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Abstract. We derive a factorization formula for forward production of two jets in dilute-
dense collisions that is valid for an arbitrary value of the momentum imbalance of the
jets, k;. This generalizes the transverse momentum dependent (TMD) factorization for-
mula that has been derived before by Dominguez et al. Their formula is valid only for
small values of the transverse momentum of the small-x gluon from the target; it has k,
dependent TMD gluon distributions, but on-shell hard matrix elements. We extend the
TMD formula to all ranges of &, by including oft-shell matrix elements. We also add finite
N, corrections. The new formula encompasses both, the TMD factorization for small &,
on the order of the saturation scale, and the High Energy Factorization (HEF) for large
k, on the order of the momentum of the jets. The TMD and HEF factorizations can be
derived from the Color Glass Condensate (CGC) formula for forward di-jet production in
the appropriate limits. We show explicitly the equivalence of HEF and CGC in the dilute
target approximation.

1 Introduction

The production of two jets in the forward rapidity direction of ultra-relativistic proton-proton and
proton-nucleus collisions is sensitive to the small-x gluon distributions in the target, and the large-
x partons in the projectile. The longitudinal momentum fraction x of the partons is defined with
respect to the momentum of the parent hadron. The wave function of the projectile is obtained from
perturbative quantum chromodynamics (pQCD), while the gluon distributions in the target are in the
non-linear saturation regime. Di-jet production in asymmetric collisions has been studied in different
theoretical frameworks, with different ranges of values for the momentum imbalance.

The transverse momentum of the produced jets, P;, is one of the hardest scales in the problem,
while the saturation momentum, Q;, is one of the softest scales. The third scale in this problem is the
momentum imbalance of the jets (or equivalently the transverse momentum of the interacting gluon
from the target), k;. The color glass condensate (CGC) approach [1] does not assume any particular
ordering of these scales, and in the most general case there is no k; factorization formula for the
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cross section. The transverse momentum dependent (TMD) factorization [2], [3] is valid when the
momentum imbalance is close to Qy, and both are much smaller than the hard momentum of the jets,
ki ~ Qs < P,. The high-energy factorization (HEF) [4] [5] describes the region of large k, values on
the order of P,, O, < k; ~ P,. We unify the different approaches by deriving a formula valid for the
whole range of k, values between Q; and P; [6].

In section 2 we derive the HEF formula from a CGC calculation in the limit of a dilute target,
by restricting the scattering to two gluon exchanges. In section 3 we revise the TMD factorization
formula that was derived in Ref. [3] in the large-N, limit. We include all finite N, correction, introduce
three new gluon distributions, and reduce the number of independent distributions to two per channel.
We improve the finite-N, TMD factorization in section 4 by restoring the k, dependence in the matrix
elements.

2 Derivation of the high-energy factorization from the color glass
condensate cross section in the dilute target limit

The dilute projectile in the HEF formula for di-jet production is represented with a parton distribution
function of collinear factorization, f,/,(x; ,i1%), the dense target with one k;-dependent gluon distribu-

tion, Fy/4(x2, k), and the hard part of the scattering with off-shell matrix elements, Mg ¢4 [5], [7]:

do_pA—)dijelHX 1

[ 1
§ X1 fafpe1s 12) Mg —cal? Fgpa(x2, k) ——— . (1
1+ 6cd

dyrdy,d®pyd®py 167 (x1x25)> 44
In the above expression s is the center of mass energy squared, p;; and p,; are the transverse momenta
of the outgoing particles, and y; and y, are their rapidities. The longitudinal momentum fractions of
the parton from the projectile and the gluon from the target are x; and x,, respectively. The matrix
elements have been calculated in Refs. [5], [8] and [9]. The HEF formula is an ansatz formula which
turns out to be valid for large k; values, with %,,4(x2, k;) equal to the unintegrated gluon distribution
entering in the cross section for deep inelastic scattering (DIS). This distribution is associated with
the S -matrix for a quark-anitquark dipole scattering:

N,
a,(2n)}

Foa(x2, k) = f Pydy' eIV 1 -S| )

where S f;;(v, v’) is a correlator of two fundamental Wilson lines,

1 .
SO, v) = v (Tr U(v)U'(v')> . 3)

&

The Wilson lines are path ordered exponentials of the gauge field of the target, A,, and here, we define
them in the light-cone gauge A* = 0 of the projectile,

U(x) = Pexp [ig f dx*Au(er,x)t“] : 4)

The multi-gluon scatterings of the projectile parton with the dense field of the target, in the CGC
cross section, are described with more complicated objects than the dipole S ;251)- The cross section
for the gg* — qg channel, for example, was calculated in Ref. [10], and it was shown that it involves
four-point and three-point correlators of fundamental and/or adjoint Wilson lines as well, describing
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the multiple scatterings of a quark and a gluon in the amplitude and its complex conjugate. The four-
point correlator is an expectation value of two fundamental Wilson lines, U, and two adjoint Wilson
lines, V, (all at different transverse coordinates):

. S 1ed
S(q?ég(b’x* b’.x) = 1/N, <TY(U(b)UT(b')tdt‘) [V(X)VT(X )] >x2 . 5)
The three-point correlator involves two fundamental and one adjoint Wilson line:
S g8 %.2) = UN (T (U@ U D) Vi) ®)

In the dilute target approximation (a target with two scattering centres), the S f;;)q g
(@)

can be written in terms of the dipole S ', and they can be related to the gluon distribution Faja(xa, k)
from the HEF formula. This approximation amounts to expanding the Wilson lines to second order in
the background field A,. In this approximation § “ and S are [6]:

3)
and S P correlators
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With the above results we express the CGC di-jet cross section only in terms of the DIS distribution
Fg/a(x2, k;), and we reproduce the matrix elements My from the HEF formula exactly [6]. We de-
rive the HEF formula from the CGC cross section for a dilute target for all three channels: gg* — gg,
99" — qq and gg* — gg.

3 Simplified TMD factorization for finite N.

A TMD factorization formula for forward di-jet production for small k, values, Q; <« k; ~ P;, was
derived in Ref. [3], in the large-N, limit. This is the scenario of nearly back-to-back di-jets. The target
is described with five k, dependent gluon distributions, instead of one, while the &, dependence is not
present in the matrix elements (the incoming gluon from the target is put on shell). The different TMD
distributions in the cross section represent the resummation of collinear gluons from the target that
couple to the hard part. The resummation depends on the color flow in the 2 — 2 sub-process, and
brings different gauge link structure in the gluon densities for different 2 — 2 Feynman diagrams. The
gauge links, products of such resummation, turn a generic correlator of gluon field strength tensors

naive d§+d2§ ix> D& —il,- i i—

Fan k) "E°2 | e R (AT [F (£7,€) F(0)] 1A) ®)
2n)*p,

into several (different) gauge invariant TMD gluon distributions that will emerge in the factorized

cross section. The TMD’s for all types of 2 — 2 diagrams have been calculated in Ref. [2].

We revise the derivation of the TMD formula for this process, keeping N, finite. For each hard
factor from Ref. [3] we identify the corresponding gluon distributions from Ref. [2], for all three
channels. The finite N, corrections bring three new TMD distributions compared to the large-N, case,
as well as corrections to the hard parts that were previously omitted. The TMD gluon distributions
are:
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The new distributions are 7—'(3 % The gauge links are defined as U™*! = U(0, £00; 0)U (00, &3 €),

and U = YHYIT = 1Y+ where U(a, b;x) = Pexplig fab dx*A; (x*,x)t*]. The gluon
distribution 7—'(](;) is the dipole distribution, and T, (;) is the Weizsdcker-Williams gluon distribution.
Not all of the matrix elements that correspond to the above distributions are independent. We
reduce the number of independent matrix elements and their corresponding distributions to two per
channel, and we write a more compact TMD factorization formula for forward di-jet production at

finite N, [6]:

dO_pA—>dijets+X CK% )
s 2 : E O p®
= X X1, K
P dkdydy,  (x1x25)* &4 agp (1,17 £ ag—scd Lagca¥ ’)

(10)

The new hard factors, K 1)

ag—cd’

7—',1(;). For the g9 — gg channel:

are given in Table 1. The respective TMD’s are linear combinations of

1
()] (D (2 — (1) 2(2)
Dyggg = Fgy  and Dy yy = (N2—1) ( Fog + NeFgq ) an
For the gg — ¢g channel:
1
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For the gg — gg channel:
1
(6] — 2q=(1) 3) () (S 26
U = 33 (N2FLY = 2F QD + Fog + FS + N2F) and
1
2 — 2(2) (3) (€)) (5) 2(6)
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c
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Table 1. The hard factors K for an on-shell gluon accompanying the gluon TMDs o¥ The Mandelstam

ag—cd ag—cd®

variables are defined as § = (p; + p,)%, f = (p; — k)? and @i = (p, — k)°.
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Table 2. The hard factors K‘(IZMC , for an off-shell gluon accompanying the gluon TMDs d)ff;_w - The bared

versions of the Mandelstam variables are defined as § = (x,p4 + p)z, f=(xpa— p1)2 and & = (xppa — pz)z. We
have also denoted v = 5* + 7' + " and w = @it + 7 — 55.

Kigmsed Kigmsca
. _u(§2+u2)( §§_;f) _ﬁ s<52+u2)
2ifs N2 i N. i
1 (7 + ) (aa+ 1) (7 +7)w
A 8ia 4N2Cpssin
; A v(ﬁﬁ +;f) _ Ne vw
Crp  tunss 2Cr tuiss

4 Unifying TMD factorization formula

As we mention in the previous section, the matrix elements in the TMD factorization were derived
for an on-shell incoming gluon from the target, which limits the applicability of the formula to small
values of k;. We propose a solution to this limitation by including off-shell matrix elements in the fac-
torization formula and by restoring the k, dependence in the hard part. We calculate the k; dependent
matrix elements with two methods. The high energy factorization approach is a Feynman diagram
based calculation, with light-cone gauge for the on-shell gluons, with the gauge vector n set to be
equal to the four momentum of the target, n = p,, and with prescribing a longitudinal polarization
vector to the off-shell gluon from the target of the form eg = iV2xopay [k [4]. The advantage of
this particular prescription is that it generates gauge invariant matrix elements, but the drawback is
that the gauge invariance is not clearly manifested for the separate Feynman diagrams. The second
method, the helicity method for TMD amplitudes [11] [12], reveals the gauge invariance already on
the level of the amplitudes. These are the so-called color ordered amplitudes that represent the co-
efficients of a color decomposition of a generic amplitude (involving an arbitrary number of gluons
and/or quarks) into a color part and a kinematic part. The color ordered amplitudes are functions of
kinematic arguments only, and are gauge invariant. They give the hard factors, while the color part
of the decomposition, after squaring, indicates the corresponding gluon TMDs. In addition, this pro-
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cedure takes advantage of the relations between the coefficients, removes the dependent hard factors
from the beginning, and results in a compact factorization formula without redundancy.

We derive a factorization formula, similar to the one derived in the previous section, Eq. (10),
but now with k, dependent matrix elements Ki’g) _cqko) [6]. We apply both of the methods described
above independently. The new formula is:

da_pAﬁdijets+X 61/2 5 o O 1
P Fdndr " Ges? ;xlfa/p(xl,u >;Kaq )Pk T (14

with the matrix elements given in Table 2. The above formula unifies the HEF approach to forward
dijet production with the TMD factorization by establishing a framework applicable for hard jets,
P; > Q;, but arbitrary k;, and it is the main result of this work.

For phenomenological applications to di-jet azimuthal correlations in high-energy collisions, we
study the new framework at large N,., and with analytical models for the gluon distributions. We
calculate the gluon densities that survive the large N, limit in the Golec-Biernat-Wusthoff model [13]:

Ty (2:k) = era Qf(;z) Q2<x2>}

Fig (2. ki) = iv;%scz “xp _sz(,zxz)] fl ) t(tt-l: 2) P+ 22)12?()62)]

i = e ool -z (o ).

Fag (ki) = 12];5; exp [_2Q§ixz>] (2 ) inz))’

Fao (2.k1) = i\;f; [ 2Q2(xz)] f z(:+ D P20+ lk)tzQ%(xz)]' -

In the above expressions S ; is the transverse area of the target. We also obtain their perturbative
behaviour at large &, in the McLerran-Venugopalan model [14]. We derive the leading order term in
Q?/k?, and we find that all of them scale as

N NS 0%(x2) O(Q?(xz) k_fz)

lo
dmdak? K} gA2

(16)

except fq(j) that goes to zero. The above expressions for the densities, as well as numerical results that
implement small-x evolution, will be used for phenomenological application of the unifying formula
in a forthcoming publication.
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