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Zusammenfassung

In dieser Arbeit präsentieren wir die Berechnung von Zwei-Schleifen-Korrekturen O(αsαt + α2
t ) zu neu-

tralen Higgs Selbstkopplungen in der reellen minimal-supersymmetrischen Erweiterung des Standard
Modells. Hierbei kennzeichnet αs die starke Kopplung und αt ist proportional zur Top-Yukawa Kop-
plung im Quadrat. Diese Berechnung benutzt den Zugang des effektiven Potentials, welcher äquivalent
ist zur kompletten diagrammatischen Rechnung im Limes verschwindender äusserer Viererimpulse. Die
Renormierung der Higgs Selbstkopplungen wird in zwei verschiedenen Schemas durchgeführt, nämlich im
DR und im On-Shell Schema. Die numerische Analyse zeigt, dass die Korrekturen im DR Schema, aus-
gewertet an einer zentralen Skala von MSUSY/2, klein sind. Die Zwei-Schleifen-Korrekturen reduzieren die
Grösse der theoretischen Unsicherheiten in den meisten Regionen des Parameterraums auf unter O(5%).
Die strahlungskorrigierten effektiven Kopplungen können benutzt werden, um den Higgs Sektor und den
Mechanismus der Elektroschwachen Symmetriebrechung an heutigen und zukünftigen Teilchenbeschleu-
nigerexperimenten zu testen.





Abstract

We present a calculation of the two-loop O(αsαt+α2
t ) radiative corrections to neutral Higgs self-couplings

in the real minimal supersymmetric extension of the standard model. The strong coupling is denoted
by αs and αt is proportional to the top-Yukawa coupling squared. This calculation is performed with
the effective potential method, providing results that are equivalent to the full diagrammatic calculation
in the limit of vanishing external momenta. We renormalize the Higgs self-couplings in the DR and in
the on-shell scheme. The numerical results for the self-couplings show that the corrections are small in
the DR scheme at a central renormalization scale of MSUSY/2. The two-loop corrections reduce the size
of the theoretical uncertainties in most regions of parameter space below O(5%). These loop-corrected
effective couplings can be used at present and future colliders to test the Higgs sector and the mechanism
of electroweak symmetry breaking in the minimal supersymmetric standard model.
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Chapter 1

Introduction

On the fourth of July 2012 the two major experiments at the Large Hadron Collider (LHC), Atlas and
CMS, announced the discovery of a new bosonic particle with a mass of 125−126 GeV [1]. All properties
of this resonance, measured so far, are compatible with a Standard Model (SM) Higgs boson. The Higgs
boson plays a crucial role in the SM, as well as in various of its extensions. First of all it is the only
particle in the SM that has not yet been experimentally confirmed and the Higgs mass is the only unde-
termined parameter left in the SM. Moreover, if it has spin 0, it would be the only fundamental scalar
in the theory. In the SM the Higgs boson induces the mechanism of ElectroWeak Symmetry Breaking
(EWSB) that gives mass to the all other SM particles. Besides, it is crucial for the theoretical consistency
of the SM. It is fair to say that the experimental verification of the Higgs particle as the origin of EWSB
would be one of the biggest experimental and theoretical achievements in high energy physics.
To ascertain, whether the new found resonance at the LHC is compatible with the properties of the
SM Higgs boson, one has to measure its couplings to all other particles in the theory. The couplings of
the Higgs boson to the other SM particles have to be proportional to their masses. However there are
also self-couplings of the Higgs boson following from the Higgs potential, which encode all the relevant
information about the mechanism of EWSB. Measuring Higgs self-couplings is therefore essential in order
to elucidate the mechanism that gives mass to all other particles in the SM.
EWSB is introduced ad-hoc in the SM, there is no explanation what its origin is. The Minimal Supersym-
metric extension of the SM (MSSM) provides an elegant explanation of EWSB, inducing it naturally by
radiative corrections. In the MSSM the Higgs sector consists of five physical bosons and the self-couplings
of these determine the MSSM Higgs potential responsible for EWSB. In order to ascertain whether the
measured data is compatible with the self-couplings of a SM Higgs boson or the MSSM Higgs bosons,
precise theory predictions are necessary. In this work we will show how two-loop radiative corrections
to effective Higgs self-couplings in the real MSSM are calculated and what the numerical size of these
corrections is.
This thesis is organized as follows. In chapter 1 we first briefly discuss the SM and its problems. We
then give an overview of the idea of supersymmetry and its formulation before we turn to the MSSM.
We will discuss the basic structure of the MSSM, focusing on the topics relevant for this work, especially
on the tree-level Higgs sector. This serves as a preparation for the second chapter, where we explain how
two-loop corrections are implemented.
This calculation is performed in the framework of the effective potential, which will be introduced in the
beginning of chapter 2. The following subsections are devoted to the technical details in the determina-
tion of the leading two-loop contributions to the effective potential. We will first review the calculation
of the two-loop corrections to the Higgs masses before we discuss the self-couplings, since the result of
the former are needed to evaluate the latter. In the last part of chapter 2 we will explain in detail how
the Higgs masses and self-couplings are renormalized in order to get finite physical results.

1



2 1.1. The Standard Model of Particle Physics

The third chapter deals with the numerical evaluation of the Higgs masses and self-couplings. First
we explain how we determine consistent numerical input parameters in two different renormalization
schemes. Then we review the numerical results for the Higgs masses and investigate how different choices
of parameters alter the result. Last but not least we present numerical results for all trilinear and two
quartic Higgs self-couplings in two benchmark scenarios including the theoretical uncertainties.
In chapter 4 we summarize and give an outlook on possible extensions of this work. Finally in the ap-
pendix we present all analytic formulae necessary to reproduce our results. Moreover the calculation of
the one-loop effective potential is explained in great detail and the calculations of the relevant two-loop
potentials are outlined. The bibliography section in the end contains references to the relevant literature.

1.1 The Standard Model of Particle Physics

The Standard Model [2] of particle physics describes the electromagnetic, weak and the strong interactions
of all known subatomic particles. The SM has been developed during the mid to late 20th century and
since then its predictions have been confirmed experimentally with tremendous success. Theoretically
the interactions of subatomic particles are described by a Quantum Field Theory (QFT) with local gauge
symmetries. The SM is a non-abelian U(1)Y × SU(2)L × SU(3)C gauge theory, which is spontaneously
broken to a U(1)em × SU(3)C gauge theory in order to give mass to the electroweak gauge bosons. The
particle content can be classified into fermionic matter particles, namely leptons and quarks and force
carriers, the gauge bosons. Moreover for spontaneous symmetry breaking a scalar particle, often referred
to as the Higgs boson, is needed.
The interactions of the quarks and leptons are fixed by their representations in the gauge groups. Quarks
have color charge and they are therefore affected by the strong interaction, whereas leptons are SU(3)C
singlets. All fermions are charged under SU(2)L and the U(1)Y gauge symmetries. The former SU(2)L
acts only on left-handed particles, violating the chiral symmetry and thus prohibiting mass-terms for the
fermions. All SM fermions exist in three versions, called families, which can only be distinguished by
their masses. The fact that the fermions do have masses already tells us that the SU(2)L symmetry has
to be broken.
Gauge bosons mediate the forces dictated by the symmetries. Their number and properties are completely
fixed by the gauge groups. In particular the preserved symmetries demand that all gauge bosons have
to be massless. There are eight massless gauge bosons mediating the strong force, called gluons g, three
massive weak gauge bosons, the W±- and Z-boson and one electromagnetic gauge boson, the photon γ.

1.1.1 Electroweak Symmetry Breaking in the SM

In order to generate mass for the W±- and Z-bosons, we need to break the electroweak symmetry. In
the SM this is achieved by introducing one complex scalar doublet, whose neutral component acquires
a real Vacuum Expectation Value (VEV) and thus spontaneously breaks1 the electroweak symmetry
SU(2)L×U(1)Y → U(1)em. The gauge theory corresponding to the remaining U(1)em-symmetry is called
Quantum Electro Dynamics (QED), mediated by a massless photon. Spontaneous symmetry breaking
(SSB) is always connected to the appearance of massless Goldstone bosons, which become the longitudinal
Degrees Of Freedom (DOF) of the massive W±- and Z-bosons. After EWSB only one DOF of the
complex scalar doublet remains, corresponding to a real scalar physical particle, the Higgs boson. This
mechanism is usually called Higgs mechanism, although many other people were also involved in this
development [4–6].

1The term spontaneous symmetry breaking is actually misleading. All fields in the theory remain symmetric under gauge
transformations. After fixing the gauge (usually the SM is formulated in the unitary gauge) the vacuum is not invariant
under the symmetry and therefore expanding around the ground state hides the symmetry. The term hidden symmetry is
sometimes used and is more appropriate [3].
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The VEV of the Higgs bosons can also induce mass to the SM fermions through Yukawa couplings.
Moreover the Higgs particle restores the unitarity of the theory. It can even be proven under mild
technical assumptions that the only way to maintain perturbative unitarity in a non-abelian gauge theory
with massive gauge bosons up to arbitrary high energies is by introducing a scalar sector2 in the theory,
with couplings exactly fixed as in the Higgs mechanism [7]. The Higgs sector is therefore essential for the
theoretical consistence of the SM.

1.1.2 Problems of the SM

The SM is a consistent theory describing most of the subatomic phenomena, without any of its predictions
ever being disproved3. One could therefore be tempted to call it a “theory of nearly everything”. Still
there a number of phenomena that are not described by the SM. Moreover there are some theoretical
caveats.

• Gravity: The only fundamental force that is not included in the SM is gravity. All quantum field
theoretical descriptions of gravity so far are not renormalizable and thus not consistent.

• Dark energy: The quantum vacuum of the SM is not consistent with the expansion of the universe
usually believed to be caused by dark energy.

• Dark matter: Various phenomena in the universe are described by Dark Matter (DM), which is
matter interacting only very weakly with ordinary matter via the SM forces. However, it is massive
and therefore its gravitational effects alter the dynamics of the universe. The SM particles cannot
account for all the DM in the universe4.

• Neutrino masses and neutrino oscillations: In the SM neutrinos are massless and therefore
they cannot describe neutrino oscillations.

• Strong CP problem: There are natural terms in the Quantum Chromo Dynamical (QCD) La-
grangian that are able to break the Charge conjugation and Parity (CP)-symmetry. These terms,
however, have to be extremely small to match the experimental data. Because there is no symmetry
in the SM protecting these terms, unnatural fine-tuning is needed.

• Unification: There are still 19 parameters in the SM. Reduction of the number of parameters and
gauge couplings is theoretically very appealing.

• Origin of EWSB: EWSB is introduced ad-hoc in the SM. A complete theory should have an
explanation about the origin of EWSB.

• Three families: The SM cannot explain why there are three families of quarks and leptons.
Moreover it does not explain where the hierarchy between the Yukawa couplings originates from.

• Hierarchy problem: The large hierarchy between the electroweak scale and the Planck scale
results in huge radiative corrections for scalar particles in the SM. Absorbing these corrections into
renormalization constants requires unnatural fine tuning.

In order to solve all or some of these problems the SM has to be extended. The supersymmetric SM is
one particular extension among many others. However, it is the most studied and it is able to solve a lot
of these problems. We will first take a closer look at the hierarchy problem and explain the idea of how
to solve it by supersymmetry.

2The number of complex doublets is not fixed, however, the minimality principle of the SM sets this number to one.
3The only direct observation contradicting the SM are neutrino oscillations, which require neutrinos to have mass. By

adding sterile right-handed neutrinos to the SM, neutrinos acquire a mass. This introduces 8 new parameters to the SM,
but the theory is still consistent.

4Massive neutrinos could account for some of the DM in the universe. However, light neutrinos cannot be responsible
for the structure formation in the early universe.
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1.1.3 The Hierarchy Problem

The hierarchy problem of the SM arises when we want to embed the SM in some larger theory, e.g. a
Grand Unified Theory (GUT) or some theory of gravity at the Planck scale. In this sense it is not a
problem of the SM alone, but it arises at the moment where we introduce a cutoff in energy ΛUV above
which new phenomena occur. Scalar particles are highly sensitive to the Ultra-Violet (UV) physics scale
ΛUV. When we calculate loop-corrections to the Higgs boson mass, for example from a fermion, coupling
to the Higgs boson via −λfHf̄f (see Figure 1.1), we obtain a quadratic divergence in the cutoff scale
ΛUV.

H Hf ⇒ ∆m2
H = − |λf |2

8π2

[

Λ2
UV − 3m2

f log
Λ2

UV+m2
f

m2
f

+ · · ·
]

Figure 1.1: Correction to the Higgs boson mass due to a fermion f .

This divergence has to be absorbed in a counter term (mphys
H )2 = (m0

H)2 + ∆m2
H − δm2

H . To obtain a
Higgs mass at around the electroweak scale ΛEW ∼ O(100GeV) we have to introduce a huge fine-tuning
of about 28 digits for a cutoff scale ΛUV ∼ O(1016GeV). Note that fermions and massless5 gauge bosons
are not sensitive to UV physics, because the former are protected by the chiral symmetry and the latter
are protected by the gauge symmetry.

Solution: Suppose there are two additional scalar degrees of freedom φL and φR in the SM coupling
to the Higgs sector via

LScalar = −λ

2
H2(|φL|2 + |φR|2)−H(µL|φL|2 + µR|φR|2)−m2

L|φL|2 −m2
R|φR|2. (1.1.1)

There are two additional diagrams contributing to the Higgs self-energy The last diagram in Figure 1.2

H Hf H HφR,L

H H

φR,L

Figure 1.2: Correction to the Higgs boson mass due to a fermion f and two scalars φR and φL.

yields a quadratic divergence in ΛUV. However, with the opposite sign compared to the fermions. The
contribution to the Higgs mass from the scalar diagrams is

∆m2
H |Scalar =

1

16π2

[

2λΛ2
UV −

(

λm2
L + µ2

L

)

log
Λ2
UV +m2

L

m2
L

−
(

λm2
R + µ2

R

)

log
Λ2
UV +m2

R

m2
R

]

(1.1.2)

If we choose
λ = |λf |2 (1.1.3)

we cancel the quadratic divergence in ΛUV. Moreover if we also impose

mf = mL = mR, µ2
L = µ2

R = 2λm2
f (1.1.4)

5The would-be Goldstone bosons, i.e. the longitudinal DOF of the massive gauge bosons are also affected by quadratic
divergences.
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we also cancel the logarithms arising in the Higgs mass corrections. Unbroken Supersymmetry exactly
fulfills both relations Eqs. (1.1.3, 1.1.4) and is therefore much more stable w.r.t. radiative corrections.

1.2 Supersymmetry

SUperSYmmetry (SUSY) has been developed in the beginning of the 1970’s mainly for mathematical
and aesthetic reasons [9,10]. In this section we will first describe the historical development of SUSY and
later apply SUSY-theories to particle physics phenomenology.
SUSY links particles of different spin, i.e. it transforms bosons into fermions and vice versa. The generator
Q of SUSY transformations must be an anticommuting spinor

Q|Boson〉 = |Fermion〉, Q|Fermion〉 = |Boson〉. (1.2.1)

Since this generator is fermionic, it is obvious that SUSY is a space-time symmetry. Putting such a
symmetry into a QFT framework is quite difficult because it has to be consistent with Poincaré and
Lorentz invariance, where the latter contains basically the definition of spin. Moreover the Coleman-
Mandula theorem [8] served as a no-go theorem for symmetries beyond the Poincaré and the internal
gauge symmetries. This theorem however, assumes that the symmetry generators obey a Lie Algebra.
The SUSY generators Q, however, are fermionic, i.e. they obey anticommutation relations. In the early
1970’s the idea for SUSY was first brought up in string theories [9], which back then were an attempt to
describe the strong interaction. Later in the 1970’sN = 1 SUSY was developed [10] without drawing much
interest at first. Only in 1973 when the first SUSY field theories in four dimensions were constructed [11]
the subject attracted a lot of attention. Haag, Lopuszanski and Sohnius one year later showed that SUSY
is the only possible extension of space-time symmetries of particle interactions and the SUSY generators
Q (and their hermitian conjugate Q̄) have to satisfy the following commutation and anticommutation
relations of a graded Lie algebra [12]

{Q, Q̄} = Pµσµ, {Q,Q} = {Q̄, Q̄} = 0, [Pµ, Q] = [Pµ, Q̄] = 0 (1.2.2)

where Pµ is the four-momentum generator of space-time translations. Subsequent work stated that SUSY
theories have a better high energy behavior, exploiting the cancellation of fermionic and bosonic loops.
In particular the non-renormalization theorems [13] were theoretically very appealing.
We will restrict our further analysis here to N = 1 SUSY, where N is the number of SUSY generators,
i.e. number of distinct (Q, Q̄)-pairs. This means that for a renormalizable gauge theory (all fields have
spin ≤ 1) there are only two possible kinds of supermultiplets6: A chiral supermultiplet consists of a
Weyl fermion and a complex scalar, whereas a vector supermultiplet consists of a spin-1 vector boson
and a spin- 12 Weyl fermion. From Eq. (1.2.2) it also follows that all states in a supermultiplet must have
the same mass. Moreover the number of fermionic and bosonic DOF in a supersymmetric theory must
be equal.

1.2.1 Superfield and Superspace Formalism

To introduce SUSY in a formal and mathematical way, the notion of superfields and superspace is
a very elegant tool. In order to implement SUSY in a 4-dimensional field theory, we introduce the
supercoordinates (xµ, θ, θ̄), which span the superspace. Here xµ is just the ordinary four component
space-time vector and θ, θ̄ are spinorial coordinates spanning the fermionic subspace of superspace. They
obey θθ = −2θ1θ2 and θ̄θ̄ = 2θ̄1̇θ̄2̇. An infinitesimal transformation on the superspace can be given in
terms of two component anticommuting spinor parameters ε and ε̄

z ≡ (xµ, θ, θ̄) → (xµ − iθσµε̄+ iεσµθ̄, θ + ε, θ̄ + ε̄). (1.2.3)

6A supermultiplet consists of the fermionic and bosonic superpartners connected by the SUSY transformations Eq. (1.2.1).
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Any function on the superspace can be easily expanded in θ and θ̄, because any spinorial coordinate with
power higher than two vanishes, i.e. θn = 0 and θ̄n = 0, for n > 2. The most general scalar superfield
with spin ≤ 1 on superspace is

F(z) = f(x)+ θξ(x)+ θ̄χ̄(x)+ θθM(x)+ θ̄θ̄N(x)+ θσµ θ̄Aµ(x)+ θθθ̄λ̄(x)+ θ̄θ̄θζ(x)+ θθθ̄θ̄D(x), (1.2.4)

where f(x), F (x), N(x), D(x) denote scalar fields, ξ(x), ζ(x) are left-handed Weyl spinor fields, χ̄(x), λ̄(x)
right-handed Weyl spinor fields and Aµ(x) is a complex vector field. This means that F has 16 bosonic
and 16 fermionic DOF. By applying a superspace transformation Eq. (1.2.3) to the expanded superfield
F(z) we see that the D-component (the coefficient of the θθθ̄θ̄-term) of the superfield transforms by a
four divergence, which will be discarded as any surface term. Any D-term in a Lagrangian is therefore
supersymmetric. Linear combinations and products of superfields are again superfields, i.e. superfields
form a linear representations of the SUSY algebra.
This representation of the SUSY algebra is reducible. The field content of the irreducible representations
corresponds exactly to the supermultiplets introduced in section 1.2. It is convenient to introduce the
complex coordinate y = x − iθσµθ̄. The chiral superfield (also called left chiral) Φ has a simple form
expressed in this complex coordinate

Φ(y, θ) = φ(y) + θξ(y) + θθF (y), (1.2.5)

where φ is a complex scalar, ξ is a left-handed Weyl spinor and F denotes an auxiliary complex scalar
field. The anti-chiral superfield (also called right chiral) Φ†, expressed in the hermitian conjugate of the
complex coordinate, reads

Φ†(ȳ, θ̄) = φ⋆(ȳ) + θ̄ξ̄(ȳ) + θ̄θ̄F ⋆(ȳ), (1.2.6)

where φ⋆ is a complex scalar, ξ̄ is a right-handed Weyl spinor and F ⋆ is an auxiliary complex scalar
field. Note that the F -component of a chiral superfield transforms into itself plus a space-time derivative.
Hence, any F -term in the Lagrangian density leads to a SUSY-invariant action when surface terms can
be discarded.
The vector superfield V (xµ, θ, θ̄) is defined to be hermitian

V † = V. (1.2.7)

This means that ΦΦ† and Φ+Φ† are vector superfields. We can thus define a supergauge transformation
by

V → V + iΛ− iΛ†, (1.2.8)

where Λ and Λ† are chiral and anti-chiral superfields respectively. In the Wess-Zumino gauge, the vector
superfield has the following form

VWZ = θσµθ̄Aµ(x) + θθθ̄λ̄(x) + θ̄θ̄θζ(x) + θθθ̄θ̄D(x), (1.2.9)

where Aµ is a complex vector, λ and λ̄ are left- and right-handed Weyl spinors and D is an auxiliary
field, without a kinetic term. It can therefore be eliminated using its equation of motion.

1.2.2 Constructing Supersymmetric Lagrangians

To construct supersymmetric Lagrangians, we use the fact that the D-term always transforms by a four
divergence. Moreover the F -term is supersymmetric for any combination of chiral fields only. Renormal-
izability demands that the mass dimension of the operators in the Lagrangian is not more than four.
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Chiral Superfield Lagrangian: A general renormalizable supersymmetric Lorentz invariant Lagrangian
density, involving only polynomials of chiral superfields, is therefore

Lchiral =
[

ΦiΦ
†
i

]

D
+ [W(Φi) + h.c.]F , (1.2.10)

W(Φi) = hiΦi +
1

2
mijΦiΦj +

1

3!
fijkΦiΦjΦk, (1.2.11)

where we sum over the repeated indices i, j, k and the subscripts D and F mean that we single out the
corresponding terms, which survive after integrating out the Grassmann variables. The superpotential
is then replaced by the same function of the scalar field φ only, i.e. W(Φi) → W(φi) . The first term
in the Lagrangian Eq. (1.2.10) is a vector superfield. The second term is a polynomial in the chiral
fields consisting of the superpotential W , defined in Eq. (1.2.11) plus its hermitian conjugate. Note that
for SUSY invariance the superpotential has to be analytic (or holomorphic). We can now express the
Lagrangian in terms of component fields. Using the equations of motion for the auxiliary fields F and F ⋆

Fi = −∂W†

∂φ†
i

= −h⋆
i −m⋆

ijφ
⋆
j −

1

2
f⋆
ijkφ

⋆
jφ

⋆
k, F ⋆

i = −∂W
∂φi

= −hi −mijφj −
1

2
fijkφjφk, (1.2.12)

we arrive at
Lchiral = Lkin + LYukawa − V (φi, φ

⋆
j ), (1.2.13)

with

Lkin =
i

2

[

ξiσ
µ(∂µξ̄i)− (∂µξi)σ

µ ξ̄i
]

+ ∂µφi∂
µφ⋆

i , (1.2.14)

LYukawa = −1

2

[

ξiξj
∂2W
∂ΦiΦj

+ h.c.

]

= −1

2
[ξiξj(mij + fijkφk) + h.c.] , (1.2.15)

V (φi, φ
⋆
j ) =

∂W†

∂Φ†
i

∂W
∂Φi

= F ⋆
i Fi. (1.2.16)

Abelian U(1) gauge interactions: To couple these chiral superfields Φ to an abelian gauge vector

superfield V , we extend the first term in Eq. (1.2.10) to
[

Φ†
ie

2gtiV Φi + ηV
]

D
, where g is the gauge

coupling and ti is a real number, namely the U(1) charge of Φi. Note that the D-component of the vector
superfield V is gauge invariant as well, so we can add it, multiplied by a real constant η. In terms of
component fields this part of the Lagrangian can be expressed as

Lkin,chiral = iξiσ
µ∆†

iµξ̄i + |∆iµφi|2 −
√
2gti(λ̄ξiφi + h.c.), (1.2.17)

where ∆iµ = ∂µ + igtiAµ is the gauge covariant derivative. The first two terms in Eq. (1.2.17) are
ordinary kinetic terms for scalars and fermions in the chiral supermultiplet involving gauge interactions.
The last term is a Yukawa interaction of a fermion, a sfermion and a gaugino. It is required by the
supersymmetrization of the gauge coupling. Moreover we have a kinetic Lagrangian for the gauge vector
superfield, which can be expressed in terms of component fields as

Lkin,gauge,abelian =
1

2
D2 − 1

4
FµνF

µν +
i

2

[

λσµ(∂µλ̄)− (∂µλ)σ
µλ̄
]

, (1.2.18)

where Fµν ≡ ∂νAµ − ∂µAν is the usual field strength tensor. The auxiliary field D can be eliminated
using its equations of motion D = −gφ⋆

i tiφi− η. This means that the first term in Eq. (1.2.18) generates
quartic scalar interactions proportional to the gauge coupling. Note that in QED we need two left chiral
superfields with opposite charge to describe a Dirac fermion.
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Non-abelian gauge interactions: We will only sketch how we can extend the above Lagrangian to
non-abelian gauge groups, because explicit formulae contain an inflation of indices. The representation
matrices of the gauge group in the fundamental representation T a

ij enter in the first term in Eq. (1.2.10)

changing it compared to the abelian case to
[

Φ†
ie

V aTa
ijΦj

]

D
, where we sum over the indices i, j. Moreover

the non-abelian structure introduces self-interactions among the components of the vector superfield. This
means that the gaugino field λ is also coupled to the gauge field Aµ via a Yukawa-term in the Lagrangian
iλaσµ∆µλ̄

a. The self-interactions among the gauge fields Aµ can be obtained by substituting the partial
derivatives in the field strength tensor with covariant derivatives. This changes the kinetic term in the
gauge Lagrangian, Eq. (1.2.18) to

Lkin,gauge,non−abelin =
1

2
D2 − 1

4
Fµν,aF

µν,a +
i

2

[

λaσµ∆µλ̄a − (∆µλ
a)σµλ̄a

]

. (1.2.19)

1.3 The Minimal Supersymmetric Extension of the SM

To construct the MSSM [14] we incorporate the SM particles in the N = 1 supermultiplets. The chiral SM
fermions have to be Weyl fermions in the chiral supermultiplet. Putting them into the vector multiplet
would introduce vector boson partners for all SM fermions and therefore new gauge interactions. Every
SM fermion gets a scalar partner. The superpartners of the SM fermions are named like the SM particles,
with an “s” (for scalar) in front and they are denoted by a tilde (˜), e.g. for an electron eR, eL there is
a selectron7 ẽR, ẽL. SUSY demands that the scalar superpartners have exactly the same gauge quantum
numbers as the SM fermions, i.e. they reside in the same representation of the gauge group.
The Higgs fields are scalars and they therefore have to be in a chiral supermultiplet. Their supersymmetric
partners are spin- 12 Weyl fermions called Higgsinos, denoted by H̃ . All fermionic superpartners will be
named by an appended -ino. In contrast to the SM we need two Higgs doublets for several reasons.
First we want a theory free of anomalies [15]. A necessary condition for a theory to be free of anomalies
is that the trace of the cubed hypercharge Tr[Y 3] over all left-handed Weyl fermions in the theory has
to vanish. Since the Higgs field in the SM has hypercharge Y = ±1 the superpartners of the Higgs
doublet would introduce an anomaly. We therefore introduce two Higgs doublets, with Y = +1 and
Y = −1. Moreover two Higgs doublets are needed to define an analytical superpotential in which
up- and down-quarks acquire their masses from different Higgs doublets. The MSSM consists of the
chiral superfields Φ = {Li, E

c
i , Q

c
i , U

c
i , Di, Ĥ1, Ĥ2}, where i = 1, 2, 3 is the family index. Table 1.1

shows all chiral superfields in the MSSM, specifying their particle content and their representation in
the gauge group. The family index i = 1, 2, 3 comprises the fields uiL = (uL, cL, tL), diL = (dL, sL, bL),
uiL = (eL, µL, τL) and equivalently for the sfermions and L → R.
The SM gauge bosons have to be put in a vector multiplet. This implies three kinds of vector superfields
V = {VB, ~VW , V a

g }, where a = 1, · · · , 8. In the SM we have one B-boson, three W-bosons and 8 gluons.

Their fermionic partners are called gauginos, denoted by a tilde (˜), in particular one bino B̃, three

winos ~̃W and eight gluinos g̃a. The content of the vector multiplet is shown in Table 1.2. The SM
Lagrangian conserves both baryon number and lepton number. This is not imposed but emerges as an
accidental symmetry. To conserve lepton and baryon number also in the MSSM, we impose R-parity
symmetry. R-parity is a multiplicative quantum number, being +1 for all SM particles and −1 for all
supersymmetric partners. This additional symmetry forbids terms that violate lepton and baryon number
in the superpotential. It has important phenomenological consequences:

• The lightest particle with R-parity −1, called the Lightest Supersymmetric Particle (LSP) is abso-
lutely stable. If it is electrically and color neutral, it interacts only weakly with ordinary matter
and is thus a dark matter candidate.

7Note that the L and R index for the scalars are a little misleading because scalar particles do not carry helicity. They
denote that the scalar fields have the same hypercharge as their superpartners.
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Superfield SU(3)C SU(2)L U(1)Y Particle content

Qc
i 3 2 1

3 (uiL, diL), Q̃i ≡ (ũiL, d̃iL)
Ui 3̄ 1 − 4

3 ūiR, ũ
⋆
iR

Dc
i 3̄ 1 2

3 d̄iR, d̃
⋆
iR

Li 1 2 −1 (eiL, νiL), L̃i ≡ (ẽiL, ν̃iL)
Ec

i 1 1 2 ēiR, ẽ
⋆
iR

Ĥ1 1 2 −1 (H̃0
1 , H̃

−
1 ), H1 ≡ (H0

1 , H
−
1 )

Ĥ2 1 2 1 (H̃+
2 , H̃0

2 ), H2 ≡ (H+
2 , H0

2 )

Table 1.1: The representation of the chiral superfields in the gauge groups and their particle content.
Parentheses contain an SU(2) doublet. The superscript c denotes charge conjugation.

Superfield SU(3)C SU(2)L U(1)Y Particle content

VB 1 1 0 B, B̃

~VW 1 3 0 ~W, ~̃W
V a
g 8 1 0 ga, g̃a

Table 1.2: The representation of the vector superfields in the gauge groups and their particle content.
The gluon index is a = 1, · · · , 8.

• Each particle with R-parity−1, other than the LSP, must eventually decay into a state that contains
an odd number of LSPs.

• In collider experiments, particles with R-parity −1 can only be produced in even numbers.

To arrive at the Lagrangian for the MSSM we need to derive a supersymmetric Lagrangian with a non-
abelian U(1)Y ×SU(2)L×SU(3)C gauge group and R-parity symmetry. The MSSM Lagrangian consists
of a kinetic Lagrangian analogous to Eq. (1.2.17) for all fermionic and scalar component fields contained
in the MSSM chiral supermultiplets Φ = {Li, E

c
i , Qi, U

c
i , D

c
i , H̃1, H̃2}, a kinetic Lagrangian analogous to

Eq. (1.2.19) for all gaugino and vector component fields contained in the MSSM vector supermultiplets

V = {VB, ~VW , V a
g } and a superpotential Lagrangian consisting of a Yukawa term analogous to Eq. (1.2.15)

and a potential term analogous to Eq. (1.2.16). The superpotential of the MSSM is the most general
renormalizable, gauge, R-parity and SUSY invariant superpotential we can write down. It reads

WMSSM = εmnµĤ
m
1 Ĥn

2 + εmn

[

hLĤ
m
1 LnE + hDĤm

1 QnD + hUĤ
m
2 QnU

]

, (1.3.1)

where m,n = 1, 2 are SU(2)L indices, µ is called the Higgsino mass8 and hL, hU , hD are the Yukawa
coupling matrices, which we assume to be diagonal for simplicity.
Since we have not detected superpartners to any of the SM particles yet, they cannot be of the same
mass. This means that SUSY has to be broken. In order to maintain the nice UV behavior of SUSY,
this breaking has to be soft, i.e. all field-dependent SUSY-breaking terms in the Lagrangian must have
mass dimension ≤ 3. The fact that there are no terms in the Lagrangian with mass dimension four
means that in the limit of high energies, E → ∞, supersymmetry is restored. Moreover in order to solve
the hierarchy problem the mass shift between the SM particles and their superpartner emerging from

8The Higgsino mass µ is the only dimensionful quantity in the MSSM that has its origin neither in the soft breaking
Lagrangian nor from EWSB. This means that the size of this parameter is naturally at the UV-cutoff of the theory, usually
referred to as the GUT or the Planck scale. In the MSSM, however, the size of this term is required to be around the soft
breaking scale. The unnatural mismatch of these scales results in a little hierarchy problem usually called the µ-problem. In
contrast to the hierarchy problem in the SM, the parameter µ is technically natural, which means that it is not quadratically
divergent and only slightly modified by radiative corrections.
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the soft-breaking Lagrangian must not be too large, see Eq. (1.1.2). It is usually assumed that SUSY
breaking occurs at high energies, for example at the Planck mass or the GUT scale. Since we cannot
probe such energy scales experimentally, it is very difficult to get any information about how SUSY is
broken. For practical reasons, SUSY breaking is described by an effective Lagrangian parameterizing
our ignorance about the SUSY breaking mechanism and containing only soft terms that explicitly break
SUSY. The MSSM contains the most general gauge invariant and R-parity conserving soft Lagrangian

Lsoft =− 1

2

(

M3
¯̃gag̃a +M2

¯̃
~W ~̃W +M1

¯̃BB̃ + h.c.

)

−
(

ũ⋆
iRh

U
ijA

UQ̃j ·H2 − d̃⋆iRh
D
ijA

DQ̃j ·H1 − ẽ⋆iRh
L
ijA

LL̃j ·H2 + h.c.
)

− Q̃⋆
i (m

2
Q)ijQ̃j − L̃⋆

i (m
2
L)ij L̃j − ũ⋆

iR(m
2
U )ij ũ− d̃⋆iR(m

2
D)ij d̃jR − Ẽ(m2

E)ijẼ
†

− (mH
1 )2H⋆

1H1 − (mH
2 )2H⋆

2H2 −Bµεmn(H
m
1 Hn

2 + h.c.), (1.3.2)

where hij and m2
ij are both 3 by 3 matrices in family space. Generally they are arbitrary, but in the

following we assume the SUSY breaking mass matrices m2
ij to be proportional to 1 and the trilinear

couplings in the soft SUSY breaking Lagrangian are proportional to the diagonal Yukawa matrices. In
this way CP-violating effects and additional Flavor Changing Neutral Currents (FCNC) are suppressed9.
Note also that we suppressed SU(2)L indices. The · between the SU(2)L doublet fields in the second line
of Eq. (1.3.2) corresponds to a contraction of the SU(2)L indices m,n with the totally antisymmetric
tensor εmn, where ε12 = +1. In the third line of Eq. (1.3.2) the SU(2)L indices m,n of the first two
terms are contracted in a symmetric way δmn.

1.3.1 Squark Sector in the MSSM

The mass degeneracy between the SM fermions and their superpartners is destroyed by the terms in
the soft SUSY breaking Lagrangian, see Eq. (1.3.2). Moreover after EWSB there are chirality changing
Yukawa interactions, see Eqs. (1.3.1, 1.3.2) that produce off-diagonal entries in the squark mass matrices
in the chiral (or current eigenstate) basis. Last but not least there are D-term contributions that cause
diagonal squark mass-terms proportional to the weak gauge couplings g and g′. Collecting all bilinear
terms in the squark fields f̃L and f̃R yields the following squark mass matrix

Mq̃L,R
=

(

m2
Q +m2

q + (I3q − eq sin
2 θW )M2

Z cos 2β mq(Aq + µrq)

mq(Aq + µrq) m2
U,D +m2

q + eq sin
2 θWM2

Z cos 2β

)

≡
(

M2
LL M2

LR

M2
LR M2

RR

)

, (1.3.3)

where eq is the electric charge, I3u,d = ± 1
2 is the third component of the weak isospin, θW is the Weinberg

angle and

rq =

{

cotβ q = u
tanβ q = d

. (1.3.4)

There are off-diagonal terms in the squark matrices, proportional to the quark masses. The chiral
eigenstate squarks are therefore not the mass eigenstates. To express the mass matrix in terms of mass
eigenstate squarks, denoted by q̃1,2, we need to diagonalize the 2 by 2 matrix, Eq. (1.3.3)

R(θq̃)Mq̃L,R
R(θq̃)

† =

(

mq̃1 0
0 mq̃2

)

,

(

q̃1
q̃2

)

= R(θq̃)

(

q̃L
q̃R

)

, R(θq̃) =

(

cos θq̃ sin θq̃
− sin θq̃ cos θq̃

)

,

(1.3.5)

9Scaling the trilinear couplings with the Yukawa matrices ensures that the parameters AU , AD, AL do not have to be
hierarchical.
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where the masses of the physical squarks satisfy mq̃1 ≥ mq̃2 by convention and are given by

mq̃1,2 =
1

2

(

M2
LL +M2

RR ±
√

(M2
LL −M2

RR)
2 + 4M4

LR

)

. (1.3.6)

The squark mixing angle θq̃ is determined by either of the two following expressions

sin 2θq̃ =
2M2

LR

m2
q̃1

−m2
q̃2

=
2mqXq

m2
q̃1

−m2
q̃2

, cos 2θq̃ =
m2

Q −m2
U,D

m2
q̃1

−m2
q̃2

, Xq = Aq + µrq (1.3.7)

and Xq is called the squark mixing parameter.

1.4 MSSM Higgs Masses and Self-Couplings at Tree-Level

1.4.1 The Tree-Level Higgs Potential

The tree-level Higgs potential in the MSSM can be obtained by extracting all terms containing only scalar
Higgs fields from the MSSM Lagrangian

V 0 =((mH
1 )2 + µ2)|H1|2 + ((mH

2 )2 + µ2)|H2|2 −Bµǫij(H
i
1H

j
2 + h.c.)+

+
g2 + g′2

8
(|H1|2 − |H2|2)2 +

g2

2
|H†

1H2|2, (1.4.1)

where H1 and H2 are complex SU(2)L Higgs doublet. The mass-terms for H1 and H2 arise on the one
hand from the SUSY breaking Lagrangian Eq. (1.3.2) (mH

1 and mH
2 ). The µ2 in the first two terms

originates from the F-terms, see Eq. (1.2.16). The third term contains the totally antisymmetric tensor
εij and emerges from soft SUSY breaking, see Eq. (1.3.2). The last two terms contain the electroweak
coupling constants g and g′, their origin is the D-term, see Eq. (1.2.19). Note that in supersymmetric
theories all quartic self-couplings of the Higgs fields are related to the gauge couplings of the electroweak
theory. This is a remarkable difference to the SM, where the quartic term is not related to any quantities
outside the Higgs sector.
We will parameterize the two Higgs doublets in the following way

H1 =

(

H1
1

H2
1

)

≡
(

H0
1

H−
1

)

, H2 =

(

H1
2

H2
2

)

≡
(

H+
2

H0
2

)

. (1.4.2)

The +, − and 0 superscripts indicate the electric charge of the Higgs fields. In terms of the complex field
components, the potential is given by

V 0 =(m2
1)(|H0

1 |2 + |H−
1 |2) + (m2

2)(|H+
2 |2 + |H0

2 |2)−

−Bµ(H0
1H

0
2 −H−

1 H+
2 + h.c.) + (1.4.3)

+
g2 + g′2

8
(|H0

1 |2 + |H−
1 |2 − |H0

2 |2 − |H+
2 |2)2 + g2

2
|(H0

1 )
⋆H+

2 +H+
1 H0

2 |2,

where we introduced the parameters m2
1 ≡ (mH

1 )2 + µ2 and m2
2 ≡ (mH

2 )2 + µ2.

1.4.2 Electroweak Symmetry Breaking

The Higgs field induces SSB if the minimum of the potential, i.e. the vacuum or ground state of the
theory is attained at a nonzero value for the Higgs fields. For the breaking of the electroweak symmetry
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we thus need a nonzero VEV for the Higgs fields, which is not invariant under SU(2)L ×U(1)Y but only
under U(1)em. Since we do not want to break U(1)em-invariance, we apply SU(2)L rotations on the
complex Higgs doublets, such that the charged components H−

1 and H+
2 do not get a VEV. Moreover we

use the SU(2)L × U(1)Y invariance to make the VEVs of the neutral components real and positive and
to write m2

3 = Bµ, where m2
3 is real and positive. We can write the neutral complex Higgs fields as a

real and a complex part with a normalization factor
√

1/2

H0
i =

1√
2
(ai + iPi), ai, Pi ∈ R. (1.4.4)

Minimizing the effective potential: Due to the residual U(1)em invariance we can rotate the neutral
part of the Higgs doublets in such a way that only the real parts ai acquire a VEV10. We call the minima
of the tree-level potential vi

∂V 0(ak, Pk)

∂ai

∣

∣

∣

∣

ak=vmin
k

,Pk=0

= 0, i = 1, 2. (1.4.5)

The above minimization conditions give the following two equations

m2
1 −m2

3 tan(β) +
g2 + g′2

8

[

v21 − v22
]

= 0 (1.4.6)

m2
2 −m2

3 cot(β) −
g2 + g′2

8

[

v21 − v22
]

= 0, (1.4.7)

where we introduced the angle β as tanβ ≡ v2
v1
. These equations allow us to eliminate m2

1 and m2
2. The

neutral parts of the Higgs doublets are expanded around these minima

H0
i =

1√
2
(vi + Si + iPi). (1.4.8)

The fluctuations around the VEVs Si correspond to the physical CP-even Higgs current eigenstates with
zero VEVs 〈Si〉 = 0. The minimization condition means that there are no tadpole terms, i.e. linear terms
in the fields Si and Pi. Eq. (1.4.8) is inserted in the complete Lagrangian, such that the whole theory is
expanded around the minimum of the potential. In this way the VEVs of the Higgs fields give mass to
the W - and Z-boson as well as to the SM fermions

m2
Z =

g2 + g′2

4
[v21 + v22 ], m2

W =
g2

4
[v21 + v22 ], m2

u,l =
h2
u,l

2
v22 , m2

d =
h2
d

2
v21 . (1.4.9)

We can therefore relate the VEV of the SM v, measured in the muon decay [16], with the VEVs of the
MSSM

GF =
1√

2[v21 + v22 ]
= 1.1663788(7) · 10−5 GeV−2, ⇒ v =

√

v21 + v22 ≃ 246.22 GeV. (1.4.10)

Moreover the MSSM VEVs enter in the sfermion masses and in various trilinear couplings.
Note that the Higgs potential has to be bounded from below. Looking at the potential of the neutral
Higgs fields only, one sees that for |H0

1 |2 = |H0
2 |2 we obtain the condition

m2
1 +m2

2 > 2m2
3, (1.4.11)

which has to be fulfilled also when radiative corrections are taken into account. Moreover for non-zero
VEVs to develop, at least one of the eigenvalues of the mass squared matrix of the Higgs fields has to be
negative. This requires

m4
3 > m2

1m
2
2, (1.4.12)

i.e. a necessary condition for EWSB to occur is that SUSY is broken.

10A VEV for the imaginary parts Pi would result in unwanted CP violation.
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1.4.3 The Masses of the Physical Higgs Bosons

To define the masses of the physical Higgs bosons, the mass matrix, defined as the bilinear term in the
fields, has to be considered. To get the tree-level masses, we therefore have to take two derivatives of the
Higgs potential with respect to two fields φi and φj and evalute it at the minimum of the potential, i.e.
all fields are substituted by their VEV

M ij ≡ ∂2V 0

∂φi∂φj

∣

∣

∣

∣

min

. (1.4.13)

Since the U(1)em symmetry is unbroken, there are no mass-terms that mix the charged and the uncharged
Higgs bosons. This means both sectors can be treated separately. Moreover there is no CP violation and
therefore no mixing between the CP-odd and the CP-even scalar fields P1,2 and S1,2. The 8 by 8 matrix
of the Higgs sector therefore splits up into four 2 by 2 matrices.

The masses of the pseudoscalar Higgs bosons: The mass matrix for the CP-odd scalars is

(M2
P )ij =

∂2V 0

∂Pi∂Pj

∣

∣

∣

∣

min

= m2
3

(

tan(β) 1
1 cot(β)

)

, i, j = {1, 2}, (1.4.14)

where we used the minimization conditions Eqs. (1.4.6, 1.4.7) to eliminate m2
1 and m2

2. The fields P1,2

are no mass eigenstates, because the mass matrix is not diagonal. To get the masses of the physical
Higgs bosons, we can calculate the eigenvalues of the matrix (M2

P )ij , which is easy for a 2 by 2 matrix,
see appendix A.1. We label the CP-odd eigenstates by A and G. Their masses can be determined using
Eq. (A.1.3)

m2
G,A =

1

2
m2

3





sβ
cβ

+
cβ
sβ

±

√

(

sβ
cβ

− cβ
sβ

)2

+ 4



 ⇒ m2
G = 0, m2

A =
2m2

3

sin(2β)
, (1.4.15)

where we use the obvious abbreviations for the trigonometric functions: sβ ≡ sin(β), cβ ≡ cos(β) and
tβ ≡ tan(β). This means that G is a massless would-be Goldstone boson. From EWSB we expect to get
three would-be Goldstone bosons which are ”eaten up” in order to give the three massive gauge bosons
(W± and Z) a longitudinal polarization direction. The mass of the state A is determined by the angle
β and the parameter m2

3. In the future we will take m2
A and β as input parameters, using m2

3 = m2
Asβcβ

to eliminate m2
3. The tree-level Higgs sector can be therefore described by only two parameters.

The masses of the scalar CP-even Higgs bosons: We will proceed exactly in the same way as in
the CP-odd case. The mass matrix for the CP-even scalars is

(M2
S)ij =

∂2V 0

∂Si∂Sj

∣

∣

∣

∣

min

=

(

m2
As

2
β +m2

Zc
2
β −cβsβ(m

2
A +m2

Z)

−cβsβ(m
2
A +m2

Z) m2
Ac

2
β +m2

Zs
2
β

)

. (1.4.16)

Using Appendix A.1 we find the masses of the two neutral CP-even Higgs bosons

m2
H,h =

1

2

[

m2
A +m2

Z ±
√

(m2
A +m2

Z)
2 − 4m2

Am
2
Z cos2(2β))

]

. (1.4.17)

We denote the light scalar mass eigenstate by h and the heavy eigenstate by H . Eq. (1.4.17) leads to an
upper bound for the mass of the light scalar Higgs boson

m2
h ≤ m2

Z ,m
2
A. (1.4.18)
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The plot in Figure 1.3 shows the tree-level Higgs masses for the light and the heavy scalar as a function
of the pseudoscalar Higgs mass for different values of tanβ. The value of tanβ determines the steepness
of the slope of mh for mA . mZ and the steepness of the slope of mH for mA & mZ . Moreover it
determines the upper bound for the light scalar Higgs mass11 mh ≤ mZ |cos 2β|. For mA ≫ mZ the
heavy Higgs states decouple mH ≃ mA and mh is at its maximum value, see also section 1.4.7. The
region of mA ≃ mZ , where the curves of mh and mH are closest to each other is called the transition
region.
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Figure 1.3: The CP-even scalar MSSM Higgs masses as functions of mA for tanβ = 2, 10, 60 at leading
order (LO). The three upper curves belong to the heavy scalar, whereas the three lower curves belong to
the light scalar.

The MSSM at tree-level has already been ruled out by the LEP experiment, which could have produced
a light scalar Higgs boson directly in the whole mA-tanβ parameter space. The MSSM Higgs sector,
however, receives large radiative corrections, such that the light scalar Higgs mass is enhanced, such
that the LEP exclusion bounds apply only to restricted regions of parameter space. Figure 1.4 shows
regions in the mA-tanβ-plane in the mmax

h scenario excluded by CMS (blue) and by the LEP experiment
(green). For low values of tanβ and mA, the light scalar Higgs boson could be produced directly via
Higgsstrahlung in the LEP experiment. Therefore values for tanβ . 2.5 and mA < 93 GeV have been
excluded at 95% CL already by LEP. Due to the enhanced coupling of the heavy scalar to leptons for large
tanβ the LHC can access regions of high tanβ by analyzing ττ final states. With growing pseudoscalar
Higgs masses mA, however, the production rate for the heavy scalar Higgs boson H shrinks. For this
reason regions of low pseudoscalar masses and high tanβ can be excluded first by the LHC.

11This bound can be obtained by expanding Eq. (1.4.17) for mA ≫ mZ .
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Figure 1.4: Regions in the mA-tanβ-plane in the mmax
h scenario excluded by CMS (blue) and by the LEP

experiment (green) at 95% CL [17]. CMS uses ττ final states analysis from the full 2011 data set with an
integrated luminosity of 4.6fb−1 at a center of mass energy of

√
s = 7 TeV. The combined LEP result was

obtained by analyzing bb̄ and ττ final states from decaying Higgs bosons, produced via Higgsstrahlung
and pair production [18].

The masses of the charged Higgs bosons: The terms of the potential that are bilinear in H+
1,2 and

H−
1,2 are

V± =(m2
1)(H

+
1 H−

1 ) + (m2
2)(H

+
2 H−

2 )+

+m2
3(H

+
2 H−

1 +H+
1 H−

2 ) +
m2

Z

2
cos(2β)[H+

1 H−
1 +H+

2 H−
2 ]+ (1.4.19)

+m2
W [c2βH

+
2 H−

2 + s2βH
+
1 H−

1 sβcβ(H
+
1 H−

2 +H+
2 H−

1 )].

The mass matrix for the charged Higgs bosons is proportional to the CP-odd mass matrix

M ij
± ≡ ∂2V 0

∂H+
i ∂H−

j

∣

∣

∣

∣

∣

min

=
∂2V ±

∂H+
i ∂H−

j

= sβcβ(m
2
A +m2

W )

(

tβ 1
1 t−1

β

)

. (1.4.20)

Calculating the eigenvalues, we obtain two charged massless would-be Goldstone boson and two charged
Higgs bosons, with the following mass relations

mG± = 0, m2
H± = m2

A +m2
W . (1.4.21)

The MSSM Higgs sector therefore consists of three would-be Goldstone bosons, i.e. longitudinal polar-
izations for the massive gauge bosons and five massive Higgs bosons. Note that for large m2

A the mass
of the heavy scalar and the mass of the charged Higgs bosons also become large. For this reason it is
usually said that there are four heavy and one light Higgs boson in the MSSM.
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1.4.4 Mixing Angles

Finding the mixing matrices for the mass diagonalization is essential in order to determine the Higgs
self-couplings of the mass eigenstates. In the MSSM this task is simplified, because we have only 2 by 2
matrices and we can therefore parameterize all three mixing matrices by only one angle Θ, see appendix
A.2.

Mixing angle for the charged and the pseudoscalar Higgs bosons: For the charged and the
CP-odd Higgs bosons we obtained the same mass matrix up to a constant factor

M ≡
(

tβ 1
1 t−1

β

)

. (1.4.22)

This means that the mixing angles must also be identical. From appendix A.2 it follows that Θ = β and
therefore

D = RβMRβ = (tβ + t−1
β )

(

1 0
0 0

)

, Rβ ≡
(

sβ cβ
cβ −sβ

)

. (1.4.23)

The matrix D is diagonal and the entries are exactly the masses we obtained in Eqs. (1.4.15, 1.4.21). We
found that at tree-level the rotation angle for the CP-odd and the charged Higgs bosons is the same as
the arctangent of the VEV ratios of the two Higgs doublets

Θ = β = arctan

(

v2
v1

)

. (1.4.24)

Mixing angle for the neutral CP-even Higgs bosons: The mass matrix for the neutral CP-even
Higgs bosons (M2

S)ij is given in Eq. (1.4.16). We call the CP-even mixing angle α = −Θ and use the
results of appendix A.2. Using Eq. (A.2.4) yields the mixing angle

α =
1

2
arcsin

−2cβsβ(m
2
A +m2

Z)

m2
H −m2

h

. (1.4.25)

This implies that α ∈ [−π
2 , 0]. Note that the domain of α can change when radiative corrections are

taken into account.

1.4.5 Higgs Couplings to Fermions and Gauge Bosons

In the SM the Higgs-quark couplings are generated by the Yukawa term in the Lagrangian

LY,SM =
∑

q

yqqq̄
1√
2
(v + η), (1.4.26)

where yq =
√
2mq/v is the SM Yukawa coupling, q = u, d, s, c, t, b is a SM quark and η is the CP-even,

neutral SM scalar Higgs field fluctuating around the SM VEV v. In the MSSM the Higgs-quark couplings
are very similar, except that up and down type quarks couple to different Higgs fields. The MSSM
Yukawa part of the Lagrangian comes from the superpotential Eq. (1.3.1) and is given by

LY,MSSM =
∑

u

huuū
1√
2
H0

2 +
∑

d

hddd̄
1√
2
H0

1 , (1.4.27)

where hu,d denotes the up, respectively the down type Yukawa coupling in the MSSM. Note that the
coupling of the leptons to the Higgs sector is down type. We want to express H0

1 and H0
2 in terms of the
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φ gφu gφd gφV
SM H 1 1 1
MSSM h cα/sβ −sα/cβ sin(β − α)

H sα/sβ cα/cβ cos(β − α)
A t−1

β tβ 0

Table 1.3: Couplings of the neutral MSSM Higgs bosons to fermions and gauge bosons.

physical fields h, H and A. To do so we use Eq. (1.4.8) and the results of the rotations in section 1.4.4,
i.e.

(

P1

P2

)

=

(

sβ cβ
cβ −sβ

)(

A
G

)

,

(

S1

S2

)

=

(

−sα cα
cα sα

)(

h
H

)

(1.4.28)

To get the correct masses of the up respectively the down quarks md,u, we need the following MSSM
Yukawa couplings: hd = md/v1 and hu = mu/v2.
The Higgs boson can also couple to gauge bosons via the kinetic part of the Lagrangian of the Higgs
field. In the MSSM we have

Lkin = (DµH1)(D
µH1)

† + (DµH2)(D
µH2)

†, (1.4.29)

where H1 and H2 are the doublet fields. In the SM this term is similar, but there is only one doublet
field. Using Eqs. (1.4.2, 1.4.8, 1.4.28), we can derive the Higgs-gauge boson couplings.
Putting everything together it is easy to compare the Higgs-quark and Higgs-gauge boson couplings in
the SM to the couplings in the MSSM. In Table 1.3 the couplings are listed. All values are normalized
to the SM couplings.

1.4.6 Trilinear and Quartic Self-Couplings of the Scalar MSSM Higgs Bosons

The trilinear and quartic tree-level self-couplings of the scalar MSSM Higgs bosons h and H are defined
by the trilinear respectively the quartic terms in the Higgs fields of the tree-level Higgs potential. They
are obtained by taking three respectively four derivatives of V 0, with respect to the corresponding fields.
The trilinear self-couplings can be expressed in the following simple form

λhhh ≡ ∂3V 0

∂h3

∣

∣

∣

∣

min

=
3m2

Z

v
cos(2α) sin(α + β), λHHH ≡ ∂3V 0

∂H3

∣

∣

∣

∣

min

=
3m2

Z

v
cos(2α) cos(α+ β),

λhhH ≡ ∂3V 0

∂h2∂H

∣

∣

∣

∣

min

=
m2

Z

v
(2 sin(2α) sin(α+ β)− cos(2α) cos(α+ β)),

λhHH ≡ ∂3V 0

∂h∂H2

∣

∣

∣

∣

min

= −m2
Z

v
(2 sin(2α) cos(α + β) + cos(2α) sin(α+ β)),

λhAA ≡ ∂3V 0

∂h∂A2

∣

∣

∣

∣

min

=
m2

Z

v
cos(2β) sin(α+ β), λHAA ≡ ∂3V 0

∂H∂A2

∣

∣

∣

∣

min

= −m2
Z

v
cos(2β) cos(α+ β),

λhAG ≡ ∂3V 0

∂h∂A∂G

∣

∣

∣

∣

min

= −m2
Z

v
sin(2β) sin(α+ β), λHAG ≡ ∂3V 0

∂H∂A∂G

∣

∣

∣

∣

min

=
m2

Z

v
sin(2β) cos(α+ β),

λhGG ≡ ∂3V 0

∂h∂G2

∣

∣

∣

∣

min

= −m2
Z

v
cos(2β) sin(α+ β), λHGG ≡ ∂3V 0

∂H∂G2

∣

∣

∣

∣

min

=
m2

Z

v
cos(2β) cos(α+ β).

(1.4.30)

Figure 1.5 shows all trilinear couplings λhhh, λHHH , λhhH , λhHH , λhAA,λHAA as a function of the
pseudoscalar Higgs mass mA for two values of tanβ = 2 (dashed lines) and tanβ = 30 (solid lines). The
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slope of the couplings is steepest in the transition region mA ≃ mZ and the steepness grows with tanβ.
In the decoupling limit mA → ∞ the couplings saturate to their asymptotic values.
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Figure 1.5: The trilinear couplings λhhh, λHHH , λhhH (first line) and λhHH , λhAA, λHAA (second line) as
a function of the pseudoscalar Higgs mass mA for two values of tanβ.

The quartic self-couplings are

λhhhh ≡ ∂4V 0

∂h4

∣

∣

∣

∣

min

=
3m2

Z

v2
cos(2α)2, λHHHH ≡ ∂4V 0

∂H4

∣

∣

∣

∣

min

=
3m2

Z

v2
cos(2α)2,

λhhhH ≡ ∂4V 0

∂h3∂H

∣

∣

∣

∣

min

=
3m2

Z

v2
sin(2α) cos(2α), λhhHH ≡ ∂4V 0

∂h2∂H2

∣

∣

∣

∣

min

=
m2

Z

v2
(2 sin(2α)2 − cos(2α)2),

λhHHH ≡ ∂4V 0

∂h∂H3

∣

∣

∣

∣

min

= −3m2
Z

v2
sin(2α) cos(2α), λhhAA ≡ ∂4V 0

∂h2∂A2

∣

∣

∣

∣

min

=
m2

Z

v2
cos(2α) cos(2β),

λhHAA ≡ ∂4V 0

∂h∂H∂A2

∣

∣

∣

∣

min

=
m2

Z

v2
cos(2β) sin(2α), λHHAA ≡ ∂4V 0

∂H2∂A2

∣

∣

∣

∣

min

= −m2
Z

v2
cos(2α) cos(2β),

λhhAG ≡ ∂4V 0

∂h2∂A∂G

∣

∣

∣

∣

min

= −m2
Z

v2
cos(2α) sin(2β), λhHAG ≡ ∂4V 0

∂h∂H∂A∂G

∣

∣

∣

∣

min

= −m2
Z

v2
sin(2α) sin(2β),

λHHAG ≡ ∂4V 0

∂H2∂A∂G

∣

∣

∣

∣

min

=
m2

Z

v2
cos(2α) sin(2β), λhhGG ≡ ∂4V 0

∂h2∂G2

∣

∣

∣

∣

min

= −m2
Z

v2
cos(2α) cos(2β),

λhHGG ≡ ∂4V 0

∂h∂H∂G2

∣

∣

∣

∣

min

= −m2
Z

v2
sin(2α) cos(2β), λHHGG ≡ ∂4V 0

∂H2∂G2

∣

∣

∣

∣

min

=
m2

Z

v2
cos(2α) cos(2β),

λAAAA ≡ ∂4V 0

∂A4

∣

∣

∣

∣

min

=
3m2

Z

v2
cos(2β)2, λAAAG ≡ ∂4V 0

∂A3∂G

∣

∣

∣

∣

min

= −3m2
Z

v2
cos(2β) sin(2β),

λAAGG ≡ ∂4V 0

∂A2∂G2

∣

∣

∣

∣

min

=
m2

Z

v2
(2 sin(2β)2 − cos(2β)2), λAGGG ≡ ∂4V 0

∂A∂G3

∣

∣

∣

∣

min

=
3m2

Z

v2
sin(2β) cos(2β),

λGGGG ≡ ∂4V 0

∂G4

∣

∣

∣

∣

min

=
3m2

Z

v2
cos(2β)2. (1.4.31)
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Figure 1.6 shows all quartic couplings λhhhh, λHHHH , λhhhH , λhhHH , λhHHH , λhhAA, λhHAA, λHHAA,
λAAAA as a function of the pseudoscalar Higgs mass mA for two values of tanβ = 2 (dashed lines) and
tanβ = 30 (solid lines). As for the trilinear couplings it is a universal feature also for the quartic couplings
that the slope of the curves is steepest in the transition region mA ≃ mZ and that the steepness grows
with tanβ. In the decoupling limit mA → ∞ the couplings approach their asymptotic value.
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Figure 1.6: The quartic couplings λhhhh, λHHHH , λhhhH (first line), λhhHH , λhHHH , λhhAA (second line)
and λhHAA, λHHAA, λAAAA (third line) as a function of the pseudoscalar Higgs mass mA for two values
of tanβ.

1.4.7 Decoupling Limit

The decoupling limit corresponds to the limit where the masses of all supersymmetric particles12 are
large. Intuitively it is clear that all these particles decouple from the SM and therefore we expect that
in this limit the MSSM looks just like the SM.
In the tree-level Higgs sector we go to this limit by setting m2

A → ∞. Looking at Eqs. (1.4.21, 1.4.17)
we see immediately that for very large m2

A, the masses m2
H± and m2

H also become very large. So there
is only one light scalar Higgs boson h. Expanding m2

h, see Eq. (1.4.17) in terms of m2
Z/m

2
A ≪ 1 yields

(mdec
h )2 = m2

Z cos2(2β), (1.4.32)

12Supersymmetric particles means all non-SM particles in the MSSM, i.e. squarks, sleptons, gauginos, higgsinos and also
additional Higgs bosons H±, A,H.
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which is the light scalar Higgs tree-level mass in the decoupling limit. We see that in the decoupling limit
the light scalar Higgs mass is pushed to its upper bound. This effect is not only true at tree-level but it
also holds when considering loop-corrections.

The mixing angles in the decoupling limit: Here we want to study the behavior of the Higgs-quark
and Higgs-gauge boson couplings in the decoupling limit. First we need to see how the angle α behaves
in the decoupling limit. Taking the limit mA → ∞ of Eq. (1.4.25), yields tan(α) = − cot(β). Since
α ∈ [−π/2, 0] and β ∈ [0, π/2] it follows that in decoupling limit

α → β − π

2
. (1.4.33)

Applying this result to Table 1.3, we see that in the decoupling limit the light scalar couples exactly as
in the SM. The other Higgs bosons become very heavy and therefore decouple from the other particles.
Another interesting limit is small mA. This implies that α → −β and then the couplings of H to quarks
become SM-like for tβ ≫ 1, up to sign differences.

Light scalar Higgs self-couplings in the decoupling limit: As before we want to investigate how
the self-couplings for the light scalar Higgs boson h behave in the decoupling limit. Inserting α → β − π

2
into the first identity of Eq. (1.4.30) and Eq. (1.4.31) yields

λdec
hhh =

3m2
Z

v
cos2(2β), λdec

hhhh =
3m2

Z

v2
cos2(2β). (1.4.34)

Substituting the decoupling limit expression for m2
h, Eq. (1.4.32) leads exactly to the SM expression for

the trilinear and quartic Higgs self-couplings (see appendix E)

λdec
hhh = 3

m2
h,0

v
= λSM

hhh, λdec
hhhh = 3

m2
h,0

v2
= λSM

hhhh. (1.4.35)

This means that for pseudoscalar Higgs masses well above the electroweak scale the light scalar tree-level
Higgs boson in the MSSM couples exactly as the SM Higgs boson. Furthermore it behaves completely
SM-like in the decoupling limit even when loop-corrections are taken into account. This effect can be
interpreted as an application of the Appelquist-Carazzone theorem [19]. The plot on the left hand side in
Figure 1.7 shows the trilinear coupling of three Higgs bosons as a function of the pseudoscalar Higgs mass
mA for two values of tanβ. The black curves show the coupling of three light scalar MSSM Higgs bosons.
The red curves show the trilinear coupling of the SM Higgs boson with a mass equal to the light scalar
MSSM Higgs boson mass mh for the corresponding values of mA and tanβ. For high values of tanβ & 10
the Higgs self-couplings in the SM and the MSSM are equal at the per mille level for mA & 200 GeV,
whereas for lower values of tanβ the trilinear couplings coincide at higher mA. The same is valid also for
the quartic couplings shown in the right plot of Figure 1.7.
The heavy scalar H can also become SM like. For this possibility, we consider the case of very small
pseudo scalar Higgs masses mA. Even though these scenarios are irrelevant from a phenomenological
point of view13, it is a nice property of the MSSM, that both scalar MSSM Higgs bosons can take on the
role of the SM Higgs.
Taking the limit mA → 0 of Eq. (1.4.17), we obtain

m2
H → m2

Z , m2
h → 0. (1.4.36)

Moreover Eq. (1.4.25) leads to α → −β. We can thus calculate the heavy scalar Higgs self-couplings

λHHH → 3m2
Z

v
cos(2β), λHHHH → 3m2

Z

v2
cos2(2β). (1.4.37)

13Values for mA < mZ have been ruled out already by the LEP experiment, see Figure 1.4.
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Figure 1.7: The trilinear (left) and quartic (right) Higgs self-couplings as a function of mA for tanβ = 2
(dashed) and tanβ = 30 (solid). Black curves show the couplings of the light Higgs boson, whereas red
curves show the couplings of the SM Higgs boson with mass equal to the mass of the light scalar Higgs
boson mh.

Setting tanβ ≫ 1 and substituting m2
Z → m2

H , one obtains

λHHH → −3m2
h

v
= −λSM

hhh, λHHHH → 3m2
h

v2
= λSM

hhhh. (1.4.38)

We conclude that in the limit for small mA and reasonably large tβ the trilinear and quartic couplings of
the heavy scalar Higgs boson are identical to the SM Higgs self-couplings, up to a different sign for the
trilinear Higgs coupling.

1.5 Radiative Corrections to Higgs Masses and Self-Couplings

In the beginning of the 1990’s, it was realized that the tree-level bound for the mass of the light scalar
Higgs boson mh < mZ is altered by sizable radiative corrections due to the large top-Yukawa coupling ht.
The first calculations of the corrections to the Higgs masses [20] were performed under various simplifying
assumptions. The complete O(m2

tαt) calculation
14 [21] used the Effective Potential Approach (EPA) and

showed that the Higgs mass could be as large as 140 GeV. The dominant O(m2
tαt) corrections to the

Higgs masses can be written in the following form

m2
h ≤ m2

Z +
3GF√
2π2

m4
t

sin2(β)

[

log
mt̃1mt̃2

m2
t

+
X2

t

M2
SUSY

(

1− X2
t

12M2
SUSY

)]

, (1.5.1)

where we assumed a common SUSY breaking scale, i.e. MSUSY = mU ,mD. The angle β is related to
the ratio of the VEVs tanβ = v2/v1 and GF is the Fermi constant. These corrections are proportional
to the fourth power of the top mass. Moreover the logarithm involving the stop squarks can be sizable
for SUSY-breaking scales much larger than the top mass MSUSY ≫ mt. Last but not least there can be
relevant contributions from stop mixing Xt = At + µ cotβ.
Soon after complete one-loop diagrammatic results were presented [22,23] taking into account electroweak

14Throughout this work, we use the notation αt =
h2
t

4π
, where ht is the top-Yukawa coupling. Moreover we use the same

notation for the bottom (t → b) and tau (t → τ) Yukawa couplings as well as for the strong gauge coupling αs =
g2s
4π

.
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corrections and effects due to non-vanishing external momenta, i.e. O(gmt) and O(gmZ). Moreover one-
loop corrections to Higgs self-couplings were calculated at O(m2

tαt) showing also substantial radiative
corrections [24].
These one-loop results exhibit sizable theoretical uncertainties. One way to include two-loop effects is to
resum large logs using Renormalization Group Equations (RGEs) [25,26]. Using one-loop RGEs, one can
resum leading logarithmic (LL) corrections at all loops, whereas two-loop RGEs include next-to-leading
logarithmic (NLL) corrections. However, these RGE methods are very complicated for arbitrary MSSM
parameters. Moreover they neglect finite (non-logarithmic) contributions.
For these reasons two-loop corrections to the masses were also computed using the EPA and by performing
diagrammatic calculations in the limit of vanishing external momenta. The first two-loop calculation took
into accountO(αtαs) andO(α2

t ) contributions under simplifying assumptions [27]. From the mid 1990’s to
the early 2000’s O(αtαs) and O(α2

t ) corrections were improved using the EPA [28–33] and by performing
diagrammatic calculations [34]. LaterO(αbαs) and O(α2

b ) corrections due to the bottom-Yukawa coupling
αb were included [35]. To complete the corrections due to third-family-Yukawa couplings O(αbατ ) and
O(α2

τ ) corrections were calculated [36], where ατ is proportional to the τ -Yukawa coupling squared.
Other improvements have been made by calculating the full two-loop effective potential in the MSSM [37].
Even three-loop effects have been studied recently, using RGE techniques [38] and by a diagrammatic
calculation up to O(αtα

2
s) in the limit of vanishing external momenta [39].

Efforts have been made to complete the one-loop corrections to the Higgs self-couplings [40]. Moreover
implications on the self-couplings in the decoupling regime have been studied [41]. There have also
been approximations for Higgs boson self-couplings in a general Two Higgs Doublet Model (THDM)
presented [42]. However, at this point no complete investigation of the two-loop corrections to the Higgs
boson self-couplings has been presented.

1.5.1 Motivation

In order to elucidate the origin of the mass of the gauge bosons and the fermions, we have to explore
the mechanism of EWSB. In the MSSM EWSB is induced by the fact that the minimum of the Higgs
potential resides at non-zero energy density. In order to probe the mechanism of EWSB in the MSSM we
therefore have to reconstruct its full Higgs potential. The parameters in the Higgs potential determine
the tree-level relations among the Higgs masses and self-couplings. Measuring the relations between the
Higgs self-couplings and the masses is therefore crucial for our understanding of the origin of mass.
The Higgs sector in the MSSM, however, receives large radiative corrections such that the tree-level
relations between the masses and couplings are substantially modified. In order to compare the theory
predictions with the experiment, precise predictions of the observables are essential. The inclusion of
two-loop O(αtαs + αt) effects in the calculation of the Higgs mass reduced the theoretical uncertainties
from about 30% at the one-loop order to 5%.
The uncertainties in the existing one-loop O(αt) calculation for the trilinear Higgs self-couplings [24] can
be as large as 30% and the corrections, compared to the tree-level, can be O(100%). In this work we
will calculate the two-loop O(αtαs + αt) radiative corrections to the trilinear and the quartic Higgs self-
couplings. Since we work in the framework of an effective theory we obtain effective couplings, neglecting
effects due to external momenta. These effective couplings should be useful to calculate processes that
can be measured in collider experiments.
Higgs boson self-couplings can be probed by studying multiple Higgs production at collider experiments.
A preliminary analysis showed that in the case of the LHC, studies of multiple Higgs production require
a huge amount of luminosity [43]. Further analyses will demonstrate whether the LHC will be able to
deliver results about Higgs self-couplings. A e+e− linear collider provides a much cleaner background
for such analyses. Depending on the masses of the Higgs bosons, and the center of mass energy of the
collider, the trilinear Higgs self-couplings should be measurable at an accuracy of about 20% [44,45].
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Calculation of Two-Loop Corrections

to Higgs Masses and Self-Couplings

2.1 Effective Potential Method

In this chapter we describe in detail how we perform higher order precision calculations in the MSSM
Higgs sector. We choose to do this calculation using the Effective Potential Approach (EPA), see [46,47]
for the following reasons. First, to compute the effective potential to some perturbative order we only
need to evaluate all vacuum diagrams1 to that order. This simplifies our calculation a lot since the
amount and the difficulty of diagrams that have to be computed at the two-loop order is substantially
reduced compared to the full diagrammatic approach. Nevertheless we obtain pure analytic results.
Second the EPA is defined in the limit of vanishing external momenta. This may seem like a drawback,
but for the effective couplings this is quite convenient. All external momenta effects are highly process
dependent. Thus to calculate a process at a collider these effective couplings can be used universally
and process dependent corrections can be added afterwards. Moreover corrections due to finite external
momenta are typically small because the virtual particles (e.g. tops, stops, gluinos and Higgs bosons) are
quite heavy compared to the external momenta.
For some general remarks about the effective potential we will follow [48]. Expanding the effective action
Γ(φc) in powers of external momenta, we define the effective potential V (φc) as the non-derivative part
of the effective action

Γ(φc) =

∫

dx4

[

−V (φc) +
1

2
(∂µφc)

2Z(φc) + · · ·
]

. (2.1.1)

After some algebraic manipulation the effective potential can be cast into the following form

V (φc) = −
∞
∑

n=1

1

n!
Γ(n)(0, ..., 0)[φc]

n. (2.1.2)

Here φc is a constant field (external momenta p = 0 ⇒ ∂µφ = 0) including its VEV. Moreover
Γ(n)(p1, ..., pn) is the sum of all one particle irreducible (1PI) Feynman diagrams with n external lines
with momenta p1 to pn. The effective potential is an effective operator depending on the Higgs fields,
where all heavy DOF have been integrated out. The n-th derivative of the effective potential with respect
to the fields φc is just the sum over all 1PI diagrams with n external lines and all external momenta set

1Vacuum diagrams, sometimes also called bubble diagrams, are diagrams without any external legs, this means that the
number of possible topologies is very limited, see [47].

23
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to zero

Γ(n)(0, ..., 0) = − dnV (φc)

dφn
c

∣

∣

∣

∣

φc=0

. (2.1.3)

So far we have dealt with the full effective potential. To compute V in practice we have to approximate by
making a loop expansion [47]. The zero-loop contribution corresponds simply to the tree-level potential of
the classical Lagrangian. The one-loop approximation is the logarithm of the determinant of the inverse
propagator. The higher loop contributions are the sum of all 1PI diagrams with n > 1 loops and with
zero external momenta (vacuum diagrams), see [49].

2.2 Calculating the Effective Potential in Perturbation Theory

The effective potential can be calculated perturbatively. The relative size of the different orders in
perturbation theory is known for the MSSM Higgs masses, see [20–23, 25–39]. For the MSSM Higgs
self-couplings we expect the hierarchy between different orders in perturbation theory to be similar to
the Higgs masses.
The dominant one-loop corrections emerge from the large top-Yukawa coupling ht, introduced in the
superpotential Eq. (1.3.1) [20–23]. Throughout the whole calculation we work in the limit ht ≫ hq 6=t and
thus set to zero all Yukawa couplings other than the top-Yukawa coupling. Moreover we treat ht ≫ g, g′

(this is referred to as the gaugeless limit by [33] and as the leading approximation by [30]). The only
contributing gauge coupling beyond tree-level is thus the strong gauge coupling gs. The corresponding
Lagrangians can be derived from Eqs. (1.2.15, 1.2.16, 1.2.17, 1.2.19) and are given in the appendix C.3.1
and C.4.1. At the one-loop level corrections to the Higgs effective potential can therefore only occur via
the top-Yukawa coupling since the Higgs sector is color neutral. The one-loop diagrams are shown in
Figure 2.1. They all go with the top-Yukawa coupling squared and are therefore called O(αt), where

αt =
h2
t

4π .

t̃1,2 t

Figure 2.1: Vacuum diagrams that contribute to the one-loop O(αt) corrections to the effective potential.

The one-loop diagrams involve colored particles. It is therefore obvious that at the two-loop level we
have corrections that go with the strong coupling αs, which we call Supersymmetric Quantum Chro-
moDynamical (SQCD) corrections, i.e. O(αtαs). The corresponding diagrams that contribute to the
effective potential involve gluon exchange in the top and stop loop of Figure 2.1. Moreover due to the
supersymmetrization of the t-t̄-gluon gauge coupling we also have a top-stop-gluino-diagram and also the
four-stop-vertex depends on the gauge coupling due to the D-terms, see Eq. (1.2.19). In Figure 2.2 all
two-loop SQCD diagrams are shown. It is known [26–28,30,33–37] that in most of the MSSM parameter
space O(αtαs) constitutes the dominant two-loop corrections.
In the limit we are working in there is only one further two-loop correction, namely O(α2

t ). The work
of [33] showed that in regions of the MSSM parameter space, with large stop mixing Xt the O(α2

t ) can
be comparable in size to the O(αtαs). Looking at the corresponding Lagrangian Eq. (C.4.5) we see that
there are a lot more particles involved, namely Higgs and would-be Goldstone bosons Hi = (H,h,G,A),
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Figure 2.2: Vacuum diagrams that contribute to the two-loop O(αtαs) corrections to the effective poten-
tial.

H±
1,2 = (H±, G±), Higgsinos (H̃0

1,2, H̃
±), quarks (t, b) and squarks (t̃1, t̃2, b̃L). Figure 2.3 shows all dia-

grams that contribute to the effective potential at O(α2
t ).

t

t

Hi

b

t

H+
1,2

H̃0
1,2

t

t̃1,2

H̃+

t

b̃L

H̃+

b

t̃1,2

t̃1,2

t̃1,2

Hi

b̃L

t̃1,2

H+
1,2

t̃1,2 t̃1,2 t̃1,2 b̃L

t̃1,2 Hi t̃1,2 H+
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Figure 2.3: Vacuum diagrams that contribute to the two-loop O(α2
t ) corrections to the effective potential.

2.2.1 Perturbative Expansion of the Effective Potential

At this point it is necessary to make some comments about the approximations in our perturbative
expansion of the effective potential. First, since we work in the limit where the top-quark Yukawa
coupling is much larger than all other Yukawa couplings, we treat all other SM fermions as massless. The
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only non-top-quark2 that shows up in the effective potential is the bottom quark with mass mb = 0. This
simplifies also the sbottom mass matrix, see Eq. (1.3.3), which becomes diagonal with entries (m2

Q,m
2
D).

In the absence of sbottom mixing, only the left sbottom contributes to the O(α2
t ) potential with mass

mb̃L
= mQ.

Second, the consequence of treating the electroweak gauge couplings to be much smaller than the top-
Yukawa coupling is that also the weak gauge bosons are massless mW = mZ = 0 beyond the tree-level3.
This also affects virtual Higgs particles that occur at O(α2

t ) of the potential. We work with mh = 0 and
mH = mH± = mA and therefore α = β − π/2 at O(α2

t ).
Third, at O(α2

t ) Higgsinos do not mix with the gauginos since these mixing terms are proportional to
g and g′. All Higgsinos have degenerate mass µ. The gluino mass is taken as an input parameter
mg̃ = M3, which corresponds to the SUSY-breaking gaugino mass M3. We do not need to consider
radiative corrections to Higgsino or gaugino masses, because they enter only at the two-loop level, i.e.
corrections to these masses are three-loop effects.
Last but not least in the one-loop masses, terms of O(m2

Aαt) and O(m2
Zαt) are not taken into account,

because they partly emerge from non-vanishing momenta of external Higgs fields. The correct notation
for the effective potential at one-loop order is actually O(m2

tαt), similarly the two-loop corrections4 are
of O(m2

tαtαs) and O(m2
tα

2
t ). Although it is not obvious at first glance why these terms should be

smaller than the one-loop O(m2
tαt) from the effective potential, it is perfectly consistent in terms of

our perturbative expansion to omit them. In fact O(m2
Aαt) and mathcalO(m2

Zαt)-terms have a much
smaller radius of convergence than the O(m2

tαt)-terms. Moreover effects due to non-vanishing external
momenta are highly non-universal and for the one-loop light scalar Higgs mass these effects have been
calculated to be at most 3− 5% [23].

2.2.2 Some Technical Details on Calculating the Effective Potential

After making up our minds about which orders we want to take into account, we have to evaluate the
effective potential V O(0+αt+αtαs+α2

t ) ≡ V 0+δV αt +δV αtαs +δV α2
t . These parts of the effective potential

have already been calculated in [28, 30–33]. In principle we simply have to compute vacuum diagrams
up to the desired order in perturbation theory and make the potential a Higgs field-dependent quantity.
Naively this is done by re-expressing the Higgs VEVs with the corresponding fields, i.e. v1 →

√
2H0

1

and v2 →
√
2H0

2 . There is a subtlety involved. The neutral Higgs fields are complex quantities, whereas
the VEVs (as well as the top and stop masses, which depend on the VEVs) are real. To consistently
implement the Higgs field-dependence we closely follow [32], see appendix C.1. The diagrams we have to
evaluate consist of simply a loop without external lines for the O(αt) (Figure 2.1) and for the O(αtαs)
and O(α2

t ) two-loop cases we have the “sunset” and “eight” topologies (Figure 2.2 and 2.3). All two-loop
integrations can be reduced by algebraic manipulation to the two following scalar master integrals

µ
2(4−d)
0

(2π)2d

∫ ∫

ddpddq

[p2 −m2
1][q

2 −m2
2]

≡ −1

(16π2)2
J(m2

1,m
2
2), (2.2.1)

µ
2(4−d)
0

(2π)2d

∫ ∫

ddpddq

[p2 −m2
1][q

2 −m2
2][(p− q)2 −m2

3]
≡ 1

(16π2)2
I(m2

1,m
2
2,m

2
3). (2.2.2)

The techniques to evaluate the integrals have been developed in the beginning of the 1990’s. The
first method was based on the Mellin-Barnes representation of massive denominators [50]. Another

2Remember that we assumed the soft SUSY breaking Lagrangian, see Eq. (1.3.2), to be flavor diagonal. If we took into
account the possibility of flavor mixing other quarks would show up in the loops, too.

3In the tree-level calculation, however, we keep the O(mZ )-terms, which is consistent, since at the tree-level there are
no ht or αs terms and thus the hierarchy ht, αs ≫ g, g′ does not apply.

4Effects of O(M2
SUSYαt) are not present in the effective potential. However, we include them in the transversal self-energy

of the W -bosons, see Eq. (D.3.5). Numerically they are not important since they are proportional to small logarithms.
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powerful method uses differential equations [51]. Explicit expressions for the functions J(m2
1,m

2
2) and

I(m2
1,m

2
2,m

2
3) are shown in appendix B. For a detailed derivation of the effective potential see section C

in the Appendix.

Regularization of divergences: Naively evaluating these loop diagrams for the effective potential
yields infinities. The reason for that is that in a quantum field theory we need to take into account all
possible virtual particles that can occur in a loop. This means we also have to sum over all helicity
states, colors and any other quantum number when evaluating a loop diagram and we also have to
take into account all possible momenta k. We therefore have to integrate over the four-dimensional
loop-momentum. Transforming to spherical coordinates yields integrals of the form

∫

d4k|k|n ∼
∫ ∞

0

d|k||k|n+3. (2.2.3)

There are two kinds of divergences: Ultra-Violet (UV) divergences occur at infinite momentum. This
means that any integrand |k|n with n > −4 will yield a power-like UV-divergence, whereas the case n = −4
leads to a logarithmic UV-divergence of the integral. The second type are infra-red (IR) divergences which
occur when there is a massless particle in a loop

∫ ∞

0

d|k|
|k|2 −m2

−−−−→
m → 0

∫ ∞

0

d|k|
|k|2 . (2.2.4)

This develops a pole for k → 0, i.e. at low momentum. It has been shown that IR-divergences can-
cel against real corrections due to low energy emission of these massless particles. This is known as the
Bloch-Nordsieck Theorem [52]. An extension of this is the Kinoshita-Lee-Nauenberg (KLN) theorem [53],
which states that in all final states the IR singularities cancel in the SM5.
The UV-divergences originate from the fact that we treat our theory as if it was valid up to arbitrary high
energies. Experimentally we can only test a theory in a certain energy range and therefore it is completely
fine to assume that any quantum field theory is only valid up to some cutoff energy. Although it has been
proven in the beginning of the 1970’s that the SM is renormalizable [54], (all UV poles in perturbatively
calculated, renormalized observables cancel) the SM cannot be a UV complete theory. First the U(1)Y
gauge coupling g′, and the quartic Higgs coupling λ run into a Landau pole or −∞ at very high energies.
Second we know that at least at the Planck scale the SM has to be extended to include gravity, which
becomes strong at this energy.
With this in the back of our mind it seems quite natural to cure these UV-divergent integrals by intro-
ducing some finite cutoff in energy ΛUV and to only perform loop integrations up to that energy scale.
The cutoff scale serves as a regulator in our theory and all loop integrals will depend on this regula-
tor ΛUV. This is one example of a regularization method, known as momentum cutoff regularization6.
We introduce a new parameter (regulator) to give the divergent integrals a mathematically well-defined
meaning. In the SM dimensional regularization (DREG) [56] is the most convenient method since it
preserves all gauge symmetries7 of the Lagrangian. In DREG we use the fact that our integrals diverge in
four space-time dimensions but are finite in fewer dimensions. By performing the integration in d = 4−2ǫ
space-time dimensions we obtain well-defined results which are analytical functions8 in ǫ.

5Real emission of massless gauge bosons can also cause divergences in collinear regions of phase space. Divergences
originating from initial state radiation have to be absorbed in parton distribution functions in QCD and electron density
functions in QED.

6Naive application of a momentum cutoff regularization violates both Lorentz and gauge invariance. One of the first
attempts to regularize UV divergent integrals with a momentum cutoff was conducted by Pauli and Villars [55].

7When using DREG in chiral gauge theories, γ5-matrices cause problems. Defining γ5-matrices in an arbitrary number
of dimensions violated Ward [57] and Slavnov-Taylor [58] identities. These identities have to be fixed by hand, for example
by introducing non-trivial counter terms [54].

8In general they can be distributions. In this calculation, however, we obtain functions in ǫ.
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It is well known, however, that even DREG violates supersymmetry. This is easy to see, in DREG both
momenta and vectors (e.g. the Lorentz index in the γ-matrices) are continued to d dimensions. This
introduces a mismatch in the degrees of freedom between gauge bosons and their fermionic superpartners
the gauginos. In our calculation we use the dimensional reduction method (DRED), see [59] to avoid
this problem. In DRED, the momenta are still continued to d dimensions but vectors are fixed to four
dimensions. This comes at the price of extra 2ǫ components of the gauge fields, that transform as scalars
in the adjoint representation of the gauge group and are known as epsilon-scalars. The renormalization
scheme using modified minimal subtraction (MS) associated with DRED is called DR. It was shown [60],
however, that by using a special version of the DR scheme these epsilon- scalars fully decouple from the
calculation of the effective potential so we can ignore them in this calculation. We will turn to the issue
of renormalization again in section 2.5 where we show how we get rid of the regulator ǫ and thus obtain
finite quantities. First, however, we will use the regularized, but unrenormalized effective potential to
calculate masses and couplings, which depend on the regulator ǫ.

Gauge invariance: One of the most fundamental principles in modern quantum field theory is that all
observables, i.e. physical predictions of the theory, have to be gauge invariant. This means that we can
perform calculations in any desired gauge. In our case we choose to do the calculation of the O(αtαs)
potential in t’Hooft-Feynman gauge, because gauge boson propagators are easier to handle in that gauge.
The O(αt) and O(α2

t ) potentials will be calculated in Landau gauge. This is convenient because in this
gauge would-be Goldstone bosons are massless. Note that the effective potential is not an observable and
may in principle be a gauge dependent quantity. The masses and couplings that are generated by taking
derivatives of the effective potential are physical, they must be gauge independent. Gauge dependent
terms in the effective potential must therefore be field-independent.

2.2.3 Notation and Field-Dependence of the Effective Potential

In the previous section we have described how we calculate the effective potential. The result is given
in the appendix Eqs. (C.2.54, C.3.9), C.4.19). Before we can use this potential to calculate masses and
couplings, we have to make it a Higgs field-dependent quantity.
The tree-level Higgs potential was presented in Eq. (1.4.3). The loop-corrections to the effective potential
are functions of field-dependent quantities, see appendix C.1, i.e.

δV αt(m̄2
t , m̄

2
t̃1
, m̄2

t̃2
), δV αtαs(m̄2

t , m̄
2
t̃1
, m̄2

t̃2
, s22θ̄, ξ̄), δV α2

t (m̄2
t , m̄

2
t̃1
, m̄2

t̃2
, s22θ̄, ξ̄). (2.2.5)

Two remarks on the notation are necessary:
(i) A small letter δ in front of a quantity indicates that the quantity has a pole in the regulator ǫ, whereas a
capital ∆ means that the quantity is finite. The higher order corrections to the effective potential contain
poles in ǫ.
(ii) The field-dependent arguments of the effective potential are denoted by a ’bar’

x̄i = (m̄2
t , m̄

2
t̃1
, m̄2

t̃2
, s22θ̄, ξ̄), i = 1, · · · , 5, (2.2.6)

where x̄i ≡ x̄i(H
0
j ). When evaluating all fields at the minimum of the potential, denoted by |min (i.e. sub-

stituting them by their VEVs: H0
1 → v1√

2
and H0

2 → v2√
2
) we obtain the corresponding field-independent

quantities x̄i|min = xi = (m2
t ,m

2
t̃1
,m2

t̃2
, s22θ,mts2θ), which were introduced in section 1.3.1 when we dis-

cussed sfermion masses.
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The field-dependence of the arguments of the potentials x̄i is given by

m̄2
t =h2

t |H0
2 |2, (2.2.7)

m̄2
t̃1

=
1

2

(

m2
U +m2

Q + 2m̄2
t +

√

(m2
Q −m2

U )
2 + 4|X̃|2

)

, (2.2.8)

m̄2
t̃2

=
1

2

(

m2
U +m2

Q + 2m̄2
t −

√

(m2
Q −m2

U )
2 + 4|X̃|2

)

, (2.2.9)

s22θ̄ =
4|X̃|2

(m̄2
t̃1
− m̄2

t̃2
)2
, (2.2.10)

ξ̄ =2
ℜ(X)ℜ(X̃) + ℑ(X)ℑ(X̃)

m̄2
t̃1
− m̄2

t̃2

, (2.2.11)

where the following quantities are obviously field-dependent, but we omit the ’bar’ notation

X =htH
0
2 , (2.2.12)

X̃ =ht(AtH
0
2 + µ(H0

1 )
⋆). (2.2.13)

quantities that have to be renormalized. The parameters that enter in the two-loop potentials δV αtαs

and δV α2
t are gs,mg̃, β,mA,mb̃L

and do not have to be renormalized, because any correction to them
is a higher order effect. This was also the reason that made it possible for us to use the simplifications
described in section 2.2.1 (e.g. α = β − π/2, m2

H = m2
H± = m2

A, m
2
h = 0 and m2

H̃
= µ2).

2.3 Unrenormalized Masses and Couplings

In this section we describe how we take derivatives of the unrenormalized effective potential to obtain
neutral Higgs masses and self-couplings. In section 2.5 we will explain how these masses and couplings
are renormalized to obtain finite physical quantities.

2.3.1 Neutral Higgs Masses

In section 1.4 we discussed the MSSM Higgs sector and EWSB at tree-level. To calculate loop-corrected
Higgs masses, we proceed in a similar way. We write the neutral complex Higgs fields as a real and an
imaginary part with a normalization factor

√

1/2

H0
i =

1√
2
(ai + iPi), ai, Pi real (2.3.1)

The VEV induced by the Higgs field, i.e. the ground state of the theory, induces SSB. It is determined
by the minimum of the effective potential and is therefore affected by radiative corrections9.

Minimizing the effective potential: Analogous to the tree-level discussion, only the real part ai of
the neutral Higgs fields acquires a VEV. We call the minimum of the complete loop-corrected potential
vmin
i

∂V O(x)(ak, Pk)

∂ai

∣

∣

∣

∣

ak=vmin
k

,Pk=0

= 0, i, k = 1, 2. (2.3.2)

9S. Coleman and E. Weinberg suggested in [46] that radiative corrections could be the origin of EWSB. In the SM we
also need spontaneous symmetry breaking in order to produce fermion and gauge boson masses. However, the effect of
dynamical symmetry breaking is still relevant.
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We split the effective potential into a tree-level and a higher order part V O(x) = V 0+δV O(x). Evaluating
the tree-level part we can write the two minimization equations as

(m0
1)

2 + (m0
3)

2 v
min
2

vmin
1

+
g2 + g′2

8

[

(vmin
1 )2 − (vmin

2 )2
]

+
1

vmin
1

∂δV O(x)(ak, Pk)

∂a1

∣

∣

∣

∣

ak=vmin
k

,Pk=0

= 0

(m0
2)

2 + (m0
3)

2 v
min
1

vmin
2

− g2 + g′2

8

[

(vmin
1 )2 − (vmin

2 )2
]

+
1

vmin
2

∂δV O(x)(ak, Pk)

∂a2

∣

∣

∣

∣

ak=vmin
k

,Pk=0

= 0. (2.3.3)

The neutral parts of the Higgs doublets are expanded around these minima

H0
i =

1√
2
(vmin

i + Si + iPi). (2.3.4)

The fluctuations Si around the VEVs correspond to the physical CP-even Higgs current eigenstates with
zero VEVs 〈Si〉 = 0. The minimization condition means that there are no tadpole terms, i.e. linear terms
in the fields Si and Pi in the effective potential. Eq. (2.3.4) is inserted into the complete Lagrangian, such
that the whole theory is expanded around the true, loop-corrected minima and we obtain the relations
between the tree-level parameters and the VEV, similar to Eqs. (1.4.9, 1.4.10)

G0
F =

1√
2[(vmin

1 )2 + (vmin
2 )2]

, (m0
Z)

2 =
(g0)2 + (g′0)2

4
[(vmin

1 )2 + (vmin
2 )2],

(m0
W )2 =

(g0)2

4
[(vmin

1 )2 + (vmin
2 )2], (m0

t )
2 =

(h0
t )

2

2
(vmin

2 )2, · · · (2.3.5)

The ellipses represent stop masses, other quark masses and the stop mixing angle, which do all depend
on these minima vmin

i . Note that here we explicitly indicated with a ’0’-superscript that all parameters
are the tree-level (bare) parameters. Even though the minima are computed using the loop-corrected
potential, they receive radiative corrections, when they are matched to the loop-corrected Fermi constant.
We will turn back to this issue in section 2.5.6, where we discuss renormalization schemes.

Masses: Bilinear terms in the fields Si and Pi correspond to mass-terms. We expand the effective
potential around the minimum, i.e. we use Eq. (2.3.4) to write the effective potential as a function of
Si and Pi. We define the CP-even and CP-odd mass matrices by taking two derivatives with respect to
(w.r.t.) the corresponding fields and evaluate everything at the minimum of the potential, denoted by
|min which corresponds to substituting all fields by their VEVs, i.e. Sk = 0, Pk = 0

(M2
P )

O(x)
ij ≡ ∂2V O(x)(Sk, Pk)

∂Pi∂Pj

∣

∣

∣

∣

min

, (M2
S)

O(x)
ij ≡ ∂2V O(x)(Sk, Pk)

∂Si∂Sj

∣

∣

∣

∣

min

. (2.3.6)

Using the explicit tree-level part of the effective potential V 0, the minimization equations Eq. (2.3.3) can
be used to eliminate the dependence on (m0

1)
2 and (m0

2)
2 in the mass matrices

(M2
P )

O(x)
ij = −(m0

3)
2 v

min
1 vmin

2

vmin
i vmin

j

− δij
vmin
i

∂δV O(x)(Sk, Pk)

∂Si

∣

∣

∣

∣

min

+
∂2δV O(x)(Sk, Pk)

∂Pi∂Pj

∣

∣

∣

∣

min

(2.3.7)

(M2
S)

O(x)
ij = (−1)i+j

[

−(m0
3)

2 v
min
1 vmin

2

vmin
i vmin

j

+
g2 + g′2

4
vmin
i vmin

j

]

− δij
vmin
i

∂δV O(x)(Sk, Pk)

∂Si

∣

∣

∣

∣

min

+
∂2δV O(x)(Sk, Pk)

∂Si∂Sj

∣

∣

∣

∣

min

. (2.3.8)
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This is convenient, because we have reduced the number of parameters and we do not have to worry
about the renormalization of (m0

1)
2 and (m0

2)
2 but only about the renormalization of the minima vmin

i .
Combining the expression for the CP-odd and CP-even mass matrix Eqs. (2.3.7, 2.3.8) we use the former
to express the latter

(M2
S)

O(x)
ij = (M2

S)
0
ij + (δM2

S)
O(x)
ij , (2.3.9)

where we split the CP-even mass matrix into a “tree-level-like” part (M2
S)

0 and a “higher order” part10

(δM2
S)

O(x)

(M2
S)

0
ij ≡ (−1)i+j

[

(M2
P )

O(x)
ij +
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4
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j
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, (2.3.10)
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∂Pi∂Pj
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+
∂2δV O(x)(Sk, Pk)
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∣

∣

∣

min

. (2.3.11)

In the following paragraph we will express the CP-odd mass matrix in a nice form and in section 2.5.5
and 2.5.6 we will describe how the mass matrices are renormalized, such that it becomes apparent why
we calculate (M2

S)
O(x) using Eqs. (2.3.10, 2.3.11).

To evaluate the derivatives of the effective potential we express δV O(x) as a function of field-dependent
quantities x̄k(Sm, Pm) = (m̄2

t , m̄
2
t̃1
, m̄2

t̃2
, s2

2θ̄
, ξ̄) and use the chain rule

∂δV O(x)(x̄k(Sm, Pm))

∂Si

∣

∣

∣

∣

min

=
∑

î
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î,ĵ

∂2δV O(x)(x̄k)

∂x̄î∂x̄ĵ
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(2.3.13)

Note that we use a ’hat’ on an index to denote that it is a dummy index which we will sum over. For
derivatives w.r.t. the CP-odd fields Pi we get formally the same by replacing Si → Pi. The result for the
complete CP-odd mass matrix can be written in the following way

(M2
P )

O(x) =
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
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2

vmin
1

1

1
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1
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2


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]}

. (2.3.14)

This result has a very simple structure. The reason is that any single derivative of m̄2
t , m̄

2
t̃1
, m̄2

t̃2
, s2

2θ̄
, ξ̄

w.r.t. only one CP-odd field Pi vanishes at the minimum Sk = 0, Pk = 0. Only terms with two derivatives
of the Pi contribute to the above expression.

The result for the loop-corrections to the CP-even mass matrix (δM2
S)

O(x)
ij is more complicated. In [32],

it is expressed in terms of
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2
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3 , (2.3.15)
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10This notation and the labeling “tree-level-like” and “higher order” are misleading. The “tree-level-like” part (M2
S)

0

contains already higher order contributions through (M2
P )O(x).
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The functions F
O(x)
i , for i = 1, 2, 3 can be expressed as11
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2.3.2 Neutral Higgs Self-Couplings

In the previous section we explained how we can calculate the CP-odd and CP-even mass matrices
perturbatively up to O(x). We will apply the following rotations on the CP-odd and on the CP-even
fields

Si = Rij(−αO(x))Hj , Hj ≡ (h,H) (2.3.21)

Pi = Rij(β
O(x))Aj , Aj ≡ (A,G), (2.3.22)

for i, j = 1, 2 where

Rij(θ) ≡
(

sin θ cos θ
cos θ − sin θ

)

. (2.3.23)

The mixing angle is called αO(x) in the CP-even case and βO(x) in the CP-odd case12. They are determined

by diagonalizing the mass matrices (M2
S)

O(x)
ij and (M2

P )
O(x)
ij , see section A.2 in the appendix. The

fields h,H,A are the three neutral, physical Higgs bosons, the state G is a neutral, massless would-be

11Our result looks a little bit different from the result given in [32] because we used different dependences of the effective
potential (we used s2θ and ξ instead of c2θ and cϕϕ̃).

12At this point it is not yet clear whether the tangent of the CP-odd mixing angle βO(x) coincides with the loop-corrected
ratio of the VEVs. This is a question of the renormalization scheme, which we will address in section 2.5.5.
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Goldstone boson, which corresponds to the longitudinal polarization of the Z-Boson. There are three and
four particle vertices in these Higgs fields, whose strengths are determined by the trilinear and quartic
couplings. Here we will discuss the calculation of the trilinear couplings in detail. The quartic couplings
can be obtained analogously. We define the vector Hi = (Hj , Aj) = (h,H,A,G) for i = 1, ..., 4 and
j = 1, 2.

Trilinear couplings: The self-couplings of three neutral Higgs bosons are determined by the terms
in the effective potential which are trilinear in the Higgs fields. We can therefore define the trilinear
couplings analogously to the mass matrix. We express the effective potential as the tree-level potential
V 0(Hk), where we use the rotations13 of Eqs. (2.3.21, 2.3.22) to express it in terms of the physical fields
h,H,A,G, supplemented by the loop-corrected potential δV O(x)(x̄k(Hk)), with the dependence of the
quantities x̄k changed to the physical fields h,H,A,G by using the same rotations Eqs. (2.3.21, 2.3.22).
Taking three derivatives w.r.t. neutral Higgs fields Hi = (h,H,A,G) and evaluating everything at the
minimum (h,H,A,G) = 0 yields the desired trilinear terms in the Higgs fields

λ
O(x)
HiHjHk

≡ λ0
HiHjHk

+ δλ
O(x)
HiHjHk

, (2.3.24)
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∣

min

. (2.3.25)

Here |min means evaluating at the minimum of the effective potential, all fields are substituted by their
VEV, i.e. (h,H,A,G) = 0.

Chain rule: To calculate the above derivatives of the effective potential, again, we use the chain rule
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. (2.3.26)

As for the calculation of the mass matrix, a ’hat’ on an index denotes that it is a dummy index which we
will sum over. The quartic couplings are obtained analogously, they just involve one more partial deriva-
tive. The essence is that we can construct the unrenormalized couplings at every order in perturbation
theory by putting together the following two building blocks.
(i) Partial derivatives of the effective potential with respect to field-dependent quantities x̄k̂

∂nδV O(x)

∂x̄k̂1
· · ·∂x̄k̂n

. (2.3.27)

(ii) Partial derivatives of field-dependent quantities x̄k̂ with respect to Higgs fields Hi evaluated at the
minimum of the potential, i.e. (h,H,A,G) = 0

∂nx̄k̂

∂Hi1 · · ·∂Hin

∣

∣

∣

∣

min

, (2.3.28)

where n = 1, 2, 3 for the trilinear and n = 1, 2, 3, 4 for the quartic couplings. Of course this is a trivial
statement from the mathematical point of view, but for the generation of an efficient code it is useful to
implement these building blocks and recycle them whenever possible.

13The mixing angles for these rotations have to be the ones determined by the diagonalization of the mass matrices at

O(x). λ0
HiHjHk

as well as δλ
O(x)
HiHjHk

depend on βO(x) and αO(x).
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2.4 Explicit One-Loop O(αt) Results

2.4.1 One-Loop O(αt) CP-Even Higgs Masses

The calculation for the complete O(αt) corrections for the CP-even Higgs masses was first performed
in [21]. To reproduce these we use the general expression Eqs. (2.3.15 - 2.3.20) and evaluate it inserting
the one-loop O(αt) potential V O(x) → V O(αt). The O(αt) expression for the functions F1, F2 and F3

including O(ǫ)-terms are

Fαt

1 =
NC

16π2

[

log
m2

t̃1
m2

t̃2

m4
t

− ǫ

2

(

log2
m2
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Q2
+ log2
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t̃2

Q2
− 2 log2

m2
t

Q2

)]

, (2.4.1)

Fαt
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16π2

[

log
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− ǫ
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Q2

)]

, (2.4.2)

Fαt

3 =
NC

16π2

[
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2

(

log
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+ log

m2
t̃2

Q2
− 2
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2−
m2

t̃1
+m2

t̃2

m2
t̃1
−m2

t̃2

log
m2

t̃1

m2
t̃2

)

, (2.4.3)

where Q2 ≡ 4πµ2
0e

−γE is introduced in the Appendix after Eq. (C.2.50). Looking at the O(αt) effective
potential Eq. (C.2.54), we observe that there are ǫ-poles. In the O(αt) corrections to the CP-even Higgs
mass matrix (∆M2

S)
O(αt) these divergences cancel. They are physical quantities14. This cancellation had

to take place because there is no contribution from counter term insertion at tree-level. The O(ǫ)-terms
in the above expressions will result in finite contributions at O(αsαt) and O(α2

t ). This will be explained
in section 2.5.6.
From this result for the CP-even Higgs mass matrix one can derive an upper bound for the one-loop
O(αt) corrected light scalar Higgs mass, see Eq. (1.5.1).

2.4.2 One-Loop O(αt) Trilinear Higgs Self-Couplings

The one-loopO(αt) corrections to the trilinear couplings for the neutral Higgs bosons have been calculated
more than 20 years ago [24]. In the previous section, we have build up all the relevant tools to reproduce
these results. Using Eq. (2.3.26) with δV O(x) = δV αt we obtain the O(αt) corrections to the couplings

∆λ
O(αt)
HiHjHk

.

We will need the results for the O(αt) couplings also for the two-loop calculation and for this reason we
need to modify the result of [24] a little bit. First let us introduce some notational simplifications

Xt = At + µ cotβ, Yt = At − µ tanβ, Zt = At + µ cotα, Wt = At − µ tanα. (2.4.4)

The mixing angles α and β are defined by the diagonalization of the CP-even and CP-odd mass matrix
respectively, see Eqs. (2.3.21, 2.3.22). In view of the two-loop calculation it is important to distinguish

between the mixing angle β and the ratio of the VEVs
vmin
1

vmin
2

in the one-loop result, since they might

receive different radiative corrections15 at O(αt). Moreover thinking of the two-loop renormalization,
we have to take O(ǫ)-terms into account, because they yield finite contributions when multiplied by a
divergent counter term. They are presented in appendix F.1. We also include the couplings of the would-
be Goldstone bosons G, because they are relevant to construct WFR counter terms, see section 2.5.7.

14For the mass matrix as well as for the couplings we use a capital ∆ to denote that the derivatives of δV O(x) are finite.
15In section 2.5.5 we will introduce a renormalization scheme, where the relation tan β = v2/v1 is fulfilled up to all orders

in perturbation theory. However, we first want to cast the result into a form in which we can apply any renormalization
scheme.
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The results can be displayed in the following form
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(2.4.5)
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(2.4.6)

∆λ
O(αt)
hhH =

3m4
t c

2
asa

4π2v32

{

3 log

(

m2
t̃1
m2

t̃2

m4
t

)

+
s2θ
2mt

(Zt + 2Wt) log

(

m2
t̃1

m2
t̃2

)

+ c22θ

[

Wt(2Zt +Wt)

m2
t̃1
−m2

t̃2

log

(

m2
t̃1

m2
t̃2

)

+
3ZtW

2
t s2θ

2mt(m2
t̃1
−m2

t̃2
)

(

2−
m2

t̃1
+m2

t̃2

m2
t̃1
−m2

t̃2

log

(

m2
t̃1

m2
t̃2

))]

+
(2mt + s2θZt)(2mt + s2θWt)

2

4mtm2
t̃1

+
(2mt − s2θZt)(2mt − s2θWt)

2

4mtm2
t̃2

− 4

}

, (2.4.7)

∆λ
O(αt)
hHH =

3m4
t cas

2
a

4π2v32

{

3 log

(

m2
t̃1
m2

t̃2

m4
t

)

+
s2θ
2mt

(2Zt +Wt) log

(

m2
t̃1

m2
t̃2

)

+ c22θ

[

Zt(Zt + 2Wt)

m2
t̃1
−m2

t̃2

log

(

m2
t̃1

m2
t̃2

)

+
3Z2

tWts2θ
2mt(m2

t̃1
−m2

t̃2
)

(

2−
m2

t̃1
+m2

t̃2

m2
t̃1
−m2

t̃2

log

(

m2
t̃1

m2
t̃2

))]

+
(2mt + s2θZt)

2(2mt + s2θWt)

4mtm2
t̃1

+
(2mt − s2θZt)

2(2mt − s2θWt)

4mtm2
t̃2

− 4

}

, (2.4.8)

∆λ
O(αt)
hAA =

3m4
t cac

2
β

4π2v32

{

log

(

m2
t̃1
m2

t̃2

m4
t

)

+

[

Y 2
t

m2
t̃1
−m2

t̃2

+Wt
s2θ
2mt

(

1− Y 2
t

m2
t̃1
+m2

t̃2

(m2
t̃1
−m2

t̃2
)2

)]

log

(

m2
t̃1

m2
t̃2

)

+
s2θ
mt

WtY
2
t

(m2
t̃1
−m2

t̃2
)

}

, (2.4.9)

∆λ
O(αt)
HAA =

3m4
t sac

2
β

4π2v32

{

log

(

m2
t̃1
m2

t̃2

m4
t

)

+

[

Y 2
t

m2
t̃1
−m2

t̃2

+ Zt
s2θ
2mt

(

1− Y 2
t

m2
t̃1
+m2

t̃2

(m2
t̃1
−m2

t̃2
)2

)]

log

(

m2
t̃1

m2
t̃2

)

+
s2θ
mt

ZtY
2
t

(m2
t̃1
−m2

t̃2
)

}

, (2.4.10)

∆λ
O(αt)
hGG =

3cαs
2
β

8π2v32
m3

t

{

2s2θ
WtX

2
t

m2
t̃1
−m2

t̃2

+ 2mtlog
m2

t̃1
m2

t̃2

m4
t

+

(

Wts2θ − s2θWtX
2
t

m2
t̃1
+m2

t̃2

(m2
t̃1
−m2

t̃2
)2

+
2mtX

2
t

m2
t̃1
−m2

t̃2

)

log
m2

t̃1

m2
t̃2

}

, (2.4.11)



36 2.5. Renormalization
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Analogous to the mass matrix all divergences from δV αt cancel in the one-loop couplings. They cor-
respond to the physical quantities. Note that these results are not explicitly dependent on At and µ
anymore. Together with α and β they have been absorbed into Yt,Wt, Zt and Xt up to some universal
prefactors. The dependence on vmin

1 and vmin
2 has been absorbed into the parameters s2θ and c2θ.

We see that all one-loop O(αt) corrections to the Higgs masses and self-couplings are proportional to m4
t ,

i.e. they are potentially large. Especially the corrections to the light scalar Higgs mass are comparable in
size to the tree-level value, for large tanβ, see Eq. (1.5.1). The Higgs self-couplings are proportional to
trigonometric functions of the CP-even and CP-odd mixing angles α and β. In parameter spaces, where
these are not much smaller than 1, the corrections to the Higgs self-couplings can be also comparable to
the tree-level values.

2.5 Renormalization

2.5.1 General Remarks about Two-loop O(αsαt) and O(α2
t ) Calculations

In this section we will comment about the two-loop O(αsαt) and O(α2
t ) calculation for the Higgs masses

and self-couplings. They are calculated using the regularized but unrenormalized effective potential, i.e.
we use Eqs. (2.3.15 - 2.3.20, 2.3.26) with δV O(x) = δV αtαs + δV α2

t . We will not put any analytical results
here because the expressions are too long to be displayed here.
Looking at the two-loop effective potentials Eqs. (C.3.9, C.4.19), we see that there are ǫ2-divergences.

These quadratic divergences cancel in (δM2
S)

O(αtαs) and (δM2
S)

O(α2
t ) individually. Analogously they

cancel in the couplings δλ
O(αtαs)
HiHjHk

and δλ
O(α2

t )
HiHjHk

. This has to be the case because there are no counter

term contributions at one-loop (or at tree-level) that yield ǫ2-divergences. However, there are ǫ−1-
divergences in the masses and couplings at O(αtαs) and O(α2

t ) which do not cancel among the two-loop
contribution. To get rid of these divergences we need to renormalize.

2.5.2 General Remarks about Renormalization

The collection of techniques to get rid of the UV-infinities (which we transformed into poles in the
regulator) in a quantum field theory is called renormalization. The crucial point here is to realize that
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the quantities that appear in the initial bare Lagrangian (as well as in the effective potential) do not
correspond to the quantities that are actually measured in the laboratory. These bare physical constants
that appear in the Lagrangian (e.g. masses m0 , couplings g0) receive loop-corrections themselves, such
that they become just as divergent as the amplitudes, masses and couplings that we want to calculate.
In order to make contact to reality these bare quantities have to be rewritten in terms of physical, i.e.
renormalized quantities. This means we substitute the divergent bare quantities by their physical value
plus16 a divergent counter term x0 → xR + δx. Pictorially this corresponds to the insertion of counter
term diagrams. In any renormalizable field theory such as the SM or the MSSM, we can introduce
a finite number of counter terms such that all poles in the regulator ǫ cancel in a physical prediction
and we therefore obtain finite results also in the limit ǫ → 0. In fact divergences cancel at every order
in perturbation theory17. When we calculate a renormalized coupling, we obtain a dependence on an
unphysical renormalization scale µR. This means that coupling constants, (e.g. the elementary electrical
charge) are not constants anymore but they depend on the energy scale where they are measured. In
QED this effect is known as screening, in QCD this leads to asymptotic freedom [61]. Observables,
such as hadronic cross sections or pole masses have to be independent of the renormalization scale µR.
For any perturbatively calculated observable, the remaining dependence on the renormalization scale
µR corresponds to higher orders in perturbation theory that have not been taken into account. This
dependence is therefore unphysical and should become smaller with every higher order included, such
that in the limit of an exact result this dependence vanishes. The variation of µR can then be used to
estimate theoretical errors due to neglected higher orders.

2.5.3 Scale Dependence of Quark Masses in the SM

To describe the above scale dependence of masses and couplings a little bit better, I will present a small
detour about two different renormalization schemes for the masses.
In the SM the on-shell self-energy for 6p = m of a quark at one-loop order αs in DRED is18

p−→ p−→
q

g

⇒ Σ(m) = mCF
αs

π
Γ(1 + ǫ)

(

4πµ2
0

m2

)ǫ (
3

4ǫ
+

5

4

)

, (2.5.1)

where µ0 is the unphysical t’Hooft or regularization scale. The renormalization scheme fixes the relation
between the physical and the bare quantities m0. Due to renormalizability the divergence has to be the
same in all schemes, but we are free to shift any finite terms between the renormalized mass and the
counter term. The pole mass corresponds to an on-shell evaluation of the self-energy, the corresponding
scheme is called the on-shell OS scheme and the renormalized mass as well as the counter term is
independent of any renormalization scale19 µR

mOS = m0 +Σ(m) ≡ m0 − δOSm. (2.5.2)

16The sign here is a matter of convention. In the way we do it here, the mass counter term is the negative of the
self-energy, see section 2.5.3.

17This is an important statement. It means that in all our calculations, we first properly expand our results perturbatively,
with ǫ fixed. Then in the very end we may take the limit ǫ → 0.

18In general a fermionic self-energy consists of a scalar (S), a vectorial (V ) and an axial (A) part
Σ(6p) = mΣS(p

2) + 6pΣV (p2) + 6pγ5ΣA(p2). An on-shell evaluation of the self-energy at 6p = m results in
Σ(m) = m(ΣS (m

2) + ΣV (m2)).
19This scale independence doesn’t make the on-shell scheme superior to the DR scheme. It is just that we evaluated the

counter term at a special scale, namely the pole mass.
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The modified minimal subtraction scheme together with DRED (DR scheme) is defined by taking only
the divergent part of the self-energy plus some universal constants. This introduces the renormalization
scale µR as the scale where the counter term and the renormalized parameter are separated20.

mDR(µ2
R) = m0 − δmDR(µ2

R), δDRm(µ2
R) = −mCF

αs

π
Γ(1 + ǫ)

(

4πµ2
0

µ2
R

)ǫ
3

4ǫ
. (2.5.3)

We can then relate the running DR mass to the pole mass

mDR(µ2
R) = m0 − δDRm(µ2

R) = mOS −
[

δDRm(µ2
R)− δOSm

]

. (2.5.4)

We see that the ǫ-poles of the counter terms cancel. Eq. (2.5.4) gives us an analytical formula to calculate
running DR parameters from renormalized on-shell parameters. Note that Eq. (2.5.4) is only a naive
estimate of the running. Usually the running of a quantity depends on other running quantities. To get
a more reliable result one has to solve coupled differential renormalization group equations.

2.5.4 Renormalizing a Cross Section in a Toy Model

Let’s take a look at renormalization from a perturbative perspective. We work in a toy model, where
we computed some LO cross section σ(m0) and its O(α) correction δσ(m0) (any δ corresponds to an
O(α)). These unrenormalized cross sections depend only on bare parameters. In our toy model we
restrict ourselves to simply one parameter m0. The one-loop-corrected O(α) cross section expressed in
terms of bare parameters is

σ1 = σ0(m0) + δσ(m0) +O(α2). (2.5.5)

This unrenormalized cross section generally develops poles in ǫ in the correction δσ, i.e. it is divergent.
We choose a renormalization scheme and insert for the bare quantities the renormalized mass plus the
corresponding counter term and expand in α. In the DR scheme we use Eq. (2.5.3) to get

σDR
1 = σ0(m+ δm) + δσ(m+ δm) +O(α2)

= σ0(m) +
∂σ0

∂m0

∣

∣

∣

∣

m0=m

δm+ δσ(m) +O(α2). (2.5.6)

For any renormalizable theory the divergences in the counter term and those in the corrections to the
cross section have to cancel. Note that in the last equation above the DR-masses and counter terms are
scale dependent. In the on-shell scheme we use Eq. (2.5.2) and obtain a scale independent equation

σOS
1 = σ0(m+ δm) + δσ(m+ δm) +O(α2) (2.5.7)

= σ0(m) +
∂σ0

∂m0

∣

∣

∣

∣

m0=m

δm+ δσ(m) +O(α2). (2.5.8)

By inserting the “definition” of the running DR-mass Eq. (2.5.4) into the loop-corrected σDR
1 we obtain

exactly the on-shell result σOS
1 up to O(α2). This demonstrates that the remaining scale dependence

of a loop-corrected DR quantity is a higher order (sub-leading) effect. In practice we can use the scale
variation as well as the scheme variation as a measure for the theoretical uncertainty due to neglected
higher order effects.

20Sometimes the regularization and renormalization scale is identified µ0 = µR, such that the counter term is independent
of either scale. Still we will keep both scales in our calculation and explain their role later in section 2.5.6.
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2.5.5 Renormalization of the Two-Loop CP-Odd Mass Matrix

To discuss the renormalization of the CP-odd mass matrix we start with Eq. (2.3.14). We define a new

parameter21 tb0 ≡ vmin
2

vmin
1

to write

(M2
P )

O(x) =

(

tb0 1

1 tb0

)

{
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}

, (2.5.9)
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]

(2.5.10)
and the arguments of the function GO(x)(y0i ) are bare parameters.

Renormalizing the external fields: Besides the bare parameters in Eq. (2.5.9), we also have to
renormalize the external fields of the amputated Greens functions that we obtained with the EPA. For a
bare scalar field F 0

i this is usually referred to as wave function renormalization (WFR)

F 0
i =

√

ZF
ijF

R
j =

√

δij + δZF
ijF

R
j =

(

δij +
1

2
δZF

ij

)

FR
j +O

(

(δZF
ij )

2
)

, (F 0
i = P 0

i , S
0
i ) (2.5.11)

where in the last step we made a first order perturbative expansion22 in δZF
ij . In order to transform

the Greens functions into matrix elements, we have to apply external self-energies, which means that the
WFR counter terms δZF

ij are the derivatives of the self-energies w.r.t. the external momentum squared,
evaluated at zero external momentum consistent with the EPA.

δZF
ij = − ∂

∂p2
ΣF

ij(p
2)

∣

∣

∣

∣

p2=0

. (2.5.12)

Note that the self-energies in the equation above also contain divergences in ǫ. The renormalization of
the external fields is therefore essential to get finite masses and couplings23. In the present work we will
always use the WFR counter term defined in Eq. (2.5.12) and refer to it as the on-shell renormalization
of the external fields.

The Goldstone theorem: For the CP-odd and CP-even fields the external WFR constants are di-
agonal, i.e. δZP

ij = δijδZ
P
i and δZS

ij = δijδZ
S
i . The calculation and explicit formulae can be found

in appendix D.4. To renormalize the CP-odd Higgs mass matrix we have to multiply every element of
the mass matrix by the WFR constant of the corresponding fields. Moreover we renormalize all bare
parameters by substituting them by the renormalized parameters plus a counter term y0i → yRi + δyi

(M2
P )

O(x),R =

(

(tbR + δtb)ZP
1

√

ZP
1 ZP

2
√

ZP
1 ZP

2 (tbR + δtb)−1ZP
2

)

{

−(mR
3 )

2 − δm3 +GO(x)(yRi + δyi)
}

, (2.5.13)

21The careful reader notices the similarity to tanβ, however, at this point β is still the mixing angle of the CP-odd mass
matrix.

22We will see later on that for our purpose only the O(αt)-term of the WFR is needed, so that a first order perturbative
expansion in δZF

ij is sufficient.
23In [31] only the divergences of the external self-energies have been used, such that the final result also in the on-shell

scheme had a dependence on the renormalization scale Q. To treat the renormalization of the external fields in a consistent
way, we have to use the WFR counter term defined in Eq. (2.5.12).
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From this equation we already see that the Goldstone theorem holds at every order in perturbation theory.
This matrix has determinant 0, which means that at least one eigenvalue has to be zero (corresponding
to a massless pseudoscalar would-be Goldstone boson G)24. Moreover the other eigenvalue is nonzero
and corresponds to the mass of the physical pseudoscalar Higgs boson A. This mass is equal to the trace
of (M2

P )
O(x)

m2
A =

[

(tbR + δtb)ZP
1 + (tbR + δtb)−1ZP

2

]{

−(mR
3 )

2 − δm3 +GO(x)(yRi + δyi)
}

. (2.5.14)

Moreover Eq. (2.5.13) tells us that the CP-odd mixing angle β is a combination of tb0 and ZP
i . (The

relation tanβ = tbR is not fulfilled in general.)

Renormalizing (M2
P ) at O(αt+αtαs+α2

t ): In this paragraph we will investigate how we renormalize
the pseudoscalar Higgs mass matrix up to O(αt + αtαs + α2

t ). We take Eq. (2.5.13) and expand it up
to the desired order in perturbation theory. This generates the complete formula for the renormalized
CP-odd mass matrix

(M2
P )

αt+αtαs+α2
t ,R =

(

tbR 1

1 (tbR)−1

){

− (mR
3 )

2 − δαtm2
3 − δαtαsm2

3 − δα
2
tm2

3 +Gαt(yRi )

+
∂Gαt(y0i )

∂y0i

∣

∣

∣

∣

y0
i=yR

i

(δαtyi + δαsyi) +GO(αtαs)(yRi ) +GO(α2
t )(yRi )

}

+

(

δαttb + tbRδαtZP
1

1
2 (δ

αtZP
1 + δαtZP

2 )
1
2 (δ

αtZP
1 + δαtZP

2 ) δαttb−1 + (tbR)−1δαtZP
2

){

− δαtm2
3 +GOαt(yRi )

}

.

(2.5.15)

This expression has to be discussed in detail. First, in terms that are already of O(αtαs) or O(α2
t ) we

can simply substitute the bare with the renormalized parameters, since any counter term contribution
is of higher order in perturbation theory. Second we need to expand GO(αt)(yRi + δαtyi + δαsyi) at the
first order in αt and αs and we therefore have to take the first derivative of GO(αt). This corresponds
to the insertion of counter term diagrams in the one-loop contribution. Moreover we do not consider
O((mR

3 )
2αt)-terms, since these are of the same order as terms with non-vanishing external momentum25.

The counter term δαtm2
3, however, is not proportional to m2

3 but to Atµ. It therefore contributes also
when multiplied by another O(αt). Now it becomes clear that the counter term for tb and the WFR
counter term are only needed at O(αt) and O(αs), since they are multiplied by (mR

3 )
2 and O(αt)-terms

only. Note that the Higgs sector is color neutral and therefore neither δZP,S
ij nor tb receive O(αs)

corrections. All divergences of the counter terms and the G-functions cancel. The result is finite but it
still depends on the renormalization scheme.

Renormalization scheme: We want to find a renormalization scheme, such that at O(αt+αtαs+α2
t )

the relation tanβR = tbR is fulfilled26. Keeping in mind that the renormalization scheme shifts finite
terms between the renormalized input parameters and the counter term, we can choose δαtm2

3 in such a
way that the last line in Eq. (2.5.15) vanishes

δαtm2
3 ≡ GO(αt)(yRi ). (2.5.16)

24From Eq. (2.5.13) one can also see that the Goldstone theorem requires δZP
ij to be diagonal. Otherwise the determinant

of (M2
P )O(x) would be nonzero.

25Nonzero momenta of external fields Pi or Si result in terms proportional to m2
3 and m2

Z when evaluated on-shell. Since
we neglect these terms in the EPA, it would be inconsistent to include their counter term contribution, see section 2.2.1.

26βR is the CP-odd mixing angle at O(αt + αtαs + α2
t ). For brevity we write βR = βO(αt+αtαs+α2

t ), remembering that
βR is the renormalized mixing angle in scheme R.
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The remaining matrix (M2
P )

O(αt+αtαs+α2
t ),R is diagonalized with the mixing angle β, determined by

tanβ = tbR. Note that the scheme for the renormalization of β or tb respectively is not fixed yet. We
will fix this scheme later in section 2.5.6. Moreover we can also fix

δαtαsm2
3 ≡ GO(αtαs)(yRi )+

∂GO(αt)(y0i )

∂y0i

∣

∣

∣

∣

y0
i=yR

i

δαsyi, δα
2
tm2

3 ≡ GO(α2
t )(yRi )+

∂GO(αt)(y0i )

∂y0i

∣

∣

∣

∣

y0
i=yR

i

δαtyi,

(2.5.17)
such that we restore exactly the tree-level relation

(M2
P )

O(αt+αtαs+α2
t ),R1 =

(

tbR 1

1 (tbR)−1

){

− (mR1

3 )2
}

. (2.5.18)

We will use the above scheme for the renormalization of m2
3 during this work and refer to it as R1,

meaning that the input parameter (mR1

3 )2 is defined in that particular scheme.
Nevertheless there is another way to restore the relation tanβ = tbR by fixing the counter term of tb,
without choosing a scheme for m2

3

δαttb =
tb

2
(δαtZP

2 − δαtZP
1 ). (2.5.19)

The CP-odd mass matrix in this scheme R2 is

(M2
P )

O(αt+αtαs+α2
t ),R2 =

(

tbR2 1

1 (tbR2)−1

){

− (mR
3 )

2 − δαtm2
3 − δαtαsm2

3 − δα
2
tm2

3

+GO(αt)(yRi ) +
∂GO(αt)(y0i )

∂y0i

∣

∣

∣

∣

y0
i=yR

i

(δαtyi + δαsyi) +GO(αtαs)(yRi ) +GO(α2
t )(yRi )

}

. (2.5.20)

Note that by taking only the divergent DR-part of δZP
i and δtb the condition Eq. (2.5.19) is automatically

fulfilled. This is what was done in [31], but here we want to calculate matrix elements and therefore it is
essential to take into account also the finite part of the WFR counter term δZP

i .

2.5.6 Renormalization of the Two-Loop CP-Even Mass Matrix

Renormalizing the “tree-level-like” part: To discuss the renormalization of the CP-even mass
matrix, we start with the first term of Eq. (2.3.9), (M2

S)
0
ij , because this can be done almost analogously

to the renormalization of the CP-odd mass matrix. We renormalize by applying WFR counter terms to
this mass matrix while keeping the bare parameters y0k for the moment

(M2
S)

0,R
ij = (−1)i+j

[

g2 + g′2

4
vmin
i vmin

j

]

+

(

ZS
1 (M2

P )
O(x)
11 (y0k) −

√

ZS
1 Z

S
2 (M2

P )
O(x)
12 (y0k)

−
√

ZS
1 Z

S
2 (M2

P )
O(x)
12 (y0k) ZS

2 (M2
P )

O(x)
22 (y0k)

)

.

(2.5.21)
Due to the hierarchy ht ≫ g, g′, we do not take into account O(αt(g

2 + g′2))-terms. Besides they are of
the same order as terms with non-vanishing external momentum27. Moreover higher order corrections to
g2 and g′2 are proportional to themselves, i.e. δg2 ∼ g2 and δg′2 ∼ g′2. The first term in Eq. (2.5.21) is
proportional to (g2+g′2) and will therefore not be renormalized. We can express it by the mass of the Z-
boson28. The second term is the same as Eq. (2.5.13) with ZP

i → ZS
i and a minus sign for the off-diagonal

matrix elements. Using the renormalization scheme R1 for (m0
3)

2 we arrive at an expression analogous to

27The argument is the same as for O((mR
3 )2αt)-terms, see section 2.5.5.

28We are free to choose the scheme for mZ , because in the absence of any radiative corrections, we can identify the
tree-level mass with the renormalized mass.
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Eq. ( refm3RismAR), which is completely independent of ZP
i or ZS

i . This part can therefore be expressed
by the renormalized mass (mR1

A ) and the renormalized mixing angle βR. The “tree-level-like” part of the
CP-even mass matrix can then be written in the following form

(M2
S)

0,R =

(

m2
Zc

2
βR + (mR1

A )2s2βR −(m2
Z + (mR1

A )2)cβRsβR

−(m2
Z + (mR1

A )2)cβRsβR m2
Zs

2
βR + (mR1

A )2c2βR

)

. (2.5.22)

The parameters mR1

A and βR will serve as input parameters for the CP-even masses and also for the
couplings. In this way the CP-even masses and couplings can be calculated without using the explicit
formulae for the CP-odd masses derived in section 2.5.5. The calculation of the CP-odd mass only defines
a relation between the parameter mR

3 and mR
A in different renormalization schemes.

Renormalizing the “higher order” part: To study the renormalization of (δM2
S)

O(x)
ij we explicitly

look at O(x) = O(αt +αtαs +α2
t ). Adding external WFR counter terms, replacing bare parameters and

expanding perturbatively yields

(∆M2
S)

O(αt+αtαs+α2
t ),R

ij =

(

δZS
1 (∆M2

S)
O(αt)
11 (yRk ) − 1

2 (δZ
S
1 + δZS

2 )(∆M2
S)

O(αt)
12 (yRk )

− 1
2 (δZ

S
1 + δZS

2 )(∆M2
S)

O(αt)
12 (yRk ) δZS

2 (∆M2
S)

O(αt)
22 (yRk )

)

+ (δM2
S)

O(αt+αtαs+α2
t )

ij (yRk ) +
∑

k

∂(∆M2
S)

O(αt)
ij (y0k)

∂y0k

∣

∣

∣

∣

∣

y0
k
=yR

k

(δαsyk + δαtyk) .

(2.5.23)

The RHS of the first line corresponds to applying external WFR counter terms to the one-loop part.
The first term on the second line is simply the higher order piece, expressed by renormalized parameters.
The last term is the counter term contribution, which corresponds to a first order expansion of the one-
loop part. The divergent parts of the counter terms δyk and δZP,S

i contain poles in ǫ when they are
multiplied by the finite parts of (∆M2

S)
O(αt). These poles cancel against the ones coming from the pure

two-loop piece (δM2
S)

O(αtαs+α2
t ) such that the renormalized mass matrix(∆M2

S)
O(αt+αtαs+α2

t ),R is finite.

Moreover the divergences in δyk and δZP,S
i yield finite contributions when multiplied by O(ǫ)-terms in

(∆M2
S)

O(αt). This is an important feature of DREG and DRED: We first expand perturbatively while
keeping ǫ fixed and only in the very end we send ǫ to zero. To evaluate the first and the last term of
Eq. (2.5.23) we use the explicit form for the matrix (∆M2

S)
O(αt), presented in section 2.4.1.

Counter terms and renormalization scheme: In this section we will discuss in detail the counter
term contribution to the O(αt + αtαs + α2

t ) masses

∑

k

∂(∆M2
S)

O(αt)
ij (y0k)

∂y0k

∣

∣

∣

∣

∣

y0
k
=yR

k

(δαsyk + δαtyk) . (2.5.24)

We have to renormalize all bare parameters that occur in the one-loop correction to the mass matrix
(∆M2

S)
O(αt), namely

y0k = mt,m
2
t̃1
,m2

t̃2
, h2

t , µ, At, s2θ. (2.5.25)

For this we have to derive all counter terms up to O(αt + αs) for all bare quantities in the one-loop
masses Eq. (2.5.25). Remember that a counter term consists of a uniquely determined divergent piece
plus a scheme-dependent finite part. The scheme-dependence is absorbed in the input parameters. We
will describe in the following how we choose the schemes for the different counter terms (most of this is
analogous to [32,33]). Note that the renormalization scheme introduced in the following will also be used
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for the couplings. We choose to define the counter terms for the masses in the on-shell scheme, which
means that the counter term is simply the negative real part of the self-energy evaluated at the pole mass
itself. The top mass counter term is given by

δm2
t = −2mtℜΣt(mt), (2.5.26)

where Σt is the self-energy of the top quark. The renormalization of the stop sector is described in
appendix D.1. The counter terms for the squared stop masses are the real parts of the diagonal entries
of the stop self-energy-matrix Πt̃

ij in the mass eigenstate basis

δm2
t̃1

= −ℜΠt̃
11(m

2
t̃1
), δm2

t̃2
= −ℜΠt̃

22(m
2
t̃2
). (2.5.27)

The counter term for the stop mixing angle is obtained from the off-diagonal entries of the stop self-energy
matrix in the mass eigenstate basis evaluated in an anti-symmetric way, see Eq. (D.1.8)

δθ = −1

2

Π12(m
2
t̃1
) + Π12(m

2
t̃2
)

m2
t̃1
−m2

t̃2

. (2.5.28)

Trigonometric functions of the mixing angle can be renormalized by using the chain rule, e.g. δs2θ =
2c2θδθ.
We want a renormalization scheme for vmin

1 and vmin
2 , such that the relation GF = [

√
2(v21 + v22)]

−1,
see Eq. (2.3.5) is fulfilled also when taking into account higher orders. We introduce the parameter
(v0)2 = (vmin

1 )2 + (vmin
2 )2. The renormalized muon decay constant is

GR
F =

1 + δr√
2v20

=
1 + δr√

2[(vR)2 + 2vRδv]
, (2.5.29)

where the only contribution to δr at O(αt) comes from the transversal self-energy of the W -boson.

δr =
−ΠT

WW (0)

m2
W

. Solving this for δv we find

δv = −vR

2

ΠT
WW (0)

m2
W

. (2.5.30)

Moreover we can express the renormalized MSSM VEVs by vR1 = vR cosβR and vR2 = vR sinβR. As shown
earlier in this section, βR is the renormalized CP-odd mixing angle coinciding with the renormalized ratio
of the VEVs. In this way the renormalized VEVs vR1 , v

R
2 and vR are fixed by two input parameters: the

measured muon decay constant GR
F and tanβR.

Since there is no obvious OS definition for the CP-odd mixing angle, we are free to define tanβR in
any scheme we like. We will simply choose the DR scheme, where the counter term is evaluated at the
scale µαt

R = mt. The DR-counter term for β can be obtained from the divergent part of the external
self-energies of the neutral Higgs fields δZS

i , see appendix D.4.

δDRβ = −sβcβδZ
S
2 |ǫ−1

(

1 + ǫ log
m2

t

Q2

)

(2.5.31)

The counter term for µ is also chosen to be in the DR scheme, evaluated at the scale µαt

R = mt. The DR
counter term can be obtained from the fact that δ(µv2) = δ(µvsβ) = 0, which follows from a SUSY-non-
renormalization theorem29 [13]. Applying the chain rule yields

δDRµ = −µ

[

δv|ǫ−1

v

(

1 + ǫ log
m2

t

Q2

)

+
cβ
sβ

δDRβ

]

. (2.5.32)

29Alternatively one could calculate the counter term for µ via the Higgsino self-energy.
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The counter term for At is fixed such that the tree-level relation Eq. (1.3.7) remains also valid for the
renormalized parameters. Applying the chain rule yields

δAt =

(

δm2
t̃1
− δm2

t̃2

m2
t̃1
−m2

t̃2

+
δs22θ
2s22θ

− δm2
t

2m2
t

)

(

At + µ
cβ
sβ

)

− cβ
sβ

δµ+ µ
δβ

s2β
. (2.5.33)

The counter term δht is also defined via the tree-level expression m2
t = 1

2h
2
tv

2
2 by using the chain rule

δh2
t =

2δm2
t

v22
− 2h2

t

(

δv

v
+

cβ
sβ

δβ

)

. (2.5.34)

We will refer to the above collection of counter terms and the corresponding input parameters as the
on-shell (OS) scheme. The calculations and the results for the self-energies are presented in appendix D.

Note that the Higgs sector as well as the W ’s are color neutral. The self-energy ΠT
WW (0) and the δZP,S

i

do not acquire any αs contribution and therefore δαsβ = δαsµ = δαsv = 0. As a consequence the counter
terms δαsAt and δαsht have a simpler structure and also the RHS of the first line of Eq. (2.5.23) has no
O(αs) contribution.
As already explained in section 2.5.3 the masses in the OS scheme are manifestly invariant under a change
in the renormalization scale. However, the OS counter terms and the effective potential explicitly depend
on the regularization scale Q2 ≡ 4πµ2

0e
−γE via a logarithm. Each of these logarithms in Q is connected to

a pole in the regulator and therefore the cancellation of the poles in the regulator also implies a calculation
of the logarithms involving the regularization scale. It serves as a nontrivial consistency check in our
calculation to check that the renormalized masses and couplings are independent of the regularization
scale.

Evaluating the CP-even mass in DR scheme: Having specified all the counter terms in a certain
scheme, we can easily shift the masses also to the DR scheme. For this we use the DR counter term,
which is simply the divergent part of the OS counter term multiplied by (1+ ǫ logQ2/µR

2), see appendix
D.5 and D.6. The corresponding input parameters are then the running DR parameters.
Note that also in the DR renormalized CP-even mass matrix the dependence on the regularization scale
Q has to cancel between the counter terms and the derivatives of the effective potential. However, there
is still a dependence on the renormalization scale µR from the input parameters and the counter terms.

The sensitivity of the mass (∆M2
S)

O(αt+αtαs+α2
t ),DR to a variation of µR serves as a measure of how well

the perturbative calculation approximates the full result30.
As we explained in section 2.5.5 we cannot consistently define a DR scheme for the external WFR counter
terms. We therefore use the “on-shell” definition for the WFR counter terms regardless of what scheme
was used for the other counter terms.

Shifting the CP-even mass to any other scheme: The DR renormalized mass can be shifted to
any other renormalization scheme R by adding a finite counter term and evaluating the mass using the
input parameters in scheme R

(∆M2
S)

O(αt+αtαs+α2
t ),R = (∆M2

S)
O(αt+αtαs+α2

t ),DR
∣

∣

∣

yDR
k

=yR
k

+
∑

k

∂(∆M2
S)

O(αt)(y0k)

∂y0k

∣

∣

∣

∣

∣

y0
k
=yR

k

(

∆αs,Ryk +∆αt,Ryk
)

. (2.5.35)

30Note that the Higgs masses we calculate correspond to the pole masses in the limit of vanishing external momentum
independent of the renormalization scheme that we use. The Higgs mass renormalized in the DR scheme is not the same
as the running DR Higgs mass.
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Note that our DR counter terms also contain logarithms of the regularization scale Q, which have to be
absorbed in the finite counter terms ∆Ryk.

Renormalized masses of physical CP-even Higgs bosons: The eigenvalues of the renormalized
loop-corrected CP-even mass matrix in scheme R are the squared masses of the loop-corrected, physical
CP-even Higgs bosons. They can be easily calculated using Eq. (A.1.3). The renormalized loop-corrected
masses of the light and heavy scalar Higgs bosons h and H in scheme R are thus given by

(

m
O(x),R
H,h

)2

=
1

2

[

(M2
S)

O(x),R
11 + (M2

S)
O(x),R
22 ±

√

(

(M2
S)

O(x),R
11 − (M2

S)
O(x),R
22

)2

+ 4
(

(M2
S)

O(x),R
12

)2
]

.

(2.5.36)

2.5.7 Renormalization of the Two-Loop Couplings

The bare trilinear couplings are calculated using Eq. (2.3.24). The tree-level parts λ0 were explicitly
given in Eq. (1.4.30). They are of O(g2 + g′2) and are therefore not renormalized. To renormalize the
higher order contribution δλO(x) up to O(x) = O(αt +αtαs +α2

t ), we proceed as usual. We add external
self-energies, substitute bare parameters and expand perturbatively

∆λ
O(αt+αtαs+α2

t ),R
HiHjHk

=δλ
O(αt+αtαs+α2

t )
HiHjHk

(yRm) +
∑

l

∂∆λ
O(αt)
HiHjHk

(y0m)

∂y0l

∣

∣

∣

∣

∣

∣

y0
m=yR

m

(δαsyl + δαtyl)

+ Π
O(α2

t )
HiHjHk

, (2.5.37)

where Π
O(α2

t )
HiHjHk

are the external self-energies of the external fields Hi,Hj ,Hk. The one-loop O(αt)

couplings ∆λO(αt) are given in terms of the following bare parameters

y0i = h2
t , v

min
2 , s2θ, c

2
2θ, Yt,Wt, Zt,mt,m

2
t̃1
,m2

t̃2
. (2.5.38)

Moreover all λ’s depend on the two-loop mixing angles αO(αt+αtαs+α2
t ) and βO(αt+αtαs+α2

t ). The former
is determined by diagonalizing the renormalized CP-even mass matrix (∆M2

S)
O(αt+αtαs+α2

t ),R, whereas
the latter corresponds to the renormalized input parameter βR.

Counter terms and renormalization scheme: For the two-loop couplings we use the OS and DR
scheme defined in the previous section. The counter terms for the quantities c22θ, Yt,Wt, Zt can be derived
using the chain rule

δc22θ = −2s2θδs2θ, (2.5.39)

δYt = δAt − δµ tanβ, (2.5.40)

δZt = δAt + δµ cotα, (2.5.41)

δWt = δAt − δµ tanα, (2.5.42)

where at O(αs) these counter terms simplify to

δαsc22θ = −2s2θδ
αss2θ, δαsYt = δαsZt = δαsWt = δαsAt. (2.5.43)
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External WFR counter terms for the couplings: We need to calculate external WFR counter
terms for the couplings in the physical fields multiplied with the corresponding one-loop couplings, denoted

by Π
O(α2

t )
HiHjHk

. These self-energies involve the mixing of the CP-odd and CP-even eigenstates and therefore
several one-loop couplings contribute to a particular two-loop coupling. This correlation between different
one-loop couplings makes the renormalization of the external fields for the couplings more involved than
for the mass matrix. We will present an algorithm that explains how the renormalization of the external
fields for the couplings can be derived from the one-loop couplings and the WFR counter terms of the
current eigenstates. We start by writing the Lagrangian with trilinear one-loop couplings as

LO(αt)
tril (h0, H0, A0, G0) =

∑

i,j,k

∆λ
O(αt)
HiHjHk

H0
iH0

jH0
k. (2.5.44)

Using the chain rule we renormalize the fields of this Lagrangian P 0
i =

(

1 + 1
2δ

αtZP
i

)

PR
i and S0

i =
(

1 + 1
2δ

αtZS
i

)

SR
i

δLO(α2
t )

tril =
1

2

∑

i

{

∂LO(αt)
tril

∂Pi
δαtZP

i +
∂LO(αt)

tril

∂Si
δαtZS

i

}

(2.5.45)

=
1

2

∑

i,k

{

∂LO(αt)
tril

∂Hk

∂Hk

∂Pi
δαtZP

i +
∂LO(αt)

tril

∂Hk

∂Hk

∂Si
δαtZS

i

}

. (2.5.46)

To evaluate the derivatives ∂Hk

∂Pi
and ∂Hk

∂Si
we use the inverse of Eqs. (2.3.21, 2.3.22)

h = cαS1 − sαS2, H = sαS1 + cαS2, A = sαP1 + cαP2, G = cαP1 − sαP2. (2.5.47)

The remaining fields SR
i and PR

i of the counter terms are written in terms of the fields hR, HR, AR, GR

using the original rotations Eqs. (2.3.21, 2.3.22), such that we obtain a “counter term-Lagrangian” as a

function of these fields δLO(α2
t )

tril (h,H,A,G). By taking derivatives w.r.t. these fields we can then generate
the external WFR counter terms for the couplings

Π
O(α2

t )
HiHjHk

=
∂δLO(α2

t )
tril (hR, HR, AR, GR)

∂HR
i ∂HR

j ∂HR
k

. (2.5.48)

The explicit expressions are

Π
O(α2

t )
hhh =

3

2

{

∆λ
O(αt)
hhH cαsα

(

δZS
2 − δZS

1

)

+∆λ
O(αt)
hhh (c2αδZ

S
2 + s2αδZ

S
1 )
}

, (2.5.49)

Π
O(α2

t )
HHH =

3

2

{

∆λ
O(αt)
hHH cαsα

(

δZS
2 − δZS

1

)

+∆λ
O(αt)
HHH

(

c2αδZ
S
1 + s2αδZ

S
2

)

}

, (2.5.50)

Π
O(α2

t )
hhH =

1

2

{

∆λ
O(αt)
hhH

[

δZS
1 (1 + s2α) + δZS

2 (1 + c2α)
]

+
(

δZS
2 − δZS

1

)

cαsα

(

∆λ
O(αt)
hhh + 2∆λ

O(αt)
hHH

)

}

,

(2.5.51)

Π
O(α2

t )
hHH =

1

2

{

∆λ
O(αt)
hHH

[

δZS
1 (1 + c2α) + δZS

2 (1 + s2α)
]

+ cαsα(δZ
S
2 − δZS

1 )(∆λ
O(αt)
HHH + 2∆λ

O(αt)
hhH )

}

,

(2.5.52)

Π
O(α2

t )
hAA =

1

2

{

∆λ
O(αt)
hAA

[

+2δZP
1 s2β + 2δZP

2 c2β + δZS
1 s

2
α + δZS

2 c
2
α

]

+∆λ
O(αt)
HAA cαsα(δZ

S
2 − δZS

1 )

+ ∆λ
O(αt)
hAG 2cβsβ(δZ

P
1 − δZP

2 )

}

, (2.5.53)
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Π
O(α2

t )
HAA =

1

2

{

∆λ
O(αt)
HAA

[

δZS
1 c

2
α + δZS

2 s
2
α + 2δZP

1 s2β + 2δZP
2 c2β

]

+∆λ
O(αt)
hAA cαsα(δZ

S
2 − δZS

1 )

+ ∆λ
O(αt)
HAG 2cβsβ(δZ

P
1 − δZP

2 )

}

, (2.5.54)

Π
O(α2

t )
hGG =

1

2

{

∆λ
O(αt)
hGG

[

δZS
1 s

2
α + δZS

2 c
2
α + 2δZP

1 c2β + 2δZP
2 s2β

]

+∆λ
O(αt)
HGG cαsα(δZ

S
2 − δZS

1 )

+ 2sβcβ∆λ
O(αt)
hAG (δZP

1 − δZP
2 )

}

, (2.5.55)

Π
O(α2

t )
HGG =

1

2

{

∆λ
O(αt)
HGG

[

δZS
1 c

2
α + δZS

2 s
2
α + 2δZP

2 s2β + 2δZP
1 c2β

]

+∆λ
O(αt)
hGG cαsα

(

δZS
2 − δZS

1

)

+ 2sβcβ∆λ
O(αt)
HAG cβsβ(δZ

P
1 − δZP

2 )

}

, (2.5.56)

Π
O(α2

t )
hAG =

1

2

{

∆λ
O(αt)
hAG

[

δZS
1 s

2
α + δZS

2 c
2
α + δZP

1 + δZP
2

]

+∆λ
O(αt)
HAG cαsα(δZ

S
2 − δZS

1 ))

+ cβsβ(δZ
P
1 − δZP

2 )
(

∆λ
O(αt)
hAA +∆λ

O(αt)
hGG

)

}

, (2.5.57)

Π
O(α2

t )
HAG =

1

2

{

∆λ
O(αt)
HAG

[

δZS
1 c

2
α + δZS

2 s
2
α + δZP

1 + δZP
2

]

+∆λ
O(αt)
hAG cαsα(δZ

S
2 − δZS

1 )

+ cβsβ(δZ
P
1 − δZP

2 )
(

∆λ
O(αt)
HAA +∆λ

O(αt)
HGG

)

}

. (2.5.58)



Chapter 3

Numerical Analysis of Higgs Masses

and Self-Couplings

In the previous chapter, we explained how O(αsαt+α2
t ) corrections to the Higgs masses and self-couplings

can be calculated using the EPA. In section 2.5.6 and 2.5.7 we introduced two renormalization schemes,
the on-shell and the DR scheme. In this section we will numerically evaluate the Higgs masses and
self-couplings and discuss the implications of the higher order corrections.

3.1 Higgs Masses

Our analytical results for the O(αt + αsαt + α2
t ) corrections to the Higgs masses in DR scheme have

been checked to agree with [32, 33] except for terms due to the difference in the WFR counter term, see
Eq. (2.5.12). In contrast to [32,33] we will only take into account results from the EPA atO(αt+αsαt+α2

t )
for the numerical analysis, without including the full one-loop calculation [22].
In the following we discuss how we fix the numerical values of the parameters entering the expression for
the renormalized CP-even Higgs mass matrix, given in Eqs. (2.5.22, 2.5.23). To evaluate the “tree-level-
like” part, Eq. (2.5.22) we need the mass of the Z-boson mZ in no specified scheme (see footnote 28), the
renormalized CP-odd mixing angle βR and the CP-odd Higgs mass mR1

A , in renormalization scheme R1.
This renormalization scheme corresponds to an on-shell mass, determined with the EPA, i.e. external
momenta are set to zero. For mZ we will simply choose the pole mass of the Z-boson, which is determined
experimentally up to high precision [62]

mZ = 91.1876± 0.0021 GeV. (3.1.1)

The quantities βR and mR1

A affect mh in the same way as the input parameters for the tree-level Higgs
sector used in Figure 1.3. They will be varied, keeping in mind the latest exclusion limits from LEP and
the LHC, see Figure 1.4.
The expression for the “higher order” part, Eq. (2.5.23) can either be evaluated in the OS or DR scheme.
We only have to fix the input parameters in the OS scheme, because the latter are calculated using the
first by means of Eq. (2.5.4).

3.1.1 On-Shell Scheme

The top pole mass has been measured by the experiments at the LHC and the Tevatron. We will use
the top pole mass, mt = 172.9 GeV [63] as the input value for the OS top mass in all our analyses. The

48
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SM VEV v can be extracted from the most recently measured values for the Fermi constant [64] using
GF = [

√
2v2]−1 = 1.16637 · 10−5 GeV−2. Moreover we use αs(m

2
Z) = 0.118. Since αs enters only at

the two-loop level, any scale variation accounts for three-loop effects and is therefore irrelevant for our
purpose1. The top-Yukawa coupling is determined by the tree-level relation ht =

√
2 mt

vsβ
. Moreover we

need to fix the MSSM parameters of the stop sector mOS
Q , mOS

U , XOS
t and the Higgsino and gluino mass

mu and mg̃. Since these parameters have not yet been measured, we use two benchmark scenarios, the
mmax

h and the no-mixing scenario [65] to determine the values for these parameters2. The mmax
h scenario

uses a common SUSY scale mOS
Q = mOS

U = MSUSY = 1 TeV and is tuned to obtain the largest possible

Higgs mass, by fixing the stop mixing parameter to XOS
t = 2MSUSY = 2 TeV and the Higgsino and gluino

mass to µ = 200 GeV and mg̃ = 800 GeV respectively. The no-mixing scenario uses the same input,
except for XOS

t = 0 TeV. Note that the OS-label for mQ, mU and Xt only means that these parameters
are fixed in a scheme such that the tree-level relations to the stop pole masses Eq. (1.3.6) and the stop
mixing angle Eq. (1.3.7) are restored [33, 66]. For the following discussion, we will omit these OS labels.
The gluino mass enters only at the two-loop level and we can therefore identify it with the gluino pole
mass. Moreover the left sbottom mass enters only at two-loop level. We set m2

b̃L
= m2

Q, such that the

tree-level relation in the limit g = g′ = hb = 0 is restored. This fixes all OS parameters in two different
scenarios, such that we can numerically evaluate the CP-even Higgs mass matrix in the OS scheme.

3.1.2 DR-Scheme

To evaluate the CP-even Higgs masses also in the DR-scheme, we need to calculate running DR input pa-
rameters3 using Eq. (2.5.4). The Higgs masses in the DR scheme will then depend on the renormalization
scale µR. To derive a result that is perturbatively stable, this scale should be fixed in a way such that the
logarithms of this scale remain small. These logarithms involve the mass of the virtual particles running
in the loops log(µ2

R/m
2
virtual). In our calculation the dominant logarithmic contributions involve stop and

top masses, so the renormalization scale should be fixed somewhere between mt and mt̃1,2 . In this work

we fix the central renormalization scale to be µcentral
R = MSUSY

2 . At the central scale the loop-corrections
are expected to be small. To estimate the theoretical uncertainties, the renormalization scale is varied
by a factor of two around the central value, i.e. [ 12µ

central
R , 2µcentral

R ] = [ 14MSUSY,MSUSY].
Since we take into account two different perturbative orders at the two-loop level O(αs) and O(αt), the
renormalization scale variation becomes a little bit more complicated. To understand this properly, let
us first discuss the one-loop O(αt) corrections to the light scalar Higgs mass. As explained in section
2.4.1 we did not have to renormalize the one-loop correction, i.e. there are no counter term contributions
involved. This means we can evaluate the one-loop masses with input parameters in any renormalization
scheme. The main correction to the light scalar Higgs mass is proportional to the fourth power of the top
mass. The DR top mass, varied w.r.t. O(αs), is determined by using Eq. (2.5.4) with only O(αs)-counter
terms, see Eqs. (D.5.1, D.5.5)

mDR,αs

t (µR) = mOS
t −

[

δDR,αsmt(µR)− δOS,αsmt

]

. (3.1.2)

We can also vary the DR top mass w.r.t. O(αt) and the full O(αs + αt), by substituting αs → αt or
αs → αs + αt respectively in Eq. (3.1.2). The resulting numerical values for the top mass in the mmax

h

scenario with tanβ = 20 evaluated at 1
4MSUSY = 250 GeV and MSUSY = 1000 GeV are shown in Table 3.1.

1One could use the variation of the Higgs masses under evaluation of αs at different scales as a simple estimate for the
size of three loop effects.

2We use a slightly different version of the no-mixing benchmark scenario, fixing the SUSY scale to MSUSY = 1 TeV
instead of MSUSY = 2 TeV.

3Note that this determination of the running DR input parameters is rather simplistic. For a decent analysis of the scale
invariance of the Higgs masses, one should solve the coupled RGEs for the input parameters at two-loop level to get a NLL
determination.
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mDR
t (µR) µR = 250 GeV µR = 1 TeV
αs 154.67 GeV 140.61 GeV
αt 173.80 GeV 178.22 GeV

αs + αt 155.67 GeV 147.10 GeV

Table 3.1: The DR running top mass in the mmax
h scenario with tanβ = 20 evaluated at µR = 250 GeV

and µR = 1 TeV at different perturbative orders.

For the DR top mass running at O(αs + αt) with one common renormalization scale we see that the
individual contributions from O(αs) and O(αt) almost cancel the running. This is of course not a reli-
able estimate for the DR top mass, because the scale dependence of any DR parameter should increase
with every additional perturbative order considered. A better estimate of the running of the top mass
can be obtained by varying the renormalization scale at O(αs) independently of O(αt). This means we
have to distinguish between the renormalization scale in the counter terms at O(αs), i.e. µαs

R and the
renormalization scale in the counter terms at O(αt), i.e. µαt

R . The DR top mass then depends on both
renormalization scales

mDR,αs+αt

t (µαs

R , µαt

R ) = mOS
t −

[

δDR,αsmt(µ
αs

R ) + δDR,αtmt(µ
αt

R )− δOS,αsmt − δOS,αtmt

]

. (3.1.3)

For all further analyses of the DR masses and couplings, we will use Eq. (3.1.3) to determine the running
DR input parameters. To estimate the scale variation of the Higgs masses and self-couplings we evaluate
both scales, µαs

R and µαt

R , at three values [ 14MSUSY,
1
2MSUSY,MSUSY]. Table 3.2 shows the top mass in

the mmax
h scenario with tanβ = 20 evaluated at nine different values for the renormalization scales. One

can see that the running of the DR top mass is increased, which also increases the scale variation of the
DR Higgs mass.

mDR
t (µαs

R , µαt

R ) µαs

R = 250 GeV µαs

R = 500 GeV µαs

R = 1 TeV
µαt

R = 250 GeV 155.67 GeV 148.86 GeV 141.71 GeV
µαt

R = 500 GeV 158.15 GeV 151.45 GeV 144.43 GeV
µαt

R = 1 TeV 160.59 GeV 154.00 GeV 147.10 GeV

Table 3.2: The DR running top mass in the mmax
h scenario with tanβ = 20 as a function of two distinct

renormalization scales µαs

R and µαt

R , both evaluated at µR = 250 GeV, µR = 500 GeV and µR = 1 TeV.

In the following plots the filled bands show the scale variation, as described above, for the one-loop O(αt)
(green), the two-loop O(αt + αsαt) (red) and the two-loop O(αt + αsαt + α2

t ) (blue) Higgs masses and
self-couplings. Moreover the solid lines show the OS Higgs masses and self-coupling at one-loop O(αt)
(green), the two-loop O(αt + αsαt) (red) and the two-loop O(αt + αsαt + α2

t ) (blue).

3.1.3 Numerical Analysis of the Light Scalar Higgs Mass

The plots in Figure 3.1 show the light scalar Higgs mass mh at different orders in perturbation theory in
the OS and DR scheme as a function of the pseudoscalar Higgs mass mA. The plots on the left are in the
no-mixing scenario, whereas the plots on the right hand side are in the mmax

h scenario. The upper plots
use tanβ = 2, whereas the lower plots use tanβ = 30. The first outcome is that the shape of the slope
is still mainly determined by β and mA in the same way as they determined the slope at the tree-level,
see Figure 1.3. The slope of the curve is determined by tanβ but the transition region is moved to the

loop-corrected light scalar Higgs mass mA = m
O(x)
h . This shift of the transition region is a universal
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Figure 3.1: The light scalar Higgs mass mh as a function of the pseudoscalar Higgs mass mA. The plots
on the left are in the no-mixing scenario, whereas the right plots are in the mmax

h scenario. The upper
plots use tanβ = 2, whereas the lower plots use tanβ = 30.

feature for the mA-dependence of loop-corrected Higgs masses and self-couplings.
To discuss the size of the corrections, we can compare the numerical result in the OS-scheme to [33].
Correcting for the non-zero external momentum lowers the Higgs mass by up to ∼ 3 GeV in the no-mixing
scenario and by up to ∼ 6 GeV in the mmax

h scenario. There is only one further difference between our
analysis and [33], which is the different WFR counter term. Our choice of this term increases the Higgs
mass by up to 3 GeV compared to [33]. Concerning the uncertainty due to the renormalization scale and
scheme, we see that the one-loop O(αt), the two-loop O(αt + αsαt) and the two-loop O(αt + αsαt + α2

t )
bands all overlap, which means that the radiative corrections to mh are small at the central scale µαs

R =
µαt

R = 1
2MSUSY. Moreover the bands become smaller with every additional order in perturbation theory

included. However, the scale uncertainty4 of the two-loop O(αt+αsαt+α2
t ) light scalar Higgs mass is still

about ±3 GeV in the decoupling limit of the mmax
h scenario. In the OS scheme the size of the correction is

much bigger. The QCD corrections to the one-loop O(αt) reduce the Higgs mass in the decoupling limit
of the mmax

h scenario with tanβ = 30 by about 20 GeV, whereas the complete two-loop O(αt+αsαt+α2
t )

corrections raise the Higgs mass by about 9 GeV compared to the two-loop O(αt + αtαs). Taking into
account also the scheme dependence, the theoretical uncertainty of the Higgs masses in the decoupling

4Note again that this estimate of the scale uncertainty is not very involved. For a more reliable scale variation one should
use DR input parameters determined from solving the RGEs.
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limit of the mmax
h scenario with tanβ = 30 is almost ±4 GeV, whereas in the no-mixing scenario it is

±2 GeV. In the following analysis we will vary a single MSSM parameter, while keeping all the other
parameters fixed as in the mmax

h scenario. In this way we can get a feeling of how the light scalar Higgs
mass depends on the various parameters, without having to analyze the complete parameter space. We
work in the decoupling limit, setting mA = MSUSY for the following plots.
Figure 3.2 shows the dependence of mh on the stop mixing parameter Xt, for MSUSY = 0.5 TeV on the
left hand side and MSUSY = 1 TeV on the right hand side. Moreover we set tanβ = 10. One can see that
the Higgs mass is maximized5 for Xt ≃ 2MSUSY. Moreover, for MSUSY ≃ 0.5 TeV the scale dependence
grows very large for Xt ≃ 2MSUSY, such that for such large mixing the results are not perturbatively
stable anymore6. The plot on the left hand side in Figure 3.3 shows the dependence of mh on the gluino
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Figure 3.2: The light scalar Higgs mass mh as a function of the stop mixing parameter Xt. All other
parameters are fixed as in the no-mixing and mmax

h scenarios. The left plot uses MSUSY = 0.5 TeV,
whereas the right plot uses MSUSY = 1 TeV. Both plots are for tanβ = 10.

mass mg̃ for tanβ = 20. In the OS scheme the Higgs mass is maximized for about mg̃ = 800 GeV,
whereas in the DR scheme the peak of mh is shifted to about mg̃ = 2 TeV. The gluino mass dependence
can alter the Higgs mass by up to 5 GeV.
The plot on the right hand side in Figure 3.3 shows mh as a function of the Higgsino mass µ with
tanβ = 20 and all other parameters fixed as in the mmax

h scenario. One can observe that the Higgs mass
is almost independent of µ. This shows that the two-loop diagrams due to virtual Higgsinos are almost
irrelevant.

5Note that the value for the stop mixing parameter Xt that maximizes the Higgs mass differs between the OS and DR
renormalization scheme [67]. This effect can account for a few GeV in the Higgs mass.

6For very high values of Xt the stop mass eigenvalues squared can become negative. These results in a breaking
of the charge U(1)em and the color SU(3)C gauge symmetries. It follows that for Xt & 3MSUSY the MSSM is not
phenomenologically viable anymore [68].
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Figure 3.3: The plot on the left hand side shows mh as a function of mg̃ with mA = MSUSY = 1 TeV,
µ = 200 GeV and Xt = 2MSUSY = 2 TeV as in the mmax

h scenario and tanβ = 20. The plot right shows
mh as a function of µ with tanβ = 20 and all other parameters fixed as in the mmax

h scenario.

Figure 3.4 shows on the left hand side the dependence of mh on the tangent of the CP-odd mixing
angle in terms of tanβ. For low values of tanβ . 5 the light scalar Higgs mass grows rapidly, whereas
for tanβ & 10 the curve of mh is almost flat. The scale uncertainty becomes smaller at every order of
perturbation theory, and the bands overlap. For very small values of tanβ . 1.5 the scale dependence of
the Higgs mass increases.
Last but not least let us look at the plot on the right hand side of Figure 3.4, where the SUSY mass
MSUSY is varied, setting Xt = 2MSUSY and mA = mU = mQ = mg̃ = MSUSY. First one notices that the
OS Higgs mass at O(αt) grows steadily with MSUSY. The scale uncertainty grows with MSUSY, such that
for high SUSY masses of MSUSY & 3 TeV the perturbative stability of the light scalar Higgs becomes less
reliable. The DR mass at O(αt) peaks at MSUSY = 1 TeV, whereas the two-loop corrected DR masses
grow slowly up to MSUSY = 3 TeV.
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Figure 3.4: The plot on the left showsmh as a function of tanβ in the mmax
h scenario with mA = MSUSY =

1 TeV. The plot on the right shows mh as a function of MSUSY. Here we set mA = mg̃ = MSUSY,
µ = 200 GeV and tanβ = 20 with maximal mixing Xt = 2MSUSY.
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3.2 Higgs Self-Couplings

In section 2.5.7 we described how we obtain analytical results for the renormalized trilinear Higgs self-
couplings in the OS and the DR renormalization scheme. Analogously to the masses, the self-couplings
can be evaluated numerically in the OS scheme by using the same set of OS input parameters introduced
in section 3.1.1 and in the DR scheme by using the set of running DR input parameters introduced in
section 3.1.2. The only input parameter that we need for the evaluation of the self-couplings that was not
used for the masses is the CP-even mixing angle α. The renormalized mixing angle αO(x),R at O(x) in
scheme R can be obtained from the renormalized CP-even mass matrix at O(x) in scheme R, (M2

S)
O(x),R

by the following equation

αO(x),R =
1

2
arcsin







(M2
S)

O(x),R
12

(

m
O(x),R
H

)2

−
(

m
O(x),R
h

)2






, (3.2.1)

where m
O(x),R
H,h are the squared masses of the CP-even scalar Higgs bosons at O(x) and in scheme R,

obtained by Eq. (2.5.36). Note that the domain of the arcsin function is
[

−π
2 ,

π
2

]

. At tree level, the
off-diagonal CP-even matrix element is (M2

S)
tree
12 ≤ 0, see Eq. (1.4.16), such that the tree-level CP-even

mixing angle is negative αtree ∈
[

−π
2 , 0
]

. Radiative corrections, however, can alter the off-diagonal CP-

even matrix element, such that it becomes positive. If (M2
S)

O(x),R
12 ≥ 0 the mixing angle will be in

[

0, π2
]

.

3.2.1 Numerical Analysis of the Neutral Trilinear Higgs Self-Couplings

We will plot the same perturbative orders in two different renormalization scheme with the same colors
as we did for the masses. The solid lines show the OS self-coupling at one-loop O(αt) (green), two-loop
O(αt + αsαt) (red) and two-loop O(αt + αsαt + α2

t ) (blue). To estimate the scale variation of the self-
couplings we use the DR scheme, evaluating the two renormalization scales, µαs

R and µαt

R , at three different
values [ 14MSUSY,

1
2MSUSY,MSUSY]. The filled bands show the scale variation, as described above, for the

one-loop O(αt) (green), the two-loop O(αt+αsαt) (red) and the two-loop O(αt+αsαt+α2
t ) (blue) Higgs

self-couplings.

hhh-coupling: We will first discuss the coupling of three light scalar Higgs bosons. Figure 3.5 shows
λhhh as a function of the pseudoscalar Higgs mass mA. The plots on the left are in the no-mixing
scenario, whereas the right plots are in the mmax

h scenario. The upper plots use tanβ = 2, whereas the

lower plots use tanβ = 10. The slope of the curve in the transition region mA ≃ m
O(x),R
h increases

with the tangent of the CP-odd mixing angle. For tanβ = 10 the uncertainty bands do not overlap
in the transition region, because this region is shifted to the corrected light scalar Higgs mass. In the
decoupling limit, λhhh approaches its asymptotic value and the corrections to the tree level are fairly
large & 100%. In this region the bands all overlap, which means that the size of the two-loop corrections
is small at the central scale µαs

R = µαt

R = 1
2MSUSY. In the OS scheme the two-loop corrections are larger,

the QCD corrections to the one-loop result reduce the coupling by about 75 GeV in the mmax
h scenario

for tanβ = 10, corresponding to ≃ 30%. The two-loop O(α2
t ) corrections, however, increase the coupling

again by about 30 GeV. In the no-mixing scenario the corrections as well as the scale uncertainties are
smaller.
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Figure 3.5: The coupling of three light scalar Higgs bosons λhhh as a function of the pseudoscalar Higgs
mass mA. The plots on the left are in the no-mixing scenario, whereas the right plots are in the mmax

h

scenario. The upper plots use tanβ = 2, whereas the lower plots use tanβ = 10.

In the following we will apply the same analysis of the MSSM parameter space that we did in section
3.1.3 for the masses also for the self-couplings. We will vary a single MSSM parameter, while keeping
all the other parameters fixed as in the mmax

h scenario. In this way we can get a feeling of how the
coupling of three light scalar Higgs bosons depends on the various parameters, without having to analyze
the complete parameter space. We work in the decoupling limit, setting mA = MSUSY for the following
plots.
The two plots in Figure 3.6 show the coupling of three light scalar Higgs bosons λhhh as a function of
the stop mixing parameter Xt with tanβ = 10. All other parameters are fixed as in the no-mixing and
the mmax

h scenarios. The left plot uses MSUSY = 0.5 TeV, whereas the right plot uses MSUSY = 1 TeV.
The coupling λhhh is maximized for Xt ≃ 2MSUSY. For MSUSY = 0.5 TeV the uncertainties grow very
large for Xt & 2MSUSY, such that for such high mixing also the couplings are not perturbatively stable
anymore.
The plot on the left hand side of Figure 3.7 shows the coupling of three light scalar Higgs bosons λhhh

as a function of mg̃ with mA = MSUSY = 1 TeV, µ = 200 GeV and Xt = 2MSUSY = 2 TeV as in the
mmax

h scenario and tanβ = 10. In the OS scheme the coupling is maximized for mg̃ ≃ 800 GeV, whereas
in the DR scheme the coupling peaks around mg̃ ≃ 2 TeV. The dependence on the gluino mass can alter
the trilinear Higgs self-couplings by about 10 GeV, corresponding to a O(5%) effect.
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Figure 3.6: The coupling of three light scalar Higgs bosons λhhh as a function of the stop mixing parameter
Xt with tanβ = 10. The left plot uses MSUSY = 0.5 TeV, whereas the right plot uses MSUSY = 1 TeV.
All other parameters are fixed as in the no-mixing and mmax

h scenarios.

The plot on the right hand side of Figure 3.7 shows λhhh as a function of µ with tanβ = 10 and all other
parameters fixed as in the mmax

h scenario. One can observe that in both renormalization schemes and at
all perturbative orders, the coupling is almost independent of µ. The reason for this is that through the
fixing of Xt, the main effect of the variation of µ is canceled by the parameter At. The Higgsino mass µ
also shows up in two-loop diagrams at O(α2

t ). The parameter µ in these diagrams seems to have almost
no effect on the Higgs self-couplings.
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Figure 3.7: The plot on the left hand side shows the coupling of three light scalar Higgs bosons λhhh as
a function of mg̃ with mA = MSUSY = 1 TeV, µ = 200 GeV and Xt = 2MSUSY = 2 TeV as in the mmax

h

scenario and tanβ = 10. The right plot shows λhhh as a function of µ with tanβ = 10 and all other
parameters fixed as in the mmax

h scenario.

The plot on the left hand side of Figure 3.8 shows the dependence of the coupling of three light scalar Higgs
bosons λhhh on the CP-odd mixing angle in terms of tanβ in the mmax

h scenario with mA = MSUSY = 1
TeV. The coupling grows rapidly for tanβ . 5 and it is almost flat for tanβ & 10 at all perturbative
orders. The scale uncertainty is almost constant for tanβ > 1.5 and it becomes larger for very low values
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of tanβ.
The plot on the right in Figure 3.8 shows λhhh as a function of MSUSY. Here we set mA = mg̃ = MSUSY,
µ = 200 GeV and tanβ = 10 with maximal mixing Xt = 2MSUSY. The O(αt) coupling in the OS scheme
grows steadily with the SUSY scale, whereas the coupling at the other perturbative orders grows only
very slowly for large MSUSY. This fact shows nicely that the one-loop O(αt) result in the OS scheme
is not a reliable estimate of the coupling λhhh in the whole MSSM parameter space. Moreover one can
observe that the scale uncertainty grows bigger with MSUSY.
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Figure 3.8: The plot on the left shows λhhh as a function of tanβ in the mmax
h scenario with mA =

MSUSY = 1 TeV. The plot on the right shows λhhh as a function of MSUSY. Here we set mA = mg̃ =
MSUSY, µ = 200 GeV and tanβ = 10 with maximal mixing Xt = 2MSUSY.

In general the corrections to the trilinear light scalar Higgs coupling in decoupling limit are expected to
have the same structure as the corrections to the light scalar Higgs mass. Most of the corrections to λhhh

can be absorbed into the corrected Higgs mass squared by

λ
O(x),R
hhh ≃ 3

v

(

m
O(x),R
h

)2

, (3.2.2)

similarly to Eq. (1.4.35). Since the light scalar Higgs mass has to behave absolutely SM-like in the
decoupling limit, we can calculate corrections to the relation of the SM Higgs mass to the SM Higgs
self-couplings perturbatively and check how well they approximate the relation between the light scalar
Higgs mass and its self-couplings in the MSSM. At the one-loop O(αt) this analysis has been done [41].
For the O(αtαs + α2

t ) corrections this can be done in an analogous way.
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HHH-coupling: Figure 3.9 shows the coupling of three heavy scalar Higgs bosons λHHH as a function
of the pseudoscalar Higgs mass mA. The plots on the left hand side are in the no-mixing scenario,
whereas the plots on the right are in the mmax

h scenario. The upper plots use tanβ = 2, whereas the
lower plots use tanβ = 10. It is a general property of all Higgs self-couplings that the slope of the curve is

highest in the transition region mA ≃ m
O(x),R
h and that the slope increases with tanβ. In the decoupling

region the size as well as the perturbative corrections of the coupling become small. For small values of
mA, however, the corrections to and the size of the coupling become very large and they show similar
properties as λhhh in the decoupling region. For mA = 50 GeV the scale uncertainty is largest for small
tanβ and large stop mixing. The uncertainty bands do all overlap indicating small corrections at the
central renormalization scale.
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Figure 3.9: The coupling of three heavy scalar Higgs bosons λHHH as a function of the pseudoscalar
Higgs mass mA. The plots on the left are in the no-mixing scenario, whereas the right plots are in the
mmax

h scenario. The upper plots use tanβ = 2, whereas the lower plots use tanβ = 10.
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hhH-coupling: Figure 3.10 shows the coupling of two light and one heavy scalar Higgs boson λhhH

as a function of the pseudoscalar Higgs mass mA. The plots on the left hand side are in the no-mixing
scenario, whereas the right plots are in the mmax

h scenario. The upper plots use tanβ = 2, whereas the
lower plots use tanβ = 10. For tanβ = 2 the corrections to the coupling are quite sizable, especially in
the mmax

h scenario and the uncertainties are moderate. For tanβ = 10 the absolute value of the coupling
peaks in the transition region and the bands do not overlap, especially for large mixing. In the decoupling
limit the corrections and the uncertainties of the coupling become smaller.
Note that this coupling can be phenomenologically relevant to study the decay of a heavy scalar into two
light scalar Higgs bosons.

-120

-100

-80

-60

-40

-20

 0

 20

 40

50 500 100  1000

hh
H

 C
ou

pl
in

g 
in

 G
eV

mA in GeV

1-loop O(at) DR
2-loop O(as at) DR

2-loop O(as at + at
2) DR

1-loop O(at) OS
2-loop O(as at) OS

2-loop O(as at + at
2) OS

tree-level

-120

-100

-80

-60

-40

-20

 0

 20

 40

50 500 100  1000

hh
H

 C
ou

pl
in

g 
in

 G
eV

mA in GeV

1-loop O(at) DR
2-loop O(as at) DR

2-loop O(as at + at
2) DR

1-loop O(at) OS
2-loop O(as at) OS

2-loop O(as at + at
2) OS

tree-level

-120

-100

-80

-60

-40

-20

 0

 20

 40

50 500 100  1000

hh
H

 C
ou

pl
in

g 
in

 G
eV

mA in GeV

1-loop O(at) DR
2-loop O(as at) DR

2-loop O(as at + at
2) DR

1-loop O(at) OS
2-loop O(as at) OS

2-loop O(as at + at
2) OS

tree-level

-120

-100

-80

-60

-40

-20

 0

 20

 40

50 500 100  1000

hh
H

 C
ou

pl
in

g 
in

 G
eV

mA in GeV

1-loop O(at) DR
2-loop O(as at) DR

2-loop O(as at + at
2) DR

1-loop O(at) OS
2-loop O(as at) OS

2-loop O(as at + at
2) OS

tree-level

Figure 3.10: The coupling of two light scalar and one heavy scalar Higgs boson λhhH as a function of the
pseudoscalar Higgs mass mA. The plots on the left are in the no-mixing scenario, whereas the right plots
are in the mmax

h scenario. The upper plots use tanβ = 2, whereas the lower plots use tanβ = 10.
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hHH-coupling: Figure 3.11 shows the coupling of one light scalar and two heavy scalar Higgs bosons
λhHH as a function of the pseudoscalar Higgs mass mA. The plots on the left hand side are in the
no-mixing scenario, whereas the plots on the right are in the mmax

h scenario. The upper plots use
tanβ = 2, whereas the lower plots use tanβ = 10. This coupling peaks in the transition region, i.e.

around mA ≃ m
O(x)
h . The width of the peak is large for small values of tanβ and its height grows with

the stop mixing parameter. For tanβ = 2 the one-loop O(αt) corrections to the coupling are sizable
and they grow with the stop mixing parameter Xt. The bands of the scale uncertainties all overlap for
tanβ = 2 and the total uncertainty is rather small in the no-mixing scenario, whereas it is bigger in the
mmax

h scenario. For tanβ = 10 the scale uncertainty bands do not overlap in the transition region, so it
is questionable whether the perturbative result is valid in this region. In decoupling limit the coupling
attains an asymptotic value of around −20 GeV and the corrections as well as the scale uncertainty are
very small.
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Figure 3.11: The coupling of one light scalar and two heavy scalar Higgs bosons λhHH as a function of
the pseudoscalar Higgs mass mA. The plots on the left are in the no-mixing scenario, whereas the right
plots are in the mmax

h scenario. The upper plots use tanβ = 2, whereas the lower plots use tanβ = 10.
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hAA-coupling: Figure 3.12 shows the coupling of one light scalar and two pseudoscalar Higgs bosons
λhAA as a function of the pseudoscalar Higgs mass mA. The plots on the left hand side are in the no-
mixing scenario, whereas the plots on the right are in the mmax

h scenario. The upper plots use tanβ = 2,
whereas the lower plots use tanβ = 10. The coupling is much weaker than λhhh at large and λHHH

at small values of mA. For low tanβ the coupling is very weak and the curve is rather flat with scale
uncertainties of about ±2 GeV corresponding to more than ±50%. For large values of tanβ the radiative
corrections and the uncertainties are very small apart from the transition region.
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Figure 3.12: The coupling of one light scalar and two pseudoscalar Higgs bosons λhAA as a function of
the pseudoscalar Higgs mass mA. The plots on the left are in the no-mixing scenario, whereas the right
plots are in the mmax

h scenario. The upper plots use tanβ = 2, whereas the lower plots use tanβ = 10.
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HAA-coupling: Figure 3.13 shows the coupling of one heavy scalar and two pseudoscalar Higgs bosons
λHAA as a function of the pseudoscalar Higgs mass mA. The plots on the left are in the no-mixing
scenario, whereas the right plots are in the mmax

h scenario. The upper plots use tanβ = 2, whereas the
lower plots use tanβ = 10. The strength of the coupling is similar to the strength of λhAA. For low tanβ
the coupling is weak and the curve is rather flat with scale uncertainties of about ±4 GeV corresponding
to about ±50%. For large values of tanβ the coupling shrinks rapidly from about 35 GeV at low mA to
about 7 GeV in the decoupling region. Similarly to λhAA the corrections and the uncertainties are very
small apart from the transition region.
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Figure 3.13: The coupling of one heavy scalar and two pseudoscalar Higgs bosons λHAA as a function of
the pseudoscalar Higgs mass mA. The plots on the left are in the no-mixing scenario, whereas the right
plots are in the mmax

h scenario. The upper plots use tanβ = 2, whereas the lower plots use tanβ = 10.
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3.2.2 Numerical Analysis of the Neutral Quartic Higgs Self-Couplings

The O(αt+αsαt+α2
t ) corrections to the quartic Higgs self-couplings have been obtained in an analogous

way to the trilinear Higgs self-couplings. For the numerical evaluation of the quartic couplings we use
exactly the same input parameters in the OS and the DR scheme as for the trilinear couplings. The plots
of the quartic self-couplings are arranged in the same way as for the trilinear self-couplings. However, we
will restrict our analysis to only two of the nine quartic self-couplings, namely the coupling of four light
scalar Higgs bosons and the coupling of three light scalar and one heavy scalar Higgs boson. The former is
interesting, because we want to check whether its corrections can be absorbed by the loop-corrected mass
and the latter might be phenomenologically relevant to study the decays of a heavy scalar. In general
cross sections involving quartic vertices of heavy particles are quite small, so the other quartic couplings
are phenomenologically not too interesting in the context of the present (and near future) colliders.

hhhh-coupling: Figure 3.14 shows the coupling of four light scalar Higgs boson λhhhh as a function of
the pseudoscalar Higgs mass mA. The plots on the left are in the no-mixing scenario, whereas the right
plots are in the mmax

h scenario. The upper plots use tanβ = 2, whereas the lower plots use tanβ = 10.
It is a general property not only for the trilinear couplings, but also for all quartic couplings that the
mA-region of the highest slope is shifted to the loop-corrected light scalar Higgs mass. Moreover the
steepness of the slope grows with tanβ. We observe that the corrections to and the uncertainties λhhhh

are small in the no-mixing scenario. In the mmax
h scenario the corrections are fairly large ∼ 80% and the

uncertainties are sizable as well.
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Figure 3.14: The coupling of four light scalar Higgs boson λhhhh as a function of the pseudoscalar Higgs
mass mA. The plots on the left are in the no-mixing scenario, whereas the right plots are in the mmax

h

scenario. The upper plots use tanβ = 2, whereas the lower plots use tanβ = 10.
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hhhH-coupling: Figure 3.15 shows the coupling of three light scalar and one heavy scalar Higgs boson
λhhhH as a function of the pseudoscalar Higgs mass mA. The plots on the left are in the no-mixing
scenario, whereas the right plots are in the mmax

h scenario. The upper plots use tanβ = 2, whereas
the lower plots use tanβ = 10. In the no-mixing scenario the corrections are quite small and also
the uncertainties are almost negligible. In the mmax

h scenario for tanβ = 10 the corrections and the
uncertainties are still quite small. The only sizable corrections show up in the mmax

h scenario for tanβ = 2.
In the decoupling limit the corrections are ∼ 80%. Also for this coupling the uncertainty bands do not
overlap in the transition region for tanβ = 10.
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Figure 3.15: The coupling of three light scalar and one heavy scalar Higgs boson λhhhH as a function of
the pseudoscalar Higgs mass mA. The plots on the left are in the no-mixing scenario, whereas the right
plots are in the mmax

h scenario. The upper plots use tanβ = 2, whereas the lower plots use tanβ = 10.



Chapter 4

Summary and Outlook

The aim of this work was to determine the two-loop O(αsαt+α2
t ) corrections to the trilinear and quartic

Higgs self-couplings in the real MSSM. Measuring these couplings is essential for the reconstruction of
the Higgs potential that mediates EWSB. The one-loop corrections and their uncertainties are known
to be large [24]. The two-loop corrections are expected to reduce these uncertainties substantially. This
calculation was performed in the framework of the effective potential [46, 47, 49] which is equivalent
to the full diagrammatic approach up to effects due to finite external momenta. This simplifies our
calculation, since we only have to compute a small number of vacuum diagrams. Nevertheless we obtain
fully analytical results.
By taking two, three and four derivatives of the unrenormalized, loop-corrected effective potential w.r.t.
Higgs fields, we obtained bare masses, trilinear couplings and quartic couplings. These bare quantities
have to be renormalized. This was done by substituting all bare parameters in the one-loop masses and
couplings by their physical value plus a counter term. In this way all divergences in the calculation
canceled and we were left with renormalized Higgs masses and self-couplings.
We explained how these results can be evaluated numerically in two different renormalization schemes,
namely the DR and the OS scheme. The dependence of the result on the renormalization scheme and the
renormalization scale allows us to estimate the remaining theoretical uncertainties of the self-couplings
due to neglected higher orders in perturbation theory.
In most of the parameter space of the MSSM the result shows a good perturbative behavior. This
means the theoretical uncertainties are small . O(5%) and the uncertainty bands overlap, meaning that
the corrections are small at the central scale µcentral = 1

2MSUSY. In the transition region, where the
pseudoscalar Higgs mass is equal to the loop-corrected light scalar Higgs mass at O(x) in renormalization

scheme R, mA ≃ m
O(x),R
h , the slope is steep and the bands do not overlap anymore. This effect is

pronounced for large values of tanβ. In these regions the perturbative reliability is questionable. Moreover
regions with large SUSY massesMSUSY & 3 TeV or large mixing Xt & 2MSUSY comprise large theoretical
uncertainties.
These effective couplings can be useful to calculate processes of multiple Higgs production at a linear e+e−

collider1. The idea is that a calculation for a process, including effects due to finite external momenta
and due to higher orders, can be modified by means of these effective self-couplings. In this way the
effective couplings can be used to match the measurements to the parameters in the theory.
In the decoupling limit the light scalar Higgs boson in the MSSM behaves completely SM-like. This

1The trilinear couplings can of course also be used to calculate processes at a hadron collider like the LHC. However,
the cross sections of processes involving multiple Higgs production and Higgs to Higgs decays are very small. Thus huge
luminosities are needed in order to distinguish these signals from the background [43]. For the quartic couplings the cross
sections are even lower [44]. Depending on the design of the linear collider one has to reinvestigate whether measuring the
quartic couplings is a realistic task.

65



66

means that also in this calculation the SM relation between the Higgs mass and the self-couplings at
higher orders have to be satisfied. It will be the task of a further investigation of our results, to check
numerically to what extend these SM relations are fulfilled, in the various regions of the parameter space.
Moreover these relations can help to find approximate formulae for the self-couplings that are valid in
certain limits of the parameter space.
Since the complete analytic results are much too long to be published in a printed form, we plan to
publish them in a computer code. In this way the trilinear and quartic self-couplings can be used by the
community for further calculations and analyses.



Appendix A

Mathematical Functions and

Identities

A.1 Eigenvalues of a 2 by 2 Matrix

To find the eigenvalues of a square matrix A, one has to calculate the zeros of the characteristic polynomial
of A. The characteristic polynomial of A is defined by det(A−λ · 1), where 1 is the unit matrix with the
same size as A. For a 2 by 2 matrix this is fairly simple. The characteristic polynomial is

det(A− λ · 1) ≡det

(

a− λ b
c d− λ

)

= (a− λ)(d − λ)− bc (A.1.1)

=λ2 − λ(a+ d) + (ad− bc). (A.1.2)

The zeros of this are then the eigenvalues

λ1,2 =
1

2

(

a+ d±
√

(a+ d)2 − 4(ad− bc)
)

=
1

2

(

a+ d±
√

(a− d)2 + 4bc
)

. (A.1.3)

Mass matrices are always symmetric so we can set b = c.

A.2 Diagonalization of a Symmetric 2 by 2 Matrix

To diagonalize a symmetric 2 by 2 matrix A, we make the ansatz

D = RΘARΘ ≡ RΘ

(

a b
b d

)

RΘ, (A.2.1)

where D = diag(λ1, λ2) the diagonalized matrix which has the eigenvalues on the diagonal and

RΘ ≡
(

sΘ cΘ
cΘ −sΘ

)

(A.2.2)

is the rotation matrix, parameterized by the angle Θ. This parameterization is convenient because
RΘRΘ = 1 and RΘ is therefore equal to its inverse RΘ = R−1

Θ . The off-diagonal entries of D have to
vanish, i.e.

(a− d) sin(2Θ) + 2b cos(2Θ) = 0 ⇒ tan(2Θ) =
2b

d− a
. (A.2.3)

67



68 A.3. The Gamma Function

Using Eq. (A.1.3) we can solve for Θ

sin 2Θ =
2b

λ1 − λ2
⇒ Θ =

1

2
arcsin

(

2b

λ1 − λ2

)

. (A.2.4)

A.3 The Gamma Function

The gamma function is an extension of the factorial function and for positive integers n it is defined as

Γ(n) = (n− 1)!. (A.3.1)

For complex numbers z, with Re(z) > 0 the gamma function can be defined by an integral

Γ(z) ≡
∫ ∞

0

dttz−1e−t. (A.3.2)

The gamma function satisfies the recurrence relation

Γ(z + 1) = zΓ(z). (A.3.3)

A.4 The Beta Function in Mathematics

The beta function can be defined by

β(x, y) =

∫ 1

0

dzzx−1(1− z)y−1, (A.4.1)

for complex numbers x and y, with Re(x) > 0 and Re(y) > 0. The beta function is symmetric in x and
y and can be expressed in terms of gamma functions,

β(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (A.4.2)

A.5 The hypergeometric function

The hypergeometric function is defined by the integral

F (a, b, c; z) ≡ Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

dt
tb−1(1 − t)c−b−1

(1− tz)a
, (A.5.1)

and obeys numerous identities. One of these we will use to calculate the effective potential at O(αt),
namely

F (a, b, c; z) = (1− z)c−a−bF (c− a, c− b, c; z). (A.5.2)



Appendix B

Loop Integrals

B.1 One-Loop Functions

The one-loop self-energies are calculated using dimensional regularization and can be expressed in terms
of the two Passarino-Veltman functions A0 and B0

A0(m
2) ≡16π2

i

µ4−d
0

(2π)d

∫

ddq

q2 −m2 + iǫ
, (B.1.1)

B0(p
2,m2

1,m
2
2) ≡

16π2

i

µ4−d
0

(2π)d

∫

ddq

[q2 −m2
1 + iǫ][(p− q)2 −m2

2 + iǫ]
. (B.1.2)

To express the one-loop self-energies in a compact form, we also use the following combinations of A0

and B0

B1(p
2,m2

1,m
2
2) =

1

2p2
(

A0(m
2
2)−A0(m

2
1) + (p2 +m2

1 −m2
2)B0(p

2,m2
1,m

2
2)
)

, (B.1.3)

G(p2,m2
1,m

2
2) = (p2 −m2

1 −m2
2)B0(p

2,m2
1,m

2
2)−A0(m

2
1)−A0(m

2
2). (B.1.4)

An analytic expression for the one-point function A0 can be easily found using standard techniques

A0(m
2) = m2

(

1

ǫ
+ 1− log

m2

Q2

)

+ ǫm2

(

π2

12
+ 1− log

m2

Q2
+

1

2
log2

m2

Q2

)

, (B.1.5)

where Q2 ≡ 4πµ2
0e

−γE is the usual rescaling of the regularization scale. The O(ǫ) terms are not relevant
for the self-energies, but they are useful to calculate the two-loop integral J(x, y), defined in Eq. (2.2.1).
The two-point function B0 can be cast into the following form

B0(p
2,m2

1,m
2
2) =

1

ǫ
−
∫ 1

0

dt log
(1 − t)m2

1 + tm2
2 − t(1− t)p2

Q2
. (B.1.6)

An explicit analytical form can be found in [69]. The derivative of the B0-function w.r.t. the first
argument and evaluated at zero external momentum is

B′
0(0,m

2
1,m

2
2) ≡

∂

∂p2
B0(p

2,m2
1,m

2
2)

∣

∣

∣

∣

p2=0

=

∫ 1

0

dt

[

m2
1

t
+

m2
2

1− t

]−1

. (B.1.7)
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70 B.2. Two-Loop Master Integrals

We will need B′
0 for the external self-energies of the Pi and Si fields, see Eqs. (D.4.7 - D.4.10). These are

defined in the limit p2 → 0, see Eq. (2.5.12). Explicit expressions for B′
0(0, y, z) are

B′
0(0,m

2
1,m

2
2) =

m2
1m

2
2

(m2
1 −m2

2)
3
log

m2
2

m2
1

+
m1

2 +m2
2

2(m2
2 −m2

1)
2
, (B.1.8)

B′
0(0,m

2,m2) =
1

6m2
. (B.1.9)

B.2 Two-Loop Master Integrals

Analytical expressions for the two-loop master integrals defined in Eqs. (2.2.1, 2.2.2) are given by1

J(x, y) =xy

[

1

ǫ2
+

1

ǫ

(

2− log
x

Q2
− log

y

Q2

)

− 2

(

log
x

Q2
+ log

y

Q2

)

+
1

2

(

log
x

Q2
+ log

y

Q2

)2

+ 3 +
π2

6

]

, (B.2.1)

I(x, y, z) =− 1

2ǫ2
(x+ y + z)− 1

ǫ

[

x

(

3

2
− log

x

Q2

)

+ y

(

3

2
− log

y

Q2
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(

3

2
− log

z

Q2
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+
1

2

(

x log
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Q2
log
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+ y log
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Q2
log
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Q2
+ z log
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Q2
log
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Q2
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− 1

2
(x+ y + z)

(

7 +
π2

6
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− 1

2

(

x log
x

Q2
+ y log

y

Q2
+ z log

z

Q2

)(

log
x

Q2
+ log

y

Q2
+ log

z

Q2
− 6

)

− ∆(x, y, z)

2z
Φ(x, y, z), (B.2.2)

where ∆(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz and the derivatives of Φ are given by

∂Φ(x, y, z)

∂x
=

(y + z − x)Φ(x, y, z)

∆(x, y, z)
+

1

∆(x, y, z)

z

x

[

(y − z) log
z

y
+ x

(

log
x

y
+ log

x

z

)]

. (B.2.3)

Thus we can calculate the second, third and fourth derivative of Φ by recursion and end up with all
known objects, except for the function Φ itself (but not its derivatives). An analytic definition for Φ
which applies in the case of z > x and z > y is

Φ(x, y, z) =
1

λ

(

2 log(x+) log(x−)− log
x

z
log

y

z
− 2 [Li2(x+) + Li2(x−)] +

π2

3

)

, (B.2.4)

where

λ =

√

(

1− x

z
− y

z

)2

− 4
xy

z2
, x+ =

1

2

(

1 +
x

z
− y

z
− λ
)

, x− =
1

2

(

1− x

z
+

y

z
− λ
)

(B.2.5)

and Li2(z) denotes the dilogarithm, defined by the integral

Li2(z) ≡ −
∫ z

0

log(1 + t)

t
dt. (B.2.6)

If the arguments are not ordered correctly we can use the following symmetry relations

Φ(x, y, z) = Φ(y, x, z), xΦ(x, y, z) = zΦ(z, y, x). (B.2.7)

1It is easy to show that the integral J(x, y) is equal to the a product of two one-point functions J(x, y) = A0(x)A0(y).
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The following simplified case of the two-loop master integrals Eqs. (B.2.2, B.2.1) show up in the effective
potential

I(x, y, 0) =− x+ y

2ǫ2
+

1

ǫ

[

x log
x

Q2
+ y log

y

Q2
− 3

2
(x+ y)

]

− 7

2
+

π2

12
(x+ y)

+ 3

(

x log
x

Q2
+ y log

y

Q2

)

+ ω(x, y, z), (B.2.8)

I(x, x, 0) =− x
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− x
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3− 2 log
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− x
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2 log
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Q2
log
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+ 6 log
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− 7− π2
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, (B.2.9)

I(x, 0, 0) =− x

2ǫ2
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ǫ
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x log
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− 3

2
x

)

+ x

(

− log2
x

Q2
+ 3 log
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Q2
− π2

4
− 7

2
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, (B.2.10)

where

ω(x, y, z) ≡ log2
x

Q2
(y − x) − y

2

(

log
y

Q2
+ log

x

Q2

)2

− (x− y)Li2

(

1− y

x

)

. (B.2.11)

Moreover the following combination of the master integrals Eqs. (B.2.2, B.2.1) is convenient

L(x, y, z) = J(y, z)− J(x, y)− J(x, z)− (x− y − z)I(x, y, z). (B.2.12)



Appendix C

Feynman Rules and the Effective

Potential

The goal of this part of the appendix is to explain how to calculate the effective potential at O(αt+αtαs+
α2
t ). The effective potential is calculated using Feynman diagrams. We will start with the Lagrangian

of the MSSM, manipulate it and collect all terms that are needed to calculate the effective potential.
A naive application of the Feynman rules results in an expression depending on real quantities, e.g.
mt,mt̃1,2 , θt̃. These quantities depend on the Higgs VEVs. In the EPA the dependence is shifted from
the VEVs, which are real, to the Higgs fields, which are complex objects. The Higgs field-dependence
of the effective potential has to be implemented already on the Lagrangian level, such that the masses,
couplings and mixing angles in the propagators and vertices are functions of the complex Higgs fields H0

i .
At the perturbative order that we are considering the Higgs dependence only shows up in the top/stop
sector. We start with the bilinear top and stop Lagrangians and implement the Higgs field-dependence
explicitly:

C.1 Higgs Field-Dependence in the Top and Stop Sector

Written in a Higgs field-dependent way the Lagrangian bilinear in the top fields reads

L2t = (t′L, t
′
R)

(

i 6∂ −X⋆

−X i 6∂

)(

t′L
t′R

)

, (C.1.1)

where t′L and t′R are four component fermion fields in the chiral basis and X is a Higgs field-dependent
mixing term

X = htH
0
2 ≡ |X | eiϕ, (0 ≤ ϕ < 2π). (C.1.2)

In our calculation we set ht > 0. Note that evaluatingX at the minimum of the potential, i.e. substituting
all fields by their VEVs, gives the top mass X |min = mt. This means that we obtain the usual Lagrangian
in the field-independent case. The field-dependent top mass is defined by m̄t ≡ |X |.
Analogously, we also write the bilinear top squark terms, see Eq. (1.3.3), in an Higgs field-dependent way

L2t̃ = −(t̃′⋆L t̃
′⋆
R)

(

�+m2
L X̃⋆

X̃ �+m2
R

)(

t̃′L
t̃′R

)

, (C.1.3)
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where the field-dependent entries in the matrix are1

m2
L = m2

Q + h2
t |H0

2 |2, m2
R = m2

U + h2
t |H0

2 |2, (C.1.4)

X̃ ≡
∣

∣

∣X̃
∣

∣

∣ eiϕ̃ = ht

(

AtH0
2 + µH0

1
⋆
)

, (0 ≤ ϕ̃ < 2π) , (C.1.5)

and m2
Q, m

2
U and At are soft supersymmetry breaking parameters of the stop sector, see Eq. (1.3.2).

The phases ϕ and ϕ̃ are Higgs field-dependent quantities. Since the effective potential depends on these
phases we must not neglect them when taking derivatives of the effective potential w.r.t. the Higgs fields.
To simplify the calculations, we choose to redefine the fields in such a way that the top and stop mass
matrices become real

t′L = e−iϕ
2 tL, t′R = ei

ϕ
2 tR, t̃′L = e−i ϕ̃

2 t̃L, t̃′R = ei
ϕ̃
2 t̃R. (C.1.6)

The goal here is to redefine the top and stop fields in such a way that we get a real, field-dependent mass
mt ≡ ht

∣

∣H0
2

∣

∣ such that the substitution of the VEV in mt with the Higgs is uniquely determined and we
thus get a consistent field-dependent effective potential. Similarly we want the stop mass matrix to be
real and symmetric, such that it can be diagonalized by the usual orthogonal transformation Eq. (1.3.5)
with field-dependent mixing angles

(

t̃1
t̃2

)

=

(

cos θ̄t̃ sin θ̄t̃
− sin θ̄t̃ cos θ̄t̃

)(

t̃L
t̃R

)

. (C.1.7)

The diagonalized field-dependent stop masses are thus

m̄2
t̃1,2

=
1

2

[

(m2
L +m2

R)±
√

(m2
L −m2

R)
2 + 4

∣

∣

∣
X̃
∣

∣

∣

2
]

. (C.1.8)

The mixing angle θ̄t̃ is also a field-dependent quantity, defined by

s2θ̄ ≡ sin 2θ̄t̃ =
2
∣

∣

∣X̃
∣

∣

∣

m̄2
t̃1
− m̄2

t̃2

, c2θ̄ ≡ cos 2θ̄t̃ =
m2

Q −m2
U

m̄2
t̃1
− m̄2

t̃2

, (C.1.9)

where we use the obvious abbreviations for the trigonometric functions sin and cos and define θ̄ ≡ θ̄t̃.
When we want to calculate Feynman diagrams we start with the usual Lagrangian, which is expressed in
terms of the fields t′L,R and t̃′L,R. We then rotate these fields according to Eq. (C.1.6) such that we can

evaluate Feynman diagrams, using the unprimed fields tR,L and t̃1,2 with real field-dependent masses in
the propagators and real orthogonal field-dependent mixing angels.
It will turn out that the two-loop potentials depend only on the top and stop mixing phases ϕ and ϕ̃
through the combination ξ̄ ≡ m̄ts2θ̄t̃ cos(ϕ− ϕ̃), which has the following field-dependence

ξ̄ = 2
ℜ(X)ℜ(X̃) + ℑ(X)ℑ(X̃)

m̄2
t̃1
− m̄2

t̃2

. (C.1.10)

Note that cos(ϕ− ϕ̃)|min = 1 and therefore ξ̄ evaluated at the minimum is simply ξ ≡ ξ̄
∣

∣

min
= mts2θ.

1There are D-term contributions to the stop masses, which do also depend on the Higgs fields, see Eq. (1.3.3). However,
we will not include them here, because they are of O(g2 + g′2) and would therefore contribute to the O(m2

Zαt) potential.
In the numerical evaluation for the stop masses on the other hand we will include D-terms. Including them here is still not
relevant for any gain in perturbative precision, however, it helps us to numerically stabilize terms that diverge in the limit
of vanishing stop mixing.
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C.2 Derivation of the One-Loop Effective Potential at O(αt)

In this section we will give a detailed description of how to calculate the one-loop effective potential due
to stop and top loops. We start with Eq. (2.1.2) and first want to find the sum over all 1PI Feynman
diagrams with n legs and zero external momentum at O(αt)

Γ(n),O(αt)(0, ..., 0) ≡ Γ
(n),O(αt)
top (0, ..., 0) + Γ

(n),O(αt)
stop (0, ..., 0). (C.2.1)

C.2.1 Top-Quark Loops

The Higgs field-dependent Lagrangian containing terms bilinear in the top fields was presented Eq. (C.1.1)
and the Higgs top vertex is shown in Figure C.1. Note that the Higgs field changes the helicity of the top
quark. This means that we cannot have an odd number of external Higgs fields coupling to the top loop.
In the SM as well as in the MSSM the quark masses are generated by the Yukawa couplings to the

tR t̄L

(H0
2 )

⋆

Figure C.1: Higgs-top vertex

Higgs. The idea is now that we treat the top-quark as massless and shift the mass into the top-Higgs
coupling. This simplifies our calculation, because massless loops are much easier to handle than massive
loops.
We therefore deduce that for the effective potential we have to consider the sum of all diagrams with an

even number of external legs
∑

n Γ
(2n),O(αt)
top (0, ..., 0) , see Figure C.2.

+ + ...

Figure C.2: Diagrams involving virtual top particles, contributing to the one-loop effective potential.
The ellipses stand for diagrams with a higher, even number of external top legs.

The analytical expression for Γ
(2n),O(αt)
top (0, ..., 0) can be written down easily using Feynman rules

Γ
(2n),O(αt)
top (0, ..., 0) = −iS2n

∫

d4k

(2π)4
(−iht)

2n(−1)tr

[

i(6k)
k2 + iǫ

]2n

. (C.2.2)

The Expression contains a symmetry factor S2n = (2n)!
2n corresponding to the fact that there are (2n)!

ways to distribute 2n particles to the external lines and that there are n rotations and 2 reflections that
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do not lead to new contributions. The factor −iht comes from the vertex and is the Higgs-top-Yukawa
coupling, the (−1) corresponds to closed fermion lines. As mentioned above, the top-quark can be treated
as massless, when interacting with the Higgs boson. Moreover we have to take the trace over the fermion
loop, which gives simply a factor 4, because the massless fermion propagator squared is proportional to
the four by four identity matrix.
To obtain an analytic expression for the effective potential we insert Eq. (C.2.2) into Eq. (2.1.2)

δV αt

top(H
0
2 ) = −

∑

n

1

(2n)!
Γ
(2n),O(αt)
top (0, ..., 0)[H0

2 ]
n[(H0

2 )
⋆]n (C.2.3)

= −2i

∫

d4k

(2π)4

∑

n

1

n

[

h2
t |H0

2 |2
k2 + iǫ

]n

. (C.2.4)

We use the fact that the above sum corresponds exactly to the Taylor expansion of a logarithm

log(1 + x) =

∞
∑

n=1

(−1)n+1

n
xn, (C.2.5)

to write the effective potential as

δV αt

top(H
0
2 ) = 2i

∫

d4k

(2π)4
log

(

1− h2
t |H0

2 |2
k2 + iǫ

)

. (C.2.6)

We redefine m̄2
t ≡ h2

t |H0
2 |2, using the “bar” to denote that the top mass is a Higgs-field-dependent

quantity. Note that the one-loop potential due to top loops does only depend on the top mass squared.
This means that there is no dependence on the phase ϕ. This integral will be solved in section C.2.3
using dimensional regularization.

C.2.2 Stop Loops

Calculating the one-loop effective potential due to stop loops is a little more difficult. The bilinear,
field-dependent stop quark Lagrangian was given in Eq. (C.1.3). The main difference to the top quarks
is that there are also terms in the diagonal, which contain the Higgs field H0

2 . Moreover the off-diagonal

terms contain two different Higgs fields, which make the computation of Γ
(2n),O(αt)
stop (0, ..., 0) a little more

involved.
In [47] it was shown that the scalar one-loop potential is

δV αt

stop(H
0
1 , H

0
2 ) = −1

2
i

∫

d4k

(2π)4
log
[

det
(

iD−1(k)
)]

, (C.2.7)

where iD−1(k) is the inverse propagator in momentum space and therefore the Fourier transform of the
bilinear terms in t̃L,R. Performing this Fourier transform yields

iD−1(k) = −
(

k2 −m2
L −X̃⋆

−X̃ k2 −m2
R

)

. (C.2.8)

The determinant of this 2 by 2 matrix is easy to calculate

det iD−1(k) = (k2 −m2
L)(k

2 −m2
R)− |X̃|2 (C.2.9)

= k4 − k2(m2
L +m2

R) +m2
Lm

2
R − |X̃|2. (C.2.10)
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The t̃L,R are not mass eigenstates, and thus have to be rotated first. The mass eigenstates will be denoted
t̃1,2 with field-dependent masses m̄t̃1 and m̄t̃2 , see Eqs. (2.2.8, 2.2.9). The mass matrix of the stop quarks
before and after diagonalization is

ML,R =

(

m2
L X̃⋆

X̃ m2
R

)

, M1,2 =

(

m̄2
t̃1

0

0 m̄2
t̃2

)

. (C.2.11)

The trace and the determinant of a matrix are invariant under diagonalization. We can therefore express
the determinant of the inverse propagator by

det iD−1(k) = k4 − k2 Tr(ML,R) + det(ML,R) (C.2.12)

= k4 − k2 tr(M1,2) + det(M1,2) (C.2.13)

= k4 − k2(m̄2
t̃1
+ m̄2

t̃2
) + m̄2

t̃1
m̄2

t̃2
= (k2 − m̄2

t̃1
)(k2 − m̄2

t̃2
). (C.2.14)

Using an iǫ prescription the effective potential due to stop loops leads to the integral

δV αt

stop(H
0
1 , H

0
2 ) = −1

2
i

∫

d4k

(2π)4
log
(

(k2 − m̄2
t̃1
+ iǫ)(k2 − m̄2

t̃2
+ iǫ)

)

, (C.2.15)

which will be solved the following section.

C.2.3 Solving the Integrals

Stops: The integral for the stop loops is

δV αt

stop(H
0
1 , H

0
2 ) = −1

2
i

∫

d4k

(2π)4
log
(

(k2 − m̄2
t̃1
+ iǫ)(k2 − m̄2

t̃2
+ iǫ)

)

. (C.2.16)

We perform a Wick rotation to transform the integration from Minkowski space into Euclidean space

δV αt

stop(H
0
1 , H

0
2 ) =

1

2

∫

d4k

(2π)4
log
(

(−k2 − m̄2
t̃1
+ iǫ)(−k2 − m̄2

t̃2
+ iǫ)

)

. (C.2.17)

We define the logarithm of a complex quantity with a branch cut on the negative real axis, i.e. log(−|a|+
iǫ) = log(|a|) + iπ. The logarithm of a product can be written as

log(ab) = log(a) + log(b) + 2πiη(a, b), (C.2.18)

where η(a, b) is a function giving either 0 or ±1 and is defined as

η(a, b) = [Θ(ℑ(−a))Θ(ℑ(−b))Θ(ℑ(ab))−Θ(ℑ(a))Θ(ℑ(b))Θ(ℑ(−ab))] (C.2.19)

and Θ(x) is the Heaviside function. This means that every crossing of the branch cut yields an additional
±2πi-term. The logarithm in Eq. (C.2.17) is therefore

log((−k2 − m̄2
t̃1
+ iǫ)(−k2 − m̄2

t̃2
+ iǫ)) (C.2.20)

= log(−k2 − m̄2
t̃1
+ iǫ) + log(−k2 − m̄2

t̃2
+ iǫ)− 2πi (C.2.21)

= log(k2 + m̄2
t̃1
) + log(k2 + m̄2

t̃2
) (C.2.22)

Note that all iπ-terms cancel. We write V1,stop = H(mt̃1) +H(mt̃2), where

H(m) ≡ 1

2

∫

d4k

(2π)4
log(k2 +m2). (C.2.23)
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We will solve this integral using DRED, see section 2.2.2. Changing the number of dimensions from 4 to
d and expressing the integration measure in spherical coordinates yields

∫

ddk =

∫

dΩd

∫ +∞

0

d|k||k|d−1µ4−d
0 , (C.2.24)

where µ0 is the t’Hooft or regularization scale. This unphysical scale has mass dimension one and has to
be introduced in DREG and DRED to restore the number of space-time dimensions of the integral to 4.
Moreover

∫

dΩd =
2πd/2

Γ(d/2)
(C.2.25)

is the surface of the d-dimensional unit sphere. There is only a one-dimensional integration left

H(m) =
µ4−d
0

(4π)d/2Γ(d/2)

∫ +∞

0

d|k||k|d−1 log(|k|2 +m2). (C.2.26)

Performing a substitution x ≡ |k|2 to get rid of the quadratic integration variable and setting d = 4− 2ǫ,
with ǫ > 0 yields

H(m) =
(m2)2−ǫµ2ǫ

0

2(4π)2−ǫΓ(2− ǫ)

∫ +∞

0

dxx1−ǫ log(x+m2). (C.2.27)

To get a dimensionless integration variable we substitute y ≡ x/m2, i.e.

H(m) =
(m2)2−ǫµ2ǫ

0

2(4π)2−ǫΓ(2− ǫ)

∫ +∞

0

dyy1−ǫ log(m2(y + 1)). (C.2.28)

Our goal is to express this integral in terms of beta functions and hypergeometric functions. For this
we change the integration range to [0, 1]. This is achieved by another change of variables z = 1

1+y . We
obtain

H(m) =
(m2)2

2(4π)2−ǫΓ(2 − ǫ)

(

µ2
0

m2

)ǫ ∫ 1

0

dz
(1− z)1−ǫ

z3−ǫ

{

log(m2)− log(z)
}

. (C.2.29)

The integral with a log(m2) prefactor is simply a beta function (see appendix A.4) and therefore easy to
evaluate

∫ 1

0

dzz−3+ǫ(1− z)1−ǫ = β(−2 + ǫ, 2− ǫ) =
Γ(−2 + ǫ)Γ(2− ǫ)

Γ(0)
= 0. (C.2.30)

The remaining integral has an additional logarithm in the integrand and therefore needs a little more
work

B ≡
∫ 1

0

dz · z−3+ǫ(1− z)1−ǫ log(z). (C.2.31)

The first step is to integrate by parts

f ′(z) ≡ z−3+ǫ(1− z)1−ǫ, g(z) ≡ log(z) (C.2.32)

⇒ f(z) =

∫ z

0

dz̄ · z̄−3+ǫ(1− z̄)1−ǫ, g′(z) =
1

z
. (C.2.33)

Looking at f(z) we see that by changing the upper integration boundary to 1, we get a hypergeometric
function (see appendix A.5). This is achieved by a substitution t ≡ z̄

z and yields

f(z)z2−ǫ =

∫ 1

0

dt(t)−3+ǫ(1 − zt)1−ǫ, (C.2.34)
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which can be expressed using a hypergeometric function and several gamma functions

f(z) = z−2+ǫF (ǫ− 1, ǫ− 2, ǫ− 1; z)
Γ(ǫ− 2)Γ(1)

Γ(ǫ − 1)
. (C.2.35)

Next we use a property of the hypergeometric function Eq. (A.5.2) to reduce the above to a beta function,
which can then be further reduced to gamma functions

F (ǫ− 1, ǫ− 2, ǫ− 1; z) = (1− z)2−ǫF (0, 1, ǫ− 1; z) (C.2.36)

= (1− z)2−ǫ

∫ 1

0

dt(1 − t)ǫ−3 Γ(ǫ− 1)

Γ(1)Γ(ǫ− 2)
(C.2.37)

= (1− z)2−ǫβ(1, ǫ − 2)
Γ(ǫ − 1)

Γ(1)Γ(ǫ− 2)
(C.2.38)

= (1− z)2−ǫΓ(ǫ − 1)Γ(2)Γ(ǫ− 2)

Γ(1)Γ(ǫ − 2)Γ(ǫ− 1)
= (1− z)2−ǫ. (C.2.39)

The integral B is now be evaluated

B = f(z)g(z)|10 −
∫ 1

0

dzf(z)g′(z) (C.2.40)

= zǫ−2(1− z)2−ǫΓ(ǫ− 2)

Γ(ǫ− 1)
log(z)

∣

∣

∣

∣

1

0

−
∫ 1

0

dz · zǫ−2(1− z)2−ǫΓ(ǫ− 2)

Γ(ǫ− 1)

1

z
(C.2.41)

=
Γ(ǫ− 2)

Γ(ǫ− 1)







(

1− z

z

)2−ǫ

log(z)

∣

∣

∣

∣

∣

1

0

− β(ǫ− 2, 3− ǫ)







. (C.2.42)

The first term of the above expression is not defined for all ǫ. However, in dimensional regularization, we
can choose an ǫ interval in which the expression is well-defined and analytically continue, such that the
integral takes on the same value for all ǫ > 0. For the above quantities we get

(

1− z

z

)2−ǫ

log(z)

∣

∣

∣

∣

∣

0

= 0, ǫ > 2, (C.2.43)

(

1− z

z

)2−ǫ

log(z)

∣

∣

∣

∣

∣

1

= 0, 0 < ǫ < 2. (C.2.44)

We can now insert

B = −Γ(ǫ− 2)

Γ(ǫ− 1)
β(ǫ − 2, 3− ǫ) (C.2.45)

into Eq. (C.2.29) and obtain

H(m) =
(m2)2

2(4π)2−ǫΓ(2− ǫ)

(

µ2
0

m2

)ǫ
{

A log(m2)−B
}

(C.2.46)

=
1

2

(

(m2)

(4π)

)2(
4πµ2

0

m2

)ǫ
Γ(ǫ − 2)Γ(ǫ− 2)Γ(3− ǫ)

Γ(ǫ− 1)Γ(2− ǫ)Γ(1)
. (C.2.47)

The last step is to reduce the remaining gamma functions via Eq. (A.3.3) and then expand everything
up to O(ǫ), using the following Taylor expansions

aǫ = exp(ǫ · log a) = 1 + ǫ · log a+ ǫ2 · log
2 a

2
+O(ǫ3), (C.2.48)

Γ(ǫ) =
1

ǫ
− γE + ǫ ·

(

π2

12
+

γ2
E

2

)

+O(ǫ2), (C.2.49)
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where γE ≃ 0.57721 is the Euler-Mascheroni constant. The final result is

H(m) = − 1

64π2
(m2)2

{

1

ǫ
+

3

2
− log

(

m2

Q2

)

+ ǫ

(

7

4
− 3

2
log

m2

Q2
+

1

2
log2

m2

Q2
+

π2

12

)}

+O(ǫ2), (C.2.50)

where Q2 ≡ 4πµ2
0e

−γE is a rescaling of the regularization scale, which absorbs some finite terms such
that we obtain a logarithm of a dimensionless quantity. We will refer to Q as the regularization scale.

Tops: We first perform a Wick rotation to transform the integration measure from Minkowski into
Euclidean space

δV αt

top(H
0
2 ) = −2

∫

d4k

(2π)4
log

(

1 +
m̄2

t

k2 + iǫ

)

. (C.2.51)

Using Eq. (C.2.18), we can manipulate the logarithm

δV αt

top(H
0
2 ) = −2

∫

d4k

(2π)4
{

log(k2 + m̄2
t )− log(k2)

}

(C.2.52)

= −4 {H(m̄t)−H(0)} , (C.2.53)

where we have used the definition of Eq. (C.2.23).
We get exactly the same integral as in the stop case. The minus sign emerges from the fermionic nature
of the tops. The factor of four comes from the Dirac trace, taking into account two different helicities
and the antiparticle.

Final Result: We can now put everything together to get the one-loop effective potential in the MSSM
at O(αt) in DRED

δV αt(m̄2
t , m̄

2
t̃1
, m̄2

t̃2
) =

NC

16π2

{

m̄4
t

[

1

ǫ
+

3

2
− log

m̄2
t

Q2
+ ǫ

(

7

4
− 3

2
log

m̄2
t

Q2
+

1

2
log2

m̄2
t

Q2
+

π2

12

)]

− 1

2

[

(m̄t ↔ m̄t̃1) + (m̄t ↔ m̄t̃2)
]

}

, (C.2.54)

where NC is the number of colors and the factor of two takes into account stops and anti-stops. The
O(αt) potential has a pole in ǫ, we will see that all poles cancel when we use this potential to calculate
one-loop masses and couplings. Moreover every pole in ǫ is connected to a logarithm in the regularization
scale Q. This is a universal feature of DREG and DRED where the integral results in terms proportional
to

∼ Γ(1 + ǫ)

(

4πµ2
0

m2

)ǫ

ǫ−1 = (1− γEǫ+O(ǫ2))

(

1 + ǫ log

(

4πµ2
0

m2

)

+O(ǫ2)

)

1

ǫ
=

1

ǫ
+ log

Q2

m2
+O(ǫ).

(C.2.55)
It is therefore clear that a cancellation of the poles in ǫ also implies a cancellation of the logarithms in
Q. Moreover the O(ǫ)-terms will give finite contributions at the two-loop level. This issue is discussed in
section 2.5.6.
Note that in the literature the one-loop effective potential is usually given in the following, DR renor-
malized form

∆V αt =
1

64π2
Str

{

M4(Q)

[

log
M2(Q)

Q2
− 3

2

]}

, (C.2.56)

where Str f(M2) =
∑

i(−1)2Ji(2Ji+1)f(m2
i ) denotes the supertrace and m2

i is the field-dependent mass
eigenvalue of the i-th particle with spin Ji. Field dependent terms have been omitted. For our calculation
we will not renormalize the effective potential, but we will use the unrenormalized effective potential to
calculate masses and couplings and renormalize them afterwards.



80 C.3. Calculating the Effective Potential up to O(αtαs)

C.3 Calculating the Effective Potential up to O(αtαs)

The two-loop SQCD effective potential is defined as the sum over all vacuum diagrams at O(αtαs), see
Figure 2.2. In this part of the appendix we will derive all relevant Feynman rules for the SQCD corrections
to the effective potential.

C.3.1 Lagrangian and Feynman Rules

Top-stop-gluino Feynman rules: The top-stop-gluino Lagrangian emerges from a supersymmetriza-
tion of the SU(3) gauge interactions, see Eq. (1.2.17)

Ltt̃g̃
gs = −

√
2gs

(

t′
i

Lg̃
ATA

ij t̃
′j
L − t′

i

Rg̃
ATA

ij t̃
′j
R

)

+ h.c.. (C.3.1)

To extract the Feynman rules we first apply the rotations Eq. (C.1.6) to make the top and stop mass
matrices real. Next we rotate the stop fields in the L,R basis using Eq. (1.3.5) in order to obtain physical
mass eigenstate stop fields t̃1,2. Moreover we write the chiral fermions in terms of spinors and projectors
tR,L = PR,Lt, where PL = 1

2 (1− γ5) and PR = 1
2 (1 + γ5). The resulting Feynman rule for the Top-stop-

gluino vertex is

t̃j t̄k

g̃A

= −igs(PRT
A
kle

i
2
(ϕ−ϕ̃)cθ − PLT

A
kle

− i
2
(ϕ−ϕ̃)sθ). (C.3.2)

Top-top-gluon Feynman rules: The top-top-gluon diagram can be calculated using ordinary QCD
Feynman rules.

Four stop Feynman rules: The four stop vertex depending on the gauge coupling arises from the
D-terms, see Eq. (1.2.19)

L4t̃
gs = −g2s

2

∣

∣

∣(t̃′
i

L)
⋆TA

ij t̃
′j
L − (L → R)

∣

∣

∣

2

. (C.3.3)

Note that the square sums over the gauge index A. The phase ϕ̃ drops out and we can rotate the stops in
their mass eigenstate basis, using Eq. (1.3.5). Moreover we can evaluate the product of the two SU(3)C
generators TA

ij T
A
kl =

1
2 (δilδjk −N−1

C δijδkl). The Lagrangian can thus be written as

L4t̃
gs = −g2s

2
(δilδjk −N−1

C δijδkl)PαβPγδ(t̃
i
α)

⋆t̃jβ(t̃
k
γ)

⋆t̃lδ, (C.3.4)

where

Pαβ =

(

c2θ −s2θ
−s2θ −c2θ

)

. (C.3.5)

The four stop vertex depending on the strong gauge coupling is therefore

t̃βj

t̃δl

t̃⋆αi

t̃⋆γk

= −i
g2s
2

[

(δilδjk −N−1
C δijδkl)PαβPγδ + (δijδkl −N−1

C δilδjk)PαδPγβ

]

. (C.3.6)
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Stop-stop-gluon Feynman rules: The strong gauge vertex for the stops comes from the kinetic
Lagrangian for the stops with the covariant derivative inserted, see Eq. (1.2.17)

L2t̃G = gsT
A
ijG

A,µRT
1,β t̃

⋆
βik

βj
µ RT

1α t̃αj + gsk
µ⋆
βjT

A
ijG

A
µR

T
1,β t̃

⋆
βiR

T
1α t̃αj + (1 ↔ 2), (C.3.7)

where Greek letters α, β, γ and δ denote mass eigenstates of the stops, i.e. α = 1, 2. Capital roman
letters are the gauge indices A. Small roman letters denote color and µ and ν are Lorentz indices. The
two stop-gluon gauge vertex contributing to the O(αtαs) effective potential is

α, n β,m

kµ k⋆µ

gA, µ

↓ p

= −igsT
A
mn(kµ + k⋆µ)(R

T
1αR

T
1β +RT

2αR
T
2α). (C.3.8)

C.3.2 Result for the O(αtαs) Effective Potential

Using the Feynman rules for the vertices given in the previous section, we can calculate the diagrams
presented in Figure 2.2. We express the two-loop effective potential up to O(αtαs) as a function of five
field-dependent quantities, see Eqs. (2.2.7 - 2.2.11):

δV αtαs(m̄2
t , m̄

2
t̃1
, m̄2

t̃2
, s22θ̄, ξ̄) =

8g2s
(16π2)2

[

J(m̄2
t , m̄

2
t )− 2m̄2

t I(m̄
2
t , m̄

2
t , 0) +

{

1

4

(

2− s22θ̄
)

J(m̄2
t̃1
, m̄2

t̃1
)

+
s2
2θ̄

4
J(m̄2

t̃1
, m̄2

t̃2
) + m̄2

t̃1
I(m̄2

t̃1
, m̄2

t̃1
, 0) + L(m̄2

t̃1
,m2

g̃, m̄
2
t )

− 2mg̃ ξ̄I(m̄
2
t̃1
, m̄2

t ,m
2
g̃) +

[

m̄2
t̃1

↔ m̄2
t̃2
, ξ̄ → −ξ̄

]

}]

. (C.3.9)

C.4 Calculating the Effective Potential up to O(α2
t )

C.4.1 Lagrangian and Feynman Rules

We will first derive the Feynman rules relevant for the calculation of the effective potential up to O(α2
t ).

The only part in the MSSM Lagrangian where Yukawa couplings show up is the superpotential, see
Eq. (1.3.1). As we outlined in section 2.2.1 we work in the limit where all quarks except for the top are
massless hq 6=t = 0. The corresponding superpotential is

WMSSM
ht

= µ(H0
1H

0
2 −H+

2 H−
1 )− ht

[

H+
2 b̃iLt̃

⋆j
R δij −H0

2 t̃
i
Lt̃

⋆j
R δij

]

, (C.4.1)

where i, j = 1, 2, 3 denote color indices. The Lagrangian can be derived from the superpotential in the
following way

LW = −
∑

i

∣

∣

∣

∣

∂W

∂φi

∣

∣

∣

∣

2

− 1

2





∑

ij

Ψc
iL

∂2W

∂φi∂φj
ΨjL + h.c.



 . (C.4.2)

The sum over φi, φj here means that we sum over all scalar fields. The fields Ψ are fermions in the chiral
basis and c means charge conjugated. The last term in the square brackets +h.c. means that we add the
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hermitian conjugate. Note that the i ↔ j symmetry cancels the 1
2 factor. The Lagrangian resulting from

the superpotential in Eq. (C.4.1) is

LW
ht

=−
∣

∣

∣µH0
1 + htt̃′

i

Lt̃
′⋆j
R δij

∣

∣

∣

2

−
∣

∣

∣µH−
1 − htb̃

i
Lt̃

′⋆j
R δij

∣

∣

∣

2

−
∣

∣

∣−htH
+
2 t̃′

⋆k

R

∣

∣

∣

2

−
∣

∣

∣−ht

(

H+
2 b̃kL −H0

2 t̃
′k
L

)∣

∣

∣

2

−
∣

∣

∣ht t̃′
⋆k

R H0
2

∣

∣

∣

2

− ht

{

tc
′

L t̃
′⋆
RH

0
2 + tc

′

R t̃
′
LH̃

0
2 + tc

′

RH
0
2 t

′
L − bcLt̃

′⋆
RH̃

+
2 − tc

′

RbLH
+
2 − tc

′

RH̃
+
2 b̃L + h.c.

}

, (C.4.3)

where we omitted the color indices in the fermionic part. Moreover there are terms proportional to the
top-Yukawa coupling ht in the soft SUSY breaking Lagrangian

Lsoft
ht

= −htAtt̃′
⋆i

R δij

(

t̃′
j

LH
0
2 − b̃jLH

+
2

)

+ h.c. (C.4.4)

The complete Lagrangian proportional to the top-Yukawa coupling is the sum of the contribution from
the superpotential plus the contribution arising from soft SUSY breaking

Lht
= Lsoft

ht
+ LW

ht
. (C.4.5)

To calculate the Feynman diagrams for the O(α2
t ) effective potential, we have to express the Lagrangian

in terms of physical fields2. First we apply the rotations in Eq. (C.1.6) to make the top and stop mass
matrices real. Next we rotate the stop fields in the L,R basis using Eq. (1.3.5) in order to obtain physical
mass eigenstate stop fields t̃1,2.
In the two-loop O(α2

t ) Lagrangian, the VEV also shows up in the Higgs fields. In order to make the
potential a field-dependent quantity the real VEV is substituted by complex Higgs fields. Expressing
the Higgs fields in the Lagrangian as follows for the calculation of the potential implements the field-
dependence in the correct way

H0
2 =

1√
2

(√
2
mt

ht
eiϕ + S2 + iP2

)

, (C.4.6)

H0
1 =

1√
2

(√
2
mt

ht
eiϕ cotβ + S1 + iP1

)

. (C.4.7)

As we argued in section 2.2.1, all fields and mixing angles entering at the two-loop O(α2
t ) are understood

as tree-level fields with g = g′ = 0. This also implies that the light scalar Higgs boson is massless,
see Eq. (1.4.17). Moreover the remaining Higgs states (H ,A and H±) have degenerate mass mA, see
Eqs. (1.4.15, 1.4.17, 1.4.21). The CP-even mixing angle is also modified α → β − π

2 . To write the
Lagrangian in terms of Higgs mass eigenstates, we apply the first rotation of Eq. (1.4.28) to the CP-odd
Higgs bosons. For the charged and CP-even Higgs bosons we use

(

H+
1

H+
2

)

=

(

sβ cβ
cβ −sβ

)(

H+

G+

)

,

(

S1

S2

)

=

(

cβ sβ
sβ −cβ

)(

h
H

)

. (C.4.8)

Since we are working with massless bottom quarks, i.e. hb = 0, the off-diagonal terms in the sbottom
mass matrix are zero. Therefore the left sbottom state b̃L is already a mass eigenstate and its mass
is equal to the soft SUSY breaking mass-term m2

b̃L
= m2

Q. Also the masses of the Higgsinos simplify

considerably in the limit g = g′ = 0. Since the off-diagonal terms in the Higgsino mass matrices are
proportional to mZ all Higgsinos have degenerate mass |µ|.

2Physical fields correspond to the mass eigenstates which are the poles of the propagators in the Feynman rules.
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We start by writing down the Lagrangians for the different vertices. First the stop-stop-Higgs Lagrangian
is

Lt̃t̃H =
ht√
2

{[

sβ (2mtcϕ + s2θXtcϕ̃)ht̃
⋆
1 t̃1 − cβ (2mtcϕ + s2θYtcϕ̃)Ht̃⋆1 t̃1

+ sβ (2mtsϕ + s2θXtsϕ̃)Gt̃⋆1 t̃1 + cβ (2mtsϕ + s2θYtsϕ̃)At̃
⋆
1 t̃1 + (t̃1 ↔ t̃2, s2θ ↔ −s2θ)

]

+

[

sβXt(c
2
θe

−iϕ̃ − s2θe
iϕ̃)ht̃1t̃

⋆
2 − cβYt(c

2
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−iϕ̃ − s2θe
iϕ̃)Ht̃1t̃

⋆
2

+ isβXt(c
2
θe

−iϕ̃ + s2θe
iϕ̃)Gt̃1 t̃

⋆
2 + icβYt(c

2
θe

−iϕ̃ + s2θe
iϕ̃)At̃1 t̃

⋆
2 + h.c

]}

. (C.4.9)

The sbottom-stop-charged Higgs Lagrangian is

Lb̃t̃H± =
ht√
2

{√
2sβe

i ϕ̃
2

(

mte
i(ϕ−ϕ̃)cθ +Xtsθ

)

G−t̃1b̃
⋆
L

−
√
2cβe

i ϕ̃
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mte
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)

H−t̃1b̃
⋆
L + h.c.+ (t̃1 ↔ t̃2, cθ → −sθ, sθ → cθ)

}

.

(C.4.10)

The two stop two neutral Higgs Lagrangian is

L2t̃2H =
h2
t

2

(

|t̃1|2 + |t̃2|2
) [

c2βH
2 + s2βh

2 + s2β(G)2 + c2βA
2
]

. (C.4.11)

The two sbottom two charged Higgs Lagrangian is

L2b̃2H± = h2
t

∣

∣

∣b̃L

∣

∣

∣

2
(

s2βG
+G− + c2βH
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)

. (C.4.12)

The two stop two charged Higgs Lagrangian is

L2t̃2H± = h2
t

[

s2βG
+G− + c2βH

+H− − sβcβ(H
+G− + h.c.)

] [

s2θ|t̃1|2 + c2θ|t̃2|2 + cθsθ(t̃1 t̃
⋆
2 + h.c.)

]

.
(C.4.13)

In the above Lagrangians we suppressed the color structure. They are all color diagonal, which means
that all diagrams involving these vertices have a factor δii, summed over from 1 to 3. The following
Lagrangians have a more complex color structure. The Lagrangian which is relevant for two-loop “eight”
diagrams with only stops is

L4t̃ = −h2
t

{

(t̃i1t̃
⋆j
1 δij)

2s2θc
2
θ + (t̃i2t̃

⋆j
2 δij)

2s2θc
2
θ

− 2c2θs
2
θ(t̃

i
1t̃

⋆j
1 )(t̃k2 t̃

⋆l
2 )δijδlk + (c4θ + s4θ)(t̃

i
1 t̃

⋆l
1 )(t̃

k
2 t̃

⋆j
2 )δijδlk

}

. (C.4.14)

Another Lagrangian that involves four colored particles is

L2t̃2b̃ = −h2
t

[

b̃iL(sθ t̃
⋆j
1 + cθ t̃

⋆j
2 )δij

] [

b̃⋆lL (sθ t̃
k
1 + cθ t̃

k
2)δlk

]

. (C.4.15)

Last but not least there are the Yukawa terms, where the charge conjugation matrix C = iγ2γ0 shows up.
The corresponding Feynman rules have been presented in [30] but without the phases ϕ, ϕ̃. Including
these phases, the Feynman rules for the H̃0tt̃j couplings can be written as −i(aPL + bPR) and those of

H̃+tb̃L as iC−1(aPL + bPR), with

−iaH̃0
2 tt̃1

= ibH̃0
2 tt̃2

=
ht√
2
cθe

− i
2
(ϕ+ϕ̃), iaH̃0

2 tt̃2
= ibH̃0

2 tt̃1
=

ht√
2
sθe

− i
2
(ϕ+ϕ̃), (C.4.16)

aH̃+tb̃L
= −hte

− i
2
ϕ, aH̃+bt̃1

= −htsθe
− i

2
ϕ̃, aH̃+bt̃2

= −htcθe
− i

2
ϕ̃. (C.4.17)
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The rest of the Yukawa Lagrangian does not involve Higgsino fields and reads

LYukawa = tLtR(S2 + iP2)
1√
2
eiϕ − tRbL(sβG

+ + cβH
+)e−iϕ

2 . (C.4.18)

C.4.2 Result for the O(α2
t ) Effective Potential

Feynman rules for the vertices in ht can be obtained by taking the functional derivative of the above
Lagrangians w.r.t. the corresponding fields. These Feynman rules can be used to calculate the diagrams
in Figure 2.3. We express the two-loop effective potential up to O(α2

t ) in the following way
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(C.4.19)

Note that the substitution in the last line also implies ξ̄ → −ξ̄. Moreover s2
θ̄
and c2

θ̄
are field-dependent

quantities, which can expressed as s2
θ̄
= 1

2 (1− c2θ̄) and c2
θ̄
= 1

2 (1 + c2θ̄). Using Eq. (C.1.9) we can make
the following substitutions in the effective potential

c2θ̄ → 1

2

(

1 +
m2

Q −m2
U

m̄2
t̃1
− m̄2

t̃2

)

, s2θ̄ → 1

2

(

1−
m2

Q −m2
U

m̄2
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− m̄2

t̃2

)

. (C.4.20)

In this way we obtain the effective potential up to O(α2
t ) as a function of five field-dependent quantities

x̄i = (m̄2
t , m̄

2
t̃1
, m̄2

t̃2
, s2

2θ̄
, ξ̄), i = 1, · · · , 5.

Note that m2
Q −m2

U = cos 2θt̃(m
2
t̃1
−m2

t̃2
) does not depend on the Higgs fields. We use this identity to

get expressions that do not depend on the SUSY breaking parameters m2
U and m2

Q, but only on the stop
masses mt̃1,2 and the stop mixing angle θt̃.



Appendix D

Renormalization and Counter Terms

D.1 Renormalization of the Stop Masses and Mixing Angle

The tree-level bilinear stop Lagrangian1 L0
mt̃

in the chiral basis is diagonalized by the tree-level mixing
matrix, see section 1.3.1

R0 ≡ R(θ0), R(θ) =

(

cθ sθ
−sθ cθ

)

. (D.1.1)

We calculated the O(α) self-energy matrix Πt̃
ij in the mass eigenstate basis

LO(α)
mt̃

=
(

t̃0
)⋆

i
Πt̃

ij

(

t̃0
)

j
. (D.1.2)

Note that this is calculated using the bare tree-level Lagrangian and is therefore given in terms of bare
fields and bare mixing angles. The one-loop-corrected Lagrangian in the chiral basis is

LO(α)
mt̃

=
(

t̃0LR

)⋆

k

[

(Mq̃L,R
)kl +R0

kiΠ
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ij(R
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†
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)

l

(

t̃0LR

)

l
≡
(

t̃0L
t̃0R

)

, (D.1.3)

To find the renormalized, loop-corrected masses and mixing angles, the terms in the square brackets have
to be diagonalized by a loop-corrected matrix RO(α) ≡ R(θO(α)) with θO(α) = θ0 − δθ, where δθ is of
order α. When we expand RO(α) around the tree-level mixing angle θ0 in α we obtain

RO(α) = R(θO(α)) = R(θ0)−
∂R(θ)

∂θ

∣

∣

∣

∣

θ=θ0

δθ. (D.1.4)

The diagonalization condition requires the off-diagonal elements of the following matrix to vanish, such
that the diagonal entries are the renormalized stop masses

(R
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. (D.1.5)

The loop-corrected stop field in the mass eigenstate basis is R
O(α)
ij

(

t̃0LR

)

j
= t̃

O(α)
i . Expanding this matrix

in α yields
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=

(
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)
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(
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]

.

(D.1.6)

1Note that the parameters ϕ and ϕ̃ arise only at the two-loop level. We can therefore omit them in the renormalization
of the one-loop stop sector.
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From this equation we find the counter terms for the stop masses and the counter term for the stop
mixing angle in terms of the stop self-energies

(

mR
t̃i

)2

=
(

m0
t̃i

)2

+Πt̃
ii(p

2), δθ = − Πt̃
12(p

2)

m2
t̃1
−m2

t̃2

. (D.1.7)

The on-shell version of the stop mass counter terms can be defined straightforward by evaluating the
self-energies at the mass itself. The stop mixing angle counter term in the on-shell scheme we will use2

is anti-symmetric in m2
t̃1

and m2
t̃2

and is defined by

δOSθ ≡ −1

2

Πt̃
12(mt̃1) + Πt̃

12(mt̃2)

m2
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−m2

t̃2

(D.1.8)

D.2 Self-Energies at O(αs)

The counter terms defined in Eqs. (2.5.26, 2.5.27, 2.5.28, 2.5.30) are defined in terms of the self-energies
at O(αs +αt). The self-energies at O(αs) can be calculated using the SQCD Feynman rules presented in
appendix C.3.1. The self-energies are not treated as Higgs field-dependent quantities. We can therefore
set the phases ϕ = ϕ̃ = 0. Note that the transversal self-energy of the W ’s ΠT

WW (0) receives no αs

corrections, the other self-energies are
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2In our calculation only this version of the OS stop mixing counter term produces the right divergences [31]. A discussion
about the definition of the stop mixing angle counter term can be found in [70].
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D.3 Self-Energies at O(αt)

The self-energies at O(αt) can be calculated using the Feynman rules presented in appendix C.4.1 with
ϕ = ϕ̃ = 0. They read
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D.4 Wave Function Renormalization Counter Terms

The WFR counter terms are defined by taking the derivative of the neutral Higgs self-energies w.r.t.
the external momentum, evaluated at zero external momentum, see Eq. (2.5.12). The self-energies of
the Higgs fields Pi and Si receive no corrections at O(αs). The Lagrangian relevant for the external
self-energies at O(αt) are the terms in Eq. (C.4.5) involving only the neutral Higgs fields Pi and Si. They
read
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where the color structure is trivial and was omitted. The Feynman rules extracted from the above
Lagrangian are used to calculate the self-energies of the Higgs fields Pi and Si, which can be expressed
in terms of two-point functions B0. The corresponding WFR counter terms are
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D.5 DR Counter Terms at O(αs)

The DR counter terms are simply the divergent parts of the OS counter terms defined in section 2.5.6
multiplied by (1 + ǫ logQ2/µR

2). Note that in the DR counter terms we distinguish the renormalization
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scale µαs

R at O(αs) from the renormalization scale µαt
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D.6 DR Counter Terms at O(αt)

The DR counter terms at O(αt) are simply the divergent parts of the OS counter terms at O(αt) defined
in section 2.5.6 multiplied by (1 + ǫ logQ2/µR

2)
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Appendix E

The Higgs Sector in the Standard

Model

E.1 The Standard Model Higgs Sector at Tree-Level

To discuss the decoupling limit of the MSSM, we want to do a small digression on the SM Higgs sector.
The tree-level potential is given by

V 0,SM(φ) =
λ

2
(φ†φ)2 − µ2φ†φ, φ =

1√
2

(

0
v + η

)

. (E.1.1)

There are two unknown parameters µ and λ. The VEV v is known from the experiments. In order to
incorporate EWSB we need µ2 < 0. Minimizing the potential yields

∂V 0,SM
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This means that there is only one unconstrained parameter µ, which is further related to the SM Higgs
mass

(mSM
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This means that the whole SM Higgs sector at tree-level is determined by the Higgs mass mSM
h,0 , which is

so far the only unmeasured quantity in the SM. The trilinear and quartic Higgs couplings are
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. (E.1.5)

In the SM loop-corrections to the Higgs sector modify the relation between mh, λhhh and λhhhh. Com-
pared to the MSSM calculating the effective potential up to O(αt), O(αtαs) and O(α2

t ) in the SM is
much easier, especially if one can recycle the techniques and tools used in the MSSM.
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E.2 The Standard Model Higgs Sector at One-Loop O(αt)

From Eq. (C.2.54) we know that the one-loop O(αt) correction to the effective potential in the SM is
only due to top loops
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The only field-dependence is in the top mass. By using m̄2
t → yt(v + η)/

√
2 we can find the one-loop-

corrected Higgs mass and self-coupling by taking derivatives with respect to η. Note also that the top-
Yukawa coupling in the SM yt is related to the top-Yukawa coupling in the MSSM ht by ht = yt sinβ.
The minimization condition at one-loop level yields
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Using this constraint for the one-loop-corrected Higgs mass, we can eliminate µ to get
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This means that also in the SM the Higgs boson gets a mass correction that goes like m4
t . Moreover, we

can in the same manner calculate the one-loop-corrected trilinear and quartic Higgs couplings
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Appendix F

Analytical Results

F.1 O(ǫ)-Terms for Trilinear Couplings at O(αt)

In the following we list the O(ǫ)-terms for the trilinear Couplings at O(αt) which are used to calculate
the WFR counter terms for the self-couplings at O(α2

t ), see Eq. (2.5.49 - 2.5.58)
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