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Abstract. We derive a factorization formula for forward production of two jets in dilute-

dense collisions that is valid for an arbitrary value of the momentum imbalance of the

jets, kt. This generalizes the transverse momentum dependent (TMD) factorization for-

mula that has been derived before by Dominguez et al. Their formula is valid only for

small values of the transverse momentum of the small-x gluon from the target; it has kt
dependent TMD gluon distributions, but on-shell hard matrix elements. We extend the

TMD formula to all ranges of kt by including off-shell matrix elements. We also add finite

Nc corrections. The new formula encompasses both, the TMD factorization for small kt
on the order of the saturation scale, and the High Energy Factorization (HEF) for large

kt on the order of the momentum of the jets. The TMD and HEF factorizations can be

derived from the Color Glass Condensate (CGC) formula for forward di-jet production in

the appropriate limits. We show explicitly the equivalence of HEF and CGC in the dilute

target approximation.

1 Introduction

The production of two jets in the forward rapidity direction of ultra-relativistic proton-proton and

proton-nucleus collisions is sensitive to the small-x gluon distributions in the target, and the large-

x partons in the projectile. The longitudinal momentum fraction x of the partons is defined with

respect to the momentum of the parent hadron. The wave function of the projectile is obtained from

perturbative quantum chromodynamics (pQCD), while the gluon distributions in the target are in the

non-linear saturation regime. Di-jet production in asymmetric collisions has been studied in different

theoretical frameworks, with different ranges of values for the momentum imbalance.

The transverse momentum of the produced jets, Pt, is one of the hardest scales in the problem,

while the saturation momentum, Qs, is one of the softest scales. The third scale in this problem is the

momentum imbalance of the jets (or equivalently the transverse momentum of the interacting gluon

from the target), kt. The color glass condensate (CGC) approach [1] does not assume any particular

ordering of these scales, and in the most general case there is no kt factorization formula for the
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cross section. The transverse momentum dependent (TMD) factorization [2], [3] is valid when the

momentum imbalance is close to Qs, and both are much smaller than the hard momentum of the jets,

kt ∼ Qs � Pt. The high-energy factorization (HEF) [4] [5] describes the region of large kt values on

the order of Pt, Qs � kt ∼ Pt. We unify the different approaches by deriving a formula valid for the

whole range of kt values between Qs and Pt [6].

In section 2 we derive the HEF formula from a CGC calculation in the limit of a dilute target,

by restricting the scattering to two gluon exchanges. In section 3 we revise the TMD factorization

formula that was derived in Ref. [3] in the large-Nc limit. We include all finite Nc correction, introduce

three new gluon distributions, and reduce the number of independent distributions to two per channel.

We improve the finite-Nc TMD factorization in section 4 by restoring the kt dependence in the matrix

elements.

2 Derivation of the high-energy factorization from the color glass
condensate cross section in the dilute target limit

The dilute projectile in the HEF formula for di-jet production is represented with a parton distribution

function of collinear factorization, fa/p(x1, μ
2), the dense target with one kt-dependent gluon distribu-

tion, Fg/A(x2, kt), and the hard part of the scattering with off-shell matrix elements, Mag∗→cd [5], [7]:

dσpA→dijets+X

dy1dy2d2p1td2p2t
=

1

16π3(x1x2s)2

∑
a,c,d

x1 fa/p(x1, μ
2) |Mag∗→cd |2Fg/A(x2, kt)

1

1 + δcd
. (1)

In the above expression s is the center of mass energy squared, p1t and p2t are the transverse momenta

of the outgoing particles, and y1 and y2 are their rapidities. The longitudinal momentum fractions of

the parton from the projectile and the gluon from the target are x1 and x2, respectively. The matrix

elements have been calculated in Refs. [5], [8] and [9]. The HEF formula is an ansatz formula which

turns out to be valid for large kt values, with Fg/A(x2, kt) equal to the unintegrated gluon distribution

entering in the cross section for deep inelastic scattering (DIS). This distribution is associated with

the S -matrix for a quark-anitquark dipole scattering:

Fg/A(x2, kt) =
Nc

αs(2π)3

∫
d2vd2v′e−ikt ·(v−v′)∇2

v−v′
[
1 − S (2)

qq̄ (v, v′)
]
, (2)

where S (2)
qq̄ (v, v′) is a correlator of two fundamental Wilson lines,

S (2)
qq̄ (v, v′) =

1

Nc

〈
TrU(v)U†(v′)

〉
. (3)

The Wilson lines are path ordered exponentials of the gauge field of the target, Aμ, and here, we define

them in the light-cone gauge A+ = 0 of the projectile,

U(x) = P exp

[
ig

∫
dx+A−a (x+, x)ta

]
. (4)

The multi-gluon scatterings of the projectile parton with the dense field of the target, in the CGC

cross section, are described with more complicated objects than the dipole S (2)
qq̄ . The cross section

for the qg∗ → qg channel, for example, was calculated in Ref. [10], and it was shown that it involves

four-point and three-point correlators of fundamental and/or adjoint Wilson lines as well, describing

04006-p.2



Physics Opportunities at an Electron-Ion Collider

the multiple scatterings of a quark and a gluon in the amplitude and its complex conjugate. The four-

point correlator is an expectation value of two fundamental Wilson lines, U, and two adjoint Wilson

lines, V , (all at different transverse coordinates):

S (4)
qgq̄g(b, x,b

′, x) = 1/Nc

〈
Tr

(
U(b)U†(b′)tdtc

) [
V(x)V†(x′)

]cd〉
x2

. (5)

The three-point correlator involves two fundamental and one adjoint Wilson line:

S (3)
qgq̄(b, x, z′) = 1/Nc

〈
Tr

(
U†(z′)tcU(b)td

)
Vcd(x)

〉
x2

. (6)

In the dilute target approximation (a target with two scattering centres), the S (4)
qgq̄g and S (3)

qgq̄ correlators

can be written in terms of the dipole S (2)
qq̄ , and they can be related to the gluon distribution Fg/A(x2, kt)

from the HEF formula. This approximation amounts to expanding the Wilson lines to second order in

the background field Aμ. In this approximation S (4)
qgq̄g and S (3)

qgq̄ are [6]:

S (4)
qgq̄g(b, x,b

′, x′) � S (2)(b,b′) − CA

CF

[
1 − S (2)(x, x′)

]

− CA

2CF

[
S (2)(x′,b) + S (2)(x,b′) − S (2)(x,b) − S (2)(x′,b′)

]
,

S (3)
qgq̄(b, x, v′) � CA

2CF

⎡⎢⎢⎢⎢⎣S (2)(b, x) + S (2)(x, v′) − 1

C2
A

S (2)(b, v′)
⎤⎥⎥⎥⎥⎦ − CA

CF
. (7)

With the above results we express the CGC di-jet cross section only in terms of the DIS distribution

Fg/A(x2, kt), and we reproduce the matrix elementsMag∗→cd from the HEF formula exactly [6]. We de-

rive the HEF formula from the CGC cross section for a dilute target for all three channels: qg∗ → qg,
gg∗ → qq̄ and gg∗ → gg.

3 Simplified TMD factorization for finite Nc

A TMD factorization formula for forward di-jet production for small kt values, Qs � kt ∼ Pt, was

derived in Ref. [3], in the large-Nc limit. This is the scenario of nearly back-to-back di-jets. The target

is described with five kt dependent gluon distributions, instead of one, while the kt dependence is not

present in the matrix elements (the incoming gluon from the target is put on shell). The different TMD

distributions in the cross section represent the resummation of collinear gluons from the target that

couple to the hard part. The resummation depends on the color flow in the 2 → 2 sub-process, and

brings different gauge link structure in the gluon densities for different 2 → 2 Feynman diagrams. The

gauge links, products of such resummation, turn a generic correlator of gluon field strength tensors

F (x2, kt)
naive
= 2

∫
dξ+d2ξ

(2π)3p−A
eix2p−Aξ

+−ikt ·ξ 〈A|Tr
[
Fi− (
ξ+, ξ

)
Fi− (0)

]
|A

〉
(8)

into several (different) gauge invariant TMD gluon distributions that will emerge in the factorized

cross section. The TMD’s for all types of 2 → 2 diagrams have been calculated in Ref. [2].

We revise the derivation of the TMD formula for this process, keeping Nc finite. For each hard

factor from Ref. [3] we identify the corresponding gluon distributions from Ref. [2], for all three

channels. The finite Nc corrections bring three new TMD distributions compared to the large-Nc case,

as well as corrections to the hard parts that were previously omitted. The TMD gluon distributions

are:

04006-p.3
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F (1)
qg =

∫
2dξ+d2ξ

(2π)3p−A
eix2p−Aξ

+−ikt ·ξ 〈Tr
[
F (ξ)U[−]†F (0)U[+]

]〉
,

F (2)
qg =

∫
2dξ+d2ξ

(2π)3p−A
eix2p−Aξ

+−ikt ·ξ
〈
Tr

⎡⎢⎢⎢⎢⎢⎢⎣F (ξ)
Tr

[
U[�]

]
Nc

U[+]†F (0)U[+]

⎤⎥⎥⎥⎥⎥⎥⎦
〉
,

F (1)
gg =

∫
2dξ+d2ξ

(2π)3p−A
eix2p−Aξ

+−ikt ·ξ
〈
Tr

⎡⎢⎢⎢⎢⎢⎢⎣F (ξ)
Tr

[
U[�]

]
Nc

U[−]†F (0)U[+]

⎤⎥⎥⎥⎥⎥⎥⎦
〉
,

F (2)
gg =

∫
2dξ+d2ξ

(2π)3p−A
eix2p−Aξ

+−ikt ·ξ 1

Nc

〈
Tr

[
F (ξ)U[�]†] Tr

[
F (0)U[�]

]〉
,

F (3)
gg =

∫
2dξ+d2ξ

(2π)3p−A
eix2p−Aξ

+−ikt ·ξ 〈Tr
[
F (ξ)U[+]†F (0)U[+]

]〉
,

F (4)
gg =

∫
2dξ+d2ξ

(2π)3p−A
eix2p−Aξ

+−ikt ·ξ 〈Tr
[
F (ξ)U[−]†F (0)U[−]

]〉
,

F (5)
gg =

∫
2dξ+d2ξ

(2π)3p−A
eix2p−Aξ

+−ikt ·ξ 〈Tr
[
F (ξ)U[�]†U[+]†F (0)U[�]U[+]

]〉
,

F (6)
gg =

∫
2dξ+d2ξ

(2π)3p−A
eix2p−Aξ

+−ikt ·ξ
〈
Tr

[
F (ξ)U[+]†F (0)U[+]

] ⎛⎜⎜⎜⎜⎜⎜⎝
Tr

[
U[�]

]
Nc

⎞⎟⎟⎟⎟⎟⎟⎠
2〉
. (9)

The new distributions are F (3−5)
gg . The gauge links are defined asU[±] = U(0,±∞; 0)U(±∞, ξ+; ξ),

and U[�] = U[+]U[−]† = U[−]U[+]†, where U(a, b; x) = P exp[ig
∫ b
a dx+A−a (x+, x)ta]. The gluon

distribution F (1)
qg is the dipole distribution, and F (3)

gg is the Weizsäcker-Williams gluon distribution.

Not all of the matrix elements that correspond to the above distributions are independent. We

reduce the number of independent matrix elements and their corresponding distributions to two per

channel, and we write a more compact TMD factorization formula for forward di-jet production at

finite Nc [6]:

dσpA→dijets+X

d2Ptd2ktdy1dy2

=
α2
s

(x1x2s)2

∑
a,c,d

x1 fa/p(x1, μ
2)

2∑
i=1

K(i)
ag→cdΦ

(i)
ag→cd(kt)

1

1 + δcd
. (10)

The new hard factors, K(i)
ag→cd, are given in Table 1. The respective TMD’s are linear combinations of

F (i)
ag . For the qg→ qg channel:

Φ
(1)
qg→qg = F (1)

qg and Φ
(2)
qg→qg =

1

(N2
c − 1)

(
−F (1)

qg + N2
cF (2)

qg

)
. (11)

For the gg→ qq̄ channel:

Φ
(1)

gg→qq =
1

(N2
c − 1)

(
N2
cF (1)
gg − F (3)

gg

)
and Φ

(2)

gg→qq = −N2
cF (2)
gg + F (3)

gg . (12)

For the gg→ gg channel:

Φ
(1)
gg→gg =

1

2N2
c

(
N2
cF (1)
gg − 2F (3)

gg + F (4)
gg + F (5)

gg + N2
cF (6)
gg

)
and

Φ
(2)
gg→gg =

1

2N2
c

(
N2
cF (2)
gg − 2F (3)

gg + F (4)
gg + F (5)

gg + N2
cF (6)
gg

)
. (13)

04006-p.4
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K(1)
ag→cd K(2)

ag→cd

1 −CF

Nc

ŝ(ŝ2 + û2)

t̂2û
− ŝ2 + û2

2t̂2 ŝû

[
û2 +

ŝ2 − t̂2

N2
c

]

2
1

2Nc

(t̂2 + û2)2

ŝ2 t̂û
− 1

2CFN2
c

t̂2 + û2

ŝ2

3
2Nc

CF

(ŝ2 − t̂û)2(t̂2 + û2)

t̂2û2 ŝ2

2Nc

CF

(ŝ2 − t̂û)2

t̂ûŝ2

K(1)
ag∗→cd K(1)

ag∗→cd

1 −
u
(
s2
+ u2

)
2tt̂ ŝ

(
1 +

sŝ − tt̂
N2
c uû

)
−CF

Nc

s
(
s2
+ u2

)
tt̂û

2
1

2Nc

(
t2 + u2

) (
uû + tt̂

)
sŝt̂û

(
t2 + u2

)
w

4N2
cCF sŝt̂û

3
Nc

CF

v
(
uû + tt̂

)
t̄t̂ūûs̄ŝ

− Nc

2CF

v w

t̄t̂ūûs̄ŝ

4 Unifying TMD factorization formula

As we mention in the previous section, the matrix elements in the TMD factorization were derived

for an on-shell incoming gluon from the target, which limits the applicability of the formula to small

values of kt. We propose a solution to this limitation by including off-shell matrix elements in the fac-

torization formula and by restoring the kt dependence in the hard part. We calculate the kt dependent

matrix elements with two methods. The high energy factorization approach is a Feynman diagram

based calculation, with light-cone gauge for the on-shell gluons, with the gauge vector n set to be

equal to the four momentum of the target, n = pA, and with prescribing a longitudinal polarization

vector to the off-shell gluon from the target of the form ε0μ = i
√

2 x2pA μ /|kt | [4]. The advantage of

this particular prescription is that it generates gauge invariant matrix elements, but the drawback is

that the gauge invariance is not clearly manifested for the separate Feynman diagrams. The second

method, the helicity method for TMD amplitudes [11] [12], reveals the gauge invariance already on

the level of the amplitudes. These are the so-called color ordered amplitudes that represent the co-

efficients of a color decomposition of a generic amplitude (involving an arbitrary number of gluons

and/or quarks) into a color part and a kinematic part. The color ordered amplitudes are functions of

kinematic arguments only, and are gauge invariant. They give the hard factors, while the color part

of the decomposition, after squaring, indicates the corresponding gluon TMDs. In addition, this pro-

04006-p.5

Table 1. The hard factors K(i)
ag→cd for an on-shell gluon accompanying the gluon TMDs Φ

(i)
ag→cd. The Mandelstam

variables are defined as ŝ = (p1 + p2)2, t̂ = (p1 − k)2 and û = (p2 − k)2.

Table 2. The hard factors K(i)
ag∗→cd for an off-shell gluon accompanying the gluon TMDs Φ

(i)
ag→cd. The bared

versions of the Mandelstam variables are defined as s̄ = (x2pA + p)2, t̄ = (x2pA − p1)2 and ū = (x2pA − p2)2. We

have also denoted v = s4
+ t4 + u4 and w = uû + tt̂ − sŝ.
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cedure takes advantage of the relations between the coefficients, removes the dependent hard factors

from the beginning, and results in a compact factorization formula without redundancy.

We derive a factorization formula, similar to the one derived in the previous section, Eq. (10),

but now with kt dependent matrix elements K(i)
ag∗→cd(kt) [6]. We apply both of the methods described

above independently. The new formula is:

dσpA→dijets+X

d2Ptd2ktdy1dy2

=
α2
s

(x1x2s)2

∑
a,c,d

x1 fa/p(x1, μ
2)

2∑
i=1

K(i)
ag∗→cd(kt)Φ

(i)
ag→cd(kt)

1

1 + δcd
, (14)

with the matrix elements given in Table 2. The above formula unifies the HEF approach to forward

dijet production with the TMD factorization by establishing a framework applicable for hard jets,

Pt � Qs, but arbitrary kt, and it is the main result of this work.

For phenomenological applications to di-jet azimuthal correlations in high-energy collisions, we

study the new framework at large Nc, and with analytical models for the gluon distributions. We

calculate the gluon densities that survive the large Nc limit in the Golec-Biernat-Wusthoffmodel [13]:

F (1)
qg (x2, kt) =

NcS ⊥
2π3αs

S ⊥
Q2

s(x2)
k2
t exp

[
− k2

t

Q2
s(x2)

]
,

F (2)
qg (x2, kt) =

NcS ⊥
2π3αs

exp

[
− k2

t

Q2
s(x2)

] ∫ ∞

1

dt
t(t + 2)

exp

[
2k2

t

(t + 2)Q2
s(x2)

]
,

F (1)
gg (x2, kt) =

NcS ⊥
16π3αs

exp

[
− k2

t

2Q2
s(x2)

] (
2 +

k2
t

Q2
s(x2)

)
,

F (2)
gg (x2, kt) =

NcS ⊥
16π3αs

exp

[
− k2

t

2Q2
s(x2)

] (
2 − k2

t

Q2
s(x2)

)
,

F (6)
gg (x2, kt) =

NcS ⊥
4π3αs

exp

[
− k2

t

2Q2
s(x2)

] ∫ ∞

1

dt
t(t + 1)

exp

[
k2
t

2(t + 1)Q2
s(x2)

]
. (15)

In the above expressions S ⊥ is the transverse area of the target. We also obtain their perturbative

behaviour at large kt in the McLerran-Venugopalan model [14]. We derive the leading order term in

Q2
s/k

2
t , and we find that all of them scale as

� NcS ⊥Q2
s(x2)

4π3αsk2
t
+ O

(
Q4

s(x2)

k4
t

log
k2
t

Λ2

)
, (16)

except F (2)
gg that goes to zero. The above expressions for the densities, as well as numerical results that

implement small-x evolution, will be used for phenomenological application of the unifying formula

in a forthcoming publication.
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