m0 = 8π2g−2
5d [15]. This gauge theory

5In some appropriate basis, the intersection pairing is minus the Cartan matrix of En.
6For n = 1, we have SU(2) with θ angle 0 or π, corresponding to E1 or Ẽ1, respectively. The E0

fixed point does not have a gauge theory interpretation but can be obtained as a deformation of the

Ẽ1 theory [16].
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description is obtained by a mass deformation of the SCFT that breaks En down to so(2n−

2)⊕ u(1):

α1 α2 α4 α5

· · ·
αn

α3

−→
u(1) α2 α4 α5

· · ·
αn

α3

(1.22)

The u(1) factors appearing in the gauge theory description are specific to five-dimensions

and correspond to a topological symmetry. That is, the associated current j = ⋆ tr(F ∧ F )

is automatically conserved due to the Bianchi identity. The particles charged under this

symmetry are the 5d uplift of the 4d instantons and are usually referred to as instanton

particles. To describe the SU(2), Nf = n − 1 gauge theory geometrically, one should pick

a ruling of the exceptional divisor B4. This consists of a choice of ‘fiber’ and ‘base’ rational

curves, Cf ∼= P1 and Cb ∼= P1 respectively. For n = 1, we have the Hirzebruch surfaces:

Cf → Fp → Cb , p = 0, 1 . (1.23)

The trivial (p = 0) or non-trivial (p = 1) fibration of Cf over Cb gives us the SU(2)0 or

SU(2)π gauge theory in the limit where the fiber curve collapses to a point;7 the M2-

brane wrapping Cf gives the SU(2) W -boson, and the M2-brane wrapping Cb gives the 5d

instanton particle. For n > 1, we view B4 = dPn as the blow-up of F0 at Nf = n−1 generic

points. By a slight abuse of notation, we then denote by Cf , Cb the same curves pulled back

through the blow-down map dPn → F0. The Nf exceptional curves are denoted by Ei,

i = 1, · · · , n− 1, and the corresponding wrapped M2-branes give us the hypermultiplets.

1.2.2 4d N = 2 KK theories

We will be interested in the 5d En SCFTs compactified on a finite-size circle with radius

β. This gives us 4d N = 2 supersymmetric theories of Kaluza-Klein type, which we denote

by DS1En. By the M-theory/Type-IIA duality, we can engineer these theories as the low-

7The 5d θ angle is a Z2 analog of the 4d θ angle. In 4d, this comes from π3(SU(2)) = Z, leading to

non-trivial field configurations with integer-valued instanton numbers. Meanwhile, in 5d the relevant

homotopy group is π4(SU(2)) = Z2.
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energy limit of Type-IIA string theory on R4 × XEn . The Coulomb branch physics of

DS1En is rather more subtle and interesting. This is due to quantum corrections, which

kick in as soon as we compactify on a circle. In the geometric-engineering picture, we have

worldsheet instanton corrections in Type-IIA. Equivalently, in M-theory, we have to account

for M2-branes wrapping C × S1, with C some curve inside X̃En .

Note that the 4d N = 2 theory DS1En is a massive theory since we introduced the

KK-scale mKK = 1/β. For generic values of the parameters, this is an ‘abstract’ strongly

coupled quantum field theory defined by the IIA geometry. In some particular limit on the

Kähler parameters, called the geometric engineering limit [14,48], we recover the 4d N = 2

SU(2) theory with Nf flavours, at least when Nf ≤ 4, and the Coulomb branch physics

is then governed by the celebrated Seiberg-Witten solution [7, 8]. More generally, the 5d

gauge theory description remains useful for m0 ≫ mKK [18, 49].

The CB description of the KK theories is, in fact, very similar to the usual 4d N = 2

picture presented in section 1.1.1, but there are some important differences. First, the real

scalar σ in the 5d N = 1 vector multiplet is paired with the U(1) holonomy along the

circle direction to form a complex scalar which, by abuse of notation, we will also denote by

a. Due to the five-dimensional large gauge transformations along the circle direction, the

gauge-invariant parameter becomes instead [1, 49]:

U = e2πia + e−2πia + . . . , (1.24)

which corresponds to the expectation value of a Wilson line in the fundamental representa-

tion of SU(2) in five dimensions.8 We will show in chapter 2 that, for the DS1En theories,

the analogue of (1.17) is given by:

DS1En (5dSU(2)⊕Nf = n− 1) : F∞ = I9−n . (1.25)

The identification (1.25), together with (1.17) and (1.18) exhausts all possibilities for the

fiber at infinity.9 Let us note, however, that the DS1En theories are the five-dimensional

8We will often use U for both the 5d and 4d Coulomb branch parameters.
9The only remaining possibility is F∞ = I0, which is a smooth fiber, corresponding to a six-
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equivalent of the so-called ‘I1-series’ in the classification of 4d N = 2 SCFTs [38–41] – that

is, their maximally deformed Coulomb branches involve only I1 singularities. More general

SW geometries are allowed, as classified by [50], which we briefly comment on in chapter 4.

1.2.3 Rational elliptic surfaces

The Seiberg-Witten geometries of 4d N = 2 (KK) theories are modelled by the elliptic

fibration (1.15). This construction corresponds to a rational elliptic surface, which have

been thoroughly studied in the mathematical literature. Moreover, Persson and Miranda

provided a classification of the allowed configurations of singular fibers for such surfaces

[11, 12]. Consider a theory TF∞ described by the fiber at infinity F∞. Then, any CB

configuration of TF∞ corresponds to a RES with a fixed set of singular fibers:

U -plane of TF∞ at fixed MF ←→ S with {F∞ ; F1 , · · · , Fk} . (1.26)

As previously mentioned, the singular fibers of TF∞ can change as we vary its mass param-

eters MF . The classification due to Persson and Miranda allows us to find all such possible

changes, by fixing the fiber at infinity F∞ and then looking at the allowed configurations

containing this particular fiber. The existence of fibers of the type (1.18) on the CB can also

trigger non-trivial RG flows to known 4d N = 2 SCFTs – this is, in fact, the way that the

simplest Argyres-Douglas theories were first determined, by analysing the SW geometries of

4d SU(2) gauge theories [9,10]. Using the formalism of rational elliptic surfaces, we find new

RG flows from the DS1En theories to 4d N = 2 SCFTs, some of which have been suggested

by the relation between 5d BPS quivers and the gauge/Painlevé correspondence [51–54].

Consider, for now, the theories whose maximally deformed Coulomb branches involve

only I1 singularities. In such cases, the flavour symmetry algebra can be deduced directly

from the singular fibers of the SW geometry. This follows from Type-IIB mirror geometry,

which can be equivalently described in terms of a single D3-brane probing a collection

of 7-branes in an F-theory construction [55–58]. In the F-theory language, the Kodaira

singularities on the U -plane are non-compact 7-branes, which therefore give rise to flavour

dimensional theory on a torus.
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symmetry algebras of ADE type. Note also that the Kodaira singularity at infinity, F∞,

does not contribute to the infrared (IR) flavour symmetry.

The astute reader might have realized by now that fixing the fiber at infinity F∞ might

not be enough to fully determine a theory. In particular, this is the case for F∞ = I8,

where there are two possibilities, namely the DS1E1 and DS1Ẽ1 theories, both having the

maximally deformed Coulomb branch (I8; 4I1). In such cases, one needs to also specify the

Mordell-Weil group (MW) of the RES. For an elliptic curve E, this group law is obtained by

declaring that three points on E add up to the marked point at infinity if and only if they

are collinear. This group law can then be uplifted to elliptic surfaces, where the rational

points of the elliptic fibers are in one-to-one correspondence with the rational sections of

the RES [59]. The Mordell-Weil theorem then states that this group is a finitely generated

abelian group, which we will denote by Φ.

In the Weierstrass model (1.14), all singular fibers are either rational curves with a node

or with a cusp. Resolving the singularity of the fiber by blow-ups introduces new exceptional

curves, which, ultimately, intersect according to the Dynkin diagram associated with the

singular fiber, as shown in table 1.1. We say that a rational section P of the RES – that

is, P = (x(U), y(U)) satisfying (1.14), with x(U), y(U) rational functions of U – intersects

a singular fiber ‘trivially’ if it does not intersect the singular point of the fiber. We will

define Z [1] ⊂ Φtor to be the maximal subgroup of torsion sections that intersect ‘trivially’

all the fibers in the interior of the U -plane, and we will define the abelian group F to be

the cokernel of the inclusion map:

0→ Z [1] → Φtor → F → 0 . (1.27)

Then, we claim that:

• Z [1] gives the one-form symmetry of the 4d field theory [19]. In particular, it does

not change as we vary the mass parameters. Incidentally, this distinguishes between

the E1 and Ẽ1 configurations for F∞ = I8, in which case Z [1] ∼= Z2 for E1 while it is

trivial for Ẽ1.
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• The IR flavour symmetry group GF , for any given CB configuration S of TF∞ , takes

the schematic form:

GF ∼=
(
U(1)rk(Φ) ×

∏
v ̸=∞

G̃v

)/
F , (1.28)

where G̃v is the simply-connected group with Lie algebra gv, associated to each non-

reducible Kodaira fiber Fv in the interior of the U -plane and rk(Φ) ∈ Z≥0 is the rank

of the MW group.

Note that, here, the flavour symmetry group is the group acting faithfully on gauge-invariant

states. We will prove these statements in chapter 3.

1.3 BPS quivers and Modularity

Consider one of the 5d theories on S1, DS1TX, determined by its fiber at infinity F∞,

engineered in M-theory compactifications on some non-compact Calabi-Yau (CY) threefold

X. As already mentioned, the extended Coloumb branch can be explored by considering

a crepant resolution X̃ of X, being identified with the extended Kähler cone of X̃ [60].

In this section, we discuss some aspects about the BPS quivers of such theories and how

modularity can be used to find these quivers.

1.3.1 A brief review of BPS quivers

As already alluded to in the previous section, Coulomb branch singularities are due to

BPS states becoming massless. BPS particles {γ} correspond to D-branes wrapped over

holomorphic cycles inside X̃ [61, 62], but determining the spectrum of stable BPS states

for such theories is generally a very difficult problem. Mathematically, the BPS states are

objects in the (bounded) derived category of coherent sheaves on X̃ [63]. Alternatively, one

can introduce the BPS quiver QX of DS1TX, which contains the same information through

its category of ‘quiver representations’.

To give a rough intuition of what the BPS quiver represents, consider, for simplicity,

a Type-IIB setup, where BPS states arise from D3-branes wrapping special Lagrangian

3-cycles S3
γi inside a Calabi-Yau threefold. Then, the Dirac pairing between the two states
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is given by the intersection pairing of the 3-cycles in the CY threefold. When wrapping Ni

D3-branes on each S3
γi cycle, on the remaining (‘time’) direction of the D3-branes, which

is transverse to the CY, we are left with a N = 4 supersymmetric quantum mechanics

(SQM) [64]. This SQM is the worldline of the BPS particle formed as a formal linear

combination of the basis of 3-cycles of the CY manifold.

The 1d theory formed this way is described by a quiver with gauge group G =
∏
i U(Ni),

where each gauge factor arises from open strings stretching from a stack of D3-branes to

itself. Moreover, open strings stretching between different stacks give rise to bifundamental

matter; for the nodes U(Ni) and U(Nj) in the quiver, the number of bifundamentals is

then given by the intersection pairing S3
γi · S

3
γj . Let us also note that loops in the quiver,

corresponding to collections of special Lagrangian 3-cycles bounding a holomorphic disk

inside the threefold, give rise to superpotential terms in the SQM. These are due to disk

instantons in the Type-IIB picture and are generally difficult to compute – see e.g. [65] for

the case of the mirror to a toric threefold.

The BPS quiver is just the ‘abstract’ quiver corresponding to this supersymmetric quan-

tum mechanics. That is, given a basis of elementary particles (corresponding to the S3
γi

cycles in the above picture), with magnetic-electric charges γi = (mi, qi), the BPS quiver is

determined by assigning a quiver node (i) ∼ Eγi to each light dyon, and a (effective) number

nij of arrows from node (i) to (j) given by the Dirac pairing:

nij = ⟨γi, γj⟩ = miqj − qimj . (1.29)

In this picture, the above SQM describes the worldline of a BPS state γ =
∑

iNiγi, where

the sum is over all elementary particles, with Ni being the number of D3-branes wrap-

ping each S3
γi cycle. This construction assumes the existence of a quiver point, where the

central charges of the elementary particles are almost aligned. BPS quivers and their super-

potentials for the theories associated to toric geometries can be derived using brane-tiling

techniques [66–68], or exceptional collections [69] – see e.g. [51,70–78] for more recent works

on these subjects.

We should also mention that the U(N) gauge groups in the SQM picture also admit
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Fayet-Iliopoulos (FI) terms. These are controlled by the central charges of the wrapped

D3-branes, determined as the periods of the holomorphic 3-form Ω of the CY on the S3
γ

cycles. As such, we can slightly modify the geometry such that the strength of the FI

terms is affected while preserving the quiver and superpotential. The FI terms change the

D-term equations of motion, changing thus the moduli space of vacuaMγ of the supersym-

metric quantum mechanics. Thus, the FI terms are responsible for creating certain walls

of marginal stability where BPS states can decay – namely, this happens when the Euler

number ofMγ changes, and the state γ =
∑

iNiγi is no longer stable.

1.3.2 Modular Coulomb branches

We propose a different approach for determining BPS quivers using the major simplification

of the low-energy dynamics provided by the modularity of the underlying Seiberg-Witten

geometry, as we now explain. Given the SW geometry (1.14), we define the J-function and

J-invariant of the curve as:

J(u) =
1

1728
j(u) =

g2(u)
3

∆(u)
, J(τ) =

E4(τ)
3

E4(τ)3 − E6(τ)2
, (1.30)

where, by abuse of notation, we have u = (U,MF , . . .). The former is a rational function

of the CB parameter, U , while the modular J-invariant, J(τ), is a function of the complex

structure of the curve. Let us note that the zeroes of the Eisenstein series on the canonical

fundamental domain of the upper half-plane are at τ = ζ3 and τ = i for E4 and E6,

respectively, with ζ3 = e
2πi
3 . These are the elliptic points of the SL(2,Z) group – which are

the points with a non-trivial stabilizer – where we find J(ζ3) = 0 and J(i) = 1. The other

special point of the canonical fundamental domain for the modular group is the cusp at

τ = i∞; cusps are defined as equivalence classes in Q∪ {∞} under the group action, where

J(τ) diverges.

It is then natural to identify the two functions in (1.30), J(u) = J(τ), leading to a

polynomial equation for U(τ) [79–81], with coefficients in the field of modular functions of

Γ(1) = SL(2,Z), C(Γ(1)), for fixed mass parameters. That is, the roots U = U(τ) will

generally involve fractional powers of the J(τ) function. Occasionally, the splitting field of
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this polynomial turns out to be C(Γ), for Γ some subgroup of SL(2,Z). In such cases, the

order parameter U(τ) becomes a modular function for the subgroup Γ, and the Coulomb

branch is said to be modular.

A modular rational elliptic surface can be constructed by starting with a particular

subgroup Γ ⊂ SL(2,Z) [82]. In this construction, the special points of Γ – that is, the elliptic

points and the cusps – become singular fibers in Kodaira’s classification. We will construct

explicitly this map and, based on the classification of subgroups of PSL(2,Z) [83–85], we are

able to reproduce the classification of the modular rational elliptic surfaces of [86]. However,

our approach provides more insight into the modular properties of rational elliptic surfaces.

The modularity condition is usually quite restrictive and there is no a priori reason

why a 4d N = 2 theory should contain a modular configuration. Recall from section 1.1.1

that the CB singularities induce monodromies M ∈ SL(2,Z) when considering closed loops

around them. These monodromies act on the physical periods (aD, a), and, thus, on the

effective gauge coupling τ , being symmetries of the quantum theory. Thus, when the CB

is modular, the monodromies generate a subgroup Γ ⊂ SL(2,Z). Let us also note that

in such cases, the U -plane is isomorphic to a region of the upper half-plane H, called the

fundamental domain of Γ. This can be obtained from a list of coset representatives {αi} of

Γ in the modular group as:

FΓ =

nΓ⊔
i=1

αiF0 , (1.31)

where F0 is the fundamental domain of SL(2,Z) and nΓ is the index of Γ inside the modular

group. Then, given the choice of coset representatives, the monodromies around the special

points of Γ can be easily determined, without the need of evaluating the SW periods around

these points. These monodromies are directly linked to the electromagnetic charges of the

light BPS states, and, thus, we ultimately find a BPS quiver construction from the singular

fibers of the SW geometry.

Consider, for instance, an I1 singular fiber on the CB of a theory T , corresponding to

a single light BPS state becoming massless. This singularity can be mapped to a rational

number on the boundary of the upper half-plane, τ = q
m , for some q,m ∈ Z mutually prime.

We will then show that such a singularity is generated by a BPS state with magnetic-electric
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charges given by:

τ =
q

m
∈ Q ←→ ±(m,−q) . (1.32)

Using this identification and assuming the existence of a quiver point, we are then able to

construct the BPS quiver of T from a basis of BPS states.

1.4 Field theories on curved backgrounds

The second part of the thesis will be dedicated to studying five-dimensional SCFTs on

curved backgrounds. As such, in this section, we provide more details on topological twisting

and partition function computations.

1.4.1 Topological twisting

A general procedure for defining supersymmetric QFTs in curved backgrounds is to first

couple the flat space field theory to supergravity, in which the metric is allowed to fluctuate,

and then take a rigid limit where the metric and its superpartners become fixed background

fields [87]. This approach leads to generalised Killing spinor equations, whose solutions are

the preserved supercharges on the curved background. Schematically, one has:

(∇µ − iAµ) ξ = 0 , (1.33)

where ∇µ is the covariant derivative on the curved background, while in Aµ we include any

background fields, such as the R-symmetry background.

There is no general approach to solving these Killing spinor equations, but topological

twisting provides a very elegant alternative. Consider a 4d N = 2 theory with a global

symmetry that includes the Euclidean rotation Spin(4) ∼= SU(2)l×SU(2)r and the SU(2)R

R-symmetry. Witten’s definition of the topological twist [21] consists of relabelling the spins

of fields according to a new ‘twisted spin’:

SU(2)l × SU(2)D , SU(2)D ≡ diag(SU(2)r × SU(2)R) . (1.34)
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That is, we couple the fields to the SU(2)r spin connection according to the way they

transform under the SU(2)R R-symmetry. The twist is then implemented by identifying

the SU(2)R indices with those of the SU(2)r group. In physical terms, we turn on some

SU(2)R R-symmetry background that precisely cancels the spin connection in (1.33). Such

a background can be shown to exist on any Riemannian four-manifold [21].

On general four-manifolds M4, the topological twist preserves only one supercharge –

namely, there is a topological supercharge Q̄ that is a scalar with respect to the new rotation

group SU(2)l × SU(2)D [21]. Moreover, this charge is nilpotent, i.e. Q̄2 = 0 on all fields.

Note that when M4 is Kähler, only a U(1)R ⊂ SU(2)R background is needed, due to the

reduced holonomy ofM4, leading to two conserved supercharges on the curved background.

As such, computations on Kähler manifolds become more tractable.

The Donaldson-Witten theory is an example of a topological quantum field theory (TQFT).

In such models, the action and the operators can depend on the metric of the manifold,

but due to the topological symmetry arising from the conserved supercharge, the correla-

tion functions are metric-independent. Additionally, observables are Q̄-invariant operators,

while the Q̄-exact operators decouple from the theory since their correlations functions van-

ish – see e.g. [88] for a nice review. For these reasons, the DW theory is usually referred to

as a cohomological TQFT.

1.4.2 Fibering operator

To further study the strong-coupling behaviour of 5d SCFTs, we are interested in defining

these theories on five-manifolds M5 that can be constructed as circle fibrations over a

Kähler four-manifold:

S1 −→M5
π−→M4 . (1.35)

We initiate a new approach to computing theM5 supersymmetric partition function, ZM5 ,

following a line of ideas which was successfully applied to 3d N = 2 theories on Seifert

manifolds [89] – see also [90–94]. For this, we first consider the 5d theory on the trivial

fibrationM4 × S1, where the presence of the S1 factor allows us to consider the 4d N = 2

KK theory that one obtains by compactifying the 5d SCFT on a circle [17, 49]. This KK
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theory can then be defined onM4 using the usual DW twist.

Observables in the four-dimensional topological quantum field theory (TQFT) obtained

by the DW twist have been computed in a direct path integral approach, which is however

a famously challenging problem [95–100]. See also [101–111] for more recent progress on the

topic, and especially [112] for the case of 4d N = 2 KK theories. Our aim is to introduce

a so-called fibering operator, F , such that theM5 partition function becomes a particular

observable in the DW theory:

ZM5 = ⟨Fp⟩DW
M4×S1 , (1.36)

where p denotes the first Chern class of the principal circle bundle (1.35).

Thanks to topological invariance, one can use the low-energy Seiberg-Witten description

of the KK theory to compute the partition function onM4×S1 and hence, upon insertion

of the fibering operator, onM5. It is particularly useful to consider the theory at any given

point on the Coulomb branch, with a denoting the scalars in the low-energy abelian vector

multiplets.10 We will denote by

ZM5(a)m , (1.37)

the ‘partition function’ onM5 at a fixed value of a, and with some fixed background fluxes

m for the abelian gauge fields turned on, and refer to this quantity as the CB partition

function, by a slight abuse of terminology. The partition function ZM5 is then found by

integrating out the dynamical low-energy vector multiplets and, based on a number of

previous results and conjectures in the literature (see e.g. [99, 107, 113, 114]), we expect it

to be schematically given as:

ZM5 =
∑
m

∮
C
daZM5(a)m , (1.38)

where the precise form of the sum over fluxes and of the integration contour have to be

determined. Our work will focus on the CB partition function ZM5 , which already entails

a number of subtleties and leads to new and interesting results.

10We will also use a to denote mass terms, which arise as background vector multiplets.
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1.5 Outline of the thesis

The thesis is organised in two separate parts. In the first part, we discuss the Seiberg-

Witten geometry of 4d N = 2 (KK) theories, making extensive use of the mathematical

formalism of rational elliptic surfaces. Chapter 2 reviews certain aspects of the geometric

engineering of the 5d SCFTs of rank-one, as well as their Seiberg-Witten geometries found

using local mirror symmetry. In chapter 3 we introduce the formalism of rational elliptic

surfaces and describe the SW geometries of the rank-one theories in this context. Moreover,

we show how global aspects of the theories can be determined using this formalism. Chapter

4 discusses modular RES and how these can be used to find BPS quivers.

In the second part of the thesis, we provide three distinct approaches for computing

the CB partition function (1.37). In chapter 5, we develop a five-dimensional uplift of the

Donaldson-Witten twist to five-manifolds of the type (1.35), and use this to compute the CB

partition function using standard supersymmetric localization computations [115]. Then,

in chapter 6 we introduce the fibering operator from a low-energy effective field theory

perspective, which provides an alternative to the supersymmetric localization computation.

Finally, in chapter 7, we study M5 partition functions as the gluing of Nekrasov instan-

ton partition functions. This approach is only valid for toric M4 manifolds but provides

consistency checks for the previous methods.
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Part I

Seiberg-Witten geometry and BPS

quivers
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Chapter 2

Local mirror symmetry and Seiberg-

Witten geometry

In this chapter, we review some aspects of the Seiberg En 5d SCFTs [7, 8]. These are of

course the simplest 5d SCFTs we could consider – the geometric engineering of general

5d SCFTs has attracted a lot of interest in recent years, see e.g. [70, 116–148]. The circle

compactification of the En theory is described by Type-IIA string theory on the same

dPn singularity, and the local mirror description in Type-IIB gives us the Seiberg-Witten

geometry we are interested in. After reviewing some standard facts about families of elliptic

curves and Seiberg-Witten geometry, we discuss the En Seiberg-Witten curves. We also refer

to chapter 1.2.1 for a brief introduction to these models.

2.1 The U-plane: a gauge theory perspective

One can gain some useful intuition about the Coulomb branch physics of DS1En from

their 5d gauge-theory description, as discussed in [49]. Firstly and most importantly, the

Coulomb branch is a one-complex dimensional variety because the 5d real scalar σ in the

abelian vector multiplet for U(1) ⊂ SU(2) is paired with the U(1) holonomy along the

circle. Let us then define the dimensionless scalar:

a = i (βσ + iA5) , A5 ≡
1

2π

∫
S1

AMdx
M . (2.1)

The classical SU(2) Coulomb branch is then of the form (R× S1)/Z2, which is spanned by

a ∈ C modulo a→ −a (the SU(2) Weyl group action) and a→ a+ 1 (the five-dimensional

large gauge tranformations along S1). It will be useful to parameterize the Coulomb branch
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in a gauge invariant way, as:

U = e2πia + e−2πia . (2.2)

This corresponds to the classical expectation value of a five-dimensional supersymmetric

Wilson line in the fundamental representation of SU(2), wrapping the circle:

U ≡ ⟨W ⟩ , W ≡ Tr P exp

(
i

∫
S1

(A− iσdψ)
)
. (2.3)

For each U(1)i ⊂ En symmetry on the ECB, we similarly introduce the complexified flavour

parameters:

νi = i
(
βm

(F )
i + iA

(F )
i,5

)
, MF i ≡ e2πiνi , (2.4)

which include flavour Wilson lines along the circle. In this basis, each νi corresponds to an

exceptional curve Ei of the dPn geometry. We will see in section 2.3 that a more appropriate

description for the gauge theory phase involves a change of basis to the complexified mass

parameters µi of the hypermultiplets, which also involves the (complexified) inverse gauge

coupling µ0.

The classical relation (2.2) will be modified by quantum corrections. Let us consider

(2.3) as the intrinsic definition of U , valid in the full quantum theory. Recall that the

4d N = 2 low-energy description on the CB is fully determined, in flat space, by the

holomorphic prepotential F(a), with the effective gauge coupling determined by (1.7) at

any given point on the Coulomb branch. The challenge is then to write down the low-energy

parameter a in terms of the VEV U in (2.3), a = a(U,MF ), where we include a dependence

on the flavour parameters MF i. Then, (1.7) gives us the effective gauge coupling on the CB

as a function of U and MF i.

At large distance on the CB, namely for U →∞, one can compute the prepotential at

the one-loop order similarly to the 4d gauge-theory case, by resumming the KK towers [49].
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For SU(2) with Nf flavours, one finds:

F = F0 +
2

(2πi)3
Li3
(
e4πia

)
− 1

(2πi)3

n−1∑
i=1

∑
±

Li3
(
e2πi(±a+µi)

)
≈ F0 +

2

(2πi)3
Li3

(
1

U2

)
− 1

(2πi)3

n−1∑
i=1

Li3

(
1

U

)
,

(2.5)

with F0 = 1
2µ0a

2 a classical contribution, and the trilogarithms arising at one-loop. Here

we also assumed |a| ≫ |µi| on the second line.

2.2 Monodromies, periods and Seiberg-Witten geometry

The low-energy scalar field a is not a single-valued function of the parameter U . This is

already true, in a somewhat trivial way, in the large distance approximation, where we have:

a =
1

2πi
log

(
1

U

)
+O

(
1

U

)
. (2.6)

The presence of a logarithmic branch cut is equivalent to the statement that a and a+1 are

gauge equivalent. More importantly, the effective gauge coupling itself is not single-valued.

As we go around the point at infinity, U−1 = 0, we have:

U−1 → e2πiU−1 : τ → τ + 9− n (2.7)

which follows from (2.5). This gives us a shift of the effective 4d θ-angle by 2πb0, with b0

the β-function coefficient of the 5d gauge theory [15]:

b0 = 8−Nf = 9− n . (2.8)

In the interior of the U -plane, one should then have more singularities, around which the

effective gauge coupling τ transforms by some non-trivial elements of SL(2,Z), exactly like

in the case of purely four-dimensional SU(2) theories [7,8]. Such singularities are physically

allowed because of the electric-magnetic duality of the 4d N = 2 abelian vector multiplet.

Let aD denote the scalar field magnetic dual to a, defined as aD = ∂F/∂a, as in (1.9).
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U0

U∗1 U∗k

U∞

. . .

Figure 2.1: Paths γv generating the fundamental group of the U -plane. The path around
infinity is equal to minus the sum of all the other paths, γ∞ = −(γ1 + · · ·+ γk).

Semi-classically, at large distance on the U -plane, the field aD describes a BPS monopole.

The low-energy effective theory is fully determined by the data of a section (aD, a) of a

rank-two holomorphic affine bundle11 over the U -plane, with structure group C2⋊SL(2,Z),

such that the effective gauge coupling is given by:

τ =
∂aD
∂a

. (2.9)

The low-energy scalars a and aD are called the electric and magnetic ‘periods’, respectively.

As we go around any singularity U = U∗ on the U -plane (including the point at infinity) in

a clockwise fashion, the periods transform as:

(
aD

a

)
→M∗

(
aD

a

)
, M∗ ∈ SL(2,Z) . (2.10)

The SL(2,Z) matrix M∗ is the so-called monodromy around that point. Let us denote

the k + 1 singularities on the U plane (including the point at infinity, U∞) by ∆̂ =

{U∗1, · · · , U∗k, U∞}, and let:

MC = {U} − ∆̂ (2.11)

be the Coulomb branch with its singular points removed. Given one of our rank-one theories

with fixed mass parameters MF i, the quantum Coulomb branch data is an affine bundle E

11This is an affine bundle instead of a vector bundle because of the presence of masses, as we will

discuss momentarily. For now, let us focus on the SL(2,Z) part of the structure group.
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with C2 fibers:

C2 ↪−→ E
π−−→MC . (2.12)

By definition, the monodromy group at some base point U0 is a representation of the

fundamental group π1(MC , U0) on the fiber C2 ∼= π−1(U0). It is generated by the matrices

M∗l, for some convenient choice of base point and of paths γv, where each ‘vanishing path’

goes once along a single singularity as shown in figure 2.1. We then have the obvious

constraint:

M∞

k∏
l=1

M∗l = 1 . (2.13)

Part of this work is dedicated to a thorough study of this elementary structure for theDS1En

theories. In particular, we would like to give a detailed account of the Coulomb branch

singularities, and of the corresponding low-energy physics. Recall that the modular group

SL(2,Z) is generated by the S and T matrices (1.11). Let us also denote by P = S2 = −1

the generator of the Z2 center of SL(2,Z). The monodromy at U = ∞ can be computed

from (2.5) and (2.6), which gives:

aD → aD + (9− n)a+ µ0 −
n−1∑
i=1

µi , a→ a+ 1 . (2.14)

We then have the following SL(2,Z) monodromy at infinity:

M∞ = T 9−n =

(
1 9−n
0 1

)
. (2.15)

Note that this is tied to the Witten effect [149]: a shift of the 4d θ-angle as in (2.7) induces

an electric charge for the monopole, turning it into a dyon. This monodromy corresponds

to a fiber of type I9−n in Kodaira classification, as summarised in table 1.1.
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2.2.1 Central charge, massless BPS particles and T k monodromies

Half-BPS massive particle excitations on the Coulomb branch of DS1En have a mass deter-

mined by their electromagnetic and flavour charges:

γ ∈ Γ ∼= Zn+3 , γ ∼= (m, q, qiF , nKK) , (2.16)

according to the central-charge formula,mγ = |Zγ |. The integer-quantized charges consist of

the magnetic and electric charges, (m, q), the En flavour charges qiF , and the KK momentum

nKK [71]. Using the KK scale as the unit of mass, let us define the dimensionless central

charge Z ≡ βZ. At any given point on the extended Coulomb branch, the central charge

is a map Z : Γ→ C, which is given explicitly by:

Zγ(U,M) = qΠ = maD + qa+ qiFµi + nKK , (2.17)

in terms of the electromagnetic periods. The parameters µi and µKK=1 are ‘exact periods’,

as we will review below. Around any singularity on the U -plane, we have an enlarged

monodromy of the form:

Π→M∗Π , Π ≡


aD

a

µi

1

 , M∗ =


m11 m12 ni1 n01
m21 m22 ni2 n02
0 0 1 0

0 0 0 1

 , (2.18)

with m11m22 −m12m21 = 1, the upper-left corner of M∗ being the electromagnetic mon-

odromy (2.10). Note that the monodromy can be equivalently understood as acting on the

electromagnetic and flavour charges as:

q→ qM∗ , q ≡ (m, q, qiF , nKK) . (2.19)

In general, we keep to the ‘electric’ duality frame dictated by the non-abelian gauge theory

limit (or, more precisely, the large volume limit, as we will see below). The local infrared

physics is invariant under electric-magnetic duality, however. When analysing the physics
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at a given point on the U -plane, it can be convenient to change the duality frame. This

change of basis leaves the central charge invariant and therefore acts on the charges and

periods as:

q→ qB−1 , Π→ BΠ , (2.20)

with B the basis-change matrix.

The simplest type of singularity that can occur in the interior of the U -plane is when a

single charged particle becomes massless. In the appropriate duality frame, the low-energy

physics at that point is then governed by SQED, namely a U(1) gauge field coupled to a

single massless hypermultiplet of charge 1, denoted by ã. Let us assume that a dyon of

electromagnetic charge (m, q) becomes massless at U∗, with m and q mutually prime, so

that ã = maD + qa. Due to the β-function of SQED, the local monodromy is given by T ,

in the variables (ãD, ã)
T = B(aD, a)

T , with B a submatrix of B acting only on the (aD, a)

periods. It thus follows that a massless dyon at U∗ induces a monodromy:

M(m,q)
∗ = B−1TB =

(
1 +mq q2

−m2 1−mq

)
. (2.21)

Any such singularity with a monodromy conjugate to T is called an I1 singularity. Similarly,

we could have SQED with k electrons (or some hypermultiplets of charges qj such that∑
j q

2
j = k), with a monodromy conjugate to T k, which is an Ik singularity [7, 8]. Other

types of singularities are possible, as we will review momentarily.

For the DS1En theory, at generic values of the mass parametersMF , there are k = n+3

singularities of type I1 in the interior of the U -plane, at each of which a single BPS particle

becomes massless. This number of Seiberg-Witten points can be understood in various

ways. From the perspective of local mirror symmetry, which we take below, n + 3 is the

number of generators of the third homology of the Type-IIB mirror threefold, which equals

the total number of generators of the even homology of X̃. From the point of view of the

5d gauge theory, if we admit that the pure 5d SU(2) gauge theory on a circle has 4 CB

singularities [49], then adding Nf = n− 1 massive flavours adds Nf singularities, which are

semi-classical in some particular large-mass regime.
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2.2.2 Kodaira singularities and low-energy physics

For any rank-one 4d N = 2 field theory, the physical problem is to find exact expressions

for the electromagnetic periods (aD, a) such that the CB metric (1.7) is positive definite,

and which otherwise match the known asymptotics. The original Seiberg-Witten solution

for 4d N = 2 SU(2) gauge theories was obtained by realising that, given some physical

ansatz for the singularities and monodromies on the Coulomb branch, a positive-definite

metric can be elegantly obtained by viewing the low-energy fields (aD, a) as the periods of

a meromorphic one-form, λSW, on a family of elliptic curves [7, 8].

At fixed mass parameters, we wish to consider a one-parameter family of elliptic curves,

which we generally call ‘the Seiberg-Witten geometry’:

Σ→ SCB →MC
∼= {U} . (2.22)

Here, SCB denotes a one-parameter family of elliptic curves over the U -plane, including the

singularities. At each smooth point U ∈ MC on the Coulomb branch, we have an elliptic

curve ΣU ∼= E. One then identifies τ(U) with the modular parameter of that curve. The

latter is computed as τ = ωD
ωa

, where ωD and ωa are the periods of the holomorphic one-form

ω along the A- and B-cycles in ΣU :

ωD =

∫
γB

ω , ωa =

∫
γA

ω . (2.23)

We call these periods the ‘geometric periods’. The holomorphic one-form of an elliptic curve

is unique up to rescaling. The Seiberg-Witten differential λSW is a meromorphic one-form

such that:

dλSW
dU

= ω , (2.24)

modulo an exact 1-form. The ‘physical periods’ are then defined as:

aD =

∫
γB

λSW , a =

∫
γA

λSW . (2.25)
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We then indeed have:

ωD =
daD
dU

, ωa =
da

dU
, τ =

ωD
ωa

=
∂aD
∂a

. (2.26)

The SW curve of DS1En, similarly to the case of the massive 4d SU(2) gauge theories [8],

can be viewed as a genus-one Riemann surface with (generically) n + 1 punctures, where

the SW differential has simple poles with residues given by the masses (or ‘flavour periods’)

µi and µKK. For our purpose, however, we can mainly bypass an explicit determination of

the SW differential. It will often be enough to determine the geometric periods before using

(2.26) to determine the electromagnetic periods up to integration constants. The latter will

be fixed by matching to known asymptotics.

Kodaira classification and infrared physics. All the SW curves considered in this

work can be brought to the standard Weierstrass form (1.14) by a change of coordinates.12

The possible singularities of the rank-one Seiberg-Witten geometries are captured by the

Kodaira classification of singular fibers. The singularity type can be read off from the

Weierstrass form of the curve by looking at the order of vanishing at U = U∗ of g2, g3 and

of the discriminant:

g2 ∼ (U − U∗)
ord(g2) , g3 ∼ (U − U∗)

ord(g3) , ∆ ∼ (U − U∗)
ord(∆) . (2.27)

The different types of fibers, in Kodaira’s notation, are listed in table 1.1. This gives us

a crucial tool to identify the types of singularities in the low-energy physical description,

given the Seiberg-Witten geometry [17].

We already discussed in section 2.2.1 that the Ik singularities can be due to k BPS

particles of the same charge becoming massless, with the local physics being that of massless

12When viewing the SW curve as a compact curve, the Weierstrass equation can be read as the

cubic Y 2 = 4X3− g2XZ4− g3Z6 with [X,Y, Z] = P2
[2,3,1]. Here we are working on the patch Z = 1.

In fact, even though we call ΣU ‘an elliptic curve’, we will remain somewhat agnostic about the

precise mathematical definition. In some string-theory geometric engineering scenarios, it appears

more natural to view the SW curve as an affine curve in (C∗)2 instead of a curve in projective space.

These subtle differences of perspective will not affect our physical discussion. We used SAGE [150]

to find the explicit Weierstrass form of various curves.
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SQED with k electrons. This is an IR free theory, consistent with the fact that the effective

inverse gauge coupling is τ = i∞ at that point. Moreover, this theory has a Higgs branch

which is isomorphic to the moduli space of one SU(k) instanton.13 Therefore, there is a

‘quantum Higgs branch’ emanating from such a point on the U -plane, and, in particular,

there is an su(k) flavour symmetry associated with this type of singularity.

The second and third type of singularity in table 1.1, called I∗k , has a monodromy

conjugate to PT k. The low-energy physics is that of a 4d N = 2 SU(2) gauge theory

with Nf = 4 + k flavours, which is IR-free for k > 0, and conformal for k = 0. Its Higgs

branch is the moduli space of one SO(8 + 2k) instanton, and the flavour symmetry algebra

is so(8 + 2k).

The Kodaira singularities of type II, III and IV realise the three ‘classic’ rank-one

Argyres-Douglas theories [9, 10]. These are non-trivial 4d N = 2 SCFTs with fractional

scaling dimensions for the Coulomb branch operator (65 ,
4
3 and 3

2 , respectively). The flavour

symmetry of the H0 theory (Kodaira fiber II) is trivial, while the flavour symmetry of the

H1 and H2 theories is su(2) and su(3), respectively. The latter two have a Higgs branch

which is the moduli space of one SU(2) or SU(3) instanton, respectively.

Finally, the Kodaira singularities of type II∗, III∗ and IV ∗ correspond to the En

Minahan-Nemeschansky theories [43,44], for n = 6, 7, 8, as indicated in the table. These 4d

SCFTs have a Higgs branch isomorphic to the moduli space of one En instanton.

Picard-Fuchs equations. Consider a one-parameter family of curves, ΣU , by setting the

various mass parameters to definite values. We consider the Weierstrass form (1.14), with

g2(U) and g3(U) some polynomials in U , and we would like to determine the geometric

periods:

ω =

∫
γ
ω , ω =

dx

y
, (2.28)

13This follows, for instance, from compactification to 3d together with 3d N = 4 mirror symmetry

[60].
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with γ any one-cycle γ ∈ H1(ΣU ). These periods satisfy a second-order linear differential

equation, the Picard-Fuchs equation, which can be expressed in a universal form [151,152]:

d2Ω

dJ2
+

1

J

dΩ

dJ
+

31J − 4

144J2(1− J)2
Ω = 0 , ω(U) =

√
g2(U)

g3(U)
Ω(J(U)) . (2.29)

2.3 Large-volume limit and mirror Calabi-Yau threefold

In the Type-IIA description of the DS1En Coulomb branch, the BPS particles are D-branes

wrapping holomorphic cycles inside the local del Pezzo geometry, at least semi-classically.

(More generally, they are Π-stable objects in the derived category of coherent sheaves of

X̃En [153].) The associated ‘exact periods’ are the ‘quantum volumes’ of the D0-, D2-, and

D4-branes. In the large volume limit, we have:

ΠD4 =

∫
B4

e(B+iJ)ch(Lε)

√
Td(TB4)
Td(NB4)

+O(α′) , (2.30)

for the wrapped D4-brane. Here J is the Kähler form, which is complexified by the B-field,

and Lε is a (spinc) line bundle, which must often be non-trivial [154]. The period of a D2-

brane wrapped on any 2-cycle Ck ⊂ B4 is given by the corresponding complexified Kähler

parameter:

ΠD2Ck
= tk ≡

∫
Ck

(B + iJ) . (2.31)

We also have ΠD0 = 1, the D0-brane being stable at any point on the Kähler moduli space.

For n > 0, we can view dPn as the blow up of F0
∼= Cf ×Cb at n−1 points, with exceptional

curves Ei, for i = 1, · · · , n− 1. We then choose a basis of Kähler parameters:

tf =

∫
Cf
(B+ iJ) , tb =

∫
Cb
(B+ iJ) , tEi =

∫
Ei

(B+ iJ) , i = 1, · · · , n−1 . (2.32)

Note that these parameters are only defined up to shifts by integers, due to large gauge

transformations of the B-field. For any curve C, we also define the single-valued parameter:

QC ≡ e2πitC . (2.33)
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Thus, the large Kähler volume limit for any effective curve C is equivalent to QC → 0. Let

{Ck} be some basis of H2(B4,Z), with the intersection pairing:

Ck · Cl = Ikl . (2.34)

We also choose the worldvolume flux on the D4-brane to be:

1

2π

∫
Ck

F = εk . (2.35)

These fluxes must generally be non-zero and half-integer, due to the Freed-Witten anomaly

cancellation condition [154]:

c1(Lε) +
1

2
c1(K) ∈ H2(B4,Z) . (2.36)

On the other hand, any integer-quantized flux on the D4-brane could be set to zero by

a large gauge transformation of the B-field. The latter transformation corresponds to a

large-volume monodromy. We then have:

ΠD4 =
1

2

∑
k,l

(tk + εk)Ikl(tl + εl) +
χ(B4)
24

+O(α′) . (2.37)

Note that the parameters εk just amount to shifting tk by some half-integers. For the IIA

geometries that are obtained by blowing up F0,
14 it will be convenient to choose another

basis of Kähler parameters, denoted by a, µ0 and µi (i = 1, · · · , n− 1), with:

tf = 2a , tb = 2a+ µ0 , tEi = a+ µi . (2.38)

The parameter a is the low-energy photon in the ‘electric’ frame. In the SU(2) gauge-

theory limit, the D2-brane wrapped on Cf is identified with the W -boson, and the factor

of 2 in (2.38) corresponds to the ‘SU(2)’ normalisation of the electric charge such that it

has charge 2; similarly, the other identifications in (2.38) corresponds to the electric and

14Thus, in all cases except for E0 and Ẽ1, which we can treat separately.
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flavour charges of the other D2 particles, i.e. five-dimensional instanton particles and flavour

hypermultiplets. Note that the parameters µ0, µi are pure flavour parameters, in that the

corresponding (non-effective) curves Cµ have vanishing intersection with the compact four-

cycle B4 ⊂ X̃. Consequently, they lie along the E−
n lattice in (1.21). From (2.37), we then

find:

ΠD4 = 2a(2a+ µ0)−
1

2

n−1∑
i=1

(a+ µi + εi)
2 +

n+ 3

24
+O(Q) , (2.39)

where we chose εf = εb = 0. Once we identify the W -boson as coming from a D2-brane

wrapping Cf (and, more generally, the ‘electric’ particles as being the wrapped D2-branes),

then the wrapped D4-brane is identified with the magnetic monopole. We then have:

aD =
∂F
∂a

= ΠD4 , (2.40)

and the large volume result (2.39) then corresponds to a prepotential:

F =

(
µ0 −

1

2

n−1∑
i=1

µ̃i

)
a2 +

9− n
6

a3 +

(
n+ 3

24
− 1

2

n−1∑
i=1

µ̃2i

)
a+O(Q) , (2.41)

where we defined the shifted masses µ̃i ≡ µi + εi. This should be compared to the 5d

prepotential for SU(2) with Nf = n− 1, which reads [46]:

F5d = m0σ
2 +

4

3
σ3 − 1

6

n−1∑
i=1

∑
±

Θ(±σ +mi)(±σ +mi)
3 , (2.42)

in the conventions of [70]. We indeed recover the 5d prepotential from (2.41), in the appro-

priate limit and in a specific Kähler chamber:

F5d = lim
β→∞

i

β3
F , σ > |mj | , j = 0, · · · , n− 1 , (2.43)

using the fact that Im(a) = βσ and Im(µj) = βmj .
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2.3.1 Local mirror symmetry for the toric models

For n ≤ 3, the En singularity in Type-IIA is also a toric Calabi-Yau threefold. The corre-

sponding toric diagrams are:

c1

c2 c3

c4

c5c6

c0

E3

c1

c3

c4

c5c6

c0

E2

c1

c3

c4

c6

c0

E1

c1

c3

c5c6

c0

Ẽ1

c1

c3

c5

c0

E0

(2.44)

Here, the arrows denote the possible partial resolutions of the singularities, which correspond

to massive deformations of the 5d SCFTs. Let us then consider the E3 singularity first, since

the other toric singularities can be obtained from it by this partial resolution process. The

internal point in the toric diagram, indicated by c0 in (2.44), corresponds to the compact

divisor D0
∼= B4 = dP3. Associated to each external point, indicated by ci, i = 1, · · · , 6, we

have a non-compact toric divisor Di of the threefold, which intersects the compact divisor

along curves Ci inside the resolved singularity, Ci ∼= D0 · Di, The intersection numbers

between toric divisors and curves are captured by the following table, which is equivalent

to the data of a gauged linear sigma-model (GLSM) [155]:

D1

D2

D3

D4

D5

D6

D0

D1 D2 D3 D4 D5 D6 D0 FI

C1 −1 1 0 0 0 1 −1 ξ1

C2 1 −1 1 0 0 0 −1 ξ2

C3 0 1 −1 1 0 0 −1 ξ3

C5 0 0 0 1 −1 1 −1 ξ5

C4 0 0 1 −1 1 0 −1 ξ4

C6 1 0 0 0 1 −1 −1 ξ6

(2.45)
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Note the linear equivalences C4 ∼= C1 + C2 − C5 and C6 ∼= C2 + C3 − C5. The triangulated

toric diagram shown in (2.45) corresponds to the smooth local dP3 geometry. The real

parameters ξi are the Kähler volumes of the curves Ci in the local threefold – they are the

‘FI parameters’ in the GLSM language. The Kähler cone is spanned by (ξ1, ξ2, ξ3, ξ5) ∈ R4

satisfying:

ξ1 ≥ 0 , ξ2 ≥ 0 , ξ3 ≥ 0 , ξ5 ≥ 0 , ξ1 + ξ2 − ξ5 ≥ 0 , ξ2 + ξ3 − ξ5 ≥ 0 . (2.46)

Other phases can be obtained by successive flops, therefore moving onto the extended Kähler

cone of the singularity, which maps out the full extended Coulomb branch of the 5d SCFT

E3 [70]. Viewing dP3 as the blow-up of F0 at two points, we have the natural basis of curves

discussed in subsection 1.2.1: Cf and Cb are the ‘fiber’ and ‘base’ curves, respectively, and

E1 and E2 are the two exceptional curves. This basis is related to the curves shown in

(2.45) by:

Cf = C1 + C2 , Cb = C2 + C3 , E1 = C5 , E2 = C2 . (2.47)

In the 5d SU(2), Nf = 2 gauge-theory description, the M2-branes wrapped over Cf and Cb

give us the W-boson and the instanton particle, respectively, while the M2-branes wrapped

over E1 or E2 give rise to hypermultiplets.15 The fixed point of the theory has an enhanced

E3 = su(3) ⊕ su(2) symmetry. The simple roots of E3 are in one-to-one correspondence

with the curves:

Cα1 = Cb − Cf , Cα2 = Cf − E1 − E2 , Cα3 = E1 − E2 , (2.48)

which intersect inside dP3 according to the E3 Cartan matrix. :

Cαi · Cαj = −Aij =

−2 1 0

1 −2 0

0 0 −2

 . (2.49)

15We are following the analysis of [70], where the gauge theory description is read off from a

‘vertical reduction’ of the toric diagram.
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Note that, using the 5d gauge-theory parameters (2.38), the Kähler parameters associated

to the roots are:

tα1 = µ0 , tα2 = −µ1 − µ2 , tα3 = µ1 − µ2 . (2.50)

We refer the reader to [1] for more details on the 5d gauge-theory parameterisation.

Local mirror description. Let us now consider the mirror description of the extended

Coulomb branch, as the complex structure deformations of the mirror threefold in IIB:

DS1En ←→ IIA on R4 × X̃ ←→ IIB on R4 × Ŷ (2.51)

For any toric singularity, the local mirror threefold, Ŷ, is given by a hypersurface in C2 ×

(C∗)2, with equation [156]:

Ŷ =
{
v1v2 + F (t, w) = 0

∣∣ (v1, v2) ∈ C2 , (t, w) ∈ (C∗)2
}
. (2.52)

Here, F (t, w) is the Newton polynomial associated with the toric diagram, which takes the

general form:

F (t, w) =
∑
m∈Γ0

cmt
xmwym , (2.53)

where the sum runs over all the points in the toric diagram Γ0 ⊂ Z2, with coordinates

(xm, ym). The coefficients cm are the complex structure parameters of the mirror, modulo

the gauge equivalences:

F (t, w) ∼ s0F (s1t, s2w) , (s0, s1, s2) ∈ (C∗)3 . (2.54)

Let us associate to each effective curve C ⊂ X̃ a complexified Kähler parameter QC = e2πitC

as in (2.33). Given a GLSM description of X̃, as in (2.45), the mirror parameter zC is given

by:

zC =
∏
m∈Γ0

(cm)
qm , qm ≡ C ·Dm . (2.55)
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Here, Dm is the toric divisor associated to the point m ∈ Γ0. This is normalized such that

we have zC ≈ Qf in the large volume limit, or equivalently:

tf =
1

2πi
log(zf ) +O(z) . (2.56)

The hypersurface (2.52) is a so-called suspension of the affine curve:

Σ = {F (t, w) = 0} ⊂ (C∗)2 , (2.57)

and we may focus on the latter. One may view the threefold Ŷ as a double fibration of Σ

and C∗ over some complex plane {W} ∼= C, as we will review in section 3.1.2. The BPS

particles arise from D3-branes wrapping supersymmetric 3-cycles which can be constructed

explicitly in a standard way [58, 157]. The exact periods are then given by the classical

periods of the holomorphic 3-form on Ŷ, which can be reduced to a line integral along a

one-cycle γ = S3
γ ∩ Σ on the curve Σ:

Πγ =

∫
S3
γ

Ω =

∫
γ
λSW . (2.58)

From these considerations, one finds the following Seiberg-Witten differential:

λSW = log t
dw

w
, (2.59)

up to an overall numerical constant.

The E3 curve. The mirror curve for the local dP3 geometry is given by:

FdP3(w, t) =
1

t

(
c1 +

c2
w

)
+
c3
w

+ c6w + c0 + t (c4 + c5w) . (2.60)

We denote by:

zf =
c3c6
c20

, zb =
c1c4
c20

, zE1 =
c4c6
c5c0

, zE2 =
c1c3
c2c0

, (2.61)
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the complex-structure parameters mirror to the Kähler volume of the curves (2.47). We

find it useful to introduce the parameters U , λ, M1 and M2 such that:

zf =
1

U2
, zb =

λ

U2
, zE1 = − 1

UM1
, zE2 = − 1

UM2
. (2.62)

Using the gauge freedom (2.54), we may set c3 = c6 = 1, c1 = c4, and choose c0 = −U , so

that the E3 Seiberg-Witten curve reads:

E3 :

√
λ

t

(
1 +

M2

w

)
+

1

w
+ w − U + t

√
λ (1 +M1w) = 0 . (2.63)

The CB parameter U is chosen such that

U ≈ 1√
Qf

= e−2πia , (2.64)

at large volume, while the mass parameters λ,M1,M2 are related to the 5d gauge parameters

as by the mirror map:

λ =
Qb
Qf

= e2πim0 , Mi = −
√
Qf

QEi

= e−2πiµ̃i = −e−2πiµi , i = 1, 2 , (2.65)

setting εi =
1
2 (mod 1) for the exceptional 2-cycles Ei in B4 ∼= Bln−1(F0). Here, λ cor-

responds to the 5d gauge coupling, and M1, M2 correspond to the two hypermultiplet

masses. These ‘flavour’ complex-structure parameters, which we will often call ‘the masses’

by a slight abuse of terminology, are such that the massless limit corresponds to λ =Mi = 1.

Unlike the relation (2.64) between U and a, which is corrected by worldsheet instantons

from the IIA point of view, the large-volume relations (2.65) are exact in α′, as is the case

for any Kähler parameter tC in X̃ Poincaré dual to a non-compact divisor.

The other toric curves. Let us consider the successive 5d mass deformations shown in

(2.44), to obtain the curves for the other toric En singularities. To obtain the E2 geometry,

we need to flop the curve C2 ⊂ dP3 and take it to large negative volume. This corresponds

to the limit of large negative 5d mass, m2 → −∞, which is the limit M2 → 0. This is
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equivalent to setting c2 = 0 in (2.60). We then obtain the curve:

E2 :

√
λ

t
+

1

w
+ w − U + t

√
λ (1 +M1w) = 0 , (2.66)

The 5d gauge-theory phase is SU(2) with Nf = 1. From the E2 theory in its gauge-theory

phase, we can integrate out the hypermultiplet with either m1 → −∞ or m1 → ∞ in

5d, which gives us the SU(2)0 or the SU(2)π 5d gauge theory, respectively. These limits

correspond to M1 → 0 and M1 →∞, respectively. It is thus straightforward to find the E1

curve:

E1 :
√
λ

(
1

t
+ t

)
+

1

w
+ w − U = 0 . (2.67)

The Ẽ1 case is distinct from the all other En with n > 0, since dP1
∼= F1 is not a blow-up

of F0. That is, our basis choice is more suitable for blow-ups of F0. The GLSM description

reads:

D1

D3

D5

D6

D0

D1 D3 D5 D6 D0 FI

Cf = C1 ∼= C5 0 1 0 1 −2 ξ1

Cb = C3 1 1 1 0 −3 ξ3

C6 ∼= C3 − C5 1 0 1 −1 −1 ξ5

(2.68)

Let us note that the instanton particle, which is the D2-brane wrapping Cb, has electromag-

netic charge (m, q) = (0, 3), since D0 · Cb = −3. We then have the identification:

tf = 2a , tb = 3a+ µ0 , (2.69)

which is distinct from (2.38). Starting from the E2 curve, we first use the gauge freedom

(2.54), to rescale t → t/
√
M1 and then redefine λ → λ/

√
M1. Then, in the M → ∞ limit,

we have:

Ẽ1 :
√
λ

(
1

t
+ tw

)
+

1

w
+ w − U = 0 . (2.70)

Finally, we can take the limit from Ẽ1 to E0, which corresponds to a ‘negative 5d gauge

coupling’, λ→∞. We should first perform a gauge transformation (2.54) with (s0, s1, s2) =
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(λ−
1
3 , λ−

1
3 , λ

1
6 ), rescale U → 3λ

1
3U (the factor 3 being there for future convenience), and

then take the limit λ→∞. One then obtains:

E0 :
1

t
+

1

w
+ tw − 3U = 0 . (2.71)

Geometric-engineering limit. It is also interesting to consider the four-dimensional

‘geometric-engineering’ limit of the E3 curve (2.63), given by the small-β limit. We pick:

w = e−2πβx , (2.72)

for the coordinate w, as well as:

λ =
(
2πiβΛ(2)

)2
, M1 = −e2πβm1 , M2 = −e−2πβm2 , (2.73)

for the mass parameters,16 keeping Λ(2) fixed. This scale is identified with the dynamical

scale of 4d N = 2 SU(2) with two flavours. Recall, that, for SU(2) with Nf flavours, we

have:

Λb0(Nf )
= µb0e2πiτ(µ) , b0 = 4−Nf , τ =

θ

2π
+

4πi

g24d
. (2.74)

We identify the 5d and 4d gauge couplings at the threshold scale µ ∼ 1
β , according to

βm0 ∝ 1
g24d

. The 5d U -parameter and the 4d u-parameter can be matched as:

U = 2 + 4π2uβ2 +O(β3) , u = ⟨Tr(Φ2)⟩ ≈ −a2 , Φ = − i√
2

(
a 0

0 −a

)
. (2.75)

We then obtain the 4d curve:

Λ(x+m1)

t
+ Λt(x+m2) + x2 − u = 0 , (2.76)

with the replacement t→ −it done for convenience. Due to the change of coordinate (2.72),

the 4d curve is now a curve in C×C∗. The residual Z2 symmetry of the 4d u-plane for the

16The sign change of m2 is such that the SW curve agrees with instanton partition function

computations.
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Nf = 2 curve is restored by shifting u by an a-independent term, namely: ũ = u − Λ2/2.

As pointed out in [158], this leads to a-independent terms in the prepotential, which have

no effect on the low-energy effective action. From the five-dimensional curve perspective,

we can view this as a mixing of the O(β2) term in (2.75) with λ, due to the fact that the

parameters u and Λ2
(2) have the same scaling dimension. Such mixings will be a general

feature of 4d limits.

Similar 4d limits can be taken from the E2, E1 and Ẽ1 curves, with:

λE2 = −i
(
2πiβΛ(1)

)3
, λE1 = λ

Ẽ1
=
(
2πiβΛ(0)

)4
. (2.77)

For both the E1 and the Ẽ1 theory, this gives us the curve corresponding to the pure SU(2)

gauge theory in four-dimensions:

Λ2
(0)

t
+ Λ2

(0)t+ x2 − u = 0 . (2.78)

We give the Weierstrass form of all these curves in appendix A.

While the mirror curves for the local toric dPn geometries (i.e. n ≤ 3) can be found

from the toric data, the curves for the non-toric cases (n ≥ 4) can be determined as limits of

the E-string theory SW curve [17,159,160], or, alternatively, using toric-like diagrams [161].

The curves are written explicitly in Weierstrass form in appendix A and we will review them

in chapter 3.3.2.
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Chapter 3

Rational elliptic surfaces, Mordell-

Weil group and global symmetries

In the previous chapter, we discussed the flavour symmetry algebra of various rank-one

theories, but it is natural to ask whether one can also determine the global form of the

flavour symmetry group – that is, the group that acts faithfully on gauge-invariant states –

directly from the SW geometry. For the massless En theories, the Higgs branch is always

isomorphic to the moduli space of one En-instanton, or equivalently to the minimal nilpotent

orbit of En. (Except for Ẽ1 and E2, which one should discuss separately.) These Higgs

branches are consistent with the actual flavour symmetry group of the massless theory

being:

GF = En/Z(En) , (3.1)

where En denotes the simply-connected Lie group with Lie algebra En, and Z(En) denotes

its center – see table 3.1. Very recently, the flavour symmetry group was determined to

be precisely the centerless (3.1) by looking at the 5d BPS states in M-theory [162] – see

also [163] and the index computation in [164]. In this work, we will give complementary

derivations of that same fact, from the 4d Coulomb branch point of view. In addition,

we will discuss the abelian symmetries, and any flavour symmetry-breaking pattern, in a

unified manner, by taking full advantage of the elliptic fibration structure of the rank-one

SW geometry.

In order to do so, it is useful to introduce some additional formalism, namely the theory

of rational elliptic surfaces.17 From that more global perspective, one can study the physics

of DS1En throughout its whole parameter space rather systematically and efficiently. This

17For further background on this subject, we refer to the very accessible book by Schütt and

Shioda [59], from which much of the mathematical discussion in this section is taken.
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n 1 3 4 5 6 7 8

En SU(2) SU(3)× SU(2) SU(5) Spin(10) E6 E7 E8

Z(En) Z2 Z3 × Z2
∼= Z6 Z5 Z4 Z3 Z2 −

Table 3.1: Simply-connected En groups and their centers.

perspective also leads to an improved understanding of the ‘well-known’ 4d gauge theories

and SCFTs, as we will discuss in the next section.

3.1 Seiberg-Witten geometry as a rational elliptic surface

Consider the SW geometry (2.22) at fixed mass parameters, viewed as an elliptic fibration

over a genus-zero base MC
∼= P1, which is the U -plane with the point at infinity added,

while the fiber E is the Seiberg-Witten curve. Its minimal Weierstrass model (1.14) is a

single equation in the complex variables (x, y, U), thus describing a dimension-two complex

variety. By using homogeneous coordinates (as in footnote 12), this can be interpreted as a

projective variety. Importantly, this rational elliptic fibration has a section, called the zero

section O, which is given explicitly by the point ‘at infinity’, O = (x, y) = (∞,∞) on each

elliptic fiber.18

The Weierstrass model (1.14) has codimension-one singularities along the discriminant

locus ∆(U) = 0, which look locally like ADE singularities. Each singular Kodaira fiber Fv

at U = U∗,v can then be resolved in a canonical fashion, giving smooth reducible fibers:

π−1(U∗,v) = Fv ∼=
mv−1∑
i=0

m̂v,iΘv,i , (3.2)

where Θv,i are the mv irreducible fiber components, of multiplicity m̂v,i, in Fv. If mv = 1,

the irreducible fiber Fv = Θv,0 is a genus-zero curve (a rational curve with a node or with

a cusp, for Fv of type I1 or II, respectively). In all other cases, Fv is reducible and the

exceptional fibers together with Θ0,v (all of genus zero) intersect according to the affine

Dynkin diagram of g, where g is the flavour algebra listed in table 1.1, and m̂v,i are the

18In the notation of footnote 12, the zero section is [X,Y, Z] = [1, 1, 0]. At smooth fibers, this

defines the ‘origin’ of the elliptic curve E ∼= T 2.
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(a) I2 ⊕ I3 (E3) (b) I5 (E4)

2 2

(c) I∗1 (E5)

3 22

2

(d) IV (E6)

4 3 232

2

(e) III (E7)

6 5 4 342

3

2

(f) II (E8)

Figure 3.1: Examples of affine Dynkin diagrams corresponding to resolved Kodaira fibers.
These are the ones that correspond to the semi-simple En Lie algebras. The affine node
Θv,0 is indicated in dark red, and the nodes with unit multiplicity (m̂v,i = 1) are all the
nodes in (dark or light) red. The multiplicities m̂v,i > 1 are indicated next to the nodes.

Coxeter labels; in particular, every irreducible component Θv,i has self-intersection −2 and

corresponds to a simple root of gv. For every resolved fiber Fv, the zero section O intersects

Fv only through the fiber component Θv,0 (which corresponds to the affine node in the ADE

Dynkin diagram of Fv). Some of the relevant affine Dynkin diagrams are shown in figure 3.1.

The resulting smooth surface S̃ → S, called the Kodaira-Neron model, is birational to the

Weierstrass model S of the SW geometry.

For future reference, to each reducible fiber Fv, let us associate the finite abelian group:

Z(Fv) ≡ R∨
v /Rv , (3.3)

where Rv is the root lattice of gv and R∨
v is its dual lattice.19 It is isomorphic to the center

Z(G̃v) of the simply-connected Lie group G̃v associated with that algebra, and it has order:

Nv = |Z(Fv)| = |det(Agv)| , (3.4)

where Agv denotes the Cartan matrix of the Lie algebra gv. Note that Nv is the number of

components Θv,i of Fv with m̂v,i = 1 in the decomposition (3.2).

19In the present case of an ADE algebra, we have R∨
v
∼= Λv, with Λv the weight lattice of G̃v such

that Lie(G̃v) = gv and π1(G̃v) = 0.
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3.1.1 Mathematical interlude (I): rational elliptic surfaces

What we have described so far is a rational complex surface that admits an elliptic fibration

with a section, which we will take as the definition20 of a rational elliptic surface. Such

surfaces are tightly constrained, and a full classification exists [11,12]. Any rational elliptic

surface can be obtained by blowing up P2 at nine points – in other words, a RES is an

almost del Pezzo surface dP9. In particular, it is also Kähler.

The most important topological fact about S̃ is that it is simply-connected and that its

topological Euler characteristic e(S̃) is equal to 12. Another very important set of global

constraints is as follows. To each exceptional fiber Fv, one associates its Euler number,

which is given by:

e(Fv) =

{
mv = k , if Fv is of type Ik>0 ,

mv + 1 , otherwise
= ord(∆) at U∗,v , (3.5)

where ord(∆) is as listed in table 1.1. We also associate an ADE Lie algebra gv to each

fiber Fv, including the trivial algebra for Fv of type I1 or II, with rank:

rank(Fv) ≡ rank(gv) = mv − 1 . (3.6)

Given these definitions, we have the two conditions:

∑
v

e(Fv) = 12 ,
∑
v

rank(Fv) ≤ 8 , (3.7)

which severely restrict the possible configurations of singular fibers. Using these and some

more subtle geometric constraints, the complete list of all rational elliptic surfaces was first

constructed by Persson [11] and further checked by Miranda [12]. There are exactly 289

distinct RES and we will see that a given surface can be interpreted as the Coulomb branch

of several distinct En theories on a circle.

20To be precise, we should also require that the fibration be relatively minimal, meaning that one

should blow down any exceptional curve (i.e. any (−1)-curve) in the fiber.
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Quadratic twist and ‘transfer of ∗’ operation. The allowed coordinate transforma-

tions that preserve the Weierstrass form are (x, y) → (f2x, f3y), with f = C(U). On the

other hand, a ‘quadratic twist’ is a rescaling of the form:

(x, y)→ (fx, f
3
2 y) , f ∈ C(U) , (3.8)

which is equivalent to the rescaling:

(g2, g3)→ (f−2g2, f
−3g3) , f ∈ C(U) . (3.9)

A quadratic twist induces a so-called ‘transfer of ∗’ amongst the singular fibers, wherever

√
f has branch cuts (which can be at a smooth fiber, I0). The corresponding changes in

fiber types are:

Ik ↔ I∗k (k ≥ 0) , II ↔ IV ∗ , III ↔ III∗ , IV ↔ II∗ . (3.10)

This simple operation relates many distinct rational elliptic surfaces amongst themselves.

3.1.2 Local mirror, rational elliptic surfaces and the F-theory picture

Recall that the local Calabi-Yau threefold Ŷ mirror to the local dPn geometry X̃En is a

suspension of the En Seiberg-Witten curve. In the toric case, in particular, it is given

by (2.52). Let F (x, y;U) = 0 denote the SW curve at a particular value of U ∈ C. By

introducing some complex variables v1, v2 and W , one can write down the threefold as a

complete intersection in five variables (x, y, v1, v2,W ) [58]:

F (x, y;W ) = 0 , v1v2 = U −W . (3.11)

This describes the mirror threefold as a double fibration over the W -plane, at fixed U (and,

implicitly, fixed mass parameters M):

E × C∗ → Ŷ → C ∼= {W} . (3.12)
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The SW curve fibered over the W -plane is again our RES S, with W substituted for U .

The C∗ ∼= R×S1
∗ fiber contains a non-trivial one-cycle S1

∗ which degenerates precisely when

W = U . Then, the Coulomb branch BPS states arise from D3-branes wrapping Lagrangian

3-cycles S3
γ calibrated by the holomorphic 3-form Ω.21

The 3-cycle S3
γ can be constructed explicitly as follows [58]. Consider a path on the

W -plane from a singularityW =W∗, where the elliptic fiber E degenerates along some one-

cycle γ ∈ E, to W = U , where the C∗ fiber degenerates. By fibering the torus T 2 ∼= γ × S1
∗

over that path, one spans out the closed 3-cycle S3
γ , which is topologically a three-sphere.

Let Γ2 ⊂ S3
γ be the two-chain with boundary along γ ∈ EU above the fiber at W = U ,

obtained by forgetting the S1
∗ fiber. We then have the periods:

Πγ =

∫
S3
γ⊂Ŷ

Ω =

∫
Γ⊂S

Ω2 =

∫
γ∈E

λSW , (3.13)

with ∂Γ = γ, provided that:

Ω2 = dλSW , (3.14)

inside S. Here, the closed (and exact) 2-form Ω2 is the holomorphic symplectic 2-form on S

that appears in the integrable-system description of Seiberg-Witten theory [35]. Note that

we simply have:

Ω2 = ω ∧ dU , (3.15)

with ω the holomorphic one-form of the elliptic fiber, as follows from (2.24); here and in the

following, we freely switch back and forth between W and U to describe the ‘U -plane’ base

of the rational elliptic surface S. It is important to note, however, that W is a coordinate

on the IIB geometry while U is a complex structure parameter. It is the double fibration

structure (3.11) that allows us to substitute one for the other in the obvious way. In general,

one should also consider more general paths on the W -plane to construct supersymmetric

3-cycles. The electro-magnetic charge of the BPS state is fixed by a choice of γ at the ‘base

point’ W = U , but the path can branch out and meet several Kodaira singularities, as long

as the total charge γ is conserved. More formally, we may also consider candidate ‘pure

21This is of the form Ω = Ω2 ∧ dv1

v1
.
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flavour states’, which are closed 2-cycles Γ with ∂Γ = 0, constructed by connecting directly

different Kodaira singularities in the appropriate manner. In all cases, it follows from (3.13)

and (3.15) that a necessary topological condition for a 2-cycle or 2-chain Γ ⊂ S to give rise

to a BPS state is that it has ‘one leg along the base and one leg along the fiber’.

Correspondence with F-theory. Since part of the IIB mirror symmetry appears to

have an elliptic fibration, it is useful to think about it in the language of F -theory. In

our original setup, we have a pure geometry in Type-IIB with constant axio-dilaton, which

is then ‘F-theory’ on R4 × Ŷ × T 2. If we now interpret the elliptic fiber E as the axio-

dilaton, instead of the trivial T 2 factor, the Kodaira singularities of the Weierstrass model

correspond to 7-branes in the standard way. In this picture, the singularity of the C∗

fibration at W = U is interpreted as the position of a probe D3-brane on the W -plane [58].

This gives a nice alternative description of the U -plane as the geometry seen by a D3-brane

in the background of some fixed 7-branes.

The F-theory language offers some additional physical intuition. Firstly, it is clear

in this picture that the Kodaira singularities of the SW geometry realize the non-abelian

ADE-type flavour symmetries of the theory, simply because the 7-branes wrap non-compact

cycles C∗×T 2 ⊂ Ŷ×T 2. The BPS states from the 2-chains Γ ⊂ S here correspond to string

junctions on the W -plane, which are open-string networks connecting the D3-brane to the

7-branes in a supersymmetric fashion. Such string junctions have been extensively studied

in the literature, in this very same context [165–171]. Secondly, it is well-known in F-theory

that sections of the elliptic fibration are related to abelian symmetries and to the global form

of the ‘gauge group’ – see e.g. the review [172]. In the rest of this section, we will argue, not

surprisingly given what we have written so far, that essentially the same conclusions can

be reached when interpreting sections of the rank-one Seiberg-Witten geometries in terms

of the 4d flavour symmetry.

Let us also recall that the F-theory perspective leads to a nice interpretation of the

Higgs branch that emanates from a Kodaira singularity with reducible components [56].

Indeed, moving onto that Higgs branch corresponds to moving the D3-brane probe on top

of the 7-brane stack at W = U∗,v before ‘dissolving’ it into the 7-branes, which gives the
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Higgs branch as the G̃v one-instanton moduli space.22

Fixing F∞, the fiber at infinity. Consider a fixed rank-one 4d N = 2 supersymmetric

field theory TF∞ , which is either a 5d SCFT on a circle, a 4d SCFT, or a 4d N = 2

asymptotically-free theory. For each theory, we are interested in the class of all rational

elliptic surfaces with a fixed singularity at U =∞, whose corresponding (resolved) Kodaira

fiber is denoted by F∞. The choice of F∞ fixes the ‘UV definition’ of the field theory:23

TF∞ ←→ {S | π−1(∞) = F∞} . (3.16)

For purely four-dimensional theories, this point of view was emphasized in [36]. As we

reviewed in the previous section, the SW geometry for the KK theory DS1En has an I9−n

fiber at infinity, as determined by the large volume monodromy in Type-IIA. We can then

obtain the strictly four-dimensional theories by additional limits, thus ‘growing’ the singu-

larity at infinity. The 4d limits from the 5d En SCFT to the 4d En MN SCFT for n = 6, 7, 8

correspond to the degenerations:

F 5d
∞ → F 4d

∞ : I3 → IV (E6) , I2 → III (E7) , I1 → II (E8) , (3.17)

at infinity, wherein one I1 collides with the ‘5d’ fiber at infinity F 5d
∞ to give the ‘4d’ fiber

F 4d
∞ . Similarly, the geometric-engineering limit from the DS1En theory with 1 ≤ n ≤ 5 to

the 4d SU(2) gauge theory with Nf = n− 1 corresponds to:

F 5d
∞ → F 4d

∞ : I8−Nf
→ I∗4−Nf

(ENf−1, Nf = 0, 1, 2, 3, 4) , (3.18)

wherein two I1’s are brought in to merge with the I8−Nf
fiber at infinity. The remaining

choices, F∞ = II∗, III∗ or IV ∗ correspond to the Argyres-Douglas theories H0, H1 and

H2, respectively, as also discussed in [36].

Finally, we should mention that one may also consider the ‘generic’ situation for which

22When a perturbative open-string description of this process exists (in particular, for k D7-branes

in the case of an Ik singularity), it reproduces exactly the ADHM construction.
23With the important exception of F∞ = I8, which includes both E1 and Ẽ1.
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the fiber at infinity is trivial. The interpretation of that configuration is that we are con-

sidering the 6d N = (1, 0) E-string SCFT with E8 symmetry compactified on T 2, whose

U -plane has the singularities [17]:

6d E-string (F 6d
∞ = I0): II∗ ⊕ I1 ⊕ I1 , (3.19)

in the massless limit. This curve is discussed from our perspective in [4]. The 5d E8 theory

with F∞ = I1 is obtained from the E-string theory by sending one I1 singularity to infinity,

which corresponds to shrinking the T 2 to S1 [160].

3.2 Mordell-Weil group and global symmetries

Let us finally explain how the flavour symmetry group is encoded by the rank-one Seiberg-

Witten geometry. This involves reviewing some very interesting mathematical results, fol-

lowing closely [59].

3.2.1 Mathematical interlude (II): Mordell-Weil group and Shioda map

Any elliptic curve famously has the structure of an additive group; viewing the curve as

the torus E ∼= C/(Z + τZ), the neutral element is the origin, and the addition operation

is simply the addition of complex numbers. This becomes more interesting for an elliptic

curve defined over the field Q, in which case the equation F (x, y) = 0 for the curve has

a finite number of rational solutions, which form a finitely generated abelian group. More

generally, we are here considering the equation (1.14) where g2, g3 are valued in C(U), the

field of rational functions of U .

A rational section of this elliptic fibration is a rational solution to the Weierstrass equa-

tion (1.14) P = (x(U), y(U)), with x(U), y(U) ∈ C(U). By the Mordell-Weil theorem, the

sections of S form a finitely generated abelian group, which we denote by either MW(S) or

Φ.24 We then have:

Φ = MW(S) ∼= Zrk(Φ) ⊕ Zk1 ⊕ · · · ⊕ Zkt . (3.20)

24We will denote the MW group by Φ, and use the symbol MW(S) for the MW lattice, to be

defined below.
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Here, rk(Φ) is the rank of the MW group – that is, the number of independent generators

of the free part of Φ. Note that the point ‘at infinity’ O = (∞,∞) is the neutral element

of the MW group, and therefore does not contribute to the rank. The MW group also

generally has a torsion component, which we denote by Φtor. The addition of sections in Φ

is given by the standard addition of rational points of an elliptic curve. Let P1 = (x1, y1)

and P2 = (x2, y2) be two distinct points in Φ. Their sum is given by:

P = P1 + P2 = (x, y) ,


x = −(x1 + x2) +

1
4

(
y1−y2
x1−x2

)2
,

y = − y1−y2
x1−x2 (x− x1)− y1 .

(3.21)

Meanwhile, for P1 = P2, we have the duplication formula:

P = 2P1 = (x, y) ,


x = −2x1 + ξ2 , ξ ≡ 12x21−g2

4y1
,

y = −2ξ(x− x1)− y1 .
(3.22)

The inverse of a point P = (x, y) is given by −P = (x,−y), so that P − P = O. A section

P is Zk torsion if kP = P + P + · · ·+ P = O. Each section P defines a divisor (P ) in the

Neron-Severi group NS(S̃), i.e. the group of divisors modulo linear equivalences. Note that

the NS group is naturally endowed with an integral lattice structure, with the bilinear form

defined as the intersection number of the divisors.

Vertical and horizontal divisors. Let U be the dimension-2 lattice generated by the

zero section (O) and the generic fiber F ∼= E, with intersection pairing:

U ∼= Span((O), F ) , IU =

(
−1 1

1 0

)
. (3.23)

The trivial lattice of vertical divisors in S̃ is defined as the sublattice Triv(S̃) ⊂ NS(S̃)

generated by the zero section, (O), and by the fiber components, such that:

Triv(S̃) ∼= U ⊕ T− , T ≡
⊕
v

Rv . (3.24)
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Here Rv is the root lattice of the Lie algebra gv associated to the reducible fiber Fv in the

Kodaira-Neron model, with the intersection form given by the Cartan matrix. Note that:

(Iv)ij = (−Agv)ij = Θv,i ·Θv,j , (3.25)

is the intersection pairing for T−. We will refer to T as ‘the 7-brane root lattice’, as a nod

to the F-theory picture. Note also that:

rank(T ) =
∑
v

rank(gv) , (3.26)

with rank(gv) as in (3.6). The Neron-Severi lattice of a RES can be expressed as the direct

sum U ⊕ E−
8 [59], from which it follows that T is a sublattice of the E8 lattice. The ‘non-

trivial’ divisors, or horizontal divisors, must then span the complement of T in E8. They

are generated by the (non-zero) sections P ; each divisor (P ) decomposes into a horizontal

and a vertical component, but there are enough sections to generate all vertical divisors.

More precisely, we have the following theorem:

Φ ∼= NS(S̃)/Triv(S̃) , (3.27)

as an isomorphism of abelian groups. It follows, in particular, that:

rk(Φ) = 8− rank(T ) , (3.28)

which implies the second condition in (3.7). The simple relation (3.28) will be important

to understand the flavour symmetry on the U -plane.

The Mordell-Weil lattice. While the Neron-Severi and trivial lattices come with a

‘natural pairing’, this is no longer the case for the Mordell-Weil group, due to possibly

non-trivial torsion in Φ. For this, one makes use of the Shioda homomorphism [173]:

φ : Φ→ NS(S̃)⊗Q , (3.29)
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which maps sections to horizontal divisors with rational coefficients. In other words, we

must have that φ(P ) = (P ) mod Triv(S̃)⊗Q and that:

φ(P ) · (O) = 0 , φ(P ) · F = 0 , φ(P ) ·Θv,i = 0 , ∀v, i . (3.30)

The Shioda map is given explicitly by:

φ(P ) = (P )− (O)− ((P ) · (O) + 1)F +
∑
v

rank(gv)∑
i=1

λ
(P )
v,i Θv,i , (3.31)

with the rational coefficients:

λ
(P )
v,i =

rank(gv)∑
j=1

(A−1
gv )ij Θv,j · (P ) , (3.32)

given in terms of the inverse of the Cartan matrix of gv. In particular, for each Fv, the

coefficients λv,i are valued in 1
Nv

Z, with Nv defined in (3.4). Note also that λv,i = 0, ∀i, if

P intersects the resolved Kodaira fiber Fv at the ‘trivial’ affine node Θv,0. Given this map,

we then define the Q-valued bilinear form:

⟨P,Q⟩ = −(φ(P ) · φ(Q)) . (3.33)

In this way, the intersection pairing induces a (positive-definite) lattice structure on the free

part of the MW group:

MW(S̃)free ≡ Φ/Φtor . (3.34)

This defines the Mordell-Weil lattice (MWL). The intersection pairing on sections is called

the height pairing. It is often useful to define some natural sublattices of the MW lattice.

In particular, one defines the narrow Mordell-Weil lattice MS(S)0 as:

MS(S̃)0 =
{
P ∈ MW(S)

∣∣ (P ) intersects Θv,0 for all Fv
}
, (3.35)

with the lattice structure defined by the height pairing. Since λv,i = 0 for narrow sections,

the narrow MW lattice is an integral lattice. In practice, we can find the narrow MW lattice
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without computing the intersections of the sections with the singular fibers; this is due to

the fact that the narrow MW lattice is isomorphic to minus the complement of the trivial

lattice inside the NS lattice:

NS(S̃) = MW(S̃)−0 ⊕ Triv(S̃) . (3.36)

Moreover, the narrow MW lattice is the orthogonal complement of the 7-brane root lattice

T inside the E8 lattice:

MW(S̃)0 = T⊥ in E8 . (3.37)

Thus, while T = ⊕vRv is the root lattice of a semi-simple subalgebra gT = ⊕vgv of E8, the

narrow MW lattice depends not only on gT as a Lie algebra but on its particular embedding

inside E8.

Torsional sections. The kernel of the Shioda map is precisely the torsion part of the

Mordell-Weil group:

ker(φ) = Φtor . (3.38)

Equivalently, a section P is torsion if and only if ⟨P, P ⟩ = 0. It follows that, if P is torsion,

we have φ(P ) · Γ = 0 for any divisor Γ ∈ NS(S̃), and therefore we have the non-trivial

integrality condition: ∑
v

rank(gv)∑
i=1

λ
(P )
v,i Θv,i · Γ ∈ Z . (3.39)

Let T ′ denote the primitive closure of the 7-brane root lattice T inside the E8 lattice:25,

namely T ′ = (T ⊗ Q) ∩ E8. One can prove that Φtor
∼= T ′/T , and, moreover, since T ′ is a

sublattice of the dual lattice T∨, we have the important property that the torsion subgroup

of the Mordell-Weil group is injective onto the center group Z(T ) = T∨/T :

Φtor ↪→ Z(T ) =
⊕
v

Z(Fv) , (3.40)

25A sublattice M ⊂ N is called primitive if N/M is torsion-free. The primitive closure of any

sublattice N in M is the smallest primitive sublattice N ′ ⊂M that contains N .
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with Z(Fv) defined in (3.3). This embedding can be determined by explicit computation in

the Kodaira-Neron model S̃.

3.2.2 Flavour symmetry group from the SW elliptic fibration

To study the flavour symmetry of a theory TF∞ with a Coulomb branch described by a family

of rational elliptic surfaces as in (3.16), it is useful to consider two opposite limits. We first

consider the ‘massless curve’ – in particular, we have then MF = 1 for the DS1En theories.

In the massless limit, the full flavour symmetry of the UV theory should be manifest. The

other limit is the ‘maximally massive curve’, wherein the UV flavour symmetry GF is broken

explicitly to a maximal torus, U(1)f .

Structure of the flavour symmetry algebra. Consider the U -plane of a 4d N = 2

theory TF∞ with fixed masses (and/or relevant deformations) turned on, which is described

by a particular RES S with Kodaira fibers:

Fv = F∞ ⊕ F1 ⊕ · · · ⊕ Fk . (3.41)

We decompose the 7-brane root lattice in terms of the contribution from infinity and of the

contribution from the interior:

T = R∞ ⊕RF , RF =
k⊕
v=1

Rv , (3.42)

Here, the ‘flavour 7-brane root lattice’ RF is the root lattice of the non-abelian flavour

algebra of the theory TF∞ for some fixed values of the masses:

gNA
F =

k⊕
v=1

gv . (3.43)

On the other hand, the fiber at infinity does not contribute to the flavour symmetry. The

reason for this is perhaps easiest to explain in the F-theory picture: BPS states charged

under the flavour symmetry are open strings stretched between the probe D3-brane and

stacks of 7-branes, which have a mass proportional to the distance between the D3- and the
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7-branes. Modes of open strings stretching all the way to infinity have infinite mass and

are therefore not part of the 4d N = 2 theory under consideration.

In addition, the flavour group generally includes abelian factors. They are precisely

generated by infinite-order sections, P ∈ Φfree. Indeed, that is how U(1) gauge fields arise

in F-theory [174, 175]. Consider the En theories, for definiteness (the other 4d N = 2

theories being obtained from them in appropriate limits). In the IIB description on Ŷ, we

have 3-cycles of the schematic form φ(P ) × S1
∗ , which are mirror to ‘flavour’ two-cycles in

the En sublattice of H2(X̃,Z) [176]. Reducing the C4 RR gauge field of IIB on that 3-cycle,

we obtain a background U(1) gauge field in the low-energy description. The horizontality

conditions (3.30) ensure that the abelian gauge field is massless and neutral under the non-

abelian flavour symmetry gNA
F . The number of abelian factors in the low-energy flavour

symmetry is then given by the rank of the Mordell-Weil group, and we have the full flavour

algebra:

gF =

rk(Φ)⊕
s=1

u(1)s ⊕
k⊕
v=1

gv , (3.44)

for any extended CB configuration described by a particular RES S. In particular, we see

from (3.28) that:

rank(gF ) = 8− rank(F∞) . (3.45)

This equation only depends on the fiber at infinity, and gives the rank of the flavour sym-

metry GF of TF∞ , as indicated. The physical reason for this is clear: as we vary the mass

parameters of a given theory TF∞ , we may break the UV symmetry group GF to its maximal

torus, or to any allowed subgroup, while keeping the rank fixed. This is precisely what being

on the extended Coulomb branch, as opposed to the Higgs or mixed branches, means. Such

extended CB deformations are realised by ‘fusing’ or ‘splitting’ 7-branes by continuously

varying the complex structure parameters of the mirror threefold Ŷ or, equivalently, the

parameters of the Weierstrass model S over the W -plane.

Flavour charges of the BPS states. Consider any BPS state on the Coulomb branch,

corresponding to a 2-chain Γ in S̃ ⊂ Ŷ. Its flavour charges under the non-abelian flavour

symmetry gv ⊂ gF associated to the Kodaira fiber Fv are determined by the intersection
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numbers:

w
(gv)
i (Γ) = Θv,i · Γ . (3.46)

The integers w
(gv)
i give us the weight vectors in the Dynkin basis and thus determine which

representations of gv are spanned by the BPS states. Any physical state of the theory TF∞

should have finite mass, and therefore its corresponding 2-chain Γ should not intersect the

fiber at infinity. We then have:

Γ physical ⇔ w
(F∞)
i (Γ) = Θ∞,i · Γ = 0 , (3.47)

which can be taken as a ‘topological’ definition of what we mean by a physical state.

Massless limit with GF semi-simple. Consider a theory TF∞ in the massless limit

such that gF is semi-simple, and let G̃F denote the corresponding simply-connected group.

That is the case, in particular, for all the En KK theories with the exception of Ẽ1 and

E2. This means that the Mordell-Weil group of S is purely torsion, Φ = Φtor, and so

rk(Φ) = 0. Such rational elliptic surfaces are called extremal – we will discuss them further

in subsection 3.3.3. The flavour algebra gF = gNA
F is a maximal semi-simple Dynkin sub-

algebra of E8. As explained above, Φtor injects into the finite abelian group Z(T ) = T∨/T ,

which is:

Φtor ↪→ Z(T ) = Z(F∞)⊕ Z(G̃F ) . (3.48)

In the extremal case, T ′ = E8 and the torsion group is related to the embedding of the full

7-brane lattice inside the E8 lattice Φtor
∼= E8/T . Let us denote by Z [1] the subgroup of

sections that are narrow in the interior of the U -plane:

Z [1] =
{
P ∈ Φtor

∣∣ (P ) intersects Θv,0 for all Fv ̸=∞
}
, (3.49)

and let us denote by F the cokernel of the inclusion map Z [1] → Φtor. In other words, F

is the abelian group defined by the short exact sequence:

0→ Z [1] → Φtor → F → 0 . (3.50)
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Note that F is a subgroup of Z(G̃F ). Given the injection (3.48), we can write any element of

Φtor as P ∼ (z∞, zF ), where z∞ ∈ Z(F∞) and zF ∈ Z(G̃)F . The subgroup Z [1] corresponds

to elements of the form P ∼ (z∞, 0), while the group F contains all the elements in the

image of the projection map (z∞, zF ) 7→ zF . We then claim that the flavour symmetry

group of the theory TF∞ is given by:

GF = G̃F /F . (3.51)

The argument for (3.51) is similar to the one given in the F-theory context [177–179]. One

should consider all possible closed 2-cycles Γ ∈ NS(S̃), which give rise to formal ‘pure

flavour’ states. The existence of torsion sections Ptor constrains the allowed weights of the

pure flavour states due to the integrability condition (3.39), which gives:

rank(F∞)∑
l=1

λ
(Ptor)
∞,l w

(F∞)
l +

rank(gNA
F )∑

i=1

λ
(Ptor)
v,i w

(gNA
F )

i ∈ Z . (3.52)

For the pure flavour states that satisfy the physical state condition (3.47), we have:

rank(gNA
F )∑

i=1

λ
(Ptor)
v,i w

(gNA
F )

i ∈ Z , ∀Ptor ∈ F . (3.53)

The only sections that contribute to the constraint (3.53) are the elements of F since, by

definition, the ‘interior-narrow’ sections in Z [1] ⊂ Φtor lead to the constraint:

rank(F∞)∑
i=1

λ
(Ptor)
∞,i w

(F∞)
i ∈ Z , ∀Ptor ∈ Z [1] , (3.54)

which is trivial on physical states. This determines (3.51) as the effectively acting non-

abelian group on pure flavour states. We should note that the actual BPS states, which

correspond to two-chains ending on the fiber above W = U and thus carry electro-magnetic

charge, will typically be charged under the center of G̃F , but the heuristic argument above

shows that the ‘gauge invariant states’ are only charged under the smaller group GF . We

will also check this claim explicitly in many examples, using a more direct but essentially

63



equivalent argument presented in subsection 3.2.3.

We should also note that the ‘interior-narrow’ section constraint (3.54) would be non-

trivial when dealing with defect states, which are BPS D3-branes on non-compact 3-cycles

stretching all the way to infinity. This leads us to the natural conjecture that this group is

isomorphic to the one-form symmetry of the field theory:

Z [1] ∼= 1-form symmetry of TF∞ . (3.55)

These have received much interest in recent years, and are only a particular case of gen-

eralized symmetries – see e.g. [140, 180–192] for recent developments. We will show that

this agrees with all the known results. For instance, if the conjecture holds, it must be true

that, for a fixed F∞, Z [1] remains the same for any configuration of the singular fibers {Fv}

in the interior, which is a very strong constraint.

As we will shortly see, the DS1E1 theory shows a unique feature: the short exact

sequence (3.50) does not split. We expect that this is related to the two-group symmetry

of the theory, recently discovered in [162], which involves the mixing of 0- and 1-form

symmetries.

Non-abelian flavour symmetry GNA
F in general. In any theory TF∞ with a flavour

algebra (3.43) for some fixed values of the masses, the same argument as above determines

the global form of the non-abelian part of the flavour symmetry group:

GNA
F = G̃NA

F /F , (3.56)

where F is defined as in (3.51) in terms of the torsion part of the Mordell-Weil group. Of

course, the conjecture (3.55) should still hold as well.

Abelian limit with generic masses. The opposite limit to the extremal limit is when

the rank of the Mordell-Weil group is the maximal one allowed by the fiber at infinity:

rk(Φ) = 8− rank(F∞) = rank(GF ) . (3.57)
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In that limit, the flavour group is abelian and thus entirely generated by sections. The

singular fibers in the interior are then irreducible (that is, of type I1 or II). This corresponds

to the maximal symmetry breaking allowed on the extended CB, i.e. with generic masses

turned on:

GF →
rank(GF )∏
s=1

U(1)s . (3.58)

Let the sections Ps be the corresponding generators of Φfree. The divisor dual to U(1)s is

given by φ(Ps). Then, the U(1)s charge of any ‘pure flavour’ state Γ is given by:

qs(Γ) ≡ φ(Ps) · Γ . (3.59)

From the Shioda map, we then obtain an integrality condition:

qs −
rank(F∞)∑

i=1

λ
(Ps)
∞,i w

(F∞)
i ∈ Z . (3.60)

On states satisfying the physical condition (3.47), the second contribution is trivial, and we

simply have:

qs(Γ) ∈ Z if Γ is ‘physical’. (3.61)

Since there are no reducible fibers in this abelian configuration, the physical states actually

span the narrow Mordell-Weil lattice (3.35). Let Λphys denote the weight lattice of flavour

charges for the physical states, which is then isomorphic to the narrow MWL – in particular,

it is an integral lattice. Then, according to (3.37), this physical flavour weight lattice is

isomorphic to the complement of the 7-brane lattice at infinity inside the E8 lattice:

Λphys
∼= R⊥

∞ in E8 . (3.62)

For gF semi-simple in the UV, we can check in each case, according to the general classifica-

tion results [59,193], that Λphys is the root lattice of gF . Therefore, since Z(GF ) ∼= Λphys/Λr,

the actual flavour group is the centerless group, GF = G̃F /Z(G̃F ). This gives a comple-

mentary derivation of (3.51) which avoids having to carefully compute the intersection of
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torsion sections with the reducible fibers.26

Symmetry group GF in the general case. In the general case of a flavour algebra

(3.44), physical states Γ carry both weights under gNA
F and abelian charges:

w
(gv)
i (Γ) = Θv,i · Γ , qs(Γ) ≡ φ(Ps) · Γ . (3.63)

The allowed weights are constrained by torsion sections as in (3.53), and the abelian charges

satisfy the conditions:

qs −
rank(gNA

F )∑
i=1

λ
(Ps)
v,i w

(gNA
F )

i ∈ Z , ∀Ps ∈ Φfree . (3.64)

Thus, for any given RES S̃ corresponding to an extended CB configuration of TF∞ , the

global form of the IR flavour symmetry takes the schematic form:

GF =
U(1)rk(Φ) × G̃NA

F∏rk(Φ)
s=1 Zms ×

∏p
j=1 Zkp

, (3.65)

where the two factors in the denominator are determined by the conditions (3.64) and by

the torsion sections, respectively. In this work, we will mostly focus on the case of GF semi-

simple. The detailed form of (3.64) can also be deduced from the general classification of

Mordell-Weil lattices [59,193], in principle, by mass-deforming into a purely abelian flavour

phase.

3.2.3 Global symmetries from the BPS spectrum

As a consistency check of the above discussion, it is interesting to also compute the flavour

group more directly, which can be done if we know the low-energy spectrum S , similarly to

the recent discussion in [162]. As a reasonably good approximation of the strong-coupling

spectrum, for our purpose, we can often consider S to be the set of dyons that become

massless at the SW singularities U∗. This is closely related to the existence of quiver point,

26See [194] for a related argument in the context of F-theory on an elliptically fibered Calabi-Yau

threefold.
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which we will discuss in chapter 4.

At a generic point on the Coulomb branch, there is a U(1)
[1]
m×U(1)

[1]
e one-form symmetry

in the strict IR limit, which is the one-form symmetry of a pure U(1) gauge theory [19]. One

can think of U(1)
[1]
e as the group of global gauge transformations in the electric frame, and

similarly for U(1)
[1]
m in the magnetic frame. This accidental continuous one-form symmetry

is broken explicitly to a discrete subgroup (which can be trivial) by the spectrum of charged

massive BPS particles S . The one-form symmetry of the full 4d N = 2 theory is then given

by that subgroup.27 See also [195] for further discussion.

Given a theory at fixed masses with a flavour symmetry algebra gF which is non-abelian,

for simplicity, let G̃F denote the corresponding simply-connected group, and let Z(G̃F ) be

its center. For concreteness, let us have Z(G̃F ) = Zn1 × · · ·Znp . The dyons in S fall in

representations Rψ of gF . Let us denote these states ψ by the charges:

ψ : (m, q; l1, · · · , lp) , l1 ∈ Zn1 , · · · , lp ∈ Znp , (3.66)

where (m, q) are the electromagnetic charges, and the integers lj mod nj give the charges

of ψ under the center Z(G̃F ). Let us define the subgroup:

E ⊂ U(1)[1]m × U(1)[1]e × Z(G̃F ) , (3.67)

as the maximal subgroup that leaves the spectrum S invariant. We will denote the gener-

ators of E by:

gE = (km, kq; z1, · · · , zp) , km ∈ Q , kq ∈ Q , zj ∈ Znj . (3.68)

This is a generator that acts on a state (3.66) as:

gE : ψ → e
2πi

(
kmm+kqq+

∑p
j=1

zili
ni

)
ψ . (3.69)

Let Z [1] denote the subgroup of E generated by gZ
[1]

= (km, ke; 0, · · · , 0). In addition, the

27We are very grateful to M. Del Zotto for explaining this to us.
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projection πF : U(1)
[1]
m ×U(1)

[1]
e ×Z(G̃F )→ Z(G̃F ) gives a subgroup F of Z(G̃F ) generated

by gF = (z1, · · · , zp), for each generator (3.68). These three groups are related by a short

exact sequence:

0→ Z [1] → E → F → 0 , (3.70)

precisely as in (3.50). Here, Z [1] is exactly the one-form symmetry. On the other hand, F

is the subgroup of the flavour center Z(G̃F ) that can be compensated by gauge transfor-

mations, and therefore the actual non-abelian flavour group of the theory is GF = G̃F /F ,

as in (3.51).

As an example, consider the pure 4d SU(2) gauge theory, with the SW curve as given in

(2.78) and appendix A.1. At strong coupling, the BPS spectrum consists of the monopole

±(1, 0) and dyon ±(−1, 2), while at weak coupling we have a tower of dyons and the W -

boson [7, 196]:

SS : (1, 0) , (1,±2) , SW : (0, 2) , (1, 2n) , n ∈ Z . (3.71)

In either regime, the spectrum is left invariant by gE =
(
0, 12
)
, following the notation (3.68).

We therefore have an electric one-form symmetry Z2 ⊂ U(1)
[1]
e , as expected from the UV

description [19]. This result is also in agreement with the Z2 torsion section of the SW

geometry (I∗4 ; 2I1).

3.3 Coulomb branch configurations

3.3.1 A first example: the E1 and Ẽ1 theories

As a first example, we explore the U -planes of the E1 and Ẽ1 theories. The corresponding

toric geometries in Type-IIA, and their Type-IIB mirrors, have been well studied in the

literature – see e.g. [18, 58, 62, 197]. Here, we focus on the 5d interpretation and conduct a

systematic analysis of the possible Coulomb branch configurations. We will solve the PF

equations for the physical periods as explicitly as possible for some interesting values of the

masses in chapter 4, where we also discuss the modular properties of the U -plane.
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The E1 theory – 5d SU(2)0. Let us first consider the E1 theory, which is the UV

completion of the five-dimensional SU(2)0 gauge theory [15]. Its SW curve was first derived

and studied in [18, 49]. The ‘toric’ expression (2.67) for the curve can be brought to the

Weierstrass form (1.14), with:

g2(U) =
1

12

(
U4 − 8(1 + λ)U2 + 16

(
1− λ+ λ2

) )
,

g3(U) = − 1

216

(
U6 − 12(1 + λ)U4 + 24

(
2 + λ+ 2λ2

)
U2 − 32

(
2− 3λ− 3λ2 + 2λ3

) )
,

(3.72)

and with discriminant:

∆(U) = λ2
(
U4 − 8(1 + λ)U2 + 16(1− λ)2

)
. (3.73)

At generic values of λ, the discriminant has four distinct roots, and we have four distinct I1

singularities in the interior of the U -plane, plus the I8 singularity at infinity – see figure 3.2.

Note that g2 and g3 in (3.72) depend on U2 instead of U , and therefore the Z2 action:

Z2 : U → −U , (3.74)

is a symmetry of the U -plane for any value of the complexified 5d gauge coupling, λ. This

symmetry has a simple physical explanation. Recall that U is defined as the expectation

value of the five-dimensional fundamental Wilson loop wrapped on S1. Then (3.74) is

precisely the action of the Z2 one-form symmetry of the E1 theory [135, 136], which gives

rise to both a one-form and an ordinary (zero-form) symmetry of the KK theory DS1E1.

Both are spontaneously broken on the Coulomb branch. More details on gauging these

symmetries from a CB perspective can be found in [4].

Let us study the U -plane in some detail. There are two configurations of singular fibers

depending on the value of the parameter λ, as shown below:

{Fv} λ gF rk(Φ) Φtor

(I∞8 ; 2I1, I2) λ = 1 su(2) 0 Z4

(I∞8 ; 4I1) λ ̸= 1 u(1) 1 Z2

(3.75)
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I8

I1 I2 I1

(a) Massless case, λ = 1.

I8

I1 I1

I1 I1

(b) λ = e
2πi
3 .

I8

I1 I1

I1 I1

(c) λ = −1.

Figure 3.2: The U -plane of the DS1E1 theory for some values of λ. Notice the Z2 symmetry,
which is enhanced to Z4 at λ = −1.

The case λ = 1 is the massless point, which gives us the low-energy description of the 5d

SCFT on R4 × S1, with vanishing real masses and without any non-trivial flavour Wilson

line. For λ ̸= 1, the corresponding configuration (I8, 4I1) breaks the su(2) flavour algebra to

the Cartan subalgebra. The point λ = −1 corresponds to setting to zero the fundamental

flavour Wilson line for E1 = su(2):

χE1
1 =

√
λ+

1√
λ
= 0 . (3.76)

In this case, the U -plane turns out to be Z4 symmetric. The massless E1 curve has three

non-trivial sections:

P1 =

(
1

12
(U2 + 4),−U

)
, P2 =

(
1

12
(U2 − 8), 0

)
, P3 =

(
1

12
(U2 + 4), U

)
, (3.77)

which span a Z4 torsion group with Pk + Pl = Pk+l (mod 4). Let us note that the sections

P1 and P3 intersect non-trivially the I2 singular fiber at U = 0. The remaining section, P2,

only intersects the ‘trivial’ component of this fiber and therefore generates a Z[1]
2 subgroup

which injects in the torsion group Z4 according to (3.50). The group F = Z(f)
2 = Z4/Z

[1]
2

then constrains the global form of the flavour group to be:

GF = SU(2)/Z(f)
2
∼= SO(3) , (3.78)

in agreement with [162]. We also identify the Z[1]
2 subgroup of the MW group as the one-
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form symmetry of the E1 theory. In fact, for generic mass deformations λ ̸= 1, a Z2

torsion section is still preserved, with the MW group for the (I8; 4I1) configuration being

Φ = Z⊕ Z2. The U(1) symmetry is generated by the horizontal divisor φ(P ) associated to

the section:

P =

(
U2 + 4(2− λ)

12
, −U

)
, (3.79)

which generates the free part of Φ, and reduces to the Z4 generator P1 in (3.77) when λ = 1.

The Z2 torsion section reads

Ptor =

(
U2 − 4(1 + λ)

12
, 0

)
, (3.80)

which reduces to P2 in (3.77) when λ = 1. For any λ ̸= 1, we have Φtor = Z [1] = Z[1]
2 ,

consistent with our identification of Z [1] with the one-form symmetry of the field theory.

The Ẽ1 theory – 5d SU(2)π. The Ẽ1 theory is the UV completion of the parity-violating

SU(2)π gauge theory in 5d. Let us briefly discuss its U -plane. The Weierstrass form of the

curve (2.70) reads:

g2(U) =
1

12

(
U4 − 8U2 − 24λU + 16

)
,

g3(U) = − 1

216

(
U6 − 12U4 − 36λU3 + 48U2 + 216λ2 − 64

)
,

(3.81)

with the massless limit corresponding to λ = 1. By direct inspection, we find the following

allowed configurations of singular fibers:

{Fv} λ gF rk(Φ) Φtor

(I∞8 ; 2I1, II) λ = ± 16i
3
√
3

u(1) 1 −

(I∞8 , 4I1) λ ̸= ± 16i
3
√
3

u(1) 1 −

(3.82)

This is of course in agreement with the Persson classification [11]. As for E1, the generic

point on the Coulomb branch of Ẽ1 has 4I1-type singularities. It is worth pointing out

that the classification of rational elliptic surfaces includes two distinct configurations with

singular fibers (I8; 4I1), which are distinguished by their MW torsion. That mathematical
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fact dovetails nicely with the existence of two distinct theories with T 8 monodromy at large

volume, E1 and Ẽ1, with only the former having a non-trivial one-form symmetry [135,136].

The Ẽ1 Coulomb branch exhibits a feature that did not appear on the CB of the E1

theory, however: there exists an allowed configuration with a singularity of type II, whose

low-energy description is in terms of H0, the Argyres-Douglas theory without flavour sym-

metry. H0 also appears on the Coulomb branch of the SU(2) theory with Nf = 1, at a point

where two mutually non-local BPS particles E1,2 with Dirac pairing ⟨E1, E2⟩ = 1 become

simultaneously massless. This leads to a rather intriguing RG flow from Ẽ1 to the H0 AD

model. We review such flows in more detail in the following section.

3.3.2 Non-toric Seiberg-Witten curves and RG flows

The SW curves for the non-toric dPn geometries can be determined as limits of the E-string

theory SW curve [17, 159, 160]. These curves are most easily written in terms of the En

characters:

χEn
R (ν) =

∑
ρ∈R

e2πiρ(ν) , (3.83)

for ρ = (ρi) the weights of the representation R, and ν = (νi) the En flavour parameters,

with the index i ∈ {1, . . . , n}. The explicit relation between these parameters and the 5d

gauge-theory parameters is explained in [1]. We give the explicit form of the curves in

appendix A. The massless DS1En curves correspond to the S1 reduction of the 5d SCFTs,

with no mass deformations turned on. The massless limit of these curves is obtained by

setting the characters equal to the dimension of the corresponding representation. For the

DS1E6,7,8 theories, they read:

DS1E8 : y2 = 4x3 − 1

12
U4x+

1

216
(U − 864)U5 ,

DS1E7 : y2 = 4x3 − 1

12
(U − 36)(U + 12)3x+

1

216
(U − 60)(U + 12)5 ,

DS1E6 : y2 = 4x3 − 1

12
(U − 18)(U + 6)3x+

1

216
(U2 − 24U + 36)(U + 6)4 ,

(3.84)
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with the following singular fibers on the U -plane:

DS1E8 : (I1)
∞ ⊕ II∗ ⊕ I1 ,

DS1E7 : (I2)
∞ ⊕ III∗ ⊕ I1 ,

DS1E6 : (I3)
∞ ⊕ IV ∗ ⊕ I1 .

(3.85)

Note, in particular, that the En flavour symmetry can be directly observed from the singular

fibers of the Seiberg-Witten geometry in the massless limit. This manifestation of the flavour

symmetry in the mirror threefold occurs for all DS1En theories. Furthermore, from this

configuration of singular fibers it is straightforward to obtain the four-dimensional limit

of these theories. This is done by identifying the I1 singularities with the KK charge and

decoupling it from the bulk by ‘zooming in’ around the En type Kodaira singularity on

the U -plane. It is well known that these theories flow in 4d to the Minahan-Nemeschansky

(MN) theories [43,44], which have the following scaling dimensions for the Coulomb branch

parameter: (∆E8 ,∆E7 ,∆E6) = (6, 4, 3). Thus, we have:

DS1E8 : (U, x, y) −→ (β6u, β10x, β15y) ,

DS1E7 : (U, x, y) −→ (β4u− 12, β6x, β9y) ,

DS1E6 : (U, x, y) −→ (β3u− 6, β4x, β6y) ,

(3.86)

including constant shifts to bring the relevant singularity to the origin of the 4d u-plane.

This leads to the massless SW curves for the 4d MN theories:

E
(4d)
8 : y2 = 4x3 − 4u5 ,

E
(4d)
7 : y2 = 4x3 + 4u3x ,

E
(4d)
6 : y2 = 4x3 + u4 ,

(3.87)

which are standard DS1En double-point singularities at the origin of (x, y, u) ∈ C3. One

can also reproduce the deformation patterns of these singularities by keeping track of the

various 5d mass parameters [159,160].

The other massless En curves can be analysed in a similar way. One finds that the
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U -plane has the following singularities, in addition to the I9−n singularity at infinity [17]:

DS1E5 : (I4)
∞ ⊕ I∗1 ⊕ I1 ,

DS1E4 : (I5)
∞ ⊕ I5 ⊕ I1 ⊕ I1 ,

DS1E3 : (I6)
∞ ⊕ I3 ⊕ I2 ⊕ I1 ,

DS1E2 : (I7)
∞ ⊕ I2 ⊕ I1 ⊕ I1 ⊕ I1 ,

DS1E1 : (I8)
∞ ⊕ I2 ⊕ I1 ⊕ I1 ,

DS1Ẽ1 : (I8)
∞ ⊕ I1 ⊕ I1 ⊕ I1 ⊕ I1 ,

DS1E0 : (I9)
∞ ⊕ I1 ⊕ I1 ⊕ I1 .

(3.88)

The 4d low-energy effective field theories obtained from the circle compactification of the

5d En SCFTs are IR free for n < 6. Interestingly, the E5 theory, which has a gauge-

theory phase corresponding to SU(2), Nf = 4 in five dimensions, becomes an SU(2) theory

with Nf = 5 upon S1 reduction, which matches the E5 = so(10) symmetry of the UV

theory. In some sense, the ‘instanton particle’ becomes a perturbative hypermultiplet in

four-dimensions, but it is more accurate to say that the full IR-free SU(2) description is a

magnetic dual description of the UV theory.

For the E4 theory, we have an I5 point, corresponding to SQED with five flavours, which

again reproduces the E4 = su(5) symmetry. Note that the E3 theory is special in that there

are now two distinct points with a non-trivial Higgs branch. This matches with the fact

that the Higgs branch of the 5d SCFT E3 is the union of two cones, on which each of the two

factors in E3 = su(3) ⊕ su(2) act independently. In 4d, the instanton corrections separate

the two Higgs branch cones along the complexified Coulomb branch.

Similarly, the E2 and E1 theories both have an su(2) symmetry that is reproduced by

an I2 singularity. On the other hand, the abelian part of E2 = su(2)⊕u(1) and Ẽ1 = u(1) is

encoded in the Seiberg-Witten geometry in a more subtle manner, through the Mordell-Weil

group, as discussed earlier in the chapter.

An advantage of the formalism of rational elliptic surfaces is that RG flows become

rather natural. Searching through Persson’s list based on the distinguished fiber at infinity

allows us to find some rather peculiar flows, as shown in figure 3.3. Consider, for instance,
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Figure 3.3: RG flows among 4d N = 2 (KK) theories. The top rows contain the DS1En
theories, while the bottom two rows involve the E6,7,8 Minahan-Nemeschansky theories, 4d
SQCD theories, and the rank-one Argyres-Douglas theories.

the DS1E3 theory, with F∞ = I6. This theory has a gauge theory phase corresponding to

5d SU(2) Nf = 2 and, in the geometric engineering limit (2.73), it flows to the 4d SU(2)

Nf = 2 theory, which has F∞ = I∗2 . Schematically, in the geometric engineering limit, two

I1 fibers from the bulk of the DS1E3 theory are decoupled, such that upon merging with

the I6 fiber the I∗2 singularity arises at large U .

The simplest 4d N = 2 SCFTs have been found by searching on the Coulomb branches

of SQCD theories, and it is by now well-known that the rank-one Argyres-Douglas SCFTs

arise at special values of the mass parameters on the Coulomb branches of SU(2) gauge

theories with fundamental matter. From the perspective of rational elliptic surfaces, we can

have the following configurations of singular fibers for 4d SQCD, for example, where the

SW curves are listed in appendix A:

T F∞ {Fv} mi

SU(2)Nf = 1 I∗3 II ⊕ I1 m3
1 =

27
16Λ

3

SU(2)Nf = 2 I∗2 III ⊕ I1 m1 = m2 = ±Λ

SU(2)Nf = 3 I∗1 IV ⊕ I1 m1 = m2 = m3 = Λ/2

(3.89)
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Then, taking a ‘zooming in’ limit, similar to what we have done for the massless DS1E6,7,8

curves, we recover the curves for the Argyres-Douglas models H0, H1 and H2, respectively.

These are sometimes also referred to as (A1, A2), (A1, A3) and (A1, D4), respectively, with

their flavour symmetry algebras being ∅, A1 and A2. Note that an RG flow from the Nf = 3

theory to any of the other AD models is clearly possible, by decomposing the IV singularity

in the above configuration.

Let us now return to the 5d DS1E3 theory. Since the geometric engineering limit leads

to the 4d SU(2) Nf = 2 theory, we thus expect that a flow to the AD H1 model should be

possible. What is perhaps more surprising, however, is that a flow to the AD H2 model can

be realised by turning on some holonomy around the S1 direction. This is quite remarkable,

as the latter can only be found on the Coulomb branch of the 4d SU(2) theory with Nf = 3

fundamentals. The relevant configuration for the DS1E3 theory is given below:

DS1E3 : (I6)
∞ ⊕ IV ⊕ 2I1 , (3.90)

which can be achieved by setting λ = 1 and M1 = −M2 = i. The limit to the 4d AD H2

model is realised by:

U → u β
3
2 + 2c β

1
2 , λ→ 1− µ1β , M1,2 → ±i− c β

1
2 ± i µ2

2
β , (3.91)

where β is the dimension of the S1 direction and (c, µ1, µ2) are the parameters of the AD

model, having scaling dimensions
(
1
2 , 1, 1

)
. The existence of this type of RG flow was implied

by the work of Bonelli, Del Monte, and Tanzini [51] relating the 5d BPS quiver of DS1E3

to the gauge/Painlevé correspondence [52–54]. In this example, the su(3) flavour symmetry

of H2 is inherited from the symmetry E3 = su(3)⊕ su(2) of the larger theory, which arises

due to ‘infinite-coupling effects’ from the 5d gauge theory point of view and is related to the

condensation of instanton particles – see e.g. [198]. The AD points are, in fact, ubiquitous

on the extended Coulomb branch of the DS1En theories as we tune the mass parameters,

rendering such flows rather natural. These are shown explicitly in figure 3.3, with the

dashed arrows being the ‘new’ RG flows that we discover. For the explicit form of all these
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{Fv} Notation Φtor 4d theory gF GF

II∗, II X22 -
AD H0 - -

E8 MN E8 E8

III∗, III X33 Z2
AD H1 A1 SO(3)

E7 MN E7 E7/Z2

IV ∗, IV X44 Z3
AD H2 A2 SU(3)/Z3

E8 MN E6 E6/Z3

I∗0 , I
∗
0 X11(j) Z2 × Z2 SU(2), Nf = 4 D4 Spin(8)/Z2 × Z2

Table 3.2: Extremal rational elliptic surfaces without multiplicative (i.e. Ik) fibers.

RG flows, we refer to [1].

3.3.3 Extremal rational elliptic surfaces

A small and particularly interesting subset of all rational elliptic surfaces consists of those

with a Mordell-Weil group of rank zero, rk(Φ) = 0, which are called extremal. There

are only 16 of them, as classified by Miranda and Persson [199]. We list them in tables 3.2

and 3.3. By our general discussion, they correspond to Coulomb branch configurations with

a semi-simple flavour symmetry. A given extremal RES generally corresponds to several 4d

N = 2 theories TF∞ , simply by choosing which of the Kodaira fibers sits ‘at infinity’ on the

one-dimensional Coulomb branch.

The four surfaces listed in table 3.2 do not have any multiplicative fibers, and therefore

they cannot correspond to the DS1En theories, which have F∞ = I9−n. Instead, they

correspond to the seven ‘classic’ 4d SCFTs associated to the 7 additive Kodaira singularities

II, III, IV , II∗, III∗, IV ∗ and I∗0 – this was previously discussed in [36]. In each case, the

massless curve has a single Kodaira singularity at the origin, and therefore the singularity at

infinity is such that M0M∞ = 1. Thus, the first three extremal surfaces in table 3.2 describe

both the En Minahan-Nemeschansky theories [43, 44] and the three rank-one AD theories.

The last surface, X11(j), describes SU(2) with four flavours. It is the only extremal surface

that comes in a one-dimensional family [199] (all the other extremal fibrations are unique),

corresponding to the marginal gauge coupling of this 4d SCFT.

The remaining 12 extremal RES are listed in table 3.3. These are also all the extremal
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{Fv} Notation Φtor Field theory gF Modularity

II∗, I1, I1 X211 − DS1E8 E8 −
AD H0 −

III∗, I2, I1 X321 Z2

DS1E8 E7 ⊕A1

Γ0(2)DS1E7 E7

AD H1 A1

IV ∗, I3, I1 X431 Z3

DS1E8 E6 ⊕A2

Γ0(3)DS1E6 E6

AD H2 A2

I∗4 , I1, I1 X411 Z2
DS1E8 D8

Γ0(4)
4d pure SU(2) −

I∗1 , I4, I1 X141 Z4

DS1E8 D5 ⊕A3

Γ0(4)DS1E5 D5

4d SU(2)Nf = 3 A3

I∗2 , I2, I2 X222 Z2 × Z2
DS1E7 D6 ⊕A1

Γ(2)
4d SU(2)Nf = 2 A1 ⊕A1

I9, I1, I1, I1 X9111 Z3
DS1E8 A8

Γ0(9)
DS1E0 −

I8, I2, I1, I1 X8211 Z4

DS1E8 A7 ⊕A1

Γ0(8)DS1E7 A7

DS1E1 A1

I5, I5, I1, I1 X5511 Z5
DS1E8 A4 ⊕A4

Γ1(5)
DS1E4 A4

I6, I3, I2, I1 X6321 Z6

DS1E8 A5 ⊕A2 ⊕A1

Γ0(6)
DS1E7 A5 ⊕A2

DS1E6 A5 ⊕A1

DS1E3 A2 ⊕A1

I4, I4, I2, I2 X4422 Z4 × Z2
DS1E7 A3 ⊕A3 ⊕A1

Γ0(4) ∩ Γ(2)
DS1E5 A3 ⊕A1 ⊕A1

I3, I3, I3, I3 X3333 Z3 × Z3 DS1E6 A2 ⊕A2 ⊕A2 Γ(3)

Table 3.3: Extremal rational elliptic surfaces with Ik fibers and corresponding field theories.
The configurations corresponding to massless limits of the theories are emphasized in blue.
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RES that have more than 2 singular fibers – in fact, they can only have 3 or 4 singular fibers.

The first and second columns in table 3.3 indicate the singular fibers and the names of the

corresponding surfaces in the notation of [199]. The third column gives the MW group

of the elliptic fibration, which is purely torsion. The fourth column lists the 4d N = 2

(KK) field theories for which this extremal RES describes a CB configuration, while the

fifth column gives the unbroken flavour symmetry algebra in each case. The last column in

table 3.3 indicates the modular group of the surface, up to conjugacy. We will discuss these

modular properties in more detail in the following chapter.

From the MW torsion of these surfaces, one can also deduce the flavour symmetry group,

according to (3.50). Let us exemplify this using 4d SQCD. As we explained in the previous

section, the SW geometry of the 4d N = 2 SU(2) gauge theory coupled to Nf fundamental

hypermultiplets is described by rational elliptic surfaces with F∞ = I∗4−Nf
. In the limit of

vanishing quark masses, the flavour symmetry group for Nf > 1 is the quotient of Spin(2Nf )

by its center, namely:

Nf 2 3 4

GF (SU(2)/Z2)× (SU(2)/Z2) SU(4)/Z4 Spin(8)/(Z2 × Z2)
(3.92)

This can be shown by computing the intersections of the torsion sections with the singular

fibers of the SW curves, as we have done for DS1E1 in the previous section.

For Nf = 1, the flavour symmetry is abelian. For Nf = 0, the flavour symmetry group

is trivial and we have a Z2 electric one-form symmetry, Z [1] = Z2. The flavour symmetry

groups (3.92) are easily understood in the free UV description: there is an SO(2Nf ) sym-

metry acting on 2Nf half-hypermultiplets in the fundamental of the SU(2) gauge group,

but the action of the Z2 center of SO(2Nf ) on the matter fields is equivalent to the action

of the center of the gauge SU(2). Therefore, the actual flavour symmetry is SO(2Nf )/Z2,

which the same as (3.92). At first sight, this appears to be in tension with the discussion

in [8], where it is shown that various dyons sit in spinors of Spin(2Nf ). These are not

gauge-invariant states, however, thus there is no contradiction. As a further confirmation,

note that this global form of the flavour symmetry group is in perfect agreement with the

Schur index as given in [200].
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All the massless En KK theories other than E2 and Ẽ1 appear in table 3.3. These last

two are the exceptions because their flavour group includes one U(1) factor, and therefore

the corresponding rational elliptic surfaces have rk(Φ) = 1. (Similarly so for 4d SU(2)

with Nf = 1.) Finally, let us note that the last configuration in table 3.3, X3333, gives the

so-called T3 description of the E6 theory, in which only an A3
2 algebra is manifest; similarly,

the configuration X4422 for E7 with A2
3 ⊕ A1 realised, and the configuration X6321 for E8

with A5 ⊕ A2 ⊕ A1 realised, can be obtained by Higgsing from the T4 and T6 theories,

respectively [201].

80



Chapter 4

Modular Coulomb branches and BPS

quivers

An important subset of rational elliptic surfaces consists of the modular RES, in which case

the U -plane is isomorphic to a region of the upper half-plane H, which is a fundamental

domain for some subgroup Γ of the modular group PSL(2,Z).28 In this construction, the

singular fibers of the Seiberg-Witten geometry are mapped to the cusps and elliptic points

of Γ, while U(τ) is a modular function for Γ.

As the SW geometry is a rational elliptic surface, the constraint on its Euler number

translates into a constraint on the index of Γ inside PSL(2,Z), namely, this index must

be at most equal to 12, which occurs when all singular fibers are multiplicative (i.e. of

In-type). Using this constraint together with the explicit mapping of the singular fibers to

the special points of Γ, as well as the classification of finite index subgroups of the modular

group [83–85], we are able to provide a list of all modular rational elliptic surfaces [2].

Modularity provides a major simplification of the low-energy dynamics of a 4d N = 2

QFT. In particular, it allows one to find the monodromies around the CB singularities

directly from the properties of the group Γ, as its fundamental domain is isomorphic to the

U -plane. As such, we propose a simple prescription for obtaining BPS quivers [64,71,202–

204] from fundamental domains of 4d N = 2 (KK) theories.

4.1 Modular elliptic surfaces

It has already been known since the original work of Seiberg and Witten [7,8] that the curve

of the pure 4d SU(2) theory is the modular curve H/Γ0(4), where Γ0(4) is a congruence

28Note that PSL(2,Z), which is the quotient of SL(2,Z) by its center, is the preferred version of

the modular group for our purposes, due to the quadratic twist operation introduced in (3.10), as

we will shortly see.
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subgroup of PSL(2,Z). The modular properties of the other SQCD theories were found

in [205], and more recently discussed in great detail in [79–81]. Furthermore, this latter

work also includes fundamental domains of configurations that are not modular, in which

case the map U 7→ τ is not one-to-one anymore. In such cases, the fundamental domains

cannot be constructed as quotients H/Γ due to the existence of branch points and branch

cuts on the upper half-plane.

4.1.1 Subgroups of the modular group

For our purposes, it will be useful to introduce certain subgroups of the modular group

PSL(2,Z). We first introduce the principal congruence subgroups of level N , described as:

Γ(N) =

{(
a b

c d

)
∈ PSL(2,Z) :

(
a b

c d

)
=

(
1 0

0 1

)
mod N

}
, (4.1)

which can be viewed as the kernel of the group homomorphism PSL(2,Z) → PSL(2,ZN ).

The subgroups Γ of PSL(2,Z) containing the principal congruence subgroup Γ(N) are called

congruence subgroups, with the level being the smallest such positive integer N . The most

common level-N congruence subgroups are:

Γ0(N) =

{(
a b

c d

)
∈ PSL(2,Z) : c = 0 mod N

}
.

Γ1(N) =

{(
a b

c d

)
∈ PSL(2,Z) :

(
a b

c d

)
=

(
1 b

0 1

)
mod N

}
.

(4.2)

Similarly, we define the groups Γ0(N) and Γ1(N), by imposing b = 0 mod N instead of

the above constraints. Note that these are related to the Γ0(N) and Γ1(N) groups by

conjugation by S. We also have the following inclusions:

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) , (4.3)

with Γ1(N) ∼= Γ0(N) for N = 2, 3, 4 and 6. Note that these congruences are no longer

satisfied in SL(2,Z), unless N = 2.

Non-congruence subgroups are those that do not contain Γ(N) as a subgroup and are
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much less studied in the mathematical literature. In most cases their modular forms do not

have closed-form expressions; moreover, it was conjectured that the Fourier coefficients of

modular forms of non-congruence subgroups have unbounded denominators, a conjecture

only recently proved in [206].

Given a subgroup Γ ∈ PSL(2,Z), its index nΓ = [Γ(1) : Γ] in Γ(1) ∼= PSL(2,Z) is the

number of right-cosets of Γ in the modular group. As a result, we have:

PSL(2,Z) =
nΓ⊔
i=1

Γ αi , αi ∈ PSL(2,Z) , (4.4)

for a list of coset representatives {αi}. The elements of the modular group act on the upper

half-plane H as:

τ 7→ γτ =
aτ + b

cτ + d
, γ =

(
a b

c d

)
∈ PSL(2,Z) , ∀τ ∈ H . (4.5)

It then follows that a fundamental domain for the subgroup Γ is defined as an open subset

FΓ ⊂ H of the upper half-plane, such that no two distinct points are equivalent under the

action of Γ unless they are on the boundary of FΓ; furthermore, under the action of Γ,

any point of H is mapped to the closure of FΓ. Let us denote the fundamental domain of

PSL(2,Z) by F0. The upper half-plane H is then obtained by the action of the modular

group on F0. The fundamental domain of Γ ⊂ PSL(2,Z) can be obtained from a list of

coset representatives {αi}, since:

H =

(
nΓ⊔
i=1

Γ αi

)
F0 = Γ

(
nΓ⊔
i=1

αiF0

)
. (4.6)

Thus, the fundamental domain of Γ is the disjoint union FΓ =
⊔
αiF0, with the coset

representatives chosen such that FΓ has a connected interior.29

A cusp of Γ is defined as an equivalence class in Q ∪ {∞} under the action of Γ. The

PSL(2,Z) group has only one cusp, with the representative usually chosen as τ∞ = i∞.

The width of the cusp τ∞ in Γ is the smallest integer w such that Tw ∈ Γ. More generally,

29For the standard groups introduced above, fundamental domains can be drawn with Helena

Verrill’s Java applet [207].
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for a cusp at τ̃ = γτ∞, the width is defined as the width of τ∞ for the group γ−1Γγ. The

cusps other than τ∞ are typically chosen as the points of intersection of the fundamental

domain with the real axis.

The other special points in the fundamental domain are the elliptic points, which are

those points with non-trivial stabilizer, i.e. γeτ∗ = τ∗ for some non-trivial element γe ∈ Γ.

The elements γe are called the elliptic elements of Γ. It can be shown that the elliptic points

always lie on the boundary of the fundamental domain. Finally, the order of an elliptic point

τ∗ is the order of the stabilizing subgroup of τ∗ in Γ. For PSL(2,Z) the only elliptic points

are τ0 ∈ {i, e
2πi
3 }, with stabilizers ⟨S⟩ and ⟨ST ⟩, of order 2 and 3, respectively. One can

prove that, for a given finite index subgroup Γ with fundamental domain F , the elliptic

points τ∗ ∈ F are always in the PSL(2,Z) orbit of the above elliptic points, i.e. τ∗ = γτ0,

and thus must have orders 2 or 3.

4.1.2 Shioda’s construction

Modular elliptic surfaces are constructed based on subgroups of Γ ⊂ PSL(2,Z), as first

discussed by Shioda [82]. Let nΓ, ϵ2, ϵ3 and ϵ∞ be the index of Γ in PSL(2,Z), the number

of elliptic elements of order two and three, and the number of cusps of Γ, respectively. The

quotient H/Γ together with a finite number of cusps ϵ∞ forms a compact Riemann surface

∆Γ [208]. Then, there exists a holomorphic map onto the projective line:

JΓ : ∆Γ → P1 , (4.7)

as follows. Let Γ ⊂ Γ1 with a canonical map between the Riemann surfaces H/Γ→ H/Γ1,

i.e. the map arising naturally from the surjection Γ → Γ1. Taking Γ1 = PSL(2,Z), one

has ∆Γ1
∼= P1 ∼= S2, where the JΓ1-map is the usual J-invariant defined on H, which due

to PSL(2,Z) invariance descends to a holomorphic map ∆Γ1 → P1. The map (4.7) is then

simply the canonical map between the Riemann surfaces.

Next, we would like to define an elliptic surface Φ : SΓ → ∆Γ with the singular fibers

residing above the ‘special points’ of Γ. These points are the ones that require special

treatment when defining a complex structure on the Riemann surface ∆Γ, being thus the
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cusps and elliptic points of Γ. Following [82], let Σ be the set of these points, and let:

∆′
Γ = ∆Γ \ Σ ⊂ H/Γ . (4.8)

Then, for a universal covering U of ∆′
Γ, there is a holomorphic map ϖ : U → H such that:

JΓ(π(u)) = j(ϖ(u)) , u ∈ U , (4.9)

with j the elliptic modular function on H. That is, the following diagram commutes:

U π //

ϖ

��

∆′
Γ

//

JΓ
��

∆Γ

H j // P1

(4.10)

Using Kodaira’s construction, one can then define an elliptic surface SΓ over ∆Γ, with

a global section having JΓ as a functional invariant. Additionally, the holomorphic map

introduced before, ϖ : U → H becomes the ‘period’ map of the elliptic fiber at u ∈ U . Note

that ϖ(u) is a single-valued function on the universal covering U , being a multi-valued

function on ∆Γ.

The singular fibers lie above the set Σ of elliptic points and cusps. The type of singular

fiber (as shown in table 1.1) is determined by some additional data. That is, there is a

unique representation φ of the fundamental group π1(∆
′
Γ) of ∆

′
Γ:

φ : π1(∆
′
Γ)→ Γ ⊂ PSL(2,Z) , (4.11)

satisfying:

ϖ(γ · u) = φ(γ) ·ϖ(u) , γ ∈ π1(∆′
Γ) . (4.12)

Note that on the right-hand side of the above equation, we have the usual action of an

element of Γ on a point on the upper half-plane, as φ(γ) ∈ Γ. Thus, for γu a positively

oriented loop around u ∈ ∆Γ, the matrices φ(γu) determine the type of singular fibers [82].

The modular group has two elements of order 2 and 3, namely the generators S and
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ST , respectively. Thus, if u is an elliptic point of order 2, for instance, then φ(γu) must

be conjugate to S. Let us also note that based on Kodaira’s classification of singular fibers

in table 1.1, the JΓ map ‘forgets’ about starred fibers when we restrict to subgroups of

PSL(2,Z); that is, monodromy matrices S and S−1, for example, correspond to the same

type of special point of Γ. This is, in fact, related to the notion of ‘quadratic twisting’,

in which the J-map remains the same, but the starred singular fibers change according to

(3.10).

The same argument holds for elliptic points of order 3, as well as for the cusps of width

n of Γ, where φ(γu) must be conjugate to ST and Tn, respectively. To summarise, we have

the following map between the ‘special’ points of Γ and the singular elliptic fibers:

elliptic point of order 2 (J = 1) : III , III∗ ,

elliptic point of order 3 (J = 0) : II , IV ∗ ,

cusp of width n (J →∞) : In , I
∗
n .

(4.13)

It is worth pointing out that to a subgroup Γ ⊂ PSL(2,Z), we can thus associate more than

one elliptic surface. As we are interested in rational elliptic surfaces, a necessary condition

is that the sum of the Euler numbers associated to all fibers is 12, as indicated before in

(3.7). This constraint can be satisfied in more than one way: we have the (rational) elliptic

surfaces that differ by a quadratic twist, with the singular fibers related as in (3.10).

Let us also note that we should, in principle, include in (4.13) the singular fibers of the

type II∗ and IV as corresponding to elliptic points of order 3. However, such singular fibers

do not actually appear in rational elliptic surfaces, as shown in [86].

4.1.3 Classification of Coulomb branches

Doran showed that there are 33 modular RES up to quadratic twists [86], which, however,

do not change the modular properties of the elliptic surface. As a result, we can extend

this number to 47 distinct rational elliptic surfaces. Our approach, however, uses a different

perspective compared to [86]. The two main ingredients are the classification of subgroups

of PSL(2,Z) [83–85] and the map (4.13).
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As shown earlier, the rationality condition imposes a constraint on the maximal value

of the index inside the modular group. Thus, we only need a complete classification of

subgroups of PSL(2,Z) up to index 12. Let us give some examples of how this process

works.

Index 1 subgroups. The first group that we have to consider is the modular group

PSL(2,Z) itself. This has a single cusp of width 1, and two elliptic points of orders 2 and

3, respectively. As a result, using (4.13) we can build the rational elliptic surfaces

(I1, III
∗, II) , (I1, III, IV

∗) , (I∗1 , III, II) , (I1, III, II, I
∗
0 ) . (4.14)

All these configurations are related by a quadratic twist, where in the last case the star is

transferred to a ‘smooth fiber’. As such, the modular group does not distinguish between

an I0 fiber and an I∗0 fiber.

Depending on which fiber is chosen as the fiber at infinity, these surfaces can describe

multiple 4d N = 2 theories, including also the DS1E8 theory. For any of these configura-

tions, the modular function (hauptmodul) U(τ) is J(τ) itself, or, more generally, a linear

function of J(τ).

Higher index subgroups. For index 2, there is a unique subgroup of PSL(2,Z), which

has a cusp of width 2 and two elliptic points of order of order 3 [85]. We will denote this

group by Γ2. The possible rational elliptic surfaces are (I2, II, IV
∗) and its quadratic twists.

Let us note that the massless DS1E8 configuration (as well as the massless 4d SU(2) Nf = 1

theory), having the singular fibers (I∞1 ; II∗, I1) is distinct from the Γ2 configuration, and,

thus, is not modular.

The analysis for the higher index subgroups follows in a similar fashion. In table 4.1

we list all congruence subgroups – up to conjugation inside PSL(2,Z) – from which we

can construct rational elliptic surfaces, as well as the modular functions for these groups.

Rather interestingly, the series expansion of the modular functions of these groups reproduce

certain McKay-Thompson series of the Monster group [209]. The modular extremal rational

elliptic surfaces have already appeared in table 3.3. These turn out to be extremely useful
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for deriving BPS quivers, as we will discuss next.

Let us also briefly comment on the non-congruence subgroups. Non-congruence sub-

groups are much less studied compared to congruence subgroups. For a nice review of

the existing literature, see [210]. Their systematic study was initiated by Atkin and

Swinnerton-Dyer in [211], when it was observed that the Fourier coefficients of the associ-

ated modular forms have unbounded denominators, a conjecture only recently proved [206].

Closed-form expressions for these modular forms can still be found in certain cases when

the non-congruence subgroup of interest is also a subgroup of a proper congruence sub-

group [212–214], but they involve fractional powers of the usual modular functions. This

procedure is based on a connection to Galois theory and only works for 2 out of the 11

non-congruence subgroups from which rational elliptic surfaces can be built. We will not

discuss these here, and refer the reader to [2].

4.2 BPS quivers from fundamental domains

The goal of this section is to derive the identification between singular fibers and nodes of

the BPS quiver. Building on chapter 1.3, we propose an identification of the nodes of the

BPS quiver with the singular fibers of the SW geometry, making use of modularity.

4.2.1 BPS quivers from a basis of BPS states

Let us return to the study of 4d N = 2 KK theories, DS1TX , obtained from the circle

compactification of a 5d theory SCFT of En type. Hence, here X is a CY3 where a 4-cycle

B4 shrinks to zero volume. At generic points on the Coulomb branch, we have a spectrum

of massive half-BPS particles, with masses:

M = |Zγ | , Zγ = maD + qa+ qFµF , (4.15)

where γ is the charge of the BPS particle, being valued in the charge lattice γ ∈ Z2r+f+1 ∼=

Zn+3, where r = 1 is the rank of the theory and f = n is the rank of the flavour symmetry

algebra, with the additional direction accounting for the U(1)KK symmetry. At quiver
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points on the U -plane, the central charges of n + 3 ‘light’ BPS particles almost align – for

the DS1En theories, they become real – and, conjecturally, the full BPS spectrum can be

obtained as bound-states of the n+3 elementary particles. In such cases, the quiver arrows

are determined by the Dirac pairing of the ‘simple objects’, i.e. the states forming the

basis of light BPS states. All the stable particles arise then as bound states of these simple

objects.

The problem of finding the spectrum at such a quiver point can be formulated in terms of

a BPS quiver – see e.g. [64,71,203,215]. The rough intuition for quiver points, and an explicit

way to compute the resulting quivers, follows from considering the IIB mirror geometry, Ŷ.

We mentioned that BPS particles correspond to D3-branes wrapping Lagrangian 3-cycles.

In the IIA description, the full B4 collapses to zero-volume in the classical picture, and the

(derived) category of quiver representations is expected to accurately describe the category

of B-branes in that regime. In the mirror IIB description, we have ‘light’ wrapped D3-branes

on the ‘small’ 3-cycles mirror to the shrinking D0/D2/D4 bound states, that correspond

to string junctions connecting a base point W = U0 near the origin of the W -plane to the

‘7-branes’ around it. In many cases, the fractional branes are then simply the smallest

‘vanishing paths’ (in the sense of Picard-Lefschetz theory) on the W -plane [58]. In other

words, in an ideal situation, the fractional branes are the dyons that become massless at

the U -plane singularities around the base point.

Once we have identified the electromagnetic charge γi = (mi, qi) of these dyons, the BPS

quiver is obtained by assigning a quiver node (i) ∼ Eγi to each light dyon, and a number

nij or arrows from node (i) to (j) given by the Dirac pairing, which is also the oriented

intersection number between the 3-cycles inside Ŷ, as discussed in chapter 1.3. For the

DS1En theories, we recover in this way many known ‘fractional brane quivers’ – note that

as emphasised in [71], fractional-brane quivers are 5d BPS quivers.

Let us finally point out that a quiver description depends on the basis of BPS states and,

thus, is not unique. Such a basis choice splits the spectrum into particles and anti-particles,

which have central charge vectors of equal magnitude but opposite directions. A change of

the basis states can be implemented through a quiver mutation, which effectively rotates the

central charge half-plane, leading to a relabelling of the particles and anti-particles [203].
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4.2.2 Fundamental domains of modular configurations

We will limit our analysis to the modular rational elliptic surfaces, and denote by FT the

fundamental domain of T . Here, we relax the definition of T , allowing it to be any 4d

N = 2 (possibly KK) theory. The simplest type of singularity occurring in the interior of

the U -plane is when a single charged particle becomes massless. In the appropriate duality

frame, the low-energy physics at that point is then governed by SQED, as discussed in

chapter 2.2.1. The, massless dyon of charges (m, q) at this point U∗ induces a monodromy

M(m,q)
∗ that is conjugate to T , given by (2.21).

These are the I1 singularities in Kodaira’s classification, as listed in table 1.1. More gen-

erally, we can have n electrons becoming massless at the same point, with the monodromy

being conjugate to Tn [7, 8], leading thus to an In singularity. The additive singularities

appear due to mutually non-local light BPS states becoming massless simultaneously. As

a result, the monodromy induced by the additive fibers should be viewed as a product of

monodromies of the type (2.21). Thus, we will typically deform the Coulomb branches

containing additive singular fibers, such that the singularities are broken to multiplicative

fibers only.

The classification programme of 4d N = 2 rank-one SCFTs [38–41], recently reviewed

in [37,216], also involves theories whose Coulomb branches include undeformable (or frozen)

singularities. In this context, a frozen In singularity is to be interpreted as due to a single

massless hypermultiplet, of charge Q =
√
n, in a purely electric duality frame. This leads to

certain constraints on the configurations of singular fibers, due to Dirac charge quantization.

The flavour algebra of these theories can be understood from the so-called flavour root

system of [36]. Yet, there is no clear picture of how the MW group restricts the global

form of the flavour symmetry. However, as the SW geometries of these theories are already

known in 4d (see [39], for instance), our approach can bypass these issues by analysing their

modular properties as well.

Fundamental domains are based on the Dedekind tessellation of the upper half-plane

H, which is obtained by the Möbius action on the modular group PSL(2,Z). Fundamental

domains for subgroups Γ of the modular group can be constructed using a set of coset
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representatives {αi}, for i = 1, . . . , nΓ from the disjoint union FΓ =
⊔nΓ
i=1 αiF0, as already

discussed around (4.6), where F0 is the fundamental domain of PSL(2,Z). When the SW

geometry is modular, there is a homeomorphism from the CB to a subregion of the upper

half-plane. Focus for now on a modular RES, with monodromy group Γ with no elliptic

points. The cusps of the monodromy group of the theory correspond to U -plane singularities

and can be mapped to the real axis R of the upper half-plane (except the cusp F∞ at ∞,

which is fixed). The cusps are in the PSL(2,Z) orbit of τ∞ = i∞, which, by convention,

is the natural position of the unique width-one cusp of the modular group. The action of

an element of the modular group on the cusp τ∞ leads to rational numbers of the form q
m ,

with q,m ∈ Z, as follows:

στ∞ =
aτ∞ + b

cτ∞ + d
=

q

m
, σ =

(
a b

c d

)
∈ PSL(2,Z) . (4.16)

Here σ should be viewed as one of the coset representatives αi and q
m is an irreducible

fraction. For this equality to be satisfied, one requires:

a

c
=

q

m
. (4.17)

If such a cusp corresponds to an I1 singular fiber, we have the monodromy matrix:

σTσ−1 = M(c,−a) = M(km,−kq) ∈ Γ ⊂ PSL(2,Z) , (4.18)

which can be generated by a light dyon of charge (c,−a) = k(m,−q), for some non-zero

k ∈ C. For the theories that do not contain undeformable singularities, it generally suffices

to restrict attention to k = 1, with the states having k > 1 being unstable. Thus, we have

the following correspondence:

To an In singularity – which can be fully deformed to I1 singularities – that corre-

sponds to a width n cusp at τ = q
m ∈ Q on the upper half-plane we assign n light

BPS states of charge ±(m,−q).
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Note that since this approach is solely based on the monodromies, there is a sign ambiguity

in choosing the charges of the BPS states. A constraint that follows from the central

charges is that one needs to make the same sign choice for all n states forming an In cusp.

In principle, this sign ambiguity could be fixed by solving the associated Picard-Fuchs

equation and evaluating the central charges at the quiver point.

All BPS quivers studied in this work that arise from fundamental domains with no

elliptic points satisfy a curious property. This observation leads to the following conjecture

that remedies the sign ambiguity of the BPS charges. Let (τi) be the ordered vector of the

positions of the distinct (Ini) cusps:

(τ1 , . . . , τk) , τ1 < . . . < τk . (4.19)

and let j(i) be the position of the cusp τi in this vector. As shown above, we can write each

such τi as a rational number:

τi =
qi
mi
∈ Q , mi ∈ Z>0 , (4.20)

where we make a choice for the sign of the denominator, which also fixes the sign of the nu-

merator. Then, we conjecture that for modular configurations containing only multiplicative

cusps (Ini), the assignment of ni light BPS states of charges:

(−1)j(i)(mi,−qi) . (4.21)

leads to the correct BPS quiver description. Note that an overall sign change of all BPS

states will still lead to a consistent quiver, as this simply replaces all particles with their

anti-particles.

These statements can be further generalized to include undeformable multiplicative

singularities as follows. Recall that an undeformable In singularity corresponds to a single

massless hypermultiplet of charge Q =
√
n in an electric frame. Thus, the proportionality

factor k ∈ C precisely amounts for this charge renormalization, leading to:
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To an In singularity that corresponds to a width n cusp at τ = q
m ∈ Q on the upper

half-plane, with deformation pattern In →
⊕

j Ikj , where each Ikj is undeformable,

we assign light BPS states of charges
(
±
√
kj(m,−q)

)
j
.

One of the assumptions behind the above identification is that there exists a BPS cham-

ber that contains the states associated to the In cusps. The U -plane has generally walls of

marginal stability connecting the singularities, which separate these BPS chambers. While

for massless 4d SQCD this assumption is known to be true as there are only two BPS cham-

bers [196,217,218], the structure of the U -plane for the KK theories is much more intricate

and, in general, there might not be such a chamber. However, in all the checks that we have

performed for the theories of the ‘I1-series’,
30 we managed to relate the different modular

configurations to known BPS quivers of the theories of interest.

Let us finally comment on the matrices σ ∈ PSL(2,Z) appearing in (4.18) that satisfy

σTσ−1 = M(m,−q). These are some of the coset representatives of Γ ⊂ PSL(2,Z), and

do play an important role in the identification (1.32). Finding such matrices is a non-

trivial task, but there exists an algorithmic way of solving this problem using continued

fractions [219]. One has:31

q

m
= p1 +

1

p2 +
1

p3+
1

p4+...

, (4.22)

for some pi ∈ Z. Note that since q
m is rational, the sequence {p1, p2, . . .} must terminate.

This list of integers will determine a possible matrix σ as follows:

σ =

N∏
i=1

T (−1)i+1piS = T p1ST−p2S . . . T (−1)N+1pNS . (4.23)

Note that this matrix is not unique, with the same monodromy being reproduced by σT k,

for some integer k ∈ Z. Let us also mention that the continued fraction representation of

the cusp-positions can be used to find accumulation rays of the BPS quivers of the KK

theories, which, as opposed to 4d SQCD theories do not necessarily lie along the real axis

30These are the theories whose maximally deformed Coulomb branches contain only I1 singularities

in the bulk.
31For this, we use Mathematica’s inbuilt function ContinuedFraction[].
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of the central charge plane. One might also notice that a choice of fundamental domain for

a given group Γ is not unique. We have shown in [2], that such changes can be interpreted

as quiver mutations.

4.2.3 The DS1E1 theory revisited

As a first application of our formalism, let us revisit the DS1E1 theory, with the SW curve

in Weierstrass form given by (3.72). We will focus here on the massless curve, obtained

by setting λ = 1. Then, the resulting configuration is (I8; I2, 2I1), with the I2 fiber at the

origin U = 0. This is also a modular configuration for Γ0(8), as we will shortly see. We first

solve the PF equation satisfied by the periods and compute the monodromies and central

charges at the quiver point explicitly. Then, we show how modularity can lead to the same

monodromies in a much faster way.

PF equation. Let (aD, a) be the physical periods of the SW curve, which are related to

the D4- and D2-brane periods as discussed in chapter 2.3, namely:

ΠD4 = aD , ΠD2f = 2a , ωD =
daD
dU

, ωa =
da

dU
, (4.24)

where (ωD, ωa) are the ‘geometric periods’. The D4 period as given by (2.37) becomes:

ΠD4 = ΠD2fΠD2b +
1

6
= 2a

(
2a+

1

2πi
log(λ)

)
+

1

6
, (4.25)

Introducing the variable w = U2/16, the Picard-Fuchs equation (2.29) reduces to:

d2ω

dU2
+

3U2 − 16

U(U2 − 16)

dω

dU
+

1

U2 − 16
ω = 0 . (4.26)

One can analyse the solutions to this equation, and their monodromies, rather explicitly.

In particular, in terms of the w coordinate, the differential equation is the same differential

equation arising in the 4d SU(2) theory. Defining ω̃ ≡
√
16wω = U dΠ

dU , the correct basis

94



choice turns out to be given by:

ω̃a(w) = −
1

2πi 2F 1

(
1

2
,
1

2
, 1;

1

w

)
, ω̃D(w) = −

1

π 2F 1

(
1

2
,
1

2
, 1; 1− 1

w

)
. (4.27)

Here the 2F 1 functions are the standard hypergeometric functions, with branch points at

w = 0, 1 and∞. The period ω̃a is regular in the large volume limit, w =∞, while the ‘dual

period’ ω̃D is regular at the ‘conifold point’, w = 1. Analytic continuation past the region

of convergence can be done using the Gauss-Ramanujan identity and the Barnes integral

representation of these hypergeometric functions. This analysis is rather cumbersome and

was worked out in great detail in [1].

Another difficult aspect of the computation is to determine the correct form of the

periods on the U -plane. For this, note first that the period ω̃D has a branch cut stretching

from w = 0 to −∞, while ω̃a has a branch cut from w = 0 to w = 1. Thus, the principal

branch cuts of the two periods differ. This subtlety is very important when considering

linear combinations of the two periods. To be able to analytically continue the periods on

the U -plane, we introduce the functions:

fa(w) = −
1

2πi 2F 1

(
1

2
,
1

2
; 1;

16

U2

)
, fD(w) = −

1

π 2F 1

(
1

2
,
1

2
; 1; 1− 16

U2

)
. (4.28)

Since the map U 7→ w is 2 to 1, we will split the U -plane into two regions separated by

the imaginary axis, which we denote by A (for Re(U) > 0) and B (for Re(U) < 0). The

above functions have branch cuts inherited from the hypergeometric function. Thus, it is

not directly obvious what their expressions throughout the whole U -plane are. Here, we will

interpret fD as a local function, which is well defined only around one of the two ‘conifold’

singularities at U2 = 16. The branch cuts of fa connect the singularities at U = ±4 to the

U = 0 singularity. We choose the branch cut of fD to run along U ∈ [0, i∞), in agreement

with the w-plane branch cut. The large volume asymptotics on the w plane read:

fa(w) ≈ −
1

2πi
+O

(
1

w

)
, fD(w) ≈ −

1

π2
log(16w) +O

(
1

w

)
. (4.29)

The geometric periods in the A and B regions will be linear combinations of fa and fD,
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with the large volume (U →∞) asymptotics:

ω̃a(U) ≈ − 1

2πi
, ω̃D(U) ≈ 2

π2
log

(
1

U

)
, (4.30)

which reproduce the large volume monodromy:

MU=∞ =

(
1 8

0 1

)
= T 8 . (4.31)

In fact, fa can be used for the ω̃a period in both regions of the U -plane, since the large

volume expression is a regular function. The ω̃a period will thus have two branch cuts,

running along U ∈ (0+, 4] and U ∈ [−4, 0−). We can choose U∗ = −4 to be the cusp where

aD(U∗) = 0. Thus, in region B, the dual period ω̃D will be given by fD. The mapping of

the angles between the w-sheets and the U -plane is:

U : − 3π

2
→ −π , − π → −π

2
, − π

2
→ 0 , 0→ π

2
,

w : − 3π → −2π , − 2π → −π , − π → 0 , 0→ π .

(4.32)

Recall that arg(w) ∈ (−π, π) was the principal branch of ω̃D in the w-plane. Now, consider

the function fD in region A. Analytic continuation to U →∞ leads to:

f
(A)
D ≈ − 1

π2
log(16w(A)) = − 1

π2

(
log(16w(B))− 2πi

)
. (4.33)

In order for this to match with the asymptotic expansion of ω̃D in all regions, we must

subtract a factor of 4fa. We then have:

A : ω̃D(U) = fD(U) + 4fa(U) , B : ω̃D(U) = fD(U) . (4.34)

while ω̃a(U) = fa(U) for the entire U -plane. The branch cuts of the geometric periods ω̃D

and ω̃a are shown in figure 4.1. The monodromies around the two singularities at U = ±4

read:

MU=−4 =

(
1 0

−1 1

)
= STS−1 , MU=4 =

(
−3 16

−1 5

)
= (T 4S)T (T 4S)−1 . (4.35)

96



U = −4

U = 0

U = 4 U = −4

U = 0

U = 4

B A B A−3π
2

π
2

Figure 4.1: Branch cuts for ω̃D(U) and ω̃a(U), respectively.

For the series expansion around U = 0, one needs to take into account the various branch

cuts of ω̃a and ω̃D. In the region where Re(U) > 0, and Im(U) < 0, for instance, the

asymptotics are [1]:

ω̃a(U) ≈ − U

2π2
log

U

4
+ i

U

2π
+O

(
U3
)
, ω̃D(U) ≈ − U

4π2
log

U

4
+ i

U

8π
+O

(
U3
)
, (4.36)

leading to the monodromy:

MU=0 =

(
−3 8

−2 5

)
= (T 2S)T 2(T 2S) . (4.37)

which, in particular, agrees with the fact that U = 0 is an I2 singularity. These monodromies

satisfy the consistency condition (2.13). Finally, by integrating the geometric periods once,

we can obtain the physical periods on the U -plane, similarly to the analysis on the w-plane.

One can determine in that way which BPS particles become massless at which points. This

can also be understood, more simply, from the explicit monodromy matrices that we just

derived.

Explicitly, one finds that the following dyons of the KK theory DS1E1 become massless

at these points:

U = −4 (I1) : a monopole of charge γ1 = (1, 0), becomes massless,

U = 0 (I2) : two dyons of charge γ2,3 = (−1, 2), become massless,

U = 4 (I1) : a dyon of charge γ4 = (1,−4), becomes massless.

(4.38)
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Here, we fixed the overall signs of the electromagnetic charges such that the total charge

vanishes. Interestingly, the point U = 0 is also a quiver point, as the phases of the central

charges of the BPS particles align. Using the fact that a = 1
4 and aD = 1

2 at the origin [1],

we find the central charges:

Zγ=(1,0)(U = 0) =
1

2
, Zγ=(−1,2)(U = 0) = 0 , Zγ=(1,−4)(U = 0) =

1

2
. (4.39)

The central charge of the γ = (1,−4) also carries a contribution from one unit of KK

momentum (D0-brane charge) [71]. The associated 5d BPS quiver is obtained by assigning

one node Eγ to each of the four dyons, and by drawing a net number of arrows nij from Eγi

to Eγj given by the Dirac pairing, nij = det (γi, γj). The resulting quiver reads:

1 2

3 4

(4.40)

This is a well-known ‘toric’ quiver for the local F0 – see e.g. [68, 220]. This same quiver

can be also found more easily from the modular properties of the curve. The Coulomb

branch of the massless DS1E1 theory is, in particular, a modular curve for the congruence

subgroup Γ0(8). To see this explicitly, we should look at the explicit map U = U(τ). This

is determined from the J = J(U), expression, combining with the J = J(τ) relation:

U(τ) =
η
(
τ
2

)12
η
(
τ
4

)4
η(τ)8

= q−
1
8 + 4q

1
8 + 2q

3
8 − 8q

5
8 − q

7
8 +O (q) . (4.41)

The η-quotient (4.41) is the Hauptmodul for Γ0(8), being obviously invariant under the

action of T 8. Its series expansion reproduces the coefficients of the McKay-Thompson

series of class 8E of the Monster group [209]. Using the transformation properties of the

Dedekind η function we find that the cusp at τ = 0 corresponds to the type-I1 Kodaira

singularity at U = 4 on the U -plane, the cusp at τ = 2 corresponds to the I2 type singularity

located at U = 0, while the cusp at τ = 4 corresponds to U = −4. There is therefore a
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F TF T 2F T 3F T 4F T 5F T 6F T 7F

SF T 2SF T 4SF
T 2ST

Figure 4.2: A fundamental domain for Γ0(8) on the upper half-plane. The four cusps at
τ = 0, 2, 4, i∞ have widths 1, 2, 1 and 8, respectively. The modular curve H/Γ0(8) is
isomorphic to the Coulomb branch of the massless DS1E1 theory.

one-to-one mapping between the cusps of Γ0(8) and the U -plane singularities.

This mapping then realizes the monodromy matrices computed from the explicit geo-

metric periods, leading thus to the same BPS quiver as above. Thus, modularity allows us

to compute the monodromies without requiring the explicit form of the periods. We will

see more examples of this in the following section.

We have already seen that the Z[1]
2 one-form symmetry of the DS1E1 theory is encoded

in the MW torsion of the SW geometry. We can also see this symmetry from the light BPS

states. Namely, we have the states:

S : (1, 0; 0) , (−1, 2; 1) , (1,−4; 0) , (4.42)

where the charges (m, q; l) are given as in (3.66), with l ∈ Z2 the charge under the center of

the flavour G̃F ∼= SU(2). The spectrum is left invariant by a group E = Z4 generated by:

gE =

(
0,

1

4
; 1

)
. (4.43)

This Z4 contains a Z[1]
2 subgroup generated by gZ

[1]
=
(
0, 12 ; 0

)
, which implies that the

theory has an electric one-form symmetry Z[1]
2 , as expected [135, 136]. We also have the

cokernel F = Z(f)
2 as above, which implies (3.78).
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4.3 Other examples and new BPS quivers

Our discussion, so far, has focused on the theories whose maximally deformed Coulomb

branches involve only I1-type singularities. In this section, we will consider other examples,

where the CB contains undeformable singularities.

4.3.1 Undeformable singularities

As we know, by now, the SW geometries of 4d N = 2 SCFTs can include undeformable

singularities [38–41]. The In-type frozen singularities, for instance, are generated by mass-

less hypermultiplets with a different charge normalization. This leads to a refined version

of our identification (1.32), as presented in section 4.2.2.

The language of rational elliptic surfaces should include the theories whose Coulomb

branches involve such frozen singularities, but it is not entirely clear what the interpretation

of the Mordell-Weil group should be in this context. Additionally, the flavour algebra cannot

be directly obtained using the standard F-theory arguments, as in table 1.1, but it was still

determined in [36] from the so-called flavour root system of the SW geometry. Recently, a

(partial) classification of SW geometries for the KK theories arising from 5d theories on S1

was proposed in [50], which is based on a similar approach to the 4d N = 2 classification

programme. This work includes 5d geometries with frozen singularities, some of which we

shall consider below.

Let us first note that the language of rational elliptic surfaces can still be used to find

the allowed configurations of singular fibers as follows. One first associates to the maximally

deformed Coulomb branch a ‘naive’ flavour lattice Tdef , using the data in table 1.1. Note

again that this is not the correct flavour symmetry of such theories [36, 221]. Then, we

claim that the allowed configurations for these theories are those that not only contain the

singular fiber F∞, but, additionally, their associated naive flavour lattice contains Tdef as a

sublattice. This argument might be subject to slight changes if the theory has a non-trivial

one-form symmetry, in which case the MW torsion can also play a role.

We will discuss only some of the new 5d SW geometries found in [50], which are listed

below, where Smax is the maximally deformed CB and the MW listed is the one for this
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maximal deformation:

F∞ Smax rk(Φ) Φtor(S) gF gF ⊂ en

I5 (I5; I4, 3I1) 1 − u(1) e4

I4 (I4; I4, 4I1) 2 Z2 sp(2) e5

I3 (I3; I4, 5I1) 3 − sp(2)⊕ u(1) e6

(4.44)

Here, the flavour symmetry algebra gF is determined using the flavour root system of [36].

To analyse these geometries in more detail, we would like to derive SW curves with an

explicit gF symmetry. As such, we look for embeddings gF ⊕ k u(1) ⊂ en, with maximal

k, where the en symmetry corresponds to a curve having the same fiber at infinity F∞ as

the theory with algebra gF .
32 Then, to ensure that the theory has the correct deformation

pattern, one needs to fix the k free parameters that correspond to the u(1) factors in the

above embedding.

4.3.2 Quiver shrinking

In this section, we derive the SW geometries for the models in (4.44), and then propose

BPS quivers for these models based on modularity. Certain aspects of these quivers will be

further discussed in [4, 6].

F∞ = I5. Let us start with the theory having F∞ = I5. To find the SW curve we look

at the (unique) embedding of su(4)⊕ u(1) inside e4 ∼= su(5). Under this embedding, the e4

characters split as:

χ1 →
1

L4
+ 4L , χ2 →

4

L3
+ 6L2 , χ3 →

4

L
+ L4 , χ4 →

6

L2
+ 4L3 , (4.45)

where L is the u(1) parameter, which, in this case, is also the flavour symmetry of the curve.

Thus, the curve is simply given by the DS1E4 curve, with these particular characters. The

32To find such embeddings, we use the GroupMath package in Mathematica [222].
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allowed configurations of singular fibers are listed below, in terms of the u(1) parameter:

S L rk(Φ) Φtor(S) gF

(I5; I4, 3I1) generic 1 - u(1)

(I5; I4, II, I1) L5 = 32
27 1 - u(1)

(I5; I5, 2I1) L5 = 1 0 Z5 u(1)

(4.46)

We then note that the ‘massless’ configuration is the same as the massless DS1E4 con-

figuration, being modular, with monodromy group Γ1(5), as pointed out in table 4.1. A

fundamental domain for this configuration is shown in figure 4.3a. From a field theory

perspective, the frozen I4 corresponds to a hypermultiplet of charge
√
4, in a purely electric

frame. Thus, the I5 singularity corresponds to a massless hyper of charge 1 and one of

charge
√
4, such that there is no further flavour enhancement. Thus, we find that a basis

of BPS states for this geometry is given by:

γ1 = (1, 0) , γ2 = (2,−5) , γ3 = (−1, 2) , γ4 =
√
4 (−1, 2) , (4.47)

with the corresponding BPS quiver shown below:

(4.48)

This quiver has, in fact, already appeared in [223], in the context of 4d N = 1 super-

conformal field theories living on the worldvolume of D3-branes probing CY singularities.

This quiver was obtained from a shrinking procedure applied to the dP4 quiver, being thus

referred to as the ‘shrunk dP4’ quiver, or shdP4. The shrinking is, of course, not arbitrary,

being a procedure that preserves conformality in the 4d N = 1 theory.33 Imposing this

condition leads to a set of Diophantine equations, which turn out to be very similar to

the Diophantine equations appearing in the context of 2d N = (2, 2) Landau-Ginzburg

33Another procedure which preserves this condition is orbifolding. In this case, there is a beautiful

interpretation at the level of the BPS category, in terms of Galois covers, which is analysed in [5].

However, it is not clear how the shrinking procedure manifests on the category of BPS states.
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models [224]. It can be shown that for the shrunk models considered here, this condition

translates to a condition on the BPS category – namely, the BPS category is numerically

CY. For more details on these aspects, we refer to [37,225,226].

Let us mention that the CY singularity engineering this quiver is not known and nor

is the theory that is described by this BPS quiver. We can, however, make some claims

based on the SW geometry and on the (possibly incomplete) classification of 5d N = 1

SCFTs of [118–120, 126]. Recall first that the E0 SCFT does not admit a gauge theory

deformation; however, there is an RG flow from the Ẽ1 theory, which is the UV completion

of the SU(2)π gauge theory. Hence, the E0 theory is sometimes referred to as SU(2)π⊖1F,

by an abuse of notation, to emphasize this RG flow. Note also that the E0 theory has no

flavour symmetry.

A rather intriguing 5d SCFT, originally proposed in [126], is the so-called local P2⊕1Adj,

or, equivalently, SU(2)π ⊕ 1Adj ⊖ 1F, where F stands for fundamental matter. For ease

of notation, we will simply refer to it as the Bhardwaj SCFT. As the name suggests, this

theory can flow to the E0 SCFT and, naively, there is a u(1) flavour symmetry coming

from the adjoint matter. Let us note, however, that our proposal for the SW curve is in

disagreement with the recent works of [227] and [228]. In [227], for instance, the SW curve

computed from the brane web of the Bhardwaj theory is the one with maximal deformation

(I1; 2I4, 3I1). However, the flavour root system of this curve turns out to be the rank-two

algebra sp(2), which appears to be too large for this theory. Meanwhile, the superconformal

index computations of [228] suggest that the naive u(1) flavour symmetry might enhance

to su(2), which we do not see from our curve.

F∞ = I4 and F∞ = I3. Let us also consider the two models in (4.44) with F∞ = I4

and F∞ = I3. For these, we want to find SW curves with manifest gF symmetry. For

the first case, we look at embeddings of sp(2) ⊕ 2u(1) inside e5 ∼= so(10). There are two

such embeddings, leading to distinct curves. However, only one of them turns out to have

non-trivial torsion in the MW group.34 We can then tune the u(1) parameters such that

34The non-torsion curve is also part of the classification of [50], but we cannot find a BPS quiver

using modularity.
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F TF T 2F T 3F T 4F

SF T 3SF

T 3ST 2S

(1, 0) (2,−5) (−1, 2)

(a)

F TF T 2F

SF TSF
T 2ST−2S

(1, 0) (−1, 1) (2,−3)

(b)

Figure 4.3: Fundamental domains for Γ1(5) and Γ0(3) ∩ Γ0(2), which are modular configu-
rations for DS1E4 and DS1E6, respectively.

the curve has a frozen I4 singularity, leading to the character decomposition:

χ1 = 5 + χ
sp(2)
2 , χ3 = χ5 = 4χ

sp(2)
1 ,

χ2 = χ
sp(2)
1 χ

sp(2)
1 + 4χ

sp(2)
2 + 9 , χ4 = 6χ

sp(2)
1 χ

sp(2)
1 + 4χ

sp(2)
2 + 4 .

(4.49)

Meanwhile, for F∞ = I3, we are interested in the unique embedding of su(4)⊕ 3u(1) inside

e6. Fixing 2 of the 3 free parameters we can recover the desired curved. To find the

BPS quivers, we can use the modular configurations (I4; I4, 2I2) and (I3; I6, I2, I1), which

correspond to the congruence subgroups Γ0(4)∩Γ(2) and Γ0(3)∩Γ0(2), respectively. These

are also allowed configurations for DS1E5 and DS1E6, and lead to the quivers:

(4.50)

Here, quiver nodes within the same block share the same incidence information, as in [68,

223]. These are also known as the shdP5 and shdP6 quivers, respectively. Note that the

shdP5 model has a Z[1]
2 one-form symmetry, which is embedded in the Smith normal form

of the intersection matrix of the quiver, as shown in [195]. We do not have good candidates

for what theories these quivers might describe.
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Γ nΓ (wi) (e2, e3) f(τ) Monster

Γ(1) 1 (1) (1, 1) j(τ) 1A

Γ2 2 (2) (0, 2) E6(τ)
η(τ)12

2a

Γ3 3 (3) (0, 2) ϑ2(τ)8+ϑ3(τ)8+ϑ4(τ)8

2η(τ)8
3C

Γ0(2) 3 (2, 1) (1, 0)
(
η(τ)
η(2τ)

)24
2B

Γ0(3) 4 (3, 1) (0, 1)
(
η(τ)
η(3τ)

)12
3B

4A0 4 (4) (2, 1) ϑ2(τ)6+iϑ3(τ)6+ϑ4(τ)6

ϑ2(τ)2ϑ3(τ)2ϑ4(τ)2
−

5A0 5 (5) (1, 2) [2] 5a

6A0 6 (6) (0, 3) ϑ3(τ)4+e
2πi
3 ϑ2(τ)4

η(τ)4
−

Γ0(4) 6 (4, 1, 1) (0, 0)
(
η(τ)
η(4τ)

)8
4B

Γ(2) 6 (2, 2, 2) (0, 0)

(
η( τ

2 )
η(2τ)

)8

4C

Γ0(5) 6 (5, 1) (2, 0)
(
η(τ)
η(5τ)

)6
5B

3C0 6 (3, 3) (2, 0)

(
η(τ)2

η( τ
3 )η(3τ)

)6

9A

4C0 6 (4, 2) (2, 0)

(
η(τ)2

η( τ
2 )η(2τ)

)12

4D

Γ0(7) 8 (7, 1) (0, 2)
(
η(τ)
η(7τ)

)4
7B

6C0 8 (6, 2) (0, 2)
(
η(2τ)
η(6τ)

)6
6c

4D0 8 (4, 4) (0, 2) [2] −

Γ1(5) 12 (5, 5, 1, 1) (0, 0) 1
q

∏∞
n=1 (1− qn)

−5(n
5 ) −

Γ0(6) 12 (6, 3, 2, 1) (0, 0)
(
η(τ)5η(3τ)
η(6τ)5η(2τ)

)
6E

Γ0(8) 12 (8, 2, 1, 1) (0, 0)
(

η(4τ)3

η(2τ)η(8τ)2

)4
8E

Γ0(4) ∩ Γ(2) 12 (4, 4, 2, 2) (0, 0)
(

η(2τ)3

η(τ)η(4τ)2

)4
8D

Γ0(9) 12 (9, 1, 1, 1) (0, 0)
(
η(τ)
η(9τ)

)3
9B

Γ(3) 12 (3, 3, 3, 3) (0, 0)

(
η( τ

3 )
η(3τ)

)3

9B

Table 4.1: Modular functions of congruence subgroups of PSL(2,Z) that correspond to
rational elliptic surfaces; nΓ is the index, (wi) are the widths of the cusps and (e2, e3) are

the number of elliptic elements. For Γ1(5),
(
n
p

)
is the Legendre symbol.
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Part II

Fibering operators in 5d SCFTs
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Chapter 5

Donaldson-Witten theory and its five-

dimensional uplift

In this chapter, we review the topological twist of four-dimensional N = 2 supersymmetric

gauge theories [21, 22]. We focus on Kähler four-manifolds, on which the topological twist

preserves two supercharges. By a slight abuse of terminology, we call this the Donaldson-

Witten (DW) twist. We will then consider the uplift of this construction to five-dimensions,

where the five-manifolds are principal S1 bundles over Kähler four-manifolds.

5.1 Topological twist on Kähler surfaces

To begin with, we will consider a Kähler four-manifold M4, and introduce the ‘twisted

fields’ which are most useful in the context of the topological twist. Of particular interest

is the case of a hypermultiplet coupled to a background vector multiplet.

5.1.1 Kähler surfaces and the N = 2 topological twist

Let us view the Kähler four-manifoldM4 as a hermitian manifold (M4, J, g) whose complex

structure is covariantly constant, ∇µJνρ = 0. In local complex coordinates (zi) = (z1, z2),

the Kähler metric g reads:

ds2 = 2gij̄dz
idz̄j̄ , gij̄ =

∂2K

∂zi∂z̄j̄
, (5.1)

where K is the Kähler potential.35 We will follow the geometry and supersymmetry conven-

tions of [3]. We are interested in 4d N = 2 quantum field theories in Euclidean space-time

with an exact SU(2)R R-symmetry. The topological twist consists of relabelling the spins

35In the complex frame, the metric simply reads ds2 = e1e1̄+e2e2̄, with the vierbein eaµ, e
ā
µ, where

a = 1, 2.
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of fields according to a ‘twisted spin’, as reviewed in chapter 1.4.1. This twisted spin is just

the diagonal subgroup of the SU(2)R symmetry and the SU(2)r factor of the Euclidean

rotation Spin(4) ∼= SU(2)l × SU(2)r. Alternatively, the DW twist can be understood as

a supergravity background (i.e. a rigid limit of some 4d N = 2 supergravity), consisting

of a metric (5.1) and of a background gauge field A(R) for the R-symmetry, preserving

some fraction of the flat-space supersymmetry (see e.g. [87,229,230]). Given the flat space

supercharges QIα, Q̃
α̇
I , one preserves a right-chiral supersymmetry:

δ
ξ̃
≡ ξ̃Iα̇Q̃α̇I , (5.2)

on any background (M4, g,A
(R)) that admits a covariantly-constant spinor ξ̃I :

Dµξ̃I ≡
(
∇µδIJ − i(A(R)

µ )I
J
)
ξ̃J = 0 . (5.3)

Here and in the following, I, J ∈ {1, 2} are SU(2)R indices.36 Such a background exists on

any Riemannian four-manifold: one obtains a solution to (5.3) by identifying the SU(2)R

connection with the spin connection [21]. This leads to a ‘trivial’ solution of (5.3):

(ξ̃α̇I ) = (δα̇I) . (5.4)

More formally, the Killing spinor ξ̃α̇I is a section of a complex vector bundle S+⊗ER, where

ER is a rank-2 SU(2)R vector bundle. Then, the topological twist consists in choosing

ER ∼= S+, in which case S+ ⊗ ER decomposes as a direct sum

S+ ⊗ ER ∼= O ⊕ Ω+ , (5.5)

where Ω+ is the rank-3 vector bundle of self-dual 2-forms.37 Then our Killing spinor ξ̃ is

simply the constant section of the trivial line bundle O. It is also important to note that

the topological twist is defined on any four-manifold, irrespective of whether it is a spin

manifold, because the bundle (5.5) is well-defined even when S+ is not. For Kähler surfaces,

36We usually keep the SU(2)R indices explicit, while suppressing the spinor indices α, α̇.
37At the level of Spin(4) representations, we have (0, 12 )⊗ (0, 12 ) = (0, 0)⊕ (0, 1).
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we preserve two distinct supersymmetries:

δ1 ≡ ξ̃I(1)α̇Q̃
α̇
I , δ2 ≡ ξ̃I(2)α̇Q̃

α̇
I . (5.6)

The Levi-Civita connection on a Kähler manifold has reduced holonomy U(2) ∼= SU(2)l ×

U(1)r ⊂ SU(2)l×SU(2)r, and we then only need to ‘twist’ U(1)r by turning on a non-trivial

gauge field for the R-symmetry subgroup U(1)R ⊂ SU(2)R. By choosing an appropriate

background SU(2)R gauge field [3], in the complex frame basis we preserve the two Killing

spinors:

(ξ̃α̇(1)I) = (δα̇1̇δI1) , (ξ̃α̇(2)I) = (δα̇2̇δI2) . (5.7)

Note that the Killing spinor (5.4) is the sum of these two Killing spinors, ξ̃ = ξ̃(1) + ξ̃(2).

Correspondingly, we preserve the flat-space supercharges Q̃2
2̇
and Q̃1

1̇
on any Kähler manifold,

while on a generic four-manifold, we only preserve their sum, Q̃1
1̇
+ Q̃2

2̇
. More covariantly,

on any Kähler surfaceM4, the spin bundle S ≡ S− ⊕ S+ formally decomposes as:

S− ∼= K
1
2 ⊗ Ω0,1 , S+ ∼= K

1
2 ⊕K− 1

2 , (5.8)

with K the canonical line bundle. Here, M4 is spin if and only if the ‘square-root’ K
1
2

actually exists. Recall that the second Stiefel-Withney class of a complex surface M4 is

related to its first Chern class, namely w2(M4) ∼= c1(K) mod 2. Let us choose an SU(2)R

vector bundle of the form

ER = L−1
R ⊕ LR , (5.9)

for LR some U(1)R line bundle. The Killing spinors (5.7) are really sections ξ̃(1) ∈ Γ[S+⊗LR]

and ξ̃(2) ∈ Γ[S+ ⊗ L−1
R ], while the DW twist amounts to the formal identification

LR ∼= K− 1
2 . (5.10)

In general, M4 is not spin, and therefore K
1
2 does not exist, but the bundles S+ ⊗ L±1

R

are nonetheless well-defined spinc bundles. We will further comment on this point in sec-

tion 5.1.3 below, where we discuss the topological twist of the hypermultiplet.
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Spinor bilinears and Kähler structure. Given the Killing spinors introduced so far,

one can construct well-defined two-forms on M4. First of all, given any solution ξ̃ to the

Killing spinor equation (5.3), we can define the SU(2)R-neutral anti-self-dual two-form:

Jµν [ξ̃] ≡ −2i
ξ̃†I σ̃µν ξ̃I

|ξ̃|2
, |ξ̃|2 ≡ ξ̃†I ξ̃I , (5.11)

where the sum over repeated indices is understood. For the Killing spinor (5.4) on a general

four-manifold, the bilinear (5.11) identically vanishes. On the other hand, from the Killing

spinors (5.7), we obtain Jµν ≡ Jµν [ξ̃(1)] = −Jµν [ξ̃(2)], which satisfies:

JµνJ
ν
ρ = −δµρ , ∇µJνρ = 0 . (5.12)

Thus, (5.12) gives us the complex structure (and the associated Kähler form) of the hermi-

tian Kähler manifoldM4. In this way, one can show that there are two linearly independent

solutions to (5.3) if and only M4 is Kähler [231]. Given the two Killing spinors (5.7), we

may also write down the bilinears:38

p2,0(1) ≡ ξ̃(1)σµν ξ̃(1) dx
µ ∧ dxν p0,2(2) ≡ ξ̃(2)σµν ξ̃(2) dx

µ ∧ dxν (5.13)

These are nowhere-vanishing sections of the line bundles K⊗L2
R and K−1⊗L−2

R , respectively,

and therefore the corresponding line bundles are trivial. This is another way to see that

(5.10) must hold, or more precisely, L2
R
∼= K−1 ifM4 is not spin.

5.1.2 The vector multiplet on M4

Let us consider the N = 2 vector multiplet V, in the adjoint representation of some Lie

algebra g = Lie(G), onM4 a Kähler manifold. It consists of a gauge field Aµ, two sets of

gauginos λI , and a triplet of auxiliary scalar fields DIJ = DJI :

V =
(
Aµ, ϕ, ϕ̃, λ

I , λ̃I , DIJ

)
. (5.14)

38In the frame basis, we have p2,0(1) = −e
1 ∧ e2 and p0,2(2) = −e

1̄ ∧ e2̄ for the solutions (5.7).
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The gauge connection A = Aµdx
µ is well defined on any four-manifold. It is also customary

to introduce the Dolbeault operators ∂A and ∂̄A twisted by the gauge field A = Aµdx
µ, as

dA = d− iA = ∂A+ ∂̄A. Moreover, let F 2,0 and F 0,2 denote the (2, 0) and (0, 2) projectionS

of the field strength F = 1
2Fµνdx

µ ∧ dxν . After the topological twist, the gauginos are also

well-defined onM4, being sections of

λ ∈ Γ[S− ⊗ ER] ∼= Γ[Ω0,1 ⊕ (K ⊗ Ω0,1)] ∼= Γ[Ω0,1 ⊕ Ω1,0] ,

λ̃ ∈ Γ[S+ ⊗ ĒR] ∼= Γ[O ⊕O ⊕K ⊕K−1] .

(5.15)

Here we use the Hodge star operator to map (2, 1)-forms (the sections of K⊗Ω1,0) to (1, 0)-

forms, according to ω1,0 = ⋆ω2,1. These (p, q)-forms can be constructed explicitly from the

ordinary (flat-space) spinors, by contracting the gauginos with the Killing spinors (5.7) to

form SU(2)R-neutral tensors. We can also define the SU(2)R-neutral auxiliary fields:

D2,0 ≡ −iD22p
2,0
(1) , D0,2 ≡ −iD11p

0,2
(2) , D0,0 = D12 + F̂ , (5.16)

where we introduced F̂ ≡ 1
2J

µνFµν , At this stage, one can, in principle, write down the

supersymmetry transformations for the twisted fields using the flat-space transformations

of the vector multiplet. However, given that we will not use these explicitly here, we refer

the reader to [3] for the explicit variations. These realize the supersymmetry algebra:

δ21 = 0 , δ22 = 0 , {δ1, δ2} = 2
√
2δg(ϕ) , (5.17)

where δg(ϕ) is a gauge transformation with parameter ϕ. In particular, we have δg(ϕ)A =

dAϕ = dϕ + i[φ,A] for the gauge field, and δg(ϕ)φ = i[ϕ, φ] for any field φ transforming in

the adjoint representation of g. The 4d N = 2 SYM Lagrangian can be written compactly

as

LSYM =
1

g2
δ1δ2 tr

(
1

8
⋆
(
Λ̃2,0 ∧ Λ̃0,2

)
− i
√
2

4
ϕ̃
(
D0,0 − 2F̂

))
− 1

2g2
⋆ tr (F ∧ F ) , (5.18)
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which is “mostly” Q-exact. Here, Λ̃2,0 and Λ̃0,2 are the (2, 0) and (0, 2)-components of the

twisted λ̃ field, as in (5.15). Recall also that on supersymmetric configurations, the Q-exact

terms in (5.18) evaluate to zero. Defining the ‘instanton number’ – more precisely, (minus)

the second Chern class of any holomorphic vector bundle associated to a principal G bundle

– as

k = − 1

16π2

∫
M4

tr (F ∧ F ) , (5.19)

and adding the topological coupling Stop defined in (1.4) to the Lagrangian, any supersym-

metric vector-multiplet configuration is weighted by a factor:

e−SSYM−Stop = e2πiτk , (5.20)

where τ is the holomorphic gauge coupling as (1.5). In particular, the classical saddles are

Yang-Mills instantons39 and they contribute in this way.

5.1.3 The hypermultiplet on M4

Let us also briefly discuss the 4d N = 2 hypermultiplet onM4. As for the vector multiplet,

we will not write down explicitly the supersymmetry variations, as they will not be needed

for the rest of this work. We will later on compute one-loop determinants for the 5d uplift

of the DW twist, which, for consistency, should give the same result as that of the 4d

computations, after resumming the KK tower. This check is performed in great detail

in [3]. We will limit the discussion in this section to some general features of 4d N = 2

hypermultiplets, and see later on how these are reflected in the 5d ‘twisted’ theory.

Consider a hypermultiplet H charged under a Lie group G. When considered as part

of a larger gauge theory, G will include both the gauge group, with its dynamical gauge

fields, and the flavour symmetry group, with its background gauge fields. On-shell, this

multiplet consists of two complex scalars, qI , forming a doublet of SU(2)R, and of two

39More precisely, anti-instantons, satisfying the anti-self-duality condition F = −⋆F . We can call

them ‘instantons’ since self-dual instantons do not play a role in Donaldson-Witten theory.
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SU(2)R-neutral Dirac fermions:

H =
(
qI , q̃I , η , η̃ , χ , χ̃

)
. (5.21)

In addition, we will need to introduce some auxiliary fields in order to realize the two super-

symmetries δ1 and δ2 off-shell.40 The fields qI , η and χ̃ transform in some representation R

of the gauge algebra g, and the fields q̃I , χ and η̃ transform in the conjugate representation

R̄. After the topological twist, the scalars qI , q̃I become right-chiral spinors, which are

therefore not well-defined unlessM4 is a spin manifold [232]. For charged hypermultiplets,

this issue can be remedied by introducing a spinc structure [88, 95, 233]. Such a structure

exists on any oriented closed four-manifold, but it is important to emphasise that this is

an additional choice that we make when considering hypermultiplets. We thus call this an

‘extended DW twist’.

Without too much loss of generality, let us consider H charged under some gauge group

G̃ = U(1)×G, where the U(1) gauge field is really a spinc connection. It is associated with

a line bundle L0 such that L
1
2
0 ⊗ S+ is well-defined. On a Kähler manifold, with the spin

bundle formally given by (5.8), we will choose:

L0 ∼= K−1 . (5.22)

We insist on the fact that this is a somewhat arbitrary choice, however natural it appears

on a Kähler manifold. For our purposes, it will also be important to consider the more

general case:

L0 ∼= K2ε , (5.23)

with ε ∈ 1
2 + Z a free parameter.41 Roughly speaking, the extended topological twist is

simply a choice of ε for each hypermultiplet in a theory; this must be done in a consistent

way, as we will discuss further in later sections.

40It is well-known that one cannot realize the full flat-space N = 2 supersymmetry off-shell

with a finite number of auxiliary fields, but there is no problem with realizing these two particular

supercharges off-shell.
41This should not be confused with the ε parameter used in chapter 2.3.
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The ordinary DW twist of the hypermultiplet scalars gives us the right-chiral spinors

q ≡ ξ̃IqI and q̃ ≡ ϵIJ ξ̃I q̃J . On an arbitrary Kähler manifold, the extended topological twist

exists when these spinors are further valued in L
1
2
0 , namely:

q ∈ Γ(S+ ⊗Kε) , q̃ ∈ Γ(S+ ⊗K−ε) . (5.24)

In the rest of this section, we will set ε = −1
2 . Reinstating a general ε will simply correspond

to having the twisted hypermultiplet, as described below, also valued in a line bundle

Kε+
1
2 . Thus, setting ε = −1

2 , the scalars become (p, q)-forms, with q ∈ Γ(O ⊕ K−1) and

q̃ ∈ Γ(K ⊕O). That is, q = (Q0,0, Q0,2), while q̃ = (Q̃0,0, Q̃2,0).

All fields are also valued in the appropriate vector bundles ER or ER̄ determined by the

representation R – we omitted this from the notation to avoid clutter. We also have the

two Dirac spinors

Ψ = (ηα, χ̃
α̇) , Ψ̃ = (χα, η̃

α̇) , (5.25)

which are sections of spinc bundles S ⊗ K− 1
2 and S ⊗ K

1
2 , respectively. They can be

conveniently decomposed into (p, q)-forms:

Ψ0,• = (η0,1, χ̃0,0, χ̃0,2) ∈ Ω0,• , Ψ̃•,0 = (χ1,0, η̃0,0, η̃2,0) ∈ Ω•,0 . (5.26)

For instance, the spinor χ is a section of S− ⊗ K
1
2 ∼= Ω0,1 ⊗ K ∼= Ω2,1 ∼= Ω1,0, where we

find it convenient to use χ1,0 ≡ ⋆χ2,1. Finally, we need to introduce the auxiliary one-forms

h0,1 and h̃1,0 in order to close the curved-space supersymmetry algebra off-shell. In fact,

under the two supersymmetries δ1, δ2, the hypermultiplet splits into two off-shell multiplets

(coupled to the vector multiplet):

H ∼= (Q0,0, Q0,2,Ψ0,•, h0,1)⊕ (Q̃0,0, Q̃2,0, Ψ̃•,0, h̃1,0) , (5.27)

which consist of purely anti-holomorphic and holomorphic forms, respectively. The super-
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symmetry algebra (5.17) is then realized as

{δ1, δ2} f = 2i
√
2ϕ f , {δ1, δ2} f̃ = −2i

√
2 f̃ ϕ , (5.28)

on any fields f = (Q, χ̃, η, h) and f̃ = (Q̃, η̃, χ, h̃) in the gauge representation R and R̄,

respectively.42 We refer to [3] for more details on the supersymmetry variations. The hyper-

multiplet Lagrangian on M4 can be obtained by starting from the flat-space Lagrangian,

writing it in twisted variables, and adding in the auxiliary fields to ensure off-shell super-

symmetry. The important fact is that it is QDW-exact. We find [3]:

LH =
1

4
(δ1 + δ2) ⋆

(
h̃1,0 ∧ ⋆ η0,1 − 2i

√
2χ1,0 ∧ ⋆ ∂̄AQ0,0 + i

√
2χ1,0 ∧ ∂AQ0,2

− i

4
η̃0,0 ϕ̃ Q0,0 dvol + i η̃2,0 ∧ ϕ̃ Q0,2 − i Q̃2,0 ∧ Λ̃0,2Q0,0

+
i

4
Q̃0,0 Λ̃0,0

(1)Q
0,0 dvol + i Q̃2,0 ∧ Λ̃0,0

(2)Q
0,2 + i Q̃0,0 Λ̃2,0 ∧Q0,2

)
,

(5.29)

with dvol = ⋆1 being the volume form onM4.

5.2 Five dimensional uplift of DW twist

In this section, we uplift the topological twist of the previous section to a supersymmetric

background for 5d N = 1 supersymmetric field theories on any five-manifoldM5 which is

a principal circle bundle over a Kähler surface,

S1 −→M5
π−→M4 . (5.30)

Supersymmetric backgrounds of similar geometries were discussed by many authors – see

e.g. [234–240]. Our approach here is limited to a supersymmetric background that reduces

to the (extended) topological twist onM4.

42In our conventions expressions of the type ϕf refer to contractions of the type ϕaT a
ijf

j , where

T a
ij are generators for the representation under which the field f transforms, with indices i, j, while

a are adjoint representation indices. We use the generators of the representation R for all fields of

the hypermultiplet, including for those transforming in R̄.
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5.2.1 Circle-bundle geometries and the 5d Killing spinor equation

Let the five-manifoldM5 be a principal circle bundle over a Kähler four-manifoldM4. This

fibration is fully determined by the first Chern class:

c1(LKK) =
1

2π
F̂ ∈ H2(M4,Z) , (5.31)

where the ‘defining line bundle’ LKK is the complex line bundle associated to the S1 bundle.

We define the Chern numbers pk by:

c1(LKK) =
∑
k

pk[Sk] , (5.32)

with the 2-cycles Sk ⊂ M4 forming a basis of H2(M4,Z), and [Sk] ∈ H2(M4,Z) their

Poincaré duals. We have:

Ikl =

∫
Sk

[Sl] = Sk · Sl , (5.33)

the intersection numbers onM4. Given a Kähler metric (5.1) onM4 with local coordinates

(z1, z2), we choose the five-dimensional metric

ds2(M5) = ds2(M4) + η2 , η ≡ β(dψ +C) , (5.34)

with the fiber coordinate ψ subject to the identification ψ ∼ ψ + 2π, and the connection C

onM4 such that:

dC = F̂ = 2π c1(LKK) . (5.35)

In (5.34) we also introduced β, the radius of the circle fiber. It has been shown in [240]

that theories with N = 1 supersymmetry can be defined on five-manifolds that admit such

a metric. The existence of curved-space supersymmetry is related to the existence of a

transversely holomorphic foliation (THF) structure defined by the one-form η, similarly to

the three-dimensional geometries studied in [89,241].

By assumption, since we have a fibration structure, the metric (5.34) admits a Killing
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vector K with dual one-form given by η, KM ≡ ηM , namely:43

K =
1

β
∂ψ . (5.36)

Note that we have dη = βF̂ = 2πβ
∑

k pi[Sk] and ∇MηN +∇NηM = 0, which both follow

from the relation:

∇MηN =
β

2
F̂MN . (5.37)

Here ∇M is the 5d Levi-Civita connection. We would like to construct a supersymmetric

background onM5 which is the uplift of the four-dimensional DW twist. In particular, such

a background should admit two five-dimensional Killing spinors ζI(i), for i = 1, 2, related to

the four-dimensional Killing spinors (5.7) by44

ζ(i)I =

(
0

ξ̃(i)I

)
, (5.38)

with ξ̃α̇(1)I = δα̇1̇δI1 and ξ̃α̇(2)I = δα̇2̇δI2. Once we posit the Killing spinors (5.38), we must

reconstruct the 5d Killing spinor equations that they satisfy. The trivial uplift of the 4d

Killing spinor equation, (
∇Mδ J

I − i(ARM ) J
I

)
ζJ = 0 , (5.39)

only holds for the trivial circle fibration. This is related to the fact that the connection

∇M does not preserve the decomposition of tensors into vertical and horizontal components

with respect to the fibration, since

∇MηN ̸= 0 , (5.40)

unless pi = 0. To correct this, we can simply introduce a new connection that preserves the

fibration structure. The price to pay is that such a connection will have non-zero torsion.

43We use five-dimensional conventions that naturally reduce to our four-dimensional conventions

upon circle reduction along the fifth coordinate. In flat space, we have xM = (xµ, x5), with the

index M = (µ, 5), for µ = 1, . . . , 4. In curved space, we choose a complex frame adapted to the

fibration structure, such that ds2 = e1e1̄ + e2e2̄ + η2.
44A five-dimensional Dirac spinor transforms in the 4̄ of USp(4) ∼= Spin(5). Spinor indices are

raised with Ωab = diag(ϵαβ , ϵα̇β̇). One can still impose a Majorana-Weyl condition on the 5d spinors,

which, upon dimensional reduction to 4d lead to two distinct Majorana spinors. For more details

on our conventions, see [3].
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Transversely holomorphic foliation and adapted connection. The five-dimensional

manifolds that we are considering here are fibrations with a Kähler base – in particular, they

are transversely holomorphic foliations (THF) with an adapted metric. A one-dimensional

foliation structure on the five-manifoldM5 is generated by a nowhere-vanishing vector field

KM = gMNηN . The foliation is transversely holomorphic if there exists a tangent bundle

endomorphism Φ – i.e. a two-tensor ΦMN – whose restriction to the kernel of the one-form

η gives an integrable complex structure,

Φ
∣∣∣
ker(η)

= J . (5.41)

In particular, we have the relation

ΦMNΦ
N
P = −δMP +KMηP . (5.42)

As shown in [240], the existence of one supercharge on a five-manifold45 implies the existence

of a THF. In the present case, we have two supercharges and the foliation is actually a

fibration. We further restrict ourselves to the case when the holomorphic base manifold is

Kähler, as required by the DW twist with two supercharges.

Focussing then on the class of fibered five-manifolds introduced above, with the adapted

metric (5.34), it is convenient to introduce a modified connection ∇̂ that preserves the THF

and fibration structure,

∇̂MgNP = 0 , ∇̂MηN = 0 , ∇̂MΦNP = 0 . (5.43)

This connection can be expressed in terms of the Levi-Civita connection as

Γ̂PMN = ΓPMN +KP
MN , (5.44)

45Together with a few other assumptions about the type of theories considered.
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where K is the cotorsion tensor. In terms of the circle-bundle curvature F̂MN , this becomes:

KPMN =
β

2

(
ηP F̂MN − ηN F̂MP − ηM F̂NP

)
. (5.45)

The torsion tensor of the modified connection reads

TPMN = KP
MN −KP

NM = βηP F̂MN . (5.46)

From here on, we will denote by D̂M the covariant derivative with respect to the modified

connection (which is also SU(2)R- and gauge-covariant, as the case may be). For instance,

for a scalar field ϕ we have

[
D̂M , D̂N

]
ϕ = −TPMN D̂Pϕ . (5.47)

Killing spinor equation and spinor bilinears. Given the adapted connection D̂M on

M5, we choose the Killing spinor equation

D̂MζI ≡
(
∇̂MδIJ − i(A

(R)
M )IJ

)
ζJ = 0 , (5.48)

with A
(R)
M the SU(2)R background gauge field. One can easily check that the 5d Killing

spinors (5.38) are indeed solutions to (5.48), once we take A
(R)
M to be the pull-back of the

corresponding DW-twist connection on M4. In fact, we only need to turn on a U(1)R ⊂

SU(2)R background, as in the four-dimensional case. As a result, we can introduce the

spinors:

ζ(1) = ζ(1) I=1 , ζ(2) = ζ(2) I=2 , (5.49)

for which we have:

(
∇̂M − iA(R)

M

)
ζ(1) = 0 ,

(
∇̂M + iA

(R)
M

)
ζ(2) = 0 , (5.50)

where the U(1)R gauge field is essentially the same as the four-dimensional background in

(5.7) – see [3] for the explicit form.
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THF from spinors. Given two distinct nowhere-vanishing solutions to (5.48), we can

reconstruct THF tensors. We define the one-form

ηM = − 1

|ζ(1)|2
ζ† I(1)γMζ(1) I = −

1

|ζ(2)|2
ζ† I(2)γMζ(2) I , (5.51)

with the Hermitian conjugate defined as for four-dimensional spinors [231, 242]. Our con-

ventions for the γ matrices are the same as in [3]. Additionally, similarly to the three-

dimensional analysis of [241], the quantity defined as:

KM = ζ(1)Iγ
MζI(2) = −ζ(1)γ

Mζ(2) , (5.52)

is a non-vanishing Killing vector, whose orbits define a foliation ofM5. Note thatK
M = ηM

for our choice of metric. For future reference, let us also define the scalar

κ ≡ ζI(1)ζ(2) I . (5.53)

Note that, when plugging in (5.38), we have KM = δM5 and κ = 1. Finally, we define a

two-tensor

ΦMN =
iζ†(1)γ

MNζ(1)

|ζ(1)|2
, (5.54)

with γMN ≡ 1
2 [γ

M , γN ], which satisfies (5.41) and (5.42). The Killing spinor equation (5.48)

also implies (5.43).

The 5d DW twist. The five-dimensional uplift of the DW twist onM4 can be formulated

a little bit more covariantly. To do this, it is useful to consider the two-forms

P(1) ≡ ζ(1)ΣMNζ(1) dx
M ∧ dxN = ie1 ∧ e2 ,

P(2) ≡ ζ(2)ΣMNζ(2) dx
M ∧ dxN = ie1̄ ∧ e2̄ ,

(5.55)

where ΣMN = i
2γ

MN . Here, we use the complex frame mentioned in footnote 43. Let us

define the canonical line bundle KM5 onM5 as the pull-back of the canonical line bundle
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KM4 on the Kähler manifoldM4, using the fibration structure π :M5 →M4, namely:

KM5 = π∗KM4 . (5.56)

Since the spinors ζ(1) and ζ(2) have U(1)R charges +1 and −1, respectively, the two forms

(5.55) are nowhere-vanishing sections of K ⊗ L2
R and K̄ ⊗ L−2

R , respectively, with LR the

U(1)R bundle onM5. We, therefore, have the 5d uplift of the DW twist,

LR ∼= K− 1
2 , (5.57)

literally as in (5.10) but now written in terms of line bundles on M5. As before, K
1
2 will

not be well-defined unless M4 is spin, but the Killing spinors are well-defined sections of

appropriate spinc bundles nonetheless.

(p, q)-forms and twisted Dolbeault operators onM5. The 5d uplift of the DW twist

remains independent of the choice of Kähler metric onM4. To make this property manifest,

we express all fields in terms of differential forms, exactly like in 4d. On M5, differential

forms can be further decomposed into horizontal and vertical forms (i.e. along the base

M4 and the circle fiber, respectively). This can be done explicitly by using the projectors:

ΠMN =
1

2

(
δMN − iΦMN −KMηN

)
,

Π̄MN =
1

2

(
δMN + iΦMN −KMηN

)
,

ΘM
N =KMηN .

(5.58)

Any k-form onM5 decomposes into (p, q|ℓ)-forms, with p+ q + ℓ = k. Here, ℓ denotes the

form degree along the fiber. By abuse of notation, a five-dimensional (p, q|0)-form is called

(p, q)-form, denoted by ωp,q. Any (p, q|1)-form can be written as ω(p,q|1) = ωp,q ∧ η. For

instance, for any one form ω = ωMdx
M , we have

ω = ω1,0 + ω0,1 + ω5η = ω1,0
i dzi + ω0,1

ī
dz̄ ī + ω5η , (5.59)
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where:

ωMΠMN = ω1,0
N , ωM Π̄MN = ω0,1

N , ω5 ≡ KMωM . (5.60)

In particular, the vertical component is defined by contracting with K. For future reference,

we also note that any 2-form F decomposes as:

F = F 2,0 + F 0,2 + F 1,1 + F 1,0 ∧ η + F 0,1 ∧ η . (5.61)

In particular, (2, 0)-forms are sections of the 5d canonical line bundle (5.56).

Dolbeault operators on M5. The differential d : Ωk → Ωk+1 on M5 decomposes as

d = ∂ + ∂̄ + ∂̂5, where ∂ and ∂̄ denote the twisted Dolbeault operators:

∂ : Ω(p,q|ℓ) → Ω(p+1,q|ℓ) , ∂̄ : Ω(p,q|ℓ) → Ω(p,q+1|ℓ) , (5.62)

and ∂̂5 : Ω
(p,q|ℓ) → Ω(p,q|ℓ+1) is given by:46

∂̂5 ≡ η ∧ ∂5 , ∂5 ≡ LK = KM∂M . (5.63)

In terms of the local coordinates (xM ) = (zi, z̄ ī, ψ), the twisted Dolbeault operators are

given explicitly by:

∂ = dzi ∧ (∂i − Ci∂ψ) , ∂̄ = dz̄ ī ∧ (∂ī − Cī∂ψ) , (5.64)

where Ci and Cī and the holomorphic and anti-holomorphic component of the connection C

introduced in (5.34). Whenever the fibration is non-trivial, the twisted Dolbeault operators

are not nilpotent. Instead, they satisfy the relations:

∂2 = −βF̂2,0 ∧ ∂5 , ∂̄2 = −βF̂0,2 ∧ ∂5 , {∂, ∂̄} = −βF̂1,1 ∧ ∂5 . (5.65)

Of course, they reduce to the ordinary Dolbeault operators on M4 upon dimensional re-

46Note that the operator ∂5 does not change the form degree. We denote this way the Lie derivative

along K, which is equal to KM∂M on forms because ιKω = 0 for any horizontal form, and moreover

LKη = 0 because KM = ηM is a Killing vector.
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duction along the fiber. We also have that

{∂ + ∂̄, ∂̂5} = βF̂ ∧ ∂5 , ∂̂25 = 0 , (5.66)

where βF̂ = dη. Note that F̂ is a horizontal 2-form onM5.

Background fluxes on M5. Let us consider supersymmetry-preserving background

fluxes for gauge fields onM5. Equivalently, we consider line bundles LM5 with first Chern

class

c1(LM5) ∈ H2(M5,Z) . (5.67)

The supersymmetry-preserving line bundles are pull-back of holomorphic line bundles on

M4:

LM5 = π∗LM4 . (5.68)

Given our assumption thatM4 is simply connected, the Gysin sequence implies the following

simple relation between the second cohomologies ofM4 andM5:

H2(M5,Z) = coker
(
c1(LKK) : H0(M4,Z)→ H2(M4,Z)

)
. (5.69)

Let us introduce the notation m for the abelian flux onM4:

c1(LM4) =
∑
k

mk[Sk] , (5.70)

as in (5.32).47 The relation (5.69) means that we can write any five-dimensional flux,

denoted by m5d ∈ H2(M5,Z), as:

m5d = m mod p . (5.71)

One important example is the lens space S5/Zp obtained as a degree-p fibration over P2

(hence p = p), in which case we have m5d ∈ Zp, with p = 1 corresponding to the five-sphere.

47Assuming thatM4 is simply connected, all 2-cycles inM5 are inherited from 2-cycles inM4.

More generally, the same would remain true of supersymmetry-preserving fluxes.
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For future reference, let us introduce the intersection pairing. Given two line bundles L

and L′ onM4 with fluxes m and m′, respectively, we define:

(m,m′) =

∫
M4

c1(L) ∧ c1(L′) =
∑
k,l

mkIklml , (5.72)

with Ikl defined in (5.33).

5.2.2 The 5d N = 1 vector multiplet on M5

Let us now consider the simplest supersymmetry multiplets onM5. The 5d vector multiplet

contains a gauge field AM , a real scalar σ, an SU(2)R doublet of gauginos, ΛI , transforming

as a Majorana-Weyl spinor, and an SU(2)R triplet of auxiliary scalars DIJ . The flat-space

supersymmetry transformations are reviewed in [3]. On our curved-space backgroundM5,

the supersymmetry transformations read:

δAM = iζIγMΛI ,

δσ = −ζIΛI ,

δΛI = −iΣMNζI
(
FMN − iβσF̂MN

)
+ iγMζID̂Mσ − iDIJζ

J ,

δDIJ = ζIγ
MD̂MΛJ + ζJγ

MD̂MΛI + ζI [σ,ΛJ ] + ζJ [σ,ΛI ] .

(5.73)

Note that the difference from the flat-space algebra arises due to the expression for the field

strength, which, when written in terms of the new covariant derivative, reads:

FMN = ∇̂MAN − ∇̂NAM − i[AM , AN ] + βηP F̂MNAP . (5.74)

The curved-space supersymmetry algebra onM5 reads:

δ21 = 0 , δ22 = 0 , {δ1, δ2} = −2iL(A)K + 2κδg(σ) , (5.75)

where L(A)K is the gauge-covariant Lie derivative along KM , κ is defined in (5.53), and

δg(σ) denotes a gauge transformation with parameter σ. The supersymmetry algebra (5.75)

reproduces (5.17) upon dimensional reduction along the fiber direction.
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Upon topological twisting, the various fields become differential forms on M5, exactly

like in 4d. We decompose them into (p, q|ℓ)-forms, following the notation introduced in

the previous section. In particular, the decomposition (5.59) holds for the 5d connection

A ≡ AMdxM , while the field-strength 2-form (5.74) decomposes as in (5.61). We then write

the supersymmetry variations in terms of the twisted Dolbeault operator (5.62), which need

to be further twisted by the gauge fields:

∂A ≡ ∂ − iA1,0 , ∂̄A ≡ ∂̄ − iA0,1 , ∂5,A ≡ ∂5 − iA5 , (5.76)

to preserve gauge covariance. Note that they satisfy:

∂2A =− iF 2,0 ∧ −βF̂2,0 ∧ ∂5 ,

∂̄2A =− iF 0,2 ∧ −βF̂0,2 ∧ ∂5 ,

{∂A, ∂̄A} =− iF 1,1 ∧ −βF̂1,1 ∧ ∂5 .

(5.77)

We then have the vector-multiplet supersymmetry variations:

δ1σ = Λ̃0,0
(1) , δ2σ = Λ̃0,0

(2) ,

δ1A = −iΛ1,0 + iΛ̃0,0
(1)η , δ2A = −iΛ0,1 + iΛ̃0,0

(2)η ,

δ1Λ
1,0 = 0 , δ2Λ

1,0 = 2i∂Aσ − 2F 1,0 ,

δ1Λ
0,1 = 2i∂̄Aσ − 2F 0,1 , δ2Λ

0,1 = 0 ,

δ1Λ̃
0,0
(1) = 0 , δ2Λ̃

0,0
(1) = iD̂0,0 − i∂5,Aσ ,

δ1Λ̃
0,0
(2) = −iD̂

0,0 − i∂5,Aσ , δ2Λ̃
0,0
(2) = 0 ,

δ1Λ̃
2,0 = D2,0 , δ2Λ̃

2,0 = 4(F 2,0 − iβσF̂2,0) ,

δ1Λ̃
0,2 = 4(F 0,2 − iβσF̂0,2) , δ2Λ̃

0,2 = D0,2 ,

δ1D̂0,0 = [σ, Λ̃0,0
(1)]− ∂5,AΛ̃

0,0
(1) , δ2D̂0,0 = −[σ, Λ̃0,0

(2)] + ∂5,AΛ̃
0,0
(2) ,

(5.78)

and:

δ1D2,0 = 0 , δ2D2,0 = 4i∂AΛ
1,0 + 2i[σ, Λ̃2,0]− 2i∂5,AΛ̃

2,0 ,

δ1D0,2 = 4i∂̄AΛ
0,1 + 2i[σ, Λ̃0,2]− 2i∂5,AΛ̃

0,2 , δ2D0,2 = 0 .

(5.79)
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The scalar appearing in D̂0,0 in (5.78) is related to the 4d scalar D0,0 defined in (5.16) by:

D̂0,0 ≡ D0,0 + 2βσF̂0,0 , (5.80)

where F̂0,0 is defined as F̂0,0 ≡ 1
4Φ

MN F̂MN . One can then check that the supersymmetry

algebra closes, such that δ21 = 0 = δ22 , while {δ1, δ2}f = 2i[σ, f ] − 2i∂5,Af for any of

the fields f in the vector multiplet.48 The twisted vector multiplet therefore realises the

supersymmetry algebra (5.75), namely:

δ21 = 0 , δ22 = 0 , {δ1, δ2} = −2iLK + 2δg(σ+i ιKA) , (5.81)

where LK is the usual Lie derivative along K, ιKA = KMAM = A5 is the contraction

with the vector field K, while δg(ϵ) is the gauge transformation with parameter ϵ introduced

in (5.17). Finally, one can check that the 5d N = 1 SYM Lagrangian on M5 is ‘almost’

Q-exact, similarly to the 4d Lagrangian (5.18).

5.2.3 The 5d N = 1 hypermultiplet on M5

The 5d N = 1 hypermultiplet consists of an SU(2)R doublet of complex scalar fields qI and

of a Dirac spinor Ψ, Ψ̃. The fields (q,Ψ) transform in some representation R of the gauge

group, while the fields (q̃, Ψ̃) in the complex conjugate representation R̄. The reduction to

the 4d N = 2 hypermultiplet is done following the identification:

Ψ =

(
−η
χ̃

)
, Ψ̃ =

(
χ , η̃

)
. (5.82)

As in the case of the 4d N = 2 hypermultiplet, we can realise the two supercharges of the

DW twist off-shell by introducing some appropriate auxiliary fields. In flat space, these

are five-dimensional commuting spinors ha, h̃
a, with only two non-vanishing components

(h1, h2, 0, 0). For the curved space background, one then simply replaces the derivatives

DM with the torsionfull adapted connection D̂M . We will not give the details here, and

instead work directly with twisted variables, and refer the reader to [3].

48This also holds for the field-strength F upon using the Bianchi identity.
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The hypermultiplet can be recast in twisted variables, exactly as in 4d. The field content

is formally the same as in (5.27), with the (p, q)-forms being now interpreted as forms on

M5, following the discussion of the previous section. The supersymmetry variations read:

δ1Q
0,0 = 0 , δ2Q

0,0 =
√
2 χ̃ 0,0 ,

δ1Q
0,2 =

√
2 χ̃ 0,2 , δ2Q

0,2 = 0 ,

δ1η
0,1 = 2i

√
2 ∂̄AQ

0,0 + h0,1 , δ2η
0,1 = i

√
2 ⋆
(
∂AQ

0,2
)
,

δ1χ̃
0,0 = i

√
2(σ − ∂5,A)Q0,0 , δ2χ̃

0,0 = 0 ,

δ1χ̃
0,2 = 0 , δ2χ̃

0,2 = i
√
2(σ − ∂5,A)Q0,2 ,

δ1h
0,1 = 0 , δ2h

0,1 = X0,1 ,

(5.83)

and:

δ1Q̃
0,0 = −

√
2 η̃ 0,0 , δ2Q̃

0,0 = 0 ,

δ1Q̃
2,0 = 0 , δ2Q̃

2,0 =
√
2 η̃ 2,0 ,

δ1χ
1,0 = i

√
2 ⋆
(
∂̄AQ̃

2,0
)
, δ2χ

1,0 = 2i
√
2 ∂AQ̃

0,0 + h̃1,0 ,

δ1η̃
0,0 = 0 , δ2η̃

0,0 = i
√
2
(
Q̃0,0σ + ∂5,AQ̃

0,0
)
,

δ1η̃
2,0 = −i

√
2
(
Q̃2,0σ + ∂5,AQ̃

2,0
)
, δ2η̃

2,0 = 0 ,

δ1h̃
1,0 = X̃1,0 , δ2h̃

1,0 = 0 ,

(5.84)

where we defined:

X0,1 ≡ − 4i ∂̄Aχ̃
0,0 − 2i ⋆ (∂Aχ̃

0,2) + 2i
√
2Λ0,1Q0,0 + i

√
2 ⋆ (Λ1,0 ∧Q0,2)

+ 2i(σ − ∂5,A)η0,1 ,

X̃1,0 ≡ 4i ∂Aη̃
0,0 − 2i ⋆ (∂̄Aη̃

2,0)− 2i
√
2 Q̃0,0Λ1,0 − i

√
2 ⋆ (Q̃2,0 ∧ Λ0,1)

− 2i
(
χ1,0σ + ∂5,Aχ

1,0
)
.

(5.85)

Let us also point out that the Hodge star operator used above is in fact the Hodge dual on

M4, obtained from the 5d Hodge dual by the contraction ⋆ ≡ ιK⋆5. The four-dimensional
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scalar field ϕ is replaced in the supersymmetry variations by a differential operator:

ϕ→ 1√
2
(σ ∓ ∂5,A) , (5.86)

when acting on a field in the representation R or R̄, respectively. One can easily check that

the supersymmetry algebra (5.81) is satisfied. The kinetic Lagrangian is again Q-exact.

The five-dimensional uplift of (5.29) reads:

LH =
1

4
⋆ (δ1 + δ2)

(
h̃1,0 ∧ ⋆ η0,1 − 2i

√
2χ1,0 ∧ ⋆ ∂̄AQ0,0 + i

√
2χ1,0 ∧ ∂AQ0,2

− i
√
2

8
η̃ 0,0(σ + ∂5,A)Q

0,0 dvol +
i
√
2

2
η̃ 2,0 ∧ (σ + ∂5,A)Q

0,2 − i Q̃2,0 ∧ Λ̃0,2Q0,0

+
i

4
Q̃0,0 Λ̃0,0

(1)Q
0,0 dvol + i Q̃2,0 ∧ Λ̃0,0

(2)Q
0,2 + i Q̃0,0 Λ̃2,0 ∧Q0,2

)
.

(5.87)

5.3 One-loop determinants: hypermultiplet and higher-spin

particles

In this section, we compute one-loop determinants on M5. One can first consider the

contribution of a free hypermultiplet in 4d, and then obtain the 5d result by summing over

the KK modes. We will not do this here, but comment on how our result precisely reflects

this structure. We then generalise our result to derive the one-loop contribution of any 5d

BPS particle running along the circle fiber.

Let us first sketch the standard supersymmetric localization argument [20]. First, it is

not difficult to see that the expectation value of Q-exact operators vanishes in a supersym-

metric QFT. Consequently, we can deform the action by a Q-exact term with an arbitrary

coefficient, without changing the result of the path integral. In the limit where this coeffi-

cient is very large, the integrand is dominated by the saddle points of the localizing action.

These are determined by the configurations for which the fermions and their supersymmetry

variations vanish. Then, the one-loop determinant is nothing but the first-order fluctuation

around this localizing configuration. In particular, this quantity is given by the ratio of the

quadratic operators for the fermionic and bosonic fluctuations - see e.g. [243] for a review.
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5.3.1 Free hypermultiplet on M5

Consider a charged 5d N = 1 hypermultiplet on M5. The simplest way to compute the

partition function is to expand the 5d fields into 4d modes, through KK reduction along the

S1 fiber, which effectively reduces to evaluating the one-loop determinant of a 4d N = 2

hypermultiplet onM4, for the 4d modes of fixed KK charge. Due to the non-trivial fibration

structure onM5, the supersymmetric background for the 5d vector multiplet is slightly more

complicated than the equivalent 4d background, being determined by

D2,0 = 0 , D0,2 = 0 , F 2,0 = iβσF̂2,0 , F 0,2 = iβσF̂0,2 , (5.88)

together with:

i∂Aσ = F 1,0 , i∂̄Aσ = F 0,1 , D̂0,0 = ∂5,Aσ = 0 , (5.89)

in terms of the 5d twisted Dolbeault operators. These conditions are obtained by imposing

that the gaugino variations vanish. The kinetic operators for the bosonic and fermionic

fluctuations around the 5d background read:

∆bos =

(
−2 ⋆ ∂A ⋆ ∂̄A + (σσ − ∂5,A∂5,A) ∗∂A∂A

− ⋆ ∂̄A∂̄A −1
2 ⋆ ∂̄A ⋆ ∂A + 1

4 (σσ − ∂5,A∂5,A)

)
,

∆fer =

−
i
2 (σ − ∂5,A) i ∂̄A

i
2 ⋆ ∂A

− i ⋆ ∂A ⋆ i (σ + ∂5,A) 0

− i
2 ⋆ ∂̄A 0 − i

4 (σ + ∂5,A)

 .

(5.90)

They are related as follows:

∆fer

1 −2i∂̄A i ⋆ ∂A

0 −i (σ − ∂5,A) 0

0 0 i (σ − ∂5,A)

 =

−
i
2 (σ − ∂5,A) 0 0

−i ⋆ ∂A⋆
i
2 ⋆ ∂̄A

∆bos

 . (5.91)

As a result, the one-loop determinant reduces to [20]:

ZH
M5

=
det(∆fer)

det(∆bos)
=

det(L(0,1))

det(L(0,0)) det(L(0,2))
, L = i (σ − ∂5,A) , (5.92)
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with the superscript indicating the type of (p, q)-forms that L : Ωp,q → Ωp,q acts upon.

Roughly speaking, this determinant counts the unpaired bosonic and fermionic modes.

To evaluate this explicitly, we expand the 5d fields φ into 4d KK modes, as a Fourier

decomposition along the S1 fiber:

φ(z, z̄, ψ) =
∑
n∈Z

φ(n)(z, z̄, ψ) , φ(n)(z, z̄, ψ) ≡ e−inψφn(z, z̄) . (5.93)

We then have:

Lφn = λnφn , λn = iβ(σ + iA5) + n . (5.94)

In the following, let us fix a 4d KK mode, i.e. fix the value of n. Then, recall that the

Dolbeault operators ∂̄ : Ωp,q−1 → Ωp,q and ∂ : Ωp−1,q → Ωp,q have adjoints ∂̄∗ : Ωp,q →

Ωp,q−1 and ∂∗ : Ωp,q → Ωp−1,q, respectively, defined as:

∂̄∗ = − ⋆ ∂ ⋆ , ∂∗ = − ⋆ ∂̄ ⋆ , (5.95)

and similarly for the gauge-covariant generalisation. Then, one can check that:

ker(∂̄A) = ker(⋆∂A ⋆ ∂̄A) , ker(∂̄∗A) = ker(∂̄A ⋆ ∂A⋆) ,

ker(∂A) = ker(⋆∂̄A ⋆ ∂A) , ker(∂∗A) = ker(∂A ⋆ ∂̄A⋆) .

(5.96)

As a result, the non-zero eigenvalues of ∂̄∗A∂̄A and those of ∂̄A∂̄
∗
A are in one-to-one corre-

spondence, and similarly for the operators in the second line. Note that these operators

do not change the degree of the differential form they act upon. Moreover, they clearly

commute with the operators L introduced above and, as a result, the eigenvalues of L that

lie outside these kernels will cancel in the one-loop determinant. Thus, we have:

ZH
M4

=
detker(∂̄∗A)⊕ker(∂̄A)(L0,1)

detker(∂̄A)(L0,0) detker(∂̄∗A)(L0,2)
. (5.97)
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where the subscriptM4 on the LHS indicates that this expression is evaluated for a fixed

KK mode (i.e. fixed n). We are thus restricting attention to the zero modes:

∂̄AQ
0,0 = 0 , ∂̄∗A(⋆Q

0,2) = 0 , ∂̄∗Aη
0,1 = 0 , ∂̄Aη

0,1 = 0 , (5.98)

using the fact that ⋆ : Ω0,2 → Ω0,2. Up to an irrelevant numerical factor, we find that:

ZH
M4

= λ−I
n , (5.99)

with I the net number of zero-modes of the twisted Dolbeault operator (5.98) contributing.

It is given by:

I = dimker(∂̄A : E0,0 → E0,1) + dimker(∂̄∗A : E0,2 → E0,1)

− dimker(∂̄∗A : E0,1 → E0,0)− dimker(∂̄A : E0,1 → E0,2) ,

(5.100)

where we denoted by E0,q ≡ Ω0,q ⊗ E the space of (0, q)-forms valued in the gauge bundle

E with connection A. Let ind(∂̄A) denote the index of the Dolbeault complex twisted by

E:

0 −→ Ω0,0 ⊗ E ∂̄A−→ Ω0,1 ⊗ E ∂̄A−→ Ω0,2 ⊗ V E −→ 0 . (5.101)

Formally, one finds:

I = ind(∂̄A)− dim(Ω0,1 ⊗ E) . (5.102)

By the assumption thatM4 is simply connected, however, we have dim(Ω0,1 ⊗E) = 0 and

thus I = ind(∂̄A). Now, each KK mode φp,q of a given (p, q)-degree can be thought of as a

section of a bundle

Ωp,q ⊗ Vn , Vn = ER ⊗ (LKK)
n , (5.103)

where ER is the gauge bundle and LKK is the defining line bundle introduced in section 5.2.1.

The 5d hypermultiplet partition function then takes the form:

ZH
M5

=
∏
n∈Z

λ
−ind(∂̄Vn )
n , (5.104)
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where ind(∂̄Vn) is the index of the 4d Dolbeault complex twisted by the vector bundle Vn.

This infinite product needs to be properly regularised, as we discuss next.

5.3.2 Regularisation: summing up the KK tower

For our purposes, we will only consider abelian gauge bundles, by choosing a maximal torus

of the (background or dynamical) gauge group. Then, without loss of generality, we can

consider the hypermultiplet coupled to a single U(1) gauge field with background flux m,

as discussed in section 5.2.1. The complex scalar in the effective 4d N = 2 vector multiplet

is denoted by

a ≡ iβ(σ + iA5) , (5.105)

with the identification a ∼ a + 1 under a U(1) large gauge transformation. The 5d hyper-

multiplet partition function is given formally by the infinite product:

ZH
M5

=
∏
n∈Z

(
1

a+ n

)ind(∂̄Vn,ε )

, (5.106)

in terms of the index of the Vn,ε-twisted Dolbeault complex. Here, we take Vn,ε to be the

line bundle:

Vn,ε ∼= Kε+
1
2 ⊗ L⊗ (LKK)

n , (5.107)

where the L connection is the background U(1) gauge field with flux m, and ε indexes our

choice of extended twist for the hypermultiplet, as discussed around (5.23). The canonical

choice on a generic Kähler base M4 is ε = −1
2 , while if M4 is spin it is also natural to

choose ε = 0. Note that:

c1(Vn,ε) =
∑
l

((
ε+

1

2

)
kl +ml + n pl

)
[Sl] , (5.108)

where k denotes the first Chern class of the canonical line bundle onM4,

c1(K) =
∑
l

kl[Sl] , (5.109)
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and p was defined in (5.32). For simplicity of notation, we can absorb the (ε + 1
2)k term

into m, effectively setting ε = −1
2 in what follows. From the index theorem, we find:

ind(∂̄Vn) =

∫
M4

Td(TM4) ∧ ch(Vn) = χh +
1

2
(m+ n p− k,m+ n p) , (5.110)

with χh = χ+σ
4 the holomorphic Euler characteristic, and with the intersection pairing

(−,−) onM4 as defined in (5.72).

Regularisation of the result. Given (5.110), the infinite product to be regularised takes

the explicit form:

ZH
M5

(a)m =
∏
n∈Z

(
1

a+ n

)χh+
1
2
(m+n p−k,m+n p)

. (5.111)

The notation ZH
M5

(a)m makes the dependence on a and m manifest. It is convenient to

factor (5.111) as follows:

ZH
M5

(a)m = ΠH(a)χh+
1
2
(m−k,m) K H(a)(m− 1

2
k,p) FH(a)

1
2
(p,p) . (5.112)

Here, we formally defined the following functions in terms of divergent products:

ΠH(a) ≡
∏
n∈Z

1

a+ n
, K H(a) ≡

∏
n∈Z

(
1

a+ n

)n
, FH(a) ≡

∏
n∈Z

(
1

a+ n

)n2

.

(5.113)

These formal products give us information on the analytic structure of the corresponding

meromorphic functions, with poles or zeros at a ∈ Z. Namely, ΠH has poles of order 1 at

any integer a ∈ Z, K H has poles of order n at a = n for every negative integer n (and

zeros at the positive integers), and FH has poles of order n2 at a = n for any integer n.

Following the discussion in [70, 89, 93], we choose the gauge-invariant regularisation, also

known as the ‘U(1)− 1
2
quantisation’. We then find:

ΠH(a) =
1

1− e2πia
,

K H(a) = exp

(
1

2πi
Li2(e

2πia) + a log(1− e2πia)
)
,

FH(a) = exp

(
− 1

2π2
Li3(e

2πia)− a

πi
Li2(e

2πia)− a2 log(1− e2πia)
)
.

(5.114)
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Despite the appearance of polylogarithms, these functions are meromorphic in a, with the

poles mentioned above. They also have simple transformation properties under large gauge

transformations, a ∼ a+ 1, with ΠH(a+ 1) = ΠH(a) and

K H(a+ 1) = ΠH(a)−1K H(a) , FH(a+ 1) = ΠH(a)K H(a)−2FH(a) . (5.115)

Using these relations, we can check that the partition function is gauge invariant. Whenever

the circle is non-trivially fibered over M4, a large gauge transformation amounts to the

simultaneous shift (a,m)→ (a+ 1,m+ p). More invariantly, this corresponds to tensoring

the U(1) line bundle with the defining line bundle, L→ L⊗ LKK. We indeed find that:

ZH
M5

(a+ 1)m+p = ZH
M5

(a)m , (5.116)

as expected.

Example: Trivial fibrations. Let us first consider the case M5 = M4 × S1. Since

p = 0, the partition function takes the simple form:

ZH
M4×S1(a)m = ΠH(a)χh+

1
2
(m−k,m) =

(
1

1− e2πia

)χh+
1
2
(m−k,m)

, (5.117)

for ε = −1
2 . This agrees with previous results [114], up to some differences in conventions.49

For a more general choice of extended DW twist, we find:

ZH
M4×S1(a; ε)m =

(
1

1− e2πia

)−σ
8
+ ε2

2
(2χ+3σ)+ 1

2
(m+2εk,m)

, (5.118)

where we used the relation (k,k) = 2χ+ 3σ.

49The most important difference is in the choice of regularisation. As emphasised in [70], our

choice is singled out by requiring gauge invariance under large gauge transformations.
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Example: The five-sphere S5. Let us now consider the example of S5, fibered over P2,

setting ε = −1
2 for simplicity. We have χ = 3, σ = 1 and k = −3, and thus (5.117) gives us:

ZH
P2×S1(a)m =

(
1

1− e2πia

)1+ 1
2
m(m+3)

, (5.119)

for any flux m ∈ Z. The S5 is obtained by a fibration with p = 1, so that:

ZH
S5(a)m = ZH

P2×S1(a)m K H(a)m− 3
2 FH(a)

1
2 , (5.120)

and we can set m = 0 by a large gauge transformation (5.116), reflecting the fact that

H2(S5)=0. Hence we find:

ZH
S5(a) = exp

(
− 1

4π2
Li3(e

2πia)− 2a− 3

4πi
Li2(e

2πia)− a2 − 3a+ 2

2
log(1− e2πia)

)
. (5.121)

This is in good agreement with previous results [236], with the distinction being in the

choice of regularisation, as discussed above [70, 89, 93]. This different choice is due to our

treatment of the 5d parity anomaly [70], and will also be reflected in the 5d prepotential

which enters explicitly in the partition function through the ‘fibering operator’.

Example: The five-manifold T p1,p2. As another example, consider the fibration over

M4 = F0 = P1×P1, with p = (p1, p2), which is sometimes called T p1,p2 .50 (We take the two

P1 factors as our basis curves, F0
∼= S1×S2.) Then we have χ = 4, σ = 0 and k = (−2,−2),

hence:

ZH
P2×S1(a)m =

(
1

1− e2πia

)4ε2−2εm1m2+m1m2

, (5.122)

for any flux m = (m1,m2), and keeping an arbitrary ε. (Since F0 is spin, we can choose it

as we like, including choosing the DW twist value ε = 0.) We then have:

ZH
T p1,p2 (a)m = ZH

P2×S1(a)m K H(a)(p1m2+p2m1)−2ε(m1+m2) FH(a)p1p2 . (5.123)

50In particular, for p1 = p2 = 1, T 1,1 famously admits a Sasaki-Einstein metric [244].
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For T 1,1 with ε = 0, for instance, this gives:

ZH
T 1,1(a)m = exp

(
− 1

2π2
Li3(e

2πia)− 2a−m1 −m2

4πi
Li2(e

2πia)

− (a2 − (m1 +m2)a−m1m2) log(1− e2πia)

)
.

(5.124)

Note that we have the gauge equivalence (a,m1,m2) ∼ (a+1,m1+1,m2+1). Using (5.69),

one can check that H2(T 1,1,Z) ∼= Z.

5.3.3 Higher-spin particles on M5

By a small generalisation of the above computation, one can also capture the contribu-

tion of higher-spin states. Such electrically-charged states generally appear on the real

Coulomb branch of 5d SCFTs. For instance, when we have an infrared non-abelian gauge

theory phase, the W-bosons give spin-one states. More generally, 5d BPS particles of ar-

bitrary spin can contribute. Following the approach of [23, 61, 245], we expect that, in

the topologically-twisted theory, they contribute to the partition function on the Coulomb

branch as KK towers of 4d off-shell hypermultiplets of SU(2)l×SU(2)r spin (jl, jr). In the

5d interpretation, (jl, jr) is the representation under the little group of the massive particle.

Let us first recall some elementary properties of the half-BPS massive representations

of the 5d N = 1 supersymmetry algebra. The BPS states saturate the BPS mass bound

with M = Z5d, where we take the fifth direction to be time, with PM = (0, 0, 0, 0,−M).

Such states are annihilated by the ‘right-chiral’ supercharges (in the 4d notation), and the

supersymmetry algebra:

{QIa,QJb} = 2ϵIJ
(
γMabPM − iΩabZ5d

)
, (5.125)

after Wick rotation, is realised as:

{QIα, QJβ} = −4iMϵIJϵαβ , Q̃α̇I = 0 , (5.126)

where QIa =
(
QIα , −ϵIJQ̃α̇J

)
. Picking the supercharges QI=1

α and QI=2
α (of R-charge R =
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±1, under U(1)R ⊂ SU(2)R, respectively) as the creation and annihilation operators, we

obtain the supermultiplet:

(
jl, jr;

1

2

)(−1)2jl+2jr

⊕
(
jl +

1

2
, jr; 0

)−(−1)2jl+2jr

⊕
(
jl −

1

2
, jr; 0

)−(−1)2jl+2jr

, (5.127)

for any spin (jl, jr) for the ‘ground state’ – this is for jl > 0, while for jl = 0 there is

no third summand in (5.127). Here (jl, jr, s)
± denotes a 5d massive state of spin (jl, jr)

and of SU(2)R ‘isospin’ s, with the superscript ± corresponding to bosons and fermions,

respectively. The statistics is determined by the spin-statistics theorem.

Now, consider the standard DW twist of the multiplet (5.127). We obtain states of

twisted SU(2)l × SU(2)D spins:

(
jl, jr ±

1

2

)(−1)2jl+2jr

⊕
(
jl ±

1

2
, jr

)−(−1)2jl+2jr

, (5.128)

which are most conveniently written as:

[(
0,

1

2

)(−1)2jl+2jr

⊕
(
1

2
, 0

)−(−1)2jl+2jr
]
⊗ (jl, jr) . (5.129)

The states in the bracket give us a standard massive hypermultiplet in the twisted theory

(up to a choice of statistics), and we simply need to tensor by the general spin (jl, jr).

For (jl, jr) = (0, 0), we recover the standard hypermultiplet. As a first non-trivial

example, it is interesting to consider the massive vector multiplet after the DW twist. Such

massive vectors appear as W-bosons through the Higgs mechanism on the CB, for instance.

In this case, we can compute their contribution explicitly, as a one-loop computation, by

considering the gauge-fixed SYM Lagrangian. This is discussed in some detail in [3]. After

the topological twist, we have the multiplet:

[(
0,

1

2

)−
⊕
(
1

2
, 0

)+
]
⊗
(
0,

1

2

)
= (0, 1)− ⊕ (0, 0)− ⊕

(
1

2
,
1

2

)+

, (5.130)

corresponding to the on-shell gauginos and the massive vector, respectively. Thus the

massive vector multiplet corresponds to (jl, jr) = (0, 12).
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Extended topological twist at higher spin. Consider a massive particle of spin (jl, jr)

charged under some abelian gauge symmetry
∏
K U(1)K with charges qK ∈ Z, after the

standard DW twist. The corresponding KK tower of fields onM4 is valued in the bundles:

[S− ⊕ S+]⊗Kε ⊗
⊗
K

(LK)qK ⊗ S2jl(S−)⊗ S2jr(S+)⊗ (LKK)
n , (5.131)

where LK are U(1)K bundles (to be discussed further in section 6.1.1 below), and Sk(E)

denotes the symmetrised product of k copies of the bundle E. When the Kähler manifold

M4 is not spin, the extended twist parameter ε cannot be zero unless 2jl + 2jr is odd. In

general, we need to choose ε so that:

ε+ jl + jr +
1

2
∈ Z , (5.132)

which ensures that the bundle (5.131) is well-defined. This generalises the discussion of

section 5.1.3. In a given 5d theory, there might be any number of massive particles of

various spins that will contribute in this way, and the ε parameters for each cannot be

chosen independently. We will come back to this important point in section 6.3.1 below.

Partition function at spin (jl, jr). We can now generalise the previous results for the

partition function of a hypermultiplet with spin (jl, jr). It is determined in terms of the

Dolbeault complex twisted by the KK tower of ‘higher-spin’ bundles:

Vn,ε;(jl,jr) = K
1
2 ⊗

⊗
K

(
KεK ⊗ LK

)qK
⊗ S2jl(S−)⊗ S2jr(S+)⊗ (LKK)

n . (5.133)

For more details on the computation of that index, we refer to [3]. Using the notation

m ≡ qKmK and ε = qKε
K , one finds:

ind(∂̄Vn,ε;(jl,jr)
) = (2jl + 1)(2jr + 1)

[
− σ

8
+

1

2
ε2(2χ+ 3σ)− 2

3
jl(jl + 1)χ

+
jl(jl + 1) + jr(jr + 1)

6
(2χ+ 3σ) +

1

2
(m+ np+ 2εk,m+ np)

]
.

(5.134)
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Then, using the building blocks (5.114) and the notation a = qKa
K , we obtain:

Z
(jl,jr)
M5

(a)m = ΠH(a)cAχ+cBσ+c0[
1
2
ε2(2χ+3σ)+ 1

2
(m+2εk,m)]

×K H(a)c0(m+εk,p) FH(a)
1
2
c0(p,p) ,

(5.135)

in terms of the following spin-dependent numbers:

c
(jl,jr)
A = (−1)2jl+2jr(2jl + 1)(2jr + 1)

jr(jr + 1)− jl(jl + 1)

3
,

c
(jl,jr)
B = (−1)2jl+2jr(2jl + 1)(2jr + 1)

(
−1

8
+
jl(jl + 1) + jr(jr + 1)

2

)
,

c
(jl,jr)
0 = (−1)2jl+2jr(2jl + 1)(2jr + 1) ,

(5.136)

which are independent of the geometry.
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Chapter 6

Fibering operators for principal cir-

cle bundles

In this chapter, we consider the low-energy effective action of a 5d N = 1 field theory

compactified on a circle. The 5d theories we have in mind are 5d SCFTs, but the following

infrared approach is independent of the exact UV completion. We consider the effective 4d

N = 2 KK theory compactified onM4, at arbitrary fixed values of the extended Coulomb

branch vector multiplets. As explained in the introduction, this is a crucial step towards a

systematic computation of the U -plane integral.

6.1 KK theories on M4 × S1

Consider any 4d N = 2 theory on M4. For definiteness, let us assume it is a KK theory

so that we have a scale β−1 set by the inverse radius of the circle. We wish to study the

Coulomb branch of this theory, where the low-energy degrees of freedom are r 4d N = 2

abelian vector multiplets – r is the ‘rank’ of the 5d theory, by definition. We denote by ai

the scalars in the U(1)r vector multiplets, which are related to the 5d N = 1 abelian vector

multiplets as

ai = iβ
(
σi + iAi5

)
, i = 1, · · · , r , (6.1)

as already discussed in (2.1). Note that ai is dimensionless, in our conventions. Furthermore,

large-gauge transformations along the fifth direction give us the periodicity ai ∼ ai + 1,

∀i. We also consider background vector multiplets for some maximal torus of the flavour

symmetry group, U(1)rF ⊂ GF , where rF denotes the rank of the flavour group. The
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corresponding background scalars are simply complex masses, denoted by:

µα = iβ
(
mα + iAαF,5

)
, α = 1, · · · , rF , (6.2)

with the identification µα ∼ µα + 1.51 The total space of values for (ai, µα) is called the

extended Coulomb branch, of dimension r+rF . It is convenient to introduce the notation:52

(aI) = (ai, µα) , I = (i, α) , (6.3)

which treats dynamical and background vector multiplets democratically. We will further-

more assume that the vector multiplets are the only massless degrees of freedom at generic

points on the (extended) CB.53

The low-energy 4d N = 2 effective field theory in flat space is then governed by the

effective prepotential, denoted by F(a, µ). We define F(a) for the KK theory to be dimen-

sionless (it is related to the usual 4d prepotential, F4d, by F = β2F4d). The flat-space

Lagrangian can be coupled to the DW-twist background onM4. Its key property is that it

is ‘almost’ Q-exact, similarly to (5.18). Discarding the Q-exact pieces, we are left with the

following topological action, which is well-defined on anyM4 [99]:

Sflat =
i

4π

∫
M4

(
F I ∧ F I ∂

2F(a)
∂aI∂aJ

− i

2
F I ∧ ΛJ ∧ ΛK

∂3F(a)
∂aI∂aJ∂aK

− 1

48
ΛI ∧ ΛJ ∧ ΛK ∧ ΛL

∂4F(a)
∂aI∂aJ∂aK∂aL

)
,

(6.4)

where the sum over repeated indices is understood. Here F = dA for an abelian gauge field

and we also introduced the one-form Λ = Λ1,0 + Λ0,1, in the notation of (5.78). Formally,

51Technically, these are the ν parameters introduced in (2.4), which are related to the complex

mass parameters µ appearing in the prepotential.
52Beware the indices: In this section and the next, the indices I, J, · · · run over the gauge and

flavour maximal torus, while i, j, · · · are gauge indices and α, β are flavour indices. This is distinct

from the conventions in other sections, for instance zi denoted holomorphic coordinates on M4,

and α, β are also 4d left-chiral spinor indices; no confusion is likely there. Note also that I, J

were previously used as SU(2)R indices, but we are now dealing with DW-twisted fields which are

SU(2)R-neutral, therefore this notation switch should cause no confusion.
53More generally, there could be additional massless hypermultiplets, giving us a so-called en-

hanced CB. We will not consider this possibility in this paper.
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(6.4) can be viewed as the fourth descendant,
∫
M4
O(4), with respect to the DW supercharge

δ = δ1 + δ2, of the 0-form:

O(0) = −2i

π
F(a) , (6.5)

where we used the descent relations δO(n) = dO(n−1) with the supersymmetry variations:

δa = 0 , δΛ = 2da , δF = −idΛ , (6.6)

for an abelian vector multiplet, with a = i
√
2ϕ. The fermionic terms in (6.4) only depend

on the one-form Λ. Correspondingly, they will only affect the low-energy physics onM4 if

the Λ fields have zero-modes, which is to say if H1(M4,R) is non-trivial. For simplicity, we

assume that H1(M4,R) = 0 – i.e. b1 = 0 – in this work. Thus, in the following, we can

ignore the effect of these fermionic couplings.

6.1.1 Flux Operators

Let us now consider any background gauge field configuration for the U(1)I symmetries,

assuming it preserves our two supercharges. We denote the corresponding fluxes onM4 by

c1(F
I) =

1

2π
F I =

∑
k

mI
k[Sk] . (6.7)

Recall that we denote the intersection pairing on H2(M4,Z) by (−,−), so that we have:

(mI ,mJ) =
1

4π2

∫
M4

F I ∧ F J =
∑
k,l

mI
kIklm

J
l , (6.8)

with Ikl as in (5.33). At any generic point on the Coulomb branch, taking aI to be constant,

the action (6.4) evaluates to:

Sflux ≡ Sflat
∣∣∣
CB

= πi(mI ,mJ)
∂2F(a)
∂aI∂aJ

. (6.9)

In addition to (6.4), the infrared theory compactified on M4 is governed by well-studied

gravitational couplings [96, 98, 99, 246, 247]. Up to Q-exact terms and away from Seiberg-
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Witten singularities, the topologically-twisted Coulomb branch theory takes the simple

form:

STFT = Sflat + Sgrav . (6.10)

The second term in (6.10) consists of couplings to the background metric:

Sgrav =
i

64π

∫
d4x
√
g ϵµνρσϵαβγδRµναβRρσγδ A(a)

+
i

48π

∫
d4x
√
g ϵµνρσRµνα

βRρσβ
α B(a) .

(6.11)

At constant values of the extended CB parameters, this evaluates to:

Sgrav = 2πi
(
χA(a) + σ B(a)

)
, (6.12)

where χ and σ are the topological Euler characteristic and the signature ofM4, respectively.

This gives the famous contribution [96,98,99,246,247]:

e−Sgrav = A(a)χB(a)σ , A(a) ≡ e−2πiA(a) , B(a) ≡ e−2πiB(a) . (6.13)

The prepotential F and the gravitational couplings A and B can be determined from the

Seiberg-Witten geometry of the 5d theory on a circle, in principle, or else from an explicit

instanton counting computation on the Ω-background.

On general grounds, the prepotential F suffers from branch-cut ambiguities:

F(a) ∼ F(a) + n2
2
a2 + n1a+

n0
2
, n0, n1, n2 ∈ Z . (6.14)

Such shifts are incurred, in particular, when performing large gauge transformations along

the 5d circle. It follows that the exponentiated action exp (−Sflux) is singled-valued if and

only if the intersection pairing is even, so that (m,m) ∈ 2Z for any integer-quantized flux m,

which is true ifM4 is spin. More generally, we need to modify the quantization condition

on our fluxes, so that AI describe spinc connections rather than U(1) gauge fields. For
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U(1)I bundles, we would have mI ∈ Z, while more generally we may choose:

1

2π
F I =

∑
k

(
εIkk +mI

k

)
[Sk] . (6.15)

Here, k was defined in (5.109), εI ∈ 1
2Z, and mI

k ∈ Z. The parameters εI must be carefully

chosen depending on the theory so that it be well-defined onM4, as we will discuss in more

detail in section 6.3.1 below. They are the infrared analogue of the extended DW-twist

parameter ε introduced in section 5.1.3 for the hypermultiplet. The spinc connections AI

can be formally viewed as connections on the ill-defined line bundles

LI = KεI ⊗ LI , (6.16)

where LI is a U(1) line bundle with first Chern class mI . The necessity of introducing spinc

connections arises from the fact that our 4d N = 2 KK theories generally contain spinors

even after the standard DW twist – in the infrared description, these arise as massive BPS

particles coupled to the low-energy (background and dynamical) photons, which can have

arbitrary (twisted) spin. We will give the precise condition on εI in section 6.3 below.

For now, we claim that the εI ’s can always be chosen so that the low-energy theory is

well-defined; in particular, choosing these parameters correctly will render e−STFT(a) fully

gauge-invariant, single-valued and locally holomorphic in a.54

Let us now define the ‘flux operators’:

ΠI,J(a) = exp

(
−2πi ∂

2F(a)
∂aI∂aJ

)
, (6.17)

which are meromorphic functions on the ECB parameters aI . Such insertions can be un-

derstood as local operators in the twisted infrared theory. Alternatively, we consider the

insertion of (6.4) for specific fluxes, which can be viewed as the top-dimensional topological

descendant of F(a), viewed itself as a local operator (at least formally). Using the topo-

logical invariance, we can localise F I ∧F J to have support at a point onM4, giving rise to

54Here, holomorphy is a formal consequence of supersymmetry since anti-holomorphic terms are

Q-exact.
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the local insertion:55

e−Sflux =
∏
I,J

ΠI,J(a)
1
2
(mI+εIk,mJ+εJk) . (6.18)

Using the fact that (k,k) = 2χ+ 3σ, it is convenient to factorise these contributions as:

e−Sflux = Zflux
M4

(a; ε)m G(a; ε)2χ+3σ , (6.19)

where we defined:

Zflux
M4

(a; ε)m ≡
∏
I,J

ΠI,J(a)
1
2
(mI+εIk,mJ ) = exp

−πi∑
I,J

(mI + 2εIk,mJ)
∂2F(a)
∂aI∂aJ

 , (6.20)

and:

G(a; ε) ≡ e−2πiG(a;ε) , G(a; ε) ≡ 1

2

∑
I,J

εIεJ
∂2F(a)
∂aI∂aJ

. (6.21)

The full exponentiated topological field theory action (6.10) evaluated on the CB then gives

us the ‘CB partition function’ onM4 with gauge and flavour fluxes m:

ZM4×S1(a; ε)m = Zgeom
M4

(a; ε)Zflux
M4

(a; ε)m . (6.22)

This object is really the holomorphic integrand that will enter the U -plane integral of the

4d N = 2 KK theories, as discussed in the introduction. Here, we conjecture that the two

factors in (6.22) are separately well-defined on any Kähler manifold (this is clearly true when

M4 is spin, but not so obvious in the non-spin case). Consider first the “flux operator”

contribution (6.20). The εI parameters should be such that (6.20) is single-valued. A

sufficient set of conditions would be

1

2
(mI ,mJ) + εI(k,mJ) ∈ Z if I = J ,

εI(k,mJ) + εJ(k,mI) ∈ Z if I ̸= J ,

(6.23)

for any mI
k ∈ Z, but this is much too strong in general. Instead, the correct condition on

55What we call the ‘flux operator’ has been denoted ‘the C coupling’ in recent works [108, 111].

The flux operator insertion can also be interpreted as a contact term localised at the intersection of

the 2-cycles carrying the flux [112].
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the εI ’s will depend on the 5d BPS spectrum of the field theory (see section 6.3.1).

The “geometrical” factor in (6.22) has contributions from the ordinary gravitational

couplings (6.13) and from (6.21), which is dictated by our choice of (background) spinc

connections. It is given by:

Zgeom
M4

(a; ε) = A(a)χB(a)σG(a; ε)2χ+3σ . (6.24)

The A and B couplings are given in terms of the low-energy Seiberg-Witten geometry

as [96,99,246]:

A = α

(
det
ij

dUi
daj

) 1
2

, B = β
(
∆phys

) 1
8
, (6.25)

with α, β some numerical constants, which we determined explicitly in [1]. Here, Ui(a)

are the gauge-invariant U -parameters, which parametrise the Coulomb branch of the 4d

N = 2 KK theory, and ∆phys is the so-called physical discriminant [247] of the Seiberg-

Witten fibration. Our conjecture is then that the branch cuts ambiguities in AχBσ, that

would generally arise from the expressions (6.25), are precisely cancelled by the third factor

G2χ+3σ in (6.24).56

6.1.2 The free hypermultiplet

Let us consider the 5d hypermultiplet onM4×S1 coupled to a single U(1) vector multiplet

with charge 1, whose partition function we computed in the previous section. In the present

CB approach, we simply need to know the effective prepotential and gravitational couplings

for the free hypermultiplet. They are given by:

F = − 1

(2πi)3
Li3(Q) , A = 0 , B = − 1

16πi
log(1−Q) , (6.26)

56If the Kähler manifold M4 is spin, we have χ ∈ 4Z and σ ∈ 16Z. Then the G factor is

well-defined by itself, and it can be reabsorbed into the flux operator.
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with Q ≡ e2πia, as we will show in the next chapter, from the perspective of the Ω-

background. We then have:

A = 1 , B = (1−Q)
1
8 . (6.27)

The non-trivial physical discriminant ∆phys = 1 − Q encodes the singularity on the (ex-

tended) Coulomb branch at Q = 1, where the hypermultiplet becomes massless. Taking the

extended topological twist with ε = −1
2 + δ, and some background flux m, we also have

G = (1−Q)−
ε2

2 = (1−Q)−
1
8 (1−Q)−

1
2
δ(δ−1) , Zflux

M4
= (1−Q)−

1
2
(m+2εk,m) . (6.28)

Then, the formula (6.22) gives us:

ZH
M4×S1(a; ε)m =

(
1

1−Q

)χh+
1
2
(m+δk−k,m+δk)

, (6.29)

in perfect agreement with (5.118).

6.2 KK theory on M5: the fibering operator

We now consider the non-trivial fibration S1 →M5 →M4. From the 4d point of view, all

5d fields decompose in KK towers and there is always a distinguished U(1)KK symmetry in

4d corresponding to the momentum along the fifth direction. A non-trivial fibration of the

circle amounts to introducing background fluxes for the KK symmetry onM4:

∫
Sk

c1(LKK) =
1

2π

∫
Sk

F̂ =
∑
l

Iklpl . (6.30)

On the CB of the infrared topologically-twisted 4d N = 2 KK theory, the non-trivial

fibration of the fifth direction over M4 is then encoded in a ‘flux operator’ for U(1)KK,

which we call the fibering operator. The expression for the latter is easily determined by

dimensional analysis. Reinstating dimensions, the mass parameter for U(1)KK is really
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µKK = 1/β, so that F4d = µ2KKF and one finds:

∂2F4d

∂µ2KK

= 2

(
1− aI

∂

∂aI
+

1

2
aIaJ

∂2

∂aI∂aJ

)
F(a) , (6.31)

and:

∂2F4d

∂µKK∂(µKKaI)
=

(
1− aJ

∂

∂aJ

)
∂F
∂aI

. (6.32)

For a principal circle bundle with first Chern numbers pk, we then write down the fibering

operator:

F̂p(a; ε) ≡ F (a)
1
2
(p,p)

∏
I

KI(a)
(p,mI+εIk) , (6.33)

where we defined:

F (a) ≡ exp

(
−4πi

(
1− aI

∂

∂aI
+

1

2
aIaJ

∂2

∂aI∂aJ

)
F(a)

)
, (6.34)

and:

KI(a) ≡ exp

(
−2πi

(
1− aJ

∂

∂aJ

)
∂F
∂aI

)
. (6.35)

The functions (6.34) and (6.35) are entirely determined by the exact effective prepotential of

the 4dN = 2 KK theory, and they are unaffected by the ambiguities (6.14). Moreover, while

F (a)
1
2 and KI(a)

1
2 suffer from branch-cut ambiguities, the product (6.33) is expected to be

unambiguous. This is exactly like in the case of the flavour flux operators discussed above.

For spin manifolds, the intersection form is even and the factors in (6.33) are individually

well-defined, while on a non-spinM4 we again conjecture that the fibering operator (6.33)

remains well-defined once the parameters εI are correctly chosen.

The M5 partition function and gauge invariance. Putting all the contributions

together, we arrive at the full M5 partition function at fixed values of the (gauge and

flavour) U(1)I vector multiplets. We have:

ZM5(a; ε)m = Zgeom
M4

(a; ε)Zflux
M4

(a; ε)m F̂p(a; ε)m , (6.36)
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with:

Zgeom
M4

(a; ε) = A(a)χB(a)σG(a; ε)2χ+3σ ,

Zflux
M4

(a; ε) = Π(a)
1
2
(m+2εk,m) ,

F̂p(a; ε)m = K (a)(p,m+εk) F (a)
1
2
(p,p) .

(6.37)

Here we suppressed the I, J indices.57 Importantly, the partition function (6.36) is fully

gauge invariant. Consider the large gauge transformations along U(1)I :

aJ → aJ + δIJ , mJ → mJ + δIJp , (6.38)

which we denote by the shorthand (a,m) → (a + δI ,m + δIp). Gauge invariance implies

that:

ZM5(a+ δI)m+δIp = ZM5(a)m . (6.39)

This is indeed the case. To check this, note that Zgeom
M4

(a) is invariant by itself, and that

we have the following large gauge transformations of the building blocks:

ΠJ,K(a+ δI) = ΠJ,K(a) ,

KJ(a+ δI) = ΠI,J(a)
−1 KJ(a) ,

F (a+ δI) = ΠI,I(a)KI(a)
−2 F (a) .

(6.40)

Matching the one-loop computation. Consider the free hypermultiplet coupled to a

U(1) vector multiplet. By an application of the general formulas (6.34)-(6.35), using the

hypermultiplet prepotential (6.26), we find:

K = K H(a) , F = FH(a) , (6.41)

57We will also often omit the ε from the notation, from now on, to avoid clutter.
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in terms of the meromorphic functions introduced in (5.114), so that:

F̂p(a; ε)m = FH
p (a)m ≡ exp

(
− (p, p)

4π2
Li3(e

2πia)− (p, p)a− (p,m+ εk)

2πi
Li2(e

2πia)

−a((p, p)a− 2(p,m+ εk))

2
log(1− e2πia)

)
.

(6.42)

By multiplying with (6.29), we obtain the full partition function of a free hypermultiplet

onM5. This matches precisely with the direct one-loop computation of section 5.3.2.

6.3 Higher-spin state contributions

The prepotential of many five-dimensional superconformal field theories compactified on S1

admits an expansion in terms of 5d BPS states:58

F = − 1

(2πi)3

∑
β

∑
jl,jr

c
(jl,jr)
0 Nβ

jl,jr
Li3(Q

β) . (6.43)

Here, in keeping with common notation, we denote by βI ≡ qI the charges under the

U(1)r+rF symmetry on the extended Coulomb branch, with Qβ ≡
∏
I Q

βI
I and QI ≡ e2πia

I
,

and with the universal coefficients c
(jl,jr)
0 as in (5.136). In the context of geometrical engi-

neering of 5d SCFTs in M-theory on a toric threefold, the theory-dependent non-negative

integers Nβ
jl,jr

in (6.43) are the refined Gopakumar-Vafa invariants [248], as we will review

momentarily. The expansion (6.44) can be written simply as:

F = − 1

(2πi)3

∑
β

dβ Li3(Q
β) , (6.44)

with

dβ ≡
∑
jl,jr

(−1)2jl+2jr(2jl + 1)(2jr + 1)Nβ
jl,jr

, (6.45)

the effective number of 5d BPS states of charge β. Given the expression (6.44) for the pre-

potential, we can directly compute the CB fibering operator in terms of the hypermultiplet

58Here we ignore some possible ‘classical’ terms, which would contribute additional factors to the

CB partition function.
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result (6.42), at least formally, as a product over the charge lattice:

Fp(a)m =
∏
β

[
FH

p (β(a))β(m)

]dβ . (6.46)

Thus, the higher-spin contributions are the same as for dβ hypermultiplets, in perfect

agreement with the second line of (5.135).

One can similarly expand the flux operators. To obtain the full CB partition function, we

should also consider the contribution of higher-spin particles to the gravitational couplings

A and B. In section 7.1.4 below, we will show that:

A =
1

2πi

∑
β

∑
jl,jr

c
(jl,jr)
A Nβ

jl,jr
log(1−Qβ) ,

B =
1

2πi

∑
β

∑
jl,jr

c
(jl,jr)
B Nβ

jl,jr
log(1−Qβ) ,

(6.47)

when expanding in terms of the refined GV invariants, with the coefficients c
(jl,jr)
A,B given

in (5.136). One then easily checks that the CB partition function on M5 can be written

entirely in terms of the refined GV invariants of the 5d theory, as:

ZM5(a)m =
∏
β

∏
jl,jr

[
Z

(jl,jr)
M5

(β(a))β(m)

]Nβ
jl,jr , (6.48)

using the explicit expression (5.135). The expression (6.48) is the partition function that

we would obtain by combining the localization results of section 5.3 with the assumption

that the full partition function can be obtained as a product over the 5d BPS states, as

argued by Lockhart and Vafa [23]. What we have just shown is that this factorisation is

consistent with the low-energy approach of the present section. In fact, the factorisation

(6.48) is simply equivalent to the expansions (6.43) and (6.47) of the low-energy effective

couplings.

6.3.1 Spin/charge constraints on the 5d BPS spectrum

To conclude this section, let us mention an important constraint that arises when trying to

put a general 5d SCFT on our supersymmetric M5, for a generic choice of our geometric
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background. Namely, every BPS particle of spin (jl, jr) and charge β, at any point on the

5d CB, should be coupled consistently to the base manifoldM4, at the same time. Given

the CB (gauge and flavour) symmetry
∏
I U(1)I , we need to choose the ε parameters εI ,

which define the spinc connections as in (6.15), in such a way that

1

2
+ jl + jr + β(ε) ∈ Z , ∀ jl, jr,β with Nβ

jl,jr
̸= 0 . (6.49)

Here, β(ε) ≡ qIεI is the ε parameter of this particular BPS particle. For any fixed jl, jr, qI ,

this condition is equivalent to the requirement that the vector bundle (5.133) be well-defined

on any Kähler manifoldM4. (Of course, ifM4 is spin, then this condition is not necessary.)

Note that, once we fix εI , the condition (6.49) only holds if the spin and electric charges

of the BPS states are appropriately correlated (mod 2). The theories for which this holds

obey a “spin/charge” relation, which is somewhat reminiscent of the 3d spin/charge relation

discussed in [249] for strongly-coupled electrons; this spin/charge relation for 4d N = 2

theories was also discussed in [250].

In [3], we computed explicitly the Gopakumar-Vafa invariants for the toric En 5d SCFTs

and showed that (6.49) is satisfied. For instance, for the E1 theory, perturbatively in the

5d gauge-theory limit, we only have the massive W-boson, of spin (0, 12), which satisfies the

condition (6.49) with charge β = (0, 1) in the basis corresponding to the two factors Pb×Pf

of the local F0 geometry in M-theory. Hence we need to have εI=2 mod 1 = 0 in this basis.

Similarly, looking at the first instanton particle, β = (1, 0), we have εI=1 mod 1 = 0. (The

SCFT has a symmetry exchanging the two charges, β = (m,n) ↔ (m,n).) Hence, by

consistency, we should have 1
2 + jl + jr ∈ Z for any other particle in the spectrum, of any

charge. This is indeed the case, at least to the order that we have checked it.

From our considerations, all the toric En models can be coupled consistently to ourM5

background with the extended DW twist on M4. It would be interesting to understand

whether the spin/charge relation must always hold, a priori, in any 5d SCFT.
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Chapter 7

Five-dimensional partition functions

In this chapter, we give a complementary perspective on the Coulomb branch partition

function (6.36), including the fibering operator, by building up M5 as a toric gluing of

C2×S1 patches, in the case when the baseM4 is a toric four-manifold. We can then obtain

the partition function ZM5 as an appropriate gluing of 5d Nekrasov partition functions,

generalising well-known results for the five-sphere [23–25,237].

7.1 Nekrasov partition functions and topological strings

Partition functions of 4d N = 2 field theories on toric four-manifolds can be computed in

terms of the partition functions on toric patches C2 [113], and similarly for the 5d uplift.

On each patch, one considers the so-called Nekrasov partition function on C2×S1 with the

Ω-background, which is obtained by the identification

(z1, z2, x5) ∼ (e2πiτ1 z1, e
2πiτ2 z2, x5 + β) , (7.1)

where (z1, z2, x5) are the C2 × S1 coordinates, and we also introduced the dimensionless

Ω-deformation parameters:

τ1 = βϵ1 , τ2 = βϵ2 , (7.2)

not to be confused with the gauge couplings. The Ω-background is a U(1)2-equivariant

deformation of the topological twist which effectively compactifies the non-compact C2,

with a finite ‘volume’ 1/(τ1τ2). Using topological invariance, one can equivalently consider

a background geometry D2
τ1 × D

2
τ2 × S

1, where D2
τ1,2 are elongated cigars fibered over S1

according to (7.1). Formally, we can assign the following Euler characteristic and signature
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to the Ω-deformed C2 geometry [251]:

χ(C2) = τ1τ2 , σ(C2) =
τ21 + τ22

3
. (7.3)

Similarly, the first Chern class of the canonical line bundle over C2 is formally given by:

c1(KC2) = τ1 + τ2 . (7.4)

Note that we have c1(K)2 = 2χ + 3σ = (τ1 + τ2)
2. The partition function of a 5d N = 1

theory on C2×S1 is known as the (K-theoretic) Nekrasov partition function [252,253], and

it will be denoted by:

ZC2×S1(a, τ1, τ2) . (7.5)

Here, the CB parameters aI arise as Dirichlet boundary conditions for the U(1)I vector

multiplets at infinity. Whenever we have a four-dimensional gauge-theory interpretation,

the Nekrasov partition function admits an expansion in some instanton counting parameter

q = e2πiτuv , according to:

ZC2×S1(a, τ1, τ2) = Zcl
C2×S1(a, τ1, τ2)Z

pert
C2×S1(a, τ1, τ2)

(
1 +

∑
k

qkZNek
k (a, τ1, τ2)

)
. (7.6)

See e.g. [251,254,255] for reviews of instanton counting, and [256–258] for some more recent

advances. When considering the Donaldson-Witten twist, we are interested in the non-

equivariant limit τ1,2 → 0. In that limit, the partition function diverges in a way which

precisely encodes the low-energy couplings F , A, and B of the CB theory, namely [113,259]:

logZC2×S1(a, τ1, τ2) ≈ −
2πi

τ1τ2

(
F(a) + (τ1 + τ2)H(a) + τ1τ2A(a) +

τ21 + τ22
3
B(a)

)
. (7.7)

The term H(a) in (7.7) is allowed by dimensional analysis, but it does not represent an

additional effective coupling. In fact, for the U(1)2-equivariant DW twist, we must have

H(a) = 0 because there are no supergravity background fields that could contribute to this

coupling (see e.g. [260]). More generally, H is fully determined in terms of F by the choice

of background U(1) gauge fields, as we will see momentarily.
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7.1.1 Nekrasov partition functions for the extended topological twist

When patching together Nekrasov partition functions into compact four- or five-manifolds,

we will have to be careful about whether the baseM4 is spin or not. In general, we should

consider the possibility of an extended DW twist on C2 × S1, with parameters εI . We

propose that this corresponds to twisting the background gauge fields at infinity according

to:

aI → aI + εI(τ1 + τ2) , (7.8)

in agreement with the identification (7.4). Namely, the Nekrasov partition function for the

extended DW twist is given by:

ZC2×S1(a, τ1, τ2; ε) = ZC2×S1(a+ ε(τ1 + τ2), τ1, τ2) . (7.9)

Hence, the non-equivariant limit of the partition function reads:

logZC2×S1(a, τ1, τ2; ε) ≈

− 2πi

τ1τ2

(
F(a) + (τ1 + τ2)H(a; ε) + τ1τ2A(a) +

τ21 + τ22
3
B(a) + (τ1 + τ2)

2G(a; ε)
)
,

(7.10)

with:

H(a; ε) = εI
∂F
∂aI

, G(a; ε) = 1

2
εIεJ

∂2F(a)
∂aI∂aJ

. (7.11)

This parameterisation of the non-equivariant limit naturally parallels the discussion of sec-

tion 6.1.1 for the CB effective couplings, with G being exactly as in (6.21).

7.1.2 Gluing transformations in the non-equivariant limit

We wish to glue together Nekrasov partition functions from different patches to obtain

the CB partition function of a compact five-manifold M5. The most general gluing rules
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between two patches, for our purposes, are:59

τi → τ̃i ≡
τ̂i
γ
, a→ ã ≡ a+ n̂

γ
, (7.12)

where we defined τ̂i ≡ αiτ1+βiτ2 and γ ≡ γ1τ1+ γ2τ2+1, for some integers αi, βi, γi (with

i = 1, 2), and:

n̂ ≡ n̂1τ̂1 + n̂2τ̂2 . (7.13)

The parameters n̂i allow us to introduce background fluxes. To recover the DW twist on

M5, we need to consider the non-equivariant limit of the Nekrasov partition function in the

variables (7.12). In the limit τi → 0 and using the ansatz (7.7), one finds:

logZC2×S1(ã, τ̃1, τ̃2) ≈

− 2πi

τ̂1τ̂2

(
F + (τ̂1 + τ̂2)H + 2(γ − 1)

(
F − aI∂IF

)
+ τ̂1τ̂2A(a) +

τ̂21 + τ̂22
3
B(a)

+ (γ − 1)2
(
F − aI∂IF +

1

2
aIaJ∂I∂JF

)
+ (γ − 1)(τ̂1 + τ̂2)

(
H − aI∂IH

)
+ n̂I

(
γ∂IF + (τ̂1 + τ̂2)∂IH − (γ − 1)aJ∂I∂JF

)
+

1

2
n̂I n̂J∂I∂JF

)
,

(7.14)

where we used the notation ∂I =
∂
∂aI . When considering the extended topological twist as

in (7.9), the general non-equivariant limit is obtained from (7.14) through the substitution:

H → εI∂IF , A → A+ 2G , B → B + 3G , (7.15)

with G defined in (7.11).

7.1.3 Refined topological string partition function

We are particularly interested in the 5d SCFTs that can be engineered at canonical sin-

gularities in M-theory [16, 46]; see e.g. [70, 119, 124, 125, 180] for recent studies. Then, the

Coulomb branch low-energy effective theory on the Ω-background is obtained by considering

59More general gluings could be considered (similarly to the 3d computations in [93]), but this

would go beyond the class of principal circle bundles that we consider in this paper.
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the low-energy limit of M-theory on:

C2 × S1 × X̃ , (7.16)

with the Ω-background turned on along C2. Here, X̃ denotes the crepant resolution of a

threefold canonical singularity X. Let us further choose X and its resolution to be toric.

Then, the Nekrasov partition function of the five-dimensional theory can be computed using

the refined topological vertex formalism [248,261].

In the geometric-engineering picture, the various Coulomb branch parameters of the 5d

theory are now Kähler parameters of the crepant resolution X̃. In keeping with standard

notation, we use the fugacities q, t = p−1 and Q, defined as:

q ≡ e2πiτ1 , p = t−1 ≡ e2πiτ2 , Qβ ≡ e2πi
∫
β(B+iJ) = e2πiβ(a) , (7.17)

where β ∼= [C] ∈ H2(X̃,Z) denote the homology class of any effective curve in X̃, and B+iJ

is the complexified Kähler form in Type-IIA string theory.

The Nekrasov partition function of the 5d theory is expected to be equivalent to the

refined topological string partition function for the threefold X̃ [248,262]. In the M-theory

approach, the 5d BPS states arise as M2-branes wrapped over curves. One can then write

the Nekrasov partition function as a product over these BPS states, of electric charge β

and spin (jl, jr) [23,248]:

ZC2×S1(a, τ1, τ2) =
∏
β

∞∏
jl,jr=0

[
Zjl,jrC2×S1(Q

β, q, p)
]Nβ

jl,jr , (7.18)

where the non-negative integers Nβ
jl,jr

are the refined Gopakumar-Vafa invariants. Here,

the higher-spin particles contribute as:

Zjl,jrC2×S1(Q, q, p) ≡
jl∏

ml=−jl

jr∏
mr=−jr

(Qq
1
2
+mr+mlp

1
2
+mr−ml ; q, p)(−1)1+2jl+2jr

∞ , (7.19)
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which is written in terms of the double-Pochhammer symbol:

(x; q, p)∞ ≡
∞∏

j,k=0

(1− xqjpk) . (7.20)

Note that the definition (7.20) is only valid for Im(τi) > 0. This can be analytically

continued to |q| ≠ 1, |p| ≠ 1 [263], which gives us the formal identities:

(x; q−1, p)∞ = (xq; q, p)−1
∞ , (x; q, p−1)∞ = (xp; q, p)−1

∞ . (7.21)

The expression (7.18) gives us the Nekrasov partition function for the ordinary Ω-deformed

DW twist, and we can also obtain the extended DW twist expression by the substitution

Q → Q(qp)ε. For completeness, let us also mention that the unrefined topological string

limit corresponds to setting t = p−1 = q, giving us:

Ztop(Q, q) =
∏
β

∞∏
jl=0

Z̃jltop(Q
β, q)

Nβ
jl , (7.22)

with:

Z̃jltop(Q, q) =

jl∏
ml=−jl

∞∏
k=1

[(
1−Qqk+2ml

)k](−1)2jl

, (7.23)

in terms of the unrefined GV invariants Nβ
jl
≡
∑

jr
(−1)2jr(2jr +1)Nβ

jl,jr
. The (refined) GV

invariants have to be computed explicitly, for any given toric threefold X̃, for instance using

the (refined) topological vertex formalism [248].

7.1.4 GV expansion in the non-equivariant limit

It is interesting to consider the non-equivariant limit of the expression (7.18). We find it

useful to introduce the ‘quantum trilogarithm’ defined as:

Li3(x; q, p) ≡ − log(x; q, p)∞ =
∞∑
n=1

xn

n

1

(1− qn)(1− pn)
. (7.24)
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In the small-τi limit, it admits an asymptotic expansion:

Li3(x; q, p) =
∞∑

n,m=0

(−1)n+m

n!m!
BnBm(2πiτ1)

n−1(2πiτ2)
m−1Li3−n−m(x) , (7.25)

where Bn are the Bernoulli numbers.60 We then have:

Li3(x; q, p) ≈
1

(2πi)2τ1τ2
Li3(x)−

1

4πi

τ1 + τ2
τ1τ2

Li2(x)−
1

12

(
3 +

τ1
τ2

+
τ2
τ1

)
log(1− x) . (7.26)

For a massive hypermultiplet with the extended DW twist, we have

logZH
C2×S1(a, τ1, τ2; ε) = Li3(Q(qp)

1
2
+ε; q, p) . (7.27)

Setting ε = 0 for simplicity, the τi → 0 limit reads:

logZH
C2×S1(a, τ1, τ2) ≈ −

2πi

τ1τ2

(
− 1

(2πi)3
Li3(Q)−

(
τ21 + τ22

3

)
1

16πi
log(1−Q)

)
, (7.28)

from which we can read off (6.26). More generally, for the equivariant DW twist (ε = 0),

we have the refined GV expansion:

logZC2×S1 =
∑
β

∑
jl,jr

Nβ
jl,jr

logZjl,jrC2×S1(Q
β, q, p) , (7.29)

with:

logZjl,jrC2×S1(Q, q, p) = (−1)2jl+2jr

jl∑
ml=−jl

jr∑
mr=−jr

Li3(Qq
1
2
+mr+mlp

1
2
+mr−ml ; q, p) . (7.30)

By taking the small-τi limit and comparing to (7.7), one can extract the contribution of a

spin-(jl, jr) particle (of unit electric charge, β = 1) to the low-energy effective couplings.

60With the convention that B0 = 1 and B1 = 1
2 .
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By a straightforward computation, one finds:

F jl,jr = − c
(jl,jr)
0

(2πi)3
Li3(Q) ,

Ajl,jr =
1

2πi
c
(jl,jr)
A log(1−Q) , Bjl,jr =

1

2πi
c
(jl,jr)
B log(1−Q) ,

(7.31)

with the coefficients c(jl,jr) as defined in (5.136), exactly as anticipated in section 6.3, and

in perfect agreement with the index computation of section 5.3.3. Note also that, for the

extended topological twist, one has the additional terms H and G in (7.10), namely:

Hjl,jr = − c
(jl,jr)
0

(2πi)2
εLi2(Q) , Gjl,jr =

c
(jl,jr)
0

4πi
ε2 log(1−Q) , (7.32)

according to (7.11).

7.2 Gluing Nekrasov partition functions

Let us now consider the explicit gluing of Nekrasov partition functions to obtain the circle-

fibered five-manifoldM5 in (5.30), whereM4 is a toric four-manifold. For definiteness, we

will mostly focus on the case whenM4 is one of the five toric Fano surfaces, P2, F0
∼= P1×P1,

or dPn (the blow-up of P2 at n points) with n ≤ 3, whose Euler characteristic and signature

are:
P2 F0 dP1 dP2 dP3

χ 3 4 4 5 6

σ 1 0 0 −1 −2
(7.33)

Let us first review the case of a trivial fibration, M5 = M4 × S1, before considering the

case of a non-trivial fibration.

7.2.1 The M4 × S1 partition function

It was conjectured in [113] that the Ω-deformed Coulomb branch partition function on a

toric manifold M4 can be obtained by gluing Nekrasov partition functions for each fixed

point of the toric action. The full partition function is then obtained, in principle, by a

particular contour integral over the CB parameters, together with a sum over fluxes, both of
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which one should determine by a more careful analysis. This approach was further developed

in [101, 102, 264] (see also [265]), and generalised to 5d theories onM4 × S1 in [114]. The

full partition function then reads:

ZM4×S1 =
∑
nl

∮
da

χ(M4)∏
l=1

ZC2×S1(a+ τ
(l)
1 nl + τ

(l)
2 nl+1, τ

(l)
1 , τ

(l)
2 ) , (7.34)

with nl being fluxes associated with the toric divisors Dl ⊂ M4, corresponding to a line

bundle:

L = O(−
∑
l

nlDl) , (7.35)

overM4. Note that there are χ(M4) toric divisors, with 2 linear relations amongst them.

The previously defined U(1)I background fluxes mI are then given by:

χ∑
k=1

mI
k[Sk] = −

χ+2∑
l=1

nIl [Dl] . (7.36)

The equivariant parameters τ
(l)
i are linear combinations of τ1,2, which we shall comment

on momentarily. The non-equivariant limit of the integrand of (7.34) can be obtained by

a direct computation using (7.14) (with γ = 1), wherein all divergent pieces cancel out

between patches, leaving us with a finite quantity. One finds:

logZM4×S1(a) ≈ −2πi

(
χA(a) + σB(a) +

(∑
Dl

)
·
(∑

nIlDl

) ∂H(a)

∂aI
+

+
1

2

(∑
nIlDl

)
·
(∑

nJl Dl

) ∂2F(a)
∂aI∂aJ

)
.

(7.37)

For the DW twist, we have H = 0 and therefore:

ZM4×S1(a) = A(a)χB(a)σΠ(a)
1
2
(m,m) , (7.38)

in terms of the quantities defined in section 6.1.1. This reproduces and generalises the

results of [101, 107, 114]. More generally, as explained at length in previous sections, we

should consider the extended DW twist with ε ̸= 0, in which case we should substitute
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(7.15) into (7.37). Then, using the fact that KM4
∼= O(−

∑
lDl), we find:

ZM4×S1(a; ε) = A(a)χB(a)σG(a; ε)2χ+3σΠ(a)
1
2
(m+2εk,m) , (7.39)

which exactly reproduces the formula (6.22). Next, let us explain how the Nekrasov partition

functions have been glued together.

Equivariant parameters. The patch-dependent equivariant parameters τ (l) in (7.34) are

determined by the toric data, as follows (see e.g. [114] for a more detailed discussion). A

compact toric surfaceM4 is described by a set of vectors #»n l ∈ Z2, with l = 1, . . . , d, which

we order such that #»n l and
#»n l+1 are adjacent (with #»nd+1 ≡ #»n 1). Each such vector is

associated to a non-compact divisor Dl.

Each pair of vectors ( #»n l,
#»n l+1) defines a two-dimensional cone σl, to which we can

associate an affine variety Vσl . The construction is based on the dual cone σ̂l generated by

the primitive integer vectors #»ml and
#»ml+1, which are orthogonal to #»n l+1 and

#»n l, respectively,

and point inwards inside σl. The set of holomorphic functions on Vσl is given by monomials

zµ11 zµ22 , for all #»µ ∈ σ̂l. Then, since Vσl
∼= C2 by assumption thatM4 be smooth, the local

coordinates on Vσl can be chosen as:

ρ
(l)
1 = z

ml,1

1 z
ml,2

2 , ρ
(l)
2 = z

ml+1,1

1 z
ml+1,2

2 . (7.40)

The toric varietyM4 is obtained by gluing together the affine varieties Vσl , by identifying

dense open subsets associated with the common vectors spanning the neighbouring cones

σl. Due to the Ω-background, the M4 × S1 partition function only receives contributions

from the χ(M4) fixed points of the toric action. There is then a single contribution from

each chart Vσl ofM4, as written explicitly in (7.34). Thus, the equivariant parameters will

‘transform’ under the (C∗)2 action similarly to (7.40), leading to:

τ
(l)
1 = #»τ · #»ml , τ

(l)
2 = #»τ · #»ml+1 . (7.41)

Furthermore, the (background) gauge fluxes n, which appear as in (7.34), are similarly local
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contributions from each patch: Thus, the Coulomb branch VEVs change according to:

a(l) = a+ τ
(l)
1 nl + τ

(l)
2 nl+1 . (7.42)

At this stage, it is natural to wonder how this procedure can be modified to account for a

non-trivial U(1)KK flux, leading to the non-trivial fibrationM5. Before exploring this, let

us briefly consider a couple of examples of toric gluings forM4 × S1.

The M4 = P2 case. The simplest example of a toric Kähler four manifold is that of P2,

for which the toric fan and intersection numbers are:

D1

D2

D3

D1 D2 D3 K
S 1 1 1 −3

(7.43)

The toric divisors satisfy the linear relations S ∼= D1
∼= D2

∼= D3, with S ∼= H the hyperplane

class. Therefore, given the above triple intersection numbers, we have in our previous

notation:

m = −(n1 + n2 + n3) . (7.44)

Note also that the canonical divisor is given by K ∼= −
∑
Dl
∼= −3D1, and thus the Chern

number is k = −3. The equivariant parameters (7.41) are given by [114]:

τ
(l)
1 = (τ1, −τ1 + τ2, −τ2) , τ

(l)
2 = (τ2, −τ1, τ1 − τ2) . (7.45)

TheM4 = F0 case. Consider now the case of F0
∼= S1 × S1, with the following toric data:

D3

D4

D1

D2

D1 D2 D3 D4 K
S1 0 1 0 1 −2
S2 1 0 1 0 −2

(7.46)

The toric divisors satisfy the linear relations S1 ∼= D1
∼= D3 and S2 ∼= D2

∼= D4 and, thus,
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there are two distinct compact curves S1 and S2, corresponding to the two P1 factors in

F0
∼= P1 × P1. In this basis, the intersection form reads:

QF0 =

(
0 1

1 0

)
. (7.47)

Furthermore, the canonical divisor is K = −2D1 − 2D2, leading to the Chern numbers

k = (−2,−2). Given the above triple intersection numbers, we also have the fluxes:

m = (m1,m2) = (−n1 − n3, −n2 − n4) . (7.48)

Finally, the equivariant parameters are given by [114]:

τ
(l)
1 = (τ1, τ2, −τ1, −τ2) , τ

(l)
2 = (τ2, −τ1, −τ2, τ1) . (7.49)

The dPn cases. For completeness, let us also give the equivariant parameters for the

remaining toric del Pezzo surfaces. The toric fans for dPn with n = 1, 2, 3 read:

D1

D2

D3

D4

D1

D2

D3

D4

D5

D1

D2

D3

D4

D5

D6

(7.50)

respectively, and the equivariant parameters are:

dP1 : τ
(l)
1 = (τ1,−τ1 + τ2,−τ1,−τ2) , τ

(l)
2 = (τ2,−τ1, τ1 − τ2, τ1) ,

dP2 : τ
(l)
1 = (τ1, τ2,−τ1 + τ2,−τ1,−τ2) , τ

(l)
2 = (τ2,−τ1,−τ2, τ1 − τ2, τ1) ,

dP3 : τ
(l)
1 = (τ1 − τ2, τ1, τ2,−τ1 + τ2,−τ1,−τ2) , τ

(l)
2 = (τ2,−τ1 + τ2,−τ1,−τ2, τ1 − τ2, τ1) .

(7.51)
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7.2.2 The S5 and L(p; 1) partition functions

Let us now turn to the simplest and most important instance of a circle fibrationM5 →M4,

which is the five-sphere viewed as a circle fibration over the complex projective plane:

S1 −→ S5 −→ P2 . (7.52)

The gluing approach was first considered in [23], but it is worthwhile to discuss the argument

in some detail. The metric of the round five-sphere can be written as ds2 =
∑
dzidz̄i, in

terms of the coordinates (zi) ∈ C3 subject to the constraint
∑
|zi| = 1. Alternatively, we

can parametrise the five-sphere using the angles θ, ϕ ∈ (0, π/2) and χi ∈ (0, 2π), as:

z1 = eiχ1 sin θ cosϕ , z2 = eiχ2 sin θ sinϕ , z3 = eiχ3 cos θ . (7.53)

In these coordinates, the S5 metric reads:

ds2 = dθ2 + sin2 θ dϕ2 + sin2 θ cos2 ϕ dχ2
1 + sin2 θ sin2 ϕ dχ2

2 + cos2 θ dχ3 . (7.54)

To apply our formalism, we should write this metric in the general form (5.34), namely

as ds2(S5) = ds2(P2) + (dψ +C)2, where ds2(P2) is the Fubini-Study metric on the base

P2. An important requirement is that the connection C should be well defined on each

coordinate patch on the base. Let us then consider the Fubini-Study metric on each patch

and subtract it from the S5 metric, in order to find the connection C on that patch. The zi

coordinates of the five-sphere descend to coordinates of the projective space P2. As such,

let us denote by Vi ∼= C2 the patch with coordinates wj = zj/zi, for j ̸= i and zi ̸= 0, and

define the corresponding azimuthal coordinates:

Patch V1 : ρ
(1)
1 = χ2 − χ1 , ρ

(1)
2 = χ3 − χ1 ,

Patch V2 : ρ
(2)
1 = χ3 − χ2 , ρ

(2)
2 = χ1 − χ2 ,

Patch V3 : ρ
(3)
1 = χ1 − χ3 , ρ

(3)
2 = χ2 − χ3 .

(7.55)
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For each coordinate patch, the coordinate along the S1 fiber will be a linear combination of

the χi angles, ψ = αiχi. With the normalisation
∑

i αi = 1, we find the U(1)KK connection

in each patch to be:

C(1) =
1

4

(
1− 4α2 − cos(2θ)− 2 cos(2ϕ) sin(θ)2

)
dρ

(1)
1 +

1

2

(
1− 2α3 + cos(2θ)

)
dρ

(1)
2 ,

C(2) =
1

2

(
1− 2α′

3 + cos(2θ)
)
dρ

(2)
1 +

1

4

(
1− 4α′

1 − cos(2θ) + 2 cos(2ϕ) sin(θ)2
)
dρ

(2)
2 ,

C(3) =
1

4

(
1− 4α′′

1 − cos(2θ) + 2 cos(2ϕ) sin(θ)2
)
dρ

(3)
1

+
1

4

(
1− 4α′′

2 − cos(2θ)− 2 cos(2ϕ) sin(θ)2
)
dρ

(3)
2 .

(7.56)

Let us note that the patch Vi is not defined at zi = 0, at which point the differential dχi

is ill-defined. Then, imposing continuity for the connection and well-definiteness on every

coordinate patch (that is, the absence of ‘Dirac string’ singularities), we should pick the

following coordinates along the S1 fiber:

ψ(1) = χ1 , ψ(2) = χ2 , ψ(3) = χ3 . (7.57)

In this way, we find the following transformations between angles as we change coordinate

patches of the P2 base:

ρ
(2)
1

ρ
(2)
2

ψ(2)

 =

−1 1 0

−1 0 0

1 0 1


ρ

(1)
1

ρ
(1)
2

ψ(1)

 ,

ρ
(3)
1

ρ
(3)
2

ψ(3)

 =

0 −1 0

1 −1 0

0 1 1


ρ

(1)
1

ρ
(1)
2

ψ(1)

 . (7.58)

In the toric description of S5, the five-sphere is a T 3 fibration over a triangle [23]. Moreover,

the Ω-background parameters τ
(i)
1 and τ

(i)
2 on each patch Vl ∼= C2 can be interpreted as com-

plex structure parameters for the tori T 2 ⊂ T 3 spanned by the angular coordinates (ρ
(i)
1 , ψi)

and (ρ
(i)
2 , ψi), respectively. The SL(3,Z) transformation matrices (7.58) then suggest the
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following gluing rules for the Nekrasov partition functions:

V1 : τ1 , τ2 , a ,

V2 : τ∗1 =
−τ1 + τ2
τ1 + 1

, τ∗2 =
−τ1
τ1 + 1

, a∗ =
a

τ1 + 1
,

V3 : τ̃1 =
−τ2
τ2 + 1

, τ̃2 =
τ1 − τ2
τ2 + 1

, ã =
a

τ2 + 1
,

(7.59)

which generalises (7.45).

Lens spaces. It is also instructive to consider lens spaces S5/Zp, as a simple generalisation

of the above. The lens space L(p; q1, q2, q3) can be defined as a quotient of S5 ⊂ C3 by the

Zp action generated by:

(z1, z2, z3) 7→
(
e
2πi

q1
p z1, e

2πi
q2
p z2, e

2πi
q3
p z3

)
, (7.60)

with qi, p ∈ Z and qi coprime to p. For generic values of qi, however, these five-manifolds are

not fibrations over P2, but rather over singular quotients of P2, as one can see by considering

the induced action on the P2 coordinates (7.55). In this paper, we restrict our attention

to principal circle bundles over four-manifolds, which corresponds to the case qi = 1. We

denote the resulting lens space by L(p; 1). It is simply a principal circle bundle:

S1 → L(p; 1)→ P2 , (7.61)

with p = p. We can then derive the gluing rules in the same way as for the round S5. One

finds:

ZL(p;1)(a)m =

χ(P2)∏
l=1

ZC2×S1

(
a+ τ

(l)
1 nl + τ

(l)
2 nl+1

γ(l)
,
τ
(l)
1

γ(l)
,
τ
(l)
2

γ(l)

)
, (7.62)

where τ
(l)
i are the equivariant parameters appearing in the P2 × S1 gluing (7.45), while the

denominators γ are given by:

γ(l) = (1, pτ1 + 1, pτ2 + 1) . (7.63)

In (7.62) we also allowed for background fluxes, as in (7.34). In the non-equivariant limit
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(and turning on ε as before), this expression reproduces exactly the one expected from

(6.36).

7.2.3 Fibrations over toric Kähler 4-manifolds

Having discussed fibrations over P2, it is natural to consider the generalisation to any toric

M4. Here, we first derive the gluing formula forM4 = F0
∼= P1×P1, which has an explicitly

known Kähler metric. We then conjecture a gluing formula in the general case.

The M4 = F0 case. Consider circle fibrations over F0, with Chern numbers p = (p1, p2),

such that the metric of such a space is given by:

ds2 =

2∑
i=1

(
dθ2i + sin2 θidϕ

2
1

)
+

(
dψ +

1

2

2∑
i=1

pi(±1 + cos θi)dϕi

)2

, (7.64)

with θi ∈ [0, π), ϕi ∈ [0, 2π) and ψ ∈ [0, 2π). This space has four coordinate patches,

corresponding to the two patches of each of the P1 spaces. We proceed as before, by finding

the well-defined coordinates on each patch. Defining:

γ(l) = (1, p1τ1 + 1, p1τ1 + p2τ2 + 1, p2τ2 + 1) , (7.65)

we then propose that the partition function on non-trivial fibrations over F0 is given by:

ZF(p)
0

(a) =

χ(F0)∏
l=1

ZC2×S1

(
a+ τ

(l)
1 nl + τ

(l)
2 nl+1

γ(l)
,
τ
(l)
1

γ(l)
,
τ
(l)
2

γ(l)

)
, (7.66)

where, as before, τ
(l)
i are the equivariant parameters appearing in the F0 × S1 case and nl

are fluxes associated with the toric divisors.

General toric Kähler surfaces. We would like to generalise the above result to any

principal circle bundle over a toric Kähler surface M4. The prescription used for non-

trivial fibrations over P2 and F0 involved the coordinates (ρ
(l)
1 , ρ

(l)
2 ) along the coordinate

patches Vσl of the base four-manifold, as well as the coordinate along the fiber ψ(l). As
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explained in the previous sections, a non-trivial fibration can be viewed as a non-trivial flux

for a U(1)KK background symmetry on M4. We then propose that the denominators γ(l)

should be given by:

γ(l) = 1 + τ
(l)
1 pl + τ

(l)
2 pl+1 , (7.67)

where pl are U(1)KK fluxes associated with the non-compact toric divisors Dl, such that:

χ∑
k=1

pk[Sk] = −
χ+2∑
l=1

plDl , (7.68)

as in (7.36). Thus, the CB partition function on non-trivial fibrations overM4 with Chern

numbers p should generalise to:

ZM5 =
∑
nl

∮
da

χ(M4)∏
l=1

ZC2×S1

(
a+ τ

(l)
1 nl + τ

(l)
2 nl+1

γ(l)
,
τ
(l)
1

γ(l)
,
τ
(l)
2

γ(l)

)
, (7.69)

naturally generalising the Nekrasov conjecture [113]. (Here, as in the original conjecture, the

precise form of the contour integration and of the sum over fluxes remain to be determined.)

Given the factorised integrand ZM5 in (7.69) with the non-trivial Ω-background, we

can again check our general formalism by taking the non-equivariant limit, generalising the

formula (7.37). For every toric Fano four-manifoldM4 in (7.33), using (7.14), we find the

following expression:

logZM5(a) ≈ logZM4×S1(a)− 2πi
(∑

Dl

)
·
(∑

plDl

)(
H(a)− aI

∂H(a)

∂aI

)
+
(∑

plDl

)
·
(∑

nIlDl

)
logKI(a) +

1

2

(∑
plDl

)
·
(∑

plDl

)
logF (a) ,

(7.70)

where ZM4×S1 is given by (7.37) and F , K are precisely the quantities defined in (6.34) and

(6.35), respectively. Then, using the relation (7.68), as well as the substitution H → εI∂IF

for the extended topological twist, we recover the complete master formula (6.36) for the

CB partition function on M5. We should note that the proposal (7.69) appears slightly

different from the results above for P2 and F0, though all the formulas agree perfectly in
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the non-equivariant limit. For instance, for P2, the gluing (7.69) uses:

γ(l)new =
(
1 + p1τ1 + p2τ2, 1− (p2 + p3)τ1 + p2τ2, 1 + p1τ1 − (p1 + p3)τ2

)
, (7.71)

where p = −(p1 + p2 + p3), while previously we derived:

γ(l) =
(
1, pτ1 + 1, pτ2 + 1

)
. (7.72)

However, setting p1 = p2 = 0, the two expressions become identical. Similar comments hold

true in general. It might be the case that the individual fluxes pl (and nl) have an intrinsic

meaning on the Ω-deformed M5, which we did not explore. Our main motivation, here,

was to provide a strong consistency check for our formulas for the fibering operator in the

DW-twisted theory, hence our main interest was on the non-equivariant limit.
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Chapter 8

Discussion and outlook

In part I of the thesis we studied the Coulomb branches of 4d N = 2 and 5d N = 1 rank-

one theories through their Seiberg-Witten geometries. The novelty in our approach relies

on the extensive use of the mathematical formalism of rational elliptic surfaces. Firstly,

we were able to find new RG flows between the five-dimensional En SCFTs and four-

dimensional Argyres-Douglas theories, realised by turning on certain Wilson lines along the

circle direction. Some of these new flows have been inspired by the relation between 5d

BPS quivers and the gauge/Painlevé correspondence [51–54]. However, not all ‘flows’ in the

Sakai classification of q-Painlevé equations appear to have a physical realisation. It would

be interesting, nevertheless, to study any possible relation between these remaining flows

and 5d SCFTs.

The Mordell-Weil group of the SW geometry was shown to encode information about the

U(1) factors and the global form of the flavour symmetry, as well as the one-form symmetry.

Our proofs relied on the Hori-Vafa mirrors for the toric Calabi-Yau singularities [156],

without an obvious generalization to the non-toric cases. However, our results for the

flavour symmetries of the non-toric En theories do agree with the known results from the

literature. Perhaps even more challenging would be to extend this interpretation to theories

whose Coulomb branches involve frozen singularities.

Thirdly, we have shown how modularity can simplify the computations in the low-energy

effective field theory. Historically, modularity has been effectively used for the evaluation of

the so-called ‘u-plane integral’, which we will comment on further below. In our work, we

recover the classification of modular rational elliptic surfaces of [86], but from a perspective

that gives more insight into the modular properties of the RES. Equipped with these tools,

we then proposed a construction of BPS quivers directly from the singular fibers of the SW

geometry, for the case when the latter is modular. Let us note, however, that we do not
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have a prescription for obtaining the superpotential directly from the SW geometry. This

problem could have a solution for the toric cases, at least, where the mirror curve is known

to be related to the brane-tiling construction [66–68]. Another open and very challenging

question is finding the BPS spectrum of the theories considered in this work. The mutation

algorithm provides an answer for the complete 4d N = 2 theories [203,204], but the problem

is much more involved for 5d quivers. An alternative approach to computing BPS spectra

is from attractor indices, which are completely known (at least conjecturally) for 5d BPS

quivers [74,75,266].

Another aspect that we have not touched upon in this work involves the automorphisms

of the SW geometry. In particular, one can consider quotients of a rational elliptic surface

S by subgroups G ⊂ Aut(S), which turn out to be related to discrete symmetry gaugings

[4,5,36,42]. Moreover, there can exist SW geometries S and S/G corresponding to theories

not related by a discrete gauging, for which such quotients have a clear interpretation at

the level of the BPS quiver. Depending on the choice of G, these quotients are related to

the Galois covers of [226], or to decompositions of the 5d BPS spectra into distinct copies

of 4d spectra [71,77,267], at certain loci in the moduli space, as further discussed in [5].

Lastly, the theories having F∞ = I0 have not been considered in our work. These

correspond to 6d theories compactified on a torus, and their SW curves are usually more

involved compared to the 4d and 5d curves, due to the dependence on the complex structure

of the torus. Nevertheless, our methods can be still used to study these theories, leading to

certain proposals for 6d BPS quivers. Such aspects are considered in [4, 5].

Our initial motivation behind the study of SW geometry lies within the sphere of su-

persymmetric localization. It is well-known that the Donaldson-Witten partition function

can be split into a ‘Seiberg-Witten contribution’ and the ‘u-plane integral’ [21,95,96]. The

latter is a famously challenging computation, which, however, can be performed with the

help of modularity, as previously alluded to.61 In the context of five-dimensional theories,

we have already mentioned in (1.38) that the full partition function should involve a similar

integral over the whole Coulomb branch, which we leave for future work.

Part II of the thesis deals, instead, only with the ‘integrand’ of the full partition function,

61More recent work shows that the integral can be evaluated even without modularity [111].
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which we computed in three different ways. Note that our methods apply to five-manifolds

M5 which are principal U(1) bundles over Kähler four-manifolds M4, and attempting

generalisations to other five-manifolds would be a natural future direction. For the first

approach, we studied ordinary 5d N = 1 gauge theories on M5, in line with standard

supersymmetric localization computations [115]. We computed, in particular, the one-loop

determinant for a particle of spin (jl, jr), which serves as a building block for evaluating

the Coulomb branch partition function. Then, for a 5d SCFT engineered at a CY threefold

singularity in M-theory, the CB partition function is given by the product over all such

particles arising from M2-branes wrapping holomorphic curves inside the CY threefold [23],

which, are determined by the Gopakumar-Vafa invariants of the threefold.

The second approach was motivated by the U(1)KK symmetry of the effective 4d N = 2

theory obtained by compactifying the 5d SCFT on the circle. As such, we studied the low-

energy effective action on the CB of the KK theory, which is controlled by the prepotential

and the gravitational couplings. The advantage of this approach is that these quantities

can be determined directly from the Seiberg-Witten geometry, without the need of an

infinite sum over BPS states, as in the previous scenario. In both of these approaches, we

assumed that the M4 base was simply-connected, as relaxing this assumption would lead

to additional fermionic couplings in the low-energy effective action, whose effect would be

interesting to consider. Furthermore, it would also be important to reconcile our approach

with the Moore-Witten u-plane integral [96], which deals with a non-holomorphic integrand

instead. We should also mention the condition that we needed to impose to consistently

define a 5d theory on our curved backgrounds – the ‘spin/charge relation’ – which we hope

to gain further insights on.

Finally, in the spirit of the fibering operator and of the U(1)KK symmetry, we provided

a generalisation of the Nekrasov conjecture for the partition function on a M5 manifold

whose base is a toric Kähler manifold. This expression remains a conjecture due to the

simple fact that the CB integration contour, as well as the precise sum over fluxes are not

known. However, we hope to be able to shed some light on these aspects using similar

methods to those developed in the context of 3d N = 2 theories [89].
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Appendix A

Seiberg-Witten curves

In this appendix, we list various Seiberg-Witten curves used throughout the main text.

A.1 SW Curves for the 4d SU(2) gauge theories

The Weierstrass form of the four-dimensional SU(2) SYM theories we use are given by

[8, 268]:

Nf = 0 : g2(u) =
4u2

3
− 4Λ4 , g3(u) = −

8u3

27
+

4

3
uΛ4 ,

Nf = 1 : g2(u) =
4u2

3
− 4m1Λ

3 , g3(u) = −
8u3

27
+

4

3
m1uΛ

3 − Λ6 ,

Nf = 2 : g2(u) =
4u2

3
− 4m1m2Λ

2 + Λ4 ,

g3(u) = −
8u3

27
+

4

3
m1m2uΛ

2 − (m2
1 +m2

2)Λ
4 +

2

3
uΛ4 ,

Nf = 3 : g2(u) =
4u2

3
− 4uΛ2

3
− 4T3Λ + T2Λ

2 +
Λ4

12
,

g3(u) = −
8u3

27
− 5u2Λ2

9
+
uΛ

9

(
12T3 + 6T2Λ + Λ3

)
− T4Λ2 +

1

3
T3Λ

3 − 1

12
T2Λ

4 − 1

216
Λ6 ,

(A.1)

where in the last line we introduce the SO(6) Casimirs:

T2 =

3∑
i

m2
i , T4 =

∑
i<j

m2
im

2
j , T3 =

3∏
i

mi . (A.2)
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These conventions are chosen such that the curves agree with the 4d Nekrasov partition

function computations. These curves are isomorphic to:

Nf = 0 :
Λ2

t
+ Λ2t+ x2 − u = 0 ,

Nf = 1 :
Λ

t
(x+m1) + Λ2t+ x2 − u = 0 ,

Nf = 2 :
Λ

t
(x+m1) + Λt(x+m2) + x2 − ũ = 0 ,

(A.3)

where for Nf = 2 we have:

Nf = 2 : ũ = u− Λ2

2
. (A.4)

The CB parameter ũ in the above notation breaks the Z2 symmetry but agrees with

Nekrasov partition function considerations. These a-independent shifts do not change the

low-energy effective action, as discussed in [158]. Finally, for the Nf = 3 theory, the curve:

1

t
(x+ m̃1)(x+ m̃3) + Λt(x+ m̃2) + x2 − ũ = 0 , (A.5)

has the same Weierstrass form as in (A.1), upon the identifications:

Nf = 3 : m̃i = mi −
Λ

2
, ũ = u− (m1 +m2 +m3)

Λ

2
+

Λ2

4
. (A.6)

A.2 Seiberg-Witten curves for the En theories

In this section, we review the Seiberg-Witten curves for the non-toric (rank one) DS1En

theories, which are obtained as a limit of the E-string theory SW curve. The fully mass

deformed curves were derived in [159, 160], and more recently reviewed in [161, 269]. In

terms of the flavour characters χi, the E8 curve can be written in Weierstrass form as:

g2(Û , χ) =

Û4

12
−
(
2

3
χ1 −

50

3
χ8 + 1550

)
Û2 − (−70χ1 + 2χ3 − 12χ7 + 1840χ8 − 115010) Û

+
4

3
χ1χ1 −

8

3
χ1χ8 − 1824χ1 + 112χ3 − 4χ2 + 4χ6 − 680χ7 +

28

3
χ8χ8 + 50744χ8

− 2399276 ,

(A.7)
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and:

g3(Û , χ) =

− Û6

216
+ 4Û5 +

(
1

18
χ1 +

47

18
χ8 −

5177

6

)
Û4

+

(
−107

6
χ1 +

1

6
χ3 + 3χ7 −

1580

3
χ8 +

504215

6

)
Û3 +

(
− 2

9
χ1χ1 −

20

9
χ1χ8

+
5866

3
χ1 −

112

3
χ3 +

1

3
χ2 +

11

3
χ6 −

1450

3
χ7 +

196

6
χ8χ8 + 39296χ8 −

12673792

3

)
Û2

+
(94
3
χ1χ1 −

2

3
χ1χ3 +

718

3
χ1χ8 −

270736

3
χ1 −

10

3
χ3χ8 + 2630χ3 − 52χ2 + 4χ5

− 416χ6 + 16χ7χ8 + 25880χ7 −
7328

3
χ8χ8 −

3841382

3
χ8 + 107263286

)
Û +

8

27
χ1χ1χ1

+
28

9
χ1χ1χ8 − 1065χ1χ1 +

118

3
χ1χ3 −

4

3
χ1χ2 +

4

3
χ1χ6 −

8

3
χ1χ7 −

40

9
χ1χ8χ8

− 19264

3
χ1χ8 +

4521802

3
χ1 − χ3χ3 +

572

3
χ3χ8 − 59482χ3 −

20

3
χ2χ8 + 1880χ2 + 4χ4

− 232χ5 +
8

3
χ6χ8 + 11808χ6 −

2740

3
χ7χ8 − 460388χ7 +

136

27
χ8χ8χ8 +

205492

3
χ8χ8

+
45856940

3
χ8 − 1091057493 .

(A.8)

The other DS1En curves are recovered iteratively. Starting from the DS1E8 curve, one

should rescale the variables as:

(Û , x, y) −→ (αÛ, α2x, α3x) , (A.9)

and the characters as:

(χ1, χ2, χ3, χ4, χ5, χ6, χ7, χ8)→ (α2χ1, α
4χ2, α

3χ3, α
6χ4, α

5χ5, α
4χ6, α

3χ7, α
2χ8) . (A.10)

Then, taking α → ∞ and setting χ8 = 1, one obtains the DS1E7 curve, and similarly for

the other DS1En theories. Note that this statement is equivalent to decomposing En into

En−1 × U(1) and decoupling the U(1) factor [160]. For the toric theories, we can also find

the map between the Û , χ variables used here and the U , λ,Mi variables used in the main

text, by explicit comparison with the Weierstrass form of the ‘toric’ curves.
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