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Ionization profile monitors (IPMs) are widely used in particle accelerators for fast diagnostics of
high energy beams. Due to the space-charge effects and several other physical reasons, as well as due
to instrumental effects, the measured IPM profiles can significantly differ from those of the beams.
There are several empirical mathematical models commonly used for reconstruction of the beam
profiles. Here we present a proper correction algorithm based on the space-charge dynamics of the
secondaries in IPMs. We also demonstrate the efficiency of the proposed beam size reconstruction
algorithm from experimentally measured profiles and discuss practical aspects limiting the IPM
accuracy.

I. INTRODUCTION

Ionization profile monitors (IPMs) have been in ac-
tive use in particle accelerators since late 1960s [1–7] and
are important beam diagnostic tools for many modern
and future accelerators [8, 9]. Their principle of opera-
tion is based on collection of the products of ionization
of residual gas by high energy charged particle beams -
see detailed discussions and examples of operational in-
struments in Refs.[10, 11]. Transverse profiles of the sec-
ondaries give a very good approximation of the primary
beam properties and usually can be quickly measured
either on a turn-by-turn or even on a bunch-by-bunch
basis. The two most common types of IPMs are distin-
guished by the use or no-use of a guiding magnetic field
parallel to extracting electric field. Physics principles,
advantages and disadvantages of the IPMs with a mag-
netic field are discussed in [12]. This paper deals mostly
with the physics principles and beam profile reconstruc-
tion in the IPMs operating with only an electric guiding
field - those are used more widely because of no-need
of external magnets and, therefore, smaller size, simpler
design and lower cost (see Fig.1).

One of the key challenges for the initial beam profile re-
construction is proper accounting of various effects which
lead to distortion, most often - size expansion - of the
charge distribution of secondaries on their travel to the
detector and in the detector itself. in high-intensity accel-
erators, the dominant effect is the increase of the mea-
sured beam size σm compared to the initial beam size
σ0 caused by space-charge forces of the primary beam.
There is an extensive literature on this effect; many sim-
ulation codes are developed, presented and discussed in,
e.g., proceedings of recent Workshops [13, 14]. Several
empirical mathematical models were proposed to relate
σm and σ0, such as - from [2]:

σm =

√
σ2
0 + C1

N

E0σ
1/2
0

, (1)

or, alternatively, from [15]:

σm = σ0 + C2
N1.025

σ1.65
0

(1 + 1.5R1.45)−0.28 , (2)

FIG. 1. Fermilab Booster IPM. Proton beam goes from left to
right through a 103 mm high HV cage. The maximum voltage
on the upper plate is +24 kV, the electric field uniformity is
arranged by six-stage voltage divider bars. Secondary ions are
accelerated toward a 80×100 mm2 micro-channel plate (MCP,
shown in gold). Electrons, exiting from the MCP, proceed for
another 7.5 mm to an array of parallel thin anode strips at
+100V above the exit of the MCP, and spaced 1.5 mm apart
(not shown) where they are collected and amplified for further
processing (courtesy R.Thurman-Keup).

or, from [16]:

σm = σ0 + C3
N

σ0.615
0

, (3)

here, N is the number of particles in the high energy
primary beam, E0 = V0/D is the guiding electric field
due to the voltage gradient v0 across the IPM gap D,
R is the aspect ratio of (other plane)/(measured plane),
e.g., Ry = σ0,x/σ0,y for vertical plane, and C1, C2, C3

are the constants derived to fit available simulations and
measurements data.

Despite acceptable data approximation, such a variety
of mathematical constructs, unclear physical reasons for
various exponents in Eqs.(1 - 3) and, therefore, undefined
applicability ranges, are generally confusing and call for
either a better analysis or more sophisticated machine–
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learning beam profile reconstruction algorithms [17].
Below we develop a new algorithm, based on a well

defined physics description and analysis that results in
a complete understanding of the IPM signal dependen-
cies on all major parameters, such as high-energy beam
intensity N and size σ0, on the IPM voltage V0 and di-
mensions, etc. Moreover, we propose a simple and fast
method for inverse calculation of the sought-for beam size
σ0 from the measured size of the IPM profile σm, that
can be used for online operational processing.

II. SPACE-CHARGE DRIVEN IPM PROFILE
EXPANSION

The general equations of transverse motion of the
charged secondary particles (ions, electrons) born in the
IPM in the acts of ionization of the residual gas molecules
are

d2x(t)

dt2
= fx(r, t)x

d2y(t)

dt2
=
Ze

M
Ey + fy(r, t)y , (4)

where Ze and M are charge and mass of the secondaries,

r =
√
x2 + y2, Ey = V0/D is the IPM extracting ex-

ternal electric field which is assumed to be generated
by application of high voltage V0 over the gap D, and
functions f(x,y)(r, t) = −(Ze/M) · ∂2U(r, t)/∂(x, y)2 re-
flect the space-charge impact of the primary high energy
particle beam. The space-charge potential U(x, y) is pro-
portional to beam current J(t) and depends on the beam
density distribution. For a typical beam in accelerator it
scales as ∝r2 at distances less than a characteristic beam
size a and as ∝ln(r) for r � a, as schematically shown
in Fig.2.

For initial analysis we omit complications due to the
field distortions at boundaries (such as grounded poten-
tial at the MCP plane), assume DC beam current J and
for the simplest case of uniform beam with radius a one
gets:

U(x, y) = −USC
r2

a2
for r < a

= −USC(1 + 2 ln(r/a)) for r ≥ a (5)

where USC [V]=30J [A]/βp, βp = vp/c, vp the main (pro-
ton) beam velocity, and c is the speed of light. The anal-
ysis can be further simplified by taking into account that
not only the space-charge potential O(10 V) is usually
small compared to O(10-100 kV) IPM voltage UCS � V0,
but its gradient ∼ USC/a which is O(10 V/mm) in its
peak at the edge of the beam is alos small compared to
the uniform IPM electric field Ey that is O(100 V/mm).
In this case, the equation of motion in the y-plane be-
comes trivial:

y(t) =
ZeEy
2M

t2 + v0,yt+ y0 , (6)

where y0 and v0,y are the original position and velocity
of the secondary particle at the moment of its creation.
Combination of the last three equations makes the equa-
tion of motion in the plane of expansion as

d2x(t)

dt2
=

x

τ21
, (7)

for particle trajectories inside the high energy beam
r(t) < a, while outside the high energy beam r(t) ≥ a it
is:

d2x(t)

dt2
=

x

τ21

a2

y(t)2 + x(t)2
. (8)

Here we introduced a characteristic expansion time due
to the space-charge:

τ1 =
(2eZUSC

Ma2

)−1/2
. (9)

FIG. 2. Proton beam space-charge effect in IPM: (top) the
space-charge potential; (bottom) space-charge driven expan-
sion in x-plane in presence of much stronger IPM extraction
field Ey (see text).

Solutions of both. Eqs.(7) and (8) are exponential func-
tions:

x(t) = x0 exph(t) + v0,xt . (10)

For an initial approximation one can assume that the ini-
tial kinetic energy of the secondary particles Ei = Mv20/2
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is small compared to eV0 and eUSC (see more in the next
section). Together with the smallness of the initial co-
ordinates compared to the average distance d from the
beam center to the MCP plate (x0, y0) � d ≈ D/2, one
gets for r(t) < a:

h(t) = ln
(
ch(t/τ1)

)
≈ t2

2τ21
. (11)

After the secondary particle gets out the beam, that is at
r ≈ y(t) ≥ a or t > τ0 ≈

√
2MaD/ZeV0, the solution can

be found by stitching the solution Eq.(11) at the beam
boundary with exact solution of Eq.(8) with the small
term x2(t)� y2(t) neglected in the denominator:

h(t) ≈ τ20
τ21

[4

3

t

τ0
− 5

6

]
, t > τ0. (12)

We can note here that the exponential expansion assumes
positive right-hand sides in Eqs.(7) and (8), i.e., repulsive
nature of the space-charge forces such as for positive ions
born in a proton beam or ionization electrons in an elec-
tron beam. Of course, a similar analysis can be carried
out for the case of attraction and equivalent equations
can be derived based on trigonometric (rather than hy-
perbolic) functions over the same argument of t/τ1.

At the time when the secondary particle reaches the
MCP τ2 ≈

√
2MdD/ZeV0, its transverse position be-

comes

x(τ2) ≈ x0 · exp
(USCD

V0a
·
[4

3

√
d

a
− 5

6

])
. (13)

- see Fig.2. It is remarkable that the space-charge ex-
pansion is determined only by the space-charge poten-
tial USC , the primary beam size a, the IPM voltage and
gap V0, D and the beam-to-MCP distance d but does not
depend on the type secondary species (their mass and
charge, etc). The basic reason is that both the space-
charge impact along x-axis and the transport mechanism
along y-axis are set by electric fields. That condition
would not hold if, for example, the particle has signifi-
cant initial velocity v0,y and the second term dominates
in the right-hand side of Eq.(6).

Even more remarkable is that the transformation
Eq.(13) is linear with respect to x0 and correspondingly
leads to proportional magnification of the profile of the
distribution of the secondary particles. That allows a rel-
atively straightforward determination of the initial rms
beam size σ0 from the rms size of the IPM profile mea-
sured at the MCP σm if USC , V0, D and d are known.

III. BEAM SIZE RECONSTRUCTION

For a majority of practical IPM applications, the most
important outcome is the knowledge of the rms sizes
of high energy beams with 5-10% accuracy on a turn-
by-turn or comparable time scale. That would corre-
spond to about 10-20% error in the beam emittances - a

level comparable with capabilities of other, usually much
slower types of beam size diagnostics which then can be
used for cross–calibration [8, 18–20]. As we will see be-
low, the space-charge expansion with a typical exponent
h(τ2) = 0.1 − 1 is the largest, though not the only one,
of the systematic IPM errors and needs to be known and
accounted for with 10-20% accuracy. The most impor-
tant effects to be taken into account in that regard are:
a) a realistic initial distribution of the secondaries which
is typically closer to Gaussian with rms size σ0 then to
the uniform one; b) non-round beam with an aspect ratio
R significantly different from 1; c) the time structure of
the high-energy beam current J(t), especially with high
bunching factor B = Jpeak/Javg. Below we will address
for these and other effects in order of practical impor-
tance.

FIG. 3. Vertical rms size of the proton beam profile as mea-
sured by an IPM (vertical axis) versus actual size for the
parameters Np = 6 ·1012, V0 = 8kV, D = 120mm. Red points
are for the Fermilab Booster IPM simulations Ref. [16], blue
line is theoretical predication of this paper Eq.(14) with fit-
ting parameters per Eq.(15), and black points are results of
the reversion algorithm, i.e., finding the original size σ0 from
the observed one σm and the known beam intensity and the
IPM parameters, developed in this paper (see also in the text).
Dashed diagonal line represents an ideal reconstruction of the
rms beam size.

First of all, we extend the parametric dependence of
the expansion Eq.(13) to Gaussian beams by using sim-
ilar relation for the rms size σm of the measured profile
at the IPM MCP :

σm = σ0e
h(USC ,σ0,V0,D) = σ0 · exp

(
α
USC
V0

(D
σ0

)3/2)
.

(14)
Here we have simplified the expression by taking into ac-
count that usually d ≈ D/2 (beam goes approximately
through the IPM center) and dropping the second term
in square brackets in Eqs.(12) and (13). The latter is
natural for a typical situation of d � a, σ0 and, there-
fore, τ2 � τ0. For example, for H+

2 ions in the Fermilab
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Booster RCS τ2 ∼ 100 ns τ0 ∼ 20 ns. In any case, all
minor deviations can be concealed by a proper choice of
the coefficient α.

Calculation of the constant α from the first principles is
quite cumbersome. Instead, it can be quite precisely de-
termined from the results of computer simulations of the
dynamics of secondaries (ions) in an IPM. Ref.[16] pro-
vides an appropriate collection of 104 computer tracking
simulations results with 8 values of σ0 from 2 to 8 mm
and 13 values of the total intensity N from 0 to 6·1012

protons circulating in the 475 m circumference Fermi-
lab Booster. The corresponding space-charge potential
is USC = 18.3V for the maximum intensity. The IPM
gap is D=120 mm and voltage V0=8 kV. The model
(14) with fitting parameter α = 2.67 gives an excellent
O(3%)agreement with all the simulations of σm(N, σ0),
so the exponent in Eq.(14) can be expressed as:

h(N, σ0) = 2.67 ·
( N

6 · 1012

)( D

120σ0

)3/2(8kV

V0

)
. (15)

The blue line and red dots in Fig.3 represent this model
and the simulations results, respectively.

Now, it is important to have an algorithm to reverse
the equation σm = σ0e

h(N,σ0,V0,D), i.e., to obtain the
original σ0 from the measured σm. One possibility is to
modify Eq.(14) to:

y = x exp(−x) , (16)

where

x =
3

2
h =

3

2

F

σ
3/3
0

, y =
3

2

F

σ
3/3
m

,

and F is the factor containing all the constants and pa-
rameters other than σ0 in Eq.(15). The function y(x)
is presented in Fig.4. It can be reversed on any of its
monotonic ranges using appropriate functions with any
desired accuracy. For example, the most relevant to our
analysis is the range of 0 < x ≤ 1 that corresponds to
maximum h ≤ 2/3 and the beam size expansion eh ≤ 2,
where one can use a simple approximation:

x = f(y) ≈ y exp
( y

1− 3 y5/3

)
, (17)

Fig.3 illustrates an excellent, within 5%, accuracy of
reconstruction of σ0 = (black squares) from the rms IPM
profile size σm found in the Fermilab Booster simulations
[16] using Eqs. (17), (16) and (15). The effect of the high
energy beam size aspect ratio R is numerically studied in
Ref.[15] and found to be relatively weak, e.g., the corre-
sponding correction of the numerical factor α in Eq.(14)
is 1.14 for R = 0.5 and 0.84 for R = 2.0. If the aimed
accuracy of the beam size reconstruction is ∼10%, that
factor can be safely neglected for most common cases of
h=0.1-1. It should be introduced only if the IPM profile
expansion is significant h > 1.

The effect of the beam current time structure, such as
bunching, depends on the rms bunch length τb and time

FIG. 4. Illustration on reversion of the IPM beam size equa-
tion (see text).

between bunches tb. In most common cases τb � tb .
τ0 � (τ1, τ2) and the dynamics of the cloud of secondary
particles in IPM is a sequence of frequent kicks instead
of smooth functions as in Eqs. ((4, 7), (8). For example,
in the Fermilab Booster τb ≈ 2 − 3ns, tb = 25 − 19ns,
τ0 ≈ 20 ns, τ1 ≈ 50ns and τ2 ≈ 100ns. In that case
our algorithm, based on integration rather than summa-
tion, is sufficiently accurate to the level of O(tb/τ2) and
Eqs.(14 - 17) are valid. Of course, these equations are
also applicable in the case of very long bunches τb � τ2.

Most significant deviations from the above analysis
will take place in the case of short and rare bunches
τb � (τ0, τ1, τ2) � tb. In that case, the dynamics of the
secondary (ion) is all set by almost instantaneous impact
(change in velocity) following the act of ionization, so
its position remains unchanged during the passage of the
bunch:

∆vx =
2ZeNp
βpM

x

r2

(
1− exp(− r2

2σ2
0

)
)
, (18)

where Np is the total number of particles in the bunch,
which passed by the ion. After this impact, the secondary
(ion) sees no transverse field Ex = 0 and proceeds to the
IPM collector plate under the extracting field Ey. After
corresponding time τ2, the resulting displacement will be
x0 + τ2∆vx, that is:

x(τ2) = x0

[
1 + 2κ

Np
r2

(
1− exp(− r2

2σ2
0

)
)]
, (19)

where

κ =

√
2eZdD

Mβ2
pV0

.

Averaging over a 2D Gaussian distribution of initial
positions and taking into account that on average freshly
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generated ions experience the impact of only half of the
bunch, one gets the rms size of the IPM profile:

σ2
m = σ2

0 + κNp + κ2
N2
p

4σ2
0

ln(2/
√

3) . (20)

Contrary to the case presented in the preceding section
and summarized in Eq.(13), the intensity dependent pro-
file expansion of Eq.(20) is not exponential, but rather
adds in quadrature and it now depends on charge Z and
mass M of the secondary species. In particular, to mini-
mize such expansion in IPMs measuring profiles of short
intense and rare bunches, it is beneficial to collect (heav-
ier) ions instead of (light) electrons .

Another effect that calls for the use of ions rather than
electrons in IPMs without external magnetic fields is due
to the initial velocities of the secondaries v0. Indeed,
assuming such velocities are random with the rms value
of
√

2Ei/M , one gets in quadrature addition to Eq.(14):

σ2
m = σ2

0e
2h(USC ,σ0,V0,D) +

(4EidD
ZeV0

)
. (21)

At face value, this additional term is independent of the
mass of the secondary particle, but the initial kinetic en-
ergy is. For ionization electrons, Ei is about 35 eV needed
on average for ion-electron pair production by protons in
hydrogen [21], and, therefore, the corresponding smear-
ing of the particle position measured by the IPM is about
σT = D

√
2Ei/ZeV0, that is some 3 mm for voltages as

high as V0 = 80 kV and a typical D = 100 mm. That
is absolutely unacceptable for millimeter or less beam
sizes and fast time resolution IPMs that take advantage
of short electron reaction time τ2 must have the exter-
nal magnetic field By to suppress the smearing. As for
ions, their the initial kinetic energy is ∼ Z2me/M times
smaller and corresponding smearing σT is usually well
within 0.1 mm.

Other effects leading to intensity independent IPM
profile smearing are: a) finite separation ∆ between the

individual IPM charge collection strips σT ' ∆/
√

12;
b) angular misalignment θ of the long and narrow strips
with respect to the high energy beam trajectory σT ' θL,
where L is the strip length; c) charging of dielectric
material in between the strips [22] or strip-to-stripe ca-
pacitive cross talk; d) non-uniformity of the extraction
electric field in the operational IPM aperture σT '
σ0|dEx/dx|/Ey) = σ0|dEy/dy|/Ey). The latter effect is
usually minimized by proper electro-mechanical design.

All the above effects are monitor-specific and the eas-
iest way to account for them is cross-calibration of low
intensity beam sizes measured by the IPM σm and by
another instrument σ∗. In that case, the desired rms
instrumental smearing can be found as:

σ2
T = lim

N→ 0

(
σ2
m(N)− σ∗2(N)

)
. (22)

Fig.5 illustrates the result of such analysis for proton
beam profiles measured in the Fermilab Booster cycle

FIG. 5. An example of reconstruction of vertical rms proton
beam size in the 33 ms (20000 turns) acceleration cycle of the
Fermilab 8 GeV Booster synchtrotron: time dependence of
the original IPM data (red), the data corrected for smearing
effects (violet) and the same data after additional correction
for the space-charge expansion (green).

with N = 4.62 · 1012 [20]: the red curve is for the rms
vertical beam size σm(t) as reported by the IPM with
D = 103 mm and V0 = 24 kV. Separately done compar-
ison with the Booster multi-wire profilometer following
Eq.(22) yields σ2

T = 2.9 mm2. The line in violet in Fig.5
represents the beam size after correction for that error√
σ2
m(t)− σ2

T . Finally, the true proton rms beam size σ0
was reconstructed following the algorithm of Eqs. (14 -
17) and is represented by green line. One can see that
the overall beam size correction is about 15% early in
the Booster acceleration cycle when the rms beam size
is about 6 mm. At the end of the cycle, with proton
energy increased from 400 MeV to 8 GeV, the correc-
tion is almost by a factor of two and accounting for the
space-charge expansion is the most important.

IV. CONCLUSIONS

Ionization profile monitors are widely used in various
types of particle accelerators for non-intercepting and
fast beam profile measurements. As discussed in this
paper, the major profile distortions in IPMs are due to
expansion of slow ionization secondaries under impact of
the space-charge forces of the charged particle beam it-
self. The distortion is independent on type of collected
secondaries (different ions, electrons) and grows with in-
crease of beam intensity N and IPM gap D and decrease
of the beam size σ0 and the IPM extracting voltage V0
- see Eq.(14). Together with the smearing effect due to
significant initial kinetic energy Ei, this precludes oper-
ation of IPMs in the electron collection mode unless a
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strong external magnetic field is applied along with the
IPM electric field. We have developed a model and an al-
gorithm to account for the space-charge expansion in the
ion collecting IPMs without an external magnetic field.
The rms beam size reconstruction according to Eqs.(15 -
17) allows better than 5-10% accuracy in determination
of σ0 from measured σm and known beam intensity and
IPM parameters D, V0 and d (distance from the beam
orbit to the IPM MCP plate).

Other, intensity independent instrumental errors σT
can easily be accounted for in quadrature if the IPM mea-
surements are calibrated against another beam size diag-
nostics instrument(s) at low beam intensities. The pro-
posed algorithm, though simple and straightforward and
addressing the most common operational needs, can not
substitute for more sophisticated modeling and analysis

if detail knowledge of the high energy beam distribution
(shape, tails, etc) is required.
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