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Abstract: The Feynman-Kac formula establishes a link between parabolic partial differential equa-
tions and stochastic processes in the context of the Schrédinger equation in quantum mechanics.
Specifically, the formula provides a solution to the partial differential equation, expressed as an
expectation value for Brownian motion. This paper demonstrates that the Feynman—Kac formula
does not produce a unique solution but instead carries infinitely many solutions to the corresponding
partial differential equation.
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1. Introduction

In the 1940s, Feynman [1] disclosed that the Schrodinger equation, which governs the
time evolution of quantum states in quantum mechanics, could be solved by averaging
over sample paths, an observation which led him to a far-reaching reformulation of the
quantum theory in terms of path integrals [2,3]. Based on this idea, Kac recognized that
a similar representation could be given for solutions of the heat transfer equation [4,5].
Accordingly, this representation is now referred to as the Feynman—-Kac formula, which
verifies and extends Feynman’s path integrals [6]. The Feynman—Kac formula has numerous
applications in various fields including mathematics, statistics, physics, chemistry, and
finance [7,8], providing an intriguing connection between solutions of elliptic and parabolic
differential equations and stochastic processes. Specifically, it provides a method for
solving a variety of partial differential equations (PDEs) through random path simulations
of a stochastic process. For instance, in quantitative finance, the relationship between
geometric Brownian motion and the Black-Scholes PDE is a special case of the Feynman—
Kac theorem [9]. Conversely, some stochastic differential equations describing random
processes can be examined by deterministic methods [10].

To present the Feynman-Kac formula, we consider the continuous functions f: RY —
R, k: RY — Rsg, and g: R? x [0,T] — R, where T > 0 is fixed. Suppose that v is a
continuous, real-valued function of class C%! on R x [0, T] and satisfies

ov 1 & 0%
with the terminal condition (x € R%)
o(x,T) = f(x). )
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Then, the function v is said to be a solution of the Cauchy problem for the backward
heat Equation (1) with potential k and Lagrangian g, subject to the terminal condition
in Equation (2). Note also that Equation (1) with ¢ = 0 corresponds precisely to the
Schrodinger equation (in the imaginary time) for a particle in potential k. Suppose that

x,t x,t)| <K all=l? for vx € RY, 3
max |o(x, 1)] + max |g(x,t)] < Ke or (3)

where K is a positive constant and 0 < a < Td/2. The Feynman-Kac formula consists of
the existence part and the uniqueness part as follows: The former states that v admits the
stochastic representation

o) = EF{ fWr-) exp [~ [ kW.)as|
+ /O T (W, £40) exp {— /O ’ k(Ws)ds} de} @)

for any t € [0, T] and x € R, where {W,} is a d-dimensional Brownian motion and E%(-)
is the expectation operator with Wy = x. Then, the latter asserts that such a solution is
unique, as remarked in Refs. [11] (p. 268) and [12] (p. 120). Readers may also refer to
Refs. [6] (Chapter 3), [13] (Section 11.4), and [14] (Section 8.2), for further details on the
Feynman-Kac formula.
In this paper, we present a counterexample that violates the uniqueness of the Feynman—

Kac formula. Specifically, it is disclosed that the Feynman—Kac formula carries infinitely
many solutions rather than a unique solution. The possibility of nonuniqueness alerts us
that the solution method based on the Feynman—Kac formula may lead to extraneous and
irrelevant results. These implications are discussed in relation to the initial conditions.

2. A Boundary-Value Problem and Its Feynman—-Kac Solution

We consider a simple example for d = 1 with

k(x) =0, g(xt) =0, f(x) = exp(—[x]) ©)

and let u(x,7) = v(x,t) with T = T — t. General cases with nonvanishing k and g are
considered later in Section 3. Then, Equations (1) and (2) become, respectively,

ou 10%u
37 =592 0 R x [0, T], (6)
u(x,0) = exp(—|x|) for x € R. (7)

It is well known (see, e.g., [15]) that ﬁq) (%) is the fundamental solution of the PDE (6),

Noxs

random variable.
We now define the function

where ¢(z) = - exp (— %22> is the probability density function of the standard Gaussian

(e9)

95,7 = B3 (W 0)) = [ exp(fuo) g2 ) ®)

for T > 0, which, according to the Feynman-Kac formula, satisfies the heat transfer PDE (6)
and the initial condition in Equation (7). Equation (8) is divided into two parts:

8o(x,7) = Iip(x,7) + Lo(x,T) )
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with
ho(x, ) = E§ (exp(—[Wel 1jg ) (Wr) ) = exp(—x + gp(%) (10)
Lo(x,T) = E) (exp(—|WT|)1(_oo,0)(WT)> = exp(x + %)CD(—%), (11)

where 14 (+) is the indicator function of a subset A and ®(z) = [~_ ¢(y)dy is the cumulative
distribution function of the standard Gaussian random variable. It is then easy to show
that I; o(x, T) and Lo (x, T) satisfy the heat transfer PDE:

olio(x,7)  10%I19(x,7) 0ho(x,7)  10%ho(x,7)
oT T2 92 and oT T2 92 (12)

For comparison, we plot the conventional (fundamental) solution in Figure 1 and the
generalized solution given by Equation (9) in Figure 2.

Conventional Solution

0.8

Figure 1. Conventional solution T~1¢(x/+/T), called the fundamental solution. The darker the color,
the lower the value of the solution.

A Generalized Solution

Figure 2. Generalized solution go(x, T), given by Equation (9). The darker the color, the lower the
value of the solution.
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Note that Equation (9) plotted in Figure 2 generalizes the fundamental solution in
Figure 1 to a heavy-tailed skew distribution [16].

Here, we remark that go(x, T) is not defined for T = 0. Accordingly, as in Theorem
55.4 of Korner [17] (p. 277), the initial condition in Equation (7) should be replaced by

lilf(}u(x,’r) = exp(—|x|) for x € R. (13)
T.

This means that the solution u(x, T) should be assumed right-continuous at (x, 0); otherwise,
the heat transfer PDE may not be connected with the initial condition.

3. Kernel Solutions

As discussed in Korner [17] (pp- 338-346), the uniqueness of a heat transfer boundary
problem is not as trivial a question as sometimes claimed. The simple uniqueness theorem
presented there goes as follows: Let u(x, T) : R x Rt — R be twice differentiable satisfying
the heat transfer PDE (6). If u(x, T) — 0 as T — 0+ uniformly for x in any chosen interval
[—X, X] and if u(x, T) — 0 as |x| — oo uniformly for ¢ in any chosen interval [0, T], then
u(x,7) = 0 for all (x,t) € R x RT. However, even the fundamental solution %Qb(%)
does not satisfy the former uniformity condition, making this uniqueness theorem not
so practical. Recently, on the other hand, general solutions of the heat transfer boundary
problem were reported [16,18]. Using those general solutions of the heat transfer boundary
problem, we now present additional representations of the Feynman—-Kac formula.

For any m € Z>(, we consider the probabilists” Hermite polynomial of order m:

— (1 \m, w*/2 d" —w?/2
Hey(w) = (—1)"e T , (14)

the first five of which are given by Heg(w) = 1, Hey (w) = w, Hez(w) = w? — 1, Hez(w) =
w3 — 3w, and Hey(w) = w* — 6w? + 3. For each m € Z>1, we define

gm(x,T) = Ej [u(Wy, 0)1’7’”/2Hem <W\T/;x>}, (15)

which can be written as

8m (%, T) = I m(x,T) + I (x, T) (16)
with
L (%, 7) = EX {u(WT O)Tm/zHem(WT_x>l (WT)} (17)
m 7 0 7 ﬁ [O,oo) 7

Lw(x,7) = E} {u(WT,O)Tm/ZHem (Wf_x>1(w,0) (WT)} : (18)

Here, we note that

Lm(x,7) = /

A exp(—w)rm/zHem(w_x>T1/2<p(w_x>dw (19)
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and make use of the transform z = (w — x)/+/T to write

I (x,T) = T7™/2 exp(—x + E) /.oo Hey(z) ! exp [;(z + ﬁ)z} dz

2/ ) x/7 V27
= m/?2 exp(—x + % ) /j; Hey (u—+/7) ¢ (u)du
VT
e exp(—x+ ;>:0 (’;?>(ﬁ)m—f /_°°f Hej(u)p(u)du,  (20)
where the identity
Hej(x+a) = Zl: (l) a' "I Hej(x) 21)
j=0

has been used for obtaining the third equality. We further note that

1-1
Hey(x)p(x) = — & (~1)/! [jﬂlqv(x)] = LHea(e], @)

which gives

o _J1-®(d) =d(—d) forl=0,
/d He(x)g(x)dx = {Hell(d)<p(d) forl=1,2,... @)
and
d @) for! =0,
/700 He (x)p(x)dx = {Hel_l(d)gb(d) forl=1,2,.... @)
Putting Equation (23) into Equation (20) leads to
(1) = (1" ha(7)+ 3 () (1) T ,7) )
j=1
with
Jaj(x,T) = T 1% Hej (‘%)"’(j%) (26)

Applying a mathematical induction to Equation (25), one finds that J; ,,(x, T) can be ex-
pressed as a linear combination of the expectations I1 o(x, 7), I11(x, T),..., I1u(x, T) in
Equation (17).

Letting G;(x) = He;(x)¢(x), we obtain

i) =7 oxp(x+ )t (-2 Yo7
_ exp(—x +2- %m r) Gj 1 (—x\;) 27)

which in turn yields

8]1/]-(x,1') T ] 1 ] X—T
T —exp(—x—I— E — zlnT) <2 — 2'[’>G]1 (_ﬁ )

X—T\ T+Xx

_exp<—x+;—£lnr)6j<—ﬁ>m (28)
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and

9?J1,i(x, 7) T x—T
T = exp<—x—|— E — 21nT> G]‘_l <_\/?>
DYV SN S | (_x—T
2T exp( x—i—z 2ln'r)G]< ﬁ)
+ 771 exp(x + % - %ln T) Gj (x\/?'r) (29)

These two Equations (28) and (29) imply

I ) [1 PJpi(x,T) 8]1,j(x,r)1

2 ox2 ot

exp (x -5 +
(g;;) () e (F)
(£ ) Eha( )

Houl 52)- (o) o)

(30)
where the last equality holds by the recurrence relation
Hejy1(z) — zHe;(z) + jHej_1(z) = 0. (31)
It is thus concluded that J; ;(x, T) satisfies the heat transfer PDE:
ol 271 -
ﬂ o 1 ]1,] (32)

ot 2 ox2

for each j € Z~. Since I o(x, T) and ]1,j(x, T) for j = 1,2,...,m satisfy the heat transfer
PDE (6), Equation (25) indicates that the expectation I ,,(x, T) also satisfies the PDE.
Likewise, we can show

_X+T

Lw(x,7) = 7" 2exp (x + %) /700‘/? Hey (u++/7) ¢ (u)du

= Do(x,7) =), (7) J2,j(x,T) (33)
j=1
with
Joj(x,7) = T2 Hej_4 (-”\/;ﬁ(\%) (34)

which, again via a mathematical induction applied to Equation (33), can be shown to
obtain the form of a linear combination of the expectations Io(x, T), I1(x, ), ..., L j(x,T)
in Equation (18). It is then straightforward to show, in the same manner as before, that
J2,j(x, T) satisfies the heat transfer PDE:

a]Z] 1 a2]2]
oT 2 ox?

(35)

foreach j € Z+. Since J1(x,T), Jo2(x,T),..., Jom(x,T) as well as I o(x, T) satisfy the heat
transfer PDE (6), Equation (33) indicates that I ,, (x, T) also satisfies the PDE.
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Now Equations (16), (25), and (33) imply
m

gm(x,T) = (=1)"Lo(x,T) + Lyo(x, T) + i <]

j=1

0™, 0) = ix )], G

which satisfies the heat transfer PDE in Equation (6). Forany M, N € Z~gand %11, ...,71,Mm,
21, ---,2,N € R, we define

M N
up(x,7) = g0(x, )+ Y 11,mKm(x,7),+ Y 12uLn(x,T), (37)
m=1 n=1
with
Kj(x/ T) = ]1,j(x/ T) + ]2,]‘(3(, T) and Lj(xr T) = ]1,j(x/ T) - ]Z,j(x/ T)' (38)

Equations (32) and (35) show that uy (x, T) satisfies the heat transfer PDE:

duy(x,7)  10%uy(x,7)
ot 2 ox2

(39)

Henceforth, we find the coefficients 7711, ..., 71,Mm, %21, - - ., J2,N subject to the initial
condition

liﬁ)lu,,(x,r) = exp(—|x|). (40)

Applying L’'Hospital’s rule to Equations (26) and (34), we obtain
li i(x,7)=0 d li i(x,7) =0 41
Tligh,](x ) an Tlﬁ}fz,f(x ) (41)
for x # 0. Therefore, we have
IimK;(x,7) =0 d limL;(x,7)=0 42
lim j(x,7) and lim i(%,7) (42)
for x # 0. Meanwhile, the symmetries of ¢(-) and He;(-) imply
Jipk(=x,T) = —Jopk(x,T) and Jipe-1(—x,7) = Jook-1(%, T) (43)
for k € Z~, which, together with Equation (38), lead to

Kop(—x,7) = =Ky (x,7) and Ko 1(—x,7) = Ko 1(x,7),  (44)
Lok(—x,7) = Lok(x,7) and Lok-1(—x,7) = —Lyx—1(x, 7). (45)

In consequence, we obtain
2
Kok-1(0,7) = 4/ ;T_(k_l/z)Hezkfz(\/?) and Ky (0,7) =0, (46)

2
Lo(0,7) = {/ =7 " Hey 1 (V7) and Ly-1(0,7) =0,  (47)
which result in
lim| K5, _1(0, = lim| L, (0, = 00, 4
Tlﬁ)ﬂ 2%-1(0,7)| Tlﬁf)ﬂ 2k(0,T)| = o0 (48)

lim K5 (0, 7) = lim Ly;,_¢(0,7) = 0. 49
Tlg)l 2%(0,7) Tlﬂf)l 2%-1(0,7) (49)
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Let us consider the case where the coefficients 7 o¢_1 and 17, o of 1y (x, T) vanish for each k.
Labeling such a set of coefficients  with 71 21 = 1752 = 0 as {, we write

ug(x, T) = go(x,7) + c§(x,r) (50)
with
L5 L85
cz(x,7) = Y mauKo(x, )+ Y mook-1Llok-1(x,7T), (51)
k=1 k=1

where | x| is the largest integer less than or equal to x. It is then obvious from Equations (32)
and (35) that c§(x, T) satisfies the heat transfer PDE (6). Moreover, Equations (42) and (49)
imply that cz(x, T) vanishes as T approaches zero from above:

111?01 cg(x,7) =0. (52)

To summarize, we have the “theorem” that the Feynman-Kac formula does not
support the uniqueness property: cz(x,T) is a kernel solution to the boundary-value
problem consisting of the heat transfer PDE (6) and the initial condition in Equation (52),
and accordingly, 1z (x, T) is a generalized solution to the boundary-value problem consisting
of the heat transfer PDE (6) and the initial condition in Equation (7). Note that uc(x, T),
expressed as a linear combination of the expectations I o(x,T), I11(x, T),..., 1 m(x, T)
in Equation (17) and L(x,7), I1(x, T),..., b n(x, T) in Equation (18), satisfies the heat
transfer PDE (6) and the initial condition in Equation (7) for any 7 o € R and 75,1 € R.
It is thus concluded that the Feynman—Kac formula does not support the uniqueness
property, which proves the “theorem”.

Finally, we consider the extension of the analysis, albeit one counterexample should
suffice for falsification [19], to the general case of Equation (1) with nonvanishing k and g,
again for d = 1. (Generalization to the case of higher dimensions, 4 > 2, is straightforward.)
First, suppose that v is a solution of the equation for k = 0:

dv  19%
Tt 2002 3
with vanishing boundary conditions. We know that there exist infinitely many solutions u
of the equation with g = 0:

ou  10%u
e 54

ot 20x2 ©4)
with appropriate boundary conditions. Adding the two Equations (53) and (54), we obtain
that w = v + u satisfies Equation (53) with the same boundary conditions as those in
Equation (54). Since there are infinitely many u, we thus conclude that Equation (53) indeed
carries infinitely many solutions. We next consider the case of constant k and g = 0:

v 1%

Multiplying both sides by e~*, we obtain Equation (54) for u = e~*v. This again implies
that Equation (55) carries infinitely many solutions of the form v = e¥u. (This can also be
generalized to the case of time-dependent k(t), where [ dt k() takes the place of kt in the
procedure. Namely, the solutions of Equation (55) assume the form v = el k(1) More
generally, in the presence of both ¢ and k, putting u = e v yields Equation (53) with g
replaced by 1 = e *g. As a result, the solution takes the form w = v + k1, where v is a
solution of Equation (53) (with g replaced by e~*¢) and u represents the infinitely many
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References

solutions of Equation (54). The most general case of k depending on x is beyond the scope
of this paper and left for future study.

Now, let us comment on how to obtain the “unique” solution among the general-
ized solutions. When generating random numbers {W.} from a Brownian motion in
Equation (4), we need initial conditions in the time interval —e < T < 0 (with € > 0) in
addition to those at the time T = 0. These initial conditions generate the random numbers
of one particular generalized solution. This is related to the assumption that the solution is
differentiable at T = 0. Note also that in physics, we usually deal with the case where the
initial conditions are given in the steady state [20] (p. 11). This amounts to assuming the
initial conditions in the time interval (—e, 0], not just at the time T = 0. Therefore, the PDE
is uniquely determined by the conditions specified in the time interval (—e¢, 0].

4. Conclusions

We have shown that the Feynman-Kac formula does not yield a unique solution but
carries infinitely many solutions, as demonstrated by the counterexample presented. This
indicates that the Feynman—Kac formula, albeit a useful and elegant tool, should be used
with caution. In quantum mechanics, as addressed in Section 1, this formula gives the path
integral representation of the solution of the Schrodinger equation. The nonuniqueness
then suggests an interesting possibility of additional solutions other than the conventional
ones. Their implications are currently under investigation. Furthermore, in quantitative
finance, the Feynman—Kac formula is used widely to compute efficiently solutions of
the Black-Scholes PDE for European option prices [9]. There the nonuniqueness of the
Feynman-Kac formula brings on infinitely many solutions to the Black—Scholes boundary-
value problem [21]. This indicates that the Black-Scholes formula violates the fundamental
law of one price in economics.

In general, the Feynman—Kac formula has been utilized to solve certain PDEs via
random path simulations of stochastic processes and to compute some expectations for
random processes by deterministic methods. However, one should be cautious since its
nonuniqueness implies that such methods may produce unreliable results. It would be
of interest and importance to clarify mathematical criteria, if any, for the validity of such
an analysis with respect to the existence and uniqueness in PDEs. It is suggested that
the nonuniqueness is related to the nature of the initial condition. Such an assumption of
stationarity or differentiability amounts to the initial condition assumed in a time interval,
which may determine the PDE uniquely. The investigation of this relationship is left to
future studies, where the main point will be presented more succinctly, and the detailed
argument will be more focused.
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