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1. Introduction

In the study of non-equilibrium statistical physics and high energy physics, in particular in the homogeneous quantum quench problem
[2] and one-point function in the defect AdS/CFT correspondence [3-5] (see [6] for a review), the exact on-shell overlap is an important
quantity. In the quantum quench framework, a system is prepared in some initial state and then is allowed to evolve in time with
some Hamiltonian for which the initial state is not an eigenstate. Overlaps between the initial state and the eigenstates of the model
are starting point to obtain analytical results for the post-quench time evolution [7]. This quantity is also related to exact g-function
or boundary entropy [8,9] in integrable quantum field theory. Recently, people find that under some interesting set-up, the three-point
function in AdSs/CFT4 can be view as an exact g-function in some integrable quantum field theory on the string world sheet [10].

E-mail address: chenhh@jxnu.edu.cn.

https://doi.org/10.1016/j.physletb.2020.135631
0370-2693/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by
SCOAP3.


https://doi.org/10.1016/j.physletb.2020.135631
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2020.135631&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:chenhh@jxnu.edu.cn
https://doi.org/10.1016/j.physletb.2020.135631
http://creativecommons.org/licenses/by/4.0/

2 H.-H. Chen / Physics Letters B 808 (2020) 135631

The first overlap formula of the on-shell Bethe states with some particular initial state was found in [11], it has a factorized form and
is similar to Gaudin formula for the norm of the Bethe state [12]. People found that this factorizable property still survives in a large
set of states—integrable boundary states [13] (or integrable states for short). In [13] integrable states are defined as the states which are
annihilated by all odd local conserved charges for integrable lattice systems. In this paper, we also use this definition for the integrable
continuum model.

In [14] the authors studied the Bose-Einstein condensate (BEC) to the Lieb-Liniger quench using the quench action method where the
conjectured exact overlap formula for the BEC state with the Lieb-Liniger energy eigenstate is a starting point. This conjectured overlap
formula was rigorously proved in [15], using the fact that the Lieb-Liniger model quantities can be obtained from a scaling limit of the
XXZ spin chain [16] where a generalized Quantum Transfer Matrix (QTM) method can be applied [17,18].

Although this overlap formula is rather important, a direct proof is still missing. In a very recent paper [1], the author proposed a new
method to directly calculate the overlap between on-shell Bethe states and integrable states in integrable spin chain models using the
Coordinate Bethe Ansatz (CBA) formalism. This method is very simple and inspiring and can directly apply to the Lieb-Liniger model where
the Bethe wave function is known. In fact, using coordinate Bethe ansatz to calculate the overlaps between integrable states and Bethe
states was firstly proposed in [3]. Coordinate Bethe ansatz was also applied to calculating the correlation functions in non-equilibrium
problems [19,20].

In this paper, we use this newly proposed method to derive the overlap for the BEC state with the Lieb-Liniger energy eigenstate,
which agrees with the early result. We also obtained overlap formulas for a special kind of N-particle states with the Lieb-Liniger Bethe
states. For N = 2, the state is integrable and we obtained the exact overlap. For N > 4, the states are non-integrable, we only give the
overlap in the large volume (length) limit by focusing on the singular part of the formal (off-shell) overlap. Overlaps of the Bethe states
with non-integrable states have been studied previously [21,22]. Such kind formulas are of great importance since overlap formulas serve
as a starting point to the study of the related quench problem. The remaining part of this paper is organized as follows: In section 2, we
review some basic facts about the Lieb-Liniger model and fix some notations. In section 3, we study the overlap formula using coordinate
Bethe ansatz method started with the one- and two-particle cases which serve as warm-up examples and give hints to deal with generic
cases. In the next subsection, we derive the overlap formula of the BEC state and the generic parity symmetric on-shell Bethe state. In
section 4, we obtained some new overlap formulas using the same techniques. Finally, we conclude in section 5 and the proof of the
vanishing of the overlap of generic on-shell Bethe states with the BEC state is given in appendix A.

2. The Lieb-Liniger model

We consider one-dimensional Boson gas on a ring of circumference L with §-function repulsive potential and impose periodic boundary
condition. This is the famous Lieb-Liniger model, whose Hamiltonian is given by

m2 XL 52
H=— 87+2628(xj—xk). (2.1)
j=1 J j>k

We will set 2m =h =1 in the following for simplicity.
2.1. The Bethe equations

We can write down the energy eigenstates of the Lieb-Liniger Hamiltonian in the coordinate space as

N/2 N
c .
o) = > A@NIoAN) expli Y ko Xl (2.2)
o€eSN k=1
where
ic sign(x; — x)
Aayloa) =[]|1- —"—"—|. (2.3)
. }‘-O" - )‘-0]
Jj>k J <
and |xy) and |Ay) is the shorthand notations of |x1, X2, ---,Xn) and |A1, A2, ---, AN) respectively. In the above expressions, we also have

used the general notation

O')~N={)¥01,}\aza"' 7)"O’N}- (24)
The requirement of the wave function (xy|Ay) should be periodic in each of its arguments x; results in the Bethe equations
N aj— g +ic
eitil = — o j=1,2,---,N. 25
E Aj— A —ic J (2:5)

The corresponding energy eigenvalue is

N
E=Y 32 (26)
j=1

When the Bethe equations (2.5) are not satisfied, the wave function eq. (2.2) still defines a state which we call it off-shell. On the contrary,
when the Bethe equations are instead satisfied, we call the state on-shell.
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The Lieb-Liniger model has infinite many conserved charges Q1, Q2, Q3, ---. We can identify
Ny N 52
=P =—i — =H=— — +2c S(xi — Xp).
Q1 > a @ Z " Z (Xj — Xe)
j=1 j=1 J Jj>k

The higher charges can have very complicated expressions in the coordinate space representation [23]. For example:

RN CR
Q3_z;‘a—x:}—3zc25(xj—xk)(a—xj+a—)q<).

Jj>k

However their actions on the Bethe states |Ay) are extremely simple:
N
Qalri Az, Ay = [ DA A A oo An), n=1,2,3,-.
j=1

2.2. The parity symmetric Bethe state

The norm of the Bethe states is given by the Gaudin formula [12]

Onihn) = [ ey i) Goulin) = < T £y ke dec.
J#k
where G is an N x N matrix whose elements are

N

Gjk=138k[L + Z(O()»j —A)] =R — ),
1=1

and the function f (A1, A2) is defined as

A — Ay +ic
M, A))=—"
Fa,x2) o

The function @ (1) is given by

(2.7)

(2.10)

(2.11)

(212)

(213)

In this paper, we will consider the overlaps of the Lieb-Liniger energy eigenstates |Ay) with both integrable and non-integrable states.

As mentioned in the introduction, a state |W) is called an integrable state when [13]
Qa1 1¥) =0, k=0,1,2,---.
Integrable states can only have non-vanishing overlaps with Bethe states with parity symmetry:
_ Tt + + + v+ +
{A'N} - {)\1 ) _)“1 L] )”N/Z’ _}LN/Z} = {A'N/Z’ _)"N/Z}’

where we have assumed N is an even number.
The norm of the on-shell Bethe states having the above pair structure can be factorized further

N/2
IS =M 2) =N [T PO D f2F 20 [T [FGf A0 detGh detG,
j=1 1<j<k<N/2

where!

O, 22) = fO, A2) F(ra, —22) f (=21, A2) f (=21, —A2),

and G* are § x & matrices with elements

N/2
G =8Il + Y ¢T0F AN —e 0, 1),
=1
with

PEM, 22) = P(h1 — A2) £ 9(A1 + 12).

! The function f(A1,A2) is symmetric in our case: f(i1,A2) = f(A2, A1)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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For future use, we introduce the variables

am)=e*t,  aj=akry, j=1,2,---,N. (2.20)
Thus the Bethe equations (2.5) can be written as
— l_[ M (2.21)
g oy fOks X))

3. Overlap between the Bethe state and the BEC state

In this sectlon we will consider the overlap between the Bethe state and the BEC state |BEC), whose wave function is constant:
(XN|BEC) = ,_N/z

3.1. One-particle states
As a warm-up, let’s first consider the one-particle states

L L
(BEC|Aq) =/dx1 BEC|X1>(X1|)»1)=\/g/keikvudx1

0 0 (3.1)

_ ce”m—l_\/?al—l A £0)
VL ia VLo ’

where the definition eq. (2.20) has been used. For on-shell states, which means the Bethe equation a; = e*1L =1 is satisfied, the above
overlap is non-vanishing only when A = 0. The integral is trivially integrated to give the result (BEC|A1 = 0) = +/cL.
We can obtain the same result using a limiting procedure:

Cel)»]'_ \/_
BEC|A1=0)=1li e — 3.2
( g ) Mlglo L ir (3.2)

3.2. Two-particle states
We now consider the two-particle case. For the readers’ convenience and to gain more experiences for computing overlap of Bethe

state with multi-particle states, we work out the details.
Firstly, we write

L L
(BEC|A1, o) = /dx1 /dX2eix1xl+uzx2 [1 _ w]
0 0

A2 — A\
L L . .
“r/dX] /dX2eiA2X1+iMx2 1— w }
0 0 A — A2

L X2 L X1 (33)
c il1X1+ikoXo iA1X1+iA2x)
PG {f(kl,kz) dxy | dxie + f(r2,21) [ dxq1 [ dxze
' 0 0 0 0
L X2 L X1
+ f()»z,)\])/dXQ/dX]eMm-HMXZ + f()»],)\z)/d)(] /dXzeiA2X1+iA1X2].
0 0 0 0
In order to evaluate the above integral, it's useful to introduce the basic integral in the region 0 < x; <x < L:

By (A1, A2;a1,a2) = /dxz / dxjeiititars (34)

where the a variables dependence of the function B, is obtained only after the integral is worked out and the definition eq. (2.20) is
substituted. Other integral can be obtained by permutating the arguments of this function.

Note that the last two lines in the curly bracket in eq. (3.3) give the same result. It’s easy to see that this property also holds in the
multi-particle case. Thus the two-particle formal (off-shell) overlap can be written as

Ic
[f (A1, 22)B2 (X1, A2; a1, a2) + f (A2, A1) B2(A2, Aq; az, a1)], (3.5)

2!
BEC|X,A2) = ——
( [A1, A2) Wi

where
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ajay; — 1 a —1
M1+ Mrz
It's easy to check that when the Bethe state is on-shell, i.e. when we do the following replacement in above two-particle formal overlap
formula eq. (3.5)
A, A Ao, A
a1=f(] 2)’ azzf(z 1)’ (3.7)
fa2.0) fa,22)
we get identically zero.
To obtain non-vanishing on-shell overlaps, we need to consider the parity-invariant states with A, = —A. The formal overlap eq. (3.5)
has a pole at A, = —A1. Around this pole, we have

ara; — 1 /2! f(r1,A2) n f2,21)
i +2r) L A iAo '
Note that when the state is on-shell, we have aja; = 1. The singular part can have a proper limit. The non-vanishing on-shell overlap

only comes from this singular part. In other words, the exact parity-invariant two-particle overlap can be obtained by taking the following
limiting procedure

By(A1,A2;a1,a2) =

(3.6)

(BEC|A1, A2) ~

(3.8)

iGa+al 121 f(r1, 2 A2, A
(BEC|Ay. —31) = lim e. V2! f( 1, 2)+f( 2, 1)
la——r1 (A1 +A2) L il iAp
fOa,=r1)  f(=A1, A1)
=cv2! .
V3l [ R0 [ (39)
2
=25,
M

3.3. Multi-particle states

Having the above explicit calculation in mind. Now we turn to the multi-particle case. It's obvious that we have the following relation

L XN X2
/dXN/dXN—l"’/dxlA(Xl,"' JXNIAT, - AN)
0 0 0

(3.10)
=BNG, - s an, - an) [ | £ O a0,
j<k
where we have defined the basic integral in the region 0 <x; <x <--- <Xy < L as before
L XN X2
Bn(Ay, -+, ANsar, -+ ,aN):deN/dXNfl ~-'/dX]ei(hxlﬂzxz'"ﬂ”"”)- (3.11)
0 0 0
For lower N, By can be integrated out directly. For example
ajazasz — 1 axaz — 1 a3 —1
By= — > . _ . (3.12)
IAMiI(A1 +A2)i(A1 + A2 +A3)  1A1iA2I(A2 +A3)  iA2iA31(A1 + A2)
For general N, it's not easy to directly work out this integral. However, we have the following recursion relation
dBN(AN; aN)
— L =anBy_1(AN_1;aN-1), (3.13)

where we view By (An; ay) as a function of the system size L inexplicitly as the L-dependence is encoded in the definition of the variables
a; through eq. (2.20). We also have the initial conditions for each N

Bn(An; an)|1=0 =0, N=1,2,3,.--. (3.14)

For example, from
a —1
Bi(A1;a1) = ——, (3.15)
A1
we can get By as
L . L
Ba(M1,A2;a1,02) = /0231(?»1; ay)|p-pdl’ = i /[ei(’\‘HZ)L/ — el qr’
0 0 (3.16)
ei(t1+12)L—1 eit2l _ 1 ajay — 1 a—1

T i+ A2)  iMihg IMiGg +Aa)  hiikg
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which gives the same result with eq. (3.6). In a similar way, we can reproduce the result of eq. (3.12).
In the above calculation, it not hard to figure out the pattern. Using the recursion relation eq. (3.13) and the initial condition eq. (3.13)
repeatedly, we obtain the general expressions for By.

a j [Tej e — 1
BNn(AN; an) = Z(—I)H] N PR— = i p————— (317)
j=1 (Hk:j Zm:]’(l)‘m))(l—[k:] Zm:k(l)\m))
or
N N
BrOw: an) =Y (-1 ——— iz ——
=0 (=1 Zm=j1 ) T Tmq 2y @2m)) (318)
N .
=Y Bnj(n:an).
j=0
where we define
N
By, j(An; ay) = (1) i a0 (3.19)

(DT 1 X 1 ) [Ty X iAm))

These two formulas for By in eq. (3.17) and eq. (3.18) have slight differences but are equivalent to each other. However, we found the
later is more useful for our convenience.
The N-particle formal overlap can be written as

(BEC|Ay) = / dVxy (BEC|xy) (xn|An)

N/2 N
C
= d"xnAxy|oAN) eXp(i Y Aoy Xe)
x| .

LN2YNT S —

N/2 N

cV/“N! N .
=g ) ¢ xNA(xNMN)exp{zI;xkxk} (3.20)

[ N!cN
= IN Z BN()‘-Uja"')‘-O'N;aO'17"'aaO'N)l_[f()"ij)"Uk)

0ESN j<k

N!cN
= L—NSN(XNQ‘IN)-

In the above expression, up to some constant factor, we have found the expression for N-particle formal overlap

SNON aN) = D BN(roy. Aoyi oy o 2 doy) | [ Fhoys Aay). (3:21)

o€eSN j<k
In [14], it was argued that the BEC state is an integrable state. Hence for generic (non-parity-symmetric) on-shell Bethe state, Sy (Ay; ay)
vanishes. Only for the parity symmetric on-shell states |x;/2, —l;,r/z), we have finite overlaps. See Appendix A for a direct proof of this

statement.

3.3.1. Determining the singular part

In order to find out the non-vanishing overlap of on-shell parity symmetric Bethe states with the BEC state, we only need to figure out
the singular part of Sy(An; ay) and taking the limiting procedure.

Firstly, we must try to find out the residue

Res) 1> —am BN(AN; AN). (3.22)
It's easy to find that there are two terms By ;-1 and By m1 contribute
_ N
(=)™ T a (D™ T2 W

T S T S ) TTomrs S G ST )
B (=D)™ amam1 [TRms2 Ok
i O+ 2 ) [Tiimss a2 G0 T Y (i20)

(GRS | Y

+ — — .
i 11 Cim + Ama ) [Teemsz obemaz )T S )

(3.23)
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Then the singular part of By is

Amamer —1 1 (D™ TR 2
Br(hy: @) ~ -t e ke (3.24)
im + A1) m (Timma iz (0TI X5 @)
The relation eq. (3.24) can be rewritten as
. Amdm+1 — 1 1
Bn({Aj}{ajtlie{l, - . NY)~
R i + Am1) (3.25)

XBN—2m-1({Aj}: {a;}jefl, - mm+T, .- N}).

After the summation of all permutations that make particles m and m + 1 in neighbouring position, we find the singularity of the
formal overlap at Apy1 = —Am is

N
ama -1
Su~ T Fm) [ FOyam) f G —am) SRS G m1), (3.26)
iGom + A1) i
Jj#m,m+1

where S,‘\‘,‘Eg(}rf,m/-t—/l’) is the formal overlap for N — 2 particles which does not include particles m and m + 1, and is evaluated with the
modified a-variables?:

9= fg,am) f(Aj, o) (3.27)
The function F(A) can be found as
Fog= L& W TR (3.28)

ix —ix A2’

3.3.2. Taking the limiting procedure
The exact on-shell parity symmetric Bethe state with the BEC state overlap is obtained only after the following limiting procedure is
token

hajo1 = AT, Aoy A, j=1,2,---,N. (3.29)
Note that
. azj_1azj — 1 . a()k)a(_)\;_) -1
doja—if 121+ A2j)  amaf 1A =A7)
ot
haj = (3.30)
_dMWa(=x)a@) d
= lim —————— =—i—log(a(}))
r—at ia(x) di it
=

Then it’s useful to introduce new variables

. d ) N
m(A):—lalog(a(k)), mjzm(xf), ji=1,2,---, > (3.31)
We denote D(x?\,'/z,mﬁ/z) as the limit of Sy(An; ay) describe in eq. (3.29).
It's easy to show that the function D(kﬁ /20 mﬁ /2) satisfies the following recursion relation
DA 0, My ) N2
/2’ N/2 + + 4+ + +,mod
arn—_;,_zF()‘-J) 1_[ f()\ 7)\]' )DO”N/Z—l’mN/Z—])’ (332)
j k=1,k#j
where the modification rule for the m-parameters is
. d
m™4(1) = i log@"*4(1) =mG) +¢* (1 4D, (3.33)

and D(lﬁ /2_1,m§’/r;f‘]1) is understood as the j-th variables have removed from it's arguments. The solution of the recursion relation
eq. (3.32) can be found as [1]

N/2
DAY o my ) = I FG.H) [T fof A7) detGh. (3.34)
j=1 1<k<j<N/2

2 Here, the definition of the modified a-variables is slightly different from the definition given in [1].
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Then the exact on-shell parity symmetric Bethe state with the BEC state overlap is

[ (BECIAN ;5 —Mip) | [NT ﬁ FO) [detG+ (335)
- N _ .
P JrG . —ahfafaf Y det€

A% g0 |

After the substitution of the expression eq. (3.28) and eq. (2.12) into eq. (3.35), we obtained the final result

|(BEC|A'N/2’ A1\]/2)' \/N!(CL)_N detG+
= —. (3.36)
” MN/za N/2> “ N/2 )Lj+ )ﬁz 1 detG
1\ Ta

This formula agrees with the earlier results [14,15].
4. Overlap between the Bethe state and free particles state with pair structure
As an application of our formula eq. (3.18) obtained in the last section, in this section we consider the overlap between the Bethe state

and a special kind of free particle states |, ). The momenta of the particles are paired up leading to zero total momentum of these
states. The wave function of |W,) can be written as

. . i NN .
<XN|\IJICN) — CN Z el’fN-O’XN — CN Z elUkN-XN — CN Z ele:1 kanJ’ (4.‘1)
oeSN oeSN oeSN
where
{kN} = {ka _ka T ks _k} = {kN/Zv _kN/2}7 (4'2)

and Cy is the normalization constant. In the following part, we will denote |Wg, ) as |Wg, 12.—kn2) 1O emphasize its pair structure.
Let’s begin by two-particle state

(X1, X2 | Wy, _g) = Cp(e¥i—ikxe g elkxp=ikxt) (4.3)

02
The normalization constant is k-dependent: Co = 1/,/2(L% + S'“k#). When [Wgy , —kyj,) 1S on-shell, i.e. we impose periodic condition to

these wave function eq. (4.1), which means e*: = 1. Then C, = 1/+/212.
Then the two-particle overlap can be computed directly

2
(Wi, —klA1, A2) = {f()»l,)nz)/dxzfdm (elP1HxIHGa—hx2  pilha =X+ G2 HhX2 )

2c
V21212
44
+f()»2,)»1)/d)<1 /dXZ(ei(M+k)x1+i()h27k)xz +ei(klfk)x1+i(k2+k)x2)] (44)
0 0

c
= Z{f()\la)ﬂ)[BZ()t] +k, Ay —k;a1,a) + Ba(h —k, A2 +k; a1,a2)] + (A1 < A2, a1 <> a2)},

where we have assumed |Wy _i) is on-shell. It's then easily to check that when the Bethe state is also on-shell, i.e when we substitute
the Bethe equations (2.5) into eq. (4.4), we obtain zero. This implies that |¥} _;) is an integrable state.?

The non-vanishing overlap can be obtained only for Bethe states with parity symmetry as before. We only need to figure out the
singular pieces in the formal overlap eq. (4.4) and taking the limiting procedure. Around the pole A = —Aq, we have

W ol aja; — {f )[ 1 N 1 ]
(Wi, —klA1, A2) ~ 71@ T L (A1, A2 P e—
+ f(A2, A [ ! + ! }
G2 M) T+ uh—m } (4.5)
_ ma —2iAp
l(k]—i—)»)L|:f( 1 )»2) k2+f()»2,)»1) 12:|

Then the two-particle overlap is

3 1t's easy to check that Q3 | ¥} _x) =0.
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i(M +i2)L _ 1c

(W A1, —Ag) = lim for k) 2M L ra x) —2ik2
k,—kIA1, 1 _)»2%7)\] l()\.]'f‘)\) L 1, A2 k 2, M1 12

~2ix 20
:c|:f()q,—)» k2+f( A1y A1) ']]2} (4.6)

2c?
-
Ay — k2

For the general N-particle states, the normalization constant can be fixed as Cy = when |Wy, , —ky,,) is on-shell. We can

S W
(N/2)!v/NILN/2
compute the N-particle formal overlap as

(Wky2,—knj2 |1AN) :/dNXN (Wky 2.~k 2 1BN) (XN |AN)

cN/2
ke x;
d¥xn AN oAN) exp(i Y Ao X} RO BYRY
~ (N/2)UN/NIVA stf Z o Xk ij
N/2 ) ‘
" i SN keox;
- dNxy Ay [AN) expli Y hexi) el 2i=1kej¥]
(N/2ILN2 /NN k; : ZS
' (4.7)
— d X el(lN+TkN) AN A(xn A
(N/Z)‘LN/Z/ N (XNIAN)
TeSN
cN/2
= WD Z BN(UXN,UaN)l_{ f Oy hen)
j<
cN/2
=— -Gpn(AN; ay),
N2z SNz an)
where
N
BNO‘N;aN):ZBN,j(}VN;aN) (48)
j=0
with
B.j(nian) = Y By, j(hn + ki ay). (49)
TeSN
In the above expression, up to some constant factor, we have found that the N-particle formal overlap can be expressed as
Suthuian = 3 By oan [ 0o ) w0

oeSN Jj<k

Unfortunately, for general N (N > 4), since Q3 |Wg, 2.—kyja) 7 0, the states become non-integrable and they can have non-zero overlaps
with non-parity-symmetric Bethe states. We still consider the overlaps with the parity symmetric Bethe states for simplicity. In this case,
the strategy to obtain exact overlaps described in the last section becomes invalid. However, since the singular part in the formal overlap
eq. (4.10) dominant in the large L limit [22], we can still rely on previous analysis to obtain the overlaps in the large L limit.

The singular part of By at the pole A;4+1 = —Ap can be extracted from By m—1 and By m+1. Each contains a summation of permutation
of ky in the argument of the corresponding By, ;. Only the permutations that satisfy k, =k, k., = —k or k¢, = —k, kq,,,, =k contribute.
Then the calculation is similar to that was presented in the last section. We find the following result

) N2(N —2)? amamer — 1 1 1
Bu((AjhAaHj € (1, N~ ————— = . + -
iAm +Amy1) LI +k)  iAm — k)

X Bn-2,m-1({Aj}; {a;}je {1, - mm~+T,--- N} (411)
N2(N 22 amamer —1  24n
24 i(Am + Amt1) 102 — k2)

After the summation of all permutations that make particles m and m + 1 in neighbouring position, we find the singularity of the
formal overlap Gy at Am4+1 = —Am essentially has the same recursion relation with eq. (3.26)

Bn-2m-1({*j}; {aj}je ({1, - mm+T, -, N}).

_NP(N=2)” amamy1 —

S
N 2 iOm+ Amm

F ) H FOs ) £ Orjs =Am) SRS (1, mA=T), (412)

j=1
Jj#m,m+1
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but in this case

FO) = e fO =) + e f—h i) = (413)
T2 —k2) (02 —k2) =T e :
Then applying the same discussion in the last section and noting that the ratio of the determinant % only gives O(1) pieces in
the large L limit, we arrive at our final result
| (W ook AR 2 —AR 20 | (N2 | N2 4c
KN /2 -:N/Z N/f N/2 _ ( 162) 1—[ —l—(’)(L_]) ) (4.14)
Il |)'N/2’ _)”N/2> Il LN/ 1O — k2 N 4
j=1( j ) 72 +

]

The same strategy presented in this section can be applied to calculating overlaps of the Bethe states with other initial states with simple
wave functions in the large L limit [21].

5. Conclusion

In this note, we derived the exact overlap formula between the Lieb-Liniger Bethe states and the Bose-Einstein condensate state using
a recently developed method. This method is based on the coordinate Bethe ansatz which is available for the Lieb-Liniger model and does
not rely on the complicated “rotation trick” which is not known in our case. This overlap formula is of great importance in the study of
the BEC to Lieb-Liniger quench, but a transparent derivation is lacking. This paper gives a rather concise computation procedure based on
the newly proposed method. We also obtained overlap for a special kind of free particle states in the large L limit. This formula serves as
a starting point to the study of the related quench problem.

We hope more insight can be found in this new method and it's very interesting to find more applications such as the nest integrable
system where similar exact overlap formulae also exist (see for example [5,24,25]).

In integrable spin chain models, there also exist exact overlap formulae for integrable Matrix Product States (MPS) [4,5,26]. In [27] the
authors introduced the continuous Matrix Product States (cMPS) in the Lieb-Liniger model. It would be very interesting to find out exact
overlap formulae for integrable cMPS.

As you will see in the appendix, the proof of the overlap vanishes for generic (non-parity-symmetric) on-shell Bethe is very specific
and is not inspiring (for an earlier proof, see [28]). A more transparent proof is needed.

It turns out that the coordinate Bethe ansatz and the calculation of exact overlap have some applications in the physics of the stochastic
non-linear Kardar-Parisi-Zhang (KPZ) equation, where the computation of the exact generating function of the Kardar-Parisi-Zhang height
requires to calculate the overlap between the Bethe wave functions and the initial condition of the equation [29,30]. We think our result
and all the classification obtained in [13] could help to classify the integrable initial conditions in the KPZ equation.
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Appendix A. Proof of Sy = 0 for generic on-shell Bethe state

In this appendix, let’s prove that the overlap of a generic on-shell Bethe state with the BEC state vanishes.
For a given o, let’s consider terms in eq. (3.21) containing the factor

Fo =[] fGo; Ao (A1)

j<k
If we define A5, = ip}’ — ip?q, then we have

N

1
F(TBN,j()"O’ls~-~7)"O’N;a0’11--~7aO’N)=F‘[jO'Hﬁv (A2)
o Pj — Py
k=0 "1J
k#j

where 7j € Sy and is defined as

(1 jii+1.N
T]_<j+1,...,N,1,...,j>’ (A3)

when 0 < j < N, and 7p and 7y are identity. Then, for a generic on-shell Bethe state, we have
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N N
1
SvOwian =Y Y Fuo[| o=
oeSy j=0 k=0 Pi ~ Pr
. (A4)
N N 1 ’
=2 Fo ) [l——=
oeSy j=0k=0 p J —-p
kej £ k

It is not difficult to see that the coefficient of the F, term in eq. (A.4) vanish. In fact, for any permutation o € Sy, we have

N N 1
Y10 =
J

j=0k=0 p .J —
TP TR

The terms in eq. (A.5) with j =0 and j = N come from the summand in eq. (3.21) corresponding to the permutation o. and the term

with 0 < j < N comes from the summand in eq. (3.21) corresponding to the permutation r].’lcr.
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