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Abstract

The quantum field theory describing the Electroweak sector demands some new

physics at the TeV scale in order to unitarize the scattering of longitudinal W bosons.

If this new physics takes the form of a scalar Higgs boson then it is hard to understand

the huge hierarchy of scales between the Electroweak scale ∼ TeV and the Planck

scale ∼ 1019 GeV. This is known as the Naturalness problem. Normally, in order to

solve this problem, new particles, in addition to the Higgs boson, are required to be

present in the spectrum below a few TeV. If such particles are indeed discovered at

the Large Hadron Collider it will become important to determine their spin. Several

classes of models for physics beyond the Electroweak scale exist. Determining the

spin of any such newly discovered particle could prove to be the only means of dis-

tinguishing between these different models. In the first part of this thesis, we present

a thorough discussion regarding such a measurement. We survey the different po-

tentially useful channels for spin determination and a detailed analysis of the most

promising channel is performed.

The Littlest Higgs model offers a way to solve the Hierarchy problem by intro-

ducing heavy partners to Standard Model particles with the same spin and quantum

numbers. However, this model is only good up to ∼ 10 TeV. In the second part of

iii



Abstract iv

this thesis we present an extension of this model into a strongly coupled theory above

∼ 10 TeV. We use the celebrated AdS/CFT correspondence to calculate properties of

the low-energy physics in terms of high-energy parameters. We comment on some of

the tensions inherent to such a construction involving a large-N CFT (or equivalently,

an AdS space).
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Determining the Spin of

Prospective New Particles at the

Large Hadron Collider
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Introduction

Naturalness of the weak scale implies the existence of new physics beyond the

Standard Model at the scale ∼ TeV. Typical new physics scenarios predict the

existence of a set of new particles at that scale. The Large Hadron Collider (LHC)

gives us a great opportunity for discovering those particles.

In order to understand the nature of the new physics, it is necessary to measure

its properties in detail. One of the obvious tasks is to reconstruct the masses and

gauge quantum numbers of the new physics particles from experimental data. A

recent study [12] demonstrated the challenges of such a goal and suggested possible

directions in achieving it.

On the other hand, there is another, at least equally important, LHC inverse

problem: how do we determine the spin of any newly discovered particle? The pro-

posed new particles in several main candidates of new physics scenarios typically

have similar gauge interactions. They could often be organized as partners of the

known Standard Model particles with the same gauge quantum number, such as

12



1: Introduction 13

quark partners, lepton partners and gauge boson partners. A typical example is the

set of superpartners in supersymmetry, including squarks, sleptons, gauginos, and

so on. Another interesting scenario is the theory space models inspired by [9]. The

duplication of the Standard Model states in this scenario comes from introducing

more copies of the Standard Model gauge group. Typical examples are little Higgs

models 1. Measuring the partners’ spin becomes a crucial, sometimes single, way to

distinguish those scenarios.

Motivated by electroweak precision constraints and the existence of Cold Dark

Matter, many new physics scenarios incorporate some discrete symmetry which guar-

antees the existence of a lightest stable neutral particle, LSNP. Well-known exam-

ples of such discrete symmetries include R-parity in supersymmetry, KK-parity in

universal extra-dimension models [6], or similarly, T-parity in Little Higgs Models

[22, 23, 60, 24]. The existence of such a neutral particle at the end of the decay chain

results in large missing energy events in which new physics particles are produced.

This fact helps to separate them from the Standard Model background. On the other

hand, it also makes the spin measurement more complicated because it is almost im-

possible to reconstruct the momentum, and therefore the rest frame, of the decaying

particles.

The question of spin determination has been revisited recently. The total cross

section might serve as an initial hint to the spin of the new particles discovered [35].

This is not entirely satisfactory because certain model dependence is inevitable when

using the rate information. For example, a fermion can be faked by two closely de-

1Another well-known example is the the extra-dimensional setup with the corresponding KK
particles. As we learned in the past few years, this is very related to the theory space models via
deconstruction
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generate scalars. Moreover, such a determination is only possible if we could measure

the masses of the particle using kinematical information. As demonstrated in [24, 65],

typical “transverse” kinematical observables are not sensitive to the absolute mass

of particles. One can only deduce the mass difference between the decaying particle

and the neutral particle escaping the detector. With some assumptions regarding the

underlaying model there are more subtle kinematical observables which, in combina-

tion with the rate information, could determine the spin [65]. To what extent this

could be generalized to a broader classes of new physics particles is currently under

investigation.

Therefore, it is important to investigate other possible ways of directly measuring

the spin of new particles. The typical way of measuring the spin of a decaying

particle start with reconstructing its rest frame from the decay products. Then, the

angular distribution in the rest frame contains the full spin information, independent

of the boost. As discussed above, we do not have enough kinematical information

to boost to the rest frame of the decaying particle if the spectrum contains a LSNP.

Therefore, it is natural to consider distributions as a function of relativistic invariants

constructed out of the decay products of a single decaying particle. We will focus on

this possibility in this paper.

Various new physics models always have some detailed differences in their spectra.

But, such differences are very model dependent. Although in principle they could

carry interesting information, we will focus on spin determination based on Standard

Model partners only. What we have in mind are two classes of models with almost

identical gauge quantum numbers and maximal flexibility in their mass spectra. In
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other words, they would look very similar except for their spin content.

One obvious scenario is low energy supersymmetry, parameterized by the MSSM

with a conserved R-parity.

As a contrasting scenario we consider a framework in which all new particles have

the same spin as their Standard Model counter parts. The existence of a LSNP, is

guaranteed by the assumption that all the new physics particles are odd under a

certain Z2 parity. Special cases of this scenario could be the first KK level of UED

or T-parity little Higgs. However, what we have in mind is a more generic setup and

we will not constrain ourselves to any special mass or coupling relations imposed by

these two scenarios. To emphasize its generic nature, we will call it the Same Spin

scenario in this paper. We will use symbols with primes to label the new particles in

the Same Spin scenario. For example, we will use q′ to label the quark partner, and

so on. We will assume the LSNP in this case is a vector and label it as A′.

Typical new physics scenarios have many complicated decay channels. Many

kinematical distributions can be constructed from them. One of the main goals of this

paper is to present a systematical survey of the observability of spin correlations in a

wide variety of decay chains which are generically present in new physics scenarios. We

identify interesting decay channels to focus on for spin measurements. It is important

to notice, as will be clear from our discussion, that the usefulness of any particular

channel is restricted to a specific range of parameters. We describe the kinematical

requirements for each of the channels we analyze. There is no obvious golden channel.

For different points in the parameter space, we will generically have different decay

channels available. Therefore, we will have to devise different strategies depending
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on mass spectra of underlying models.

One of the important tools we develop in this paper is a set of simple rules, which

summarizes many well-known results concerning spin correlations. Such simple rules

allows one to gain insight into the angular correlations in decay, without the necessity

of going through a lengthy calculation. They can be useful in other, potentially more

complicated, scenarios than the ones considered hereafter.

Barr [16] investigated a typical supersymmetry cascade involving a squark decay.

He found that angular correlations exist between the decay products. Barr’s method

relies on the fact that more squarks are produced than anti-squarks in a proton-proton

collider. There are several follow-up studies along the same lines [36, 73, 5]. References

[73] and [36] went further and contrasted supersymmetry with the universal extra-

dimensions scenario [6],[25]. Reference [73] found that with a mass spectrum given

by the SPS point 1a, the SUSY model is distinguishable from the UED case. In their

study, they assumed the lepton can be perfectly correlated with the correct jet. That

might be possible if complete kinematic information is available, but in practice seems

quite difficult. In general jet combinatorics must be taken into account.

One limitation of these investigations is the need for a light leptonic partner. It

must be lighter than the second lightest neutral gauge boson partner, such as the

second lightest neutralino (which must be a wino or bino), in supersymmetry. While

true in some special benchmark models [4], there is no reason to assume this is a

generic feature of supersymmetry breaking. In fact, it is more generic to assume

otherwise, especially if one is driven by the problem of naturalness.

We present a detailed study of spin correlations in the decay chain q̃ → q + C̃±
1 →
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q +W±+ Ñ1 in supersymmetry and its counter part q′ → q +W ′± → q +W±+A′ in

the Same Spin scenario. Such a decay chain does not require the leptonic partner to

be lighter than the gauge boson partner and is certainly more generic in parameter

space. We will assume that the mass splitting between the two lightest states is

greater than mW,Z. Therefore, the on-shell decay to W/Z always dominates2. Our

result shows that it is possible to observe spin correlation in this decay chain. As

a demonstration of the result of our general discussion, we map out the parameter

region in which this decay channel is useful.

As part of the analysis we used HERWIG 6.507 [32] which implements a spin

correlation algorithm. This algorithm was first used for QCD parton showers [29, 57,

59, 58] and later extended by Richardson to supersymmetric and top processes [71].

We supplemented the code to include the decays of massive gauge bosons (such as

KK partners of the gluon) and the details are spelled out in appendix B. To the best

of the authors’ knowledge, HERWIG is the only simulator that implements such an

algorithm and is therefore suitable for spin determination studies.

This part of the thesis is organized as follows: In Section 2 we try to build some

intuition by looking at the effects of spin on the angular distributions of simple decays.

In Section 3, we present a survey of spin correlations in various decay channels. Our

detailed study of the decay chain with qW± final states is presented in Section 4.

There, we take up the task of constructing an observable signal to distinguish SUSY

from the Same Spin scenario in the absence of any leptonic partners. Finally, in

section 6, we comment on possible future directions and present our conclusions.

2If the mass splitting is less than mW,Z, sometimes, the off-shell diagram via a squark and slepton
can be important. Although it is a special case of the mass spectrum, it is certainly worthwhile
exploring it further.



2

Simple Spin Correlations

In this section we review some basic angular distributions from simple decays.

These distributions will serve as building blocks in our understanding of the spin

correlations in more complicated decay chains which we will consider later.

2.1 Scalar decay

A scalar does not pick any special direction in space and so its decay is isotropic.

It does not mean that the existence of scalars spoils any hope for distinguishing

them away from phase-space. The production of bosons (via a Z0 for example) has

a different angular distribution about the beam axis than that of fermions. This

discrepancy can be employed in determining the spin of lepton partners (see for

example, [17]). However, in our study we will concentrate on a single branch in which

case it is not possible to distinguish a scalar from phase-space.

18
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2.2 Fermion decay

First, we consider the decay of a fermion ψ1 into another fermion ψ2 and a scalar

φ, via an interaction of the form

yLφψ̄2PLψ1 + yRφψ̄2PRψ1 (2.1)

Depending on the model, this coupling could be either chiral, yL 6= yR, or non-chiral,

yL = yR. We will see examples of both cases in our study.

If the coupling in Eq. 2.1 is chiral, ψ2 is produced in a chirality eigenstate. If

ψ2 is boosted then it is in a helicity eigenstate, i.e., polarized. However, ψ1 is, in

general, not polarized and therefore the decay is isotropic, even if the coupling (2.1)

is chiral and ψ2 is boosted. It is easy to see how this comes about. If it is a Left

handed coupling, yR = 0, then ψ2 is mostly a right-handed particle, | ↓〉. From the

transformation of a spinor under a rotation by an angle θ we have that,

| ↑〉 → cos

(
θ

2

)
| ↑〉+ sin

(
θ

2

)
| ↓〉

| ↓〉 → − sin

(
θ

2

)
| ↑〉+ cos

(
θ

2

)
| ↓〉

The angle θ is defined with respect to ψ1 polarization axis. Notice that if ψ1 is

left-handed polarized, | ↑〉, its decay probability is ∝ sin2
(

θ
2

)
. On the other hand,

if it is right-handed polarized, | ↓〉, its decay probability ∝ cos2
(

θ
2

)
. These decay

distributions are shown in Fig.(2.1) as a function of cos (θ). Unfortunately, ψ1 itself

is normally not polarized and averaging over the two process the decay is indeed

isotropic.

However, if ψ1 came from the decay of another particle and that vertex was chiral

then the situation is different. In that case ψ1 is polarized and its subsequent decay
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is governed by a non-trivial angular distribution as shown in Fig. (2.1). Whether the

decay involves a helicity flip or not determines the sign of the slope.

-1 -0.5 0.5 1
CosΘ

0.5

1

1.5

2

ÈMÈ2

Figure 2.1: The decay probability for a fermion into a scalar and another fermion of
the same helicity (solid-black) or opposite helicity (dashed-red) as a function of cos θ.
θ is defined with respect to the axis of polarization of the decaying fermion.

Next, we consider the decay of a fermion into another fermion and a gauge-boson

via an interaction of the form

gLψ̄2γ
µPLψ1Aµ + gRψ̄2γ

µPRψ1Aµ (2.2)

As before, we consider the case where ψ2 is boosted. If the interaction is chiral ψ2 is

in a definite helicity state. The fermionic current that couples to Aµ is of the form

ψ̄α̇σα̇β
µ ψβ. If the emitted gauge-boson is longitudinally polarized the distributions are

the same as the decay into a fermion and a scalar. If it transversely polarized it is

precisely opposite (i.e. same helicity corresponds to sin2 θ/2 and opposite helicity to

cos2 θ/2).

The most important feature of the fermion’s decay is the linear dependence of

the decay probability on cos θ. It is also clear that chiral vertices must be involved

in order to observe spin correlations (unless the fermion is a Majorana particle, a

possibility we discuss below).
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2.3 Gauge-boson decay

When a gauge-boson decay (2-body), relativity forces the products to be two

bosons or two fermions. As is well known, when the products are two fermions the

angular distribution is given by,

Ptrans(cos θ) =
1

4

(
1 + cos2 θ

)
Plong(cos θ) =

1

2

(
1− cos2 θ

)
(2.3)

If a gauge boson decays into two scalars via the interaction

gφ∗2
↔
∂µ φ1A

µ, (2.4)

the angular distribution has the opposite structure,

Ptrans(cos θ) =
1

2
(1− cos2 θ) Plong(cos θ) = cos2 θ (2.5)

where the subscript on P denotes the initial gauge-boson’s polarization. As usual θ is

defined about the polarization axis. The decay of a gauge-boson into two other gauge-

bosons has the same angular distribution as Eq. (2.5). These are shown in Fig.(2.2).

As usual there are finite mass effects that come into play when the products are not

-1 -0.5 0.5 1
cosΘ

0.1

0.2

0.3

0.4

0.5

PHcosΘL

-1 -0.5 0.5 1
cosΘ

0.2

0.4

0.6

0.8

1

PHcosΘL

Figure 2.2: The decay probability for a gauge-boson into two fermions (left) and two
bosons (right) for transverse (solid-black) and longitudinal polarization (dashed-red)
as a function of cos θ.
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highly boosted. Those tend to wash out any angular dependence of the amplitude.

Generically these contributions scale as m2/E2. Therefore, as noted before there has

to be an appreciable difference between the mass of the decaying particle and its

products so that m2/E2 . 1/2.

The contrast with the previous case is clear as the dependence of the amplitude

on cos θ is quadratic. It is also important to note that the vertex need not be chiral.

2.4 Higher spin

By noting that a rotation by θ of a state of spin j is given by eiθjσy it is easy to

see that the amplitude for the decay of a particle with spin j is some polynomial of

degree 2j,

Pλ(cos θ) = a2j(cos θ)2j + a2j−1(cos θ)2j−1 + . . . + a0 (2.6)

The coefficients ai are such that when we sum over all polarizations λ we get,

∑

λ

Pλ(cos θ) = 1 (2.7)

since an unpolarized particle has no preferred direction. In this paper we concen-

trate on spin 0,1/2, and 1 and will not consider higher spin. Nonetheless, this is an

important issue to address. For example, if the partners of the graviton are indeed

detected it would be good to know whether it is a supersymmetric spin-3/2 object or

a Same-Spin spin-2 resonance.



3

Angular Correlations in Cascade

Decays

In this section, we present a systematic study of spin correlations in a wide variety

of cascade decay channels. Aside from the matrix element, the kinematics also play

a crucial role in the observability of spin effects. We lay out the conditions for

observing spin correlations in each of the decay channels we discuss. Whether any of

the channels is open or not depends on the particular mass spectrum. However, it is

not unreasonable to expect several such channels to be open in a generic model. This

is important because the signal from any one channel might not be sufficiently strong.

In this case we would have to combine the signal from a few channels to obtain a high

confidence spin determination.

We focus on a class of specific kinematical observable. It is constructed from

the momenta of two of the observed final state particles. More complicated decay

patterns and observables consisting of more than two observable particles could also

23



3: Angular Correlations in Cascade Decays 24

be interesting.

A generic feature of this type of observables is that spin information of the in-

termediate particle, which has observable decay products on both sides, in the decay

chain always manifest itself as some polynomial structure in the distribution. Indeed,

a particle of spin j, if polarized, will result in a polynomial of degree 2j. On the other

hand, such a method is not useful for determining the spin of any particle at the top

or bottom of the decay chain. For the same reason, very short decay chains such as

q̃ → q + LSP won’t contain much information.

As discussed in Section 2, a key requirement for the existence of any spin corre-

lations is for the intermediate state particle to be polarized1. A boost invariant way

to know whether a particle is polarized or not is to study this question in its rest

frame using a direction defined by its mother particle and the other decay products.

We will see examples of such analysis in the decay channels we consider below. From

the discussion in the previous section, it is clear that there are only a few ways for a

particle to be polarized in its rest frame,

1. For Majorana fermions a spin flip results in a different process with different

end products. We must be able to tell those apart (measuring a leptons vs.

anti-lepton). We will see this in detail in the discussion to follow.

2. Dirac fermions must be produced from a (partially) chiral coupling and decay

through a (partially) chiral interaction.

3. In general the spectrum of new particles needs not be left-right symmetric. In

1Strictly speaking, this requirement only applies for on-shell particles. For off-shell particles,
the spin correlation could have new interesting properties. We will examine the off-shell decay in
Section 3.9
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this case, the interaction of these particles is effectively chiral even if the gauge-

coupling is vector like. A typical example is the asymmetric QCD production

of left and right squarks when their masses are very different2.

4. For a gauge boson, it must come from the decay of a boosted particle (in the

gauge-boson rest frame).

We will see detailed realizations of all of these requirements in various decay channels

we study in this section.

We will organize our discussion in terms of different final states.

3.1 Weak Decay with q`± final state

We will go through the logic of establishing spin correlation this channel in more

detail because many other channels can be understood following very similar argu-

ments.

We first consider the supersymmetric case. Here, the decay to q`± final states will

proceed through either Dirac or Majorana fermion intermediate states. We consider

the case of a Dirac fermion first (i.e., chargino intermediate state) and compare it with

the corresponding process in the Same Spin scenario where the intermediate state is

a massive gauge boson W ′. We will comment on the case of Majorana fermion briefly.

For more details, see [16].

In the case of a Dirac fermion there are two possible ways for the particle to be

polarized. If it is off-shell then one of the helicities dominates over the other simply

2We would like to thank M. Peskin for bringing this fact to our attention.
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because m2/q2 6= 1, where q is the fermion 4-momenta (this possibility is also open to

a Majorana fermion). This might become important if a decay must proceed through

an off-shell particle simply because no other channel is available. We will not pursue

this possibility further, but we comment on it in section (3.9).

The other possibility for a Dirac fermion to be polarized is when both its mother

vertex and its daughter vertex are at least partially chiral. As an example, consider

the decay of a squark into a quark, slepton and anti-lepton through a Chargino,

as shown in Fig.(3.1). Using the rules we developed in the previous section it is

straightforward to understand what angular correlations are expected.

In the rest frame of the Chargino, the decaying squark and outgoing quark define

a polarization axis. Since the interaction is chiral the Chargino is polarized. Since

the second vertex is also polarized, we have a polarized fermion decaying into another

fermion (lepton) and a scalar (slepton). As we saw before, this decay is governed

by a first order polynomial of cos θ. However, notice that cos θ is related to the

relativistically invariant quantity, tql,

tql = (pq + pl)
2 = 2

(
m2

q̃ −m2
C̃

) (
m2

C̃
−m2

l̃

)

4m2
C̃

(1− cos θ) (3.1)

where the last equality only holds in the Chargino’s rest frame. We can immediately

conclude that the relativistically invariant amplitude is at most a linear function of

tql with the sign given by the explicit details of the couplings. Of course, this can be

easily confirmed by an explicit computation of the amplitude, as shown in Fig.3.1).

In contrast with the supersymmetric case let us consider the decay chain q′ →

q + W ′± → q + W± + ν ′, where we have assumed that W ′ couples like a Standard

Model W . The relevant diagram is shown in Fig.(3.2). If the spectrum is not too
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Figure 3.1: The decay of a squark through a chargino involves two chiral vertices. As
a result the lepton’s direction is correlated with that of the outgoing quark. On the
right we plot the amplitude as a function of tql for mq̃ = 1000 GeV, mC̃ = 500 GeV
and mν̃ = 300 GeV. The graph is normalized to unit area.

degenerate then in the rest frame of the W ′, both the incoming q′ and the outgoing

q are boosted and mostly left-handed. Therefore, the W ′ longitudinal polarization

dominates over the transverse one. Another way of seeing the same thing is to note

that in the rest frame of W ′ the fermionic current can be written in terms of the

gauge-boson polarizations,

gAū2γ
µPAu1 ∝

(
εlong +

mq′

Eq′
(cLεL + cRεR)

)
(3.2)

where we have neglected mq. cL and cR are O(1) coefficients depending on the precise

nature of the interaction. Notice the suppression of the transverse polarization with

respect to the longitudinal one by a factor of mq′/Eq′ in the amplitude. It is clear that

when the fermions’ mass difference is comparable to the W ′ mass, mq′ −mq ∼ mW ′ ,

the resulting polarization is negligible, since mq′/Eq′ ∼ 1 in the rest frame of the W ′.

Since the W ′ is longitudinally polarized, its subsequent decay into l+ ν ′ is governed

by a 1− cos2 θ. Here, θ is the angle of the outgoing leptons with respect to the axis of

polarization defined by the quarks. Therefore, the relativistically invariant amplitude

squared must be a quadratic function of tql with a negative coefficient in front of



3: Angular Correlations in Cascade Decays 28

the leading power. Notice that a gauge-boson does not require the vertices to be

0.1 0.2 0.3 0.4 0.5
tql HTeVL

0.5

1

1.5

2

2.5

Figure 3.2: When q′ decays the intermediate W ′ is longitudinally polarized if the
incoming q′ and outgoing q are both boosted in its rest frame. This in turn will result
in angular correlations between the directions of the quark and the lepton. On the
right we plot the amplitude as a function of tql for mq′ = 1000 GeV, mW ′ = 500 GeV
and mν′ = 300 GeV. The graph is normalized to unit area.

chiral. This is important and potentially useful in determining the gluon partner’s

spin. However, it is also more susceptible to mass difference effects (see equation

(3.2)). In contrast, the fermionic counterpart remains polarized even when mq̃ is not

very different from mC̃ , as long as the coupling is chiral and the outgoing quark is

boosted.

Finally, we briefly consider the decay of the squark into q`± final states via a

Majorana fermion intermediate state. The relevant diagrams are shown in Fig.(3.3).

For the propagator to flip its spin we must place a mass insertion. However, due

to the Majorana nature of the Neutralino, this corresponds to a different process

with different final states than the one without a mass insertion. Therefore, the

propagator has a definite helicity for each of the processes and there are angular

correlations between the quark and the lepton. This fact was exploited by A. Barr [16]

to determine the spin of the Neutralino and further details can be found in the
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reference. One can study q`+ and q`− distributions to uncover the spin information.

However, there is a further complication due the Majorana nature of the Neutralino.

There is always another diagram starting from anti-squark with opposite sign of its

charge which contributes to the same process but with the opposite helicity structure

as shown in Fig.(3.4). As Barr noted, in a proton-proton collider more squarks are

produced than anti-squarks and therefore the angular correlations are not washed out

completely.

Figure 3.3: The two possible modes for a decay through a Neutralino. A spin flip
requires a mass insertion (right), which results in a different process.

Figure 3.4: The two conjugate modes starting from an anti-squark for the decay
through a Neutralino.
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3.2 Weak Decay with qq̄ final states

In principle, the decay into qq̄ final states could contain similar spin correlations,

since it just replace the leptons in the second stage of the decay chains discussed

in the previous section with quarks. However, in general we can not determine the

charge of the initial jet. Once we are forced to average over the two final states shown

in Fig.(3.3), all angular correlations are washed out.

On the other hand, if the decay products of the second decay are a third generation

quark and quark partner we could, in principle, recover some charge information. It

will then be possible to extract some spin correlation from such decay chains. The

effectiveness of such decay channels require further careful studies taking into account

the efficiency of identifying charge of the third generation quarks.

3.3 Weak Decay with qW± final state

If the charged gauge boson partner is lighter than the leptonic partner then its

decay into a W± and LSNP through a non-Abelian vertex is usually the dominant

decay mode. This channel is shown in Fig.(3.5) In the supersymmetric case this

coupling is at least partially chiral if tan β 6= 1 and the higgsino is not considerably

heavier than the gauginos. If mq̃−mC̃ >> mq, than the chargino is at least partially

polarized (with respect to the axis defined by the incoming squark and outgoing

quark in its rest frame). In this case, since the chargino-neutralino-W coupling is also

in general chiral, correlations between the quark and the outgoing W± are present.

The situation is a little more subtle than that since the contributions from a cascade
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initiated by an up-type partner cancel those initiated by a anti-down-type partner.

However, due to the initial asymmetry between up quarks and anti-down quarks in the

incoming PDFs the signal is not washed out. This decay exhibits a linear dependence

on the variable tqW = (pq + pW )2.

The corresponding distribution for the Same Spin scenario is very different. In

the rest frame of the W ′ both the incoming q′ and the outgoing q are boosted and

are mostly left-handed or mostly right handed. Hence the W ′ is longitudinally polar-

ized. As a result, this decay exhibits a quadratic dependence on tqW with a positive

coefficient.

Figure 3.5: The weak cascade decay of a quark partner through the non-Abelian
vertex in supersymmetry (left) and Same-Spin theories (right).

We will present a detailed study of this channel in Section 4. At this point, we

just remark that this is a more generic channel comparing with the channel requiring

on-shell lepton partner in the decay chain. In fact, the existence this decay channel

is based on a very minimal set of assumptions about the spectrum, in which only a

heavy quark partner, a charged gauge boson partner and a LSNP are present. If the

spectrum does not even allow for this decay chain, we will not be able to extract any

information from weak decays. This appears to be the most promising channel.
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3.4 Weak Decay with qZ final state

There is a similar channel with a neutralino as the intermediate particle and a

Z0 in the final state (due to the higgsino-higgsino-Z0 coupling). This could be a

potentially golden channel considering the leptonic decay of the Z0. Unfortunately,

there are no angular correlations since the ˜̄NiγµPλÑjZ
µ vertex is not even partially

chiral. The Same-Spin counterpart is slightly ambiguous. If the intermediate particle

is a heavy scalar partner of the higgs, there are no correlations. However, if the

intermediate particle is some heavy Z ′ this might be the easiest channel to discover.

As this is not a very generic case we will not pursue it any further.

There is an additional complication concerning this process. When the Z0 decays

into quarks, this process is experimentally indistinguishable from the previous one

we consider involving a W±. However, in most models it is suppressed by a factor

of 10 − 50 with respect to the chargino channel owing to the higgsino origin of the

coupling. Therefore it does not present a serious background to it.

3.5 Weak Decay with qh final state

The neutralino could also decay into a Higgs and LSP. This is shown in Fig.(3.6).

In the supersymmetric case this process is possible because of mixing with the hig-

gsino. Unfortunately, the h ¯̃N1Ñ2 vertex is not chiral and no correlation exists between

the quark and higgs directions.

In the Same-Spin scenario this process is realized through the higgs coupling to

the heavy gauge-bosons g′vZ ′
µA

′µh. In this case, a correlation between the higgs and
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outgoing quark exists and follow the same as those for a massive gauge-boson decay

into two bosons (the amplitude has a quadratic dependence on the variable tqh with

a positive coefficient).

This channel is quite generic and it is important to investigate it further. In

certain cases, it might be possible to replace the outgoing quark with an outgoing

lepton (for example heavy slepton production as discussed below in subsection 3.8).

In a sense this is an orthogonal channel to that considered by Barr [16] as it relies on

the existence of heavy leptonic partners rather than light ones.

Figure 3.6: The weak cascade decay of a quark partner through a heavy neutralino
into a higgs and LSP, in supersymmetry (left) and Same-Spin theories (right).

3.6 Decay of Gluon partner

In this section, we discuss the decay of the gluon partner into a quark and the

quark partner. The quark partner subsequently decays into another quark and miss-

ing energy. This is shown in Fig.(3.7). This would certainly be the dominant channel

of producing new physics particles if gluon partners are present in the spectrum.

This diagram might prove to be the dominant decay mode into missing energy.

Unfortunately, neither SUSY nor its Same-Spin counterpart have any spin effects
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Figure 3.7: The cascade decay of the gluon partner in supersymmetry (left) and
Same-Spin theories (right).

present. The supersymmetric diagram certainly does not involve any correlations

between the two outgoing jets owing to the scalar nature of the intermediate squark.

In contrast the Same-Spin quark is indeed a fermion, however, its coupling to the

gluon partner is vector like. Therefore, it is unpolarized and its subsequent decay is

isotropic. In the present work we will not consider this channel any further, leaving

a detailed study to a future publication.

If the spectrum is such that the gluon partner must decay into the LNSP via

an off-shell quark the situation is quite different. We discuss this issue further in

subsection 3.9.

3.7 Strong Decay of Quark Partner

Next we consider the strong decay of a quark partner. This scenario is slightly

specialized as it relies on the existence of a squark heavier than the gluino, but it

is still generic enough to warrant consideration. The relevant diagram is shown in

Fig.(3.8). If such a quark partner indeed exist this will be its dominant decay mode.
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The supersymmetric case still has no angular correlations between the outgoing jets

Figure 3.8: The strong cascade decay of a heavy quark partner in supersymmetry
(left) and Same-Spin theories (right).

owing to our experimental limitations. As discussed above, the Majorana nature

of the gluino makes it possible to observe correlations without having chiral vertices.

There are two diagrams, one with a mass insertion and the other without. The former

involves two outgoing quarks and the latter a quark and an antiquark. Unfortunately,

all that we observe in the lab are two jets and must average over the two contributions.

Therefore the decay should have no dependence on the variable tq1q2 = (pq1 + pq2)
2.

The Same-Spin case, however, does posses angular correlations between the out-

going jets and is distinguishable from the supersymmetric one. As discussed above,

the Same-Spin gluon is longitudinally polarized and we expect the decay to be a

quadratic function of the variable tq1q2 . The biggest challenge such a measurement

faces is the signficant background due to Standard Model processes. This may not

be an insurmountable impasse. The subsequent decay of q′ together with hard cuts

on missing energy might reduce the background dramatically. This is an important

enough channel with a clear enough signature (if isolated) to warrant further study

which we hope to address in a future publication.

Notice that the second stage of the decay chain could involve third generation
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quarks and squarks. In this case, since we might recover some charge information,

this decay can be useful to determine the spin of the gluino. It is not uncommon

that the third generation squarks are lighter than the first two generation squarks. In

particular, RGE running and a large third generation Yukawa coupling usually results

in a lighter third generation squarks. Therefore, if mq̃3 ≥ Mg̃ or just slightly lighter,

and mq̃1,2 > mq̃3 there could be a significant enhancement of branching ratio into

third generation quark and quark partners. Even in the Same Spin scenario, decaying

into third generation quark and quark partner could help reduce the combinatorial

background.

As mentioned above, in the case of left-right asymmetric spectrum, the two ver-

texes are effectively chiral and that will effect the angular correlations.

3.8 Decay from leptonic initial states

Many of the channels discussed above, involved the weak decay of a quark partner.

If lepton partners are heavy enough, all such channels can be initiated by a lepton

partner decay instead. The angular correlations are the same, only we replace an

outgoing jet with an outgoing lepton. Such a scenario can be realized through the

Drell-Yan production of heavy lepton partners.

Such a cascade has several advantages. First, jet combinatorics is not a problem.

Second, we gain a lot more information because charge and flavor is now available to

us. This is extremely helpful. For example, in the weak decay with l, W± final state,

there is only one channel to consider and no averaging is needed.

On the other hand, a lepton partner at the beginning of a cascade is harder to
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come by. It could come from the decay of heavy electroweak gauge boson partner, or

a Z ′ coupled to leptons. But, that is more model dependent. We also require there

to be several states below the lepton partner. This could sometimes require special

arrangements. For example, in the MSSM, we would require a mass hierarchy such

as M2 > m˜̀ > M1 > µ. This avenue looks promising in certain regions of parameter

space.

3.9 Off-shell decays

So far, we have only considered on-shell decay processes. We saw that if the

intermediate particle is a Dirac fermion the interactions involved must be at least

partially chiral. This conclusion is modified if that particle is off-shell. Although

on-shell decays usually dominate, there are special kinematical regions where we are

forced to have off-shell decays. For example:

1. If the quark partner is heavier than the gluon partner, gluon partner will be

forced to decay through an off-shell quark partner.

2. The decay of a gauge boson partner to LNSP will be forced to go through an

off-shell W/Z and lepton/quark partners if the mass splitting is small. The

virtual lepton-partner and virtual quark channels could be particularly inter-

esting since it brings in new spin information about the lepton partner. It could

be important over a large mass range of the lepton partner since the decay to

off-shell W/Z is usually suppressed by mixing.
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To illustrate this point we consider the first example where the gluon partner de-

cays through an off-shell quark partner. The relevant diagrams are shown in Fig.(3.7).

The SUSY channel obviously has no correlations since the squark is a scalar. However,

in the Same-Spin scenario correlations are present. The amplitude for this process is

∑

pol

|M|2 ∝ 2
(m2

q′ − q2)(q2 − 2m2
g′)(q

2 − 2m2
A′)

m2
g′m

2
A′

tqq̄ + f0(q
2), (3.3)

where we neglected the trivial denominator. f0(q
2) is some complicated function of

q2, the momentum of the internal quark partner, and the masses. It is irrelevant

for this discussion. Notice that when the quark partner is off-shell q2 6= m2
q′ and

the coefficient of tqq̄ = (pq + pq̄)
2 is non-zero. This linear dependence of the cross-

section on tqq̄ can in principle be distinguished from the SUSY case where there is no

dependence on tqq̄. Further study is needed to explore the observability of this effect

in different models.

Similar considerations apply for the other case of a gauge-boson partner decay to

LNSP via an off-shell slepton.
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Determining Spin without

Leptonic Partners

In this section we will explore the decay of a quark partner into a charged weak

partner which consequently decays into a W± and missing energy. Let’s begin with

the supersymmetric case. The squark-quark-chargino vertex is given by [26] (we

are ignoring the CKM and super-CKM matrices as they are quite irrelevant to the

following discussion),

Lqq̃C̃+ = −g2

(
ūPR(U11C̃1 + U21C̃2)d̃ + d̄PR(V11C̃

c
1 + V21C̃

c
2)ũ

)
(4.1)

where Uij, Vij are the matrices diagonalizing the Chargino’s’ mass matrix. We are

assuming that the chargino is dominantly a gaugino and ignore the direct quark-

squark-higgsino couplings. The more important vertex is the chargino-W+-neutralino

coupling,

LW−C̃Ñ = g2W
−
µ

¯̃Niγ
µ
(
OL

ijPL + OR
ijPR

)
C̃j (4.2)

39
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where,

OL
ij = − 1√

2
Ni4V

∗
j2 + Ni2V

∗
j1 (4.3)

OR
ij =

1√
2
N∗

i3Uj2 + N∗
i2Uj1

and Nij are the mixing matrices for the Neutralino. This interaction is usually at

least partially chiral (when tanβ 6= 1. Therefore we expect the amplitude to have

some tqW = (pq + pW )2 dependence, with a coefficient given by the difference of the

couplings in equation (4.3). Indeed, in the narrow width approximation q2 → m2
C̃

we

get,

|M|2 ∝ 1

2

(
m2

C̃
(m2

C̃
−m2

Ñ
− 2m2

W )

m2
W

)
(a2

L − a2
R) tqW + f0(q

2,mi) (4.4)

where f0(S, mi) is a polynomial given in appendix A. The 3-body phase-space differ-

ential volume can be written in terms of q2 and tqW (see for example [15]),

dPS3 =
1

128π3m2
1

dq2dtqW (4.5)

with appropriate kinematic boundaries. In the narrow-width approximation the in-

tegration over q2 is trivial and simply removes the denominator in equation (4.4) and

replaces q2 → m2
C̃
. Therefore, the angular correlations in this decay depend on the

difference (a2
L − a2

R).

In Fig.(4.1) we plot the ratio a2
R/a2

L as a function of tan β for a few values of

µ-parameter with M1 = 100 GeV and M2 = 500 GeV. This ratio is quite different

than unity for most choices of the parameters.

There is one additional complication in the SUSY case. As seen from equation

(4.1) there are two contributions to any process involving the chargino. One comes

from the coupling to the up squark, while the other comes from the coupling to the
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Figure 4.1: The ratio of the right to left couplings a2
R/a2

L as a function of tan β for
three different values of the µ-parameter. M1 = 100 GeV and M2 = 500 GeV are
fixed.

anti-down squark. Therefore, as shown in details in appendix A these two contribu-

tions differ by the sign of the coefficient of tqW . Since we cannot distinguish between

a jet coming from a down quark and that coming from an anti-up quark, we must

average over the two contributions. Fortunately, due to the composition of the pro-

ton there are more up-like squarks produced than down-like squarks. Their ratio in

production is shown in Fig.(4.2) as a function of their mass and gluino mass.

Let us contrast this with the corresponding process in Same-Spin theories. The

intermediate particle is a spin-1 Same-Spin W±. As we argued before in equation

(3.2) it is dominated by the longitudinal mode. Therefore its subsequent decay is

dominated by the angular distribution of the second equation in (2.5). Therefore

the W+ boson is preferentially collinear or anti-collinear with the jet. We expect

a2(tqW )2 + a1tqW + a0 dependence with a2 > 0 and a1 ≤ 0. The computation is quite
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Figure 4.2: The ratio of down squarks to up squarks in production as a function
of their mass for different gluino masses, mg̃ = 700, 1200, 2000 GeV (black-solid,
red-dashed, green-points).

involved, but the final expression is indeed,

|M|2 =
1

(q2 −M2)2

(
F0(q

2,mi) + F1(q
2,mi)tqW + F2(q

2,mi)(tqW )2
)

(4.6)

where the Fi’s are given in appendix A. It is not hard to show that F2(M
2,mi) > 0

and F1(M
2,mi) < 0. The shape of the resulting cross-section is plotted in Fig.(4.3)

against the corresponding SUSY cross-section. The behavior for small tqW is dis-

tinctly different than the supersymmetric case. The reason is clear. Small values of

tqW corresponds to W+ being collinear with the jet, which is forbidden in the super-

symmetric process, but preferred in the Same-Spin case. We have also included in

Fig.(4.3) the results of the Monte-Carlo simulation.
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Figure 4.3: Theoretical curves (Left graph) for the q-W correlations in the two models
(solid,black - SUSY, dashed,red - Same-Spin). Cross-section is plotted against the
tql variable. The right plot shows the Monte-Carlo simulation. Both graphs are
normalized to unit area.
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Experimental Observables

We must take into account the fact that W+ cannot be observed directly and

only its decay products can be measured. If it decays into quarks and it is possible to

distinguish these two jets from the rest by reconstructing the W+ (as it is on-shell) the

signal might still be very strong. We include standard cuts to reduce Standard Model

background. We also consider the contribution from other new physics processes with

identical final states. We argue that this signal is still a strong candidate for spin

determination1. There is also the possibility of a semi-leptonic decay with the W

decaying into a lepton and the corresponding neutrino.

5.1 Lepton-jet correlation

In this subsection, we concentrate on the semi-leptonic decay of the W±. The

main challenge we face is that we cannot reconstruct the W+ as the neutrino is unob-

1A detailed study of Standard Model background with sophisticated jet analysis is beyond the
scope of this paper. We will begin to address this issue in future publications.
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servable. To investigate the resulting signal we used the Monte-Carlo event generator

HERWIG [32]. We implemented spin-correlations for massive spin-1 particles and the

details can be found in appendix B. For the Same-Spin production matrix elements

we used the ones quoted in [73] 2

We expect much of the difference to be washed out once the W+ is allowed to

decay into leptons. The only observables we are left with are the momenta of the

outgoing jet and that of the lepton. Therefore, we will plot the cross-section as a

function of the invariant mass tql = (pq + pl)
2. Fig.(5.1) shows the Monte-Carlo

simulation results when the lepton is correlated with the jet from it own branch. In

practice we have no why to tell which jet came from which branch and we amend this

below.

While the behavior is indistinguishable at high tql, it is certainly very different at

low tql. We can attribute this to the fact that in the SUSY model, the W+ is very

unlikely to be collinear with the jet, whereas the opposite is true for the Same-Spin

model.

This plot suggests that the two models are still distinguishable from one another

even if the W cannot be fully reconstructed. When taking into account the jet

combinatorics by pairing the lepton with both jets in the event the results do alter.

In Fig.(5.2) we plot the cross-section against tql for events with two jets and one or two

leptons (the two-leptons case corresponds to both branches decaying into a lepton).

2Except for the matrix element M(qq → q∗1q∗1) which was taken from [62] since the one quoted in
[73] seemed to give production rates which are too large. Strictly speaking, those are inappropriate
for the model we consider (as they assume degenerate spectrum and only one mass scale, namely
1/R, the compactification radius). However, nothing in our discussion seems to relay heavily on the
precise production cross-section and we do not expect any major modification to the conclusions
below. To simplify the analysis we switched off cluster formation, heavy hadron decays and the
underlying soft event.
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Figure 5.1: Monte-Carlo simulation for the quark-lepton correlations in the two mod-
els (solid,black - SUSY, dashed,red - Same-Spin). Normalized cross-section is plotted
against the tql variable. The data sets contain ∼ 13, 000 events each.

The single lepton diagram still exhibits the flattening of the cross-section in the SUSY

case for low tql. This is in contrast with the rising cross-section for the Same-Spin

model. It is possible that close analysis of low tql can pick up this difference once

real data is available. There is no obviously observable spin dependence in the second

case with two leptons in the final state.

5.2 Jet-W correlation

In this subsection we take up the second possibility, namely that the W± decays

into two jets. The advantage is the ability of fully reconstructing the four momenta

of the W±’s. There are disadvantages as well. First and foremost, very naively the

Standard Model background is significant. Second, since jets are involved, momentum

determination involves some amount of smearing. This would affect the reconstruc-
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Figure 5.2: Monte-Carlo simulation for the jet-lepton correlations in the two models
(solid,black - SUSY, dashed,red - Same-Spin) with no knowledge of the correct pairing.
Normalized cross-section is plotted against the tql variable. The graph on the left is for
2 jets and 1 lepton events. The graph on the right corresponds to 2 jets 2 opposite sign
leptons events. The data sets contain ∼ 17, 000 events with 1 lepton and ∼ 9, 000
events with 2 leptons for each of the models.

tion of W± as well as the angular correlations. Third, it is very hard to distinguish

between a W± and a Z0 and so when investigating background we must consider

both. We do not attempt a full Standard Model background analysis, however, there

are several reasons why it might be possible to reduce such a background. First, hard

cuts on missing energy can yield a fairly clean sample of beyond the standard model

physics. Second, we can easily have additional leptons in the process we consider.

Simply let the quark partner in the other branch (shown in Fig. (5.4)) to decay into

a Z ′ or W ′. It is not hard to imagine other possible channels for producing leptons

in the final state. The problem of background reduction is beyond the scope of this

paper and we will assume that some non-negligible set of events, containing new

physics, can be isolated and analyzed.

We consider 4-jet events with a typical event topology shown in Fig.(5.4) together
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Figure 5.3: Considering only 4-jet events this is a histogram of the invariant mass tW,jl

for each of the models: SUSY (solid-black), Same-Spin (dashed-red). The histogram
is normalized to unit area. The two data sets contained ∼ 9, 000 and 2, 000 events,
respectively. The normalized error is approximately

√
N ∼ 0.04.

with a possible background from another new physics process. In every event we try

to reconstruct the W± from two of the 4 jets and then form the invariant mass tqW

with the two remaining jets. If more than one pairing reconstructs W it is regarded

as failure and the event is discarded. Our cuts involve P/T > 200 GeV and η < 4.0.

We make no attempt in trying to order the jets by the magnitude of their transverse

momentum or some more sophisticated ordering (This very naive approach yields

a significant difference between the two models as shown in Fig.(5.3)). There can

certainly be potential improvements on this measurement by using more kinematical

information of the jets. The linear behavior vs. the the quadratic behavior is still

visible on top of the background coming from the wrong pairing.
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Figure 5.4: 4-jet event topology for the Same-Spin theory. The diagram we are
interested in (left) together with a possible Same-Spin irreducible background (right)

Figure 5.5: 4-jet event topology for SUSY. The diagram we are interested in (left)
together with a possible SUSY irreducible background (right)

There could also be background from different processes in the same model of new

physics with identical final states. One such channel is shown on the right in Fig.

(5.4) for Same-Spin theory and Fig. (5.5) for the SUSY case. We consider all events

with 4-jets. Then we construct the invariant mass m2
jk,jl

= (pk+pl)
2 for every possible

pair. We use HERWIG internal algorithm for jet formation. We include jet smearing

effects [47] using the ATLAS specs [1]. The results are shown in Fig.(5.6). It is clear

the background from the model itself is not an issue and the reconstruction of the

W should be fairly easy. This should come as no surprise. With a random pairing of



5: Experimental Observables 50

such energetic jets, the chance of reconstructing a quantity with < 100 GeV is fairly

low. This can probably be made even sharper with some simple cuts on jet energy.

For example, the initial jets from the squark decay tend to be more energetic than

those coming from the W .
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Figure 5.6: Considering only 4-jet events we plot a histogram of the invariant mass
m2

jk,jl
= (pk + pl)

2 of all possible pairs of jets. The graph is normalized to unit area.

5.3 Scanning M1 and M2

It is important to map out the regions of parameter space in which the different

channels are useful. In this section we present the results of a scan covering the

subspace spanned by (M1,M2). We also set mW ′ = M2 and mA′ = M1. While

there are other parameters which effect the results (such as tan β, mq̃, µ, etc.) we

focus on those two parameters, (M1,M2), which are the most determinantal to the

observability of angular correlations for the channel we consider.

When performing such a scan, we wish to assign a number to quantify the dif-
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ference between, say, the distribution describing the SUSY scenario and that of the

Same-Spin scenario. There is no unique choice for such a number. Moreover, such

an assignment can be problematic as it can overlook differences that a more careful

analysis would pick up. Therefore, the results of this section should be understood

with the following proviso in mind: the numbers assigned for the different points in

parameter space carry only relative importance among themselves and have very little

absolute meaning. They indicate that in certain regions spin determination is easier

as compared with other regions.

There is one more point to keep in mind. We will compare the distributions

produced for the two models by matching their spectrum. This is incorrect. One

should match the cross-section first as that is the actual experimental observable.

Unfortunately, we had poor control over the production rates for the Same-Spin

scenario3 However, this is not entirely misleading. As part of our results we will

consider the observability of each of the models against phase-space. Therefore, if

nothing else, we are able to tell when spin effects are present at all.

To quantify the difference between the distributions we use the Kolmogorov-

Smirnov test for goodness-of-fit. In this test, the cumulative distribution functions

(CDF) of both data sets are compared. The D-statistics is simply the maximum

vertical difference between the CDF’s. In other words,

D = sup |F1(x)− F2(x)| (5.1)

where F1(x) and F2(x) are the CDF’s for the two data sets. The p-value assigned to

the D-statistics is low when the two data sets come from different underlying distri-

3The production cross-sections given in [73] for the Same-Spin theory have only one adjustable
parameter, namely the inverse compactification radius.
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butions. There are several advantages to the Kolmogorov-Smirnov test. First, it is a

non-parametric test so it applies to general distributions. Second, it is independent

of the way we choose to histogram the data.

In Fig. (5.7) we plot the p-value as a function of M2 for three different values

of M1. The quark partner mass is mq̃,q′ = 1000 GeV, the gluon partner mass is

mg̃,g′ = 1200 GeV. We set tan β = 10 in the supersymmetric case. For every value of

the parameters we produced 100, 000 events out of which only about 10% passed the

different cuts.

The scan matches our expectations. When M2 → M1 the LSP and the W are

produced at rest and there the correlations with the polarization axis defined by

the quark partner are diminished. Also, when M2 → mq̃,q′ it becomes harder to

distinguish the two data sets. This is also expected because in the Same-Spin case

the quark partner, q′, is not at all boosted in the rest frame of the W ′. Therefore, W ′

is not polarized.

The results are encouraging. While a more sophisticated analysis (better cuts,

better fitting, more realistic collider simulation, etc.) is certainly warranted, these

initial results seem to indicate that spin determination is possible. As pointed out

before, one should not confine the analysis to special benchmark points, but rather

attempt a scan over the parameter space. In this way, an inclusive strategy, combining

several channels, can be devised to cover different exclusive regions of the parameter

space.
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Figure 5.7: A plot of the p-value vs M2 for different values of M1. We set mW ′ = M2

and mA′ = M1. The p-value is lower when the two data sets are more distinguishable.
The other parameters were fixed at mq̃,q′ = 1000 GeV,mg̃,g′ = 1200 GeV. We set
tan β = 10 in the supersymmetric case. Both data sets contained ∼ 10, 000 events.
Notice that when the mass splitting between M1 and M2 is small, i.e. the left-hand
side of the plot, it is harder to distinguish these two scenarios. Supersymmetry
and Same-Spin scenario become more distinguishable as the mass splitting increases.
However, as M2 approaches mq̃,q′ the difference is again diminished.
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Conclusions and Future Directions

We have systematically studied the possibility of measuring the spin of new par-

ticles in a variety of cascade decays. Generally, the existence of a LNSP renders the

reconstruction of the momenta of new physics particles impossible. Therefore, we

focused on distributions of relativistically invariant variables. We identified a set of

decay channels which are useful for spin determination.

A general lesson of this study is that even though spin correlations are present in

a variety of decay channels, the viability of any particular channel is always confined

to certain kinematical regions. As a result, different models of new physics with

different spectra tend to give very different useful channels for spin determination.

Different strategies will have to be employed at the LHC. Therefore, we emphasize

that it is important not to confine ourselves to any particular benchmark model or any

particular decay mode. We should instead explore the effective range of all possible

decay channels and devise techniques for using them efficiently. In this sense, our

survey of potentially useful decay channels is the initial step of an important task for

54
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which many detailed studies still need to be done.

As part of this program we studied the decay channel q̃ → q+C̃± → q+W±+LSP .

A scan over the chargino and neutralino masses was performed. We found that as

long as the spectrum is not too degenerate the prospects for spin determination are

rather good.

One of the most important challenges is to measure the spin of gluon partners.

The difficulty in such a study is that the decay products carrying the spin information

of the gluon partner are usually jets, missing the charge information. In addition,

such channels usually have larger combinatorial background and Standard Model

background. A similarly challenging task is a direct measurement of the spin of the

quark partner.

We have considered only kinematical variables constructed out of two objects of

the decay products. It is in principle interesting to study the possibility of using more

complicated kinematical variables.

Notice that decay channels involving leptons are generally more promising than

those involving only jets. This result stems from the fact that we have charge and

flavor information from the lepton, which could help us in separating the channels. We

have assumed no such information from jets. Therefore, we have limited information

from channels decaying into quarks, except for the third generation. Moreover, losing

charge and flavor information from the jet significantly increases the combinatorial

background, since typical new physics signals for the scenarios considered in this

paper almost always contain several hard jets. Therefore, any potential information

about the charge and flavor of the initial parton of the jet will be very helpful in spin



6: Conclusions and Future Directions 56

determination.

We would like to remark that reducing combinatorial background is very important

in extracting more information about the underlaying new physics. This lead the

authors of [12] to conclude that to what extent jet charge could be measured is an

important study for LHC experiments.

We have not studied the possibility of measuring spin in the production. This is

certainly a very important area to be investigated carefully. Barr [17] has studied

the measurement of the spin of muon partners using angular distribution from pair

production. In principle, angular distributions of production of other partners should

carry similar information. This is a subject currently under investigation. One of

the main complications is the existence of t-channel productions. Such production

channels bring in more partial-waves and tend to wash out characteristic angular

distributions.

We would also like to emphasize that although we have only compared SUSY with

the Same-spin scenario, the general rules we have developed in the paper are easily

applicable to any generic scenario with different spin content of new physics particles.



Part II:

An Example of a Model for Beyond

the Standard Model physics

57



7

Introduction

The little Higgs mechanism [10, 11, 7, 8, 44, 61, 53, 72] offers a fascinating way to

stabilize the electroweak scale. Like the Georgi-Kaplan composite Higgs [51, 52, 38,

39, 37], the little Higgs is naturally light because it is a pseudo-Goldstone boson of a

spontaneously broken approximate global symmetry. What is novel about the little

Higgs mechanism is that it implements collective breaking. That is, the interactions

of the theory are arranged such that turning on any one interaction preserves enough

of the global symmetry to protect the Higgs mass. Therefore, quadratic divergences

to the Higgs mass can only appear at mutliloop order, and generically the Higgs

boson is two loop-factors lighter than the scale of spontaneous symmetry breaking.

In principle, this allows us to push the cutoff of the standard model as high as 10 TeV

without fine-tuning the Higgs mass. In addition, specific little Higgs models, such as

models with a custodial SU(2) symmetry [20, 19] and models which implement T -

parity [22, 23, 60], automatically satisfy precision electroweak constraints [48, 33, 34,

43, 55, 21, 78]. Therefore, it is reasonable to say that the little Higgs mechanism is a
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fully realistic theory for perturbative physics up to 10 TeV.

Despite the phenomenological successes of little Higgs mechanism, there are ques-

tions that one might be interested in answering that cannot be unambiguously calcu-

lated in a theory with a 10 TeV cutoff. In particular, four-fermion operators that

generate flavor-changing neutral currents (FCNCs) generically require a cutoff of

Λ ∼ 1000 TeV, so in a theory with a 10 TeV cutoff, we have no natural way of

explaining why FCNCs are so suppressed. Also, in the original little Higgs papers,

the Higgs potential is governed by operators with quadratically sensitive couplings,

and estimates of these couplings were generated using the Coleman-Weinberg poten-

tial [27] and näıve dimensional analysis [64, 40]. While we have no a priori reason

for not trusting these estimates, there are always O(1) effects (including sign ambi-

guities) accompanying UV sensitive physics. For these reasons, we wish to present

a possible UV completion of the little Higgs mechanism in which the UV sensitive

physics is finite and calculable.

Here, we will focus on the simplest little Higgs model, the littlest Higgs [7]. The

littlest Higgs is based on an SU(5)/SO(5) non-linear sigma model, and there are

two obvious UV completions one might explore. The most näıve UV completion is a

linear sigma model with a Mexican-hat potential, but such a theory cannot address the

hierarchy problem because the mass of the linear sigma field is quadratically sensitive

to the Planck scale. Alternatively, the SU(5) → SO(5) symmetry breaking pattern

could be generated by technicolor-like strong dynamics. This is the path taken in [54]

based on an SO(7) confining gauge group, and the SU(5)/SO(5) non-linear sigma

model arises analogously to the pions of QCD.
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Another type of strong dynamics is suggested by the AdS/CFT correspondence

[63, 46, 77] and its phenomenological interpretation [13, 70]. As noted in [30], the

Higgs can emerge as a composite state of a strongly coupled 4D quasi-conformal field

theory, and while the details of the strong dynamics are difficult to calculate, UV

sensitive parameters such as the Higgs potential can be determined in the weakly

coupled AdS dual of the quasi-CFT. In all composite Higgs models, some separation

between the confinement scale and the electroweak scale is necessary in order to

satisfy precision electroweak constraints. Recently, the Higgs as a holographic pseudo-

Goldstone boson has been incorporated into a realistic model [2] where this separation

is achieved by a mild fine-tuning between radiative contributions in the fermion sector.

In the littlest Higgs, the Higgs quartic coupling is naturally large and parametrically

of order the standard model gauge coupling, so it is particularly interesting to study

the composite littlest Higgs in the context of AdS/CFT. We can imagine a quasi-

CFT with an SU(5) global symmetry spontaneously broken to SO(5) at the scale

of conformal symmetry breaking, and the SU(5)/SO(5) non-linear sigma model will

naturally emerge as composites of the strong dynamics.

In this part of the thesis, we construct a simple AdS5 model [69, 68] that includes

all the major features of the littlest Higgs. We consider a slice of AdS5 space bounded

by a UV brane and an IR brane. In AdS language, it is easy to see why the Higgs

potential will be finite and calculable. The non-linear sigma field that contains the

Higgs doublet lives on the IR brane, and all interactions on the IR brane respect the

global symmetries that leave the Higgs massless. These global symmetries are only

broken on the UV brane, so a quantum effective potential for the Higgs is generated
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through loops that stretch from the IR brane to the UV brane. Because these loops

are non-local in the bulk of AdS, they are manifestly finite.

Even more interesting is what collective breaking looks like in AdS language.

In the original littlest Higgs model, the global SU(5) symmetry that protects the

Higgs mass is broken by gauging two subgroups of the SU(5) in such a way that

the Higgs is exactly massless unless both gauge couplings are non-zero. In our AdS

model, two subgroups of the bulk SU(5) gauge bosons are given different boundary

conditions on the Planck brane, and collective breaking in AdS language is now a

statement about collectively choosing these boundary conditions. Whereas the low-

energy Coleman-Weinberg potential involved combinations of coupling constants, the

full 5D Coleman-Weinberg potential involves differences of Greens functions in a way

that makes collective breaking manifest.

Though the radiatively generated Higgs potential is parametrically of the right

form to successfully trigger electroweak symmetry breaking, when we look at the

model in numerical detail, we find an interesting tension that is already evident in the

low energy phenomenology and which is exacerbated by the AdS construction. The

littlest Higgs contains a top partner t′ and electroweak gauge partners W ′ that cancel

quadratic divergences coming from standard model fermion and gauge loops. The

ratio of the t′ mass to the W ′ mass is generically of order 4λtop/
√

g2
1 + g2

2, where λtop

is the top Yukawa coupling, gi are SU(2)i gauge couplings, and the electroweak gauge

coupling is determined by gEW = g1g2/
√

g2
1 + g2

2. For phenomenological reasons, we

would like the t′ and W ′ to be nearly degenerate, and therefore we would like to make

g2 À g1. However, in a large N CFT, gauge couplings are infrared free, so we either
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have to shrink the conformal window in order to enforce a large separation between

g1 and g2, or we have to reckon with dangerously light W ′ gauge bosons.

In the limit where g1 = g2, we may be able to live with a light W ′ if the theory

has T -parity, and in section (14), we work towards constructing a realistic AdS5

model that implements T -parity. T -parity is a Z2 symmetry under which standard

model fields are even but new fields at the TeV scale are odd. This symmetry forbids

standard model dimension six operators from being generated by tree-level exchange

of the new particles, so corrections to precision electroweak observables are generically

suppressed by a loop factor. However, we will see a tension between implementing

T -parity and trying to capitalize on the past successes of AdS5 model building (see [3]

for a summary). In particular, there is natural way to generate hierarchies among the

Yukawa couplings by putting standard model fermions in the bulk of AdS space with

different bulk masses [45, 41, 50, 49], and as an added bonus, this setup naturally leads

to suppressed FCNCs. Unfortunately, the same mechanism that generates Yukawa

hierarchies also leads to a hierarchy in the masses of T -odd fermion partners, and

the lightest T -odd fermion is far lighter than the current experimental bound. This

tension between precision electroweak constraints and FCNCs appears to be a problem

for any AdS5 model with T -parity. In this light, it may be interesting to look at the

AdS implementation of little Higgs theories with a custodial SU(2) symmetry, where

the mechanism that protects precision electroweak corrections can coexist with the

AdS mechanism of suppressing FCNCs.

Putting aside these detailed model building questions, the littlest Higgs in AdS

space is a technically natural extension of the standard model that makes sense up to
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the Planck scale (or some suitably high UV scale when g1 6= g2). In CFT language,

the hierarchy between the Planck scale and the electroweak scale is generated in two

steps. First, the hierarchy between MPl and confinement scale is generated through

dimensional transmutation. Second, the hierarchy between confinement scale and the

electroweak scale is guaranteed by collective breaking. We expect it to be straight-

forward to generalize this AdS5 construction to other little Higgs theories, allowing

us to embed a class of phenomenologically successful models into a UV complete

framework.

In the next section, we review the holographic description of spontaneous sym-

metry breaking and apply it to generic little Higgs theories. We present the littlest

Higgs in AdS space in Section 9, and match this theory to the well-known low energy

description in Section 10. We comment on the tensions between the low energy theory

and a large N CFT description in Section 11. In Sections 12 and 13 we calculate the

radiatively generated potential for the Higgs doublet and show that there is a wide

range of parameters with realistic values for the Higgs mass. Finally, in Section 14

we sketch how to implement T -parity in AdS space, and conclude with a preview of

future directions in little Higgs model building.
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The Little Higgs Mechanism

through AdS/CFT

The little Higgs mechanism is ideally suited for a holographic interpretation be-

cause the underlying physics involves symmetry breaking patterns and not the specific

mechanism for symmetry breaking. The generalization of the AdS/CFT conjecture

to AdS5 with boundaries [13, 67] can only give us limited information about the

structure of the CFTs dual to AdS models. Given an RS1-type model with a warped

dimension [69], there is a corresponding 4D quasi-conformal field theory coupled to

gravity and an elementary sector, and this quasi-CFT confines at the scale of the IR

brane. But in any RS1-type model, we are ignorant about physics on the IR brane

at energies near the IR scale because the KK gravitons are strongly coupled there.

The dual description of 5D ignorance is 4D ignorance, so while the AdS/CFT corre-

spondence can tell us a lot about the low-energy bound states of the dual CFT, we

do not have an unambiguous understanding of physics near the confinement scale.

64
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Our goal is to understand the UV sensitive parameters of the littlest Higgs model,

and we can arrange the interactions of the theory such that the Higgs potential is

insensitive to the details of physics near the confinement scale. In 5D language, this

feature will be obvious, as the Higgs boson is physically separated in the warped di-

mension from the fields that radiatively generate the Higgs potential. In 4D language,

the Higgs potential is generated through interactions between the quasi-CFT and the

elementary sector and is therefore independent of the details of CFT dynamics.

E
Confinement Breaks G → H

(Higgs ∈ G/H)
+

Little Higgs Partners (t′,W ′, φ, . . .)

Standard Model
+

Naturally Light Higgs

ΛQCD ∼ 10 TeV

ΛLH ∼ 1 TeV

CFT with Global Symmetry G
+

Gauged Subgroup F ⊂ G

Figure 8.1: Schematic of a generic 4D little Higgs theory. The scale ΛLH is the mass
of the particles responsible for collective breaking and is roughly of order fπ, the pion
decay constant of the CFT. The scale ΛQCD is where we see any particles not directly
involved in collective breaking, namely the ρ mesons of the CFT.

Ignoring the fermion sector, all little Higgs models involve a global symmetry G

that is spontaneously broken to H at an energy Λ ∼ 10 TeV. We will assume that the

breaking G → H is triggered by QCD-like confinement, and the Goldstone bosons

of G/H emerge as bound states of the strong dynamics, analogously to the pions of

QCD. (See Figure 8.1.) A subgroup F ⊂ G is gauged and contains two copies of
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the electroweak gauge group Wi = SU(2)i × U(1)i for i = 1, 2, but H only contains

the diagonal electroweak gauge group W1 + W2. (In the model we construct in the

next section, we only introduce one copy of U(1)Y , so Wi = SU(2)i.) The Higgs

sector is embedded in the pseudo-Goldstone bosons of G/H such that the Higgs field

transforms as a (diagonal) electroweak doublet. To implement collective breaking, the

structure of the symmetry groups is chosen such that the Higgs is an exact Goldstone

boson if only one of the electroweak gauge groups is turned on.
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Figure 8.2: The gauge symmetries in AdS5 for a generic little Higgs theory where
there is a G/H non-linear sigma model at low energies with F ⊂ G gauged. The re-
duced gauge symmetries F and H on the UV/IR branes can be accomplished through
boundary conditions or linear sigma models. We will work as closely as possible to
boundary condition breaking.

If the strong sector of this theory is a strongly coupled conformal field theory,

then there is a simple AdS metaphor for this symmetry breaking pattern. Consider

a slice of AdS5 bounded by a UV brane and a IR brane as in Figure 8.2. The metric

for AdS5 is

ds2 =
1

(kz)2
(ηµνdxµdxν − dz2), (8.1)

where k ∼ MPl is the AdS curvature, and z parametrizes distance in the the warped
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dimension. The UV brane sits at z = L0 ∼ 1/MPl and the IR brane sits at z =

L1 ∼ 1/(a few TeV). It is also convenient to introduce the parameter ε = L0/L1. In

general, fields that “live” on the UV brane correspond to 4D elementary fields that

are outside of the CFT, and fields that live on the IR brane correspond to composites

of the strong dynamics. Fields living in the bulk of AdS5 encode information about

the operator content of the CFT. In particular, the global symmetry G of the CFT

corresponds to bulk G gauge bosons in AdS5. Gauging a subgroup F of G in 4D

language corresponds to reducing the bulk G gauge symmetry to F on the UV brane.

Spontaneously breaking G → H at Λ ∼ 10 TeV corresponds to reducing the bulk G

gauge symmetry to H on the IR brane.

As shown in [30], we could work entirely in the language of boundary conditions in

AdS space, imposing Dirichlet boundary conditions on the appropriate modes of the

gauge bosons Aa
µ to reduce the gauge symmetries on the boundaries. In this case, the

uneaten Goldstone modes (including our Higgs boson) correspond to Aa
5 zero modes.

For our purposes, we work instead in A5 = 0 gauge and reduce the gauge symmetry

on the IR brane via a linear sigma field Φ that takes a non-zero vacuum expectation

value. For low energy physics E < a few TeV, the boundary condition language and

the linear sigma field language give identical results, and we will go to a limit which is

maximally similar to boundary condition breaking. We prefer the Φ language because

the fluctuations Σ about 〈Φ〉 are the pseudo-Goldstone bosons associated with G/H,

so the fact that the Φ field lives on the IR brane makes it intuitively obvious that the

pseudo-Goldstone bosons Σ are composite states of the strong dynamics.

We still have enough gauge freedom to use boundary conditions to reduce the
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gauge symmetry on the UV brane to F . As we will see explicitly, collective breaking

now looks like a choice between Neumann and Dirichlet boundary conditions for the

electroweak groups W1 and W2. If W1 has Neumann boundary conditions but W2 has

Dirichlet boundary conditions (i.e. only W1 is gauged), then the Higgs contained in

Σ is still an exact Goldstone. Only when all of F has Neumann boundary condition

does the Higgs pick up a mass. This is because Φ transforms as some representation

of the bulk gauged G, and G-violating corrections to the Φ potential can only come

through loops involving gauge bosons that stretch from the IR brane (where G is a

good symmetry before Φ takes its vev) to the UV brane (where G is explicitly broken

by boundary conditions). Because these loops are non-local in the warped dimension,

their contribution to the Goldstone potentials are finite and calculable.

To complete the little Higgs mechanism we need to introduce fermions. Because

the Higgs lives on the IR brane, standard model fermions must have some overlap

with the IR brane. Standard model fermions do not come in complete G multiplets,

however, and if we simply included G-violating Yukawa couplings with the Φ field on

the IR brane, then the quantum effective potential for the Σ field would be sensitive

to the cutoff on the IR brane, namely a few TeV. While this is not a problem from a

model-building perspective, our aim was to have control over UV sensitive parameters

in little Higgs models. Therefore, as for the gauge sector, we only want to explicitly

break G on the UV brane, so we introduce bulk fermions in complete G multiplets.

These bulk fermions couple to the Φ field on the IR brane and have explicit G-

violating (but F -preserving) boundary conditions on the UV brane. Like the gauge

sector, these boundary conditions are chosen collectively such that a mass for the
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Higgs is only generated when there are pairs of Dirichlet boundary conditions.

While it appears that collective breaking involves a binary choice between Neu-

mann and Dirichlet boundary conditions, we could of course break G by introducing

G-violating UV brane kinetic terms for the gauge bosons and fermions. In our model,

we in fact need to do this because simple boundary conditions are not enough to gen-

erate different gauge couplings for W1 and W2. Clearly, if we introduced a boundary

mass term proportional to m, then Neumann and Direchlet boundary conditions are

just the m → 0 and m →∞ limits, respectively. As we will see when we write down

the expression for the Higgs potential, the boundary condition language makes it easy

to see how the little Higgs mechanism works in anti-de Sitter space, but the central

idea is applicable for general boundary kinetic terms. We use the shorthand (±,±)

to indicate boundary conditions on the UV/IR branes, where + indicates Neumann

(or modified Neumann) boundary conditions, and − indicates Dirichlet boundary

conditions.
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Figure 9.1: Gauge structure of the littlest Higgs in AdS5.

The littlest Higgs [7] is based on an SU(5)/SO(5) non-linear sigma model. In

this section, we construct an AdS5 model that captures the essential features of the

littlest Higgs involving only the top and gauge sectors. This model roughly shares the

70
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4D fermion content of [54]. Unlike the original littlest Higgs, we do not implement

collective breaking for U(1)Y in order to avoid issues arising from mixing between

heavy and light U(1) gauge bosons, but because the hypercharge gauge coupling is

small, this will not change the Higgs mass appreciably. In the calculations in the

following sections, we simply ignore the U(1)Y contribution to the Higgs mass and

quartic coupling.

In the language of the previous section, we will take

G = SU(3)C × SU(5)× U(1)B

F = SU(3)C × SU(2)1 × SU(2)2 × U(1)Y

H = SU(3)C × SO(5)× U(1)B

(9.1)

where SU(3)C is color SU(3), and U(1)B has nothing to do with baryon number.

(See Figure 9.1.) The SU(2) generators of F are imbedded in the SU(5) generators

as

Qa
1 =




σa/2


 , Qa

2 =




−σ∗a/2


 . (9.2)

There is a U(1)A in SU(5) generated by A = diag(1, 1, 0,−1,−1)/2, and U(1)Y is

defined by Y = A+B, where B is the U(1)B generator. For the purposes of calculating

the radiative Higgs potential, we need only introduce the bulk gauge coupling g5 for

SU(5). We also introduce a Planck brane boundary gauge kinetic terms for the

SU(2)i subgroups proportional to zi. Propagators for gauge fields with boundary

conditions and Planck brane kinetic terms are given in Appendix C. The low energy

gauge couplings gi for the SU(2)i can be extracted by integrating out the bulk of

AdS:

1

g2
i

=
1

g2
5L0

(
log

L1

L0

+ zi

)
=

1

g2
ρ

(− log ε + zi), (9.3)
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where we have introduced gρ = g5

√
L0. gρ is the AdS perturbative expansion param-

eter that has the holographic interpretation gρ ∼ 4π/
√

N in a large N CFT [13].

The field Φ on the IR brane is a symmetric tensor that transforms as

Φ → V ΦV T (9.4)

under SU(5), and Φ is a singlet under SU(3)C×U(1)B. Φ takes a vacuum expectation

value

〈Φ〉 = Σ0 ≡




11

1

11




, (9.5)

breaking SU(5) → SO(5) on the IR brane. The unbroken SO(5) generators Ta and

the broken SU(5)/SO(5) generators Xa satisfy

TaΣ0 + Σ0T
T
a = 0, XaΣ0 − Σ0X

T
a = 0. (9.6)

Performing a broken SU(5) transformation on the vacuum, we can parametrize fluc-

tuations about the Φ background as

Σ = eiΠ/f5Σ0e
iΠT /f5 = e2iΠ/f5Σ0, (9.7)

where Π = πaXa is the Goldstone matrix and f5 is related the 4D Goldstone decay

constant f4 by f4 = εf5. As we will see, f4 has nothing to do with what a low energy

observer would call the pion decay constant, and we will actually go to the limit

f4 →∞. Three of the Goldstone bosons are eaten by the Higgsing of SU(2)1×SU(2)2

down to SU(2)EW , giving rise to the gauge boson partner W ′. The remainder of the
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Π matrix can be written as

Π =




(η/
√

20)11 h†/
√

2 φ†

h/
√

2 −4η/
√

20 h∗/
√

2

φ hT /
√

2 (η/
√

20)11




, (9.8)

where η is a real neutral field, h = (h+, h0) is the Higgs doublet, and φ is a complex

symmetric two by two matrix that transforms as a charge 1 electroweak triplet.

On the IR brane, the leading lagrangian for Σ is the gauged non-linear sigma

model

LΣ =
√−gindδ(z−L1)g

µν
ind

f 2
5

8
tr(DµΣ)†(DνΣ), DµΣ = ∂µΣ− iAµΣ− iΣAT

µ , (9.9)

where Aµ = Aa
µTa + Ab

µXb are the 5D SU(5) gauge bosons. In order to give the

η field a mass and remove it from the spectrum, we introduce an explicit SO(5)

violating plaquette operator on the IR brane which does not substantially affect the

Higgs potential. Expanding Σ in the Goldstone fields, there is a linear coupling

between h and the KK gauge bosons which induces wavefunction renormalization on

h. Integrating out the heavy KK states, the kinetic lagrangian for h is

Lh = Zh|Dµh|2, Zh =

(
1 +

f 2
5 g2

5Gbr

2

)−1

, (9.10)

where the covariant derivative now only includes electroweak gauge fields, and Gbr =

Ĝ(0; L1, L1) = L0/2 is the zero momentum boundary to boundary rescaled gauge

boson propagator for modes with (−, +) boundary conditions.

In this simplified littlest Higgs model, we only consider fermionic contributions to

the Higgs mass from the top sector. We introduce two bulk 5D (Dirac) fermions Q
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and Qc. Under KK decomposition, Q and Qc have upper (left-handed) and lower

(right-handed) Weyl components:

Q =




Q

Q
′


 , Qc =




Q′c

Q
c


 . (9.11)

In order for the 4D masses of the KK fermion tower to have real masses, we must

impose Dirichlet boundary conditions on either the upper or lower component on each

of the AdS boundaries [45]. However, because we do not impose orbifold symmetry

on AdS space, the choice of which mode vanishes is independent on each boundary.

We choose the upper component Q of Q and the lower component Qc of Qc to have

non-vanishing boundary conditions on the IR brane. While this choice is arbitrary, it

will simplify the calculation of the fermionic contribution to the Σ effective potential.

The components Q and Qc transform under G as:

SU(3)C SU(5) U(1)B

Q 3 5 +2/3

Qc 3̄ 5 −2/3

(9.12)

Expanding Q and Qc as SU(5) multiplets:

Q =




p̃

t̃

q




, Qc =




q̃c

tc

p̃c




. (9.13)
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Under F , these fields transform as:

SU(3)C SU(2)1 SU(2)2 U(1)Y B.C.

q 3 − 2 +1/6 (+, +)

tc 3̄ − − −2/3 (+, +)

t̃ 3 − − +2/3 (−, +)

q̃c 3̄ 2 − −1/6 (−, +)

p̃ 3 2 − +7/6 (−, +)

p̃c 3̄ − 2 −7/6 (−, +)

(9.14)

After SU(2)2 is Higgsed to the electroweak SU(2), the q and tc fields have the right

quantum numbers to be the standard model third generation quark doublet and top

singlet. In order for q (tc) to have zero modes, we take them to have Neumann bound-

ary conditions on the UV brane, and thus the associated lower (upper) component

modes have Dirichlet boundary conditions there. The tilded fields have Dirichlet

boundary conditions on the UV brane, so the first KK mode is massive. The t̃ and

q̃c fields are roughly the t′ and q′ fermionic partners responsible for cutting off the

divergent top contribution to the Higgs mass, but the p̃ and p̃c are spectators that

serve merely to fill out the SU(5) representation.1

As is standard in AdS model building, we give Q and Qc bulk masses νk and νck.

The values of ν and νc affect the spectrum and wavefunctions of the KK tower. In

CFT language, the values of ν and νc adjust the anomalous dimension of operators

1Though p̃ and p̃c have the right quantum numbers such that their zero modes could become one
massive vector fermion, we will have more flexibility to choose different bulk masses for Q and Qc

if we remove the p̃ and p̃c zero modes.
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corresponding to the zero mode of the relevant fermions [31]:

γ = |ν − 1/2| − 1, γc = |νc + 1/2| − 1. (9.15)

(Unfortunately, we use opposite conventions from [31] for the signs of ν and νc.)

In particular, in order to generate a large enough top Yukawa coupling, we need

the top doublet and singlet to have anomalous dimension close to or less than zero.

Though we will not discuss precision electroweak tests, we note that because these

anomalous dimensions are indictations of couplings between the fermions with the

CFT, deviations from standard model predictions for Z → bb̄, S, T , etc. are expected

to be smaller the closer γ and γc are to zero. (See [3, 2] for details.) In Model 3

presented in Section 13, ν = −νc ∼ 1/2 which at first glance seems to suggest large

deviations from precision electroweak measurements. However, in that model, the

CFT resonances appear at around 10 TeV, so while the mixing with CFT states may

be large, the suppression scale for dangerous dimension six operators is much higher.

To generate the top Yukawa coupling, we introduce a Yukawa interaction on the

IR brane:

Lt =
√−gindδ(z − L1)

(
λQΣ†Qc + h.c.

)
, (9.16)

where λ is O(1).2 This interaction does not break any of the global symmetries acting

on Σ. In fact, ignoring the gauge sector, there is an enhanced SU(5)L×SU(5)R global

symmetry acting on Σ:

Σ → LΣRT , Q → LQ, Qc → RQc, (9.17)

2This is dimensionally correct, because Q and Qc are components of 5D fermions and have mass
dimension 2.
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and both of these SU(5)s must be broken in order for the Higgs to get a radiative

mass from the fermion sector. Indeed, the UV brane boundary conditions on Q break

SU(5)L and the UV brane boundary conditions on Qc break SU(5)R. Equivalently,

at energies below the mass of the fermion KK modes, all the symmetries that protect

the mass of the Higgs boson are broken, but when we see the KK modes of the tilded

fields, we restore the SU(5)L × SU(5)R global symmetry of the fermion sector. In

order for the tilded fields to naturally cancel the quadratically divergent top loop, at

least one of the top partners must have mass no greater than around 2 TeV [7].

Expanding around Σ = Σ0, we see that the Yukawa interaction in equation (9.16)

generates kinetic mixing between the tilded and untilded fields. The overlap of the

zero modes of q and tc with the IR brane are

q : fL(ν) =
1

L
1/2
1

√
1 + 2ν

1− ε1+2ν
, tc : fR(νc) =

1

L
1/2
1

√
1− 2νc

1− ε1−2νc . (9.18)

Mixing between the zero mode of q (tc) and the KK modes of q̃c (t̃) induce the

following wavefunction renormalizations:

Zq = 1 + λ2fL(ν)2Gq̃c/ε, Ztc = 1 + λ2fR(νc)2Gt̃/ε, (9.19)

where Gq̃c = Ĝc(0; L1, L1; ν
c) and Gt̃ = Ĝ(0; L1, L1; ν) are zero momentum boundary

to boundary rescaled fermion propagators for modes with (−, +) boundary conditions.

After integrating out the heavy modes, the low energy Yukawa interaction in terms

of canonically normalized fields is:

Lt = λtop (qhtc + h.c.) , λtop =
λfL(ν)fR(νc)

√
2

f4

√
ZhZqZtc

, (9.20)
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where using Appendix A, we have

Zh =

(
1 +

f 2
5 g2

5L0

4

)−1

, Zq = 1 +

(
λ

fL(ν)

fL(νc)

)2

, Ztc = 1 +

(
λ

fR(νc)

fR(ν)

)2

.

(9.21)

In the next section, we will show how to understand this expression in terms of the

t′ and q′ fields of the littlest Higgs.
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Matching to the Low Energy

Theory

The low energy phenomenology of the littlest Higgs is governed by the pion decay

constant fπ, which sets the mass scale for the gauge boson partner W ′, the fermionic

partners t′ and q′, and ultimately the electroweak scale. In our AdS construction,

however, we appear to have two independent mass scales, f4 and 1/L1, and it is not

clear which combination we should call fπ. From the CFT point of view, we want

the SU(5)/SO(5) non-linear sigma field to arise directly from confinement and not

from a composite linear sigma field. In other words, we would like to decouple all

information about the Φ field that lived on the IR brane, and the way to do this is to

send f4 →∞. In AdS langauge, the f4 →∞ limit is morally equivalent to describing

Σ as the zero mode of A5, though by leaving f4 as a finite parameter, we are able to

go to the computationally simpler A5 = 0 gauge.

We notice immediately that all reference to f4 vanishes in this limit. The top

79
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Yukawa coupling in equation (9.20) involves the combination f4

√
Zh, and in this

limit,

f4

√
Zh → 2ε

g5

√
L0

=
2

gρL1

≡ fπ, λtop → λfL(ν)fR(νc)
√

2

fπ

√
ZqZtc

, (10.1)

where we have cavalierly defined the pion decay constant fπ. To justify this choice,

we need to match to the gauge sector. At large f4, the Σ kinetic term in equation

(9.9) enforces vanishing IR boundary conditions on the gauge bosons corresponding

to the subgroup G/H. Gauge bosons contained in F ∩G/H are the littlest Higgs W ′

modes. If we take g1 = g2 (z1 = z2), then using Appendix C the mass of the lightest

KK mode of a (+,−) gauge boson is roughly m2
W ′ = 2/L2

1(− log ε + z). For arbitrary

Planck brane gauge kinetic terms, the W ′ has approximate mass

m2
W ′ ∼ 1

L2
1

(
1

− log ε + z1

+
1

− log ε + z2

)
=

g2
1 + g2

2

g2
ρL

2
1

. (10.2)

where we have used equation (9.3) in the last step. In the littlest Higgs, the mass of

the W ′ is [7]

mW ′ =
g′fπ

2
, g′ =

√
g2
1 + g2

2. (10.3)

Therefore, to match the low energy theory, we should identify fπ with

fπ ≡ 2

gρL1

, (10.4)

in agreement with equation (10.1). The mass of the lightest KK mode of a (+, +)

or (−, +) gauge boson is roughly mρ ∼ 3π/4L1, which sets the scale for the ρ-like

resonances of the CFT. In terms of fπ and gρ ∼ 4π/
√

N :

fπ ∼ mρ

gρ

∼ mρ

4π

√
N, (10.5)
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which reproduces the expected
√

N scaling of fπ in strongly coupled theories [74].

Because we want a large separation between the scale of new physics mρ and the

pion decay constant fπ, we would like to take N small (gρ large). For reference, the

electroweak gauge coupling gEW in terms of g1 and g2 is

gEW =
g1g2√
g2
1 + g2

2

. (10.6)

Now that we understand how to identify fπ in the gauge sector, we want to know

whether this choice is consistent with the fermion sector. Using the fermion content

of [54] and a notation suggestive of equation (9.14), the low energy littlest Higgs

fermion sector has the lagrangian

Lt = λ1(qhtc + αqfπqq̃c + αtfπ t̃tc) + λ2fπ q̃q̃c + λ3fπ t̃t̃c, (10.7)

where αi areO(1) parameters inserted for reasons that will become clear shortly.1 The

fields q, t̃, tc, and q̃c are familar from equation (9.14), and the interaction proportional

to λ1 would arise from the leading expansion of equation (9.16). Because q̃c and t̃

are (−, +) modes, they do not have zero modes, and q̃ and t̃c are the components

of Q′c and Q′ that pair with q̃c and t̃ to form Dirac masses. We see that a linear

combination of q and q̃ marries with q̃c to become the q′, and a linear combination

of tc and t̃c marries with t̃ to become the t′. The partners q′ and t′ cut off fermionic

quadratic divergences in the Higgs potential, and their masses are

mq′ = fπ

√
α2

qλ
2
1 + λ2

2, mt′ = fπ

√
α2

t λ
2
1 + λ2

3. (10.8)

1From the low energy point of view, αq and αt account for any effects from wave function
renormalization.
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After integrating out t′ and q′, the low energy Yukawa coupling is

λtop =
λ1√

1 + α2
qλ

2
1/λ

2
2

√
1 + α2

t λ
2
1/λ

2
3

. (10.9)

This form of the Yukawa coupling is very suggestive of equation (9.20). We can

match λi to parameters of the AdS theory by expanding equation (9.16) in KK modes

and canonically normalizing just the Higgs doublet:

λ1 → λfLfR

√
2

f4

√
Zh

, αqλ1fπ → λfLf
(1)
R , αtλ1fπ → λf

(1)
L fR,

λ2fπ → m
(1)
R , λ3fπ → m

(1)
L . (10.10)

Here m
(1)
L (ν) and f

(1)
L (ν) are the mass and IR brane overlap of the lightest KK mode

of a (−, +) upper component fermion with bulk mass νk, and similarly for m
(1)
R (νc)

and f
(1)
R (νc). Note that fL and fR have dimensions of

√
mass so these expressions

match dimensionally. The ratio αq/αt is clearly necessary to account for the fact that

λfLf
(1)
R need not equal λf

(1)
L fR. We see that all of the λi’s act as spurions for the soft

breaking of SU(5). In particular, λ2 and λ3 are proportional to the masses of (−, +)

modes, and if SU(5) were restored on the UV brane, λ2 and λ3 would go to zero as

all the (−, +) modes would become (+, +) zero modes.

We can write the expressions for λtop in terms of boundary to boundary 5D prop-

agators. On the IR brane, (−, +) bulk fields look like tower of massive states with

different overlaps:

Ĝ(p; L1, L1)/ε ∼
∑

i

f (i)2

p2 + m(i)2
. (10.11)

(We have analytically continued to momentum space.) As long as there is a large

mass separation between the first state the second state, we can write approximately

Ĝ(0; L1, L1)/ε ∼ f (1)2

m(1)2
. (10.12)
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From the mapping in equation (10.10),

1 + α2
qλ

2
1/λ

2
2 → Zq, 1 + α2

t λ
2
1/λ

2
3 → Ztc , (10.13)

and we see that the Yukawa couplings in equations (9.20) and (10.9) match beautifully.

We can use equation (10.10) to identify the low energy fπ:

fπ =
f

(1)
L

αtfL

√
2
f4

√
Zh =

f
(1)
R

αqfR

√
2
f4

√
Zh. (10.14)

This matches to equation (10.1) as long as we define αt and αq appropriately. Of

course, these were unknown coefficients in the low energy theory anyway so it is not

surprising that their value depends on the UV completion. More importantly, once

we fix what we mean by fπ from the gauge sector, there is an unambiguous translation

to the fermion sector. Note that when ν = νc = 0, f
(1)
i /fi ∼

√
2, and αi ∼ 1.
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Tension with the High Energy

Theory

Though we have successfully matched our AdS construction with low energy ob-

servables, there are relationships between the parameters of the littlest Higgs which

although harmless from the low energy point of view, cause some tension once a UV

completion in the form of a large N CFT is chosen, and we will see that in order to

address these issues, we need to shrink the conformal window by taking 1/L0 to be

smaller than MPl. The UV scale can still be quite high, however, so in this sense we

can still claim a viable UV completion of the littlest Higgs.

At the end of the day, the radiatively generated Higgs potential will take the form

V (h) = −m2
hh

†h + λh(h
†h)2, vEW =

√
−m2

h

λh

, mh0 =
√
−2m2

h, (11.1)

where vEW ∼ 246 GeV is the electoweak scale and mh0 is the mass of the physical

Higgs boson. Because λtop is numerically larger than gEW , the dominant contribution

to the Higgs potential will come from top loops. From the low energy Coleman-

84
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Weinberg potential, there is the logarithmic contribution to the Higgs doublet mass

from the fermion sector [54],

δfermionm
2
h = −3λ2

top

8π2

m2
q′m

2
t′

m2
q′ −m2

t′
log

m2
q′

m2
t′
→ −3λ2

top

8π2
m2

t′ , (11.2)

where in the last step, we have taken the special case mt′ = mq′ , which minimizes the

contribution to the Higgs doublet mass for fixed λtop. (We are assuming αt = αq = 1

for simplicity.) In this limit, mt′ = 2
√

2λtopfπ,1 and the contribution to the Higgs

doublet mass is bounded by

δfermionm
2
h = −3λ4

topf
2
π

π2
. (11.3)

The physical Higgs will be roughly a factor of λtop/4 lighter than the t′, and to the

extent that λtop is small, we will have a light Higgs boson. Of course, λtop ∼ 1, so

numerically there is not much of a separation of scales. While it may not be a total

disaster if mh0 ∼ mt′ , the mass of the t′ is set by fπ which in turn sets the mass of

the W ′:

mW ′ =
g′f
2

= mt′
g′

4
√

2λtop

. (11.4)

If g1 = g2, then g′ = 2gEW , and mW ′ would generically be lighter than the Higgs

boson.

The obvious way to relieve this tension is to raise g′ by increasing g2, but there

is a limit to how high we can push g2 without perturbation theory breaking down in

AdS space. Even without Planck brane gauge kinetic terms, the largest g2 can be is

4π/
√

log ε−1, assuming gρ ∼< 4π. If ε ∼ 10−15, then g′ cannot be much larger than

3.5gEW . Therefore, if we want the t′ and W ′ to be roughly degenerate, we have to

1When αi 6= 1, the mass of the t′ can be lighter than 2
√

2λtopfπ even in the limit mt′ = mq′ .
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shrink the size of AdS space. In CFT language, the SU(2)i beta function is very large

in a large N CFT:

bCFT

8π2
∼ 1

g2
ρ

∼ N

16π2
, (11.5)

so all gauge coupling run to zero in the infrared. If we leave the confinement scale

fixed, the way to increase gauge couplings is to have gauge coupling running begin

at a lower scale. We will explore the possibility of shrinking the conformal window

more thoroughly in Section 13.

Even if we do decrease 1/L0, we may still want to increase the separation between

the partner masses and the electroweak scale. In the limit mt′ = mq′ , the fermion

contibution to the Higgs quartic coupling is [54]

δfermionλh =
λ4

top

π2
, (11.6)

so ignoring the gauge sector, the electroweak scale would not be very different from

fπ:

vEW =

√
−m2

h

λh

=
√

3fπ. (11.7)

Of course, there is a positive contribution to m2
h coming from the gauge sector [7]

δgaugem
2
h =

9

64π2
g2

EW f 2 log
m2

ρ

m2
W ′

, (11.8)

which grows large if we are able to increase the mass of W ′, so vEW will certainly

be smaller than the value in equation (11.7). Also, there are other sources of SU(5)

symmetry breaking in a realistic model that would tend to give a positive contribution

to m2
h, such as the inclusion of U(1)Y effects and the (unspecified) mechanism to

remove the η field from the spectrum.
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Taken together, the final m2
h value will be

m2
h = δfermionm

2
h + δgaugem

2
h + δotherm

2
h. (11.9)

The first two pieces are finite and calculable in our model, and while in principle

δotherm
2
h could be calculable if the additional SU(5) violating effects are nonlocal in

AdS, in general we expect the IR brane to be a complicated place which could admit

small sources of local SU(5) violation which might not be unambiguously determined.

In order to increase the separation between vEW and fπ, we will present calculations

where we allow ourselves to add δotherm
2
h contributions, but we will limit ourselves to

10% fine-tuning, meaning that |m2
h|/|δm2

h| must be greater than .1 for each individual

contribution. We will also show that in certain regions of parameter space, δfermionm
2
h

and δgaugem
2
h can balance each other without including a δotherm

2
h piece.

We remark that this philosophy towards tuning is very different than the one

presented in [2]. In our case, we have a natural mechanism for generating a large

Higgs quartic coupling, so for fixed electroweak scale, the Higgs mass mh0 =
√

2λhvEW

is reasonably heavy. However, because λtop is large, we have to do some amount

of tuning to increase the separation between vEW and fπ. In [2], some amount of

tuning between fermion contributions to the radiative potential is needed to get a

hierarchy between vEW and fπ, and this tuning does not yield a very large Higgs

quartic, so the Higgs boson is correspondingly very light (though within experimental

bounds). In our model, we require additional sources of symmetry breaking to avoid

precision electroweak constraints, and in their model, they require additional sources

of symmetry breaking to allow for a greater range in the Higgs mass. However,

whereas we posit additional unknown sources of symmetry breaking to decrease the
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absolute value of a relevant parameter (−m2
h), they introduce additional interactions

to increase the value of a marginal parameter (λh). In addition, we expect that a

similar level of tuning would be necessary in [2] even if λtop and gEW were smaller,

whereas in our case, the ratio between vEW and fπ is naturally on the order of these

small parameters.



12

Collective Breaking in AdS Space

The Higgs doublet receives a mass and quartic coupling via quantum corrections.

To evaluate these corrections, we will calculate the Coleman-Weinberg potential [27]

to one-loop order in a background with non-zero Σ. Expanding the potential V (Σ)

in the Goldstone fields, we can easily identify the quantum corrections to the Higgs

mass and quartic coupling. At the end of the day, we will take the f4 → ∞ limit

in order to decouple all information about how SU(5) is broken to SO(5) on the IR

brane. In the next section, we will present numerical calculations with specific values

of the parameters in order to illustrate the tensions mentioned in the Section 11. In

this section, we focus on trying to understand the structure of the Coleman-Weinberg

integrals.

What is most fascinating about the littlest Higgs in AdS space is that the expres-

sions for the mass and quartic coupling manifestly exhibit collective breaking. The

5D Coleman-Weinberg potential is a function of 5D propagators evaluated on the IR

brane (See Appendix C for the form of these propagators). In both the gauge boson

89
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and fermion case, there are two relevant (rescaled) propagators which we can write

schematically as

G = Ĝ(+,+)(p; L1, L1), Gbr = Ĝ(−,+)(p; L1, L1), (12.1)

corresponding to fields with (+, +) and (−, +) boundary conditions. If all of the

fields that coupled to Σ had the same boundary conditions on the UV brane, then

SU(5) would be a good symmetry everywhere in AdS space and the Higgs would be

an exact Goldstone. The degree to which SU(5) is broken on the UV brane tells

us the degree to which the Higgs is a pseudo-Goldstone boson, so the expression for

the Higgs mass and quartic coupling will be proportional to (Gbr − G). Indeed, by

collective breaking, the expressions will be proportional to two factors of (Gbr −G),

showing that two “coupling constants” have to be non-zero for the Higgs to acquire

a radiative potential.

We begin with the gauge sector. The gauge bosons couples to Σ on the IR brane

through the Σ kinetic term:

LΣ =
√−gindδ(z−L1)g

µν
ind

f 2
5

8
tr(DµΣ)†(DνΣ) ⊃ ε2f 2

5 g2
5

8
AµaAb

µ tr(TaΣ+ΣT T
a )(T T

b Σ†+Σ†Tb).

(12.2)

The (rescaled) mass-squared matrix for the gauge boson in the background Σ is

therefore

M2
ab =

f 2
5 g2

5

4
tr(TaΣ + ΣT T

a )(T T
b Σ† + Σ†Tb). (12.3)

To generate the effective potential for Σ to 1-loop order, we consider an arbitrary
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number of mass insertions, analytically continuing the propagators to Euclidean space:

δgauge

(√−gindV (Σ)
)

=
3

2

∫
p3dp

8π2
tr

∞∑
n=0

(−1)n

n
(Ĝ·M2)n =

3

2
tr

∫
p3dp

8π2
log(1+Ĝ·M2),

(12.4)

where Ĝab = Ĝa(p; L1, L1)δab are the rescaled propagators for the SU(5) gauge bosons,

and a labels the generators of SU(5). (The factor of 3 accounts for the three polar-

izations of each gauge boson.) The propagators for the SU(2)i subgroups will be

labeled Gi for i = 1, 2, and the propagators for the rest of SU(5) will be labeled

Gbr to indicate that those propagators have Dirichlet boundary conditions on the UV

brane.

Using the fact that tr log X = log det X, we can evaluate equation (12.4) exactly.

Expanding V (Σ) in powers of the Goldstone fields, the mass correction to the Higgs

potential from gauge bosons loops is (including wavefunction renormalization for the

Higgs):

δgaugem
2
h =

9

16Zhε2

∫
p3dp

8π2

f 2
5 g4

5 (Gbr −G1) (Gbr −G2)

(1 + f 2
5 g2

5Gbr/2)(1 + f 2
5 g2

5(G1 + G2)/4)
. (12.5)

In the numerator, we manifestly see collective breaking, in that both G1 6= Gbr and

G2 6= Gbr in order for the Higgs to get a radiative potential from the gauge sector.

As already mentioned, we want to take the f5 → ∞ limit. The resulting expression

only depends on the AdS parameters through fπ = 2/(L1gρ) and the propagators

themselves:

δgaugem
2
h =

9

2f 2
π

∫
p3dp

8π2

(Gbr −G1) (Gbr −G2)

Gbr(G1 + G2)
. (12.6)

We will discuss the physical meaning of this integrand after we calculate the Higgs

quartic.
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In the littlest Higgs, there is a radiatively generated trilinear coupling φhh and φ2

mass term. Looking the at the fermion coupling in equation (9.16) and the fermion

content in equation (9.14), it is clear that there is still a global SU(2) symmetry

present in the fermion sector that protects the triplet from radiative corrections, so

all contributions to the φ potential will come from gauge boson loops.1 Using the

Coleman-Weinberg potential we can calculate the contribution to the triplet mass

and φhh coupling to 1-loop order in the f5 → ∞ limit. To go to this limit, we need

to canonically normalize φ, and we use Zh = Zφ:

δgaugem
2
φ =

3

f 2
π

∫
dpp3

8π2

2G2
br + 4G1G2 − 3Gbr(G1 + G2)

Gbr(G1 + G2)
, (12.7)

δgaugeλφhh =
3

2f 3
π

∫
dpp3

8π2

G1 −G2

G1 + G2

. (12.8)

In the case G1 = G2, we see that no φhh coupling is generated, corresponding to the

T -parity limit of the theory. The direct contribution of the gauge bosons to the Higgs

quartic is

δgaugeλ
′
h = − 3

4f 4
π

∫
p3dp

8π2

3G2
br(G

2
br −G2

1 −G2
2) + Gbr(G

2
br −G1G2)(G1 + G2) + 3G2

1G
2
2

G2
br(G1 + G2)2

.

(12.9)

After integrating out the heavy triplet, the total gauge contribution to the Higgs

quartic is

δgaugeλh = δgaugeλ
′
h −

(δgaugeλφhh)
2

δgaugem2
φ

. (12.10)

Collective breaking is certainly not manifest in this form, but we can check that

collective breaking occurs slice by slice in momentum space. Imagine doing each

momentum integral from p0 to p0 + ∆p0. The contribution from this slice to δgaugeλh

1In particular, in this model there is no danger of having a negative triplet mass squared.
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0.5 1 1.5 2 p L1
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Figure 12.1: The gauge boson integrand for δgaugem
2
h using the parameters of Model

1c. The linear behavior near p = 0 corresponds to the quadratic sensitivity of this
operator below the mass of the W ′. The W ′ has mass around .18/L1 and the ρ-like
resonances appear at 2.4/L1.

is

1

f 4
π

∆p0p
3
0

8π2

(Gbr −G1) (Gbr −G2)

G2
br(G1 + G2)2

E4(Gbr, G1, G2)

E2(Gbr, G1, G2)

∣∣∣∣
p=p0

, (12.11)

where Ei are unenlightening i-th order polynomials. We see readily that the gauge

contribution to λh vanishes in each slice of momentum space unless both G1 and G2

are different from Gbr.

Before proceeding to analyze the fermion contribution, it is interesting to ask

whether these 1-loop contributions match our expectations from the low energy the-

ory. Expanding the integrand in equation (12.6) to lowest order in momenta and

integrating with a hard momentum cutoff Λ0:

δgaugem
2
h ∼

∫ Λ0

I(p → 0) dp =
9g2

EW Λ2
0

64π2
+O(Λ4

0/f
2
π), (12.12)

which is exactly the expected quadratically divergent contribution to the Higgs mass

from a W boson loop. Figure 12.1 is a plot of the integrand of equation (12.6)

with the parameters of Model 1c from the next section. At low energies, we see the

linear behavior in p corresponding to the quadratic divergence from the W loops. At
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momenta around mW ′ ∼ .18/L1, this divergence is softened by the appearance of the

W ′ partner. The 1/p behavior between mW ′ and mρ ∼ 2.4/L1 reflects a logarithmic

threshold correction, and at p ∼ mρ, the integrand dies off exponentially fast.

Note that the peak in the m2
h integrand is almost exactly at mW ′ . More generally,

when there is a quadratic divergence at low energies that is cutoff by the existence of

new states, the integrands are roughly of the form (ignoring coupling constants):

I(p) ∼ p3

8π2

1

f 2
πp2

∏
i

(
1− p2

p2 + m2
i

)
∼ p3

8π2

1

f 2
πp2

(
1− p2

p2 + m2
partner

)N

, (12.13)

where mi is the mass of any partner particle whose appearance would cutoff the

quadratic divergence, and in the last step, we have gone to the limit where all N of

the partners are degenerate with mass mpartner. The peak in I(p) is at

p ∼ mpartner√
2N − 1

. (12.14)

For the gauge quadratic divergence to the Higgs mass, N = 1 because there is only

the W ′ partner particle, and indeed the peak in Figure 12.1 is at the mass of the W ′.

We can do the integral over p of I(p):

∫
I(p) dp =

m2
partner

(4πfπ)2
log

Λ2

m2
partner

(N = 1),
m2

partner

(4πfπ)2

1

N − 1
(N > 1). (12.15)

These factors are what a low energy observer would call “unknown O(1) coefficients”

that multiply quadratically sensitive operators. In the example of a single W ′ (N = 1),

there is still a logarithmic divergence, and indeed the ρ-like resonances provide an

effective cutoff Λ ∼ mρ for δgaugem
2
h.

The expressions for the quartic coupling are also very interesting. Expanding

equations (12.7), (12.8) and (12.9) in momenta and integrating up to Λ0:

δgaugem
2
φ ∼

3g2
EW

8π2
Λ2

0 +O(Λ4
0/f

2
π), δgaugeλφhh ∼ 3(g2

1 − g2
2)

64π2(g2
1 + g2

2)

Λ4
0

f 3
π

+O(Λ6
0/f

5
π),



12: Collective Breaking in AdS Space 95

0.5 1 1.5 2 p L1

Gauge IHmΦ
2L

0.5 1 1.5 2 p L1

Gauge IHΛΦhhL

0.5 1 1.5 2 p L1

Gauge I HΛh ' L

Figure 12.2: The gauge boson integrands for δgaugem
2
φ, δgaugeλφhh, and δgaugeλ

′
h using

the parameters of Model 1c. The mass of the first ρ-like resonances is ∼ 2.4/L1, and
all of these integrands become exponentially small at momenta corresponding to the
second ρ-like resonances ∼ 5.5/L1. See the text for why the peaks of these integrands
are at p ∼ 1.3/L1. Note the −1/p behavior of δgaugeλ

′
h near p = 0, corresponding to

expected low energy logarithmic running of the Higgs quartic.

δgaugeλ
′
h ∼ − 9g4

EW

256π2
log Λ2

0 +O(Λ2
0/f

2
π). (12.16)

To leading order in Λ0, δgaugeλh comes entirely from δgaugeλ
′
h. This logarithmic diver-

gence is the standard contribution to a doublet scalar from a W boson loop. Looking

at the integrands in Figure 12.2, we see that each one rises linearly until it peaks at

∼ 1.3/L1. The linear behavior reflects the fact that the low energy operators which

generate the Higgs quartic coupling are quadratically sensitive to the cutoff. How-
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ever, there is no state in the spectrum at ∼ 1.3/L1 where the quadratic divergence is

softened. Rather, the ρ-like states appear at ∼ 2.4/L1 but N = 2 because along with

the (+, +) gauge bosons, the appearance of the first KK mode of the (−, +) gauge

bosons or the second KK mode of the (+,−) gauge bosons would restore enough of

the SU(5) global symmetry to protect the Higgs mass.2 At momenta p ∼ 5.5/L1 the

integrands are exponentially suppressed, as one might expect as this is the scale of

the next-to-lightest KK gauge boson modes.

Now for the fermion contribution to the Higgs potential. The bulk fermions couple

to the IR brane scalar Σ via

LYukawa =
√−gindδ(z − L1)(λQ̄ΣQc + h.c.). (12.17)

Unlike equation (9.16), we are explicitly using bulk Dirac notation, though recall that

the boundary conditions eliminate the lower (upper) Weyl fermion in Q (Qc) on the

IR brane. In order to form a fermion loop and contract the fields, we need two such

Yukawa insertions, so the one-loop effective potential for Σ is

δfermion

(√−gindV (Σ)
)

= −3 tr

∫
p3dp

8π2
log(1 + Ŝ ·M · Ŝc ·M †), (12.18)

where Ŝab = Ŝaδab are bulk 5D propagators (with Dirac indices) for Q, and similarly

for Ŝc. The index a runs over a fundamental of SU(5), and the rescaled mass matrix

in a background Σ is

Mab =
λ

ε
Σab. (12.19)

2The (+,−) modes technically only exist in the f4 →∞ limit. The first KK (+,−) mode is the
W ′ and the second KK mode is another ρ-like state which is roughly degenerate with the first (−, +)
KK mode. We can either restore SU(5) near the UV brane or near the IR brane, and in this sense
N = 2 and mpartner = mρ ∼ gρfπ.
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The trace in equation (12.18) runs over both SU(5) and Dirac indices, and the factor

of 3 takes into account the SU(3)C charges of Q and Qc.

Because of our choice of boundary conditions on the IR brane, we can easily do the

trace over Dirac indices. From Appendix C, the (rescaled) bulk fermion propagators

take the schematic form

Ŝ(p; L1, L1; ν) = (Ap/ + Bγ5 + C)PL, Ŝc(p; L1, L1; ν
c) = (Acp/ + Bcγ5 + Cc)PR,

(12.20)

where PL,R = (1∓ γ5)/2. Using the trace properties of the σ matrices:

Ŝ =




C −B 0

Aσ̄ · p 0


 , Ŝc =




0 Acσ · p

0 Cc + Bc


 , Tr(ŜŜc)n = 2(p2AAc)n.

(12.21)

Note that A = Ĝ(p; L1, L1; ν), so equation (12.18) can be rewritten as

δfermion

(√−gindV (Σ)
)

= −3 tr

∫
p3dp

8π2
2 log(1 + p2Ĝ ·M · Ĝc ·M †), (12.22)

where now the trace runs only over SU(5) indices.

We can proceed as in the gauge boson case and compute the Higgs mass and quar-

tic coupling. We designate propagators for modes with (+, +) boundary conditions as

G and Gc, and with (−, +) boundary conditions as Gbr and Gc
br. These propagators

are functions of ν and νc, respectively. After canonically normalizing h and taking

the f4 →∞ limit:

δfermionm
2
h = −12

f 2
π

∫
p3dp

8π2

λ̂2p2(Gbr −G)(Gc
br −Gc)

(1 + λ̂2p2GGc
br)(1 + λ̂2p2GbrGc)

, (12.23)

δfermionλh = −4λ2

f 4
π

∫
p3dp

8π2

p2(Gbr −G)(Gc
br −Gc)(

1 + p2λ̂2GGc
br

)2 (
1 + p2λ̂2GbrGc

)2F (G,Gbr, G
c, Gc

br),

(12.24)
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Figure 12.3: The fermion integrands for δgaugem
2
h and δgaugeλh using the parameters

of Model 1c. The linear behavior of the mass integrand and the 1/p behavior of the
quartic integrand reflect the expected quadratic and logarithmic sensitivity of these
operators at energies beneath the mass of the fermion partners. The q′ and t′ are
degenerate with mass ∼ .36/L1. See the text for why the peak of the mass integrand
is at p ∼ .2/L1.

where λ̂ = λ/ε and F (G,Gbr, G
c, Gc

br) is

F (G,Gbr, G
c, Gc

br) = 4 + λ̂2p2(3GGc + 3GbrG
c
br + GGc

br + GbrG
c) + 4λ̂4p4GGbrG

cGc
br.

(12.25)

These expressions manifestly exhibit collective breaking.

It is again very instructive to match the results with our expectations from effective

field theory. As in the bosonic case, we can expand the integrands to lowest order in

momenta and integrate with a hard momentum cutoff Λ0:

δfermionm
2
h ∼ −3λ2

top

8π2
Λ2

0 +O(Λ4
0/f

2
π), δfermionλh ∼

3λ2
top

16π2
log Λ2

0 +O(Λ4
0/f

4
π).

(12.26)

These are precisely the low energy expectations for the contribution of top loops

to the Higgs doublet mass and quartic. The integrands from equations (12.23) and

(12.24) appear in Figure 12.3. The mass integrand starts off linearly, corresponding

to the low energy quadratic divergence. In Model 1c, the q′ and t′ are degenerate
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with mass ∼ .36/L1, so N = 2 and the peak in the integrand is at p ∼ .2/L1 as

expected. The quartic integrand is dominated by the 1/p piece corresponding to the

logarithmic low energy behavior, though there is a slight bump at the mass of the q′

and t′. Unlike the quartic integrands in the gauge sector, these integrals are already

very suppressed at the mass of the KK fermion modes ∼ π/L1, which is as expected

because the quartic contribution is finite at one-loop with the fermion content of [54].
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Numerical Examples

Now that we understand the structure of the Coleman-Weinberg integrals, we want

to input specific values of the AdS parameters to find the generic value of the physical

Higgs mass in this setup. In order to deal with the infrared logarithmic divergences

in the quartic coupling, we do each Coleman-Weinberg integral from p = mh0 to ∞,

iterating the calculations until we get a stable mh0 value. We choose the parameters

of our theory to fit the known top Yukawa coupling, electroweak gauge coupling, and

electroweak scale. In Model 1, we allow for an unknown δotherm
2
h contribution to the

Higgs potential in order to fix the pion decay constant at fπ = 1 TeV, and this will

generically require fine-tuning at the 10% level. In Model 2, we arrange the gauge

and fermion contributions to the doublet mass to cancel against each other with no

considerable fine-tuning by shrinking the conformal window, but in these models fπ

will be significantly lower, and hence the t′, q′ and W ′ partners will be generically

lighter. Finally in Model 3, we show a compromise where we shrink the conformal

window but still allow for a δotherm
2
h piece, yielding sufficiently heavy partner particles

100
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Figure 13.1: Values of the physical Higgs mass in Model 1, keeping fπ = 1 TeV fixed
and varying the bulk masses ν and νc (g′ = 2gEW ). Outside of the region |ν|, |νc|∼< .4,
it is difficult to satisfy the condition λtop = 1.

with no considerable fine-tuning (25%).

We begin in Model 1 by choosing the brane separation to generate the full hier-

archy between MPl and fπ, namely ε ∼ 10−15. Once this AdS geometry is fixed, it

is clear from equation (9.3) that in order for gρ to remain perturbative, we need the

gauge kinetic terms on the UV boundary to be close to zero (i.e. choose the Landau

pole of the gauge couplings to be as close to the UV as possible) and therefore we must

take approximately g1 = g2. In terms of the electroweak gauge coupling, g′ = 2gEW .

When we do consider cases where g1 6= g2, we take z2 = 0 for simplicity. We still have

the freedom to choose the bulk masses of the fermions. Looking at equation (10.1),

the requirement of λtop = 1 restricts the range of ν and νc to around |ν|, |νc| ∼< .4.

As remarked earlier in equation (11.2), to minimize the logarithmic correction to m2
h

from the fermion sector, we want the t′ and q′ fermion partners to be roughly degen-

erate, and this corresponds to the limit ν = −νc. To make the t′ and q′ as light as

possible, we want to send ν as large as possible while still maintaining the desired

top Yukawa coupling, corresponding to ν → 0.4.
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The details of Model 1 are presented in Table 13.1, with some variations of the

parameters to illustrate the stability of these results. In particular, we allow g′ to

be larger than 2gEW in Model 1c to raise the W ′ mass. With the addition of a

δotherm
2
h contribution to the Higgs potential, there is no problem getting a viable

phenomenology which reproduces the electroweak scale while fixing fπ = 1 TeV.

Figure 13.1 is a plot of the physical Higgs mass as a function of ν and νc when

g′ = 2gEW . Generically the physical Higgs falls within the range mh0 ∼ 150−250 GeV.

As expected, the lightest physical Higgs occurs when ν ∼ −νc ∼ 0.4. Because

λtop ∼ 1, the fermionic contribution to the Higgs doublet mass is generically large,

ranging from ∼ 300−500 GeV, whereas for g′ = 2gEW , the gauge contribution is fixed

at ∼ 80 GeV. This large difference between the gauge and fermion contributions to

the doublet mass is expected from equations (11.2) and (11.8). Fine-tuning of the

mass parameters is at the ∼ 10%−20% level, and δotherm
2
h is responsible for canceling

nearly all of the fermionic contribution. The large quartic coupling comes almost

entirely from the fermion sector, though the contributions equalize as g′ increases.

The goal of Model 2 is to see if it is possible to reduce the amount of fine-tuning

and balance the gauge and fermion contributions. Once the brane separation ε is cho-

sen, we have very little freedom in the gauge sector if we want gρ to be perturbative.

However, simply reducing the scale of the UV brane will not help very much. The real

problem is the numerically large difference between the gauge and fermion contribu-

tions mentioned above, and short of raising gEW or lowering λtop, our only freedom

is to raise the mass of the W ′, but this can only get us so far. In order to dispense

with the δotherm
2
h piece altogether, we have to bring the overall contributions down,
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and this can be accomplished by lowering the pion decay constant fπ. Of course,

doing so will cause the W ′ to be unacceptably light unless we also raise the value of

g′. By decreasing the brane separation to make ε larger than 10−15, we can crank the

gauge coupling to g′ = (a few)gEW while still keeping a perturbative gρ. Table 13.2

presents the parameters of Model 2 where no δotherm
2
h piece is included. In Model 2a,

we see that simply increasing ε yields a very light W ′. Model 2b is much safer, though

gρ is approaching the edge of the perturbative regime. In Model 2c, the conformal

window is very small, and we see that there is no problem having reasonably heavy

partners without including a δotherm
2
h contribution to artificially raise fπ as long as

the conformal window is small enough.

Finally, Model 3 represents a compromise between the competing tensions of the

theory. We allow a δotherm
2
h piece to enforce fπ = 800 GeV, but we shrink the confor-

mal window to allow g′ ∼ 4gEW , effectively putting the UV brane at the intermediate

scale. To have the lightest q′ and t′ possible, we push ν and −νc to the edge of the

region where we can satisfy the condition λtop = 1. This model comes the closest

to realizing the original vision of the littlest Higgs, in that the value of fπ does not

involve an unacceptable level of fine-tuning, the q′, t′ and W ′ partners are around

1 TeV in mass, and the scale mρ where we see resonances of the strong dynamics

is near 10 TeV. Note that gρ ∼ 10 in this model, so we are imagining a very small

N CFT. We see that the mass of the Higgs is around 200 GeV, though this value

increases substantially if we reduce g′ or ν.

In summary, the littlest Higgs in AdS space has a healthy phenomenology if we

allow ourselves maximal freedom to raise the mass of the W ′, lower the mass of the
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q′ and t′, and include some (unknown) sources of additional SU(5) violation to get a

less negative doublet mass value. In CFT language, we see that the favored regions

of parameter space are small N theories with small conformal windows, though with

some amount of fune-tuning we can still have small gρ and ε. Note that these tensions

are numerical tensions and not parametric tensions. If we could lower λtop and gEW ,

then we could have an exceptionally light Higgs boson with no fine-tuning. The

extent to which these dimensionless parameters are large are the degree to which we

have to work to enforce a large separation between the pion decay constant and the

electroweak scale.
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Model 1a Model 1b Model 1c
L1 (2.6 TeV)−1 (2.6 TeV)−1 (5.2 TeV)−1

ε 10−15 10−15 10−15

gEW 0.63 0.63 0.63
vEW 246 GeV 246 GeV 246 GeV
g′ 2gEW 2gEW 3gEW

gρ 5.2 5.2 10.4
fπ 1.0 TeV 1.0 TeV 1.0 TeV
mρ 6.2 TeV 6.2 TeV 12.2 TeV
λtop 1.0 1.0 1.0
ν +0.42 +0.20 +0.49
νc −0.42 −0.10 −0.49
λ 0.26 0.23 0.11

mW ′ 630 GeV 630 GeV 950 GeV
mt′ 2.0 TeV 3.0 TeV 1.9 TeV
mq′ 2.0 TeV 3.5 TeV 1.9 TeV
mh0 160 GeV 210 GeV 210 GeV

δgaugem
2
h +(80 GeV)2 +(80 GeV)2 +(130 GeV)2

δfermionm
2
h −(310 GeV)2 −(440 GeV)2 −(330 GeV)2

δotherm
2
h +(270 GeV)2 +(410 GeV)2 +(270 GeV)2

δgaugeλh 0.04 0.04 0.15
δfermionλh 0.18 0.32 0.20

mφ 430 GeV 430 GeV 1240 GeV
λφhh — — 560 GeV

Table 13.1: Parameters and results for Model 1. In this model, we allow the addition
of a δotherm

2
h contribution to the Higgs potential in order to set the pion decay constant

fπ = 1 TeV. By fixing ε = 10−15, we are limited in how high we can push the g′

coupling, and hence the mass of the W ′. Fine-tuning in this model is usually of the
order of 10% – 20%.
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Model 2a Model 2b Model 2c
L1 (530 GeV)−1 (1.7 TeV)−1 (1.3 TeV)−1

ε 10−5 10−5 10−1

gEW 0.63 0.63 0.63
vEW 246 GeV 246 GeV 246 GeV
g′ 2gEW 5gEW 8gEW

gρ 3.0 10.5 7.6
fπ 580 GeV 420 GeV 340 GeV
mρ 1.2 TeV 5.2 TeV 3.0 TeV
λtop 1.0 1.0 1.0
ν +0.17 +0.49 +0.49
νc −0.17 −0.49 −0.49
λ 0.63 0.08 0.10

mW ′ 360 GeV 650 GeV 850 GeV
mt′ 820 GeV 940 GeV 520 GeV
mq′ 820 GeV 940 GeV 520 GeV
mh0 120 GeV 220 GeV 260 GeV

δgaugem
2
h +(20 GeV)2 +(80 GeV)2 +(70 GeV)2

δfermionm
2
h −(90 GeV)2 −(180 GeV)2 −(200 GeV)2

δgaugeλh 0.01 0.15 0.07
δfermionλh 0.12 0.26 0.51

mφ 90 GeV 860 GeV 880 GeV
λφhh — 800 GeV 1.1 TeV

Table 13.2: Parameters and results for Model 2. In this model, we do not set fπ by
hand, and rely on a natural cancellation between the gauge and fermion sectors to
generate the hierarchy between fπ and vEW . As such, fπ is quite low, and we need to
raise g′ so as not to have too light a W ′. In order to allow for larger gauge couplings,
we need to shrink the size of the conformal window.
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Model 3a Model 3b Model 3c
L1 (4.2 TeV)−1 (4.0 TeV)−1 (3.7 TeV)−1

ε 10−8 10−10 10−12

gEW 0.63 0.63 0.63
vEW 246 GeV 246 GeV 246 GeV
g′ 4gEW 3.5gEW 3.0gEW

gρ 10.4 10.1 9.2
fπ 800 GeV 800 GeV 800 GeV
mρ 9.8 TeV 9.5 TeV 8.7 TeV
λtop 1.0 1.0 1.0
ν +0.49 +0.48 +0.48
νc −0.49 −0.48 −0.48
λ 0.08 0.08 0.10

mW ′ 1.0 TeV 850 GeV 730 GeV
mt′ 1.6 TeV 1.5 TeV 1.5 TeV
mq′ 1.6 TeV 1.5 TeV 1.5 TeV
mh0 210 GeV 210 GeV 190 GeV

δgaugem
2
h +(110 GeV)2 +(130 GeV)2 +(100 GeV)2

δfermionm
2
h −(290 GeV)2 −(300 GeV)2 −(270 GeV)2

δotherm
2
h +(220 GeV)2 +(220 GeV)2 +(200 GeV)2

δgaugeλh 0.15 0.14 0.12
δfermionλh 0.22 0.22 0.19

mφ 1.3 TeV 1.1 TeV 900 GeV
λφhh 930 GeV 630 GeV 360 GeV

Table 13.3: Parameters and results for Model 3. In this model, we try to equalize
the contributions to the Higgs potential from δgaugem

2
h, δfermionm

2
h, and δotherm

2
h. The

pion decay constant is fixed at fπ = 800 GeV. The conformal window is smaller than
Model 1 but larger than Model 2, and there is more freedom in the choice of g′. In
order for the fermionic contribution to the Higgs potential to be small, we adjusted ν
and νc such that t′ and q′ were as light as possible while still allowing λtop = 1. Note
that as we decrease ε, we are forced to decrease g′, so the W ′ mass decreases.
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Toward a Realistic Model with

T -Parity

To construct a realistic little Higgs model, we need to include the entire fermion

sector of the standard model. One construction is to simply introduce the remaining

fermions on the IR brane and include explicit SO(5) violating couplings between these

fermions and the Higgs doublet. This would give rise to a divergent Higgs mass sen-

sitive to the local Planck scale (i.e. 1/L1), but because the non-top Yukawa couplings

are sufficiently small, these quadratic divergences would not spoil the successes of the

littlest Higgs. While this construction is consistent, it is not particularly elegant. Not

only does it not explain the hierarchy in the Yukawa couplings, but it does not yield

a manifestly finite Coleman-Weinberg potential.

In this section, we sketch one possible AdS implementation of the littlest Higgs

where all the fermions live in the bulk of AdS, and the interactions on the IR brane

preserve the SO(5) symmetry protecting the Higgs mass. Just like in Section 12, the

108
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Higgs potential is generated only through loops that stretch from the IR brane to the

UV brane. We would also like to take advantage of some of the previous successes

of AdS model building; for example, if the bulk fermions have different bulk masses,

we can naturally generate a hierarchy in the Yukawa couplings while simultaneously

suppressing flavor changing neutral currents [45, 41, 50, 49]. As we will see, however,

there is a tension between Yukawa coupling hierarchies and T -parity.

Given this tension, one may wonder why we want to implement T -parity in the

first place. A main constraint on little Higgs theories has been corrections to precision

electroweak observables coming from couplings between standard model fields and the

new massive gauge fields and scalars in the little Higgs [48, 33, 34, 43, 55, 21, 78]. If

these new bosons have mass around 1 TeV, then they generate dimension six standard

model operators through tree-level exchange suppressed by the scale 1 TeV. However,

precision electroweak data suggests that the natural suppression scale should be closer

to 5− 10 TeV [14]. The difference between the mass scale necessary to stabilize the

electroweak scale (1 TeV) and the mass scale suggested by precision electroweak data

(10 TeV) is known as the “little hierarchy” problem. In AdS5 language, there is no

symmetry that forbids the IR brane operator

√−gindδ(z − L1) tr (FµνΣF ∗µνΣ∗) , (14.1)

and when electroweak symmetry is broken, this operator will yield a contribution to

the S parameter of order (vEW /fπ)2. As we have seen, while there is a parametric

separation between vEW and fπ, numerically the scales can be close and S may be

dangerously large.

In models with T -parity [22, 23, 60], there is Z2 symmetry under which the stan-
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dard model fields (including the Higgs) are even but the new massive gauge fields

and scalars are odd. Therefore, tree-level exchange of non-SM bosons is forbidden

and the dimension six operators generated by integrating out non-SM bosons are sup-

pressed by a loop factor. T -parity is a simple solution to the little hierarchy problem,

and generically little Higgs theories with T -parity are safe from excessive precision

electroweak corrections. Of course, another way to avoid precision electroweak con-

straints is to consider a little Higgs mechanism with a custodial SU(2) symmetry

[20, 19], and it would be interesting to try to implement such little Higgs theories in

AdS space.

In the original T -parity formulation of the SU(5)/SO(5) littlest Higgs [23], fermions

transformed non-linearly under the SU(5) global symmetry, making it difficult to

imagine the bulk fermion content of an AdS extension. In [60], the SU(5)/SO(5) lit-

tlest Higgs was extended to an SU(5)2/SO(5) model in which all fermions transform

linearly under SU(5)2 symmetry, making it much easier to imagine a UV comple-

tion of the low energy effective theory. One difficulty of implementing a realistic

SU(5)2/SO(5) model in AdS space (or even a SU(5)/SO(5) without T -parity), is the

necessity gauging U(1)B in the bulk. Because of this U(1)B, we are forced to intro-

duce a top-type and a bottom-type quark doublet in the bulk, and then use boundary

conditions on the UV brane to identify a linear combination of the two doublets as the

standard model quark doublet. Therefore, this model has a large number of SU(5)

muliplets to allow for T -parity and the U(1)B nuisance, and it may be interesting to

see the effect of such a large number of bulk fermions on the SU(3)C and SU(2)EW

beta functions to see whether we maintain perturbative gauge couplings.
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The bulk symmetry in this model is SU(5)L×SU(5)R which is broken to a diagonal

SO(5)V on the IR brane. We can characterize this breaking pattern by the vacuum

expectation values of three scalars. Imagine three 5× 5 matrix fields ΦL, ΦR, and ΦT

on the IR brane that transform under SU(5)L × SU(5)R as

ΦL → LΦLLT , ΦR → RΦRRT , ΦT → LΦT R†, (14.2)

where L ∈ SU(5)L and R ∈ SU(5)R. These fields take vacuum expectation values

〈ΦL〉 = Σ0, 〈ΦR〉 = Σ0, 〈ΦT 〉 = 11. (14.3)

We see readily that the vevs of Φi, i = L,R break SU(5)i to SO(5)i, and the vev of

ΦT selects the diagonal subgroup of SO(5)L × SO(5)R.

Let T a
i be the generators of SO(5)i and Xa

i be the generators of SU(5)i/SO(5)i.

The Goldstone matrices of SU(5)2/SO(5) can be parametrized as

ΠL = πa
LXa

L, ΠR = πa
RXa

R, ΠT = πa
T (T a

L − T a
R). (14.4)

Performing the broken symmetry on the vacuum, the CCWZ prescription [28, 18]

tells us that

ΣL = e2iΠL/f5Σ0, ΣR = e2iΠR/f5Σ0, ΣT = eiΠL/f5e2iΠT /f5e−iΠR/f5 , (14.5)

transform like their counterparts in equation (14.2). For simplicity, we have given

each Σ field the same 5D decay constant f5, which as before will be taken to infinity

in any calculation.

In addition to introducing an SU(3)C×U(1)B bulk gauge symmetry, we also gauge

a SU(2)L1×SU(2)L2×SU(2)R×U(1)Y subgroup of SU(5)2, i.e. we give this subgroup
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Neumann boundary conditions on the UV brane.1 The subgroup is imbedded as

Qa
L1 =




σa/2




L

, Qa
L2 =




−σ∗a/2




L

, Qa
R =




σa/2

−σ∗a/2




R

,

(14.6)

A =
1

2
diag(1, 1, 0,−1,−1)L, (14.7)

where subscripts L and R on the matrices indicate whether the gauge generator

belongs to SU(5)L or SU(5)R. The hypercharge generator is Y = A + B, and when

SU(5)2 breaks to SO(5), the electroweak SU(2) is generated by

Qa
EW = Qa

L1 + Qa
L2 + Qa

R. (14.8)

Note that the same subgroup of SU(5)L is gauged as in Section 9.

We identify the Goldstone matrix ΠL with the Goldstone matrix in the original

SU(5)/SO(5) little Higgs. As shown in [60] the Goldstones in ΠR and ΠT are either

eaten by the broken SU(2) gauge bosons or can be given large masses through radia-

tively generated gauge interactions or through plaquette operators. These plaquette

operators live on the IR brane and explicitly break SU(5)2 even before the Φ fields

take their vaccum expectation value. However, they do so in a way that maintains

the SU(2)3 subgroup of SU(5)2, so the low energy gauge structure is not modified.

In the fermion sector, the action of T -parity effectively maps a 5̄ of SU(5)L onto a 5

of SU(5)L and leaves representations of SU(5)R unchanged. One linear combination

of the 5̄L and 5L becomes a standard model fermion, and a 5R marries the other

combination to become the heavy T -odd partner to the standard model fermion.

1In order to give U(1)Y a different gauge coupling from SU(2)Li we also introduce boundary
gauge kinetic terms.
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Therefore, for each SU(5) multiplet Ψ corresponding to a standard model fermion,

we introduce three bulk Dirac fermions ΨL1, ΨL2, and ΨR. We choose these fields to

have non-vanishing upper (left-handed) components on the IR brane. These upper

component Weyl fields ΨL1, ΨL2, and ΨR transform under SU(5)L × SU(5)R as:

SU(5)L SU(5)R Other Quantum Numbers

ΨL1 5̄ − Defined by Ψ

ΨL2 5 − Defined by Ψ

ΨR − 5 Conjugate to Ψ

(14.9)

In the last column we mean that ΨL1 and ΨL2 have identical SU(3)C×U(1)B quantum

numbers and ΨR has the conjugate quantum numbers. For convenience, we also

introduce the notation for bulk Dirac fermions Ψc
L1, Ψc

L2, and Ψc
R whose lower (right-

handed) components are non-vanishing on the IR brane. These lower component Weyl

fields Ψc
L1, Ψc

L2, and Ψc
R transform under SU(5)L × SU(5)R the same way as ΨL1,

ΨL2, and ΨR but have opposite other quantum numbers to their counterparts.

SU(5)L SU(5)R Other Quantum Numbers

Ψc
L1 5̄ − Conjugate to Ψ

Ψc
L2 5 − Conjugate to Ψ

Ψc
R − 5 Defined by Ψ

(14.10)

We now define the action of T -parity. Start with the 5× 5 matrices

Ω =




−11

1

−11




, Z = Σ0Ω, Z2 = Ω2 = 11. (14.11)
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Let Ai be the SU(5)i gauge fields for i = L,R. The action of T -parity looks like

charge conjugation on SU(5)L.

AL → −ZAT
LZ, AR → ΩARΩ. (14.12)

In terms of the gauge fields on the UV brane, T -parity maps SU(2)L1 to SU(2)L2 and

leaves SU(2)R and U(1)Y invariant. Note that T -parity forces the gauge couplings

gL1 and gL2 to be equal. Before SU(2)3 is broken to the electroweak SU(2), there are

two T -even gauge bosons and one T -odd gauge boson.

Qa
EW = Qa

L1 +Qa
L2 +Qa

R, Qa
+ = Qa

L1 +Qa
L2−2Qa

R, Qa
− = Qa

L1−Qa
L2. (14.13)

After SU(2)3 breaks to SU(2), Qa
± get masses. Qa

− has a mass gLf4 ∼ 1 TeV, and by

T -parity it cannot contribute to tree-level dimension six operators. However, Qa
+ can

contribute to tree-level dimension six operators, so we must choose SU(2)R to have a

large gR ∼ 4π gauge coupling in order for Qa
+ to get a mass of order gRf4 ∼ 10 TeV.

Also, this forces Qa
+ to be mostly Qa

R, and if standard model fields are uncharged

under SU(2)R, then precision electroweak corrections from tree-level Qa
+ exchange is

suppressed. Note that in order to really have a large gR, we would have to have a

very small conformal window.

On the Goldstone matrices, T -parity acts as

ΣL → ZΣ†
LZ, ΣR → ΩΣRΩ, ΣT → ZΣLΣT Ω. (14.14)

The action of T -parity on ΣT is indeed a Z2 symmetry. On the fields in ΠL as defined

in (9.8), h is T -even, and η and φ are T -odd, therefore φ and η can safely have 1 TeV

masses without affecting precision electroweak data. Also, it is a quick check that the

Goldstone kinetic terms are invariant under T -parity.
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Finally, the action of T -parity on the fermions must be consistent with the gauge

sector in equation (14.12). Again, T -parity looks like charge conjugations between a

5̄L (ΨL1) and a 5L (ΨL2):

ΨL1 → ZΨL2, ΨL2 → ZΨL1, ΨR → ΩΨR, (14.15)

with similar formulas for the Ψc fermions. Before introducing the specific quantum

numbers of the standard model fields, note that we can give mass to the T -odd

combination of ΨL1 and ΨL2 via the interaction on the TeV brane:

LT−odd mass =
√−gindδ(z − L1)κ (ΨL1ΣT ΨR + ΨL2ΣLΣT ΨR + h.c.) . (14.16)

We can write down a similar interaction for Ψc. Because ΣT depends on ΠL, one

might worry that this interaction could give rise to a radiative correction the the

Higgs mass. In the case that Ψ is supposed to describe an electroweak doublet,

ΨL1, ΨL2, and ΨR have boundary conditions that happen to preserve an SU(3)2

symmetry that is enough to protect the Higgs mass. If Ψ describes an electroweak

singlet however, there is no symmetry protecting the Higgs mass and there will be a

radiatively generated potential. Just as for the top sector from Section 12, though,

the interaction in equation (14.16) exhibits collective breaking to the extent that

a potential is only generated if both ΨLi and ΨR have SU(5) violating boundary

conditions.

The T -invariant Yukawa interactions between Ψ, Ψc, and the Higgs take the form

LHiggs =
√−gindδ(z − L1)λ

(
ΨL1ΣLΨc

L1 + ΨL2Σ
†
LΨc

L2 + h.c.
)

. (14.17)

This is simply the T -invariant generalization of equation (9.16). Already, we can see

the tension between Yukawa coupling hierarchies and the masses of the T -odd fermion
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partners. If λ is O(1), we know we can generate the Yukawa coupling hierarchy

through the different overlaps of ΨL and Ψc
L with the IR brane for each generation.

However, the same overlap functions would enter into equation (14.16). We could

of course make κ large, insist that ΨR and Ψc
R have maximum overlap with the IR

brane, and also split the Yukawa hierarchy equally between the ΨL and Ψc
L overlaps.

But given that the electron mass is a factor of 106 lighter than the top quark, we

would find that the T -odd partner to the electron is
√

106 = 103 lighter than the

T -odd partner of the top quark! We will discuss this issue further at the end of this

section.

We now give the quantum numbers of a standard model generation. As mentioned

already, there are slight complications coming from the fact that we need to gauge

U(1)B. This forces us to introduce a top-type doublet and a bottom-type doublet.

Ignoring a possible right-handed neutrino, we have the following SU(5)L × SU(5)R

matter content, using the notation of equations (14.9) and (14.10):

SU(3)C U(1)B

U 3 +2/3

U c 3̄ −2/3

D 3 −1/3

Dc 3̄ +1/3

L − −1

Lc − +1

(14.18)

Looking at the top sector in detail, we imbed the top-type doublet and top singlet
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fields as

UL1 =




qU
1

−

−




, UL2 =




−

−

qU
2




, UR =




qU
M

−

−




, (14.19)

U c
L1 =




−

uc
1

−




, U c
L2 =




−

uc
2

−




, U c
R =




−

uc
M

−




, (14.20)

where dashes indicate fields that have Dirichlet boundary conditions on the UV brane

and therefore do not have zero modes. As in Section 10, the physical top doublet and

singlet will be mixtures of these zero modes and components from the KK modes.

After SU(2)3 breaks to SU(2)EW , the qU and uc fields have the right standard model

quantum numbers. At low energies, the interaction in equation (14.16) generates the

mass terms

Lmass ∼ mU
q qU

M(qU
1 + qU

2 ) + mu uM(u1 + u2), (14.21)

so at low energies, the fields

qU
even =

1√
2
(qU

1 − qU
2 ), uc

even =
1√
2
(uc

1 − uc
2), (14.22)

are massless, T -even fermions, and the orthogonal T -odd combinations get masses

mU
q and mu. At energies below the T -odd masses, the interaction in equation (14.17)

generates the Yukawa coupling

LYukawa ∼ λU qU
evenhuc

even. (14.23)

As in Section 9, the physical Yukawa coupling involves wavefunction renormalization

from mixing with heavy KK modes.
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By this prescription, we will have a massless qU
even and a massless qD

even both with

the quantum numbers of a quark doublet. We want to identify one combination of

qU
even and qD

even to be the standard model quark doublet and the other combination to

be heavy. Looking at the D field:

DL1 =




−

−

qD
2




, DL2 =




qD
1

−

−




, DR =




−

−

qD
M




. (14.24)

(The subscripts 1, 2 on qD
1 and qD

2 indicate whether the field transforms under SU(2)L1

or SU(2)L2, and not whether they came from the field DL1 or DL2.) Consistent with

SU(2)i, we can set boundary conditions on the UV brane for (qU
1 − qD

1 ), (qU
2 − qD

2 ),

and (qU
M − qD

M) to vanish. The (qU
M − qD

M) boundary condition is necessary because

without it, there would be an additional massless doublet. At the end of the day, the

combination

qeven =
1√
2
(qU

even + qD
even) (14.25)

is the massless standard model quark doublet and it couples in the appropriate way

to uc and dc. Again, the physical standard model fermions will be mixtures of these

T -even zero modes with components of T -even KK states. In the lepton sector, we

imbed the lepton doublet and singlet analogously to equations (14.19) and (14.19),

but if we do not have a right-handed neutrino, we do not need to have a separate

electron-type and neutrino-type lepton doublet.

While it might be interesting to calculate the Higgs radiative potential in this

T -parity extension of the AdS5 littlest Higgs, there is a basic model building question

that needs to be addressed before such a calculation would become meaningful. As
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we saw in Section 12, the Higgs potential depends on the bulk propagators for the

fermions, and these in turn depend heavily on the choice of fermion bulk masses. If we

simply want to reproduce the Higgs Yukawa matrix and ignore flavor-violating four-

fermion operators, then we can simply choose some reasonable fermion bulk masses

that give O(1) overlap with the IR brane and then dial the Yukawa matrix by hand

on IR brane to get the desired low energy Yukawa structure. In this case, the mass of

all the T -odd fermions can be pushed up to around 10 TeV with a reasonable value

of κ in equation (14.16). (See [60] for a reason why the T -odd fermions most likely

need to be closer to 1 TeV.)

If, however, we want to naturally explain the smallness of four-fermion operators

that contribute to FCNCs, then we want the different fermion generations to be

localized in different parts of the bulk. This means that there will be a hierarchy

in the overlap of the different generations with the IR brane, and while this feature

is desirable from the point of view of trying to understand the Yukawa hierarchy, it

is disastrous in light of equation (14.16), where the overlap functions also determine

the masses of the T -odd fermions. We expect this to be a general issue with trying

to build AdS models of the little Higgs with T -parity. The problem is not with

T -parity itself; indeed, for a single generation where flavor is not an issue we can

easily incorporate T -parity in AdS space. The problem is that T -parity wants to

be flavor blind (i.e. all of the T -odd fermions need to have roughly the same mass),

whereas our implementation of T -parity makes explicit reference to flavor because

the T -odd mass terms inherit flavor specific overlap functions. We may have some

freedom to generate the Yukawa hierarchy through a combination of overlap functions



14: Toward a Realistic Model with T -Parity 120

and IR brane matrix elements, but in the context of AdS model building, there is

no explanation for why these two effects would naturally work in the same direction.

There may be other implementations of T -parity in AdS space that avoid these issues,

but in this model there is an important tension between T -parity and flavor.



15

Future Directions

We have seen that the collective breaking structure of little Higgs theories can

be naturally implemented in AdS space. The 5D Coleman-Weinberg potential has

a particularly illuminating structure, in that corrections to the Higgs potential are

proportional to two differences of 5D Greens functions. In this part of the thesis,

we have worked out the gauge and fermion structure for the SU(5)/SO(5) littlest

Higgs, but the construction can be easily extended to other little Higgs theories. The

AdS/CFT correspondence tells us exactly how to implement the gauge and Goldstone

sector of any G/H little Higgs theory. The only possible challenge is trying to figure

out the bulk G fermion content, and in general it is desirable to start with a low

energy theory where the fermions come in linear representations of G.

From the top-down point of view, we have found a UV completion of the littlest

Higgs that concisely explains the hierarchy between the Planck scale and electroweak

scale. We start at some high scale with a large N conformal field theory. The size

of AdS space represents the logarithmic running of some operator which eventually
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breaks conformality in the infrared, and this guarantees a natural hierarchy between

MPl and the 10 TeV scale. Because conformality is broken, the CFT confines, yielding

an SU(5)/SO(5)s worth of “pions.” Collective breaking insures that the pion corre-

sponding to the Higgs boson is light, and this generates a natural hierarchy between

fπ ∼ 1 TeV and the electroweak scale.

We have seen a number of tensions in this model that one could guess from the

low energy theory. Large N CFTs with a large conformal window lead to very small

gauge couplings, and if we want to raise the mass of the W ′ to phenomenologically

healthy values, we need to shrink the size of the conformal window. If we allow for

T -parity, then a light W ′ may be acceptable, but in the context of AdS space, we saw

a tension between flavor physics, precision electroweak tests, and little Higgs theories.

If T -parity is indeed the reason for the smallness of precision electroweak corrections,

then we have to explain why the masses of T -odd fermion partners do not exhibit the

same flavor hierarchy as the fermions themselves. It may be interesting to look at

AdS models of little Higgs theories with custodial SU(2) symmetry where it appears

easier to separate flavor physics from precision electroweak tests.

In AdS space, locality in the warped dimension guaranteed that our Higgs poten-

tial was finite, but one might wonder how important the extra dimension actually was

for our construction to succeed. Even if we took ε = L0/L1 to be 1/2, the Higgs po-

tential would still be finite, suggesting that the physics relevant for pseudo-Goldstone

phenomenology is heavily localized near the IR brane. In fact, as shown in [66], the

Higgs potential can be made completely free of 1-loop quadratic divergences if one

simply postulates the existence of ρ-like mesons. Of course, the properties of the ρ
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are inherited from the strong dynamics, and AdS/CFT is a simple way to understand

ρ-like states. But given the difficulty of having heavy W ′ states in large N CFTs, it

would be nice if we had a framework other than AdS/CFT to understand the radiative

potentials for pseudo-Goldstone bosons.

In [75], we will show that in the right context, pseudo-Goldstone phenomenology

can be made largely independent of strong dynamics. In essence, a low energy observer

cannot tell whether a gauge quadratic divergence is cut off by a ρ-like or a W ′-like

state, so if our only problem with a large conformal window is that W ′ states are

generically much lighter than ρ states, then we should work in a framework where

we can decouple the ρ-like states. In particular, we will show that the SU(5)/SO(5)

littlest Higgs can actually arise in ordinary QCD with five flavors, and the gauge

contribution to the Higgs potential is completely finite at one-loop. This UV complete

theory will have light W ′ and W ′′ states responsible for cutting off divergences in the

Higgs potential, but the QCD ρ mesons will play a much smaller role in the low energy

phenomenology. This will open a new avenue to construct simple UV completions of

little Higgs models.
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Appendix A

Matrix Elements Calculations

In this appendix we present the explicit matrix elements for the decays considered

in the text. We begin with the Same-Spin decay channel q′ → q + W ′ → q + W + A′.

The matrix element is given by,

iM =

= g2ū(p2)γµPLu(p1)
i

q2 −m2
W ′

(
−gµν +

qµqν

m2
W ′

)

× e (gρν(−q − p3)σ + gνσ(p4 + q)ρ + gσρ(p3 − p4)ν) εσ(p4)ε
ρ(p3)

We have borrowed the usual Standard Model coupling for the vertices. The proba-

bility amplitude is then,

∑

pol

|M|2 = c2(tqW )2 + c1tqW + c0
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Where the coefficient functions are,

c2 =
1

(q2 −m2
W ′)2

m4
W + (m2

A′ − q2)2 + 2m2
W (5m2

A′ − q2)

m2
W m2

A′

c1 =
1

(q2 −m2
W ′)2

1

m2
W ′m2

A′m
2
W

× (−(m2
q′ −m2

q)(m
2
W −m2

A′)(m
4
A′ + 10m2

W m2
A′ + m4

A′ − q4)

+ m2
W ′(−m6

W − 11m4
W m2

A′ − 11m2
W m4

A′ −m6
A′ + 3m4

W q2

+ 14m2
W m2

A′q
2 + 3m4

A′q
2 − 3m2

W q4 − 3m2
A′q

4 + q6

+ m2
q′(m

4
W − 10m2

W m2
A′ − 3m4

A′ + 4m2
A′S − q4))

+ (m2
q(−3m4

W + m4
A′ − q4 + m2

W (−10m2
A′ + 4q2))))

The last term, c0 is too complicated to present and carries little significance. It is not

hard to show that c2 is always positive for any real choice of q2.

Next we are interested in the corresponding SUSY decay chain shown in Fig.

(A.1). The first vertex is given by,

−g2V11 d̄PRC̃c ũ and − g2U
∗
11

¯̃CPLu d̃∗ (A-1)

respectively. The ÑC̃W+ vertex is given by,

g2W
−
µ

˜̄Niγ
µ(OL

ijPL +OR
ijPR)C̃j (A-2)

The matrix element for the decay initiated by a down-type squark is,

M ˜̄d
= g2

2U
∗
11 ūÑ(p4)γ

µ(OL
11PL +OR

11PR)
q/ + MC̃

q2 −M2
C̃

PLvu(p2)εµ(p3) (A-3)

= U∗
11 ūÑ(p4)γ

µ aq/ + bMC̃

q2 −M2
C̃

vu(p2)εµ(p3) (A-4)
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Figure A.1: Two different process contributing to squark decay into C̃+ and a quark.
The chargino consequently decays into W± and LSP.

where,

a = g2
2O

R
11 and b = g2

2O
L
11 (A-5)

The squared amplitude is given by,

|M ˜̄d
|2 =

(b2m2
C̃
− a2q2)(q2 − 2m2

W + m2
Ñ

)

2m2
W (q2 −m2

C̃
)2

tqW + Const. (A-6)

Therefore, in the narrow width limit, the slope depends on the difference b2−a2. The

problem is that the second diagram contributing to this process (with an up-squark

decay) has the opposite sign for this coefficient. Notice that,

d̄PRC̃cũ = −(C̃c)T PRd̄T ũ = − ¯̃CCT PRd̄T ũ (A-7)

= − ¯̃CPRCT d̄T ũ = − ¯̃CPRCT d̄T ũ

= ¯̃CPRdcũ

When contracting this operator with the ÑC̃W+ vertex we get the opposite spin

structure,

Mũ = g2
2V11 ūÑ(p4)γ

µ(OL
11PL +OR

11PR)
q/ + MC̃

q2 −M2
C̃

PRvd(p2)εµ(p3) (A-8)

= V11 ūÑ(p4)γ
µ bq/ + aMC̃

q2 −M2
C̃

vu(p2)εµ(p3)
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Experimentally, we cannot distinguish between up quarks and down quarks. We must

therefore average over the two contributions,

∑

ũ,d̃

|M|2 ∝ (b2 − a2)(fd(U
∗
11)

2 − fu(V11)
2)tqW + Const. (A-9)

fd and fu is the fraction of events with a down-squark or up-squark, respectively.



Appendix B

HERWIG Implementation

In this appendix we review the implementation of matrix elements into HERWIG1.

This section is relevant to any Monte-Carlo program using the S and F functions of

Eijk and Kleiss [76] to calculate helicity amplitudes. The usage of these functions

results in very efficient computations. The price the user has to pay is the complexity

of the expressions. These functions are then used in the spin correlations algorithm

devised by Knowles and Collins [29, 58]. We hope to provide a brief but fairly self-

consistent presentation below.

HERWIG is an event generator consisting of roughly 5 phases (for a complete

description of the program consult [32]):

1. Hard process, where the particles in the main 2 → 2, 3 event are generated, e.g.

q q → g g or e+e− → qq̄.

2. The parton shower phase involving the QCD evolution from the collision energy

to the infrared cutoff.

1HERWIG stands for Hadron Emission Reactions with Interfering Gluons
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3. Decay of heavy unstable particles before hadronization, such as top quark and

SUSY partners.

4. Hadronization stage

5. Decay of unstable hadrons.

We are mainly concerned with the third step. In order to decay any unstable

particle (e.g. gluino, squark etc.), one must provide HERWIG with its different decay

channels and the corresponding matrix elements. To keep track of spin correlations

the matrix element must include the external polarizations. For example, let’s con-

sider the decay of a heavy fermion into a fermion and a scalar (top decay into bottom

and higgs). The matrix element is given by,

iM = igū(q, λ2)u(p, λ1) (B-1)

In order to compute this spinor product, HERWIG requires the user to express it in

terms of the S and F functions of Eijk and Kleiss [76] defined below. This facilitates

the algebra, but obscures the expression. Let’s briefly recall the construction.

One begins by expressing any polarization in terms of massless spinors (for a

pedagogical review, see[56]). Two basic 4-momenta, k0, k1 are chosen such that,

k0 · k0 = 0, k0 · k1 = 0, k1 · k1 = −1 (B-2)

The basic left and right helicities are then defined via,

uL(k0)ūL(k0) = PLk/0, uR(k0) = k/1uL(k0) (B-3)
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The helicity spinor for any other momenta (not collinear with k0) is then given by,

uλ(k) = k/u−λ(k0)/
√

2k0 · k (B-4)

A massive spinor is nothing but the linear combination of two massless spinors of

opposite helicities. It can be written as,

u(p, λ) =
(p/ + m) u−λ(k2)√

2p · k2

=
1√

2p · k2

(Sλ(k1, k2) uλ(k1) + m u−λ(k2)) (B-5)

where p = k1 + k2 is decomposed into two massless 4-vectors and the S function is

defined as,

Sλ(k1, k2) = ūλ(k1)u−λ(k2) = (S−λ(k2, k1))
∗ = −Sλ(k2, k1) (B-6)

Notice that, |Sλ(k1, k2)|2 = m2.

All expressions can therefore be reduced into products of massless spinors, with

the possibility of having a γµ matrix sandwiched in between. It proves useful to define

the F function as well,

F (k1, λ1, p, k2, λ2,M) = ūλ1(k2) (p/ + M) uλ2(k2) (B-7)

for some p which is not light-like. Matrix elements for many typical processes were

already implemented in HERWIG by P. Richardson. As an example, the above matrix
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element (B-1) can be written as,

M = gū(q, λ2)u(p, λ1)

= g
1√

2p · p2

1√
2q · q2

(
S∗λ2

(q1, q2)ūλ2(q1) + m2ū−λ2(q2)
)
(p/ + m1) u−λ1(p2)

=
1√

2p · p2

1√
2q · q2

× g (S−λ2(q2, q1)F (q1, λ2, p, p2,−λ1,m1) + m2F (q2,−λ2, p, p2,−λ1,m1))

For a massless spin-1 particle the external polarization εµ(k, λ) can be expressed

as,

εµ(k, λ) = ūλ(k)γµuλ(k1)/
√

4k · k1 (B-8)

where k1 is any light-like momentum not collinear with k.

The extra polarization of a massive spin-1 particle adds an extra complication

to the calculation. Since the only massive gauge bosons in the MSSM are the W±

and Z, it is easier to simply insert the entire matrix element (e.g. t → b + e+ + νe

rather than t → b + W+ and W+ → e+ + νe). In Same-Spin theories, there are many

massive gauge bosons around and it proves useful to develop the needed formalism

and implement it in HERWIG.

Looking at the massless polarization (B-8) it is easy to guess the form of a massive

one in terms of spinors,

εµ(p, λ1, λ2) =
1

(2
√

2m)
ū(p, λ1)γ

µv(p, λ2) (B-9)

where, p2 = m2 and λ1,2 are the usual spinor polarizations. This might seem wrong

at first, as it seems to imply 4 polarizations rather than the required 3, but as we
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will see in a moment, (+, +) and (−,−) both correspond to the scalar polarization.

First, let’s verify that this indeed reproduces the correct polarization sum,

∑

λ1,λ2

εµ(p, λ1, λ2)ε
∗
ν(p, λ1, λ2)/(8m

2) =
∑

λ1,λ2

Tr(u(p, λ1)ū(p, λ1)γµv(p, λ2)v̄(p, λ2)γν)/(8m
2)

= Tr((p/ + m)γµ(p/−m)γν)/(8m
2)

=
(
−gµν +

pµpν

m2

)

It is straight forward to show that (B-9) corresponds to the different polarizations

directly. First note that,

εµ (p, λ1, λ2) =
1

2
√

2m

1

2p · p1

× (
S∗λ1

(p1, p2)ūλ1(p1) + m ū−λ1(p2)
)
γµ (Sλ2(p1, p2)uλ2(p1)−m u−λ2(p2))

=





ūλ(p1)γµuλ(p1)− ūλ(p2)γµuλ(p2) /2
√

2m λ1 ≡ λ = λ2

(S−λ−S∗λ)
m

ūλ(p2)γµuλ(p1) /2
√

2m λ1 ≡ λ 6= λ2

In the rest frame of the particle we can take ~p1 = ẑ|p|/2 and ~p2 = −ẑ|p|/2, so that

p = p1 + p2 = (m,~0) and the massless spinors are given by,

u−(p1) =
√

2m




0

1

0

0




u+(p1) =
√

2m




0

0

1

0




(B-10)

With a few lines of arithmetic one can verify that,

εµ(p,−,−) = ((1, 0, 0,m)− (1, 0, 0,−m)) /(2
√

2m) = (0, 0, 0, 1/
√

2)

εµ(p, +, +) = ((1, 0, 0,m)− (1, 0, 0,−m)) /(2
√

2m) = (0, 0, 0, 1/
√

2)

εµ(p,−, +) = 2(0,m, im, 0)/(2
√

2m) = (0, 1/
√

2, i/
√

2, 0)

εµ(p, +,−) = 2(0,m,−im, 0)/(2
√

2m) = (0, 1/
√

2,−i/
√

2, 0)
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and so we conclude that εµ(−, +) = εµ
L, εµ(+,−) = εµ

R and εµ(−,−) = εµ(+, +) =

εµ
0/
√

2. It is now straight forward, albeit tedious, to express any matrix element in-

volving an external massive gauge boson in terms of S and F functions and implement

it into HERWIG.

We begin with the matrix element for a gauge boson decay into a fermion - anti-

fermion pair,

iM = iAλū(k, λ2)γ
µPλv(q, λ4) εµ(p, λ1, λ2) (B-11)

The corresponding expressions are,

M((λ1, λ1), λ3, λ4) =

√
2√

4p · p22k · k22q · q2

× ( A−λ1F (k2,−λ3, k, p1, λ1, m2) F (p1, λ1, q, q2,−λ4,−m3)

+ (p1 → p2, λ1 → −λ1) )

M((λ1,−λ1), λ3, λ4) =
1√

4p · p22k · k22q · q2

×
(

S−λ1(p1, p2)− S∗λ1
(p1, p2)

m1

)

× ( A−λ1F (k2,−λ3, k, p2, λ1,m2) F (p1, λ1, q, q2,−λ4,−m3)

+ (p1 ↔ p2, λ1 → −λ1) )

The factor of
√

2 above is to guarantee proper normalization of the longitudinal mode.

With a little bit of care it is easy to obtain the other two diagrams f(f̄) → f(f̄)+g.b..

To turn a fermion into an anti-fermion or vice-versa simply send m → −m. The

incoming gauge-boson polarization becomes an outgoing one by conjugation,

εµ → ε∗µ = v̄(p, λ2)γµu(p, λ1) = λ1λ2 ū(p,−λ1)γµv(p,−λ2) (B-12)
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So we simply have to send λ1 → −λ1 in the expressions above, and an overall minus

sign in front of the M((λ1,−λ1), λ3, λ4) amplitude due to the λ1λ2 factor.

The last diagram we consider is the non-Abelian vertex including 3 external mas-

sive spin-1 polarizations.

iM =

= ig (gµν(p3 − p2)
ρ + gνρ(−p1 − p3)

µ + gρµ(p2 + p1)
ν)

× ερ(p1, λ1, λ
′
1) ε∗µ(p2, λ2, λ

′
2) ε∗ν(p3, λ3, λ

′
3)

We give the corresponding expression for the first term only. The other terms can be

obtained by trivial permutations and using (B-12) for the outgoing polarizations.

iM ⊃ ε∗µ(p2, λ2, λ
′
2)ε

∗
ν(p3, λ3, λ

′
3)g

µν(p3 − p2)
ρερ(p1, λ1, λ

′
1) (B-13)

=
1

16
√

2m1m2m3

A(λ2, λ
′
2, λ3, λ

′
3)B(λ1, λ

′
1)
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where,

A(λ2, λ
′
2, λ3, λ

′
3) =





λ2 = λ′2

1
m2

3
(F (q′3, λ3, p3, q2, λ2,m3)F (q2, λ2, p3, q

′
3, λ

′
3,−m3)

−F (q′3, λ3, p3, q
′
2, λ2,m3)F (q′2, λ2, p3, q

′
3, λ

′
3,−m3)

+ λ3 → −λ3)

λ2 = −λ′2

1
m2

3

(
S(q2,q′2,−λ2)−S∗(q2,q′2,λ2)

m2

)
×

(F (q′3, λ3, p3, q
′
2, λ2,m3)F (q2, λ2, p3, q

′
3, λ

′
3,−m3)

+(λ3 → −λ3, q
′
2 ↔ q2))

and,

B(λ1, λ
′
1) =





λ1 = λ′1 (F (q1, λ1, p3 − p2, q1, λ1, 0)− F (q′1,−λ1, p3 − p2, q
′
1,−λ1, 0))

λ1 = −λ′1
(

S(q1,q′1,−λ1)−S∗(q1,q′1,λ1)

m1
F (q1, λ1, p3 − p2, q

′
1, λ1, 0)

)

Here, the momentum is written in terms of two massless momenta pi = qi + q′i, with

q2
i = (q′i)

2 = 0 and p2
i = m2

i .



Appendix C

Summary of Bulk Fields in AdS

Space

In this appendix, we briefly summarize the main results and conventions for bulk

fields in AdS space. All the results below can be found in the literature (see for

example [30, 2, 45, 41]), though there are different conventions for the naming of left-

and right-handed fermions, and we try to stick to the conventions of [45]. Throughout,

we use the choice of metric given by equation (8.1), which is most convenient for our

purposes.

Let us begin with scalars in the bulk. The lagrangian for a complex scalar field in

5D with arbitrary boundary mass terms and a bulk source J is,

Lφ =
√

g
(
gMN∂Mφ∗∂Nφ−M2|φ|2 − Jφ

)
+
√−gindm

2
0|φ|2δ(z−L0)+

√−gindm
2
1|φ|2δ(z−L1).

(C-1)

The induced metric on the branes is gµν
ind(z) = ηµν/(kz)2. The boundary terms are

merely a handy way of imposing boundary conditions on the fields in the lagrangian
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formulation. Rescaling the fields in the lagrangian simplifies things somewhat and

allow for a unified treatment of fields with different spins, so let φ → φ̂ = (kz)−2φ.

The lagrangian is then (ignoring the boundary terms since they will only change the

boundary conditions of the Greens function),

Lφ = (kz)

((
−φ̂∗∂µ∂µφ̂ + φ̂∗

(
∂2

z +
1

z
∂z − 4

z2

)
φ̂

)
− M2

(kz)2
|φ̂|2 −

√
g

(kz)
Ĵ φ̂

)
. (C-2)

The rescaled Greens function Ĝ(x, x′, z, z′) = (kz)−2(kz′)−2G(x, x′, z, z′) satisfies the

following differential equation (moving to momentum space in the transverse direc-

tion), (
p2 + ∂2

z +
1

z
∂z − α2

z2

)
Ĝ(p; z, z′) =

1

kz
δ(z − z′), (C-3)

where α2 = M2/k2 + 4.

Let us move on to consider gauge bosons in AdS space. Similar to the scalar case,

the 5D gauge boson lagrangian is given by

Lgauge = − 1

4g2
5

√
ggABgMNFAMFBN − z0

4g2
5

√−gindg
µν
indg

αβ
indFµαFνβδ(z − L0), (C-4)

where we have dropped a possible IR brane kinetic term since it plays no role in

our analysis. Working in A5 = 0 and ∂µA
µ = 0 gauge, the situation is identical to

the scalar case, except that the rescaled field is Âµ = (kz)−1Aµ, and so the rescaled

propagator is ηµνĜ(p; z, z′) = (kz)−1(kz′)−1ηµνG(p; z, z′). The propagator satisfies

equation (C-3) with α = 1.

In curved backgrounds, the spin of a field is defined with respect to the Lorentz

group acting on the comoving coordinates (the local tangent space). The vierbein

ea
A is the object which connects the comoving frame (a index) with the spacetime

coordinates (A index). The spin-connection wbcA tells us how the comoving reference
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frame changes as we go in different spacetime directions (hence the two internal

indices a and b and one spacetime index A). In 5 dimensions, Dirac fermions form

an irreducible representation of the Lorentz group. The lagrangian for a Dirac field

in the bulk is

Lfermion =
√

g

(
eA

a

(
i

2
Ψ̄γa(∂A −←−∂ A)Ψ +

wbcA

8
Ψ̄{γa, σbc}Ψ

)
−mΨ̄Ψ− Ψ̄J

)
,

(C-5)

where eA
a = diag(1, 1, 1, 1, 1)/kz is the inverse vierbein. Since the metric is diagonal,

the spin-connection is non-zero only when b = A or c = A, giving no contribution to

the fermionic action. Again, rescaling Ψ → Ψ̂ = (kz)−5/2Ψ the lagrangian takes the

form,

Lfermion = (kz)

(
ˆ̄Ψi∂/Ψ̂− ˆ̄Ψ

(
m

kz
+

1

2z
γ5

)
Ψ̂− ˆ̄Ψγ5∂zΨ̂−

√
g

kz
ˆ̄ΨJ

)
. (C-6)

Therefore, the rescaled fermion Greens function have to satisfy,

(
p/ +

ν

z
+ γ5

(
1

2z
+ ∂z

))
Ŝ(p; z, z′; ν) =

−1

kz
δ(z − z′), (C-7)

where we have introduced the ratio ν ≡ m/k. If we let

Ŝ(±,±)(p; z, z′; ν) =

(
−p/− γ5

(
∂z +

1

2z

)
+

ν

z

)
(PLĜ

(±,±)
L + PRĜ

(∓,∓)
R ), (C-8)

we see that Ĝ has to satisfy equation (C-3) again with α = |1/2∓ ν| with the minus

(plus) sign for the left- (right-) handed propagator. The ± signs on the Gs refer to

the choice of boundary conditions for the fields.

So it all comes down to solving equation (C-3). The boundary conditions are as

follows. We can choose either Neumann (even) or Dirichlet (odd) boundary conditions
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on the two branes. For the fermions the boundary conditions for the left- and right-

handed components have to be opposite from each other since as we will see they are

coupled through the equations of motion. The solution to equation (C-3) is simple

and is given in [30, 42] (note that we have analytically continued to Euclidean space

so that p2 → −p2):

Ĝ(p; z, z′) =
−L0

R1 −R0

(
Iα(|p|z<)−R0Kα(|p|z<)

)(
Iα(|p|z>)−R1Kα(|p|z>)

)
,

(C-9)

where z> (z<) is the greater (lesser) of (z, z′), Iα and Kα are the modified Bessel’s

functions and the ratios R0, R1 depend on the choice of boundary conditions on the

UV/IR branes. For the gauge boson:

R
(+)
0 =

Iα−1(|p|L0)− z0|p|Iα(|p|L0)

−Kα−1(|p|L0)− z0|p|Kα(|p|L0)
, R

(−)
0 =

Iα(|p|L0)

Kα(|p|L0)
,

R
(+)
1 =

Iα−1(|p|L1)

−Kα−1(|p|L1)
, R

(−)
1 =

Iα(|p|L1)

Kα(|p|L1)
. (C-10)

For the fermions, the ratios are different for the left- and right-handed components

of the Dirac field. To simplify the expressions somewhat let α = |1/2 ∓ ν| and

β = 1/2∓ ν:

R
(+)
0 = − |p|L0Iα−1(|p|L0)− (α− β) Iα(|p|L0)

|p|L0Kα−1(|p|L0) + (α− β) Kα(|p|L0)
, R

(−)
0 =

Iα(|p|L0)

Kα(|p|L0)
,

R
(+)
1 = − |p|L1Iα−1(|p|L1)− (α− β) Iα(|p|L1)

|p|L1Kα−1(|p|L1) + (α− β) Kα(|p|L1)
, R

(−)
1 =

Iα(|p|L1)

Kα(|p|L1)
. (C-11)

Note that when α = β, this simply reduces to the same ratios as for gauge bosons

with no boundary kinetic terms. We ignore possible boundary kinetic/mass terms for

fermions since we do not need them in this paper.
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It is important to know the low energy expansion of these propagators with even

boundary conditions on the IR bane evaluated at the IR brane, in order to match the

UV theory with the IR theory. For the gauge bosons we have,

Ĝ(+,+)(p; L1, L1) =
ε2

L0 log(ε−1)

1

p2
+O(p0), Ĝ(−,+)(p; L1, L1) =

L0

2
(1+ε2)+O(p2).

(C-12)

Notice that the expansion of Ĝ(+,+) is as expected: it is the gauge boson zero-mode

overlap function squared, divided by p2. For the fermions the low energy expansion

gives,

Ĝ
(+,+)
L (p; L1, L1; ν) =

ε

p2

1

L1

(
1 + 2ν

1− ε1+2ν

)
+O(p0) =

ε

p2
fL(ν)2,

Ĝ
(−,+)
L (p; L1, L1; ν) = εL1

(
1− ε1−2ν

1− 2ν

)
+O(p2) = ε

1

fR(ν)2
,

Ĝ
(+,+)
R (p; L1, L1; ν) =

ε

p2

1

L1

(
1− 2ν

1− ε1−2ν

)
+O(p0) =

ε

p2
fR(ν)2,

Ĝ
(−,+)
R (p; L1, L1; ν) = εL1

(
1− ε1+2ν

1 + 2ν

)
+O(p2) = ε

1

fL(ν)2
. (C-13)

Notice that G
(+,+)
L (G

(+,+)
R ) is nothing but the left (right) zero-mode overlap function

squared divided by p2. It is amusing that G
(−,+)
L (G

(−,+)
R ) is simply the inverse of the

right (left) zero-mode overlap function.

The KK spectrum of the theory is found in the poles of the propagator in equation

(C-9). Since the numerator of the propagator is everywhere analytic, the poles must

be at R1(p)−R0(p) = 0. Analytically continuing back to Minkowski space the masses

are given by the solutions to

R1(imn) = R0(imn), (C-14)

where R1 and R0 for fermions and gauge bosons are given above for the different

choices of boundary conditions. For instance, in the case of odd boundary conditions
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on both branes for a right-handed fermion field we have,

Jα(mnL1)

Yα(mnL1)
=

Jα(mnL0)

Yα(mnL0)
(C-15)

where α = |1/2 + ν|. Solving this equation for mn, one obtains the KK spectrum. A

similar story holds for gauge boson masses.

Now for the Kaluza-Klein decomposition of the different fields. We will present

the details for the fermion KK modes only [45]. Starting from the lagrangian given

by equation (C-5) we decompose the 5D Dirac fields into,

ΨL,R(x, z) =
∑

n

ψL,R
n (x, z)(kz)2fL,R

n (z). (C-16)

To get the usual 4D lagrangian for left- and right-handed fermions we demand that,

∫
dz(fL

n )∗fL
m =

∫
dz(fR

n )∗fR
m = δm,n, (C-17)

(±z∂z − ν) fL,R
n (z) = −mnzf

R,L
n (z), (C-18)

where mn is the 4-dimensional mass for the different KK modes. The boundary

conditions on fL,R
n are simply fL∗

n (L0)f
R
n (L0) = fL∗

n (L1)f
R
n (L1) = 0, which tells us

that either the left- or right-handed component of the bulk field must have vanishing

boundary conditions on each brane. Equation (C-18) implies the following second-

order differential equation for the left- and right-handed components:

(
z2∂2

z + z2m2
n − ν(ν ∓ 1)

)
fL,R

n = 0. (C-19)

To begin with, we look for zero modes, mn = 0. Solving equation (C-18) for the zero

modes we get (for ν 6= ∓1/2),

fL,R
0 (z) =

1

L
1/2
1

√
1± 2ν

1− ε1±2ν

(
z

L1

)±ν

. (C-20)
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For the case ν = −1/2 (ν = 1/2) for left- (right-) handed fermions the wave-function

is f0 = z−1/2/
√
− log(ε).

For the massive KK modes we need to solve equation (C-19). For ν 6= 1
2

+ N the

solutions are simply Bessel functions

fL,R
n (z) =

√
z

(
AL,R

n J 1
2
∓ν(mnz) + BL,R

n Y 1
2
∓ν(mnz)

)
(C-21)

However, note that the left- and right-handed solutions are not independent because

they are coupled through the first-order equation (C-18). The spectrum and normal-

ization for the massive wave-function are found by imposing the different boundary

conditions, together with equation (C-17). From equation (C-18) we see that if we

choose Dirichlet boundary conditions for the right- (left-) handed mode we must

choose the modified Neumann boundary condition (z∂z ∓ ν) fL,R
n (z) = 0 for the left-

(right-) handed modes. In the case of odd boundary conditions on both branes for

a right-handed field, for instance, we recover the same constraint on mn as equation

(C-15).
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