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ABSTRACT Annealers leverage quadratic unconstrained binary optimization (QUBO) formulas to address
combinatorial optimization problems (COPs) and have shown potential to outperform classical computers.
This paper examines three prominent types of annealers: quantum, digital, and GPU annealers. Quantum
annealers (QAs) are exemplified by the D-Wave Advantage, which relies on the quantum tunneling
phenomenon to rapidly locate the minimum-energy system state corresponding to the optimal solution to
a COP. Digital annealers (DAs) are typified by the Fujitsu Digital Annealing Unit (DAU), which is based
on a quantum-inspired digital architecture to perform parallel and real-time optimization calculations to solve
a COP. GPU annealers (GPUAs) are exemplified by the Compal Quantix solver, which harnesses graphics
processing units (GPUs) to conduct the diverse adaptive bulk search for the optimal COP solution. This
paper first provides an introductory overview of the QA, DA, and GPUA, and then proceeds to benchmark
their performance on solving various well-known COPs such as the subset sum, maximum cut, vertex cover,
0/1 knapsack, graph coloring, Hamiltonian cycle, traveling salesperson, and job-shop scheduling problems.
Their performance is also compared with that of state-of-the-art algorithms running on classical computers.
Through comprehensive performance benchmarks in terms of the solution quality and the execution time,
we identify the strengths and weaknesses of each annealer. In addition, we also provide recommendations
to improve the performance of each annealer. Specifically, we recommend using the genetic algorithm, the
improved particle swarm optimization algorithm, and the ant colony optimization algorithm in all annealers,
using quantum pausing, quenching, and reverse annealing in the QA, using built-in separated penalty terms,
one-way/two-way one-hot constraints, and linear inequality constraints in the DA, and implementing some
parallel algorithms in the GPUA for performance improvement.

INDEX TERMS Combinatorial optimization problem, digital annealer, GPU annealer, quantum annealer,
quadratic unconstrained binary optimization.

I. INTRODUCTION

Quantum computers operate on quantum bits (qubits) and
utilize quantum phenomena such as quantum superposi-
tion, quantum entanglement, and quantum tunneling for
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computation. A qubit exists in a superposition of both 0 and
1 simultaneously, collapsing into a definite state of O or
1 only upon measurement. In contrast, classical computers
operate on bits, where each bit can only be either O or 1, but
not both simultaneously. Quantum computers have sparked
extensive research in recent years due to their ability to
provide computational and state representation capabilities
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that classical computers cannot, a property known as quantum
supremacy [1].

Quantum annealers, such as the D-Wave Advantage system
with 5760 qubits organized as the Pegasus architecture [2],
are quantum computers that utilize the quantum tunneling
phenomenon to address specific problems, such as combi-
natorial optimization problems (COPs). A COP usually has
an objective function with a large solution space in which
local optima exist along with the global optimum. Quantum
tunneling enables rapid traversal of the energy landscape
to locate the global minimum energy corresponding to the
optimal COP solution [3]. With the quantum tunneling
phenomenon, when a quantum particle encounters an energy
barrier, it may tunnel through the barrier even if its kinetic
energy is less than the barrier. For a given objective function,
a quantum annealer first prepares a state associated with the
function. It then initiates an adiabatic process, starting from
a quantum superposition state that encompasses all possible
candidate states in the solution space with equal probability
amplitudes. Subsequently, the amplitudes of all states change
simultaneously, akin to traversing all states simultaneously.
The adiabatic process controls the probability amplitudes to
change slowly enough to halt at a state close to the minimum
Hamiltonian (i.e., the minimum total energy) associated with
the objective function, which corresponds to the optimal
solution of the COP. As illustrated in Figure 1, quantum
annealers exploit the quantum tunneling effect to traverse the
entire solution space simultaneously, avoiding entrapment in
local optima (or local minima) and enabling the identification
of the global optimum solution (or global minimum) of the
COP.

Local Minimum

Global Minimum

Energy

Quantum Tunneling

Solution Space

FIGURE 1. lllustration of the quantum annealing process utilizing the
quantum tunneling phenomenon to traverse the energy landscape
(solution space) for finding the global minimum in the solution space [3].

To utilize a quantum annealer to solve a COP, the objective
function of the COP must be formulated as a quadratic
unconstrained binary optimization (QUBO) formula having
linear and quadratic terms of binary variables of 0 and 1.
The QUBO formula is then embedded into the architecture
of a quantum annealer to undergo the quantum annealing
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process for many times (shots). The quantum annealer is
expected to locate the optimal value of the QUBO formula in
a few seconds or tens of seconds. However, the optimal value
may not be located due to the following major problems:
(i) The number of qubits owned by the quantum annealer
is limited. For example, D-Wave 2000Q and Advantage
systems have 2048 and 5760 qubits, respectively. (ii) The
connectivity of qubits is limited. For example, the maximum
qubit connectivity is 6 for the D-Wave 2000Q system, and
15, for the Advantage system. (iii) There exists undesirable
noise, such as flux noise [4], to make the quantum annealer
fail to locate the QUBO formula’s optimal value. Influenced
by quantum annealers, quantum-inspired annealers are devel-
oped to mitigate the problems of solving complex COPs
using QUBO formulas. Typical quantum-inspired annealers
include those based on the application-specific integrated
circuit (ASIC) [5], field-programmable gate array (FPGA)
[6], and graphics processing unit (GPU) [7].

This paper shows comparative analysis for benchmarking
three prominent types of annealers, either quantum-based
or quantum-inspired, when they are used to solve COPs
with QUBO formulas. The annealers for comparisons are
the D-Wave Advantage quantum annealer (QA) based on
quantum tunneling phenomenon, the Fujitsu digital annealer
(DA) based on the ASIC design for parallel real-time
optimization, and the Compal GPU-based annealer (GPUA),
which harnesses GPUs to perform the diverse adaptive bulk
search (DABS) to locate the optimal solution of QUBO
formulas. After providing an introductory overview of the
three types of annealers, we then benchmark the QA,
DA, and GPUA against state-of-the-art classical algorithms
(CAs) on solving various well-known COPs, including the
subset sum, maximum cut, vertex cover, 0/1 knapsack,
graph coloring, Hamiltonian cycle, traveling salesperson, and
job-shop scheduling problems. Based on the benchmarking
results, we identify the strengths and weaknesses of each
annealer, facilitating informed selection for specific opti-
mization tasks. We also recommend possible ways to improve
the performance of each annealer.

The rest of this paper is organized as follows. Section II
covers background information, including the basic concepts
of QUBO, methods to better formulate QUBO formulas,
and fundamental introductions to the QA, DA, and GPUA.
Performance benchmarking results of the annealers and
CAs are shown in Section III. Section IV shows thorough
comparisons of the annealers and recommendations to
improve the performance of each annealer. Finally, Section V
concludes the paper.

Il. PRELIMINARIES
A. QUBO FUNDAMENTALS
A QUBO formula f of binary variables is expressed as a

quadratic equation, as defined in the following Equation (1).

fe =x"0x =" Qi + D 0ijpx, )]

i<j
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where Q represents an n X n upper triangular matrix with real-
number coefficients, and x = (x1, xp, ..., xn)T is a column
vector consisting of n binary variables with values of either
0 or 1. When a COP is modeled as a QUBO formula, the
COP can be solved by minimizing the QUBO formula or by
deriving the optimal solution to the QUBO formula.

It is noteworthy that x; is restricted to 0 or 1, allowing
us to rewrite Equation (1) as Equation (2) presented below.
Additionally, both Equation (1) and Equation (2) hold true
for the Ising formula with variables taking values of —1 or 1,
a model widely known as equivalent to the QUBO formula.

F) =2 Quixi+ D Qi i, @
i i<j

Ideally, a QUBO formula should not include any constraint
term, as indicated by its name. However, certain COPs come
with constraints related to feasible solutions. Any equality
constraint Rx = ¢ can be converted into a constraint term or
penalty term of the form ar(Rx — 1), where R is a 1 x n matrix
(or row vector) with real-number coefficients, x is a column
vector of variables with binary values, ¢ is a constant, and «
is referred to as the constraint weight or penalty weight of a
real-number value. Integrating the penalty term a(Rx — 1)?
with the optimization term (or cost term) x” Qx extends the
QUBO formula f (x) to the following Equation (3).

f@x) = a®x — 1> +xTQx A3)

Equation (3) is sometimes generalized into the following
Equation (4).

fx) = a(Rx —1)* + x" Ox, )

where B denotes the optimization weight, a real-number value
associated with the optimization term x” Qx.

To ensure the entire QUBO formula is minimized and
returns an optimal and feasible solution to the formula, it is
crucial to appropriately set the values of weights o and .
Various weight setting methods (WSMs) [8], [9] have been
devised for this purpose. To simplify the weight setting, the
WSMs focus on setting « by assuming 8 as 1. They consider
the following Equation (5) derived from Equation (3):

f@) = a(Rx — 1" +x7 Qx = ag(x) + c(x), &)

where g(x) denotes the constraint function, and c(x) repre-
sents the cost function or optimization function.

In Equation (5), g(x) > 0 indicates an infeasible solution
for x, while g(x) = 0 indicates a feasible solution. Let y be
the optimal solution such that f(y) attains the minimal value,
and S be the space comprising all infeasible solutions. This
leads to the following inequality:

c(y) < ag(x) + c(x), for every x € S. (6)

Based on Equation (6), a valid penalty weight o must
satisfy the following inequality:

cy) — C(X))

7
g(x) @

o > max
xes
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Different WSMs [8], [9] are proposed to set o based
on Equation (7). These methods include Verma and Lewis
Method (VLM), Upper Bound (UB), Maximum QUBO
Coefficient (MQC), Maximum change in Objective function
divided by Minimum Constraint function of infeasible solu-
tions (MOMC), and Maximum value derived from dividing
each change in Objective function with the corresponding
change in Constraint function (MOC). For detailed insights
into setting the penalty weight «, readers are referred
to [8] and [9].

The penalty weights corresponding to the mentioned
WSMs are displayed in Table 1. In this table, G and
C represent n X n matrices that denote g(x) and c(x),
respectively. Additionally, z is a column vector filled with
all 1’s. Thus, «,,; serves as an upper bound for the
objective function, assuming all QUBO formula coefficients
are positive. a,,, represents the maximum QUBO formula
coefficient. «,,,, provides an estimation of the numerator
(i.e., c(y) — c(x)) in Equation (7) without accounting for the
denominator (i.e., g(x)). &, €nhances «,,,, by considering
g(x) and estimating it as y, which is the minimum change
in the constraint function exceeding 0. Finally, «,,, aims to
further refine «,,, by contemplating a potential increase in
the constraint function due to a modification in the objective
function, achieved by toggling any bit from O to 1 or vice
versa. For detailed insights into setting the penalty weight o,
readers are referred to [3], [8], [9].

B. QUANTUM ANNEALER BASICS

D-Wave has designed and built a series of QAs, including
the 2000Q released in 2017 and the Advantage released in
2020. These systems are based on the quantum tunneling
phenomenon to solve COPs with QUBO formulas. In this
subsection, we use the D-Wave Advantage system as an
example to introduce the basics of quantum annealers.

The D-Wave Advantage system is designed to have a
quantum processing unit (QPU) of 5760 qubits organized
in the Pegasus architecture [2], as shown in Figure 2. The
architecture’s topology is not fully connected; rather, it is
sparse, with each qubit connected to at most 15 other qubits.
Two qubits are linked via a coupler that provides various
strengths, enabling fine-tuned control over the interaction
between qubits. The Advantage system has a total of
40484 couplers.

Figure 3 illustrates the workflow for a QA, such as the
D-Wave Advantage system, to solve a COP. Five major steps
of the workflow are further elaborated below.

Step 1 Problem Formulation: The COP is first modeled
as a QUBO formula. This formula is translated into a graph
structure, where nodes represent binary variables, and edge
weights symbolize the coupling strength between variables.

Step 2. Minor Embedding: The graph derived from the
QUBO formula is embedded into the QPU. Qubits and
couplers map to graph nodes and edges, respectively. Due
to hardware limitations, direct connections are restricted,
leading to the use of multiple qubits of strong couplers to
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TABLE 1. Different weight setting methods (WSMs) and their associated penalty weights [3].

WSMs Weights
UB Qg =2TCz,2z;=1,i=1,..,n
MQC Upoe = mAx max Cij
i=1 j=1

n
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FIGURE 2. lllustration of the pegasus topology of the D-Wave advantage
quantum processing unit [10].

logically represent a node. The strong couplers are specially
called chains, as exemplified by a double line between two
nodes in Figure 3. Qubits connected by chains are expected
to have the same value; however, chains may sometimes be
broken to make qubits have different values. In such cases,
mechanisms like majority voting are employed to determine
a consensus value.

When the number of qubits required surpasses the
QPU maximum capacity, the graph corresponding to the
original COP must be decomposed into subgraphs to be
properly embedded into the QPU. Various methods for
graph decomposition are known, including the iterative
centrality halo approach [11], which focuses on nodes
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with significant impacts on the overall solution, and the
DBK (Decomposition, Bounds, K-core) method [12], which
recursively breaks down a graph into subgraphs of predefined
sizes. The choice of graph decomposition method has a
profound impact on the performance of quantum annealers
solving COPs.

Step 3. This step defines the initial Hamiltonian H; and the
final Hamiltonian Hy for the entire system. Each Hamiltonian
represents the total energy of the system in a specific state. H;
is configured to maintain qubits in a superposition state, while
Hy is tailored based on the QUBO formula to ensure that
the minimum final Hamiltonian corresponds to the optimal
solution to the COP at hand. The system’s Hamiltonian
H(t) at time ¢ during quantum annealing is expressed in the
following Equation (8):

H(t) = A(H)H; + B(t)Hy, (8)

where, A(¢) and B(¢) are Hamiltonian scaling functions that
evolve over the annealing time 7. A(f) transitions gradually
from 1 to near 0, while B(¢) transitions from O to near 1.

Step 4. Annealing: This step performs an annealing
process to make the system have the minimum Hamiltonian.
The system begins with the lowest initial Hamiltonian,
where each qubit is in a superposition state. Throughout
annealing, the initial Hamiltonian decreases gradually, while
the final Hamiltonian increases gradually. Eventually, the
impact of the initial Hamiltonian diminishes to zero, and
the system settles into the lowest energy state of the
final Hamiltonian associated with the QUBO formula. This
transition causes each qubit to collapse from superposition
to either O or 1, representing the binary variable value that
achieves the globally minimum (or optimal) QUBO formula
value.

The energy scaling functions A(¢) and B(¢) in Equation (8),
depicted in the lower right part of Figure 3, illustrate changes
during the annealing process. As time ¢ progresses, A(t)
gradually decreases, while B(f) increases. Consequently,
the influence of the final Hamiltonian Hy becomes more
pronounced, while the impact of the initial Hamiltonian H;
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FIGURE 3. The workflow for the D-Wave advantage QA to solve a COP with a QUBO formula [3].

decreases. By the end of annealing, the behavior of the system
aligns mainly with the final Hamiltonian Hy.

Step 5. Reading: Upon completing the annealing process,
each qubit’s value (0 or 1) is retrieved for subsequent
processing. Utilizing the relationship between the qubit
and the graph node, a solution to the initial COP can be
deduced. In cases where qubits representing the same node
exhibit discrepancies due to broken chains, post-processing
techniques like majority voting are utilized to ascertain the
node’s value. It’s important to note that Steps 4 and 5 are
iterated multiple times (shots), known as the resampling
process as shown in the lowest right part of Figure 3,
to enhance the probability of discovering the optimal solution
to the problem.

QAs are likely to have good performance in solving
intricate COPs. As mentioned in [3], they have already
applied to solving COPs arising in different application
areas, such as quantum chemistry [13], quantum machine
learning [14], [15], [16], quantum deep learning [17], [18],
quantum variational autoencoders [19], [20], fault detection
and diagnosis [21], [22], online fraud detection [23], financial
portfolio optimization [24], [25], operational planning [26],
[27], data processing in high energy physics [28], [29],
material microstructure equilibration [30], [31] and Monte
Carlo sampling [32].

C. DIGITAL ANNEALER BASICS

The digital annealer (DA) developed by Fujitsu Ltd. is a new
technology inspired by QAs. It is a hardware implementation
(CMOS-based ASIC) that operates at room temperature and
uses digital circuitry for performing the simulated annealing
(SA) algorithm to solve complex COPs. The SA algorithm
is a Markov chain Monte Carlo (MCMC) method for

125018

approximating the global optimum of the cost function of a
COP. 1t is inspired by the annealing process in metallurgy,
where a metal is heated and then slowly cooled to achieve
its lowest-energy state to have good properties of ductility,
toughness, plasticity, and hardness.

The SA algorithm has a special “temperature variable” T'.
It selects an initial solution, and sets a high ““temperature”
value to T and decreases it iteratively. It then randomly
perturbs the current solution to generate a new solution.
The difference (AE) in energy values (i.e., cost function
values) between the current and new solutions is calculated.
If AE < 0, the new solution is better, and it is always
accepted. If AE > 0, the new solution is worse, and it is
accepted with a probability given by the Boltzmann distri-

bution: P(acceptance) = ¢~ . Based on such probability
distribution, a worse solution may also be accepted, and
the probability of accepting a worse solution drops with
decreasing temperatures. The SA decreases T according to
a cooling schedule and continues to generate new solutions
iteration by iteration until a stopping criterion is met, such as
a maximum number of iterations or a minimum temperature
value.

The DA uses parallel-trial schemes, such as one-bit
inversion, and starts all trials from the same solution to
save the calculations of the initial energy value and the
energy value differences. Figure 4 shows the one-bit inversion
mechanism used by the DA to find the optimal cost function
value quickly by inversion of one bit in parallel [33]. The DA
also develops an escaping mechanism called a dynamic offset
to increase the acceptance probability when no bit-inversion
proposal is accepted. In addition, the DA uses parallel
tempering with iso-energetic cluster moves to enhance the
exploration capabilities [34], [35]. In summary, the DA
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can assess numerous options simultaneously, delivering fast
insights for large-scale COPs that were once unsolvable,
enhancing productivity and efficiency without the need for
classical brute-force methods. All the features above makes
that the DA has the superior ability to solve large and
complex COPs in QUBO formulation, such as the quadratic
assignment problem (QAP), quadratic knapsack problem
(QKP), quadratic cycle partition problem (QCPP), selective
graph coloring problem (SGCP), max cut problem (MCP),
vertex cover problem (VCP), and warehouse assignment
problem (WAP) with remarkable speed and accuracy [35],
[36], [37], [38]. Various practical applications have also
shown the capacity of DAs, for example, middle-molecule
drug discovery and delivery planning [36].

In this study, we focus on the third-generation DA. The
problem scale is up to 100000 bits, which is significantly
larger than the 8192 bits of the second generation DA.
Additionally, the bits are fully connected with coupling
coefficients having the precision of a 64-bit signed integer.
The DA also separates cost and penalty terms, which
allows the DA to more effectively balance objectives and
constraints automatically, leading to more efficient and better
optimization. It also introduces special functionalities for
handling one-way/two-way one-hot constraints and linear
inequality constraints directly [36]. These features are con-
venient to the users who want to solve QUBO formulas with
constraints.

Since more constraints are involved in solving QUBO
problems, recently, the fourth generation DA leverages
constraints to narrow the search space and directly evaluates
inequality violations with the help of GPUs during the
optimization process. With the assistance of GPUs, the fourth
generation DA is supposed to show superior performance to
DA of previous generations and comparable performance to
state-of-the-art solvers [39].

Trial N

Value 2

T
Optimal Value & Configuration

FIGURE 4. lllustration of the 1-bit inversion mechanism of the Fujitsu DA
(adapted from [33]).

D. GPU ANNEALER BASICS

The Compal company built a quantum-inspired annealer
called Quantix. Since Quantix harnesses the computational
power of GPUs to accelerate finding optimal COP solutions,
it will be called the GPU annealer (GPUA) in this paper.
It has been applied to solve some complex COPs, such
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as 5G network architecture optimization, energy usage
optimization, logistics transportation optimization, and so on.

To our knowledge, Quantix relies on a concept similar to
the diverse adaptive bulk search (DABS) proposed in [7] to
find the optimal solution to a COP. It is built with 20 Intel
Xeon CPUs and 4 NVIDIA GV100 GPUs, each of which
has 5120 Compute Unified Device Architecture (CUDA)
cores.

The DABS is proposed in [7], of which the framework
is shown in Figure 5. As shown in Figure 5, the DABS
framework is based on CPUs and GPUs. It has multiple
solution pools maintained by a host run on CPUs. Each
solution pool is associated with a GPU and contains entries
to keep the information of good solutions returned by the
GPU. An entry in the solution pool contains a solution (or
solution vector), and its associated energy, along with the
search algorithm and the genetic operation the derive the
solution.

Based on Open Multi-Processing (OpenMP) threads, the
host CPUs perform genetic algorithm operations (GAOs) on
selected solutions from a solution pool or multiple solution
pools to generate so-called target solutions to be sent to
GPUs. Based on the received target solutions, local search
algorithms (LSAs) are executed by GPUs, each with multiple
CUDA blocks of numerous CUDA threads that operate
concurrently.

The DABS aims to increase the diversity of GAOs
and LSAs. It offers five distinct LSAs, namely MaxMin,
CyclicMin, RandomMin, PositiveMin, and TwoNeighbor.
Each LSA iteratively flips bits in a solution to explore
the solution space for improving solutions. During DABS
execution, LSAs that yield better solutions are prioritized
for more frequent execution. The DABS also offers eight
different GAOs, including Mutation, Crossover, Xrossover,
Zero, One, IntervalZero, Best, and Random. Similar to LSAs,
the GAOs leading to better solutions are executed more
frequently than others.

Ill. PERFORMANCE BENCHMARKING

This Section benchmarks the above-mentioned annealers
against state-of-the-art classical algorithms (CAs). Specifi-
cally, it presents the performance comparisons of the QA,
DA, GPUA, and related CAs on solving various well-known
COPs, including the subset sum problem (SSP), maximum
cut problem (MCP), vertex cover problem (VCP), 0/1
knapsack problem (0/1 KP), graph coloring problem (GCP),
Hamiltonian cycle problem (HCP), traveling salesperson
problem (TSP), and job-shop scheduling problem problem
(JSP). The QUBO formulas for solving the COPs are also
described in this section.

The annealers used for benchmarking are described as
follows. D-Wave Advantage released in 2020 is taken as the
QA. It has 5640 qubits with 15-way connectivity. Fujutsu
DAU-3 released in 2021 is taken as the DA. It is based on
a ASIC chip and can simulate the quantum annealing of
100000 fully connected qubits. Compal Quantix released in
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FIGURE 5. lllustration of the DABS framework [7] adopted by the Compal
Quantix GPUA.

2023 is taken as the GPUA. It is built atop a system with 20
Xeon 2.4-GHz CPUs and four NVIDIA GV100 TITAN-V
GPUs, which can simulate the quantum annealing of about
60000 fully connected qubits.

In the following subsections, the COPs used for bench-
marking and the best CAs for solving them are introduced.
It is notable that special functions provided by each
individual annealer to enhance annealing performance are not
considered in the benchmarking for fair comparisons. That is
to say, all annealers just use the same naive QUBO formulas
and suitable WSMs to solve the COPs. The only exception
is that we allow the QA to use a library tool for problem
decomposition; otherwise, many problem instances cannot be
solved on the QA.

The benchmarking results are shown in tables in separate
subsections. To enhance visualization, the tables use cells in
distinct colors to represent performance ranks: pink for the
top rank, brown for the second rank, green for the third rank,
and blue for the fourth rank. Moreover, the acronym “IS” in
the tables stands for “‘infeasible solution’’, and the mark “X”’
corresponds to a certain error, such as ‘‘no matrix is produced
due to insufficient memory”, and “‘kernel die”’, etc. Also note
that the results of the best CAs are derived from the literature,
whereas the results of the annealers are collected from our
own practical experiments.

A. BENCHMARKS ON THE SSP

The definition of the subset sum problem (SSP) is as follows:
GivenasetS = {s1, $2, ..., s} with nintegers, and a target

integer T, the SSP is to find a subset S of S such that the sum

of the integers in the subset S’ is exactly 7.

125020

The QUBO formula for solving the SSP is as follows:

n 2
Hx) = (Z SiXi — T) 9
i=1

In Equation (9), s; is an integer in S, x; = 1 represents that
s; is in §’, and x; = O represents that s; is not in S’, where
1<i<n.

The public problem instances, pO1, p02, p03, p04, p03,
p06, and p07, derived from [40] are used for benchmarking
annealers and a CA solving the SSP. Every integer element
in the set S of the SSP instance is between 5 and 30, and the
target integer 7 is between 20 and 200. The comparative CA
is a dynamic programming algorithm [40].

As shown in Table 2, the CA, DA, and GPUA can
find correct solutions (indicated by “Yes’”) to all problem
instances. However, the QA cannot find the correct solution to
the problem instance p03, in which set S contains many large
integers like 1648264, 1955584, and 2074132. The reason for
the QA problem-solving failure may be due to the insufficient
precision of the coupling coefficient. We will further discuss
this in the next section.

In terms of the execution time of the annealers, the QA
generally has the shortest, the GPUA has the second shortest,
and the DA has the longest execution time. The execution
time of the CA sometimes is the shortest (e.g., when solving
the pO1 problem instance), but sometimes it is the longest
(e.g., when solving the p03 problem instance). The reasons
for the CA to have the longest problem-solving time are as
follows. The CA is a dynamic programming algorithm whose
execution time is proportional to the given target integer 7" in
the SSP. The p03 problem instance indeed has a very large
target integer 7 = 2463098, so the execution time of the CA
is very long.

B. BENCHMARKS ON THE MCP
The definition of the maximum cut problem (MCP) is as
follows:

Given an undirected graph G = (V, E) with the vertex set
V and the edge set E, a cutin G is a subset S € V. The MCP
is to find a cut S such that EWS(S, S”) is maximized, where
S'=V — S, and EWS(S, S’) stands for the edge weight sum
of edges between S and §’.

The QUBO formula for solving the MCP is as follows.

He) = D" win(=xu — Xy + 25,%,) (10)
(u,v)eE

In Equation (10), x, = 1 (resp., x, = 0) indicates that u is
(resp., is not) in S, x, = 1 (resp., x, = 0) indicates that v is
(resp., is not) in S, and wy,, is the weight associated with the
edge (u, v).

The problem instances, g22, g23, g24, ¢25, g27, g32,
233, g35, g36, and g39, derived from a publicly available
database [41] are used for benchmarking annealers and a CA
solving the MCP. The instances include cyclic graphs, planar
graphs, and random graphs with edge weights of 1, 0, and —1.
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TABLE 2. Benchmarks of the CA, QA, DA, and GPUA solving the subset sum problem.

Datasets p01 p02 p03 p04 p05 p06 p07
CA Sol. Yes Yes Yes Yes Yes Yes Yes
QA Sol. Yes Yes [NNo | Yes Yes Yes Yes
DA Sol. Yes Yes Yes Yes Yes Yes Yes
GPUA Sol. Yes Yes Yes Yes Yes Yes Yes
CA Time 0.024 3.463 123.466 | 0.029 | 0.051 | 0.008 | 0.027
QA Time 0.093 0.117 0.952 0.134 | 0.097 | 0.065 | 0.118
DA Time 6.518 6.504 6.504 6.526 | 6.537 6.438 6.497
GPUA Time 1.56 1.8223 101.09 1.735 1.77 1.496 1.78

The number of graph vertices in the instances are 2000 with
the number of edges ranging from 2000 to 19990. The CA
to be compared is the optimization software provided by
Meta-Analytics [42].

As shown in Table 3, the DA always jointly possesses
the best solutions; it has the highest frequency of jointly
possessing the best solutions. The QA has the second highest
frequency of jointly possessing the best solutions, the CA
has the third highest frequency of jointly possessing the best
solutions, and the GPUA has the lowest frequency of jointly
possessing the best solutions.

In terms of the execution time, generally speaking, the DA
has the shortest execution time, the GPUA has the second
shortest, the CA has the third shortest, and the QA has the
longest execution time. The reasons for the QA’s longest
execution time are explained as follows. Due to the limited
number of qubits, large problem instances must first be
decomposed with a tool running on a classical computer
before being embedded in the QPU for quantum annealing.
This results in the QA having a longer execution time com-
pared to the others. Notably, the EnergylmpactDecomposer,
a problem decomposition tool available in the D-Wave Ocean
library [43], is used to break down the problem into smaller
subproblems based on the energy contributions of variables.

C. BENCHMARKS ON THE VCP
The definition of the vertex cover problem (VCP) is as
follows:

Given an undirected graph G = (V, E) with the vertex set
V and the edge set E, the VCP is to find a minimum-sized
subset V' of V, such that for every edge (u, v) in E, either u
orvisinV’.

The QUBO formula for solving the VCP is as follows:

Hx)=A > (1-x)1-x)+B> x (1)

(u,v)eE veV

In Equation (11), x, = 1 (resp., x, = 0) indicates that u
is (resp., is not) in V', and x,, = 1 (resp., x, = 0) indicates
that v is (resp., is not) in V’. The first term is the constraint
term whose weight is A, whereas the second term is the
optimization term whose weight is B.

As shown in Table 4, the UB WSM and the MOC WSM
are used to set the penalty weight A, while the optimization
weight B is set to 1. As stated in [3], WSMs in the order of
MOC, MOMC, VLM, MQC, and UB progressively increase
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the penalty weight. Small penalty weights usually lead to
infeasible solutions, whereas large penalty weights tend
to produce feasible solutions. However, excessively large
penalty weights can result in feasible solutions of low quality
(i.e., high cost function values). Therefore, the penalty weight
is set with an applicable WSM according to the order of
MOC, MOMC, VLM, MQC, and UB. Note that not all WSMs
can be applied to every QUBO formula. For instance, the
MOC cannot be applied to the QUBO formula that involves
matrices of varying dimensions.

The public problem instances, p-hat300-1, keller4,
brock400-2, keller5, DSJC500.5, C1000.9, and keller6,
derived from the DIMACS (Discrete Mathematics and
Theoretical Computer Science) challenge [44] are used for
benchmarking annealers and a CA solving the VCP. The
number of vertices in vertex set V of the VCP instances is
between 300 and 1000. The comparative CA is a branch-and-
bound algorithm [45].

As shown in Table 4, generally speaking, the CA provides
the best solutions, and the QA and the DA offer the second-
best solutions, while the GPUA provides worse solutions.
The GPUA even returns an “infeasible solution (IS)”* for the
keller6 problem instance. The reason for the “IS” case may
be due to the the large size of the keller6 problem instance,
which corresponds to a graph containing about 3400 nodes,
4600000 edges, with the maximum degree of around 3000,
and the minimum degree of around 2700 [44].

In terms of the execution time of feasible solutions,
generally speaking, the DA has the shortest execution time,
followed by the GPUA with the second shortest, the QA with
the third shortest, and the CA with the longest execution
time. Note that the GPUA’s execution time for the infeasible
solution (IS) is as long as 355 seconds. This is because we set
the maximum execution time of the GPUA as 355 seconds to
increase the probability of finding better solutions. However,
no feasible solution is found even after the GPUA executes
for 355 seconds.

D. BENCHMARKS ON THE 0/1 KP
The definition of the 0/1 knapsack problem (0/1 KP) is as
follows:

Consider a knapsack with capacity W and n objects
o1, ...,0, Whose weights are wy, ..., w, and whose costs
are c1,...,c,. The 0/1 KP is to select objects to form a
set S such that >, ¢ ¢; is maximized under the constraint
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TABLE 3. Benchmarks of the CA, QA, DA, and GPUA solving the max cut problem.

Datasets g22 g23 24 g25 27 g32
CA Sol. 13359 13344 13337 13340 3341 1410
QA Sol. 13359 13344 13337 13340 3341
DA Sol. 13359 13344 13337 13340 3341
GPUA Sol. 13359 13344
CA Time 86.5 52.1 45.7 114.6 10.4
QA Time 1632.5 | 1658.1 | 1799.8 | 1879.6 | 2486.9 | 1450.9 1475.8 2210 2070 3212.6
DA Time 10.381 | 10.394 | 10.212 | 10.246 | 10.273 | 10.273 10.089 | 30.413 | 30.455 10.314
GPUA Time | 22.479 12.22 12.39 | 22.232 12.35 12.37 102.638 12.35 102.638 12.39
TABLE 4. Benchmarks of the CA, QA, DA, and GPUA solving the vertex cover problem.
Datasets p-hat-300-1 | keller4 | brock400-2 | kellerS | DSJC500.5 | C1000.9 | keller6
CA Sol. 292 160 371 745 487 932 3298
WSM MOC UB MOC UB MOC MOC UB
A,B 1,1 171,1 1,1 776,1 1,1 1,1 3361,1
QA Sol. 292 160 750 487 3313
DA Sol. 292 160 371 487 932
GPUA Sol. 292 160 371 487
CA Time 0.56 0.006 0.935 2.38 177.79 0.498 186.54
QA Time 40 21.43 22.94 37.84 36.62 16.305 47.08
DA Time 6.575 6.5 6.567 6.634 6.591 6.838 6.969
GPUA Time 11.37 6.196 11.498 11.544 6.607 21.879 355

D oies Wi < W (i.e., selected objects can be accommodated
by the knapsack and have the maximum total cost).
The QUBO formula for solving the 0/1 KP is as follows:

w 2
H(x)=A 1—Zy,-
j

2

w n
+A ijj - Zwix,-
j=1 i=1
n
—B Z CiXi
i=1

In Equation (12), x; = 1 if o; € S (i.e., if 0; is selected to be
put in the knapsack), where 1 < i < n. Furthermore, y; = 1 if
the total weight of the selected objects in S to be put in the
knapsack is j, where | <j < W.

The public problem instances, L3, L4, L6, L7, L11, and
L14, derived from [46] are used for benchmarking annealers
and a CA solving the 0/1 KP. The number of objects of the 0/1
KP instances is between 4 and 45, and the knapsack capacity
is between 20 and 1000. The comparative CA is Google
OR-Tools [47], which is a free and open-source toolkit,
using the linear programming, mixed-integer programming,
constraint programming, and vehicle routing algorithms,
to solve optimization problems.

Similarly, the optimization weight B is set as 1 and the
penalty weight A is set by employing applicable WSMs in
the following order: MOC, MOMC, VLM, MQC, and UB,
to make the penalty weight larger and larger until feasible
solutions are found. Unfortunately, none of the WSMs can
properly set the penalty weights for the QA to find feasible

(12)

125022

solutions. Thus, the UB method is adopted and the acronym
“IS” stands to “infeasible solution” for such cases in Table 5.

The reason for the “IS” cases just mentioned may be
due to the insufficient number of qubits owned by the QA.
Notably, the QUBO formula for solving the 0/1 KP has both
the constraint term and the optimization term. Furthermore,
it has a number of QUBO variables of O(n + W), which
scales with the problem size n plus W. Moreover, every pair
of variables x; and y; has an in-between couplerfor 1 <i <n
and 1 < j < W. Note that n and W may be 45 and as
large as 1000, respectively. The QA thus needs to perform
node chaining and meanwhile decompose the original 0/1 KP
into many subproblems to embed the QUBO formula into the
QPU. This makes the setting of the optimization weight and
the penalty weight very difficult, making it harder for the QA
to return feasible solutions.

Conversely, the DA and the GPUA are less likely to have
“IS” cases because they can simulate 100000 and 60000 fully
connected qubits, respectively. Surprisingly, the GPUA can
find feasible solutions for all problem instances, while the DA
fails to find a feasible solution for the L14 problem instance,
which has n 45 objects with the knapsack capacity
W = 907.

As shown in Table 5, generally speaking, the CA has the
best solution, the GPUA has the second-best solution, the DA
has the third-best solution, whereas the QA has the worst
solution and fails to find any feasible solution to the QUBO
formulas with penalty weights set by the UB method.

In terms of the execution time, the CA has the shortest
execution time, while the DA sometimes has the second short-
est execution time, and the GPUA has the second shortest
execution time at other times. The QA often has the longest
execution time.
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TABLE 5. Benchmarks of the CA, QA, DA, and GPUA solving the 0/1
knapsack problem.

Datasets L3 L4 L6 L7 LIT L14
CA Sol. 35 23 52 107 1437 2033
WSM UB UB | UB UB UB UB

AB 481 | 41,1 | 1051 | 1881 | 1552,1 | 2018, 1

QA Sol. IS 1S

DA Sol. 35 23 52 107 IS
GPUA Sol. 35 23 52 107 1437

CA Time | 0.0005 | 0.00I | 0.002 | 0.008 | 0.001 0.001

QA Time 1989 | 12.05 | 81.23 | 101.63 | 1158 8298

DA Time 6488 | 653 | 654 | 649 | 102.215 | 101.039

GPUA Time | 6.152 | 6.145 | 6.160 | 6.163 | 102.587 | 104.126

E. BENCHMARKS ON THE GCP
The definition of the graph coloring problem (GCP) is as
follows:

Given a chromatic number 7, and an undirected graph G =
(V, E) with the vertex set V and the edge set E of m edges,
the GCP is to decide if it is possible to color all vertices in
V such that for every edge (u, v) in E, vertices u and v have
different colors.

The QUBO formula for solving the VCP is as follows:

n 2
H(x) = 2(1 —~ vag,-)
i=1

veV

n
+ DD (13)

(u,v)eE i=1

In Equation (13), x,, ; = 1 indicates that vertex v is colored
with color i, 1 < i < n. The first term and the second term
are both constraint terms. The first constraint term means
that every vertex should be colored with only one color. The
second constraint term means that adjacent vertices should be
colored with different colors. The number of QUBO variables
is of O(m x n).

The public problem instances, R125.1, DSJC125.1,
DSJC125.5, R250.1, DSJC250.1, DSJC250.5, DSJC500.1,
and 1e450_15d, derived from [48] are used for benchmarking
annealers and a CA solving the GCP. The number of vertices
in vertex set V of the GCP instances is between 125 and 450.
The comparative CA is a memetic algorithm combining the
teaching-learning concept and the tabu-search concept [49].

As shown in Table 6, both the CA and the DA provide
the best solutions; they can find optimal (i.e., “Yes™)
solutions for all problem instances. The QA has worse solu-
tions than the CA and the DA; it cannot find optimal
solutions for four problem instances, namely DSJC125.5,
DSJC250.5, DSJC500.1, and 1e450_15d. The GPUA has
the worst solutions; it cannot find optimal solutions for
five problem instances, namely DSJC125.5, DSJC250.1,
DSJC250.5, DSJC500.1, and 1e450_15d. The five problem
instances are related to a 125-node and 3891-edge graph, a
250-node and 3217-edge graph, a 250-node and 15668-edge
graph, a 500-node and 12456-edge graph, and a 450-node and
16680-edge graph, respectively. The five problem instances
are all related to graphs having more than 3000 edges,
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whereas other problem instances are related to graphs having
1473 or less edges. The problem instances having large
numbers of edges may be the reason for the QA and the
GPUA to fail to have optimal solutions.

In terms of the execution time, generally speaking,
the CA has the shortest execution time, whereas the DA
has the second shortest execution time. However, for the
DSJC500.1 and 1e450_15d problem instances, the DA has
the shortest execution time. Both the QA and the GPUA
have longer execution time than the CA and the DA. The
GPUA has shorter execution time than the QA for problem
instances for which the GPUA and the QA can provide
optimal solutions. In contrast, GPUA’s execution time is
longer than QA’s for problem instances where the QA or
the GPUA cannot provide the optimal solution, with one
exception: problem instance le450_15d. In this instance,
GPUA'’s execution time is shorter than QA’s.

F. BENCHMARKS ON THE HCP
The definition of the Hamiltonian cycle problem (HCP) is as
follows:

Given an undirected graph G = (V, E) with the vertex set
V of n vertices denoted by numbers 1, . .., n and the edge set
E, the HCP is to decide if there exists a Hamiltonian cycle
starting at an arbitrary vertex s, visiting very other vertex
exactly once, and going back to vertex s.

The QUBO formula for solving the HCP is as follows:

n

2
n
Hx)=> {1-> x,;
v=1 j=1

n n 2
> (1-3n)
j=1 v=1
n
+ Z Z Xu,j Xy, j+1 (14)

(u,v)¢E j=1

In Equation (14), x, ; = 1 represents that vertex v is the i
vertex visited, where 1 < v,j < n. There are three terms in
the QUBO formula. They are all constraint terms. The first
term restricts that every vertex can be visited only once. The
second term restricts that only one vertex can be visited at a
time. The third term restricts that if vertex v is visited after
vertex u is visited, then there must be an edge (i, v) € E. The
number of QUBO variables is of O(n2), which does not scale
linearly with the problem size n, and the QUBO formula has
only the constraint term.

The public problem instances, 4_H, 6_H-1, 6_H-2, §_H-1,
8_H-2, and alb1000, derived from [50] are used for bench-
marking annealers and a CA solving the HCP. The number
of vertices of the HCP instances is 10, 14, 14, 30, 30, and
1000, respectively, whereas the number of edges is 15, 21,
21, 45, 45, and 1500. The comparative CA is an algorithm
using the “‘snakes and ladders” heuristic [51]. The algorithm
is implemented in Python and C++4- [52].
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TABLE 6. Benchmarks of the CA, QA, DA, and GPUA solving the graph coloring problem.

Datasets R125.1 | DSJC125.1 | DSJC125.5 | R250.1 | DSJC250.1 | DSJC250.5 | DSJC500.1 | 1e450_15d
CA Sol. Yes Yes Yes Yes Yes Yes Yes Yes
QA Sol. Yes Yes Yes Yes
DA Sol. Yes Yes Yes Yes
GPUA Sol. Yes Yes
CA Time 0.001 0.029 0.143 0.002 0.017 10.9 720.3 983
QA Time 15.647 14.577 47.199 19.054 30.11 47.199 139.687 238.58
DA Time 6.727 6.652 6.034 5.052 5.083 30.709 31.396 8.455
GPUA Time | 11.443 11.497 102.94 12.422 202.5 213.75 207.981 210.181

TABLE 7. Benchmarks of the CA, QA, DA, and GPUA solving the
hamiltonian cycle problem.

Datasets 4-H 6_H-1 | 6 H-2 | 8 H-1 [ 8 H-2 [ alb1000 |
CA Sol. Yes Yes Yes Yes Yes Yes
QA Sol. Yes Yes Yes Yes Yes
DA Sol. Yes Yes Yes Yes Yes
GPUA Sol. Yes Yes Yes Yes Yes
CA Time N/A N/A N/A N/A N/A 0.023
QA Time 16.209 | 22.019 | 22.82 | 35269 | 13.782 -
DA Time 6.643 6.508 6.507 6.514 6.539 -
GPUA Time 6.04 6.05 6.04 6.14 6.04 -

As shown in Table 7, the CA can find “Yes” solutions to
all problem instances. The QA, DA, and GPUA cannot find
the “Yes” solution to the alb1000 problem instance, which
is related to a graph of 1000 vertices and 1500 edges. Yet,
they can find *“Yes” solutions to the other problem instances,
which are related to graphs of tens of vertices and edges.
The solutions of the QA, DA, and GPUA are marked as “X”
to indicate they cannot handle the alb1000 problem instance
and do not return any solution. For example, the QA just
shows an error message of “kernel died” and returns no
solution when solving the alb1000 problem instance. The
reason for getting such an error message is that the problem
size of the alb1000 problem instance is too large, causing
too many QUBO variables and couplers. Similarly, the DA
and the GPUA cannot handle the alb1000 problem instance,
either.

There are some not-available cases in the CA’s execution
times. The CA’s execution time is 0.023 second for the
alb1000 problem instance. However, the CA’s execution time
for other problem instances cannot be found from research
papers and is indicated by “N/A” (i.e., “‘not available™) in
Table 7. For the 4_H, 6_H-1, 6_H-2, 8 H-1, and 8_H-2
problem instances, the GPUA has the shortest execution
times of 6 seconds or more, the DA has the second-shortest
execution times of 6.5 seconds or more, and the QA has
the longest execution times of tens of seconds. Since the
CA’s execution time for the large-sized alb1000 problem
instance is only 0.023 second, it is reasonable to infer
that the CA has shorter execution time than annealers
for small-sized 4 H, 6 _H-1, 6 H-2, 8 H-1, and 8 H-2
problem instances. Note that the execution times of annealers
corresponding to the “X” solutions are marked as “-”,
which will be ranked as the longest execution times in
benchmarking.
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G. BENCHMARKS ON THE TSP
The definition of the travelling salesperson problem (TSP) is
as follows:

Given a directed graph G = (V, E) with the vertex set V
of n vertices denoted by numbers 1, .. ., n and the edge set E,
the TSP is to find a cycle that first visits an arbitrary vertex s,
then sequentially visits every other vertex exactly once, and
at last visits vertex s, such that the sum of weights of edges
included in the cycle is minimized.

The QUBO formula for solving the TSP is as follows:

2

n n
Hx) =AY 1= x,
v=1 j=1
n n 2
+AZ(1 — zxv,,-)
j=1 v=1
n
+A Z zxu,jxv,j+1

(u,v)¢E j=1

n
+B Z Wu,vzxu,jxv,j+1

(u,v)eE j=1

15)

In Equation (15), x, ; = 1 represents that vertex v is the i
vertex to be visited, where 1 < v, j < n. There are four terms
in the QUBO formula. The first three terms are constraint
terms whose weights are A. The first constraint term indicates
that each vertex should be visited only once, the second term
means that only one vertex should be visited at a time, and the
third term means that if the visit of vertex u is followed by the
visit of vertex v, then there should exist an edge (u,v) € E.
The fourth term is an optimization term, in which W, , is
the weight associated with the edge (u, v). The number of
QUBO variables is of O(n?), which does not scale linearly
with the problem size n, and the QUBO formula has both the
constraint term and the optimization term.

The public problem instances, brl7, ftv33, ftv3s, grl7,
gr21, p43, ry48p, and krol24p, derived from TSPLIB [53]
are used for benchmarking annealers and a CA solving
the TSP. The number of vertices of the brl7, ftv33, ftv35,
grl7, gr2l, p43, ry48p, and krol24p problem instances
is 17, 34, 36, 17, 21, 43, 48, and 100, respectively. The
edge weights are all integers with the maximum values of
9999, 100000000, 100000000, 745, 775, 5126, 9999999, and
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9999999, respectively. The comparative CA is the algorithm
provided by Google OR-Tools [47].

The optimization weight B in the QUBO formula is set
as 1, and the penalty weight A is set by employing applicable
WSMs in the following order: MOC, MOMC, VLM, MQC,
and UB, to make the penalty weight larger and larger until
feasible solutions are found. As indicated in Table 8, the MQC
mechanism is employed to set the penalty weight A, while the
optimization weight B is set as 1.

As shown in Table 8, the CA has the best solution to
all problem instances except for the ftv35 problem instance,
to which the DA has the best solution. The DA and the
GPUA provide comparably good solutions, and each has its
own strengths. The DA has one “IS” case for the problem
instances p43, whereas the GPUA has two IS cases for the
problem instances p43 and krol24p. The QA has worse
solution than the DA and the GPUA for most problem
instances. It also has one “IS” case for the problem instances
p43.

In terms of the execution time, the CA has the shortest
execution time in the range between 0.027 and 1.666 seconds
for all problem instances. Among annealers, the DA has
the shortest execution times except for the problem instance
p43. The DA’s execution time for the p43 problem instance
is 61.722 seconds, which is due to our approach: we set
the maximum execution time for the DA to be approx-
imately 60 seconds, attempting to find a better solution
but ultimately failing, corresponding to an “IS” case. For
other problem instances, the DA’s execution times are all
less than 10 seconds, ranging from 5.974 to 9.765 seconds.
For problem instances brl7, ftv33, ftv35, grl7, and gr21,
the GPUA’s execution times are also short, ranging from
6.358 to 12.85 seconds. GPUA’s execution time for the
problem instance br17 is even shorter than the DA’s. However,
the GPUA’s execution times are around 100 or 200 seconds
for problem instances p43, ry48p, and krol124p. The long
execution times of the GPUA are again due to our approach:
we set the maximum execution times for the GPUA to
be approximately 100 or 200 seconds, attempting to find
better solutions, resulting in two “IS”’ cases and one feasible
solution, though. The QA generally has long execution times,
approximately tens of seconds to a little over one hundred
seconds. For the smaller-sized problem instances br17, ftv33,
ftv35, grl7, and gr21, the QA’s execution times are much
longer than the DA’s and the GPUA's.

H. BENCHMARKS ON THE JSP
The definition of the job-shop scheduling problem (JSP) is as
follows:

Consider a set M = {My, ..., M,,} of m machines and
aset J = {Ji,...,Jn} of n jobs, where job J. consists
of a sequence JO, of operations for 1 < ¢ < n. Let
JO1 = (01,...,0k),JO02 = (Okj415-+-,00k), .., JOp =
(0k, i+1, - - -, Ok,), where k, is the total number of operations.
Note that kg is set as O to be used later. Each operation is
associated with an index i, 1 < i < kj,, and its processing
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time is denoted as p;. An operation needs to be processed on
a specific machine, operations of a job should be processed
sequentially, and only one operation of a job can be processed
at a given time. The JSP is to find a schedule to assign
operations to machines for minimizing the makespan, that is,
the total length of the schedule, or the latest finish time of
operations.
The QUBO formula for solving the JSP is as follows:

H(x) =Ahi(x)+ Bhy(x) + C h3(x) + D hy(x),
where

n

M@= > XX

c=1 kc.,1<i<kc
t+pi>t’

m

=31 >

d=1 \(it,i",t")eRy

ke /T 2
@m=z( m—o
1

i=0 \t=

Xi, tXi' ¢/

ky T
o) = D> (xi (hy + D)™ (16)

i=0 =0

In Equation (16), x; ; = 1 represents that operation o; starts
attime t < T, where T is the possible maximum time span.
Furthermore, Ry = Ay UBy,Aq = {G,t,7,¢): (i,i") € Iy x
Ij,i#7,0<t,// <T,0 <t'—t <pi},Bg ={(G,¢t,i,1):
i,7) e Iy xIz,i <i,t =1t,p; > 0,py > 0}, and I,
is the set of indices of all operations that are restricted to be
executed on machine My, 1 <d < m.

The terms hj(x), hy(x), and h3(x) are constraint terms.
The term hj(x) restricts that all operations of a job should
be processed sequentially. The term hy(x) restricts that a
machine can process only one operation at a time. The
term h3(x) restricts that every operation should be processed
exactly once. The term h,(x) is the optimization term for
minimizing the makespan, since h,(y) < h,(z), where y is
the optimal solution, and z is any non-optimal (but feasible)
solution.

The number of QUBO formula variables is of O(k, x T),
which does not scale linearly with the problem size k, and T,
and the QUBO formula has both the constraint term and the
optimization term. The QUBO formula has three constraint
terms and one optimization term, each of which is intended
to have a different weight. So, none of MOC, MOMC, VLM,
MQC, and UB is applicable to tune the penalty weights in the
benchmarking.

The public problem instances, ft02, ft03, ft04, ft06,
1a03, and ftl10, provided by OR-Library [54] are used
for benchmarking annealers and a CA solving the JSP.
The comparative CA is the algorithm provided by Google
OR-Tools [47]. The ft02, ft03, ft04, ft06, 1a03, and ft10
problem instances have 2, 3, 4, 6, 10, and 10 jobs,
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TABLE 8. Benchmarks of the CA, QA, DA, and GPUA solving the travelling salesperson problem.

Datasets br1l7 ftv33 ftv3s erl7 er2l p43 ry48p kro124p
CA Sol. 39 1355 ! 2085 2707 5635 14682 41232
WSM MQC MQC MQC MQC MQC MQC MQC MQC
AB 332,1 332,1 745,1 865,1 4536,1
QA Sol.
DA Sol.
GPUA Sol.
CA Time . 0.194 . 1.666
QA Time 62.9 | 26.18872 | 30.9965 | 483118 | 104.43 | 48.8453 85.21 135.32695
DA Time 6.558 7.042 7.075 6.519 6.568 61.722 5.974 9.765
GPUA Time | 6.358 7.523 12.85 6.3668 6.644 104.102 | 104.469 216.905

respectively. They have 5, 5, 5, 6, 5, and 10 machines,
respectively. Their possible maximum time spans are 22, 15,
16, 55, 597, and 930, respectively.

As shown in Table 9, the CA returns the best solution
to every problem instance. The three annealers even cannot
handle the 1a03 and ft10 problem instances, which are
indicated by “X’ in Table 9. This is because these two
problem instances have relatively larger time spans (597 and
930, respectively), which necessitates a greater number of
QUBO variables and couplers. The three annealers return
the same best solutions to the problem instances ft02 and
ft03. The DA and the GPUA return the same best solution
to the problem instances ft04. Yet, the QA’s solution is
the worst. For the problem instance ft06, the CA’s solution
is the best and much better than the annealers’. Among
annealers, the QA has the best, the DA has the second-
best, and the GPUA has worst solution to the problem
instance ft06.

In terms of the execution time, the CA has the shortest
execution times. Among annealers, the DA and the GPUA
have similar execution times, ranging from 5 to 16 seconds,
whereas the QA has much longer execution times, ranging
from 20 to 66 seconds. Note that the execution times
of annealers are indicated by “-” for the “X” cases.
They will be ranked as the longest execution times in
benchmarking.

I. OVERALL BENCHMARK RANKING

The overall solution quality ranking of the CAs and annealers
is shown in Table 10, and the ranking distribution is shown in
Figure 6. We can observe that the CA has been ranked as the
top for a total count of 54 times, which is the highest count.
This could be attributed to the CA’s development spanning
over several decades, incorporating various strategies and
techniques to enhance the quality of solutions to COPs.
In contrast, for the annealers, we merely utilize the most
basic QUBO formulas to solve COPs. We can also observe
that the DA has been ranked as the top for a total count
of 46, which is the second-highest count; the GPUA has
been ranked as the top for a total count of 33, which is the
third-highest count; the QA has been ranked as the top for a
total count of 31, which is the least frequent. That is, among
the three annealers, the DA has the most instances of being
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ranked as the top. This could be due to the large number (i.e.,
100000) of fully connected simulated qubits supported by
the DA.

Wca H oA DA M GPUA

60

40

Counts

20

Ranking

FIGURE 6. Solution quality ranking distribution of the CA, QA, DA, and
GPUA.

The overall execution time ranking of the CA and annealers
is shown in Table 11, and the ranking distribution is shown
in Figure 7. The shorter the execution time, the higher the
ranking. The execution times corresponding to the “X’* cases
are listed as “=”’, and these execution times are ranked the
lowest, as the annealers cannot produce any solution in such
cases. Additionally, the “N/A” access times of the CAs are
ranked the highest, since they are inferred to be the shortest
execution times, as mentioned earlier. We can observe that the
CA has been ranked as the top for a total count of 42 times,
which is the highest count. This means that CAs generally
have the shortest execution time. This may be due to the
fact that, over the past few decades of development, CA has
various methods to reduce the execution time, while annealers
have many cases they cannot handle (hence their execution
times are ranked the lowest). The DA has been ranked as the
top for a total count of 13, which is the second-highest count;
the QA has been ranked as the top for a total count of 2,
which is the third-highest count; the GPUA has been ranked
as the top for a total count of 1, which is the least frequent.
That is, among the three annealers, DA has the most instances
of being ranked as the top, whereas the QA and the GPUA
have very few instances of being ranked as the top. The short
execution times of the DA could be due to the DA’s using
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TABLE 9. Benchmarks of the CA, QA, DA, and GPUA solving the job-shop
scheduling problem.

Datasets 02 03 | ft04 | fi06 | 1a03 | ft10 |
CA Sol. 9
QA Sol. 9
DA Sol. 9
GPUA Sol. 9

CA Time 0.139
QA Time 26.902
DA Time 6.502
GPUA Time 16 5 5 5 — —

TABLE 10. Solution quality ranking counts of the CA, QA, DA, and GPUA.

Ranking 15t [ 2nd [ grd [ 4th
CA Sol. 54 3
QASol. | 29 | 20
DA Sol. 46 7
GPUA Sol. 33 19

W| | o\ O
W O W —

TABLE 11. Execution time ranking counts of the CA, QA, DA, and GPUA.

Ranking 15t [ 2nd [ grd [ 4th
CA Time 42 1 11 4
QA TIme 2 12 8 36
DA Time 13 22 17 6
GPUA Time 1 29 19 9

ASIC chips to simulate the annealing process in a parallel
manner.

IV. ANNEALER COMPARISONS AND IMPROVEMENT
RECOMMENDATIONS

In this section, we show comparisons of the QA, DA, and
GPUA. Furthermore, we give performance improvement
recommendations for each annealer.

Wcsr W oA DA M GPUA

50
40
30

20

0
1 2 3 4

FIGURE 7. Execution time ranking distribution of the CA, QA, DA, and
GPUA.

A. ANNEALER COMPARISONS

Table 12 shows comparisons for the QA, DA, and GPUA in
terms of the technology used, number of (qu)bits supported,
connectivity of (qu)bits, solution quality top rank counts, and
execution time top rank counts. The annealers to be compared
are as follows. D-Wave Advantage released in 2020 is taken
as the QA. Fujutsu DAU-3 released in 2021 is taken as
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the DA. Compal Quantix released in 2023 is taken as the
GPUA.

We can observe from the comparison results that the DA
has the highest count of the top rank among annealers, the
GPUA has the second highest, and the QA has the third
highest. This may be because the DA can support the most
qubits, the GPUA supports the second most, and the QA
supports the third most. The DA’s and the GPUA’s qubits
are emulated to be fully connected. The QA’s qubits are
practical; however, they are at most 15-way connected. The
QA is a practical quantum annealer. However, the DA and the
GPUA are quantum-inspired annealers, they both use LSAs.
Supported by the ASIC hardware design, the DA’s LSAs (e.g.,
1-bit inversion) may have broader search ranges and higher
degrees of parallelism than the GPUA’s (e.g., MaxMin).
This may cause the DA to find better solutions than the
GPUA.

B. QA IMPROVEMENT RECOMMENDATIONS

As shown in Table 2, the QA cannot find the correct
solution to the SSP instance p03, which involves many large
integers such as 1648264, 1955584, and 2074132. The reason
for the QA’s problem-solving failure may be because the
QA has insufficient precision of the coupling coefficient.
The paper [55] proposes a method, called high precision
enhancement (HPE) algorithm, to extend the D-Wave 2X to
support higher precision coefficients. As mentioned in [55],
the D-Wave 2X only guarantees support for coefficients with
4 to 5 bits of resolution or precision. However, we do not
have exact information about the coefficient precision of the
D-wave Advantage. We believe the precision is about 7 to
8 bits, which is insufficient to differentiate integers ranging
from O to as large as 2074132, the largest integer of the SSP
instance. It is suggested to apply the HPE algorithm to solve
the problem.

In [3], the genetic algorithm (GA) is applied to setting
the penalty weights and the optimization weights to improve
the QA performance for some problems like the VCP,
0/1 KP, TSP, and JSP. The GA can indeed improve the QA
performance. That is, the weights set by the GA can enable
the QA to have better performance than the weights set by
naive WSMs for several problem instances. However, the
iteration-based GA invokes the QA at each iteration and
thus consumes significant computation time to set weights
properly. As stated in [3], it is suggested to use the GA
to set weights for a certain problem instance PI for the
first time. When PI is modified slightly, the same weights
are still applied to the modified PI. Moreover, the same
weights can also be applied to other problem instances
that are similar to PI. Therefore, the GA computation
time can be regarded as just a one-time preprocessing
expense. Notably, the GA can also be applied to DA
and GPUA to improve their performance. Furthermore,
advanced meta-heuristic algorithms similar to the GA, such
as the improved particle swarm optimization (PSO) algorithm
and the ant colony optimization (ACO) algorithm, are
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TABLE 12. Annealer comparisons.

Annealers QA DA GPUA
Device D-Wave Advantage (2020) Fujitsu DAU-3 (2021) Compal Quantix (2023)
Technology Quantum Annealing ASIC Digital Annealing GPU-based Annealing
Number of (qu)bits 5,640 100,000 60,000
Connectivity At most 15 ways Fully-connected Fully-connected
Solution quality top rank count 29 46 33
Execution time top rank count 2 13 1

also recommended for enhancing the performance of all
annealers.

Besides the (HPE) algorithm and the GA, there are
many mechanisms to improve the QA performance, such as
pausing [56], [57], [58], quenching [59], [60], and reverse-
annealing [61], [62]. Below, we describe every mechanism in
detail.

The pausing mechanism involves halting the evolution
of the quantum annealing process at a specific point for a
specific period of time. It allows the system to equilibrate
and potentially find a lower energy state before continuing.
Therefore, the likelihood of the system settling into a global
minimum rather than a local minimum is increased, enhanc-
ing overall performance. The paper [57] focuses on parameter
setting for pausing, whereas the paper [58] explores using
machine learning technique to identify appropriate pausing
locations for better performance.

Quenching in quantum annealing refers to the process of
abruptly stopping the quantum annealing process before it
reaches its minimum energy state. That is, quenching involves
interrupting this quantum annealing process prematurely.
Quenching allows faster solution finding, as it bypasses
the final slow convergence to the ground state. In some
cases, quenching can also help the system escape from local
minima trapping the system in a low-energy state that is
close to the global minima. The paper [59] investigates
the quenching mechanism from an energetic perspective.
It analyzes how the energy distribution of the system evolves
with different quench rates and how the distribution affects
the probability of finding good solutions. The paper [60]
investigates quenching in the context of the ECP. It analyzes
the relationship between the “quantum annealing gap” (the
energy difference between the ground state and the excited
state) and the success rate of finding optimal solutions with
quenching.

Reverse annealing starts from a known solution or a
set of candidate solutions and then partially anneals back
towards the initial Hamiltonian before resuming forward
annealing. This technique allows the system to refine and
improve upon known good solutions rather than starting
from a random or poorly defined state. For example, we can
use the greedy algorithm to easily find a feasible and
good (but not optimal) solution to the 0/1 KP. We then
apply the reverse annealing mechanism to start from the
feasible solution, aiming to ultimately obtain the optimal
solution.
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C. DA IMPROVEMENT RECOMMENDATIONS

In the DA (i.e., Fujitsu DAU-3), numerous mechanisms exist
to enhance the performance, including built-in separated
penalty terms, one-way/two-way one-hot constraints, and
linear inequality constraints. Below we demonstrate how
these mechanisms are used in the DA for solving COPs.

We first take the 0/1 KP as an example. The built-in
“linear inequality constraints” feature which allows multiple
inequalities in the DA can be used in the 0/1 KP to ensure
that the sum of weights of objects in the knapsack does not
exceed the knapsack capacity. Therefore, we can remove the

2
term A (Z/vi Y — 2 w,-xi) from the QUBO formula in

Eq. (12). Moreover, the built-in “‘one-way one-hot group”
feature can be used to ensure that there is only a ’1’ value
among the variables in each group of variables. In this way,

we can remove the term A (1 — ZJW j ’ from the QUBO
formula in Eq. (12). In this way, the QUBO formula is
reduced significantly and its optimal (or near optimal) value
can be derived easily.

We then take the TSP as another example. In the
TSP, we may set the one-way one-hot constraint for
each vertex in the graph so that each vertex is visited
exactly once and only one vertex is visited at a time.
We may use the “two-way one-hot group” feature provided
by the DA such that there is only a ’1’ value among
the variables in each group of variables. In this way,

we can remove the terms A, (1 - Z;':lxw-) and

A (1 =20 xv,j)2 from the QUBO formula in
Eq. (15). Furthermore, we can use the ‘“‘separated penalty
terms” for the DA to adjust the weights A and B in Eq. (15)
automatically to soon return the optimal (or near optimal)
value of the QUBO formula.

The aforementioned examples show that the QUBO
formulation can be simplified by the DA’s built-in features.
The features not only reduce the burden on users to develop
QUBO formulas, but also accelerates the time for the
DA to return solutions and improves the quality of the
solutions.

D. GPUA IMPROVEMENT RECOMMENDATIONS

The GPUA is still evolving, and many features have not
yet been fully developed. The GPUA is a software annealer
which highly depends on parallel algorithms run on CPUs and
GPUs. Therefore, more available features, including those
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owned by the DA, might be implemented and included in the
GPUA to improve the performance.

For example, we can implement some parallel algorithms
for the GPUA to handle the inequalities in parallel. Besides,
We can specify one-hot constraint in the first #n elements with
random numbers smaller than .

For another example, in the GPUA, we can create an x n
matrix where each row contains exactly one ’1°, and so does
each column by using a special permutation of n elements to
be the “‘one-in-one-out” feature, which is useful to solve the
TSP.

In addition, the GPU has become more and more powerful
and popular in the high performance computing. We can
expect that one day, with enough GPUs, GPUA may
outperform other types of annealers.

V. CONCLUSION

In this paper, we begin by offering introductory descriptions
of the QA, DA, and GPUA to help readers understand their
distinct principles, features, and problem-solving workflows.
We then conduct comprehensive benchmark analysis of their
solution quality and execution time by applying them to
solving various COPs, including the SSP, MCP, VCP, 0/1 KP,
GCP, HCP, TSP, and JSP. The benchmarking also includes
comparisons with the state-of-the-art CAs that solve the same
COPs.

Because the COPs selected for benchmarking are all quite
well known, after decades of development, CAs for solving
the COPs often have very good or even the optimal solutions
with very short execution times. In contrast, annealers have
only been developed for a few years or for a little over a
decade. However, they have been already able to solve COPs
systematically via QUBO formulation with relatively good
performance or even better performance when compared to
CAs. Therefore, when facing new problems that are never or
seldom addressed by CAs, using annealers to solve them is
very promising.

We also provide performance improvement recommenda-
tions for the QA, DA, and GPUA. Specifically, we suggest
to use the GA, the improved PSO algorithm, and the ACO
algorithm for all annealers to improve solution quality.
We suggest to use the HPE algorithm for the QA to support
higher precision coefficients, use pausing, quenching, and/or
reverse-annealing mechanisms for the QA to improve per-
formance. We are currently in the noisy intermediate-scale
quantum (NISQ) era, so the QA only has a moderate number
of qubits and is susceptible to noise, which causes its
performance to be sometimes inferior to that of the DA and
the GPUA. When the hardware specifications of the QA
improve, such as having more qubits with higher connectivity
and better noise tolerance, as well as supporting coefficients
with higher precision (which means finer control over the
couplers between qubits), combining hardware improvement
with the suggested mechanisms mentioned above may make
the QA perform as well as, or even better than, the DA and
the GPUA.
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We also suggest to use built-in separated penalty terms,
one-way/two-way constraints, and linear inequality con-
straints for the DA to improve performance. Furthermore,
we suggest to use parallel inequality checking, and sweeping
pattern constraints for the GPUA to improve performance.
We believe these recommendations are useful not only for
annealer users, but also for annealer developers. We plan
to follow these recommendations in the future to verify
their actual impact on annealer performance. Last but not
least, since energy consumption is also an important metric,
we will attempt to incorporate it into future performance
benchmarking.
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