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Abstract. Nowadays quantum computation is probably considered as the most promising way
to achieve superfast calculation performances to be implemented in the next generation of
hyper-computers. Nevertheless, the realization of an hypercomputer, namely a system able to
perform countable infinite computational steps within a finite time, is usually considered not
allowed due to the Heisenberg uncertainty principle that limits the energy required by such
steps. This limitation affects quantum algorithms as well as conventional computation. In this
paper we show it is possible to bypass such limitation by considering a quantum system
making use of evanescent photons produced by some physical processes such, for example,
that occurring inside optical components made of metamaterials. This proposal opens very
interesting prospects towards a deeper understanding of quantum information and computation
as well as to the realization of an actual hypercomputer system and its applications to frontier
fields such as Artificial Intelligence.

1. Introduction
Quantum computation makes direct use of quantum-mechanical features, such as states superposition
and entanglement, to perform operations on data. Whereas conventional omputation, implemented by
digital computers, require data to be encoded into binary digits (a bit can have only one of two values,
0 or 1), quantum computation uses quantum bits or qubits (a quantum bit or qubit can exist in a
superposition of two bits) to represent data and perform operations on these data. The idea of quantum
computing was first introduced by Richard Feynman in 1982 [1].

A single qubit can then represent a one, a zero, or any quantum superposition of these two qubit
states; moreover, a pair of qubits can be in any quantum superposition of 4 states, and three qubits in
any superposition of 8. In general, a quantum computer with 7 qubits can be in an arbitrary

superposition of up to 2" different states simultaneously, while a normal computer can be in only one

of these 2" states at any one time [2].
In particular, a generic quantum state can be considered as the quantum superposition of two basic

states ’0> and ’1> (eigenvetctors of some suitable quantum observable), namely

|1/1> ICOS§|O>+6iHSiIl§|1> )

where ¢ and 0 are the angles that identify the “direction” of the state vector | 1/1> in polar coordinates.

A quantum computer operates by setting up the qubits in a controlled initial state that represents the
problem at hand and by manipulating them with a fixed sequence of quantum logic gates. The
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sequence of gates to be applied is called a quantum algorithm. The calculation ends with measurement
of all the states, collapsing each qubit into one of the two pure states, so the outcome can be at most
represented by n classical bits of information. An example of an implementation of qubits for a
quantum computer could start with the use of particles with two spin states: “up” and "down". In
general every quantum system carachterized by at lest one physical observable O which is time-
conserved and have two sufficiently spaced eingevalues can be can be mapped onto an effective spin-
1/2 system.

A quantum computer with a given number of qubits is fundamentally different from a classical
computer composed of the same number of classical bits. For example, to represent the state of an n -

qubit system on a classical computer would require the storage of 2" complex coefficients. Although
this fact may seem to indicate that qubits can hold exponentially more information than their classical
counterparts, care must be taken not to overlook the fact that the qubits are only in a probabilistic
superposition of all of their states. This means that when the final state of the qubits is measured, they
will only be found in one of the possible configurations they were in before measurement. Moreover,
it is incorrect to think of the qubits as only being in one particular state before measurement, since the
fact that they were in a superposition of states before the measurement was made directly affects the
possible outcomes of the computation [3].

If we consider, for example, a three-bit register device, its state at any time is described by a

probability distribution P(S ) (where $ indicates a given bit-register state) over the 2° = 8 different
three-bit strings 000, 001, 010, 011, 100, 101, 110, 111. For a deterministic classical digital computer,
this distribution is such as, at every istant, we can have P(Sl.) =1 for a given value of i € {23 }, and
P(S,) =0 for j =i so that at every istant it is in a certain definite state. On the contrary if we
consider it as to be a probabilistic quantum computer, then there is a possibility of it being in any one
of a number of different states. We can describe this probabilistic state ’H) by eight nonnegative
numbers P(Si) namely
1) = (o)) + BlO o) + clo)njo) + DIl + Elolfo)
Er{U]ol) + 6o} + )y
with the constraint ZP<51') =1

)

Sometimes ago, Deutsch [4] proposed the idea of a quantum Turing machine in which quantum
computation parallelism would be realized through superposition principle of quantum mechanics
basing on which such theoretical device could be able to process many inputs simultaneously so
performing a speeded-up calculation. So, he suggested such quantum Turing machines could be able
to perform certain type of calculation very faster than classical computer.

Shor [5] firstly and Grover [6] later shown there are some specific types of algorithms that quantum
computers are certainly able to solve better than classical ones such, for example, prime number
factorization and database search, problems of great importance in the fields of computer science and
cryptography respectively. Nowadays, one of the most promising and interesting research field is
represented by the possible application of the quantum computing schemes to the develop of Artificial
Intelligence (Al).

AT has two main goals: the first one, more general, is to understand the features and dynamics of
intelligence (also by analyzing the human and animal behavior), the second one, more specific, is to
develop and build intelligent machines. In both the cases it is fundamental to design and perform very
fast and powerful calculation techniques, so that today computation plays a crucial role in the field of
Al Due to the recent developments of quantum computational techniques, it is generally believed that
such field, as it is, could be able to give to Al the computational support needed to allow it to develop
fast.
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Nevertheless, at the moment, it is very difficult to realize and implement quantum parallel
algorithms for a large part of scopes as, for example, the application to Artificial Intelligence, that are
more useful than the corresponding classical counterparts.

This is also due to the known difficulties related to quantum decoherence that affects quantum
systems in a superposition state. A possible solution to this problem could be, in principle, to increase
computational speed without necessarily considering quantum superposition of states.

It is commonly believed that theoretical limitations arising from fundamental physics will broke
Moore’s law about microprocessor performances in the near future. In fact, according to Feynman’s
analysis [7], the computational speed is limited by the minimum amount of energy required to
transport a bit of information, in an irreversible way, between two devices. This limitation also affects
quantum computation in which computational speed as a function of required energy is limited by
energy dissipation during the process. A possible way to overcome this limit could be to realize a so-
called “accelerated Turing machines”, also known as “Zeno machine” (ZM), that is a hypothetical
computational device able to perform a countable infinite number of computational steps within a
finite time interval.

A ZM can be substantially thought like a Turing machine (TM) whose calculation steps are in a
certain sense identical except for the time taken for their execution. It has been shown this kind of
speeded-up calculation can solve the famous “halting problem” (HP) for the TM in a finite interval of
time.

Conceptual schemes for hypercomputation are somehow based on performing infinitely many
computational tasks in a finite time. Without a loss of generality, we can consider a ZM to be
identical to a TM with its input, output and storage tapes, executing the first step in %2 hour, the second
in a ¥ hour, the third in a 1/8 hour and so on. An important question related to hypercomputation is
the existence of a physical process able to perform such type of calculation and solve the HP such, for
example, a quantum process or a relativistic machine. In fact, whatever be the notion of
“computability” we assume, computation is, in principle, a physically achievable process.

The concept of a ZM is allegedly just in contrast with the Heisenberg uncertainty principle since
the energy required to perform a calculation exponentially increase as the computational step is
accelerated. For this reason, the ZM has been generally considered, so far, just like a mere
mathematical concept unable to be practically realized.

The realization of hypercomputing quantum systems, not suffering from the limitations above
described, could solve some of the main current theoretical and practical issues related to the
application of quantum computing schemes to Al, like for example, the realization of quantum neural
networks.

In this paper, on the contrary, we analyze and propose the theoretical feasibility of a device like a
ZM, by considering the evanescent photons of electromagnetic field produced inside physical systems
made of metamaterials (MTMs) as the result of coherent dynamics of Quantum Vacuum.

In the physical realization of quantum computing, namely quantum computers, qubits are made up
of controlled particles and the related means of control (e.g. devices that trap particles and switch them
from one state to another), we here propose the realization of quantum computational systems in
which traditional circuits are then replaced with optical ones.

We show such new kind of computers, based on the use of evanescent photons and MTMs
technology, could be able to perform accelerated computation whose features could be interesting in
the light of a deeper understanding of quantum computation itself as well as its application to frontier
fields like Al and many other related fields.

2. The “evanescent” electromagnetic field and its interpretation as tachyon field
Total reflection of electromagnetic waves is well known. It occurs when an electromagnetic wave

propagates within a medium of refraction index n, and reflects on a second medium characterized by

a refraction index n, < n, at an angle 6, > 6, (6, being the so-called “critical angle”). In this case we
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should have, according to Snell law, that all the incident energy is reflected within the first medium.
Nevertheless, as experimentally shown, an electromagnetic perturbation, whose propagation is
restricted in the neighborhood of the separating surface between two media, is still present in the
second medium and is known as “evanescent” wave (EW).

If we consider a reference system where the surface of separation of the two media is in the zy -

plane and the incidence plane is in the zz - plane, by indicating with kT the wave vector associated to
the transmitted wave, we can write k! = ki, + k*i_, where the vector components are given by (we
assume ¢ = 1):

k" = wn,sinf, = wn, sin6, 3)

k=0 (4)

kK = w\/ng - nf sin? 0, (5

We see the structure of “transmitted” wave will depend on the sign of the argument in the root of

equation (5). In particular, if 0 <sinf, < (nz / nl), k* € R, otherwise, when n sinf, >n,, it is a

purely imaginary number and we have an EW transmitted in the second medium. In the particular case

k= iwyn?sin®, —1 =ik (6)

It is interesting to observe that, in this case, the scalar product KT kT = w?, as it always occurs in the

n, =1, we have k¥ > w and

case of propagating electromagnetic waves, while the norm ng T H >c.

This is due to the “anomalous” value assumed by some components of kT (in this case k") whose
value is larger than w, whereas this could not be the case for a “standard” homogeneous propagating
e.m. wave. Furthermore, the presence of an imaginary component causes the EW to have a progressive
behavior along the z-axis, characterized by exponentially decreasing amplitude, namely, for the
transmitted electric field

E‘(z,z,t):E'Texp{—]gz]exp[i(kzx—wtﬂ 7

where E7is the amplitude of the transmitted field. This exponentially decreasing behavior makes the
wave practically detectable within a limited distance from the propagation point so we can define a

“propagation depth” § of EW as the distance where its amplitude is reduced to the ET / e of its initial
value, namely
1 B

-2 (3
k 27r\/ n12 sin? 01 -1

A being the wavelength of the incident wave.

If a third medium (denser than the second) is placed after the second one at a distance d from the
first interface, the wave vector becomes real again in this medium and the total reflection amplitude is
reduced, giving rise to a transmitted component that “escapes” into the last medium and its amplitude
decreases exponentially with d (“Frustrated Total Internal Reflection”).

More generally, inside a material medium the propagation of e.m. waves is described by the
Maxwell equation

6=

nQZQ—t‘f—v%(m):o )
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where ¢(:E',t)is a scalar component of electric or magnetic field and n = /ey is the refraction index

of the medium (equal to 1 in vacuum).
For a periodic motion we have

¢,(7,t) = o, ()™ (10)
where ¢, is the amplitude of the i-th scalar component of the field. Using equation (10) in equation
(9), the latter becomes the Helmotz equation

V2¢i(f,t)+n2w2¢i(:_ﬁ,t):0 (11)
that can be solved assuming the plane waves solution
6(2)=ge™ (12)
that, substituted in equation (11), gives a relation between k and n
k= nw? (13)
We note the (one-dimension) stationary Schrodinger equation (we assume, in the following, h = 1)
1 9
————+Viz)|Y(z)= EY(z 14
- Z vl = 2ol 09
is just in the form of the Helmotz equation namely
2
P94 om(BE-V)p=0 (15)
0
and using again the plane wave assumption (12) for the wave function ), we have
K =2m(E-V) (16)

From equation (13) we see that if n assumes an imaginary value, the wave number %k becomes
imaginary too and analogously, from equation (16), if £ <V the wave numbers in quantum packet
are imaginary as well. We remember that the condition E < Vis just what required for the tunneling
effect to occur to a quantum particle “confined” by a potential barrier of “depth” V.

We then notice the refraction index in optics plays the same role of the barrier potential in the
quantum-tunneling phenomenon so suggesting the idea that evanescent waves could be actually
tunneling modes of e.m. waves. The spreading of e.m. waves across “impenetrable” opaque optical
barriers is then analogous to the phenomenon of quantum tunneling experienced by particles through a
potential barrier.

The tunneling of evanescent modes of e.m. waves are currently interpreted, from a quantum
viewpoint, as the tunneling of virtual photons [8] through the corresponding potential barrier. As
already pointed out [3], such tunneling photons associated to evanescent field can be characterized by
a superluminal group velocity or, according to the commonly accepted picture, by a negative square
mass of the photons belonging to it.

This important result about the group velocity of evanescent e.m. waves can be easily verified

within the Fresnel’s theory that predicts the kY component of the propagation vector k normal to the

reflection plane is imaginary while the component k° parallel to the incident plane is larger than w.
In fact, if we consider the energy — momentum relation

2 2
(k) +(k”) = u? (17)
and its global variation
E°Ok" + kYK = wiw (18)
so we have, according to the Rayleigh’s formula for the group velocity of EW wave
v’ :&7 1=,y (19)
w
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When &' is real, as for ordinary progressive waves, the (19) reduce to the de Broglie relations, while,
when k% > 0 and %Y is imaginary, as in the case of EW, we have v¥ imaginary and
v > 1 (20)
since k* >w for EW, namely evanescent photons are “tachyon — like” quantum particles,
characterized by a faster than light group velocity.
The assumption about imaginary mass (or, equivalently, imaginary velocity within the Fresnel
theory) of superluminal particles is no justified by any physical hypothesis, and has important adverse
consequences since the imaginary mass is a not measurable quantity. This critical issue is obviously

also present in the quantum picture of evanescent field within which evanescent modes are considered
as virtual particles.

Nevertheless, we have already shown [9] how the analysis of the mathematical group SO(4;C’ ) of
rotation in the complex plane allows us to deduce from it, using symmetry properties only, two
complete orthochrones isomorphic Lorentz groups named Lﬁ and Eﬁ, which respectively correspond

to subluminal and superluminal set of coordinates transformations (respectively indicated by z* and
X*), characterized by real metrics of signature (+ -— —)and (— ++ —|—).

The properties of Eﬁ allow us to define the tachyonic referential frames (TRF) characterized by the

real metric

ds? = G, dX"dX"  pv=1234 21
where
-1 0 0 0
0 1 0 0
= 22
[“”] 0 0 1 0 @2)
0 0 0 1

On this basis we can also define a “tachyonic matter” whose properties originate from the metric (21)
so that for such a tachyon we have [9]

P B = (23)
where the superscript indicates the quantities referred to the tachyonic reference system (TRF) and the
tachyon rest mass p has a real physically measurable value, even within an ordinary reference frame

(ORF) in which the “usual” Lorentz metric holds, through a momentum measurement [9].

It is very important to stress equation (23) is not just the result of inserting an imaginary mass
inside the usual Einstein energy-momentum relation but the consequence of adopting the space-like
metric given by equation (21) [9].

Following this model, a space-like relativistic kinematics and dynamics have been developed and
the energy-momentum relation as well as the expressions of the four-velocity and four-force have been
calculated for tachyons of real rest mass [9].

Furthermore, the energy-momentum equation (23) has been used [9] to write a Klein-Gordon like

field equation for a spinless tachyonic quantum wave-function ¥ ( X, X, X5, X, = iT), namely
0? 0? 0? 0% |- <
L e i) =i, &
oT*  9X; 90Xy 09X
where ¢2 = 2. The existence of such tachyonic field is also compatible with the principle of relativity

as well as with that of macroscopic causality [9].
As we’ll discuss in the following, such tachyonic properties of evanescent photons or, more
correctly, their being tachyons, allow us to propose their use for the realization of a new kind of
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hypercomputation process suitable to be realized through a new kind of quantum computer system. In
the following we’ll refer to evanescent photons also as tachyons of rest mass p [9].

3. Evanescent photons in condensed matter

3.1. Preliminary considerations

In several previous works we have shown [10,11] that, under suitable boundary conditions, the
quantum vacuum fluctuations are able to couple so strong with a matter systems, trough its proper
resonances, to induce the system to “runaway”, through a “Superradiant Phase Transition” (SPT),
from the a Perturbative Ground State, characterized by the quantum zero point oscillations of e.m.
field and matter, towards a more stable (true) ground state, named the Coherent Ground State (CGS),

in which both the e.m. and matter field oscillate in phase with each other at a common frequency w, ,.

The resulting coherent state is characterized by a collective common behavior of the quantized e.m
and matter fields appearing as a macroscopic quantum object in which atoms and molecules lose its
individuality to become part of a whole electromagnetic field + matter entangled system, similar, in
many regards, to that characterizing a Bose-Einstein Condensate (BEC).

In particular, one of the most remarkable consequences of the coherent phase transition is the
formation, inside the macroscopic quantum coherent e.m. + matter system, of the so-called
“Coherence Domains” (CDs), namely the smallest spatial regions in which the coherent evolution of
the e.m. + matter field takes place, where the coherent dynamics determines an extended oscillating
polarization field able to correlate a high number of elementary matter electric dipoles so generating
stable and ordered structures in macroscopic spatial regions as the CDs.

The e.m. field coherently interacting with the matter field inside CDs shows a very special feature

[10,11] namely the frequency w, , of photons (superradiant photons) belonging to it is lower than the
frequency w, of free electromagnetic field originally interacting with matter system.

For these photons the Einstein — De Broglie relation is just the equation (23), so they can be
considered as tachyons described by the space-like metric (21) in a TRF and having a real rest mass
(see section 2).

The tachyon rest mass ;2 depends on the features of the matter system coherently interacting with

the e.m. field “condensed” from quantum vacuum, namely [9]

(25)

——eJw
3y 0

where N / V is the density, e the electron charge, a and & two real parameters describing the CGS

1
sin 2€ |2
a

1
27 N ]4

of the given system.

The condition w,, < w, [3, 10,11] also means the coherent e.m. field is “trapped” inside CDs,

coh
except for an evanescent tail of e.m. field escaping from the CD’s boundaries.

A very important feature of the coherent e.m. field so generated inside condensed matter concerns
its high stability with respect to quantum and thermal fluctuations that characterize the PGS of the
non-interacting matter and e.m field and that make the system to decohere [3,10-13]. Furthermore, in
many systems [3,10-13] this stability is expected to persist also at room temperature as long as the
coherent fraction of system components is still sufficiently high. If such conditions are satisfied, some
coherent field quanta (tachyons) can be “extracted” from CDs without the system coming out of the
coherent behavior.

The possibility to use such type of evanescent photons to realize a quantum hypercomputing
system will be discussed in the following.
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4. Quantum computation by means of evanescent photons

4.1. Preliminary considerations

Large-scale quantum computers will be able to solve certain problems much more quickly than any
classical computer using the best currently known algorithms, like integer factorization using Shor's
algorithm or the simulation of quantum many-body systems. There exist quantum algorithms, such as
Simon's algorithm, which run faster than any possible probabilistic classical algorithm [1]. Given
sufficient computational resources, a classical computer could be built to simulate any quantum
algorithm although quantum computation does not violate the Church-Turing thesis.

Nevertheless, the quantization of evanescent field and its features allow us to consider for its
quanta, namely for evanescent photons, the possibility they undergo, like “ordinary” photons, to tunnel
effect. The idea of using tunneling photons to realize signal-processing devices has been already tested
[14] by considering the transmission of light through nanometer-scale pinholes in a gold film covered
by a nonlinear dielectric, which revealed that transmittance of a nanopore or nanopore array at one
wavelength could be controlled by illumination with a second, different, wavelength.

This opens the door to optical signal processing devices, such as all-optical switches realized on a
microscopic scale which can manipulate single electrons, atoms or photons. If the atoms can be
localized at distances smaller than the radiation wavelength, they can be coherently coupled by
photons and an entangling quantum logic gate can be realized.

By applying this technology, the computer gate consisting of a large number of small,
interconnected electromagnetic ion traps created for both memory and logical processing by
manipulating atoms with the tunneling photon, may be realized. The possibility of nano-switching by
using evanescent photons in optical near-field was also proposed by T. Kawazoe and co-workers [15].

By utilizing this technologyi, it is considered that the computation using quantum tunneling photons
has the possibility to achieve much faster computational speed, and the influence of energy cost due to
the uncertainty principle which prevents speeding up the quantum computation can be overcome as
suggested in following.

In particular, as we have seen, EW tunneling photons have superluminal group velocity and in this
paper we discuss the idea of a computer system consisting of quantum gates that use quantum
tunneling photons to perform logical operations.

Benioff showed that the computation speed was close to the limit imposed by the time-energy
uncertainty principle [16]. Margolus and Levitin extended this result to a system with an averaged

energy <E>, which takes a time interval at least equal to <E> = 7T/(2At> to perform logical

operations [17].
Summing over all logical gates of operations, the total number of logic operations per second is no
more than
™N
2<E>
where At is an operational time of an elementary logical operation and N is the number of consisting
gates of the computer. From equation (26) the energy spread for the quantum tunneling photon

(abbreviated QTP, hereafter) gate becomes 1/ 16} (ﬂ — 1)times the energy spread for the logical gate

At ~

(26)

using particles moving at sub-luminal speed including photons.

Then the total number of logic operations per second for QTP gates can be given by
AN T 27
B(B-1)2< E, >

where <E'*> is an averaged energy for QTP gates. The uncertainty in the momentum of tunneling

photons moving at the superluminal speed can be given by
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Ap = -2 (28)

—w
Vo2 -1

where o is an absolute value of the mass for the tunneling photon moving at superluminal speed and

w is an angular frequency of the photon. The velocity of the tunneling photon can be then estimated
as

1
v |1+ (29)
VwAt J
from the energy and the momentum for a tachyonic particle of rest mass f , respectively given by
p—__H (30)
v? -1
p=—1— (31)
v?—1

where E = w [9].
If we denote the tunneling distance (size of the barrier) by d, the time for a photon tunneling
across the barrier can be roughly estimated to be At = d/ v, then the velocity of the tunneling photon

1 1 1
T+t —+ 32
2wd wd 4w2d2] (32)

The ratio of the minimum energy required for computation by QTP gates and the conventional

computation can be then given, by equating equation (26) and equation (27), as
E,
=tz 1 (33)
<E> pB-1)

1 1 1
~ 1—|———|—1’—+ 34
b 2wd wd  Aw?d? 34

The tunneling distance depends on the physical process involved in the generation of evanescent
photons. For example, it has been estimated [3] that if the wavelength of the tunnelling photon is in the

can be given by

V=

where

far infrared region (A ~ 10° nm), the energy cost of computation for the computer, which consists of

QTP gates, reaches to 107 times smaller than that of conventional computer systems.

In recent years, many studies on the quantum computation were conducted and it was recognized
that the computational speed of quantum computing was much higher than that of conventional silicon
processors. But the energy cost due to the uncertainty principle which prevents speeding-up of the
quantum computation was not considered.

From the theoretical analysis of the energy limit of the quantum computer system which utilizes
tunneling photons, it can be shown the energy loss of computation by utilizing superluminal tunneling
photons is much lower than that of conventional silicon processors. Moreover, this superluminal effect
can eventually speed up computers significantly because it can compensate interconnect delays inside
logic gates, which can never be fully eliminated from any real electronic components, and bringing
overall transmission rate closer to the ultimate speed limit [18], which actually boost the speed of a
signal traveling on an electromagnetic wave for achieving high performance computers.

The problem for conducting quantum computation is related to the decoherence of quantum states.

The qubit calculations of the quantum computer are performed while the quantum wave function is
in a state of superposition between states, which is what allows it to perform the calculations using
both 0 & 1 states simultaneously.

But this coherent state is generally very fragile and difficult to maintain. The slightest interaction
with the external world would cause the system to decohere. This is the problem of decoherence,
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which is a stumbling block for quantum computation. Therefore the computer has to maintain the
coherent state for making calculations.

If we let T to be the relaxation time of a single qubit and At is the operation time of a single
logical gate, the figure of merit  for computation can be defined as v = t/ At [19], which is on the
order of the number of qubits times the number of gate operations. As a superposition state of the L-
qubits system would cause decoherence approximately 2”times faster than a superposition state of

one qubit [20], then the relaxation time of the L-qubits system can be roughly estimated to be 27~
times the relaxation time of a single qubit computation.
The minimum energy required to perform quantum computation for the L-qubits system can be
then given by
v.L
E, ~ C?ZL (35
where v, is the number of gate operations.

Similar to this equation, the minimum energy required to perform quantum computation utilizing
superluminal particle can be estimated as [21]

E! ~ —UGL ok
' BB 1T

Supposing that E, = E('), an increase of qubit size to perform computation by superluminal evanescent

(36)

photon compared with the conventional computation can be given by

~ IOgg[/B(ﬁ B 1)]

AL ~
1+1/ Llog2

(37
when satisfying AL < L.
From which, we can estimate a meaningful increase of qubit size of the quantum computation
utilizing superluminal evanescent photons compared with the conventional computer system.
Nevertheless, as we have seen, one of the most important problem remains the decoherence of the
quantum system used to implement calculations. Considering evanescent photons can circumvent this
important limitation.

4.2. Decoherence time in quantum computation with evanescent photons
If we consider a quantum computer system utilizing evanescent photons (tachyons), each
computational gate could be entangled with each other, according to the property of non-locality, to
exert influences outside the extent of the processor. This is due to the quantum nature of the tachyon
field generated inside CD and to its evanescent tail “escaping” from it and capable to interact with
similar fields associated to the neighbourhood CDs.

According to Zurek, the density matrix p(z,z’) of the particle in the position representation evolves

by the master equation [22]

o 0
)= —iH.pl— Y I
p=—iH,p]—~(z z)[ﬁa: o0

where H is the particle Hamiltonian, + is the relaxation rate, kj is the Boltzmann constant, 7" the

p = 2mykT(z —2')’p (38)

temperature and m the mass of the field. He has also shown the off-diagonal peaks of the density
matrix, p(z,z') = $(z)¢ («/) will decay at the rate (Az ~ z'— x)

d 2ymk,T +

—(p*) ~ - QBi = (39)
T (aappt T,
from which, quantum coherence will disappear on a time scale given by
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1

Az 2mkgT

Thus the decoherence time in a quantum processor utilizing evanescent photons is obtained as
2

[6(6 — 1P (41)

(40)

TD:'TR

1
Az 2mk,T
where § is given by equation (34).
If the error rate is small enough, it is thought to be possible to use quantum error correction, which

eliminates the errors due to decoherence, thereby allowing the total calculation time to be longer than
the decoherence time.

/

TD%TR

5. Hypercomputation by evanescent photons

Hypercomputation, which can complete infinitely many steps of computation, refers to models of
computation that goes beyond, or are incomparable to, Turing computability. The term
"hypercomputation" was introduced in 1999 by Jack Copeland and Diane Proudfoot [23]. This
includes various hypothetical methods for the computation of non-Turing-computable functions.

The Church-Turing thesis states that any function that is algorithmically computable can be
computed by a Turing machine. Hypercomputers compute functions that a Turing machine cannot and
which are, hence, not computable in the Church-Turing sense.

Feynman defined the required energy per step of computation as [1]

f—b
energy per step = kT G+0)/2 (42)
where £, is Boltzmann’s constant, 7" is a temperature, f is a forward rate of computation and b is
backward rate. Supposing there in no energy supply and the parameters f and b are fixed during the
computation, we can consider the infinite computational steps given by
E, = kE,E, = kE,,...,.E, = kE (43)

where we let the initial energy of computation to be E, = k,T , k = 2( f- b) / ( f+ b) ,and E isthe

17"

energy for the n-th computational step. From the above relations we have E = k"E, and then the
energy loss for each computational step becomes
AE, = B, — E, = (1-k)E,
AE, = E, - E, = (1 - k)kE, (a4)

AE =E , —E =(1-kk"'E,

According to Lloyd [24], a quantum system with average energy AF requires at least a time At to
evolve to an orthogonal state given by

.
T 2AE
from which, if setting £ = AE, into equation (45), the total energy required to perform the infinite

At (45)

steps is equal to E|. The total time needed for the computation with infinite steps then becomes [3]

= T — 1
T=>) At =—> ——— (406)
; 2EO n=1 (1 - k)k7771
As the infinite sum (46) diverges to infinity when 0 < k£ <1, the Feynman model of computation

requires infinite time to complete the calculation.
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Hence an accelerated Turing machine cannot be realized for computers utilizing ordinary particles
due to the constraint imposed by the time — energy uncertainty principle.
If we consider the relativistic expressions of energy and momentum of a tachyon of rest mass p

and velocity v

B = 47)
1—0°
and
p=— (48)
1—?
the relation between energy and momentum can be written as
p==2 (49)
v
from which, we have, after differentiating
vAp — pAv _ AE (50)
2
Supposing we can assume Av/ v? & 0, equation (50) can be simplified as
Ap ~ vAFE (51)
According to Park [25], the uncertainty relation for a superluminal particle can be written as
Ap At~ 1 (52)
v—v

where v and v’ respectively indicate the velocities of the particle after and before their measurements.
By substituting equation (51) into equation (52), we obtain the uncertainty relation for superluminal
particles, namely
1
BB —1)

when we let v’ =1 and 3 = v. If we then consider superluminal particles, the time required for the
quantum system to perform the computation becomes, from the uncertainty principle for superluminal
particles given by equation (51) [16]

AE - At ~

(53)

= T 1
T=>Y At;=— (54)
n=1 2E‘O n=1 ﬂn(ﬁn - 1) (1 - k)k"71
where ( is given by
2 2
= e )
E’ [ O
From equation (54) and equation (55), we calculate the computation time can be accelerated (figure 1).
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Figure 1. Time required to conduct computation at each step by using “tachyon-like” particles (k = 1/ 2).

Numerical calculations have shown that the infinite sum given by equation (54) converges to a
certain value when 0 < k <1, as shown in figure 2, in which the horizontal line represents the

parameter v = u / E, and the vertical line the time to complete infinite step of calculations.

Figure 2. Computational time required required time when using “tachyon-lile” particles.

From these calculation results, it is clear that an accelerated TM can be in principle realized by
using, within the Feynman computational model, superluminal particles instead of subluminal ones.

Thus, contrary to the conclusion currently drawn from Feynman model of computation related to
ordinary particles, we have shown the use of superluminal particles can overcome the theoretical
questions posed by such model, so allowing the realization of an accelerated TM.

6. A novel computational architecture for quantum hypercomputation

Basing on the assumption that the evanescent photon is a measurable and experimentally accessible
superluminal particle of real rest mass [9], it is possible to show [26] a tubule structure constructed by
MTMs can achieve quantum bit (qubit) computations on large data sets, which would account for the
high performance of the computations and very low energy consumption if compared with the
conventional silicon processors.

It therefore seems highly plausible that macroscopic quantum ordered dynamical systems of
evanescent photons in the processor could play an essential role in realizing long-range coherence in a
computing system.

As already shown by Ziolkowski superluminal pulse propagation, which permits consequent
superluminal exchange without a violation of macroscopic causality, is possible in electromagnetic
MTMs [27].

These MTMs achieve desired effects by incorporating structural elements of sub-wavelength sizes,
i.e. features that are actually smaller than the wavelength of the waves, giving rise to a negative
refractive index. Such materials then allow the creation of “super lenses” that can have a spatial
resolution below that of the incident wavelength.

If a material medium possesses a negative refractive index, the generation of evanescent photons is
enhanced, and these propagate without loss according to the properties of a MTM [28].

Since the fundamental building block of modern electronic computers is the transistor, the
possibility to implement the above process in order to realize a quantum super-computer would require
to replace electronic components with optical ones, namely the realization of an equivalent optical
transistor.
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This could be achieved by using materials characterized by a non-linear refractive index. In
particular, we know about some materials for which the intensity of incoming light affects the
intensity of the transmitted one through the material in a similar manner to the voltage response of an
electronic transistor. Such an "optical transistor" [29] can be used to create optical logic gates, which
in turn are assembled into the higher-level components of the computer's CPU. These will be nonlinear
crystals used to manipulate light beams in order to control other ones.

These devices make possible to implement the so-called “photonic logic”, namely the use of photons
(light) in logic gates such as NOT, AND, OR, NAND, and etc. in which the switching is obtained by
using nonlinear optical effects when two or more signals are combined.

The resonators, like those composing MTMs, can be particularly useful in photonic logic, since
they allow a build-up of energy from constructive interference, thus enhancing optical nonlinear
effects by using semiconductors inside the sub-structure of an MTM.

The conceptual scheme of superluminal computation so far emerged is then shown in Fig. 3 and it
is composed by three elements: 1) an evanescent photon generator, 2) a quantum processor and 3) an
holographic memory.

Evanescent photon
Generator

—i—

Quantum ﬁ Holographic
Processor Memory

Fig. 3. Schematic diagram of superluminal computing.

The quantum processor and the holographic memory can be implemented by the substructures of
MTMs when assembled according to a tube-like structure. An example of an evanescent photon field
“generator” is shown in Fig. 4.

cvancscent field

high refractive index layer

Tow index goupling layver

/)&wm

Evanescent
wave

Excitation

light — :‘>

Fig. 4. Structure of evanescent photon generator.
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It can be realized through tube-like structures, by coupling two or more electromagnetic elements,
such as optical waveguides, close together so that the evanescent field generated by one element does
not decay too much before it reaches the next one.

By means of these waveguides, the evanescent field gives rise to propagating-wave modes, thereby
connecting the wave from one waveguide to the next. Mathematically, the process is the same as that
of quantum tunneling.

7. Outlook and further considerations

It is known that an accelerate Turing machines allow us to “compute” some functions which are not
Turing-computable like, for example, the HP [30], described as: “given a description of an arbitrary
computer program, decide whether the program finishes running or continues to run forever”.

A Turing machine then cannot decide if an arbitrary program halts or runs forever. Some proposed
hypercomputers can simulate the program for an infinite number of steps and tell the user whether the
program halted. The HP for Turing machines can be easily solved by an accelerated Turing machine
using a pseudocode algorithm like the following:

begin program;

write 0 on the first position of the output tape;

begin loop;

simulate 1 successive step of the given Turing machine on the given input;

if the Turing machine has halted, then write 1 on the first position of the output tape and break out of]
loop;

end loop;

end program.

From our results, we can theoretically build, by using superluminal particles, an “oracle machine”

namely an abstract machine used to study decision problems within a single operation.
Such machine can perform all of the usual operations of a TM, and also asking the oracle itself to
obtain a solution to any instance of the computational problem for that oracle. For example, if the
problem is a decision problem for a set A of natural numbers, the oracle machine supplies the oracle
with a natural number, and the oracle responds with "yes" or "no" stating whether that number is an
element of A.

Given a device that tell you in advance whether a given computer program would halt, or go on
running forever, you would be able to prove or disprove any theorem whatsoever about integers like,
for example, the Goldbach Conjecture (GC) or the Riemann Hypothesis (RH).

You would simply show this “Oracle” a program that would loop through all the integers, testing
every possible set of values and only halting if it came to a set that violated the conjecture. Such TMs
then could perform countable infinite number of computational steps within a finite time.

In principle, the use superluminal particles for computer technology could allow us, in the near
future, to build up a hypercomputer device whose impact on the understanding of quantum computing
and its physical basis as well as to its application to the development of strategic fields as, first of all,
that of Al systems, could be unimaginable.
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