20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 012009 doi:10.1088/1742-6596/513/1/012009

FwWebViewPlus: integration of web technologies
into WinCC OA based Human-M achine Interfaces at CERN

Piotr Golonka', Wojciech Fabian, Manuel Gonzalez-Ber ges,
Piotr Jasiun, Fernando Varea-Rodriguez

CERN: European Organization for Nuclear Research, Geneva, Switzerland

E-mail: Piotr.Golonka@CERN.CH

Abstract. The rapid growth in popularity of web applications gives rise to a plethora of
reusable graphical components, such as Google Chart Tools and JQuery Sparklines,
implemented in JavaScript and run inside a web browser. In the paper we describe the tool that
allows for seamless integration of web-based widgets into WinCC Open Architecture, the
SCADA system used commonly at CERN to build complex Human-Machine Interfaces. Reuse
of widely available widget libraries and pushing the development efforts to a higher abstraction
layer based on a scripting language allow for significant reduction in maintenance of the code
in multi-platform environments compared to those currently used in C++ visualization plugins.
Adequately designed interfaces allow for rapid integration of new web widgets into WinCC
OA. At the same time, the mechanisms familiar to HMI developers are preserved, making the
use of new widgets "native". Perspectives for further integration between the realms of WinCC
OA and Web development are also discussed.

1. Context and problem specification

The screens of operator consoles for many of the control systems at CERN display highly specialized
applications built on top of the Smatic WinCC Open Architecture commercial SCADA product
(formerly known as PVSS), from ETM/Siemens. These Human-Machine Interfaces allow users to
supervise and command complex systems through applications containing push-buttons, check-boxes,
list-views, but also non-standard objects such as trend-plots or specialized bar-graphs (see Figure 1).

Engineering of these applications (synoptic panels) is performed using rapid development
environment, called GEDI: the elements of the user interface (widgets) are instantiated and configured
with a drag-and-drop interface and property editors. The elements are connected to data sources and
animated with business logic, using a dedicated scripting language called CTRL .

The widgets available for engineering, may be extended through a custom C++ plugin mechanism
called EWO (External Widget Object), which provides highly customized and optimized interactive
graphical objects, and integrates them into GEDI for engineering. However, being a binary interface,
EWO requires development and maintenance effort: every upgrade to a new versions of WinCC OA
requires the plugins to be recompiled and the code often needs adjustments.

1

To whom any correspondence should be addressed.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 012009 doi:10.1088/1742-6596/513/1/012009

ange Seale
DFBAK MM5MM4

TT891A

€ (L -DAKBLS 05.6 TT693 CLwarm end - FIP_L6D_27
staws | Trends DAKB18_05L6_TT893

Operation Modes

Figure 1. Example of a Human-Machine Interface display for the control of LHC
cryogenic system at CERN, showing the custom bar graph visualization plugin.

To simplify the maintenance and rapidly deliver new widgets with less effort, we set up a project to
identify a technology that could be used for future visualization extensions of WinCC OA.
Technically, we searched for a solution providing a common platform-neutral graphical engine,
programmable with a high-level scripting language with performance and quality adequate to
visualize live data. Our ultimate aim would then be to re-implement the functionality of numerous
existing binary plugins and to enhance the user experience by deploying high-level scripts, executed
by the plugin, which will be implemented using the new technology. The level of code abstraction
would therefore be elevated and development of visualizations made easier, and only a single common
binary EWO would need maintaining.

2. Technology selection

In addition to the main requirements, the proposed solution had to meet additional goals. It had to be
mature and well supported to be integrated into production systems, with a clear future evolution path
in line with observed software trends. The supported platforms need to include Windows and Linux,
and integration into mobile devices would be an asset.

After having evaluated technologies such as fw3DViewer [1], ROOT [2] and QtQuick/Qt3D
component of Qt[3], we turned our attention to the QtWebKit[4] generic web-rendering engine readily
available in Qt. The initial evaluation performed with the simple WebView EWO, distributed with
WinCC OA convinced us of its suitability for our needs.

QtWebKit is based on the widely known WebKit[5] open source project, which powers web
browser such as Chrome or Safari. It employs widely adopted web technologies such as HTML,
HTTP, QML, CSS and SVG. Its graphics engine provides the standardized, platform-neutral Canvas
element of HTML5, with a clear path for extension towards 3D graphics (through the soon-to-come
WebGL). Programming capabilities are provided by the highly-optimized interpreter of JavaScript,

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 012009 doi:10.1088/1742-6596/513/1/012009

which is a widely known scripting language throughout many domains, not just within the web
browser universe. The use of widely used web engine reduces cross-browser incompatibilities aswell.

Ultimately, a web-based renderer enables the reuse of impressive number of web visualization
widget libraries (JQueryUl, MooWheel, Google charts, etc), available with permissive licensing. In
addition, the exercise of implementing a custom widget from scratch demonstrated a significant
reduction in code complexity and development effort (see Chapter 4).

3. Featuresand integration
FwWebView plus was implemented as a standalone self-containted web-rendering plugin ready to be
embedded directly into WinCC OA panels, concurrently with other widgets and EWO plugins.

The use of the web-rendering widget implicates the need for hybrid programming: in addition to
WinCC OA's CTRL scripting language, data types, and widgets, the technologies required by the web,
namely JavaScript and HTML need to be employed to maintain the actual content displayed by the
widget, and also handle user interaction. Successful integration of a new web widget through
fwWebViewPlus, typically reguires some code to be developed on both sides. In what follows we will
refer to JavaScript/HTML code, that is executed by the web rendering engine, as development in the
web context, and the devel opment on the native WinCC OA side as CTRL context.

The aspect that differentiates fwWebViewPlus from the WinCC OA's own WebView EWO is its
deep integration with native mechanisms and conventions, making the necessary hybrid programming
more intuitive and clear. In this chapter, we will describe the features making the application-
engineering with web widgets as rapid as if one uses native user interface elements.

To unify the interface between the two contexts we followed a well known URI concept, and
defined new schemes?. The project: scheme implements the look-up of filesin the hierarchy of folders
and provides consistency with standard file specification and over-parameterization mechanisms. The
wincc: scheme delivers a common low-level method to communicate with CTRL context from
JavaScript code, which in turn is used to implement the remaining integration features.

To assure best performance we made it possible to access the control process data (so called
datapoints) directly from JavaScript code, with no intermediate processing by the CTRL engine. The
code in the web context may retrieve the current values on demand (dpGet) or register JavaScript
callback functions hooked to value-change events (dpConnect).

Readability of the web-context code is improved by the use of a library of high-level JavaScript
functions (called the API), which hides the complexity of wincc: URIs. Care was taken to make the
syntax of the functions familiar to the programmers accustomed with CTRL. The API, as well as
copies of other handy JavaScript libraries such as JQuery, were embedded into fwWebViewPlus and
made accessible through the resource: URI scheme, hence making it unnecessary to maintain their
copies separately. Incorporating updates for resources is straightforward and may be applied to
production applications in acentralized way by simple redeployment of fwWebViewPlus component.

Access to the web context from CTRL is provided by methods of the EWO object operating
directly on the HTML document content. Asynchronous execution of any valid JavaScript code may
also be requested: existing JavaScript functions could be called, and the input and output parameters
are automatically converted to their native representations: mapping type in CTRL, and JSON-
serialized JavaScript objects in the web context. It is also possible to register a JavaScript function to
be recognized by the CTRL context asif it was a native method of the EWO. This allows the exposure
of elegant interfaces for interfaced web widgets; dynamically registered methods are recognized by the
run-time and also by the engineering part (CTRL script editor).

Implementing interactivity for web widgets requires the ability to emit asynchronous notifications
from JavaScript, which in turn trigger a calback function in the CTRL context. The emitSgnal()

’Scheme is the top level part of the URI, followed by the colon character, for instance http: or ftp: or file: .

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 012009 doi:10.1088/1742-6596/513/1/012009

method of the API provides the necessary mechanism; for instance, one may pass mouse-click,
keyboard events, or web socket notification received by JavaScript to the CTRL context.

The most used settings of the EWO are exposed to the property editor of GEDI making them easy
to change; similarly WebKit notifications, such as onPageloadFinished are available in the list of
available CTRL event callbacks. The property values are in turn made accessible, via the AP, to the
web context; for instance the background colour property may be set in the property editor, using
GEDI's colour-picker, then decoded by JavaScript and used to alter the rendering of HTML document.

The security is also taken care of: dedicated EWO properties alow the developer to disable
selected URI schemes: deactivating http(s) scheme(s) disables access to any non-local resources or
code; similarly deactivating the wincc scheme disables direct access to datapoints from JavaScript.

Finally, the error and debugging streams of JavaScript are redirected to standard WinCC OA's
logging streams to assure consistent diagnostic and debugging facilities.

The ultimate engineering experience that we aim at is a complete integration of pre-packaged web-
widgets (e.g. charts or graphs), such that their use in new synoptic panels and connecting to data
would be achievable through trivial drag-and-drop and property-editing operations.

We observed that the performance of web widgets is slightly worse than for native C++ codes, yet
significantly faster than those implemented using graphical primitives and CTRL. For the
visualizations we currently maintain, this performance should be sufficient.

4. Examples of use

Visualizing the connectivity state of nodes in large distributed control systems, based on real-time data
was the first application of fwWebViewPlus. The fwNetVis application, currently being deployed at
CERN, integrates MooWhedl[6] JavaScript widget to present information through an interactive
graph, see Figure 2, making it easy to identify root-causes and correlate symptoms of connectivity

faults. By reusing the existing web widget it was possible to rapidly deliver anew visualization.
& Qu fule 111 - fuNetvis_1; #1) ol

s e 7

aaaaaaaaaaaaa

nnnnnnnnnnnn

INST6TLTHALSAS

Figure 2. fwNetVis application showing ainteractive graph of connections
Another kind of visualization not available in WinCC OA's widget set, yet frequently demanded by
application engineers, is a heat map: a frequently used graphical representation of data contained in a
matrix, where colours are used to represent the values. To exercise the concept of developing a brand
new visualization with web technology and assess the effort for initial code development effort and
maintenance we implemented a generic heat-map visualization in HTML5/JavaScript and integrated it

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 012009 doi:10.1088/1742-6596/513/1/012009

into a test application using fwWebViewPlus, see Figure 3. The widget was animated with live data
and we observed satisfactory performance (display of data within a 100x100 cell grid with the rate of
change of a few frames per second) and alowed for interactive inspection of values (in a tool-tip
window). The complete JavaScript implementation fitted into 450 lines of code, which could be used
not only with WinCC OA, but also in web applications.

To explore the flexibility of fwWebViewPlus we also implemented a proof-of-concept of a
complete functional panel implemented solely with HTML/JavaScript. A simple value monitor
dynamically connecting to a specified datapoint, and showing the changes was implemented within 50
lines of HTML, employing JavaScript for animation and connection to data and CSS for visualy
attractive styling and layout.

Figure 4. Heat map visualization widget implemented from scratch, in JavaScript.

5. Outlook and conclusion

We presented a plugin for WinCC OA user interfaces allowing the embedding of JavaScript/HTML
visualizations in the applications used in CERN control rooms. We achieved seamless integration with
WinCC OA's engineering environment to make the web-CTRL hybrid programming straightforward
and intuitive. We aso demonstrated the use of fwWebViewPlusin area diagnostic application used at
CERN and showed that integration of new visualizations based on web technologies allows for easier
development and maintenance. It will soon be released as a standard component of JCOP Framework.

The approach we presented is complementary to the currently observed trend in making existing
applications available on the web. There is however a potential for convergence: fwWebViewPlus
may alow WinCC OA engineers to familiarise with web technologies and apply them in their WinCC
OA synoptic panels. We strongly believe that future migration of such web-enabled panels towards
fully web-based applications will be significantly simplified and straightforward.

In addition to providing new visualizations, we also plan to explore new possibilities provided by
JavaScript data processing and visualization packages such as D3.js or Processing.js and look at the
new opportunities of unleashing the power of JavaScript through projects such as Emscripten C++ to
JavaScript compiler. With WebGL becoming standardized and supported in Qt-5, interactive 3D
graphics will also become available for fwWebViewPlus in the near future.

References

[1] Golonka P, Gonzaez-Berges M (2009) Towards 3D Human-Machine-Interfaces:
Generic "3DViewer" Extension for the Control Systems Displays a CERN
Proc. ICALEPCS 2009 (Kobe), https://cern.ch/enice/lJCOP+Framework+3DViewer

[2] ROOT Object-Oriented framework for data anaysis, http://root.cern.ch

[3] Qtcross-platform application framework http://gt-project.org

[4] QtWebKit component (formerlyWebView) , http://qt-project.org/doc/qt-4.8/gtwebkit.html

[5] WebKit open source web browser engine, http://www.webkit.org/

[6] MooWhedl: aJavaScript connections visualization library, http://labs.unwieldy.net/moowheel/

https://j2eeps.cern.ch/wikis/display/EN/JCOP+Framework+3DViewer
http://labs.unwieldy.net/moowheel/
http://www.webkit.org/
http://qt-project.org/doc/qt-4.8/qtwebkit.html
http://qt-project.org/
http://root.cern.ch/
https://j2eeps.cern.ch/wikis/display/EN/JCOP+Framework+3DViewer
https://j2eeps.cern.ch/wikis/display/EN/JCOP+Framework+3DViewer

