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Abstract: The Feynman–Kac formula establishes a link between parabolic partial differential equa-

tions and stochastic processes in the context of the Schrödinger equation in quantum mechanics.

Specifically, the formula provides a solution to the partial differential equation, expressed as an

expectation value for Brownian motion. This paper demonstrates that the Feynman–Kac formula

does not produce a unique solution but instead carries infinitely many solutions to the corresponding

partial differential equation.
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1. Introduction

In the 1940s, Feynman [1] disclosed that the Schrödinger equation, which governs the
time evolution of quantum states in quantum mechanics, could be solved by averaging
over sample paths, an observation which led him to a far-reaching reformulation of the
quantum theory in terms of path integrals [2,3]. Based on this idea, Kac recognized that
a similar representation could be given for solutions of the heat transfer equation [4,5].
Accordingly, this representation is now referred to as the Feynman–Kac formula, which
verifies and extends Feynman’s path integrals [6]. The Feynman–Kac formula has numerous
applications in various fields including mathematics, statistics, physics, chemistry, and
finance [7,8], providing an intriguing connection between solutions of elliptic and parabolic
differential equations and stochastic processes. Specifically, it provides a method for
solving a variety of partial differential equations (PDEs) through random path simulations
of a stochastic process. For instance, in quantitative finance, the relationship between
geometric Brownian motion and the Black–Scholes PDE is a special case of the Feynman–
Kac theorem [9]. Conversely, some stochastic differential equations describing random
processes can be examined by deterministic methods [10].

To present the Feynman–Kac formula, we consider the continuous functions f : Rd →
R, k : Rd → R≥0, and g : Rd × [0, T] → R, where T > 0 is fixed. Suppose that v is a
continuous, real-valued function of class C2,1 on R

d × [0, T] and satisfies

−∂v

∂t
+ kv =

1

2

d

∑
i=1

∂2v

∂x2
i

+ g (1)

with the terminal condition (xxx ∈ R
d)

v(xxx, T) = f (xxx). (2)

Mathematics 2024, 12, 129. https://doi.org/10.3390/math12010129 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12010129
https://doi.org/10.3390/math12010129
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8070-7716
https://doi.org/10.3390/math12010129
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12010129?type=check_update&version=2


Mathematics 2024, 12, 129 2 of 10

Then, the function v is said to be a solution of the Cauchy problem for the backward
heat Equation (1) with potential k and Lagrangian g, subject to the terminal condition
in Equation (2). Note also that Equation (1) with g = 0 corresponds precisely to the
Schrödinger equation (in the imaginary time) for a particle in potential k. Suppose that

max
0≤t≤T

|v(xxx, t)|+ max
0≤t≤T

|g(xxx, t)| ≤ Kea∥xxx∥2
for ∀xxx ∈ R

d, (3)

where K is a positive constant and 0 < a < Td/2. The Feynman–Kac formula consists of
the existence part and the uniqueness part as follows: The former states that v admits the
stochastic representation

v(xxx, t) = Exxx
T

{

f (WWWT−t) exp

[

−
∫ T−t

0
k(WWWs)ds

]

+
∫ T−t

0
g(WWWθ , t+θ) exp

[

−
∫ θ

0
k(WWWs)ds

]

dθ

}

(4)

for any t ∈ [0, T] and xxx ∈ R
d, where {WWWt} is a d-dimensional Brownian motion and Exxx

T(·)
is the expectation operator with WWWT = xxx. Then, the latter asserts that such a solution is
unique, as remarked in Refs. [11] (p. 268) and [12] (p. 120). Readers may also refer to
Refs. [6] (Chapter 3), [13] (Section 11.4), and [14] (Section 8.2), for further details on the
Feynman–Kac formula.

In this paper, we present a counterexample that violates the uniqueness of the Feynman–
Kac formula. Specifically, it is disclosed that the Feynman–Kac formula carries infinitely
many solutions rather than a unique solution. The possibility of nonuniqueness alerts us
that the solution method based on the Feynman–Kac formula may lead to extraneous and
irrelevant results. These implications are discussed in relation to the initial conditions.

2. A Boundary-Value Problem and Its Feynman–Kac Solution

We consider a simple example for d = 1 with

k(x) ≡ 0, g(x, t) ≡ 0, f (x) = exp(−|x|) (5)

and let u(x, τ) ≡ v(x, t) with τ ≡ T − t. General cases with nonvanishing k and g are
considered later in Section 3. Then, Equations (1) and (2) become, respectively,

∂u

∂τ
=

1

2

∂2u

∂x2
on R× [0, T], (6)

u(x, 0) = exp(−|x|) for x ∈ R. (7)

It is well known (see, e.g., [15]) that 1√
τ

ϕ
(

x√
τ

)

is the fundamental solution of the PDE (6),

where ϕ(z) ≡ 1√
2π

exp
(

− 1
2 z2

)

is the probability density function of the standard Gaussian

random variable.
We now define the function

g0(x, τ) ≡ Ex
0 (u(Wτ , 0)) =

∫ ∞

−∞
exp(−|w|) 1√

τ
ϕ

(

w−x√
τ

)

dw (8)

for τ > 0, which, according to the Feynman–Kac formula, satisfies the heat transfer PDE (6)
and the initial condition in Equation (7). Equation (8) is divided into two parts:

g0(x, τ) = I1,0(x, τ) + I2,0(x, τ) (9)
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with

I1,0(x, τ) ≡ Ex
0

(

exp(−|Wτ |)111[0,∞)(Wτ)
)

= exp
(

−x +
τ

2

)

Φ

(

x−τ√
τ

)

, (10)

I2,0(x, τ) ≡ Ex
0

(

exp(−|Wτ |)111(−∞,0)(Wτ)
)

= exp
(

x +
τ

2

)

Φ

(

− x+τ√
τ

)

, (11)

where 111A(·) is the indicator function of a subset A and Φ(z) ≡
∫ z
−∞

ϕ(y)dy is the cumulative
distribution function of the standard Gaussian random variable. It is then easy to show
that I1,0(x, τ) and I2,0(x, τ) satisfy the heat transfer PDE:

∂I1,0(x, τ)

∂τ
=

1

2

∂2 I1,0(x, τ)

∂x2
and

∂I2,0(x, τ)

∂τ
=

1

2

∂2 I2,0(x, τ)

∂x2
. (12)

For comparison, we plot the conventional (fundamental) solution in Figure 1 and the
generalized solution given by Equation (9) in Figure 2.

Figure 1. Conventional solution τ−1ϕ(x/
√

τ), called the fundamental solution. The darker the color,

the lower the value of the solution.

Figure 2. Generalized solution g0(x, τ), given by Equation (9). The darker the color, the lower the

value of the solution.



Mathematics 2024, 12, 129 4 of 10

Note that Equation (9) plotted in Figure 2 generalizes the fundamental solution in
Figure 1 to a heavy-tailed skew distribution [16].

Here, we remark that g0(x, τ) is not defined for τ = 0. Accordingly, as in Theorem
55.4 of Körner [17] (p. 277), the initial condition in Equation (7) should be replaced by

lim
τ↓0

u(x, τ) = exp(−|x|) for x ∈ R. (13)

This means that the solution u(x, τ) should be assumed right-continuous at (x, 0); otherwise,
the heat transfer PDE may not be connected with the initial condition.

3. Kernel Solutions

As discussed in Körner [17] (pp. 338–346), the uniqueness of a heat transfer boundary
problem is not as trivial a question as sometimes claimed. The simple uniqueness theorem
presented there goes as follows: Let u(x, τ) : R×R

+ → R be twice differentiable satisfying
the heat transfer PDE (6). If u(x, τ) → 0 as τ → 0+ uniformly for x in any chosen interval
[−X, X] and if u(x, τ) → 0 as |x| → ∞ uniformly for t in any chosen interval [0, T], then

u(x, τ) = 0 for all (x, t) ∈ R×R
+. However, even the fundamental solution 1√

τ
ϕ
(

x√
τ

)

does not satisfy the former uniformity condition, making this uniqueness theorem not
so practical. Recently, on the other hand, general solutions of the heat transfer boundary
problem were reported [16,18]. Using those general solutions of the heat transfer boundary
problem, we now present additional representations of the Feynman–Kac formula.

For any m ∈ Z≥0, we consider the probabilists’ Hermite polynomial of order m:

Hem(w) ≡ (−1)mew2/2 dm

dwm
e−w2/2, (14)

the first five of which are given by He0(w) = 1, He1(w) = w, He2(w) = w2 − 1, He3(w) =
w3 − 3w, and He4(w) = w4 − 6w2 + 3. For each m ∈ Z≥1, we define

gm(x, τ) ≡ Ex
0

[

u(Wτ , 0)τ−m/2Hem

(

Wτ−x√
τ

)]

, (15)

which can be written as

gm(x, τ) = I1,m(x, τ) + I2,m(x, τ) (16)

with

I1,m(x, τ) ≡ Ex
0

[

u(Wτ , 0)τ−m/2Hem

(

Wτ−x√
τ

)

111[0,∞)(Wτ)

]

, (17)

I2,m(x, τ) ≡ Ex
0

[

u(Wτ , 0)τ−m/2Hem

(

Wτ−x√
τ

)

111(−∞,0)(Wτ)

]

. (18)

Here, we note that

I1,m(x, τ) =
∫ ∞

0
exp(−w)τ−m/2Hem

(

w−x√
τ

)

τ−1/2ϕ

(

w−x√
τ

)

dw (19)
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and make use of the transform z = (w − x)/
√

τ to write

I1,m(x, τ) = τ−m/2 exp
(

−x +
τ

2

)

∫ ∞

−x/
√

τ
Hem(z)

1√
2π

exp

[

−1

2
(z +

√
τ)2

]

dz

= τ−m/2 exp
(

−x +
τ

2

)

∫ ∞

− x−τ√
τ

Hem

(

u−
√

τ
)

ϕ(u)du

= τ−m/2 exp
(

−x +
τ

2

) m

∑
j=0

(

m

j

)

(−
√

τ)m−j
∫ ∞

− x−τ√
τ

Hej(u)ϕ(u)du, (20)

where the identity

Hel(x+a) =
l

∑
j=0

(

l

j

)

al−jHej(x) (21)

has been used for obtaining the third equality. We further note that

Hel(x)ϕ(x) = − d

dx
(−1)l−1

[

dl−1

dxl−1
ϕ(x)

]

= − d

dx
[Hel−1(x)ϕ(x)], (22)

which gives

∫ ∞

d
Hel(x)ϕ(x)dx =

{

1 − Φ(d) = Φ(−d) for l = 0,

Hel−1(d)ϕ(d) for l = 1, 2, . . .
(23)

and

∫ d

−∞
Hel(x)ϕ(x)dx =

{

Φ(d) for l = 0,

−Hel−1(d)ϕ(d) for l = 1, 2, . . . .
(24)

Putting Equation (23) into Equation (20) leads to

I1,m(x, τ) = (−1)m I1,0(x, τ) +
m

∑
j=1

(

m

j

)

(−1)m−j J1,j(x, τ) (25)

with

J1,j(x, τ) ≡ τ−j/2 Hej−1

(

− x−τ√
τ

)

ϕ

(

x√
τ

)

. (26)

Applying a mathematical induction to Equation (25), one finds that J1,m(x, τ) can be ex-
pressed as a linear combination of the expectations I1,0(x, τ), I1,1(x, τ), . . . , I1,m(x, τ) in
Equation (17).

Letting Gl(x) ≡ Hel(x)ϕ(x), we obtain

J1,j(x, τ) = τ−j/2 exp
(

−x +
τ

2

)

Hej−1

(

− x−τ√
τ

)

ϕ

(

− x−τ√
τ

)

= exp

(

−x +
τ

2
− j

2
ln τ

)

Gj−1

(

− x−τ√
τ

)

, (27)

which in turn yields

∂J1,j(x, τ)

∂τ
= exp

(

−x +
τ

2
− j

2
ln τ

)(

1

2
− j

2τ

)

Gj−1

(

− x−τ√
τ

)

− exp

(

−x +
τ

2
− j

2
ln τ

)

Gj

(

− x−τ√
τ

)

τ + x

2τ
√

τ
(28)
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and

∂2 J1,j(x, τ)

∂x2
= exp

(

−x +
τ

2
− j

2
ln τ

)

Gj−1

(

− x−τ√
τ

)

− 2τ−1/2 exp

(

−x +
τ

2
− j

2
ln τ

)

Gj

(

− x−τ√
τ

)

+ τ−1 exp

(

−x +
τ

2
− j

2
ln τ

)

Gj+1

(

− x−τ√
τ

)

. (29)

These two Equations (28) and (29) imply

exp

(

x − τ

2
+

j

2
ln τ

)

[

1

2

∂2 J1,j(x, τ)

∂x2
−

∂J1,j(x, τ)

∂τ

]

=
1

2
Gj−1

(

− x−τ√
τ

)

− 1√
τ

Gj

(

− x−τ√
τ

)

+
1

2τ
Gj+1

(

− x−τ√
τ

)

−
(

1

2
− j

2τ

)

Gj−1

(

− x−τ√
τ

)

+
τ + x

2τ
√

τ
Gj

(

− x−τ√
τ

)

=
1

2τ

[

Gj+1

(

− x−τ√
τ

)

−
(

− x − τ√
τ

)

Gj

(

− x−τ√
τ

)

+ jGj−1

(

− x−τ√
τ

)]

= 0, (30)

where the last equality holds by the recurrence relation

Hej+1(z)− zHej(z) + jHej−1(z) = 0. (31)

It is thus concluded that J1,j(x, τ) satisfies the heat transfer PDE:

∂J1,j

∂τ
=

1

2

∂2 J1,j

∂x2
(32)

for each j ∈ Z>0. Since I1,0(x, τ) and J1,j(x, τ) for j = 1, 2, . . . , m satisfy the heat transfer
PDE (6), Equation (25) indicates that the expectation I1,m(x, τ) also satisfies the PDE.

Likewise, we can show

I2,m(x, τ) = τ−m/2 exp
(

x +
τ

2

)

∫ − x+τ√
τ

−∞
Hem

(

u+
√

τ
)

ϕ(u)du

= I2,0(x, τ)−
m

∑
j=1

(

m

j

)

J2,j(x, τ) (33)

with

J2,j(x, τ) ≡ τ−j/2Hej−1

(

− x+τ√
τ

)

ϕ

(

x√
τ

)

, (34)

which, again via a mathematical induction applied to Equation (33), can be shown to
obtain the form of a linear combination of the expectations I2,0(x, τ), I2,1(x, τ), . . . , I2,j(x, τ)
in Equation (18). It is then straightforward to show, in the same manner as before, that
J2,j(x, τ) satisfies the heat transfer PDE:

∂J2,j

∂τ
=

1

2

∂2 J2,j

∂x2
(35)

for each j ∈ Z>0. Since J2,1(x, τ), J2,2(x, τ), . . . , J2,m(x, τ) as well as I2,0(x, τ) satisfy the heat
transfer PDE (6), Equation (33) indicates that I2,m(x, τ) also satisfies the PDE.
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Now Equations (16), (25), and (33) imply

gm(x, τ) = (−1)m I1,0(x, τ) + I2,0(x, τ) +
m

∑
j=1

(

m

j

)

[

(−1)m−j J1,j(x, τ)− J2,j(x, τ)
]

, (36)

which satisfies the heat transfer PDE in Equation (6). For any M, N ∈ Z>0 and η1,1, . . . , η1,M,
η2,1, . . . , η2,N ∈ R, we define

uηηη(x, τ) ≡ g0(x, τ) +
M

∑
m=1

η1,mKm(x, τ),+
N

∑
n=1

η2,nLn(x, τ), (37)

with

Kj(x, τ) ≡ J1,j(x, τ) + J2,j(x, τ) and Lj(x, τ) ≡ J1,j(x, τ)− J2,j(x, τ). (38)

Equations (32) and (35) show that uηηη(x, τ) satisfies the heat transfer PDE:

∂uηηη(x, τ)

∂τ
=

1

2

∂2uηηη(x, τ)

∂x2
. (39)

Henceforth, we find the coefficients η1,1, . . . , η1,M, η2,1, . . . , η2,N subject to the initial
condition

lim
τ↓0

uηηη(x, τ) = exp(−|x|). (40)

Applying L’Hospital’s rule to Equations (26) and (34), we obtain

lim
τ↓0

J1,j(x, τ) = 0 and lim
τ↓0

J2,j(x, τ) = 0 (41)

for x ̸= 0. Therefore, we have

lim
τ↓0

Kj(x, τ) = 0 and lim
τ↓0

Lj(x, τ) = 0 (42)

for x ̸= 0. Meanwhile, the symmetries of ϕ(·) and Hej(·) imply

J1,2k(−x, τ) = −J2,2k(x, τ) and J1,2k−1(−x, τ) = J2,2k−1(x, τ) (43)

for k ∈ Z>0, which, together with Equation (38), lead to

K2k(−x, τ) = −K2k(x, τ) and K2k−1(−x, τ) = K2k−1(x, τ), (44)

L2k(−x, τ) = L2k(x, τ) and L2k−1(−x, τ) = −L2k−1(x, τ). (45)

In consequence, we obtain

K2k−1(0, τ) =

√

2

π
τ−(k−1/2)He2k−2

(√
τ
)

and K2k(0, τ) = 0, (46)

L2k(0, τ) =

√

2

π
τ−k He2k−1

(√
τ
)

and L2k−1(0, τ) = 0, (47)

which result in

lim
τ↓0

|K2k−1(0, τ)| = lim
τ↓0

|L2k(0, τ)| = ∞, (48)

lim
τ↓0

K2k(0, τ) = lim
τ↓0

L2k−1(0, τ) = 0. (49)
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Let us consider the case where the coefficients η1,2k−1 and η2,2k of uηηη(x, τ) vanish for each k.
Labeling such a set of coefficients ηηη with η1,2k−1 = η2,2k = 0 as ζζζ, we write

uζζζ(x, τ) = g0(x, τ) + cζζζ(x, τ) (50)

with

cζζζ(x, τ) ≡
⌊ M

2 ⌋
∑
k=1

η1,2kK2k(x, τ) +
⌊ N+1

2 ⌋
∑
k=1

η2,2k−1L2k−1(x, τ), (51)

where ⌊x⌋ is the largest integer less than or equal to x. It is then obvious from Equations (32)
and (35) that cζζζ(x, τ) satisfies the heat transfer PDE (6). Moreover, Equations (42) and (49)
imply that cζζζ(x, τ) vanishes as τ approaches zero from above:

lim
τ↓0

cζζζ(x, τ) = 0. (52)

To summarize, we have the “theorem” that the Feynman–Kac formula does not
support the uniqueness property: cζζζ(x, τ) is a kernel solution to the boundary-value
problem consisting of the heat transfer PDE (6) and the initial condition in Equation (52),
and accordingly, uζζζ(x, τ) is a generalized solution to the boundary-value problem consisting
of the heat transfer PDE (6) and the initial condition in Equation (7). Note that uζζζ(x, τ),
expressed as a linear combination of the expectations I1,0(x, τ), I1,1(x, τ), . . . , I1,M(x, τ)
in Equation (17) and I2,0(x, τ), I2,1(x, τ), . . . , I2,N(x, τ) in Equation (18), satisfies the heat
transfer PDE (6) and the initial condition in Equation (7) for any η1,2k ∈ R and η2,2k−1 ∈ R.
It is thus concluded that the Feynman–Kac formula does not support the uniqueness
property, which proves the “theorem”.

Finally, we consider the extension of the analysis, albeit one counterexample should
suffice for falsification [19], to the general case of Equation (1) with nonvanishing k and g,
again for d = 1. (Generalization to the case of higher dimensions, d ≥ 2, is straightforward.)
First, suppose that v is a solution of the equation for k = 0:

−∂v

∂t
=

1

2

∂2v

∂x2
+ g (53)

with vanishing boundary conditions. We know that there exist infinitely many solutions u
of the equation with g = 0:

−∂u

∂t
=

1

2

∂2u

∂x2
(54)

with appropriate boundary conditions. Adding the two Equations (53) and (54), we obtain
that w ≡ v + u satisfies Equation (53) with the same boundary conditions as those in
Equation (54). Since there are infinitely many u, we thus conclude that Equation (53) indeed
carries infinitely many solutions. We next consider the case of constant k and g = 0:

−∂v

∂t
+ kv =

1

2

∂2v

∂x2
(55)

Multiplying both sides by e−kt, we obtain Equation (54) for u ≡ e−ktv. This again implies
that Equation (55) carries infinitely many solutions of the form v = ektu. (This can also be
generalized to the case of time-dependent k(t), where

∫

dt k(t) takes the place of kt in the

procedure. Namely, the solutions of Equation (55) assume the form v = e
∫

dt k(t)u. More
generally, in the presence of both g and k, putting u ≡ e−ktv yields Equation (53) with g
replaced by h ≡ e−ktg. As a result, the solution takes the form w = v + ektu, where v is a
solution of Equation (53) (with g replaced by e−ktg) and u represents the infinitely many
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solutions of Equation (54). The most general case of k depending on x is beyond the scope
of this paper and left for future study.

Now, let us comment on how to obtain the “unique” solution among the general-
ized solutions. When generating random numbers {WWWτ} from a Brownian motion in
Equation (4), we need initial conditions in the time interval −ϵ < τ < 0 (with ϵ > 0) in
addition to those at the time τ = 0. These initial conditions generate the random numbers
of one particular generalized solution. This is related to the assumption that the solution is
differentiable at τ = 0. Note also that in physics, we usually deal with the case where the
initial conditions are given in the steady state [20] (p. 11). This amounts to assuming the
initial conditions in the time interval (−ϵ, 0], not just at the time τ = 0. Therefore, the PDE
is uniquely determined by the conditions specified in the time interval (−ϵ, 0].

4. Conclusions

We have shown that the Feynman–Kac formula does not yield a unique solution but
carries infinitely many solutions, as demonstrated by the counterexample presented. This
indicates that the Feynman–Kac formula, albeit a useful and elegant tool, should be used
with caution. In quantum mechanics, as addressed in Section 1, this formula gives the path
integral representation of the solution of the Schrödinger equation. The nonuniqueness
then suggests an interesting possibility of additional solutions other than the conventional
ones. Their implications are currently under investigation. Furthermore, in quantitative
finance, the Feynman–Kac formula is used widely to compute efficiently solutions of
the Black–Scholes PDE for European option prices [9]. There the nonuniqueness of the
Feynman–Kac formula brings on infinitely many solutions to the Black–Scholes boundary-
value problem [21]. This indicates that the Black-Scholes formula violates the fundamental
law of one price in economics.

In general, the Feynman–Kac formula has been utilized to solve certain PDEs via
random path simulations of stochastic processes and to compute some expectations for
random processes by deterministic methods. However, one should be cautious since its
nonuniqueness implies that such methods may produce unreliable results. It would be
of interest and importance to clarify mathematical criteria, if any, for the validity of such
an analysis with respect to the existence and uniqueness in PDEs. It is suggested that
the nonuniqueness is related to the nature of the initial condition. Such an assumption of
stationarity or differentiability amounts to the initial condition assumed in a time interval,
which may determine the PDE uniquely. The investigation of this relationship is left to
future studies, where the main point will be presented more succinctly, and the detailed
argument will be more focused.
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