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G.R. Snow,61 J. Snow,68 S. Snyder,67 S. Söldner-Rembold,41 L. Sonnenschein,18 K. Soustruznik,6 J. Stark,11

D.A. Stoyanova,35 M. Strauss,69 L. Suter,41 P. Svoisky,69 M. Takahashi,41 M. Titov,15 V.V. Tokmenin,32

Y.-T. Tsai,65 K. Tschann-Grimm,66 D. Tsybychev,66 B. Tuchming,15 C. Tully,63 L. Uvarov,36 S. Uvarov,36

S. Uzunyan,47 R. Van Kooten,49 W.M. van Leeuwen,30 N. Varelas,46 E.W. Varnes,42 I.A. Vasilyev,35 P. Verdier,17

 Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

http://arxiv.org/abs/1207.5819v3


2

A.Y. Verkheev,32 L.S. Vertogradov,32 M. Verzocchi,45 M. Vesterinen,41 D. Vilanova,15 P. Vokac,7 H.D. Wahl,44

M.H.L.S. Wang,45 J. Warchol,51 G. Watts,76 M. Wayne,51 J. Weichert,21 L. Welty-Rieger,48 A. White,72 D. Wicke,23

M.R.J. Williams,39 G.W. Wilson,53 M. Wobisch,55 D.R. Wood,57 T.R. Wyatt,41 Y. Xie,45 R. Yamada,45 S. Yang,4

W.-C. Yang,41 T. Yasuda,45 Y.A. Yatsunenko,32 W. Ye,66 Z. Ye,45 H. Yin,45 K. Yip,67 S.W. Youn,45 J.M. Yu,58

J. Zennamo,64 T. Zhao,76 T.G. Zhao,41 B. Zhou,58 J. Zhu,58 M. Zielinski,65 D. Zieminska,49 and L. Zivkovic71

(The D0 Collaboration∗)
1LAFEX, Centro Brasileiro de Pesquisas F́ısicas, Rio de Janeiro, Brazil

2Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
3Universidade Federal do ABC, Santo André, Brazil
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We present a search for the standard model (SM) Higgs boson produced in association with
a Z boson in 9.7 fb−1 of pp̄ collisions collected with the D0 detector at the Fermilab Tevatron
Collider at

√
s = 1.96 TeV. Selected events contain one reconstructed Z → e+e− or Z → µ+µ−

candidate and at least two jets, including at least one jet identified as likely to contain a b quark.
To validate the search procedure, we also measure the cross section for ZZ production in the same
final state. It is found to be consistent with its SM prediction. We set upper limits on the ZH
production cross section times branching ratio for H → bb at the 95% C.L. for Higgs boson masses
90 ≤ MH ≤ 150 GeV. The observed (expected) limit for MH = 125 GeV is 7.1 (5.1) times the SM
cross section.

PACS numbers: 13.85.Ni, 13.85.Qk, 13.85.Rm, 14.80.Bn

In the standard model (SM), the spontaneous break-
ing of the electroweak gauge symmetry generates masses
for the W and Z bosons and produces a residual mas-
sive particle, the Higgs boson [1]. Precision electroweak
data, including the latest W boson mass measurements
from the CDF [2] and D0 [3] Collaborations, and the
latest Tevatron combination for the top quark mass [4]
constrain the mass of the SM Higgs boson to MH <

152 GeV [5] at the 95% confidence level (C.L.). Direct
searches at the CERN e+e− Collider (LEP) [6], by the
CDF and D0 Collaborations at the Fermilab Tevatron pp
Collider [7], and by the ATLAS and CMS Collaborations
at the CERN Large Hadron Collider (LHC) [8, 9] further
restrict the allowed range to 116.6 < MH < 119.4 GeV
and 122.1 < MH < 127.0 GeV. The ATLAS and CMS

∗with visitors from aAugustana College, Sioux Falls, SD, USA,
bThe University of Liverpool, Liverpool, UK, cUPIITA-IPN, Mex-
ico City, Mexico, dDESY, Hamburg, Germany, eSLAC, Menlo
Park, CA, USA, fUniversity College London, London, UK, gCentro
de Investigacion en Computacion - IPN, Mexico City, Mexico,
hECFM, Universidad Autonoma de Sinaloa, Culiacán, Mexico and
iUniversidade Estadual Paulista, São Paulo, Brazil.

results indicate excesses above background expectations
at MH ≈ 125 GeV. With additional data and analysis
improvements, the LHC experiments confirm their initial
indications and observe a particle with properties consis-
tent with those predicted for the SM Higgs boson [10].

For MH . 135 GeV, the primary decay is to the bb̄

final state [11]. At the Tevatron, the best sensitivity to
a SM Higgs boson in this mass range is obtained from
the analysis of its production in association with a W

or Z boson and its subsequent decay into bb̄. Evidence
for a signal in this decay mode would complement the
LHC findings and provide further indication that the new
particle is the SM Higgs boson.

We present a search for ZH → ℓ+ℓ−bb̄ events, where ℓ
is either a muon or an electron. The data for this analysis
were collected at the Tevatron at

√
s = 1.96 TeV with

the D0 detector from April 2002 to September 2011 and
correspond to an integrated luminosity of 9.7 fb−1 after
data quality requirements are imposed, which represents
the full Run II data set. To validate the search proce-
dure, we also present a measurement of the ZZ produc-
tion cross section in the same final states and topologies
used for the search. The results presented here supersede
our previous search in the ZH → ℓ+ℓ−bb̄ channel [12].
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Beyond the inclusion of additional data, the most signif-
icant updates to this analysis are the use of an improved
b-jet identification algorithm, revisions to the kinematic
fit, and a new multivariate analysis strategy. A search
for ZH → ℓ+ℓ−bb̄ has also been performed by the CDF
Collaboration [13].
The D0 detector [14, 15] consists of a central tracking

system within a 2 T superconducting solenoidal magnet
and surrounded by a preshower detector, three liquid-
argon sampling calorimeters, and a muon spectrometer
with a 1.8 T iron toroidal magnet. In the intercryostat
regions (ICRs) between the central and end calorime-
ter cryostats, plastic scintillator detectors enhance the
calorimeter coverage. The analyzed events were ac-
quired predominantly with triggers that select electron
and muon candidates online. However, events satisfying
any trigger requirement are considered in this analysis.
The event selection requires a pp interaction vertex

that has at least three associated tracks. Selected events
must contain a Z → ℓ+ℓ− candidate. The analysis is
conducted in four separate channels. The dimuon (µµ)
and dielectron (ee) channels include events with at least
two fully reconstructed muons or electrons. In addition,
muon-plus-track (µµtrk) and electron-plus-ICR electron
(eeICR) channels are designed to recover events in which
one of the leptons points to a poorly instrumented region
of the detector.

The µµ event selection requires at least two muons
identified in the muon system, both matched to central
tracks with transverse momenta pT > 10 GeV. At least
one muon must have |η| < 1.5, where η is the pseudo-
rapidity, and pT > 15 GeV. At least one of the muons
must be separated from any jet with pT > 20 GeV and

|η| < 2.5 by ∆R =
√

∆η2 +∆φ2 > 0.5, from other
tracks, and from energy deposited in the calorimeter. We
also apply isolation requirements based on the ratios of
the calorimeter energy and the sum of pT of tracks near
the lepton to the lepton pT in this analysis.
The µµtrk event selection requires exactly one muon

with |η| < 1.5 and pT > 15 GeV that is isolated both in
the tracker and in the calorimeter. In addition, a second
isolated track reconstructed in the tracker with |η| < 2
and pT > 20 GeV must be present. Its distance ∆R from
the muon and from any jet of pT > 15 GeV and |η| < 2.5
must be greater than 0.1 and 0.5, respectively. For the
µµ and µµtrk channels, the two muon-associated tracks
must have opposite charge.
The ee event selection requires at least two electrons

with transverse energy ET > 15 GeV that pass selec-
tion requirements based on the energy deposition and
shower shape in the calorimeter and the preshower de-
tector. Both electrons are required to be isolated in the
tracker and the calorimeter. At least one electron must
be identified in the region |η| < 1.1. The electrons in
|η| < 1.1 must match central tracks or a set of hits in the
tracker consistent with that of an electron trajectory.
The eeICR event selection requires exactly one electron

in the calorimeter with ET > 15 GeV and a track point-

ing toward one of the ICRs, 1.1 < |η| < 1.5. The track
must be isolated, be matched to a calorimeter energy de-
posit with ET > 10 GeV and have pT > 15 GeV. For
the ee and eeICR selections, electrons must be separated
from all jets by ∆R > 0.5.

Jets are reconstructed in the calorimeter by using the
iterative midpoint cone algorithm [16] with a cone of ra-
dius 0.5 in rapidity and azimuthal angle. The jet identi-
fication efficiency is ≈ 95% at pT = 20 GeV and reaches
99% at pT = 50 GeV. Jets are denoted as “taggable”
if the associated tracks meet criteria that algorithms to
identify jets as likely to contain b-quarks operate effi-
ciently. The taggability efficiency is at least 90% for most
of the jets in this analysis. We use “inclusive” to denote
the event sample selected by requiring the presence of
two leptons and use “pretag” for the event sample that
meets the additional requirements of having at least two
taggable jets with pT > 20 GeV and |η| < 2.5 and a
dilepton invariant mass 70 < mℓℓ < 110 GeV [17].

Jets are identified as likely to contain b quarks (b-
tagged) if they pass “loose” or “tight” requirements on
the output of a multivariate discriminant trained to sep-
arate b jets from light jets. This discriminant is an im-
proved version of the neural network b-tagging discrimi-
nant described in Ref. [18]. For taggable jets in |η| < 1.1
and with pT ≈ 50 GeV, the b-tagging efficiency for b
jets and the misidentification probability of light (uds or
gluon) jets are, respectively, 72% and 6.7% for loose b
tags, and 47% and 0.4% for tight b tags. Events with
at least one tight and one loose b tag are classified as
double-tagged (DT). Events not in the DT sample that
contain a single tight b tag are classified as single-tagged
(ST).

The dominant background process is the production
of a Z boson in association with jets, with the Z decay-
ing to dileptons (Z+jets). The light-flavor component
(Z+LF) includes jets from only light quarks or gluons.
The heavy-flavor component (Z+HF) includes Z + bb̄,
which has the same final state as the signal, and Z + cc̄
production. The remaining backgrounds are from tt̄ pro-
duction; WW , WZ, and ZZ (diboson) production; and
multijet (MJ) events with nonprompt muons or with jets
misidentified as electrons.

We simulate ZH and diboson production with
pythia [19]. In the ZH samples, we consider the con-
tributions to the signal from the ℓ+ℓ−bb̄, ℓ+ℓ−cc̄, and
ℓ+ℓ−τ+τ− final states. The ℓ+ℓ−bb accounts for 99%
(97%) of the signal yield in the DT (ST) sample. The
Z+jets and tt̄ processes are simulated with alpgen [20],
followed by pythia for parton showering and hadroniza-
tion [21]. All simulated samples are generated by us-
ing the CTEQ6L1 [22] leading-order parton distribution
functions. We process all samples by using a detector
simulation program based on geant3 [23] and the same
offline reconstruction algorithms used for data. We over-
lay events from randomly chosen beam crossings with
the same instantaneous luminosity distribution as data
on the generated events to model the effects of multiple
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pp interactions and detector noise.

We take the cross sections and branching ratios for
signal from Refs. [11, 24]. For the diboson processes,
we use next-to-leading order (NLO) cross sections from
the Monte Carlo program mcfm [25]. We scale the tt
cross section to approximate next-to-NLO [26] and the
inclusive Z boson cross section to next-to-NLO [27] and
apply additional NLO heavy-flavor corrections to the Z+
bb̄ and Z + cc̄ samples, calculated from mcfm to be 1.52
and 1.67, respectively.

To improve the modeling of the pT distribution of the
Z boson, we reweight simulated Z+jets events to be con-
sistent with the measured pT spectrum of Z bosons in
the data [28]. We correct the energies of simulated jets
to reproduce the resolution and energy scale observed in
the data [29]. We apply the trigger efficiencies, measured
in the data, as event weights to the simulated µµ, µµtrk

and eeICR events. In the ee channel, we have verified that
the trigger efficiency is consistent with 100% for our se-
lection. We apply scale factors to account for differences
in reconstruction efficiency between the data and simula-
tion. Motivated by a comparison with data [30] and the
sherpa generator [31], we reweight the Z+jets events to
improve the alpgen modeling of the distributions of the
η of the two jets.

We estimate the MJ backgrounds from control samples
in data obtained by inverting some of the lepton selec-
tion requirements, e.g., the lepton isolation requirements
in the µµ channel and the shower shape requirements
in the ee channel. We adjust the normalizations of the
MJ background and all simulated samples by scale fac-
tors determined from a simultaneous fit to the mℓℓ dis-
tributions in the 0-jet, 1-jet, and ≥ 2-jet samples of each
lepton selection. The inclusive sample constrains the lep-
ton trigger and identification efficiencies, while the pre-
tag sample, which includes jet requirements, is used to
correct the Z+jets cross section. The total event yields
after applying all corrections and normalization factors
are shown in Table I. The observed event yields are con-
sistent with the expected background.

To exploit the fully constrained kinematics of the
ZH → ℓ+ℓ−bb process, we adjust the energies of the can-
didate leptons and jets within their experimental resolu-
tions by using a likelihood fit that constrains mℓℓ to the
mass and width of the Z boson and constrains the pT of
the ℓ+ℓ−bb system to zero with an expected width deter-
mined from ZH Monte Carlo events. This kinematic fit
improves the dijet mass resolution by 10%−15%, depend-
ing onMH . The dijet mass resolution forMH = 125 GeV
is ≈ 15 GeV with the kinematic fit [17].

We use a two step multivariate analysis strategy based
on random forest (RF, an ensemble classifier that con-
sists of many decision trees) discriminants [32], as im-
plemented in the tmva software package [33], to improve
the separation of signal from background [17]. We choose
well modeled kinematic variables that are sensitive to the
ZH signal as inputs for the analysis. These include the
pT of the two b-jet candidates and the dijet mass, before

and after the jet energies are adjusted by the kinematic
fit. In the first step, we train a dedicated RF (tt RF) that
takes tt as the only background and ZH as the signal.
This approach takes advantage of the characteristic sig-
nature of the tt background, for instance, the presence
of large missing transverse energy. In the second step,
we use the tt̄ RF to define two independent regions: a tt̄
enriched region (tt̄ RF < 0.5) and a tt̄ depleted region (tt̄
RF ≥ 0.5). The tt depleted region contains 94% (93%) of
the DT (ST) signal contribution and 55% (82%) of DT
(ST) background events. In each region, we train a global
RF to separate the ZH signal from all backgrounds. In
both steps we consider ST and DT events separately and
train the discriminants for each assumed value of MH in
5 GeV steps from 90 to 150 GeV.

We assess systematic uncertainties resulting from the
background normalization for the MJ contribution, typ-
ically 10%. The normalization of the Z+jets sample to
the pretag data constrains that sample to the statisti-
cal uncertainty, <1%, of the pretag data. Because this
sample is dominated by the Z+LF background, the nor-
malization of the tt, diboson, and ZH samples acquires
a sensitivity to the inclusive Z cross section, for which
we assess a 6% uncertainty [27]. We assign this uncer-
tainty to these samples as a common uncertainty. For
Z+HF, a cross section uncertainty of 20% is determined
from Ref. [25]. For other backgrounds, the uncertain-
ties are 6%–10% [25, 26]. For the signal, the cross sec-
tion uncertainty is 6% [24]. Sources of systematic un-
certainty affecting the shapes of the final discriminant
distributions are the jet energy scale, 1%–3%; jet energy
resolution, 2%–4%; jet identification efficiency, ≈ 4%;
and b-tagging efficiency, 4%–6%. Other sources include
trigger efficiency, 4%–6%; parton distribution function
uncertainties [34], <1%; data-determined corrections to
the model for Z+jets, 3%–4%; modeling of the underly-
ing event, <1%; and from varying the factorization and
renormalization scales for the Z+jets simulation, <1%.

The global RF distributions from the four samples (ST
and DT in the tt depleted and tt enriched regions) in each
channel along with the corresponding systematic uncer-
tainties are used for the statistical analysis of the data.
We set 95% C.L. upper limits on the ZH cross section
times branching ratio for H → bb with a modified fre-
quentist (CLs) method that uses the log likelihood ra-
tio of the signal+background (S+B) hypothesis to the
background-only (B) hypothesis [35]. To minimize the
effect of systematic uncertainties, we maximize the likeli-
hoods of the B and S+B hypotheses by independent fits
that allow the sources of systematic uncertainty to vary
within their Gaussian priors [36].

To validate the search procedure, we search for ZZ

production in the ℓ+ℓ−bb and ℓ+ℓ−cc final states. We
use the same event selection, corrections to our signal
and background models, and RF training procedure as
for the ZH search [17]. Our search also includes WZ

production in the csℓ+ℓ− final state. We collectively re-
fer to these as V Z production. Using the same modified
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TABLE I: Expected and observed event yields for all lepton channels combined after requiring two leptons (inclusive), after
also requiring at least two jets (pretag), and after requiring exactly one (ST) or at least two (DT) b-tags. The ZH signal yields
are for MH = 125 GeV. The uncertainties quoted on the total background for ST and DT and signal include the statistical
and systematic uncertainties.

Data Total background MJ Z+LF Z+HF Diboson tt ZH
Inclusive 1845610 1841683 160746 1630391 46462 2914 1170 17.3 ± 1.1
Pretag 25849 25658 1284 19253 4305 530 285 9.2 ± 0.6
ST 886 824± 102 54 60 600 33 77 2.5 ± 0.2
DT 373 366± 39 25.7 3.5 219 19 99 2.9 ± 0.2
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FIG. 1: (color online). Distributions of the global RF discrim-
inant in the tt depleted region, assuming MH = 125 GeV,
after the fit to the background-only model for data (points
with statistical error bars) and background (histograms) for
(a) single-tagged events and (b) double-tagged events. (c)
Background-subtracted distribution for (b). The signal dis-
tribution is shown with the SM cross section scaled by a factor
of five. The blue lines indicate the uncertainty from the fit.

frequentist method as for the ZH search and fitting the
RF distributions to the S+B hypothesis, we measure a
V Z cross section of 0.8±0.4 (stat)±0.4 (syst) times that
of the SM prediction with a significance of 1.5 standard
deviation (s.d.) and an expected significance of 1.9 s.d.
This result is consistent with the recent D0 ZZ + WZ
cross section measurement obtained in fully leptonic de-

cay channels [37].

The output of the RF trained to separate signal events
with MH = 125 GeV from background is shown in Fig. 1
for ST and DT events separately in the tt depleted re-
gion, after the background-only fit. Also shown is the
background-subtracted RF distribution for DT events in
the data. The upper limit on the cross section times
branching ratio for H → bb, expressed as a ratio to the
SM prediction, is presented as a function of MH in Ta-
ble II and Fig. 2. At MH = 125 GeV, the observed
(expected) limit on this ratio is 7.1 (5.1). The expected
limits are ≈ 20% lower than those anticipated from the
increase in the data because of the analysis improvements
described above.

)
b

b
→

B
r(

H
×

Z
H

)
→

p
(pσ

Li
m

it 
/ 1

10

-1, 9.7 fbD  Observed Limit
Expected Limit
Expected 1 s.d.±

±Expected 2 s.d.

 (GeV)HM
90 100 110 120 130 140 150

FIG. 2: (color online). Expected and observed 95% C.L. cross
section upper limits on the ZH cross section times branching
ratio for H → bb, expressed as a ratio to the SM prediction.

In summary, we have searched for SM Higgs boson
production in association with a Z boson in the final state
of two charged leptons (electrons or muons) and two b-
quark jets by using a 9.7 fb−1 data set of pp̄ collisions at√
s = 1.96 TeV. We also measure the cross section for

V Z production in the same final state with the result of
0.8 ± 0.4 (stat) ± 0.4 (syst) times its SM prediction. We
set an upper limit on the ZH production cross section
times branching ratio for H → bb as a function of MH .
The observed (expected) limit for MH = 125 GeV is 7.1
(5.1) times the SM cross section.
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TABLE II: The expected and observed 95% C.L. upper limits on the ZH production cross section times branching ratio for
ZH → ℓ+ℓ−bb̄, expressed as a ratio to the SM prediction.

MH (GeV) 90 95 100 105 110 115 120 125 130 135 140 145 150

Expected 2.6 2.7 2.8 3.0 3.4 3.7 4.3 5.1 6.6 8.7 12 18 29
Observed 1.8 2.3 2.2 3.0 3.7 4.3 6.2 7.1 12 16 19 31 53
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FIG. 3: The dilepton mass spectra in the (a) µµ, (b) µµtrk, (c) ee and (d) eeICR channels. Distributions are shown in the
pretag control sample, in which all selection requirements except b-tagging are applied. Signal distributions, for MH = 125
GeV, are scaled by a factor of 500.

The dimuon and dielectron mass spectra, after requiring two leptons and at least two jets are shown in Fig. 3.
Distributions of the dijet invariant mass spectra before and after adjustment by the kinematic fit, are shown in Fig. 4.
A complete list of RF input variables is shown in Table III. Comparisons of the data and MC distributions of the
tt RF output summed over all lepton channels are shown for MH = 125 GeV in Figure 5. Post-kinematic fit dijet
mass distributions for ST and DT in the tt depleted region are shown in Fig. 6. Fig. 7 displays the global RF
distributions in the tt enriched region, after the fit to the background-only hypothesis. Fig. 8 shows the observed
LLR as a function of Higgs boson mass. Also shown are the expected (median) LLRs for the background-only and
signal+background hypotheses, together with the one and two standard deviation bands about the background-only
expectation. Fig. 9 shows the post-fit RF distributions in the tt depleted region for the V Z search. Fig. 10 displays
the post-fit distribution of the dijet invariant mass from the kinematic fit.
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FIG. 4: Dijet invariant mass distributions before the kinematic fit in (a) ST events and (b) DT events; and after the kinematic
fit in (c) ST events and (d) DT events, combined for all lepton channels. Signal distributions (MH = 125 GeV) are shown with
the SM cross section multiplied by 20.

TABLE III: Variables used for the tt and global RF training. The jets that form the Higgs boson candidate are referred to as
b1 and b2.

variables definition tt̄ RF global RF

mbb(mbb
fit

) invariant mass of the dijet system before (after) the kinematic fit
√ √

pb1T (pb1T
fit

) transverse momentum of the first jet before (after) kinematic fit
√ √

pb2T (pb2T
fit

) transverse momentum of the second jet before (after) kinematic fit
√ √

pbbT transverse momentum of the dijet system before the kinematic fit
√ √

∆φ(b1, b2) ∆φ between the two jets in the dijet system − √
∆η(b1, b2) ∆η between the two jets in the dijet system − √
m(

∑
ji) invariant mass of all jets in the event (the multijet mass)

√ √
pT (

∑
ji) transverse momentum of all jets in the event

√ √
HT (

∑
ji) scalar sum of the transverse momenta of all jets in the event

√ −
pbbT /(|pb1T |+ |pb2T |) ratio of dijet system pT over the scalar sum of the pT of the two jets

√ −
mℓℓ invariant mass of the dilepton system

√ −
pZT transverse momentum of the dilepton system

√ √
∆φ(ℓ1, ℓ2) ∆φ between the two leptons

√ √
colinearity(ℓ1, ℓ2) cosine of the angle between the two leptons (colinearity)

√ √
∆φ(ℓℓ, bb) ∆φ between the dilepton and dijet systems

√ √
cos θ∗ cosine of the angle between the incoming proton and the Z in the zero momentum frame a − √
m(ℓℓbb) Invariant mass of dilepton plus dijet system − √
HT (ℓℓbb) Scalar sum of the transverse momenta of the leptons and jets − √
6ET missing transverse energy of the event

√ −
/E
sig

T the 6ET significance b √ √
− ln Lfit negative log likelihood from the kinematic fit

√ √

tt RF tt RF output − √

aS. Parke and S. Veseli, Phys. Rev. D 60, 093003 (1999).
bA. Schwartzman, FERMILAB-THESIS-2004-21.
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FIG. 5: The tt RF output (MH = 125 GeV) for all lepton channels combined (a) ST and (b) DT events. Signal distributions
are shown with the SM cross section multiplied by 20. The vertical arrows indicate the tt RF selection requirement used to
define the tt enriched and depleted samples.
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FIG. 6: Post-kinematic fit dijet mass distributions in the tt̄ depleted region for all lepton channels combined assuming MH = 125
GeV for (a) ST events and (b) DT events. Signal distributions are shown with the SM cross section multiplied by 20.
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FIG. 7: Post-fit RF output distributions in the tt enriched region, assuming MH = 125 GeV, after the fit to the background-only
model for (a) ST events and (b) DT events. Background-subtracted distributions for (a) and (b) are shown in (c) and (d),
respectively. Signal distributions are shown with the SM cross section scaled to 50 × SM prediction in (c) and (d). The blue
lines are the total posterior systematic uncertainty following a fit of the background to the data.
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FIG. 9: Post-fit V Z RF output distributions in the tt depleted region after the fit to the S+B model for (a) ST events and (b)
DT events. Background-subtracted distributions for (a) and (b) are shown in (c) and (d), respectively. Signal distributions are
scaled to the measured V Z cross section. The blue lines indicate the uncertainty from the fit.
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FIG. 10: Post-fit distributions of the dijet invariant mass (from the kinematic fit) in the tt depleted region after the fit to the
S+B model for (a) ST events and (b) DT events. Background-subtracted distributions for (a) and (b) are shown in (c) and (d),
respectively. Signal distributions are scaled to the measured V Z cross section. The blue lines indicate the uncertainty from
the fit.
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