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Abstract. The structure and behavior of molecules and crystals depend on their different 
symmetries. Thus, group theory is an essential technique in some fields of chemistry. Within 
mathematics itself, group theory is very closely linked to symmetry in geometry. Lagrange’s 
theorem is a statement in group theory that can be viewed as an extension of the number 
theoretical result of Euler’s theorem. It is seen as a significant lemma for proving more 
complicated results in group theory. The main intention of this dissertation is to prove 
Lagrange’s theorem which illustrates that every quadratic irrationality has a periodic continued 
fraction. Conversely, every periodic continued fraction is a quadratic irrationality. The first part 
of this paper is the research of so-called Dirichlet groups, which are subgroups of preserving 
certain pairs of lines. These groups are closely related to the periodicity of sails. The structure 
of a Dirichlet group is induced by the structure of the group of units in order. Taking n-th roots 
of two-dimensional matrices using Gauss’s reduction theory will also be shown. Finally, the 
solutions of Pell’s equation and Lagrange’s theorem will be proved.  

1. Introduction 
The research object of this paper is group theory and the Lagrange theorem. It is undeniable that the 
research on them is very meaningful because they are often applied in life or scientific experiments. 

Group theory is a significant branch of mathematics, which has various applications in many 
disciplines. In the application of physics, group theory is the basis of quantum mechanics [1-3]. Group 
theory was initially mainly used in the study of robot kinematics, with further study, robot assembly, 
calibration, and control used in group theory [4]. In 1984, Vage and Margrick proposed the first 
method of constructing a public-key cryptographic system using combinatorial group theory. With the 
joint efforts of cryptographers, a variety of public key cryptography systems and key exchange 
protocols have been proposed using combinatorial group theory [5]. In the network, group theory is 
mainly used to study the network theory of the double port network set, double port converter set, and 
2n port converter set. Using the group theory method to find out the connection between them is an 
effective way [6]. With the application of group theory in atomic materials, human’s understanding of 
the basic “units” that constitute the material world is gradually deepened. In 1869, Mendeleev 
formulated the periodic table of elements. It is the first time to understand the basic “unit” laws of the 
material world at the atomic level [7]. Lagrange’s theorem proves the order of a subgroup must be an 
approximate value of the order of a finite group using cosets. It is established between the function and 
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the derivative value of quantitative analysis, so it can be used to study function. Lagrange’s theorem is 
the main function of theory analysis and proof [8]. The outcome showed that simple Lie algebras have 
been chosen to meet the requirements of unified model builders who researched Yang-Mills theories 
ground on brief, local-symmetry groups. The central topic includes reviewing its unification and 
standard model into a simple group; the application of Dynkin charts which is used to find the 
configuration of the group generators and to track the weights (quantum numbers) of the 
representative vectors; an analysis of the subgroup structure of simple groups [9]. Lagrange Theorem 
for Moufang loops written by Gaola’s proof that the order of any subloop of a finite Moufang loop is a 
factor of the order of the loop, thus obtaining an analog of Lagrange Theorem for finite Moufang loops 
[10]. The Lagrange proof of the Hom group, written by Hassanzadeh, interprets that the Hom group is 
pointing to an idempotent quasigroup (Pique). It uses the Cayley table of quasi-groups to introduce 
some examples of the Hom group. By introducing the concepts of Hom subgroups and cosets, 
Lagrange’s theorem for finite Hom groups is demonstrated. This suggests that the order of any Hom 
subgroup H of the finite Hom group A is divided by order of G. As a result of the application, the order 
of the Hom-hopf algebra of the finite-dimensional Home group of the Hob algebra BA divides the 
order of A by order of A [11]. The Lagrange theorem for polygroups written by Sedighi and Hosseini 
shows that the relations of polygroups properties with the introduction of a suitable equivalence 
relation are strongly regular. Their main purpose in the paper is to investigate the Lagrange theorem 
and other expressions of isomorphism theorems for polygroups [12]. 

In general, the Lagrange theorem is useful when some of the variables in the simplest description 
of a problem are made redundant by the constraint. It is one of the central theorems of abstract algebra 
which can be used in other fields in the future, such as physics, chemistry, and network application. 
This paper is organized as follows. In Section 2, several proofs of Lagrange’s theorem are scattered. In 
section 3, some applications of Lagrange’s theorem will be presented. Section 4 is devoted to giving 
the conclusion of this paper. 

2. Lagrange’s theorem  
Theorem 1: Let B be a subgroup of a finite group A, then |𝐴| = |𝐵|(𝐴: 𝐵). 

Proof: Let (A: B) =s. The left coset decomposition of A concerning B is 

         𝑎ଶℎ௜ ∈ 𝐵 ⇒ 𝑎ଶℎ௜ = ℎ௝(𝑖 ≠ 𝑗) ⇒ 𝑎ଶ = ℎ௜ି ଵℎ௝ ∈ 𝐵 ⇒ 𝑎ଶ ∈ 𝐵.             (1) 

Since 𝜙: 𝑎௜ℎ → 𝑎௝ℎ (ℎ ∈ 𝐵) is a bijection of the left coset 𝑎௜𝐵 and 𝑎௝𝐵, so  
                          |𝑎௜𝐵| = ห𝑎௝𝐵ห.                                (2) 

So 
                        |𝑎ଵ𝐵| = ⋯ |𝑎௦𝐵| = |𝐵|.                          (3) 

Since  𝐺 = 𝑎ଵ𝐵 ∪ 𝑎ଶ𝐵 ⋯ ∪ 𝑎௦𝐵.                          (4) 
We get  |𝐴| = |𝐵|𝑠,                                  (5) 
i.e.  |𝐴| = |𝐵|(𝐴: 𝐵)                              (6) 
Theorem 2: Let G is a finite group that 𝐾 ≤ 𝐵 ≤ 𝐺, then   

                       (𝐴: 𝐵)(𝐵: 𝐾) = (𝐴: 𝐾).                            (7) 
Proof: Based on Lagrange’s theorem, we know that |𝐴| = |𝐵| ⋅ (𝐴: 𝐵) = |𝐾| ⋅ (𝐴: 𝐵).                       (8) 
And |𝐵| = |𝐾| ⋅ (𝐵: 𝐾).                              (9) 
Substituting into the previous equation to cancel out |𝐻|, we get (𝐴: 𝐵)(𝐵: 𝐾) = (𝐴: 𝐾).                           (10) 
Theorem 3 (Sylowp theorem) Let 𝑝 be a prime number, 𝐴 is a finite group. Then 
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1) let 𝑝௞|𝐴|, then the number modulus of subgroups of the group that the order of 𝐴 is 𝑝௞ 
congruent to 1. 

2) Sylowp subgroups are conjugated. 
3) any order subgroup of A that is 𝑝௞ must be contained in a Sylow subgroup of 𝐴. 
4) group that satisfies all the rules from 1)-3) are called Sylowp subgroups. 

3. Application of Lagrange’s Theorem 
Example 3.1. Suppose that p and q are two prime numbers and p<q, then the group B and K of order 
pq have at most one subgroup of order q. 

Proof: H and K are q-order subgroups belonging to A, then we can know from the above theorem,  |𝐵𝐾| = ห௤మห|஻∩௄|                               (11) 
But |𝐻 ∩ 𝐾| is divisible, and q is a prime number, so |𝐻 ∩ 𝐾| = 1 𝑜𝑟 𝑞; If |𝐵 ∩ 𝐾| = 1, then 

                        |𝐵𝐾| = 𝑞ଶ > 𝑝𝑞 = |𝐴|                         (12) 
isn’t true. So |𝐵 ∩ 𝐾| = 𝑞, then B=K. 
Example 3.2. Suppose that a and b are two elements of a group A, and ab=ba, and let the order of a 

be m, the order of b be n, and (m, n) =1. Prove the order of an is mn. 
Proof: Let the order of ab be k, given by  

                                ab=ba.                               (13) 
We know that                                                             𝑎ିଵ = 𝑏, 𝑏ିଵ = 𝑎.                          (14) 
Then we can get                                                         (𝑎𝑏)௠௡ = 𝑎௠௡𝑏௠௡ = 𝑒.                       (15) 
By Lagrange’s theorem,                                                                            𝑘|𝑚𝑛.                              (16) 
Now prove it the other way that                                                                             𝑚𝑛|𝑘.                              (17) 
From                                                     𝑒 = (𝑎𝑏)௞೙ = 𝑎௞೙𝑏௞೙ = 𝑎௞೙.                      (18) 

Given the order of a is m, we get 𝑚|𝑘𝑛. 
Given (m, n)=1, we get 𝑚|𝑘.  
From                                  𝑒 = (𝑎𝑏)௞೙ = 𝑎௞೙𝑏௞೙ = 𝑏௞೙,                   (19) 

and the order of b is n, we get 𝑛|𝑘𝑚.  
Given (m, n)=1, we get 𝑛|𝑘. 
From the discussion above, we can know that the order of ab is mn. 
Example 3.3. Suppose that H and K are two m- and n-order subgroups of group A, respectively. 

Prove if (m, n)=1, then 𝐵 ∩ 𝐾 = ሼ𝑒ሽ. 
Proof: Since 𝐵 ∩ 𝐾 ≤ 𝐵, 𝐵 ∩ 𝐾 ≤ 𝐾.                     (20) 
By Lagrange’s theorem, we can know that 𝐵 ∩ 𝐾|𝑚, 𝐵 ∩ 𝐾|𝑛.                        (21) 
So |𝐵 ∩ 𝐾|divides (m, n). 
But (m, n)=1, then 𝐵 ∩ 𝐾 = ሼ𝑒ሽ 
Example 3.4. Suppose that A is a finite abelian group of order 2n, where n is an odd number, and 

prove that group A has and only has one second-order subgroup. 
Proof: It is only necessary to prove that A has and only has one element of order 2. Since elements 

of order greater than 2 appear in pairs in A, and the order of identity element e is 1, and |𝐴| = 2𝑛.                           (22) 
Therefore, there must be second-order elements in A and an odd number of elements. If a is a 

second-order element of A, then B = {e, a} is a second-order subgroup of A. 
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If A has another element ba of order 2, then K= {e, b} is a subgroup of A which is different from B. 
Since A is an abelian group, it is easy to know that BK= {e, a, b, ab} is a fourth-order subgroup of A. 

By Lagrange’s theorem, |𝐵𝐾|ห|𝐴| ⇒ 4ห2𝑛.                       (23) 
This contradicts the fact that n is an odd number, so A can have only one second-order element, that 

is only one second-order subgroup. 
Example 3.5 Suppose A is a group, where |𝐴| = 𝑝௧𝑚, p is a prime number, p/m, and B and K is 𝑝௧ 𝑎𝑛𝑑 𝑝௦ −ordered subgroups of A, respectively; (0 ≤ 𝑠 ≤ 𝑡) and K ∉ B. To prove that the product 

of BK is not the subgroup of group G. 
Proof: Because  |𝐵| = 𝑝௧, |𝐾| = 𝑝௦, |𝐴| = 𝑝௧𝑚.                   (24) 
And |𝐵𝐾| = ሼ|஻|⋅|௄|ሽሼ|஻∩௄|ሽ = ሼ௣ೞశ೟ሽሼ|஻∩௄|ሽ,                (25) 
So |𝐵𝐾| ⋅ |𝐵 ∩ 𝐾| = 𝑝௦ା௧.                       (26) 
As p is a prime number, then |𝐻𝐾| must be to the power of p. Suppose  |𝐵𝐾| = 𝑝௥, 0 < 𝑟 ≤ 𝑠 + 𝑡.                   (27) 
If the product of 𝐵𝐾 ≤ 𝐺, then according to Lagrange’s theorem  |𝐵𝐾||𝑝௧𝑚.                           (28) 
However, p/m, as |𝐴| = 𝑝௧𝑚, where 𝑟 ≤ 𝑡, according to (27), we can get: 𝑝௦ = |𝐵| ≥ |𝐵 ∩ 𝐾| = 𝑝(௧ି௥)ା௦.                 (29) 
And then we can get t=r, and |𝐵 ∩ 𝐾| = 𝑝௦ = |𝐾|                       (30) 
But |𝐵 ∩ 𝐾| ≤ 𝐾. We can get |𝐵 ∩ 𝐾| = 𝐾, 𝐾 ⊆ 𝐵.                      (31) 
This contradicts to 𝐾 ⊂ 𝐻, so HK is not a subgroup of group A. 
Example 3.6: 𝑆ଷ = (1), (12), (13), (23), (123), (132). Try to find all subgroups of the symmetric 

group with Lagrange’s theorem. 
Proof: We know that 𝑆ଷ  has six subsets which are: 𝐵ଵ = ሼ(1)ሽ,  𝐵ଶ = ሼ(1), (12)ሽ,  𝐵ଷ =ሼ(1), (13)ሽ, 𝐵ସ = ሼ(1), (23)ሽ, 𝐵ହ = ሼ(1), (123), (132)ሽ, 𝐵଺ = 𝐵ଷ. 
The multiplications of permutations are closed, and therefore they are subgroups of 𝑆ଷ. 
Prove that when |𝐵| = 2, there are only six subgroups. 
Suppose that B is any nontrivial subgroup of 𝑆ଷ, because |𝐵| is a factor of |𝑆ଷ| = 6, therefore, 

only |𝐵| = 2,3. 
When |𝐵| = 2, except for the identity element 1, another element in B can only be a second-order 

element. There are only three second-order elements in 𝑆ଷ which are (12), (13), and (23).  
Therefore, B can only be 𝐵ଶ, 𝐵ଷ, 𝐵ସ. 
When |𝐵| = 3, according to Lagrange Theorem, the order of the element in B must be the factor 

of 3, so only 1 or 3 are available. Thus, except for the identity element 1, the other elements must be 
the factor of 3. 

However, there are only two third-order elements in 𝑆ଷ, which are (12) and (13), Therefore, only 
true for 𝐵 = 𝐵ହ. 

In conclusion, 𝑆ଷ has and only has the above 6 subgroups. 
Example 3.7: Abelian groups of order 15 must be cyclic groups. 
Proof: let A be an abelian group of order 15, except for the identity e, the order of the element in A 

must not be 3, because if not, suppose: |𝑎| = |𝑏| = 3,                            (32) 
And 𝑏 ∉ ⟨𝑎⟩, 𝑎, 𝑏 ∈ 𝐺.                          (33) 
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Then                       𝐵 = ⟨𝑎⟩, 𝐾 = ⟨𝑏⟩                         (34) 
are two third-order subgroups of A, whose intersection is e. As A is substitutable, so 𝐵𝐾 ≤ 𝐴 and |𝐵𝐾| = |𝐵| ⋅ |𝐾| = 9.                     (35) 
According to Lagrange’s Theorem, 9|15 is a contradiction, 
Similarly, A cannot be 5th order except for e, Therefore, third-order and 5th order must exist in A. 

As A is substitutable, A must have 15th elements, so A is a cyclic group. 
Example 3.8: Suppose that P is a Sylowp subgroup of a finite group A, B is a subgroup of A, 𝑝||𝐻|. 
Then there exists 𝑎 ∈ 𝐴, so 𝑎𝑃𝑎ିଵ ∩ 𝐵 is a Sylowp subgroup of B. 
Proof: As 𝑝||𝐵|, therefore, the Sylowp subgroup Q of N can be obtained, according to the Sylowp 
theorem, we know that Q is inside some Sylowp subgroup of 𝑎𝑃𝑎ିଵ of A. 

Then  𝑄 ∈ 𝑎𝑃𝑎ିଵ ∩ 𝐵                         (36) 
is a subgroup of B to the power of P, then  |𝑎𝑃𝑎ିଵ ∩ 𝐵| ≤ |𝑄|                      (37) 
So                            𝑄 = 𝑎𝑃𝑎ିଵ ∩ 𝐵.                       (38) 
then 𝑎𝑃𝑎ିଵ ∩ 𝐵 is a Sylowp subgroup of B. 
Example 3.8 Let 𝐺 be a finite group and 𝐾 ≤ 𝐵 ≤ 𝐴. Then we have (𝐴: 𝐵)(𝐵: 𝐾) = (𝐴: 𝐾). 
Prove: From Lagrange’s theorem, we know that |𝐴| = |𝐵|(𝐴: 𝐵) = |𝐾|(𝐴: 𝐵)   and  |𝐵| =|𝐾|(𝐵: 𝐾). Then (𝐴: 𝐵)(𝐵: 𝐾) = (𝐴: 𝐾). 
 
Example 3.9 Let 𝐵 and 𝐾 are finite subgroups of group 𝐴, then |𝐵𝐾| = |𝐵𝐾|/|𝐵 ∩ 𝐾|. 
Prove:  
Let |𝐵|\ |𝐵 ∩ 𝐾| = 𝑚 𝑎𝑛𝑑 𝐵 = ℎ1(𝐵 ∩ 𝐾) ∪ ℎ2(𝐵 ∩ 𝐾)  ∪ … ∪ ℎ𝑚(𝐵 ∩ 𝐾), ℎ𝑖 ∈ 𝐵, ℎ𝑖 − 1ℎ𝑗 ∉𝐾, 𝑖 ≠ 𝑗. Then 𝐵𝐾 = ℎ1𝐾 ∪ ℎ2𝐾 ∪ … ∪ ℎ𝑚 𝐾, ℎ𝑖𝐾 ∩  ℎ𝑗𝐾 = Ø, 𝑖 ≠ 𝑗. We have |BK|=m |K|, which is 

the same as |BK|=|B||K|\|B∩K|. 

4. Conclusion 
To sum up this paper, the theme of the article is Lagrange’s theorem. The author clearly shows what is 
Lagrange’s theorem through the proof of Lagrange’s theorem and the application of group theory 
knowledge. The following is a summary of this article. First of all, in abstract algebra, groups are of 
fundamental importance. Many algebraic structures, including rings, fields, and modules, can be seen 
as being formed by adding new operations and axioms to groups. The concept of the group appears in 
many parts of mathematics, and the research technique of group theory also has valuable effects on 
other branches of abstract algebra. In this paper, the author illustrates the proof process of the 
Lagrange theorem, elaborates on the meaning of the Lagrange theorem, studies the application of the 
Lagrange theorem, then expresses the importance of the Lagrange theorem. In general, the author uses 
the characteristics of cosets and subsets in group theory combing with the knowledge of group action 
and orbit. The characteristics and effects of Lagrange’s theorem are also shown. Lagrange’s theorem is 
not only a part of group theory but also a milestone in the history of mathematics. Lagrange’s theorem 
will be applied to more aspects in the future and will be combined with more new knowledge to create 
more possible applications for people. Classical theorem about integer solutions for Pell’s equation, 
which is proof of Lagrange theorem, shows a strong connection between quadratic irrationalities and 
periodic fractions. 
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