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PREFACE

The General Theory of Relativity (GTR) put forward by Albert Ein-
stein has led us to have a new outlook of the Universe. It paved the
way for a dynamical approach that is liable to scientific modeling and
physical measurements, for the first time in the history of Physics.
For any theory of gravity to be valid, it should explain the current
astronomical observations. GTR succeeded in many of the experi-
mental tests. However recent astronomical observations as well as
some theoretical motivations demand that GTR has to be modified.
Primarily, GTR is non-renormalizable and it cannot serve as a funda-
mental theory if we attempt to give a complete quantum description
of gravity and space-time. The observation of an accelerated universe
shows that GTR is inadequate for describing universe at the extreme
regimes. The presence of big bang singularity, flatness, horizon and
monopole problems could not be explained using the standard cosmo-
logical models based on GTR. The explanations for matter dominated
and radiation dominated universe, dark energy and dark matter could
not be successfully explained using GTR. A plethora of cosmological
models were proposed to explain the cosmological, astrophysical dis-

crepancies and conceptual problems. However, they are plagued by

ix



PREFACE

the so called coincidence problem and cosmological constant problem.

It is expected that adding higher order curvature invariants to the
Einstein-Hilbert action could solve the problems. Consequently, it
would be worth addressing the problems by modifying GTR. This
approach can avoid the dark components in cosmology and will also
provide a deeper understanding of the relevant issues and gravitation.
The class of theories called ‘Extended Theories of Gravity’ (ETG) or
‘Modified Theories of Gravity’ came with such a motive. Amongst all
modified gravity theories, the f(R) theory of gravity is one simple
theory that can sufficiently describe the properties of higher-order
gravitational effects, by extending the gravitational Lagrangian as
an arbitrary function of the Ricci scalar. The theory is devoid of in-
stabilities and can explain the late time acceleration of the Universe
in a unified way. The question whether the graviton can acquire a
mass has been seeding interest among theorists for decades, on the
other hand. This approach is addressed in the class called ‘Massive
Gravity’ theories and is considered to be a viable model to explain

the late time acceleration of the universe.

Modified theories of gravity will be valid only if they are tested. The
best testing ground for massive gravity or any modified theory of
gravity would be around a black hole. The best way to find out the
presence of a black hole is to search for its "Quasi Normal Modes"
(QNMs). Theoretically, the QNMs can be studied by perturbing the
black hole and knowing its response towards such a perturbation. The

analogy of black hole mechanics with the classical thermodynamics
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is also emerging as a new area of interest and shows interesting re-
sults like phase transition. The thermodynamics of black holes show
different behavior for different theories of gravity. Study of thermody-
namics of black holes may help in constructing a quantum theory of
gravity. And finally, searching for the gravitational waves (GWs) itself
will lead to drawing conclusions regarding the validity of a modified
theory. The current configuration of GW detectors are designed for
the polarizations coming from GTR alone. Hence, studies have to be

done for detecting the modes from theories of massive gravity also.

The subject of this thesis work is to study the different aspects of
massive gravity theories. In this work the important aspects such
as QNMs and thermodynamics of black holes and GWs in massive
gravity theories are explored in detail for new results. The thesis is

organized into six chapters:

Chapter 1: In this chapter, a general theoretical introduction to
GTR, what are its peculiarities, what does it predict, what are
the short comings and how they can be overcome are discussed.
The black hole solutions proposed by such theories and also the
importance of the study of thermodynamics of such theories are
discussed in this chapter. An introduction to the emanation of
Gravitational Waves (GWs) based on GTR and the possibility of
detecting GWs based on ETG are given in brief.

Chapter 2 : Chapter 2 deals with the black hole solution of (3+1) di-
mensional dRGT massive gravity and its QNMs. The space-time

around such a black hole is perturbed using a massless scalar

pel
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and the QNMs are calculated from the resulting master equa-
tion using Improved Asymptotic Iteration Method (Improved
AIM). The QNMs thus got are compared with the GTR case.
Studies on the thermodynamics of such a black hole are also
presented in this chapter. The P-V criticality of the resulting
black hole is checked for phase transition behavior. The behav-
ior of holographic entanglement entropy is also studied for the
aforesaid black holes.

Chapter 3: In Chapter 3, the QNMs are calculated for a (2+1)
dimensional BTZ black hole in massive gravity. The black hole
space-time is subjected to a massless scalar perturbation and
the resulting master equation is used for calculating QNMs us-
ing Improved AIM. The resulting QNMs are checked for phase
transition. The dependency of QNMs and phase transition on
the graviton mass is also checked. The property of phase transi-
tion is checked for de Sitter (dS) as well as Anti de Sitter (AdS)
space-times and also the dependency of transition behavior on
the charge of the black hole and on the cosmological constant are
studied. The thermodynamic behavior of these black holes are
then studied and is used to explore phase transition behavior
and the results are compared from QNM studies.

Chapter 4 : The production and detection of massive GWs from
f(R) theory of gravity are studied in Chapter 4. The field equa-
tion for a specific form of f(R) is obtained and is linearized
to get GW solutions. The spherical antenna detection of the

massive component of the above GW solutions is then studied.

xii
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The energy sensitivity is also calculated. The detectability of
massive mode is checked for a Truncated Icosahedral Gravita-
tional wave Antenna (TIGA). In this work, a Modified TIGA is
proposed for detecting the monopole modes and their energy
sensitivity are also calculated.

Chapter 5: In this chapter the possibility of the detection of mas-
sive GW emanated from f(R) theory of gravity is studied for
LIGO (Laser Interferometric Gravitational wave Observatory).
The beam pattern functions are calculated for detecting a mas-
sive mode. This is done for Gamma Ray Burst (GRB) sources
chosen at random. The detection possibility of a massive GW
from a GRB source in LIGO is studied using Bayesian analysis.

Chapter 6 A summary of the new results are presented in this chap-
ter and also the possible application and future plan of studies

are presented.

xiii



CHAPTER

INTRODUCTION

1.1 General Theory of Relativity

General Theory of Relativity (GTR) is one of the most distinguished
accomplishments of 20th-century physics. GTR proposed by Albert
Einstein in 1915 gives a comprehensive and coherent description of
space-time, gravity and matter at the macroscopic level. In GTR the
space-time is considered to be dynamic in nature and is determined
from the distribution of matter and energy. The formulation of GTR

involved three major steps[1, 2]:

1. Formulating equivalence principle in 1907

2. Introducing the metric tensor as the important mathematical
concept for a general relativistic theory of gravitation in 1912

3. The formulation of generally covariant field equations of gravi-

tation in 1915 that resulted in the final form of GTR
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Einstein in his theory proposed that gravity could not be considered as
a ‘Force’ in the conventional sense but as a manifestation of the curva-
ture of space-time caused by the presence of matter. The equivalence
principle restricts the curved space-time to pseudo-Riemannian[3, 4].

In the formulation of GTR, the Riemann curvature tensor denoted as

R 5 1o Which measures the curvature of the space-time is given by[5],
(1.1) RYo =0Ty =04 + T4 Thy T TS,

where the Christoffel symbol I is obtained from the metric tensor g,

and is given by,

1
re, ==

2ggp (0ugvp +0v8pu—0p8uv)-

The curvature tensor vanishes for flat space-time. By differentiating
the components of the Riemann tensor one can prove the Bianchi
identity,

VoR o+ ViRyao + VaRyoy =0,

where the gradient symbol denotes the covariant derivative. Contract-
ing the Bianchi identities twice and using the antisymmetry of the

Riemann tensor one obtains the following relation,
1
VV Rluv_gg‘uvR :O.
Then Einstein proposed his field equation as[6],
1
(1.2) Rluv_ggﬂvR :KTIJV,

where the metric tensor g, contains the information of the space-

time geometry, x = 81G/c*, G is the gravitational constant, T',, is the

2



1.1. GENERAL THEORY OF RELATIVITY

stress-energy tensor and R is the Ricci scalar obtained by contracting
the Ricci tensor as, R = g"'R,,. Ry, is the Ricci tensor formed by the

contraction of Riemann curvature tensor as,

pav

ore, — ore
- W KE parph _pa
ox®  OxV W=ap " up

ré .

The field equation given by (1.2) can also be arrived at by varying the

gravitational action given by the Einstein-Hilbert action,

_ 1 - 4
(1.3) S = zkf\/—ng x.

GTR survived many experimental tests. Einstein could explain the
precession of the orbit of the planet Mercury using his GTR. Newton’s
theory could not explain the observed value of the precision. But GTR
could perfectly account for the observed discrepancy[7]. Another pre-
diction made by Einstein based on his GTR is the bending of light rays
in strong gravitational field. In 1919, Arthur Eddington observed the
effect of gravitational lensing[8, 9]. He observed the apparent shift in
the position of stars, due to the light deflection by the gravitational
field of the Sun, as predicted by GTR. The existence of black hole is
another prediction of GTR. The first study along this line was made
by Karl Schwarzschild[10]. Black holes are singularities in space-time
that are formed when a star dies. They are points of singularity of
infinite mass and density from which nothing, even light, can escape.
Cygnus X-1, discovered by Charles Thomas Bolton, Louise Webster
and Paul Murdin in 1972[11] is considered to be a strong candidate

for a black hole. Later more candidates were found.
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Another important experimental test of GTR is the existence of ‘Grav-
itational Waves (GWs)’ . Gravitational waves are ‘ripples’ in the fabric
of space-time caused by matter. GWs are obtained as solutions of
linearized field equation of GTR. It shows that massive accelerating
objects such as neutron stars or black holes that orbit each other
would disrupt the space-time in such a manner that waves of dis-
torted space-time will be radiated from the source. Furthermore,
these ripples travel at the speed of light through the universe, carry-
ing with them the information about their origins, as well as valuable
information on the nature of gravity itself. Even though the math-
ematical calculations predicted its existence in 1916, it took a very
long time, 100 years, to get the experimental evidence. An indirect
evidence was got in 1974 when Hulse and Taylor discovered a binary
pulsar[12]. It was observed that as the binary system approaches
towards the merger, its period decreases. According to GTR it must
be due to the emission of GWs. Calculations of the so called ‘Hulse-
Taylor’ pulsar showed that the rate of decrease in its period matches
with the prediction made by GTR . Very recently, in 2016, the path-
breaking discovery of gravitational waves from black hole collision
was observed at LIGO (Laser Interferometric Gravitational wave Ob-
servatory). The discovery also substantiated the existence of black

holes in the universe.

Soon after the publication of GTR, scientists started questioning
the theory. In 1919, Weyl[13] and in 1923, Eddington[14] added

higher order invariants to the Einstein-Hilbert action. Such attempts
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were made out of scientific curiosity in order to understand the then
proposed theory. At the same time, scientists thought it to be not-
so-appealing to complicate the Einstein-Hilbert action without any
proper theoretical or experimental motivation and for that reason,
attempts towards this direction for modifying GTR slowed down.
However, there came astrophysical and cosmological as well as the-
oretical motivations for modifying GTR. In 1960s, while attempting
to unify GTR with quantum mechanics, it is found that GTR is not
re-normalizable. GTR is a classical theory and fails to serve as a funda-
mental theory since a full quantum description of space-time and grav-
ity is not available now. In 1962, Utiyama and De-Witt showed that
re-normalization at one loop level demands adding higher-order cur-
vature terms to the Einstein-Hilbert action[15]. Later, Stelle showed
that higher-order actions are re-normalizable, but not unitary[16].
More recent results show that, when quantum corrections or string
theory are taken into account, the effective low-energy gravitational
action admits higher order curvature invariants[17-19]. And recently
the observations of an accelerated expanding universe prove that
GTR is inadequate for describing the universe at extreme regimes.
The presence of big bang singularity, flatness, horizon and monopole
problems could not be explained using the standard cosmological mod-
els based on GTR. Also, the explanations for matter dominated and
radiation dominated universe, dark energy and dark matter could
not be successfully explained using GTR. A plethora of cosmological
models were proposed to explain the cosmological and astrophysical

discrepancies. However, they are plagued by the so called coincidence
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problem and cosmological constant problem[20, 21].

With these theoretical as well as astrophysical and cosmological mo-
tivations at hand, modifying GTR is necessitated that would avoid
the dark components in cosmology and would also provide a deeper

understanding of the relevant issues in gravitation.

1.2 Extended Theories of Gravity

Several attempts are made to modify GTR which together forms the
so called ‘Extended Theories of Gravity’. From a phenomenological
point of view any relativistic theory of gravity should satisfy certain
minimal requirements[22]. It has to explain the astrophysical obser-
vations such as the orbits of planets, self-gravitating structures etc.,
it has to reproduce Newtonian dynamics in the weak field limit, it has
to pass the experimentally well founded classical solar system tests
and also should reproduce the galactic dynamics. It must address the
problem of large scale structure such as clustering of galaxies and
also the cosmological dynamics, ie., it should reproduce in a consistent
way the cosmological parameters as the expansion rate, the Hubble
constant, the density parameter and so on. From a theoretical point of
view, there are certain fundamental properties that any modification
of gravity may satisfy. Any theory of gravity should be well motivated
from fundamental physics. This fundamental theory would solve some
fundamental problems in physics, such as late-time acceleration, the
incompatibility between quantum mechanics and GTR, the existence
of dark matter etc. The theory should have a well-posed initial value

formulation meaning that a wide class of freely specifiable initial

6



1.2. EXTENDED THEORIES OF GRAVITY

data must exist, such that there is a uniquely determined solution
to the modified field equations that depends continuously on this
data. Also, any such theories should leave space for a strong field
inconsistency. ie., the theory must lead to observable deviations from
GTR in the strong-field regime. Accordingly, many classes of theories

are proposed to meet these requirements.

1.2.1 f(R) theory of gravity

Amongst all modified theories of gravity, the f(R) theory of gravity
is the one simple theory that can sufficiently describe the properties
of higher-order gravitational effects, by extending the gravitational
Lagrangian as an arbitrary function of the Ricci scalar. In such theo-
ries a function of the Ricci scalar f(R) is employed instead of R in the
Einstein-Hilbert action[23, 24]. The general action for an f(R) theory

of gravity is given by,

(1.4) S = % f V=g f(R)d*x.

To arrive at the field equation, the above action must be varied and
the action can be varied in two ways[25]. One way is to vary it with re-
spect to metric alone treating the metric as the only variable present.
Second method is to treat both, the metric and connection, as vari-
ables and vary the action with respect to both in order to arrive at
the field equation. The former is called the ‘metric formalism’ and
the latter is called the ‘Palatini formalism’. Accordingly there are
primarily two types of f(R) gravity, the metric f(R) gravity and the
Palatini f(R) gravity. Incorporating these two f(R) theories, there is a
generalized theory called ‘Metric-affine f(R) gravity’ . This comes out

7
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if one uses the Palatini variation, but abandons the assumption that
the matter action is independent of the connection. Under suitable
assumptions, this theory would reduce either to metric or Palatini
formalism. f(R) theory of gravity can be treated as an easy-to-handle
deviation from GTR that can be used to understand the principles
and limitations of modified gravity. f(R) theory of gravity makes a
good toy model for two reasons[25]: a) they are sufficiently general to
encapsulate some of the basic characteristics of higher-order gravity,
but at the same time they are simple enough to be easy to handle and
b) they are unique among higher-order gravity theories, in the sense
that they seem to be the only ones which can avoid the long known

and fatal Ostrogradski instability[26].

Other modifications of GTR includes the ‘Brans-Dicke’ theory[27],
the ‘Modified Quadratic Gravity’ where higher order curvature terms
are included in the action in addition to f(R) term[28], the ‘Variable
G Theories’ which are modifications of GTR where Newton’s gravi-
tational constant is promoted to a space-time function[29, 30], but
the theory is found to break the equivalence principle. The theory
of ‘non-commutative geometry’[31, 32] is a gravitational theory that
generalizes the continuum Riemannian manifold of Einstein’s theory
with the product of it with a tiny, discrete, finite non-commutative

space, composed of only two points.

1.2.2 Massive gravity

An important class of modification of GTR that gain interest is the

‘massive graviton’ theories where the gravitational interaction is

8
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propagated by a massive gauge boson called graviton with a mass,
m # 0. From the perspective of the modern particle physics, GTR can
be thought of as the unique theory of a massless spin-2 particle called
graviton[33—-35]. If the assumption behind the uniqueness theorem
is broken, it can lead to alternative theories of gravity. Theories
concerning the breaking of Lorentz invariance and spin have been
explored in depth and representing gravity as a manifestation of a
higher order spin, thereby maintaining the Lorentz invariance and
spin has also been explored largely in the literature[36]. Yet another
possibility that has been recently explored is the so called ‘Massive
Gravity’ (MG) theory[37, 38]. In this model gravity is considered to
be propagated by a massive spin-2 field. The theory gets complicated
especially when the massive spin-2 field interacts with matter. In
that case, the theory goes completely non-linear and consequently
non-renormalizable. A non-self interacting massive graviton model
was first suggested by Fierz and Pauli[39] which is now called the
‘linear massive gravity’. However this model suffers from a pathology
thereby ruling out the theory on the basis of solar system tests. Later,
Vainshtein[40] proposed that the linear massive gravity model can
be recovered to GTR through ‘Vainshtein Mechanism’ at small scales
by including non-linear terms in the hypothetical massive gravity
theory. But the Vainshtein mechanism is later found to suffer from
the so called ‘Boulware-Deser’ (BD) ghost[41]. Recently it is shown
by de Rham, Gabadadze and Tolly in their series of papers[42—44]
that the BD ghost can be avoided for a sub-class of massive potentials.

This is called dRGT massive gravity which includes dynamical and
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fixed metrics. This holds true for its bi-gravity extension also[45]. The

general action for a dRGT massive gravity is given by,

M3, — m? &
n=0

where,

M o
(1.6) U = —TPZ\/—g Y an Ll Xlg, f1l,
n=0

is the overall potential of massive gravity, £ corresponds to the
extrinsic curvature and Z[.%[g,f]1] is the massive Lagrangian for
dynamical variables g,, and f,,. Along with these developments,
other theories of massive gravity has been sprouting on the way. One
is the ‘New Massive Gravity’ where a diffeomorphism and parity
invariant theory in three dimensions is given[46]. In its original

formalism, the action is given by,

1 1 3
(1.7) SnuG = ﬁfd3x —g [UR t— (R,WR”V - §R2)] :

where x = % defines the three dimensional Planck mass, 0 = +1 and
m is the mass of the graviton. There are also formulations of ‘Lorentz
Violating Massive Theory’[47] of gravity and ‘Non-local Massive Grav-
ity’[48]. The Non-local massive gravity is formulated without any

reference metric.

1.3 Black Holes

All the proposed theories discussed in the previous section will be
valid and acceptable only if the theories are tested and proved. The
best testing ground for any modified theory of gravity will be to search
for black hole solutions. Before discussing the black hole solutions in

ETG, the black hole solutions in GTR will be looked into first.

10
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1.3.1 Black holes in general theory of relativity

Black Holes were conceptualized by Reverend Michell[49] in 1783
while searching for means to measure the mass of stars by evaluating
the reduction in the speed of light due to the gravitational pull of the
star. Michell reasoned that the maximal effect measurable would be
limited by the escape velocity from the star, which is the speed of light.
Any star more massive than this maximal limit would not permit
light to escape from its surface (no constraint regarding the speed of
light were proposed at that time) and were named ‘Dark Stars’. Such
stars would be dark since an outside observer would not be able to
see it but its gravitational influence on nearby luminous objects could
be observed and the relation between mass and radius of such stars
would be R = 2?—2M . This method failed since light moved through
space at constant speed regardless of the local strength of gravity.
French mathematician Pierre-Simon Laplace also proposed the same

idea a few years later in 1796.

The ‘Dark Stars’ are now called black holes and it took nearly two
centuries after Michell to unleash the paradoxes present with regard
to the concept of black holes. The physical concept of a black hole
is the same as Michell and Laplace contemplated. A black hole is a
massive object having an escape velocity that of light, that will absorb
anything falling in and will emit nothing and hence would appear
dark. The earliest and the simplest known example of a black hole

with no spin and electric charge is the static spherically symmetric

11
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Schwarzschild solution given by[50],

(1.8) ds?=—c? (l—r—h)dt2+ dr2+r2d§22,

1
r (1-7)
2GM .

where r, = <23~ is the horizon radius beyond which no information

would be passed and indicate apparent singularities at r =0 and at
r=rp and dQ? = d6? + sin20d ¢? is the standard line element on a

two-sphere. This is called the Schwarzschild metric.

The Schwarzschild geometry was discovered by Karl Schwarzschild in
the late 1915, at the same time as Einstein was approaching towards
his final draft of GTR and then independently by Johannes Droste
in 1916. The idea that Schwarzschild geometry describes a collapsed
object called black hole was not realized when it was proposed. It was
only in the 1950s that kind of realization came. The black holes are
formed out of the gravitational collapse of a star. For most stars the
gravitational collapse ends in a high density remnant called white
dwarf. White dwarf’s existence has been known even before 1915.
However the physical mechanism by which the internal pressure of
such a dense object was balanced, was a mystery. In 1926 Fowler
realized that white dwarfs are held by electron degeneracy pressure.
Due to the Pauli exclusion principle, the electrons take up a high
characteristic Fermi energy and the energy levels are widely spaced

in a white dwarf.

In 1931, S. Chandrasekhar[51, 52] realized that as the mass of the
white dwarf increases it becomes denser and the gravitational field

will get stronger. He proposed a critical mass of 1.4M called Chan-

12
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drasekhar limit beyond which gravity would overwhelm the degener-
acy pressure and then no stable solution would be possible and the
gravitational collapse would continue. After the discovery of neutron
it was realized that at some stage during the collapse it is possible to
form neutron out of electron-proton interaction and would lead to a
‘neutron star’ in which pressure is supported by the neutron degen-
eracy pressure. There exists a maximum mass limit above which no
stable neutron star configuration is possible and stars having mass
above this maximum would collapse to form black holes. This max-
imum mass limit given by 3M, is called the Oppenheimer-Volkoff
limit.

Schwarzschild black hole is the simplest black hole with only mass
and no spin or electric charge. A static spherically symmetric metric
with mass(M) and electric charge(®) was given independently by

Hans Reissner[53] (1916), Hermann Weyl[54] (1917), and Gunnar
Nordstrom[55] (1918) and is called Reissner-Nordstrom geometry,

(1.9) ds? = -c2Ad? + A1 dr? + r2dQ?,

where A is the horizon function given by,

2
2GM+Q_

1.10 A=1- .
( ) c2r  r2?

The black hole solution coming out of this geometry is called as
Reissner-Nordstrom black hole. Even though this was proposed ear-
lier, the meaning of this geometry was only lately clarified in 1960

by Graves and Brill[56]. Unlike Schwarzschild geometry, Reissner-
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Nordstrom space-time has two horizons:
(1.11) re=M+\/M?2-Q2.

The geometry of a spinning and uncharged black hole was found
out unexpectedly by Roy Kerr[57] in 1963. Later this work was ex-
tended to include the charge by Newmann[58] in 1965. He proposed
a rotating black hole with electric charge. This was later called as
Kerr-Newmann geometry and is given by,

(1.12)

gs? = R2A

T2

2 4 .2
0 2
(dt—asin29d¢)2+p—dr2+p2d82+m(dc/)—idt) ,
p R2A P

2 R2

where R and p are given by,
(1.13) R=Vr?2+a2, p=vVr2+a2cos?0,

A is the horizon function given by,

2GMr @2

(114) AEI_W_'—E,

and a is the spin parameter.

Since black hole solutions are one important aspect of GTR, any
modifications of GTR are expected to afford black hole solutions that
would lead to black hole solutions in GTR in the weak field limit.

1.3.2 Black holes in massive gravity

A plethora of works have been done on black hole solutions in massive
gravity. It has also been observed that massive gravity admits more
number of spherically symmetric solutions than in GTR that may or

may not be physically feasible ones. Generally the massive gravity
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theory is described by the Lagrangian density of the form[59],

v—&

1.15 £ =
(1.15) o2

(R +m*u(g,¢"),

where ¢* is the scalar field with,

(1.16) 02/:%2+a3%3+a4%4,
(1.17) Uo =K -[H2,
(1.18) Us =[H P - LA NH 2]+ 2[2 2],

(1.19) Uy =[F 1 —6[H LA+ 8LA3NA ]+ 3[A 2T - 6[ a2,

(1.20) Hy =6~ \/ 81 fap0ap®0v P,

[(£]1=Tr(x)=X%, H” and f,p is the fiducial metric (reference metric).
The four scalar field ¢ are the Stiickelberg scalars, introduced to
restore the general covariance of the theory. % can be recognized as
symmetric polynomials of £ . It is constructed in such a way that the

theory admits the Minkowski background, g, =0y, ¢¢ = xﬂﬁﬁ.

Even though there are more number of solutions in this theory when
compared to GTR, in order to check whether the theory leads to GTR
when the mass of the graviton tends to zero, it would be helpful to
consider the solutions that are common in both. For this purpose, con-
sidering the black hole solution in de Sitter space-time, the equation

of motion in empty space is obtained as[60],

(1.21) Gy +m2X,, =0,
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where G, is the Einstein tensor and,

(1.22)

Xy = —%[Jfgm — Ky + (K o, = F Fy+
1
S8 LAV =LA D)+ BB(H f, — K Hyp+

1 1

§JJW([JJ]2 &%) - ggm[ms — LA LA 2]+ 2L 3])].

The constraint on the metric can be obtained from Bianchi identity
as,

(1.23) m*VHX,, =0.

By employing additional constraints on the parameters a and g, the
solutions can be obtained. An exact de Sitter solution will be obtained

if we take,
(1.24) m2X = Aguv,

where A is a constant. The solution of (1.21) satisfying the condition
given by (1.23) can be obtained as,
(1.25)

2
2 « a?
ds? = —12de2 + | —2—dr+xy ] — -2 mrdt| + 2402,
§ K a+1 "  \Vsg a1 (a+ 12

where « is an integration constant and «a is positive and arbitrary.

Similarly Reissner-Nordstrom solution on de Sitter space-time in
ghost free massive gravity coupled to Maxwell’s theory of electromag-

netism can be obtained under the restriction that f = —a?/6 as[59],

2~2 32
(1.26) ds2:—dt2+(ddri ;—g+3im2r2— Q@

| 2
ﬂdt) +d27‘2dQ2,
r a a r
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where @ = — +1, r¢ is an integration constant and the electromagnetic

field, E = % and B = 0. Upon re-scaling the above metric as,

(1.27) r—z,
(1.28) dt—dt+f'(r)dr,
with, |
= 280 \/rrg + 3am2’"2+ 0222 ,
leads to the form,
(1.29) 3
ds>=-[1 e _ 22 62222)dt2+ dr? = +r2dQ2?,
r a a“r 1_%_%,”2,,2_,_%

which is the familiar form of the metric for a Reissner-Nordstrom
(AdS) black hole in GTR. Now using the choice of parameter = —%2,

we get the metric given by,

9 (a+2)%a? ( rg(a+2)) 9
= 1—
as (@+2)5+ad6 ra dt
2a(a+2) ri(a+2)8 rga65‘
(1.30)
- (a+2)5+a55\/ Z dtdr
+ o’ 1+ rg(a+2) 2+ a’r” dQ?
(a+2)? ar((a+2)5 + ab6) (a+2)?

The transformation of coordinates given by,

2
(1.31) ro &

ar

/ . 2 _ ( a +2)2 a3
(182)  di—(@t+f(dr) with =k o,
leads to the metric,
d 2
(1.33) ds?=—(1- &yd2+ -2 _ 112402,
r 1-&
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which is Schwarzschild-like. In f(R) theory of gravity also there are
black hole solutions, some of which are the familiar ones in GTR.
Black hole solution coming out of the Lagrangian R + aR? where, a is
a constant parameter, is studied in the work of B. Whitt[61]. It was
found that Schwarzschild solution is the only static spherically sym-
metric solution and such black holes have no hair. Also solutions for
which R = (—2a)~1, have no counterparts in the conformally related
theory (GTR). Modified gravity model with Lagrangian R +aR? — 2A,
where A is the cosmological constant, is studied in detail in the work
of Cognola et al[62]. In their work they have discussed of a class of

constant curvature (R = R) solutions,

(1.34) Ry = 4A

(1.35) RZ

31,

where p; is a constant parameter. Such classes contain 4—dimensional
black hole solutions in the presence of a non vanishing cosmological
constant, like the Schwarzschild-(Anti) de Sitter solutions and all the
topological solutions associated with a negative A.rr, where A.rr =
%. For metric f(R) theories without constant curvature Jebsen-
Birkhoff theorem does not hold and therefore other black hole so-
lutions exist in a general metric f(R) gravity. The existence of Kerr
black holes have been discussed in the work of Dimitrios Psaltis et

al.[63].
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1.4 Black Holes and Quasi Normal Modes
The existence of black holes is an outcome of Einstein’s General
Theory of Relativity (GTR). The question then is how to realize their
existence and one natural way to identify them is to try to perturb
and know their responses to the perturbation (scalar, electromagnetic,
Fermi or gravitational). Regge and Wheeler started way back in 1950s
studying perturbations of black hole space-time[64] and later, serious
studies were initiated by Zerilli and then by Kip S. Thorne and his
collaborators[65]. While studying the black hole perturbations, Zerilli
aimed at searching for the stability issues of black holes under small

perturbations.

1.4.1 Linear perturbations of black holes
Black hole perturbation is analyzed by first considering the unper-

turbed metric which for a Schwarzschild black hole is,
ds? = g vdxtdx”

(1.36)
~(1-2F )+ [1- 22

)_1 dr? +r2dQ2.

r r

Here the values of G and c are taken to be unity and g‘;w represents
the metric in background static space-time. Now, upon this static
space-time, if a small perturbation, A, is introduced, the metric will

become,
(1.37) Suv =8y t+huv

Since the background is static and taken to be vacuum the Einstein

tensor for vacuum can be written as,

(1.38) R;, =0.
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where R, is the Ricci tensor for the static background. With the
above condition the field equation for the perturbed space-time will

be obtained as,
(1.39) OR,, =0.

Using the tensor spherical harmonics with axial and polar terms, the
perturbations are be of two types:

1. Odd-parity perturbations

2. Even-parity perturbations
and accordingly there are two solutions to the metric 4 ,,. For odd-
parity perturbations, the Einstein equation along with Regge-Wheeler
gauge leads to the equations given by[64],

’Q 4%Q OM\[II+1) 6M
1.40 0=—_—Y 41— -
( ) ot? Or% * ( r ) r2 r3 Q,
ohy @
(1.41) T R(F*Q),
where,
oM

(1.42) Q- @(1__),

r r
and,

r

(1.43) e =r+2Mln(m—1),

is the tortoise coordinate, and A, A1 are unknown functions that can
be suitably chosen.(1.40) is called Regge-Wheeler equation and can
be considered to be a wave equation in a scattering potential barrier
with potential V(r) given as,

l+1) 6M
2

(1.44) V(r)= (1 - 2M)

r

r rd
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Even-parity perturbation leads to the Zerilli Equation[65],

0%Z %7 .

1.45 - ——+VZ=0
(1.45) 0tz or2 ’

where Z is the Zerilli function given by,

dre ko +1(L+ Drky
1.46 7=
(1.46) Il+1)-2+6M/r °

where e =1- % and k1, k9 are functions just like Ay and A in
the odd-parity case, that can be chosen. The Zerilli equation can be

considered to be a wave equation with a scattering potential barrier,

2q(q +1)r3 +6¢>Mr? + 18qM?r + 18 M3
r3(qr +3M)? ’

(1.47) V= (1 - 2M)

r

where g = (I — 1)(I +2)/2. It is possible to transform the axial solution

in to polar solution by suitable differential operators.

Linear perturbation of black hole resulted in the wave equations
(1.40) and (1.45) and it was Vishveshwaral[66] who first noticed the
existence of quasinormal modes (QNMs) under linear perturbation of

black holes.

1.4.2 Quasi normal modes

Vishveshwara had proposed the existence of QNMs by studying the
scattering of GWs by Schwarzschild black holes. Later, the scattering
of scalar, electromagnetic and Fermi fields by different black hole
space-times have been studied by many[67—70] and references cited
therein. In the frame work of GTR, QNMs arise as perturbations
of black hole space-times. QNMs are the solutions to perturbation
equations and they are distinguished from normal modes because they

decay at certain rates having complex frequencies. The remarkable
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property of the black hole QNMs (also called ring down of black
holes) is that their frequencies are determined only by the mass,
angular momentum and charge (if any) of black holes. The QNMs
are independent of the perturbations that produce it. Black holes
can be detected by observing the QNMs through GWs. When a star
collapses to form a black hole or when two black holes collide or a
black hole and a star collide, gravitational waves (GWs) are emitted.
As a result, a black hole with higher mass that absorbs the emitted
GWs is formed[71]. Hence the emitted GWs decay quickly. The decay
of oscillations are characterized by complex frequencies which are
called as Q NMs. Since QNMs are not stationary modes and they
exponentially decrease, the black hole space-time will radiate energy
away to infinity through gravitational waves. Thus, QNMs indicate

the ‘Characteristic Sound’ of a black hole.

The propagation of waves in black hole space-times can in general be
represented as,

LA A A
1.48 — ———-V¥=0,
( ) or2  ot2

where V is the r-dependent potential. The horizon of black hole space-

time is taken to be at —oco. Employing a variable separation given

by,
(1.49) W(t,r)=e “lo(r),

where w is the Quasi Normal (QN) frequency, leads to the radial part

of wave equation,

(1.50) a—+(w2—V)(p:0.
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The boundary conditions of QNMs are that the solutions should be
purely outgoing at infinity (r = +00) and ingoing at the horizon (r =

—00), meaning entering in to the black hole, ie.,

(1.51) ¢ ~ e r——co

(1.52) ¢ ~ € r— +oo.

Vishveshwara proved that the QN frequency for a Schwarzschild
space-time possesses negative imaginary part. This means, on the
one hand the QNMs are decreasing exponentially in time and on the
other the black hole space-time is loosing its energy in the form of

gravitational waves.

Analytical solutions have been obtained for different black hole space-
times using WKB method by S. Iyer and C. M. Will[72-74]. As the
space-time gets complicated, it is difficult to obtain analytical solu-
tions. Therefore several attempts have been made to calculate QNMs
numerically. After these pioneering works, perturbation calculations
have been done by many to get QNM oscillations. A semi-analytic
method has then been explored[75] that has its own limitations of
accuracy. Later, the Continued Fraction Method (CFM) was proposed
by Leaver[76]. This method is a hybrid of analytic and numerical
and can calculate QNM frequencies by making use of analytic infi-
nite series representation of solution. The WKB approximation is
very commonly employed and a powerful one too. However all these
methods have their own limitations. In recent years a new approach
has been introduced to study black hole QNMs called Asymptotic

Iteration Method (AIM) which is previously used to solve eigenvalue
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problems[77, 78]. This method has been shown to be efficient and
accurate for calculating QNMs of black holes[79].

1.5 Thermodynamics of Black Holes

Interests in the black hole thermodynamics initially sprouted when
it was found that black holes in classical GTR obey laws that are
analogous to the laws of thermodynamics. This was initiated by
Hawking[80] who proposed that the area of the black hole event
horizon never decreases. This is analogous to the second law of ther-
modynamics with area of event horizon playing the role of entropy in
thermodynamics where it is stated that the entropy never decreases.
This analogy, together with the fact that information is irretrievably
lost after the horizon led Bekenstein[81] to propose that the black
hole entropy is proportional to the area of event horizon. However,
there came inconsistencies when the idea that a black hole absorbs
everything that falling into it but emit nothing violates second law of
thermodynamics. This is solved when quantum effects are taken in
to consideration where a black hole would create and emit particles
as if it were a hot body with a temperature of %, called ‘Hawking
Temperature’ [82, 83]. Then, Hawking[84] proposed that black holes
actually radiate and called it as ‘Hawking radiation’ This is analogous
to the zeroth law of thermodynamics where the quantity «, called
as surface gravity on the horizon, is a constant for a black hole. An
analogous first law in black hole mechanics is also proposed. This first
law relates the change in the parameters Mass (M), Horizon area

(A) and the angular momentum (J) for a rotating black hole when
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perturbed. The relation is given as,
(1.53) SM=—A+Q8dJ,
8n

where (Q is the angular velocity of the rotating black hole. With all

these factors the black hole can be considered to be a thermodynamic

object with :
1. Entropy proportional to the area of event horizon: S = %,
2. Temperature proportional to the surface gravity: 7' = 5,
3. Internal energy proportional to the mass: H = M,

and the laws of Black hole mechanics can be stated as[85, 86] :

Zeroth law : Surface gravity is constant over the event horizon.

First law : Differences in mass between nearby solutions are equal
to differences in area times the surface gravity plus additional
work-type terms.

Second law : The area of the event horizon never decreases in any
physical process provided the energy of matter is positive and
space-time is regular[80, 81].

Third law : No procedure can reduce the surface gravity to zero by
a finite number of steps.

An immediate consequence of these studies is that they bring together

quantum theory, gravity and thermodynamics and one can hope for a

quantum theory of gravity. Black hole thermodynamics in different

space-times based on GTR has been explored widely in the literature

starting from Hawking[87].

In thermal systems, Van der Waals equation modifies the equation of

state for an ideal gas to one that approximates the behavior of real
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fluids and is given by,
a
1.54 P+—|v-b)=T,
(1.54) (P+—5)w-b)

where P is the pressure, v is the specific volume and a and b are
constants. In such fluids, the critical point occur at T' = T, where

P would have an inflection point at P = P, and v = v, and obey the

universal relation IZC;CC = % = 0.375 for any fluid. A liquid/gas phase
transition takes place at temperatures T < T, and obeys Maxwell’s
equal area law which states that the two phases co-exist when the
areas above and below a line of constant pressure drawn through a

P -V curve are equal.

An interesting observation noted while studying charged black holes
was that they behave as Van der Waals fluid. Thus the thermodynamic
studies of black holes led to a novel perspective ‘Phase Transition’ in

black holes.
1.6 Holographic Entanglement Entropy

of Black Holes
The study of thermodynamics led people into the study the most

important factor in thermodynamics, called entropy. The black hole
entropy was first calculated by Bekenstein[81, 83, 88] and is called
‘Bekenstein-Hawking’ entropy. Unlike the usual thermal entropy that
is proportional to the volume, the important feature of Bekenstein-
Hawking entropy is that it is proportional to the area of the hori-
zon. The question why black holes have entropy then became one

of the mysteries in modern physics[89]. One such move to address
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the question is made by the concept of entanglement entropy (EE).
Entanglement is one of the most non-classical feature of quantum
mechanics and is microscopic in nature. It was first recognized by
’t Hooft[90] that EE could also play a pivotal role in understanding
the microscopic origin of the black hole entropy and for solving the
information puzzle in black hole physics. A quantum state in a black
hole geometry is divided by the horizon into two disconnected parts,
and an external observer has to trace over the part of the state in the
black hole interior[91]. One interesting point to note about the entan-
glement entropy is that, like Bekenstein-Hawking entropy, EE also
scales like the area of the bounding surface and the entanglement
entropy behaves in a similar fashion as the thermal entropy. The
holographic entanglement entropy which relates the holographic un-
derstanding of entanglement entropy in the AdS/CFT correspondence
is given by[92],

Y

(155) Sent - s
(d+2)

where v is the d dimensional minimal surface whose boundary is
given by (d — 1) dimensional manifold 0y = 0A, where A is the area
of the surface. Entanglement entropy, also called as von Neumann
entropy is UV divergent with the leading divergence being given
by the area of the entangling surface. However, a finite part of EE
contains non-trivial information about the quantum state and most
of the analysis of EE considers this finite region[93]. Studies on the
holographic entanglement entropy and the associated phase transi-

tion are done in the literature[94] and references cited therein. The
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behavior of entanglement entropy near first and second order phase
transition is dealt in the aforesaid work. It was found that corre-
sponding to the Hawking Page first order phase transition showed
a jump in the entanglement entropy which is due to the increase in
number of degrees of freedom to a phase where the entropy rises with
the temperature. The temperature from entanglement and Hawking
temperature are found to be matching with each other for almost all
black hole space-times[95]. Thus, the study of entanglement entropy
may help in constructing a quantum theory of gravity and therefore

is relevant in the realm of massive gravity.

1.7 Gravitational Waves

For GTR, to be compatible with special theory of relativity, the notion
of gravity must be causal meaning that any change to a gravitating
source must be communicated to distant observers with a speed not
faster than that of light, ¢. This immediately leads to the idea that
there should exist the so called Gravitational radiation or ‘Gravi-
tational Waves’(GWs). The GW equation is obtained by linearizing
Einstein’s field equations[96] assuming that the space-time metric

guv deviates only slightly from the flat space-time metric 1,,,
(1.56) g,uv:n,uv“'hmm I hyv <1,

where 7, is given to be diag(-1,1,1,1). The condition | Ay, [|< 1
means that the field is weak. In this process only the terms that are
linear in A, would be considered and higher orders of 4, would be

neglected. The Christoffel symbol is then given by,

1
(1.57) Iy = 2 (0ghly +0,hl — 0 R yy).
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The Riemann curvature tensor can be obtained from the Christoffel

symbols as,
B ApH I
(1.58) Frap = 0p =00 e
' 1 TPy p r
_ 5((3wavhﬁ+aﬁa hva = a0 hyp — 0p0yhly)

From (1.58), the Ricci tensor can be constructed as,

RIJV = Rﬁav

(1.59) 1
== (000 + 00 hve ~ Ty — 0,04h),

where [0 = 0,0% = V2 - 6? is the wave operator and the Ricci scalar

can be obtained as,

R=R}
(1.60)
= Oad“hz —Oh.
Now, the Einstein tensor can be written as,

1
GIJV :Ruv - énuvR
1
(1.61) = 5 @adyhi +00uh e~ Dhyu—
0u0vh =1 0e0°h§ + 1,0 O).

The rather messy equation above can be simplified by using the trace
reversed perturbation A v =hpy — %17 wh instead of A, [97]. Then the

Einstein tensor would become,
1 - - _ -
(1.62) G =3 (000 +0%0hve = Ty — 1y 0ad’R)

This equation can be further simplified by employing the coordinate

transformation given by,
(1.63) x'=x"+&°,
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where &(x?) is an arbitrary infinitesimal vector field and the Lorentz

gauge condition,
(1.64) 0"hyy = 0.
Einstein tensor would then become,

1
(1.65) GIJV = _EDh’uv,
Now (1.2) implies[98],
(1.66) Ohyy =-167Tyy,
and in vacuum, this can be written as,

(1.67) Ay = 0.

This is in the form of a wave equation that admits homogenous solu-
tions which are superposition of plane waves whose real part can be

represented as,
(1.68) hyy = Re f Ak)e'Ex=0D g3,

where k is the propagation vector and w corresponds to the frequency.

The equation (1.67), can be written as,
(1.69) Nkl =0,
along with (1.68) implies that,

(1.70) k'R, =0,

which means that the emanated waves travels with the speed of light.

If we denote the perturbation A wv in the Transverse Traceless(TT)
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TT

v » relation between Riemann curvature tensor and

gauge[97] as h

metric perturbation can be written as,

1.
(1.71) Ryeve==5hyy,

where ¢ is the time and hz;VT is the second derivative of hzf with
respect to ¢t. Consider a monochromatic plane wave traveling in the z

direction,
(1.72) hid =hll(t-2).

(1.72) will be a solution to the wave equation thf = 0. The Lorentz

gauge condition demands hZVT (t —2) to be a constant, ie.,

(1.73) hzf(t—z): constant,

and for the wave propagating along the z direction, the constant is
zero if u =0 or u = z. This, in turn implies that the wave will be
transverse in nature and hence will have two polarizations. Since
hZ;VT (t—2) =0, the independent polarizations, taking into account the

symmetry and trace-free condition, can be written as,
(1.74) hLT = -hIl=h.(t-2),
(1.75) hgyT = hIl=h,(t-2).

Thus, A, and A« are the two waveforms of the GWs called as ‘Plus’

and ‘Cross’ polarizations respectively.

The calculation of gravitational waves in GTR was firstly done by
Einstein. Einstein’s calculation result stands today as the leading-

order “quadrupole formula” for gravitational waves. This formula
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plays a key role in gravitation analogous to the dipole formula for
electromagnetic radiation, showing that gravitational waves arise
from accelerated masses in the same way as electromagnetic waves
arise from accelerated charges. From the quadrupole formula it can
be understood that it is difficult to produce GWs in the laboratory
since large masses moving at relativistic speeds are needed for its
production. This is due to the weakness of the gravitational interac-
tion. A consequence of this is that only astrophysical objects that are

massive and relativistic enough can generate detectable GWs[99].

Indirect evidence for GWs has been obtained earlier since the discov-
ery of Hulse-Taylor pulsar, but it took almost a century to detect the
GWs based on GTR directly. The first detection has been reported
from binary black hole merger by Advanced LIGO[100]. A second
detection has also been reported from black hole merger much more
stronger than the first one by LIGO[101]. LIGO serves as the center
of attraction for future research in Gravitational Wave astronomy.
LIGO has got three specialized Michelson interferometers located at
two sites a) Hanford, 4km-long H1 and 2km long H2 detector b) at
Livingston, a 4km long L1 detector. There are, however other detec-
tors built around the globe such as VIRGO (Italy), GE600 (Germany),
TAMA (Japan) etc which are laser interferometers and also antenna
detectors such as Explorer, Nautilus etc. The VIRGO detector in
Italy has a sensitivity[102] of 1071 and LIGO in USA has reached
a linearly polarized strain amplitude of the order[103] of 10724, The

sensitivity of LIGO is at least 10 times better than a resonant bar.
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However, the resonant bar observatory can play a significant role
when the more sensitive network of interferometric detectors fails
to make a detection by itself. "Spherical antenna detectors" are an
improved version of their resonant bar detectors where the bars are
replaced by solid spheres. They were proposed in the 1970s by Weber
[104] and are useful to study the interaction of GWs with matter. The
theoretical frame work for the detection of GWs using spherical an-
tenna had already been developed[105-107]. Interest in experimental
research in resonant spheres has been increased over the past years
and today spherical antenna is recognized as the new generation of
gravitational resonant detectors to complement the existing cylindri-
cal antenna. Spherical detectors have the following properties: (1)
relatively large energy cross section, (2) isotropic sky coverage and

(3) directional sensitivity [108].

Nevertheless, GTR is still not adequate since it could not explain the
cosmological late time-acceleration of the universe and the unifica-
tion of gravity with quantum theory still remains as a problem with
GTR. ETG form the future hope in directing the research in unifying
gravity and quantum theory. GWs form one of the most important
phenomena where one could check the validity of a new theory of
gravity. However, currently LIGO is not designed to detect any polar-
ization other than + and x or their mixture. No studies were done
aimed at constraining parameters corresponding to any alternative
theories of gravity associated with the discovery of GWs due to the

lack of predictions for what the inspiral-merger-ringdown GW signal
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should look like in those cases. For these reasons, the generation of

GWs based on ETG are catching interests of researchers.

1.8 Outline of the Thesis

General theory of relativity put forward by Einstein could not ex-
plain the recent late-time acceleration of the universe. Hence there
is a strong motivation for the development of a modification of the
GTR. And a plethora of works has been going on in this direction.
The theories are generally called ‘Extended Theories of Gravity’ or
Modified Theories of Gravity. One of these modifications to GTR are
done by adding higher order invariants to the Einstein-Hilbert action.
Of the so called Extended theories of gravity the class of gravity called
‘Massive Gravity’ gains more attention nowadays. In massive gravity

theories, the action contains a term having a massive graviton.

These theories are found The best testing ground for massive gravity
or any modified gravity would be a black hole. Just like the GTR,
modified theories also provide black hole solutions. To check the va-
lidity of such theories it is worth looking for the existence of the black
holes proposed by the theory. One way to check for the existence of
black holes is to search for its Quasi Normal Modes (QNMs). Black
holes can be detected by observing the QNMs through gravitational
waves. The analogy of black hole mechanics with the classical ther-
modynamics also emerging as a new area of interest. Accordingly the
thermodynamics of black holes show different behavior for different
theories of gravity. Study of thermodynamics of black holes may help

in constructing the theory of quantum gravity . Another way to check
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the validity of such theories would be to check for the additional polar-
izations that the theory suggest in the Gravitational waves emanated
from cosmic events such as black hole collision, supernovae explosion
etc. With the discovery of GWs from black hole collision recently, this

method offers a direct way to check such theories.

In this thesis, the studies on some of the aspects of GWs and black
holes in Massive Gravity are done. The QNMs, the thermodynamic
behavior and the holographic entanglement entropy of (3 + 1) dimen-
sional black hole solutions in dRGT massive gravity are studied. The
thermodynamical aspects and behavior of QNMs are then studied
for (2 + 1) dimensional black hole solution in massive gravity. The
QNMs are calculated numerically using The Improved Asymptotic
Iteration Method (Improved AIM). The possibilities of phase transi-
tion of such black holes are also explored in detail under a massless
scalar perturbation of black hole space-time. The important aspect of
any theory of gravity, namely, the GW solution is found for an f(R)
theory of gravity. The existence of an additional massive polarization
is found. The detection possibility of such a mode is also dealt with in
this thesis. Accordingly the sensibility of Spherical antenna towards
such a mode is calculated. Also, the detection possibility of such a

mode by the LIGO detectors are studied in this thesis.
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CHAPTER

QUASI NORMAL MODES AND
THERMODYNAMICS OF BLACK HOLES IN

DRGT MASSIVE GRAVITY

2.1 Introduction

The importance of the study of black holes and their properties such
as Quasi Normal (QN) frequencies and thermodynamics for any the-
ory of gravity have been described in Chapter 1. As discussed there,
dRGT massive gravity forms the class of massive gravity where all
the ghosts have been eliminated and is one of the most recently re-
searched alternative theories of gravity. The graviton mass is directly
included in to the action[38]. At large scale the theory recovers the
solution in which the graviton mass plays the role of cosmological

constant to drive the late-time acceleration of the universe[109]. The
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theory also leads to many black hole solutions. One obvious and im-
portant way of realizing the existence of black hole space-time is by
studying its QNMs[67]. Therefore, it is worthwhile to look into the
black hole solution of dRGT massive gravity and study its QNMs. An
important factor is that the results should reproduce that from GTR
when the graviton mass goes to zero. In relation to this, it will also be
worthy to study the black hole thermodynamics to check for interest-
ing results like phase transition of black holes and the Entanglement

Entropy.

The QNMs depend only on the black hole parameters and will be
characterized by complex frequencies[66]. The real part describes the
actual oscillation frequency and the imaginary part gives the decay
rate of the particular oscillation. In order to get the QNMs, the space-
time around the black hole has to be perturbed and the resulting
radial part of the wave equation has to be solved for the QN frequen-
cies with the help of boundary conditions. The resulting equation will
be complicated and hence an analytical solution is difficult to obtain.
Therefore, numerical methods must be employed to calculate the
QN frequencies. One of the semi-analytical method that gain recent
attraction is the Asymptotic Iteration Method (AIM). The Improved
AIM has been used in the case of different black hole space-times for

finding the QNMs and has been proved to be effective[78].
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2.2 Improved Asymptotic Iteration
Method

Asymptotic Iteration Method(AIM) was proposed initially for finding
the solutions of the second order differential equations of the form

[77,110],
(2.1) y"(x) = Ao(x)y'(x) — so(x)y(x) =0,

where Ap(x) and so(x) are coefficients of the differential equation
and are well defined functions and sufficiently differentiable. By

differentiating (2.1) with respect to x gives,
(2.2) ¥"(x) = A1(x)y'(x) = s1(x)y(x) = 0,

where the new coefficients are, 11(x) = /16+/1%+30 and s1(x) = s()+so/10.

Differentiating (2.1) twice with respect to x leads to,
(2.3) ¥""(x) = Ao(x)y' () — s2(x)y(x) = 0,

where the new coefficients are, Ag(x) = /1’1 + A1Ao +s1 and sg(x) =
s +soA1. Thus the (n + 1) and (n +2)!" derivatives, withn=1,2,..,
can be respectively written as,
(2.4) ¥ @) = Ao 1(0)y + 55-1(x)y,
(2.5) Y @) = A )y + 5n(2)y,
where the new coefficients are related to the older ones through the
following expressions,

An(x) = A;L—l + An-140+8n-1,

(2.6) Sn(x)zsln_1+30An—l,
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where n = 1,2,3,.... The ratio of (n + 2)* derivative and (n + 1)

derivative can be obtained from (2.4) and (2.5) as,
y(n+2)(x) ~ d
y(’”l)(x) dx
Anly'(2) + 32 y(x)]
T Analy' (@) + L y]

(lnyn+1)
(2.7)

Now, by introducing the asymptotic concept that for sufficiently large

values of n,
(2.8) Sn _ Sl _ a,
/1n /1n—1
where a is a constant will immediately lead to the quantization
condition[77],
(2.9) An(x)85-1(x) = Ay —1(x)s,(x) = 0.

We can now write (2.7) as,

d A
2.10 —(ny"*thH="=
( ) dx( ny" ) P
which gives,
* An)
n+1 n
(x)=Ciex ( dt),
Y P oo

(2.11) I
=CiA,_1€xp (f (a+ /lo)dt),

where C1 is the integration constant. Substituting (2.11) in (2.4), we

get,

(2.12) y'+ay:Clexp(ff(a+/lo)dt),

which leads to the general solution,

(2.13)

y(x) = exp (—fx adt)

thereby proving the following theorem[77]:

X t
Cz+le exp(f (/10(T)+2a(r))dr)dt] ,
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Theorem: Given Ay and sg in Cy(a,b), then the differential equation

(2.14) y" = Ao(x)y" +s0(x)y,

has a general solution given by (2.14) if for some n > 0,

(2.15) L
/ln /1n—1
where,
(2.16) Ap(x) = Ay _q + Ap—1A0 +Sp-1,
(2.17) sp(x) =8}, _; +SoAr-1,

The roots of this equation are used to obtain the eigenvalues of (2.1).
The energy eigenvalues will be contained in the coefficients. To get the
eigenvalues, each derivative of 1 and s are found out and expressed
in terms of the previous iteration. Then by applying the quantization
condition given by (2.9), a general expression for the eigenvalue can
be arrived at. Cifti et al.[111] first noted that this procedure has a
difficulty that, the process of taking the derivative of s and 1 terms of
the previous iteration at each step can consume time and also affect
the numerical precision of calculations. To overcome this difficulty, an
improved version of AIM has been proposed that by-passes the need
to take derivative at each iteration. This is shown to improve both
accuracy and speed of the method. For that, A,, and s,, are expanded

in a Taylor series around the point x” at which AIM is performed and
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can be written as,

(2.18) A=Y el (x—x'),
1=0

(2.19) sn(x) =Y di(x—x'),
1=0

where ¢, and d!, are the i** Taylor coefficients of 1,(x') and s, (x')
respectively. Substitution of (2.18) and (2.19) in (2.6) leads to the

recursion relations for the coefficients as,

. . . i .
(2.20) ¢t =G+ +dl +kZ chel®,
=0
‘ . i
(2.21) dl=G+1Dd + Y dicik,
k=0

Applying (2.20) and (2.21) in (2.9), the quantization condition can be

re-written as,
0.0 0
(2.22) dyc,_1—d,

This gives a set of recursion relations that do not require any deriva-
tives. The coefficients given by (2.20) and (2.21) can be computed by
starting at n = 0 and iterating up to (n + 1) until the desired number
of recursions are reached. The quantization condition given by (2.22)
contains only i = 0 term. So, only the coefficients with i < N —n where
N is the maximum number of iterations to be performed needs to be
determined. The radial part of the wave equation of a perturbed black
hole space-time can be written in the form of a second order differ-
ential equation similar to (2.1) with the coefficients containing their
QN frequencies and the condition given by (2.22) can be employed to
extract the QNMs of the black hole[78, 79].
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2.3 Quasi Normal Modes of a dRGT
Black Hole

The basic ideas of massive gravity are given in chapter 1.2.2. In this
section of this chapter we consider both the cases of neutral and
charged black hole solutions in dRGT massive gravity and calculate
their QNMs and then see the differences in their behavior in the de

Sitter (dS) space-time.

2.3.1 Neutral dRGT black hole

In the standard formalism of dRGT massive gravity theory, the
Einstein-Hilbert action is given by [59, 112],

1
S:fd4x —gW[R+m§U(g,<b)],

where g is the metric tensor, R is the Ricci scalar, m represents the
graviton mass and U is the effective potential for the graviton and is
given by [60],

U(g,p)=Uz+asUs + agUs,

where a3 and a4 are two free parameters. These parameters are

redefined by introducing two new parameters a and f as[113],

(2.23) ag=—

(2.24) Qg=o+——.

the resulting action is varied with respect to the metric leading to the

field equation,

(2.25) Guv = —-m*Xp,
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where,
[Z - [x2]
Xy = Ky = K v — A H gy = H v + Tgw}
(2 26) 3 3 2 1 2 2
. ﬁL]“//JV —;Z(Jflmuv + 5%#\/{[%] - [ej,/ ]}

1
-~¢ wlH P =3l LA 2]+ 202 21,

The constraints of this field equation (2.25) can be obtained by using
the Bianchi identity,

(2.27) VA Xy = 0.

We are interested in a static and spherically symmetric space-time

whose metric can be expressed as[109, 114, 115],
(2.28) ds® = g1(r)dt® + 2g,-(r)dtdr + g, (r)dr? + h(r)?d Q2

with g4 (r) = —n(r), g,r = % and A(r) = hor where hg is a constant in
terms of @ and 8 . Most of the black hole solutions are asymptotically
dS or AdS. The exact solution for the above ansatz is complicated. For
simplicity, we choose g;.(r) = 0. It is further simplified by choosing
specific relations for the parameters. For that, we take a = -3 follow-
ing Ghosh et al.[113]. Since the fiducial metric acts like a Lagrangian
multiplier to eliminate the BD ghost, to simplify the calculations, we

choose the fiducial metric as[116],
(2.29) fuv =(0,0,c?,c*sin0),
where c is a constant. Then (2.28) becomes,

2 g dr > 2 702
(2.30) ds® =-n(r)dt®+ — +r°dQ*,

f(r)
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The non-zero components of the Einstein tensor are obtained as,

frof_1
2.31 Gt = L 4+L _—
( ) ; r+r2 =
fan'+n) 1
(2.32) G, = T_r_z’
0 _ ¢
(2.33) Gy = G¢,
U " ! N2
2.39) _ fr("_+i)+f(n_+ n _(n)),
4n  2r 2n  2nr  4n?

and the energy-momentum tensor X, as,

_ _ RY _
235 X! = _(“(3r W= 8pr-cf  3r 2(:),

r r -

- _ RY _
2.36) X/ = _(a(3r 6'2)(r c)+3,3(r2 c) +3r 20),

r r r

237 X = X,
a(2c—-3r) 3p(c—-r) c-3r
+ +
r r r

(2.38) =

)

Substituting the components of Einstein tensor and energy-momentum

tensor into (2.25) we find,

rfr.r 1
(2.39) r r2 r2
' 2(a(3r—c)(r—c) 3B(r —c)? 3r—20)
m + + ,
r2 r2 r
fen'+m) 1 _
2 2~
240 T 7 )
2(a(3r—c)(r—c) 3p(r—rc) 3r—20)
m + + ,
r2 r2 r
(2.41)
(2 1)y (2 n’_<n’>2)_
f(4n+2r)+f(2n+2nr 4n2 )

_mg(a(20—3r)+3,6(c—r)+ c—3r).
r r r
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Solving (2.39) gives the form for the metric function as,

(2.42) f(r):1—¥+§r2+w+f,
where,

(2.43) A = 3mi(l+a+p),
(2.44) y = —em’(1+2a+3p),
(2.45) { = m2(a+3p).

From (2.39) and (2.40) one can arrive at the relation,

(2.46) n'f=r,

which implies that the functions 1 and f differs only by a constant

and hence we are free to choose the constant in such a way that n=f.

Then, the metric given by (2.30) reads as,

2
(2.47) ds? = —f(r)dt® + ar 242
f(r)

Now, when v ={ =0, a and f will determine the nature of the so-
lution. ie., if (1+ a+ B) <0 we get a Schwarzschild dS type solu-
tion, if (1+ a+ B) > 0, we will get a Schwarzschild AdS type so-
lution and when m — 0 we get a Schwarzschild black hole. The
dRGT solution described here contains Schwarzschild (m = 0), dS/AdS,
global monopole of GTR and thus also contains the monopole-dS-

Schwarzschild solution[113].

For a static spherically symmetric space-time background with vanish-

ing energy-momentum tensor, the field perturbations are not coupled
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to the perturbations of the metric and therefore are equivalent to test
field in black hole background. A massless scalar field satisfies the

Klein-Gordon equation in curved space-time as given by,

1
(2.48) axa “b,/——cp 0,
1 02c1> 00 Do p®

(249) le.,m at2 f( r2 = 0,
where,

1 0 1 42
2.50 Agp=———(sinf) + —— —.
(2.50) 0,0 eae(s ) Sin20 902

For finding the QNMs, the radial part has to be extracted from (2.49).
For this purpose, the radial and angular parts has to be separated.

Hence we choose the variable separable form for the field as,
oo 1 R
2.51) ®= Z P )

where w gives the frequency of the oscillations corresponding to the

black hole perturbation, Y; ,,(6,¢) are the spherical harmonics and,
(2.52) No.pY1m(0,0) = U1 +1)Y; 1, (0,).

Substituting (2.51) in (2.49) and using (2.50) and (2.52) we get the
radial part of the equation,

R _[f(dR | o (2 4+ 20, LD,
27 f(r) dr | f(2 fr)

(2.53) R=0.

By using tortoise coordinate x = [ -9Z 7> the above equation can be

brought into the standard form[117],

2
(2.54) (fZ—R+[w -V()IR =0,
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where,

I(l+1

)+
2

(2.55) V() = F£r)( ! ff)>.

The SdS black hole has three singularities given by the roots of
f(r) =0, which are the event horizon, r, the cosmological horizon, ro
and at r3 = -(r1 + rg). The QNMs are defined as solutions of (2.54)

—iwx

0% 99 x — 0o and R(x) — e as

with boundary conditions: R(x) — e
x — —oo for an e~*! time dependence that corresponds to ingoing
waves at the horizon and out going waves at infinity. The surface

gravity «; at these singular points are defined as,

_19f

(2.56) Ki = Ed_rlr_'ri'
Before calculating the QNMs using Improved AIM, it is needed to

make a change of variable as ¢ = 1/r in (2.53) leading to,

2R p'dR |02 W+D+ECME+yE+33)

(2.57) 422 +;d_é+ ﬁ > R =0,
where,

(2.58) p = —2M€3+€2(1+()+y€+§,

(2.59) p = —6ME+y+28(1+0).

In de Sitter space-time, the radial black hole solution has got 3 singu-

larities and these are represented as ¢; (Event horizon), {3 (Cosmo-

logical horizon) and é3 = — (%) and hence we can write [78, 118],

(260 e = (§ = EDRT(E—E)P2 (¢ - E9) P

The idea is to scale out the divergent behavior at the cosmological

horizon first and then re-scale at the event horizon for a convergent
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solution. Now to scale out the divergent behavior at cosmological

horizon, we take,
(2.61) R(&) =™ u(®).
The master equation given by (2.57) then takes the form,

(2.62) pu” +(p' - 2iw)u’ - u=0.

2A
I(I+1)+ (2M€+y/<f+ @)

The correct scaling condition of QNM at the event horizon implies,

(2.63) W& = (€ — &) B ().

(2.63) then can be viewed of the form as,

(2.64) 1" =20y + 50Oy,

where 1p and sq are the coefficients of the second order differential
equation. After being written in the form of a second order differen-
tial equation, we now are in a position to calculate the QNMs using
Improved AIM. It can be seen from (2.62) that the coefficient of u’
includes the frequency w. Therefore the quantization condition given
by (2.22) can be used to find out w of (2.62) by iterating to some n
maximum. For calculating the QNMs, we have used the MATHEMAT-
ICA NOTEBOOK given in the reference [119] after modifying it to

employ for the case of massive gravity.

Table 2.1 shows the QN frequencies obtained through improved AIM
method for a static spherically symmetric neutral black hole space-
time in dRGT massive gravity defined by the metric function (2.42).

The values of a and f are so chosen that A remains negative such that
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the space-time is dS. The parameters are chosen as M = ¢ =1 in these
calculations. The table shows the quasinormal modes calculated for
m = 0.8 and m = 1 respectively for the same range of @ and g values. It
can be seen that increasing the value of m increases the magnitude of
the cosmological constant, which is obvious. Also, as m increases, the
QN frequencies are seen to be increasing in magnitude for both [ =2
and [ = 3 modes. As for every m, both the real and imaginary parts of
the quasinormal frequencies are seen to be continuously increasing
in magnitude as A increases. 50 iterations have been executed for
calculating the QNMs. We have taken (1+ a + ) < 0 while calculating
the QNMs so that the results of the calculations will correspond to
that in the de Sitter space-time.

If we take y = { = 0 the space-time becomes SdS. The QN frequen-
cies calculated for this case and the comparison of those results with
the results calculated using WKB Method taken from Table 1 of
Zhidenko[120, 121] is shown in Table 2.2. The table also shows the
accurateness of the Improved AIM. Comparing these QN frequencies
with Table 2.1, it can be seen that the values of the QN frequencies,
when m takes a finite value, are higher in magnitude than when
m =0, which corresponds to SdS space-time. It will be interesting to
check the QNM behavior of the black hole if it carries the parameter

charge, in addition to mass and is done below.
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Table 2.1: QNMs of dRGT black hole under massless scalar perturba-
tions calculated by Improved AIM (with 50 iterations ) for I =2 and
l =3 modes.The a and P values are kept the same while QNMs are

calculated by varying the m values

| m=0.8 |

| A Y { w(l =2) \ w(l =3) |
-0.080 -0.80 1.9840 | 1.15155 — 0.348046 1 | 1.62914 — 0.341517 i
-0.088 -0.80 1.9904 | 1.15615 — 0.3504181i | 1.63572 — 0.343749 i
-0.096 -0.80 1.9968 | 1.16081 - 0.352759 i | 1.64237 — 0.346001 i
-0.104 -0.80 2.0032 | 1.16552 — 0.355121 1 | 1.64910 — 0.348271 i
-0.112 -0.80 2.0096 | 1.17030 — 0.357501 i | 1.65590 — 0.350560 i
-0.120 -0.80 2.0160 | 1.17512 - 0.3599021 | 1.66278 — 0.352868 i
-0.128 -0.80 2.0224 | 1.18001 - 0.3623221 | 1.66974 — 0.355195 i

| m=1.0 |

[ A Y { ol =2) \ w(l =3) |
-0.100 -1.00 3.1000 | 2.81587 — 1.049800 1 | 3.90051 — 1.026860 i
-0.110 -1.00 3.1100 | 2.83013 — 1.0571401 | 3.91984 — 1.033950 i
-0.120 -1.00 3.1200 | 2.84445 — 1.0645101 | 3.93924 — 1.041070 i
-0.130 -1.00 3.1300 | 2.85881—1.0719101 | 3.95870 — 1.048210 i
-0.140 -1.60 3.1400 | 2.87322—1.0793401 | 3.97823 — 1.055380 i
-0.150 -1.75 3.1500 | 2.88768 — 1.0868001 | 3.99781 — 1.062580 i
-0.160 -1.90 3.1600 | 2.90220 — 1.094280 i | 4.10746 — 1.069800 i

2.3.2 Charged dRGT black hole
The metric function for a charged black hole from the class of dRGT

massive gravity can be obtained following section 2.3.1 as,

(2.65)

f(r)=1—-—+
r

2M Q% A
=

2
+—=r +vyr+
8r yr+d,

where @ corresponds to the charge. Proceeding as above, the radial

part of the wave equation can be found as,

(2.66)

d?R p'dR

d&?

+——+
p d¢

w2 (ME-2Q%* +y/E +

2A
3¢2

p? p
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Table 2.2: Column 2 shows QNMs calculated using Improved AIM
for y = { =0 for different values of A shown in column 1. These are
compared with the SdS case calculated in [120] shown in column 4.
The results are found to agree quite well.

[ ARGT) | warm [ ASdS) | wwks
0 0.483644 — 0.09675881 | 0 0.48364 - 0.09677 i
-0.02 0.434585 — 0.0885944 1 | 0.02 0.43461 - 0.08858 i
-0.04 0.380784 — 0.07876101 | 0.04 0.38078 - 0.07876 i
-0.06 0.320021 — 0.06684491 | 0.06 0.32002 - 0.06685 i
-0.08 0.247470 — 0.05190431 | 0.08 0.24747 - 0.05197 i
-0.09 0.202960 — 0.04255841 | 0.09 0.20296 - 0.04256 i
-0.10 0.146610 — 0.03068691 | 0.10 0.14661 - 0.03069 i
-0.11 0.0461689 — 0.0063134 1 | 0.11 0.04617 - 0.00963 i

where,

2 ¢4 3 2 A
(2.67) p = Q¢ —-2M¢ +6(1+()+7€+§,
(2.68) p = 4Q%E —6ME+y+2E1+0).

Scaling out the divergent behavior at the event horizon leads to the

master equation,

(2.69) pu”+(p'-2iw)u’- u=0.

2A
Il+1)+ (2M§ —2Q% +y/E + 3—52)

Again, the correct scaling condition of QNMs at the event horizon

implies,
2.70) w(&) = (- &) P 4(9),
where,
K ! 6f|
1= 55 lr—rys
(2.71) 2or

:M{2—Q2£3+%£+g.
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The master equation is now in the form of (2.1) so that the quantiza-

tion condition given by (2.22) can be employed to find out the QNMs.

Table 2.3 shows the QNMs calculated using the improved AIM method
for different values of @ and . We have chosen the values M =c=1
and @ = 0.5 in these calculations. The QNMs are studied as in the
previous subsection by varying the m values while keeping the values
of a and f the same. It can be seen that as m increases, the real
part of the quasi normal frequency deceases while the magnitude of
the imaginary part increases. For each m, the QN frequencies vary
continuously. A black hole is stable only when the imaginary part
in its QN spectrum is negative[122]. It is noted while calculating
the QNMs that the roots of the frequency, w give positive as well as
negative imaginary parts. Here we are interested in the stable modes
and therefore have considered only the negative imaginary parts of w.

50 iterations have been taken for calculating the QNMs.

2.4 Thermodynamics and P-V Criticality
of Black Holes in dRGT Massive

Gravity in de Sitter Space-time

It is seen in the previous section that the black hole solutions, both
neutral and charged ones, in dS space-time have got 2 horizons. A
black hole with more than one horizon or multiple horizons will
correspond to different thermodynamical systems. Hence it will be

interesting to study the thermodynamics of those black holes.
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Table 2.3: The QNMs obtained under massless scalar perturbations
of a charged dRGT black hole having charge @ = 0.5 for I =2 and
l =3 modes.The a and P values are kept the same while QNMs are
calculated by varying the m values

| m=0.8 |

A Y | w(l=2) \ w(l =3) |
-0.080 -0.80 1.9840 [ 2.43544 —0.5237991 | 1.67618 — 0.168257 i
-0.088 -0.80 1.9904 | 2.43455 — 0.535763 i | 1.67635 — 0.180489 i
-0.096 -0.80 1.9968 | 2.43252 — 0.547233i | 1.67351 — 0.195613 i
-0.104 -0.80 2.0032 | 2.42939 - 0.558215i | 1.67069 — 0.209057 i
-0.112 -0.80 2.0096 | 2.42523 — 0.568718 i | 1.66693 — 0.222338 i
-0.120 -0.80 2.0160 | 2.42021 - 0.578624 i | 1.66230 — 0.235427 i
-0.128 -0.80 2.0224 | 2.41399 - 0.588313i | 1.65677 — 0.248391 i

| m=1.0 |

[ Ay ] w(l=2) | w(l=3) |
-0.10 -1.00 3.1000 | 0.304084 — 2.99974 i | 0.9866449 — 4.93190 i
-0.11 -1.00 3.1100 | 0.342169 — 3.05263 i | 1.0195500 — 5.01834 i
-0.12 -1.00 3.1200 | 0.378347 —3.104421 | 1.0531600 — 5.10348 i
-0.13 -1.00 3.1300 | 0.413140 — 3.155111 | 1.0872800 — 5.18734 i
-0.14 -1.60 3.1400 | 0.446882 —3.20472i | 1.1219000 — 5.26998 i
-0.15 -1.75 3.1500 | 0.479812 - 3.25326 i | 1.1570200 — 5.35141 i
-0.16 -1.90 3.1600 | 0.512100 — 3.30072i | 1.1926600 — 5.43168 i

2.4.1 Thermodynamics of neutral dRGT black

holes

The basis of black hole thermodynamics have been dealt with in detail

in chapter 1.5. Generally, the cosmological constant, A, is treated as

representing a negative pressure [123] as,

(2.72)

A=-8nP.

54



2.4. THERMODYNAMICS AND P-V CRITICALITY OF BLACK HOLES IN DRGT
MASSIVE GRAVITY IN DE SITTER SPACE-TIME

For y = { =0, the metric function (2.42) would lead to the case of a dS

space-time provided A is negative. Keeping this in mind we take,
(2.73) AN =8nP,

where P is the pressure. The boundary of the black hole is described
by the black hole horizon, r; and is determined by the condition,
f(r)l;, = 0. From this condition, the mass of the black hole can be

expressed in terms of rj, as,
1 2
(2.74) M = grh(3+3rhy+3(+rhA),

and the black hole mass is considered to be the enthalpy of the system.
The thermodynamic volume, V is given by[124, 125],

oM

2.75 V=—.
(2.75) 3P

Varying (2.75) partially with respect to the pressure P, we get

4
(2.76) V= gnri;.

The temperature of the black hole, described by the metric in (2.42),

given by the Hawking temperature can be written as [126],

1
T = Ef,(rh)’
= — +yrp+25ry|.
47‘[7‘h ry 3

Substituting M from (2.74) in (2.77) and rearranging it we get an

expression for the cosmological constant,

3 47IT—2)/_(1+()

™ 2

(2.78) A
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But from (2.73), the cosmological constant can be related to the pres-

sure as A = 8nP. Therefore (2.78) can be written in terms of P as,

A
P=—,
81
(2.79) _ Z_L)i_(i+i)i
2 4n)ry \8m 8=n r%’
or,
(2.80) p=22,22
rp rh
where,
T vy
2.81 - =L
( ) wi (2 47’:)7
1 ¢
2.82 = —_ _+_ .
( ) w2 (Sn 871)

From (2.81), w1 can be treated as a shifted temperature. From (2.76) it
can be seen that, thermodynamic volume, V, is a monotonic function
of the horizon radius r; and hence r; can be used instead of V in
the analysis. (2.80) can be treated as the equation of state describing
the thermodynamic state of the black hole. The critical point is then

determined by the simultaneous satisfaction of the conditions,

oP
(2.83) —|ry=rp., T=T.=0,
ory,
and
9%P
(2.84) 5 =0.
d T'h rp=The,T=T

Substituting for P in the above differential equation it is found that
the conditions given by (2.83) and (2.84) are not simultaneously satis-

fied. However, the condition,
oP

2.85
( ) ory,

=0,

rp=rpe,T=T;
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gives the critical horizon,

QWQ
(2.86) Fhe =——.
w1
0P
0%rp rh=The,T=T
either a local maximum or a local minimum depending on whether

Evaluation of gives a non-zero value which can imply

the value is greater than or less than zero. The critical pressure is
found out by substituting (2.86) in to (2.80) which gives,

(2.87) P.= —w—%.

4w

This critical point corresponds to a physically feasible one if P, is
positive [126]. It can be seen that this happens only if wq is negative
irrespective of the sign of wi. The relation between shifted tempera-
ture, w1, critical pressure, P, and horizon radius r; can be found out

from (2.86) and (2.87) as,

P 1
(2.88) cThe _ 2
w1 2

This ratio is called the ‘Compressibility Ratio’. The value of compress-
ibility ratio for a Van der Waals gas is 0.375. Hence, the black hole
system, with the Compressibility Ratio given by (2.88), can be thought
of as behaving like a near Van der Waals system. The P-r; diagram
plotted for different shifted temperature is shown in Fig.2.1. In the
first figure, the curves are plotted for wqy = 1, the curves are seen to
show critical behavior but it likely does not correspond to a physical
one because, from (2.87), for the above said values of w; and wq the
critical pressure P, turns out to be negative for these curves. The
second figure plotted for we = —0.5, show inflection point but there is

no phase transition.
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Figure 2.1: First figure shows P-r; diagram for the value wg =1
which exhibits critical behavior and the second figure shows the plot
for the value w9 = —0.5 which exhibits an inflection.

2.4.2 Thermodynamics of charged dRGT black
holes

Consider a charged black hole with the metric of the form (2.65). The

Hawking Temperature for this metric function can be found out as,

1
T=—f
4nf (rp),
1 [2M 2Q?

B dnry | rp r%

(2.89)

A 2
+yrh+2§rh .
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From the above equation, the equation of state can be obtained pro-
ceeding as described in the previous subsection. The mass, M of the

black hole can be written in terms of the horizon radius r as,
1
(2.90) M= -(3Q+3ri(1+0)+3riy + 13 A)

Substituting for M in (2.89) and rearranging we get,

B 4nT—2y_(1+C)+Q_2

rp 7‘% 7‘%.

(2.91) A

Writing this equation in terms of P,

A
P__’
81
\2 4n)r, \871 8n r% 8nr2’
or,
(2.93) p=21,22. 08
Th Ty Ty
where,
T v
2.94 = |=——
( ) w1 (2 47[),
1 ¢
2.95 - =+ =
( ) w2 (871 87[)’
2
(2.96) wsg = Q—
8n

(2.93) describes the equation of state. The critical point is then deter-
mined by the simultaneous satisfaction of (2.83) and (2.84). Unlike in
the case of a neutral black hole, it is found that (2.83) and (2.84) are
simultaneously satisfied which gives the solutions, for critical horizon

as,

[6
(2.97) Fhe=1]——24
w
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and for the critical temperature as,

2 w3
(2.98) Wie==1/-—2.
3 ws

Using (2.93), (2.97) and (2.98), an expression for the critical pressure
can be arrived at as,

2
12w3'

(2.99) P,

The relation connecting shifted temperature w1, critical pressure, P,

and critical horizon radius rj,. are found as,

P 3
(2.100) cThe _ 2
Wie 8

which is exactly the same as in the case for a Van der Waals system.
The P-V diagram plotted for different shifted temperature is shown
in Fig.2.2. In the first figure, the curves are plotted for wo = —10 and
wg = 1. The second figure is plotted for we = 6 and wg = 1. The first
figure shows an inflection point and a phase transition, but the second

one does not, as is obvious due to the sign change of ws.
2.5 Holographic Entanglement Entropy

in dS Space-time
Study on Entanglement Entropy (EE) of the black hole system pro-
vides a link to the relation between the classical black hole thermody-
namics and quantum effect as discussed in chapter 1.6. This may help
in paving way to a quantum explanation for gravitation and hence
gains importance. For a given quantum field theory described by a

density matrix p, the entanglement entropy for a region A and its
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— 0.5wlc

. — 0.75wlc
10 : N — wlc
S S~ 1l2wic

15wlc

Figure 2.2: In the first figure P-r; diagram is plotted for the value
wg = —10 and w3 = 1 which exhibits a phase transition and the second
figure shows plots for the value w2 = 6 and ws = 1 which does not
exhibit any phase transition.

compliment B is defined as[127],

(2.101) Sa=-Tra(palnpys),

where ps = Trp(p) is the reduced density matrix. This provides us
with a convenient way to measure how closely entangled a given
system B is. Here, the total system is divided into sub systems A and

B. S can be computed, geometrically, in terms of the bulk minimal
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surface enclosed on 0A as given by[93],

_Areay
==

(2.102) Sa

where y is the co-dimensional minimal surface with the boundary
condition 0y = A and G is taken here as unity. For computing the
entanglement entropy, A is parameterized by a shape in (6,¢). The
profile in the bulk will then be given by r(6,¢). The surface is com-
pletely characterized by the induced metric[94],

(2.103) hab = 8uv0ax"(0%)0px" (0?),

with coordinates a,b = 0,1, 0° = 7 (time part) and o' = o (space part).

Then the minimum area will correspond to,

1 21
(2.104) A=-= f (—det h)2d0od ¢,
2 Jp=0

which gives,

1/2

(2.105) A:frsinH do.

for)! (%) +r7

The non-trivial embedding function x#(c®) is now given by r(6) and
the Lagrangian given by the integrand of (2.105) can be treated as a
classical mechanics problem with 6 as the time parameter and treat
the problem for solving r(0) as that of a particle. Thus, the effective

Lagrangian is given by,

7"2 9
(2.106) L=r f(r)+r .

In this work, we consider the surface bounded by the line of latitude
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0 = 09 which has got the topology of a disc. The minimum area can

then be written as,

1/2

=60 dr
(2.107) A= f rsin | f(r) (=) +r%| do.
6=0 do

For a black hole, to avoid the entanglement entropy be affected by the
surface that wraps the boundary, we take a cap shaped small area.
To deal with the UV divergence it is assumed that the area sites on

a slice and r = %, € — 0 gives the UV cut off. Rather, A starts from

__1 _1
X=—3 r—z,

55 extends in to the bulk and reaches a minimum r and

then returns back to the boundary r = % atx = +é. Then the area to

be minimized becomes,
1/2

do.

1/2 r1(9)2
f(r)

The area above will be divergent. So it is regularized by subtracting

(2.108) A= +7(0)2

r
=1/2

off the pure dS area with the same entangling surface. The area
corresponding to pure dS can be found from the metric and the metric
function with my — 0 and @ — 0. Then the regularized entropy is

given by,
(2.109) Sent =S =S,

where Sy is of the pure dS space-time and S is given by (34). With
the Lagrangian at hand, the equation of motion can be found out
from which we get an expression for r(0). This procedure is rather
complicated to do analytically and hence it is done numerically. The

equation of motion corresponding to the Lagrangian in (2.108) is given

by,
(2.110) 4f(2r? —rf(r)i? + 2f (r)G2 +rif) = 0.
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This equation of motion is solved for the value of 7(6) numerically with
1 = 2.2, with the boundary condition r(0) = 2.19, r'(0) = 0 and with the
parameter values m =1, A=0.1,a=1,¢c=1,c1 =1and @ =0.25. The
r(0) and r'(0) are inserted back into (2.108). The integral is minimized
to find A corresponding to the minimal surface. This area is then used
in (2.102) to calculate the entanglement entropy over the small area
0A. The entanglement entropy corresponding to pure dS space-time

is also evaluated in a similar manner.

Here, we are interested in the behavior of entanglement entropy with
the black hole temperature. The entropy of the black hole can be

evaluated from

10M
s-[Lom
(2.111) T or

=4nry,.

Taking rj from (2.77) and substituting in (2.111), for a neutral black

hole, the Temperature-Entropy relation is obtained as,

41+ nS +8yymS¥2 +482A
- 16773/283/2 )

(2.112) T

Similarly for a charged black hole, the Temperature-Entropy relation
is obtained as,

—12Q% +4(1+ )nS + 8y v S¥? + 482\
(2.113) po QA+ OnS + 8y VT .
167!3/283/2

To compare the thermodynamic entropy with entanglement entropy,
the regularized entanglement entropy calculated from the above pro-
cedure is substituted in the temperature-entropy relation and then
plotted in Fig.2.3. The figure on top shows the behavior of entangle-
ment entropy of a neutral dRGT black hole while the figure on bottom
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0.181 0.182 0.183 0.184
Sent

Figure 2.3: Regularized entanglement entropy versus temperature for
neutral dRGT black hole (top) and charged dRGT black hole (bottom)
with the massive parameter value m = 1.

shows the behavior of entanglement entropy of a charged dRGT black
hole with the parameter values m =c=c; =1 and @ =0.25. From the
figure it can be clearly understood that there is no phase transition for
a neutral black hole while it shows a phase transition for a charged
black hole. These results are thus in accordance with the results
from thermodynamics studies discussed in the previous section of this

chapter.
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2.6 Summary of the Chapter

In this chapter, studies on the QNMs coming out of massless scalar
perturbations in black hole space-time in a class of dRGT massive
gravity, is presented. We have used the Improved AIM to calculate the
QNMs in the de Sitter space-time with 50 iterations. The QNMs are
studied by varying the massive parameter, m. It is found that as m
increases the magnitudes of the QN frequencies increase for neutral
black hole. These QNMs are also higher in magnitude compared to
the SdS case meaning that such black holes decay fast. It is also found
that as y and { tend to zero, the results converge to the SdS case.
For a charged black hole, the real part of the quasi normal frequency
decreases and the magnitude of imaginary part increases as m is

increased.

We have also presented in this chapter, the P-V criticality in the
extended phase space of the aforesaid black holes. The neutral black
holes show a near Van der Waals behavior with the compressibil-
ity ratio of 0.5. But it does not show any physically feasible phase
transition for the dS space-time. The charged black hole on the other
hand exactly shows a Van der Waals behavior and clearly exhibits a
phase transition. Study on the holographic entanglement entropy of
a neutral and charged black hole shows results in accordance with

the thermodynamical studies.

Studies on the black hole QNMs, thermodynamics and phase tran-
sition of a linearly charged BTZ black hole done is presented in the
following Chapter.
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CHAPTER

QUASI NORMAL MODES AND
THERMODYNAMICS OF LINEARLY
CHARGED BTZ BLACK HOLES IN MASSIVE

GRAVITY

The study of black holes in AdS space-time is gaining much impor-
tance mainly due to its correspondence with Conformal Field Theory
(CFT). For the study of such correspondences, the (2 + 1) dimensional
BTZ black hole solutions form the appropriate candidates. BTZ so-
lutions thus gains importance as a testing ground of any theory of
gravity for a deeper understanding. In the case of massive gravity
also studies in that direction should be exploited to get a deeper

understanding of the theory.
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3.1 Introduction

Recently there has been a growing interest in the asymptotically
Anti-de Sitter(AdS) space-time. The black hole solution proposed by
Banados-Teitelboim-Zanelli (BTZ) in (2 + 1) dimensions deals with
asymptotically AdS space-time and has got well defined charges
at infinity, mass, angular momentum and makes a good testing
ground especially when one would like to go beyond the asymptotic
flatness[128]. Another interesting aspect of the black hole solution
is related to the AdS/CF'T correspondence. In (2 + 1) dimensions, the
BTZ black hole solution is a space-time of constant negative curvature

and it differs from the AdS space-time in its global properties[129].

As discussed before, QNMs form the testing ground for the existence
of black holes in any theory of gravity. The study of QNMs in AdS
space-time was initiated by Horowitz and Hubeny[130]. It was Car-
doso and Lemos who first calculated the exact QNMs of the BTZ black
holes[131]. They have found out both analytical and numerical solu-
tions to the BTZ black hole perturbation for non-rotating BTZ black
holes. It is interesting to note that they got exact analytical solutions
to the wave equation that made the BTZ black hole space-time an
important one where one can prove or disprove the conjectures re-
lating to QNMs, critical phenomena or area quantization. This work
was then extended to the case of a rotating black hole space-time by
Birmingham[132]. The QNMs are also studied for charged dilaton
black holes in (2 + 1) dimensions[133].

Another important aspect of black holes is, as earlier discussed, the
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black hole thermodynamics. There has been growing interests in
this aspect among researchers. The black hole thermodynamics plays
a crucial role in the non-perturbative aspects of quantum gravity.
Among the thermodynamical aspects, the thermal stability of a black
hole holds a significant position. A black hole has to be thermally
stable. A thermally unstable solution may lead to a phase transition
of black hole from a thermally unstable to a stable state. The thermo-
dynamic phase transitions and area spectra of the BTZ black holes
are studied in the literature[91, 134, 135]. The charged BTZ black
hole solutions are also studied for the phase transition in references

[136, 137]

Understanding that electromagnetic field can be a good choice of
source for getting deep insights into the 3 dimensional massive grav-
ity, we concentrate on the QNMs, the associated phase transition
and thermodynamics of linearly charged BTZ black hole in massive

gravity in the presence of Maxwell’s field.
3.2 Quasi Normal Modes for Scalar

Perturbations
For a linearly charged black hole, the Einstein-Maxwell action in
(2+1) dimension is given by[138],

1

1 -
3.1 Sem=1e.G

2
R+l—2—4JTGFuVFI"W ,

fd?’x\/?

where R is the Ricci scalar, F, =9,A, —0,A is the Faraday tensor,
A, is the gauge potential, and F/'F, is the Maxwell invariant. The

action given above can be generalized to include the massive gravity
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for the dS space-time as[139],

-1
S = Ton d3x\/=gIR +2A + L(F)+
/A

(3.2) 4
mzzci%i(g,f)],

where & = FI'VF ), L is an arbitrary Lagrangian of electrodynamics,
llz = A, the cosmological constant in the dS space-time, %;s are the
effective potentials, m is the massive parameter and c;s are constants.
By varying (3.2) with respect to the metric g,,, one can obtain the

gravitational field equation as,

1
(3.3)  Gu+Agu- 5g,WL(gr) ~2LgF,,F) + m®#,, =0,

L
where, Guv :Ryv - %gva, Lg= ddg), Jv“ = V8" fav,

and,

—C1 Cc2 2
Hy = —— (% gy = Hiw) = 2 (%2guv =29 Ky + QX”V) —
C3
(3.4) 5 (%3 Guv = 3Us Koy + 6ULH 2, — 6T, + 24%@) -,

Cc
54 (%sg o — 43 Ho + 1290 H ], — 281 55, + 247, )

where 4 has got the same definition as in the previous chapters.
To obtain a static charged black hole solution we consider the 3

dimensional metric with the space-time signature as, (— + +),
(3.5) ds? = —f(r)dt® + f 1 (r)dr? +r?d6?,

where f(r) is an arbitrary function of the radial coordinate. To get
an exact solution for this metric, the following ansatz for the fiducial

metric is employed[116],
(3.6) fuv = diag(0,0,ch;j),
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where ¢ is a positive constant. Using the above metric ansatz the

effective potential terms are obtained as,

(3.7) U, =2

(3.8) Uo=U3 =Wy =0,

which tells that since we are dealing with 3 dimensions, the only
contribution of massive gravity comes from %. The Lagrangian of
the Maxwell field is chosen as, L(¥) = —&% since we are dealing
with linearly charged BTZ solution. Here, we are also interested in
electrically charged black hole solution and hence the radial electric

field is chosen as,

(3.9) A= VQ (2],

where @ is an integration constant which is related to the electric
charge and «a is an arbitrary constant that has got the dimension of
length. Using (3.3) and (3.5) for getting exact solution for the metric
function leads to the set of differential equations, corresponding to
the ‘¢#’ (or ‘rr') and ‘¢p¢’ components respectively, given by,

(3.10) rf'(r)+2r2A+2Q—mzcclr

2
(3.11) %f%m+Aﬂ—Q = 0.

0,

Solving these equations will lead to the metric function, in the dS

space-time as[138, 139],
2 r 2
(3.12) f(r)=Ar°—my—-2QIn—+m-ccr,
a

where m is related to the mass of the black hole, a is an arbitrary

constant and ¢ and c¢; are constants. For an AdS, A will take negative
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values. From the metric function, it can be understood that the con-

tribution of the massive term depends on the sign of c;.

For finding the QNMs, the black hole space-time described by the
metric function (3.12) has to be perturbed. Here a massless scalar
field perturbation in this space-time is considered and in that case
the black hole space-time satisfies the Klein-Gordon equation,

1 9
V/—8 0x°
which on expanding gives,

(3.14) 1 920 0 £ )acp 1 3%® 0
. —_— ) =
f(r) ot2  or or r2o¢?

0
3.13 ab /= —)(ID:O,
( ) (g £ Oxb

To separate the radial and angular variables, we make use of the

ansatz,

(8.15) ®= @e—iwteimld’,
r

where w is the frequency, m; is the angular momentum quantum
number. Using the above ansatz, the radial part of the Klein-Gordon

equation can be written as,

(ﬂ_£+m
d’R f'(NdR | * 7

a2 T fe dr | FeR T f(r) =0

(3.16)

Quasi normal modes are ingoing waves at the event horizon and
outgoing waves at the cosmological horizon, leading to the boundary

condition,

e’ asr—oo

(3.17) R —

e ' asr— —oo

72



3.2. QUASI NORMAL MODES FOR SCALAR PERTURBATIONS

Making a variable change r — 1/, the equation (3.16) becomes,

2 ' 2 2Q+20_cam_ 2
(3.18) %+£@+ e~ &£ ¢ !lr-o,

d¢* pdé |p p
where,

1
(3.19) p = M§2—cclm£+2Q£21n(a—€)+A,
1

(3.20) pl = 2M-Q)—ccim +4Q¢&In(—).

ag
The equation given by (3.18) has got the singularities at the event
horizon and at an outer horizon. In order to solve the equation, the
singularities have to be scaled out. Here, we first scale out the diver-
gent behavior at the outer horizon and then re-scale to avoid the event

horizon. To scale out the divergence at outer horizon, we take[118],

(3.21) R(&) =" u(d),
where,

(3.22) eI = (£ — BT (- £) P,
and,

(3.23) _1o

Ki = 55'7‘—»7‘1‘7
is the surface gravity at each horizon. The master equation then will

take the form,
(3.24) pu’+(p' -2iw' - (2Q - — ———-m7|u=0.

This can be viewed as of a second order differential equation of the

form,
(3.25) u = 20(Eu +s0(Ou,
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with,
!/ _ 2 .
(3.26) ho = —PEO)
D
2Q_%_ ccim _m2
(3.27) so = ( @ - mi)
p

The Improved AIM discussed in the previous chapter is employed to
find out the QNMs. In Table 3.1 we list the QN frequencies of the
black hole in the dS space-time for m =1, m = 1.05 and m = 1.1 for
different values of the cosmological constant, calculated using the
improved AIM. We have used the parameter values: @ =0.25, m; =1,
a=1,c=1and ¢; = 1. In the numerical calculations we have used
15 iterations. It is observed that the behavior of the QN frequencies,
ie., the way by which QN frequencies vary with A, change after a
particular A value. This change in behavior is shown in the table
by a horizontal line as a separator. This sudden change in behavior
happens at A =0.1 for m =1, at A =0.21 for m = 1.05 and at A =0.28
for m = 1.1. This behavior of the QNMs, wr versus wy, are plotted in
Fig.3.1. From the figures it can be clearly seen that the slope of the
curve changes suddenly at some transition point for m =1,1.05,1.1
and can be treated as a clear indication of a phase transition. However
for the same values of the constant parameters this phase transition
occurs at different values of A for the different m values. The higher
the value of m, the higher the value of A at which the phase transition
occurs. As an example, the variation of the QN frequencies (wp and

wy) with A for the massive parameter m = 1.1 is shown in Fig.3.2.

In Table 3.2, we have shown the QN frequencies, calculated for @ =
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Figure 3.1: QNM behavior of linearly charged BTZ black hole for the
massive parameter values m =1,1.05,1.1 (from top left) and @ = 0.25.
The sudden change in the slope can be treated as an indicative of a
possible phase transition.

0.35 for the massive parameter values, m =0.9, m =0.95 and m = 1.0
with m; = ¢ = ¢1 = 1. The behavior of these QNMs (wg versus wy)
are shown in Fig.3.3. Just like in the case where @ = 0.25, here also
there is a sudden change in the slope of the curve after a particular A
indicating that of a possible phase transition. Thus, for both values of
@, the black hole shows phase transition for the dS space-time. We
can see from Tables 3.1 and 3.2 that for the value m = 1.0 the phase
transition occurs at different values of A for the @ =0.25 and @ = 0.35

cases.
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Figure 3.2: The behavior of QNMs with A calculated in Table 3.1 for
m = 1.1 for the dS space-time

Table 3.1: QNMs of linearly charged BTZ black hole for different
values of the massive parameter for dS space-time with @ =0.35

m=0.9 m =0.95 m=1.0
A w=wgR +wy A w=wgR+0] A w=wgR +wy
0.09 .898571 - .07830661 0.05 1.16072 - .0686295i 0.01 1.68971 - .172263i
0.10 .901026 - .0798863i 0.06 1.18398 - .0690504i 0.015 1.69779 - .581786i
0.11 902855 - .0851571i 0.07 1.20614 - .0630027i 0.02 1.70293 - .198065i1
0.12 .902565 - .0947457i 0.08 1.21651 - .0514301i 0.025 1.70506 - .214255i
0.13 1.03909 - .107478i 0.09 1.21431 - .0415960i 0.03 1.70405 - .232616i
0.14 1.01865 - .0859070i 0.10 1.20180 - .0347956i 0.04 1.69178 - .27573i
0.15 1.00159 - .0683552i 0.11 1.17941 - .0303883i 0.05 1.66379 - .327079i
0.16 .983281 - .06666291 0.12 1.14639 - .0274678i 0.06 1.61649 - .386106i
0.17 961166 - .0464981i 0.13 1.10110 - .0251206i 0.07 1.54442 - .451769i
0.18 .933873 - .0396936i 0.14 1.04093 - .0224859i 0.08 1.43902 - .521872i

In Table 3.3 we show the QNMs calculated for an AdS space-time
for the massive parameter values m =1,1.05, 1.1 with @ =0.1, a =1,
c=1, c1=1. From Table 3.3, it can be observed that the wg and wy
continuously decrease and after reaching a particular A, the real and
imaginary parts suddenly increase and then continuously decrease.
This jump can be treated as an indication of an inflection point and is

shown in Fig.3.4.
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Figure 3.3: QNM behavior of linearly charged BTZ black hole for
dS space-time with @ = 0.35 for the massive parameter values m =
0.9,0.95,1.0 (from top left). The sudden change in the slope can be
treated as an indicative of a possible phase transition.

Table 3.2: QNMs of linearly charged BTZ black hole for different

values of the massive parameter for dS space-time with @ =0.35

m=0.9 m =0.95 m=1.0
A w=wrp+wy | A w=wrp+wy | A w=wR +wy
0.09 .898571-.0783066i | 0.05 1.16072-.0686295i | 0.01 1.68971 - .172263i
0.10 .901026 - .0798863i | 0.06  1.18398 -.0690504i | 0.015 1.69779 - .581786i
0.11  .902855-.0851571i | 0.07 1.20614 -.0630027i | 0.02 1.70293 - .198065i1
0.12  .902565 - .0947457i | 0.08 1.21651-.0514301i | 0.025 1.70506 - .214255i
0.13 1.03909 - .107478i | 0.09  1.21431-.0415960i | 0.03 1.70405 - .232616i
0.14 1.01865-.0859070i | 0.10 1.20180 -.0347956i | 0.04 1.69178 - 275731
0.15 1.00159 -.0683552i | 0.11  1.17941-.0303883i | 0.05 1.66379 - .327079i
0.16  .983281-.0666629i | 0.12  1.14639 -.0274678i | 0.06 1.61649 - .386106i
0.17 .961166 - .0464981i | 0.13  1.10110-.0251206i | 0.07 1.54442 - 4517691
0.18 .933873-.0396936i | 0.14 1.04093 -.0224859i | 0.08 1.43902 - .521872i

It can be seen that there is no drastic change in the slope and
the behavior of the QNMs are similar for all values of m. Hence

it can be inferred that there will be no phase transition. In Table
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Table 3.3: QNMs of linearly charged BTZ black hole for different
values of the massive parameter for AdS space-time with @ =0.1

m=1.0 m =1.05 m=11
A w=wgR+w0y A w=wgR+0y A w=wgR+w0y
-0.06 1.83077 - 5.78701 i -0.05 1.39873 - 7.68495 i
-0.07 1.70014 - 5.33444 1 -0.06 1.29210 - 7.27705 i -0.04 0.75408 - 9.41718 1
-0.08 1.53828 - 4.92198 i -0.07 1.14457 - 6.93423 i -0.05 0.63741 - 9.08170 i
-0.09 1.34563 - 4.54476 1 -0.08 0.95604 - 6.62556 1 -0.06 0.48892 - 8.73203 i
-0.10 1.11762 - 4.20206 1 -0.09 0.72592 - 6.35819 i -0.07 0.21318 - 8.39613 i
-0.11 0.84041 - 3.89983 i -0.95 0.58718 - 6.23146 i
-0.12 0.48197 - 3.66706 i -0.10 0.40624 - 6.12793 1
-0.13 0.81813 - 4.06506 1 -0.11 1.57334 - 7.10865 1 -0.08 2.18254 - 10.2207 1
-0.135 0.75562 - 3.41486 i -0.13 1.12639 - 5.99601 i -0.09 1.44272 - 10.1043 i
-0.14 0.32251 - 2.91165 i -0.14 0.86214 - 5.07753 1 -0.10 1.41871 - 9.40952 i

Table 3.4: QNMs of linearly charged BTZ black hole for different
values of the massive parameter for AdS space-time with @ = 0.25

m =0.95 m=1.0 m =1.05
A w=wR+wy A w=wR+wy A w=wR+wy
0.01 292587 - 9.19482i 0.13 .820054 - 4.96149i 0.29 1.01098 - .0351877i
0.02 772162 - 8.392201 0.15 431983 - 3.380601 0.31 1.02868 - .0148701i
0.03 .844245 - 7.75702i 0.17 .00879691 - .0348464i 0.32 1.04119 - .00215093i
0.04 .820904 - 7.24016i 0.19 1.72429 - .0660172i 0.33 1.62431 - .102106i
0.05 759655 - 6.751771 0.20 1.73419 - .0561830i 0.34 1.62400 - .083530i1
0.07 .551068 - 5.89321i 0.21 1.74461 - .043151i 0.35 1.61905 - .067770i
0.09 .390010 - 4.863501 0.22 1.75581 - .0330092i 0.36 1.60957 - .060276i1
0.11 .243717 - 3.77402i 0.23 1.76769 - .0186321i

3.4 we have calculated the QNMs for the AdS space-time for the
massive parameter values m =0.95,1,1.05 with @ =0.25,a =1,c =1,
c1 =1. Fig.3.5 shows the behavior of QN frequencies, wg versus wy,
for the above case. It can be seen that there is a sudden change in the
slope of the curve after reaching a particular A indicating a possible
phase transition. For @ = 0.1 the AdS black hole space-time does not
show any phase transition behavior but for @ = 0.25 it is found to be
showing a phase transition behavior. Thus it can be inferred that the

phase transition behavior depends on the charge @.

Now, it would be interesting to check the variation of QNMs with Q.

Table 3.5 shows the QN frequencies calculated for different charges @
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Figure 3.4: QNM behavior of linearly charged BTZ black hole with
charge Q =0.1 for AdS space-time for the massive parameter value
m =1,1.05,1.1 (from top left). The bold lines represent the behavior of
QNDMs before the inflection point and the dotted lines line represent
the behavior of QNMs after the inflection point. The behavior of QNMs
are seen to be the similar in the plots. There is no much difference in
the slope of the curves

in dS space-time for a fixed A. It can be seen that the behavior of QN
frequency changes frequently. The phase transition behavior is highly
dependent on the charge. The phase does not remain the same for a
wide range of charge and hence phase transition is found to happen

frequently over a range of charges. This variation is plotted in Fig.3.6.

The variation of QNMs with charge calculated for a fixed A in the
AdS case is shown in Table 3.6. It can be seen that compared to the
dS case the phases remain the same for most of the values of charge

in AdS space-time This behavior is plotted in Fig.3.7.
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Figure 3.5: QNM behavior of linearly charged BTZ black hole with
@ = 0.25 for the massive parameter values m = 0.95,1.0,1.05 (from
top left).

Table 3.5: Table showing the variation of QNMs with @ in the dS
space-time

Q )

0.15 4.47348 - 0.19884 i
0.20 4.33915 - 0.108836 i
0.25 | 0.0930679 - 0.0668980 i
0.30 1.54638 - 0.132502 i
0.35 1.68971 - 0.172263 i
0.40 | 0.0325096 - 0.466834 i

Thus, the variation of QNMs with A for a linearly charged black
hole in massive gravity is calculated for the dS and AdS space-times
and compared for different values of the massive parameter m. We

have also studied the variation of QNMs with charge. For the dS
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Table 3.6: Table showing the variation of QNMs with @ in the AdS
space-time

Q w

0.05 | 1.12930 - 9.66585 1
0.10 | 1.14048 - 9.54589 i
0.15 | 2.42998 - 12.8629 i
0.20 | 3.49176 -14.03161
0.25 | 3.64711-13.98351
0.30 | 0.294699 - 9.56518 i
0.35 | 0.557735 -9.42807 1
0.40 | 0.792729 -9.21181 1
0.45 | 0.940783 - 9.04476 1
0.50 | 1.03930 - 8.88485 i

Figure 3.6: Variation of QNMs with charge @ for the dS space-time

space-time, the QNMs for the charges, @ = 0.25 and @ = 0.35 showed
phase transition behavior, but the value of A at which the phase
transition occurs are different for the two charges. For the AdS space-
time also the variation of QNMs with A is looked into for the charge
values, @ = 0.1 and @ = 0.25. It is found that for the case of @ = 0.1

no phase transition behavior is observed whereas, for @ = 0.25 the
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Figure 3.7: Variation of QNMs with charge @ for AdS space-time

black hole shows a phase transition behavior. These results prompted
to check the variation of QNMs with @ for some fixed A for the dS
and AdS space-times. It shows that phase transition happens for a
large range of charges for the dS space-time whereas phase transition
happens only for certain values of charge in the AdS space-time. Now,
having these results at hand, it would be interesting to study the

thermodynamics.

3.3 Thermodynamics of the Black Hole

From the laws of black hole thermodynamics discussed in chapter 1.5,
the mass of the black hole, m, is obtained from the solution of the

condition, f(r)l,—,, =0 as,

(3.28) mo=m2ceiry + Ard —2QIn(),
a
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The temperature of the black hole is given by,
K

T=—
27

(3.29) 1
= Ef (r)

r—rp
Employing (3.12) one gets the expression for the temperature as,

2
(3.30) pocam’ @

- +4Prh,
4n 2nry,

where P = %. Finally, the entropy is evaluated as,
Th 1 0my

S = — dr
(3.31) o T or

:47trh.

The equation of state, P(V,T) can be obtained from (3.30) as,

Q —ceym?+4nT

2
8nr 3

For (2 + n) dimensional massive gravity, the volume is given by[126],

(3.32) P=

167ry,

V=(%)sq= %r’”l. With n =1, the calculation gives the horizon

radius in terms of its volume as, rj, = (81”)1/ 2,

To specify the phase transition it will be useful to introduce the Gibbs

free energy as a Legendre transformation of enthalpy as,
(3.33) G=H-TS,

where H is the enthalpy, T is the temperature given by (3.29) and
S is the entropy given by (3.31). We use the black hole mass m as
the enthalpy since H = m( rather than the internal energy of the
gravitational system[140]. Substituting (3.28), (3.30) and (3.31) in

(3.33), we get an expression for the Gibbs free energy as,
2 T'n
(3.34) G(T,A):2Q+Arh—2an(;).
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Or in terms of P,
(3.35) G(T,A) =2Q +87Pr% —2QIn("%),
a

A parametric plot can be made between G and T using (3.30) and
(3.35) for a constant P. Fig.3.8 shows the variations of Gibbs free
energy with temperature. Top of the figure shows the G-T plot for
P =0.001. It can be seen that the upper branch which lies in the posi-
tive Gibbs free energy region moves towards the lower branch which
lies in the ‘positive temperature-negative Gibbs free energy’ region
which indicates a possible phase transition. The bottom plot shows
variation of G with T for P = —0.001. The plot lies in the positive

Gibbs free energy region and shows a cusp like behavior.

Fig.3.9 shows the variation of pressure, P and temperature, T' with
the horizon radius, rj, for fixed values of temperature and pres-
sure plotted using (3.30) and (3.32) respectively. Top of the Fig.3.9,
shows the variation of temperature with rj for the pressure values
P =-0.003, —0.002, —0.001, 0.001, and 0.002. The bottom of the
Fig.3.9 shows the variation of pressure with rj for the fixed values of

temperature, T'=-0.3, —0.2, —0.1, 0.1, and 0.2.

More details regarding the phase transition can be extracted from
the entropy of the system. Hence the temperature-entropy relation
would be worth looking at. For that, rj; from (3.31) is substituted for
rp in (3.30) so that we get an expression relating the entropy and

temperature as,

2Q N 2nceim?+AS

3.36 T =
( ) S 812
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Figure 3.8: Variation of Gibbs free energy with temperature for the
dS space-time (top) and AdS space-time (bottom).

To understand the behavior of entropy, the variation of entropy with
temperature is plotted in Fig.3.10 for the values A =0.1 and A =-0.1,
with the parameter values mg=c=c1=1,a=1,Q =0.25 and m = 1.
It can be seen that S remains positive only for a small range of

temperature and both of them show phase transition behavior.

As discussed earlier, knowing the stability of black hole phases are
important for understanding their phase transition behavior. Now,
in order to study the stability of the phases or the feasibility of the

above phase transitions, it may be worth looking at the behavior of
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Figure 3.9: Top : Variation of T' with rj;. Bottom : Variation of P
with r,.

specific heat with temperature. If the heat capacity makes a transition
from negative values to positive values as the temperature varies,
the system undergoes a phase transition. Negative heat capacity
represents unstable state while positive value implies a stable state.

The specific heat capacity is given by the expression,

T
(3.37) Cq= (%)Q,

Substituting the expression for 7' from (3.30) leads to,

-2Q +rp, (m2 + 2rhA)

(3.38) Cp=2
Q Th Q +r%A
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Figure 3.10: The variation of entropy with temperature for A =
0.1(top) and —0.1(bottom) in dS space-time

The plots of specific heat versus temperature for A=0.1 and A =-0.1
are given in Fig.3.11 for the parameter values m =c =c; =1 and
@ = 0.25. From the plot it can be clearly understood that for A =0.1,
the specific heat changes from negative to positive values indicating a
phase transition from unstable to stable configuration. For A = -0.1,
from the figure we can say that it somewhat shows a phase transition
behavior. However, it is observed that for given constant parameter
values, the black holes in AdS space-time show the phase transition
behavior only for a very small range of A values whereas in dS space-

time it shows phase transition for a wide range of A values.
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It would also be worth noting the variation of the behavior of specific
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Figure 3.11: Figure showing the variation of specific heat with tem-
perature for A =0.1 (top) and A = —-0.1 (bottom).

heat with charge, @. For this, we have plotted variation of specific
heat with temperature for @ =0.1,0.25,0.5,0.6 for dS space-time; the
other parameters remaining the same and is shown in Fig.3.12. It can
be seen that upto @ = 0.5 it shows a phase transition and then after
reaching @ = 0.6, no more phase transition is seen. Also it is found

that above this value no phase transition is observed.

The variation of the behavior of specific heat with @ for the AdS
space-time for the values @ =0.1,0.25,0.3,0.4 is shown in Fig.3.13. It
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Figure 3.12: The variation of specific heat with temperature for @ =
0.1,0.25,0.5,0.6 respectively from top left in dS space-time

can be seen that for @ = 0.1 it does not show any phase transition and
for @ =0.25 and @ = 0.3 it shows a phase transition and then after
reaching @ = 0.4, no phase transition is seen. Also, it is found that
above this value no phase transition is observed. From this it can also
be concluded that AdS space-time shows phase transition only for a

small range of @ when compared with the dS space-time.

Thus from the specific heat plots phase transition is observed in the
dS space-time for the values of charge @ = 0.1 to @ = 0.5 and no phase
transition is observed for values above @ = 0.6. In the AdS case, the
phase transition is not observed for @ = 0.1 and values above @ = 0.4

and shows a phase transition for @ = 0.25 and @ = 0.3. These results
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Figure 3.13: The variation of specific heat with temperature for @ =
0.1,0.25,0.3,0.4 respectively from top left in AdS space-time

are in accordance with the results obtained from QNM study.

3.4 Summary of the Chapter

In this chapter, the QNMs are calculated for a linearly charged BTZ
black hole in massive gravity. The values of the parameters are so
chosen that in the metric function, the massive parameter dominates.
It is found that in the dS space-time, as the cosmological constant A
is increased, the QN frequencies varied continuously and then after
reaching a particular value of A(= 0.1), their behavior is found to
be abruptly changing afterwards. This is shown in the w;-wgr plot
This can be seen as a strong indication of a possible phase transition

occurring in the system. When the massive parameter m is increased,
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a similar behavior is found but the A at which the change of behavior
of QNMs takes place is found to be shifted to a higher value(A = 0.28).
Also, it can be inferred that the variation of the massive parameter
will only alter the point at which the phase transition happens. For
different values of @ the phase transition occurs for different values

of A.

The QNMs for an AdS space-time is also calculated and the behavior of
their quasi normal frequencies are analyzed. For @ = 0.1 the behavior
of QNMs showed an inflection point but no phase transition. However
for @ = 0.25 it showed a phase transition. It is seen that the phase
transition behavior is found dependent on @. It is also observed by
studying the variation of QNMs with @ that AdS space-time shows
phase transition only for certain limited ranges of @ compared to the
dS case. The thermodynamics of such black holes in the dS space-
time is then looked into. The behavior of specific heat showed phase
transition for the dS case for a wide range of @ whereas for AdS

space-time phase transition is shown only for a limited range of @.
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CHAPTER

MASSIVE GRAVITATIONAL WAVES AND ITS

DETECTION USING SPHERICAL ANTENNA

4.1 Introduction

Another important aspect of any theory of gravity is the study of
Gravitational Waves. It came out as one of the important results of
GTR. Therefore massive gravity theories are also expected to give
GW solutions for making itself eligible for replacing or modifying
GTR. The GWs produced must also be detected. The path breaking
discovery of GWs was made recently by LIGO from black hole colli-
sions. The discovery indicates the accuracy in the prediction of GWs
based on the well celebrated GTR theory. While analyzing the GWs,
the deviations from GTR can also be studied. From the discovery,
a phenomenological limit to the mass of the graviton for GTR de-

viations was more accurately done as m < 1.2 x 10722eV/c? at 90%
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confidence[100]. However the presence of additional modes of polar-
izations, that could possibly come from a modified theory such as
scalar mode (basis of this work), could not be detected or in other
words, the detector orientations of LIGO as such will not be capable
of detecting a massive graviton. Hence more research has to be done
to explore the ways in which additional polarization mode could be
detected. Expecting that the response of a spherical antenna can be
omnidirectional in nature towards a scalar mode that may possibly
come from a modified gravity theory, it will be good to exploit the

detection possibility via spherical antenna.

Antennae form the primitive, yet effective method for detecting GWs.
The first antenna detector was proposed by Weber. This cylindrical
antenna consists of an elastic body which may become deformed by
the dynamic derivatives of the gravitational potentials, and its normal
modes get excited. Such an antenna measures, precisely, the Fourier
transform of certain components of the Riemann curvature tensor,

averaged over its volume[104].

GW astronomy has two goals :

1. To verify the existence of GWs (which is detected now),

2. Use GW as a tool for astronomical observation.
The former requires a detector of high sensitivity and the latter
imposes the additional requirement that the detectors have good di-

rection resolution and a broad bandwidth.

Antennae may be of two kinds, Cylindrical or Spherical. Cylindri-

cal antenna forms the primitive of its kind. Theoretical interests in
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spherical GW antennae dates back to the 1970s. Spherical antennae
have a greater cross section than bar detectors of similar dimensions.
More importantly, they have both omnidirectional and omnipolariza-
tion sensitivity, and also the potential to detect the direction of wave
provenance. It was in 1971 that Forward[141] proposed the initial
spherical antenna detector for GW detection. He proposed that by
suitably positioning transducers on the sphere one could determine
the direction, polarization and amplitude of the wave. Johnson and
Merkowitz[142] proposed a method of positioning six radial transduc-
ers on a truncated icosahedral to construct a nearly spherical detector.
They showed that a spherical detector cooled to ultra low temperature
can have sensitivity comparable to or even better than the first gen-
eration LIGO detectors in the frequency range around 1 KHz. Zhou
and Michelson in 1994[143] showed that a spherical detector has a
reasonable direction resolution even at relatively low signal-to-noise
ratio (S/N = 10), while an interferometer network requires a much
higher S/N for direction estimation. A spherical detector has isotropic
direction resolution independent of the source direction and polar-
ization, in contrast to the interferometer network, which can only

partially cover the sky.

In order to study the production of GWs from a massive theory of
gravity, the class f(R) theory of gravity is chosen. It comes about as
a toy model that could be used as an easy one to study the deviation

from GTR and also understand the relevant issues.
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4.2 Generation of Massive GWs in f(R)

Theory of Gravity
We will first obtain the field equation for f(R) theory by varying the
modified action given by (1.4) with respect to the metric g,. Then,

the field equation is found as,

(4.1)  f'(R)R, - % FR)g v —(VuVy — gD (R) =k Tyy.

Taking f(R) to be of the specific form,

4.2) f(R)=R +aR2.

we get,

(4.3) (RW—%Rg,w)JrZaRRW—%aR2guv—2a(VuVV—gqul)R =xT .
Then taking the trace of this equation we get,

(4.4) 6a0R —R =«T.

Now, as a step towards linearization, we can write the metric as[98]
4.5) guwv =Nuv+ Ay,

where 7, is the metric of the flat space-time and %, a small pertur-
bation where ||| < 1. The Riemann tensor, after neglecting terms

containing higher orders of 4, takes the form,
(4.6) chd :acrzd_adrgc.
The Ricci tensor is then given by,
1
(4.7) RMV = é(avaahua + auaahfva - Dhﬂv - apavh),
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and the Ricci scalar as

(4.8) R=n""Ryy =y} ~Oh).

Substituting (4.7) in the trace equation (4.8), we obtain,

(4.9) 6a00%0Phop—6a1* (P hyop) —0“0Phap+ O P hep) =k T.

(4.9) is not in the form of a wave equation. To make it in the form of
a wave equation, we employ the trace reversed perturbation given

by[144],
_ 1
(4.10) haﬁ:haﬁ_gnaﬁh,
instead of 444 and the De Donder gauge[144], given by

(4.11) P hap=0.

We can see that (4.9) now takes the form,

(4.12) O2hy — m?0hyy =0,
where,
1
4.13 2o
( ) m 6a

(4.14) DAy =0,
and
(4.15) DAy —m?hy, = 0.
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The general solution of (4.14) is given by,

(4.16) by = fA(k)exp(—i(k.r —wt))dk,
while that of (4.15) is given by,

(4.17) By = fA(k)exp(—i(k.r—wmt))dk,
where w # w,,.

Thus, the solution of (4.12) is given by the sum of (4.16) and (4.17).
(4.16) is the one that we usually have in GTR. That is, the general
solution of the wave equation contains the usual general relativity
solution and an additional solution containing the term m?2. From

(4.14) one can get,

(4.18) naphigy =0,
which implies,

(4.19) Napk kP = k%o =0,

where k% is the propagation vector. Here the propagation vector is a
null vector which means that the corresponding wave travels with

the speed of light. From (4.15) one gets,
(4.20) Napk kP =m? = k%k,.

Here £“ is not a null vector which in turn implies that the wave is
massive and that it travels with a speed less than that of light. Thus
it can be seen that the GW obtained from f(R) gravity allows two

solutions and thereby the polarizations + and x corresponding to the
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massless solution and s, scalar polarization, corresponding to the mas-
sive solution that can be identified with the massive polarization[146].
Thus we can have two independent polarizations A, and h. from
(4.16) and a scalar mode A, from (4.17) so that the GW solution to

(4.12) can be written as,

2D R

where e, s are the basis vectors and are given by,

1 0 0 01 0
1 1
(4.22) e=—|o -1 0|, ¥=——=]10 0],
VO Ve
0 0 0 00 0
000
1
(4.23) e®=—100 o
Wy
00 1

During detection, the GW will be showing one polarization mode at a
time. Hence for studying the massive scalar mode of the gravitational
waveform, it is sufficient to check the detectability of the massive

polarization alone which is done below.
4.3 Detection of Massive Gravitational

Waves using Spherical Antenna
In this section of this chapter, we will discuss how the massive mode
given in (4.12) can be detected using a spherical antenna. Spherical

antennae are considered by many to be the natural next step in the
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development of resonant GW detectors. This is because of the im-
proved sensitivity shown by a sphere and its capability for detection
of multimodes. As discussed earlier in this chapter, the antenna mea-
sures, precisely the Fourier transformed components of the Riemann

curvature tensor averaged over its volume.

The calculations are done following Lobo[147] and Gasparini[106].
We assume that the antenna is a solid elastic body that responds to
GW perturbations through the equations of classical non-relativistic
linear elasticity theory. This assumption is valid since any GW in-
duced displacements will be small the speed of such displacements
will be lower than that of light for any foreseen frequencies. Let u(r,
t) be the displacement vector of the infinitesimal mass element at
point r relative to the solid’s center of mass in its unperturbed state,
whose density distribution in that state is p(r). Let a volume force
density F(r, t) acts on such a solid. If a GW hits the detector at the
time ¢ = 0, the equation of motion for a solid sphere of density p is

given by,
4.24) p——Z WG (T, - (y+ MV (V-G (T, ) = F(T,1t),

where v and y are the Lame coefficients. The driving force F(x,t) is of

the separable type,
(4.25) F(r,t) =F(r)g(t).

An incoming GW manifests itself as a tidal force density and is given

by,

(4.26) FI(7,t)= pR], 2", 1),
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where Réko is the Riemann curvature tensor. The tidal forces are re-
fined to the antenna’s center of mass and thus x* is a vector originat-
ing there. Now, for a resonant mass detector the spatial dependence of
the Riemann tensor need not be considered since the tidal forces are
referred to the antenna’s center of mass and r is a vector originating

there. Then the Riemann tensor, to the first order in A, is given as,
1.
(4.27) Rioro(t) = éhij(t)-

This symmetric tensor can be decomposed into basis of M f;“) and M Ef)
where M fj‘) are five linearly independent symmetric traceless tensors
and M E’;“) is a multiple of the unit tensor §;;. With a real basis, these

base matrices can be written with as,
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001

o
o
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010
[ 15
M?2s = _—
i 1671100,
0 0O
-1 0 O
| 5
MY = - _
ij 1671010
0 0 2

With this choice, we can write the tidal force density as

F(7,0 = f{X)g™@) + Y FUT)g)
(4.28) “
=Y 5w,

S =m,a where a corresponds to the five quadrupole modes and,

S = S
(4.29) f (x):PMijrj,
(m) _ An @
81
(4.31) g'® = M7 Riojo(d.

g5(t) is the mode amplitude and is equal to 25(¢), where S = m a.
Thus,
.. 4
@y _ (m)
h™(t) = ?Mi?Rino,
.. 8
(4.32) he(t) = 1—5Mf”jRi0j0.
This decomposition displays the monopole-quadrupole structure of the
Riemannian tensor where m denotes the vibrational mode correspond-

ing to the monopole mode / =0 and a = 0,1¢,1s,2¢,2s corresponds

to quadrupole mode, [ = 2. Its six independent components can thus
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be expressed in terms of one monopole amplitude A™(¢) and five
quadrupole amplitudes 2%(¢). The form of the force density given in
(4.25) allows us to express the displacement u (7 ,¢) as a Green’s
function integral. The corresponding solution then can be written by

the series expansion:

(4.33) (T, 0= Y o fagyOONT),
S N

where,

S = M! DN (7). F ST,
solid

t
(4.34) gy () f S (¢ sinwy(t—¢)dt'.
0

®N(7) are the normalized eigen-solutions of the corresponding ho-

mogenous equation:
pw?\,q)N +VV2DpN + (y +v)V(V.Op) = 0,

with suitable boundary conditions. M is the normalization factor and
N denotes a set of indices labelling the eigenmode of frequency wy.

Writing the solution given by (4.33) as,
u(T,t) =) Bn(BOON(T),
N

where By =) o wz'vl Jf,gjsv(t), satisfies the equation,

By +oyBy@®) = YN fRRS®),
o S
=YY Mt f DN (F). FS RS ddr,
oo S solid
(4.35) = M (PR joro®)rPn j(T).
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Each mode is then equivalent to a one dimensional harmonic oscillator

with frequency wp, driven by a force per unit mass,
(4.36) Fy=)Y fahS@.
o0

For such a system, the energy per mass unit adsorbed from the driving

force is given by

1 : 2
(4.37) Esn,l,S)= 5 UFN(t)e‘””Ntdt

For the specific case of a sphere, the normal modes are given by

spheroidal and toroidal ones. For these modes f 2*3 can be written as,

Al I N YA
sphere
= anél,O(Sm,Oa
= bn51,26a,a/>
fu = MU BT
sphere
(4.38) = 0,
R R
where a,, = —% fpr3An0(r)dr and b, = —%fprS(An2(r)+3Bn2(r))dr.
0 0

A,;, B, are scalar functions of r given by [106],

An(r)=Cn,D[PskniR)ji11(qnir)—

n i kn
10+ DL By (g Ry LRI
kni kur

nl

(4.39)

Jilgmir)

B,(r)=C(n,D[ B3k, R)

qnir
(4.40) .
inﬁ ( R)[knlrjz(knlr)]/]
knl 1 in knlr ’

where the j; are spherical Bessel functions,

Ji(x) d ji(x) d? .
Polx) = 2 P1(x) = Tr % Palx) = ﬁjz(x),
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1 I(1+1)
Ps(x) = = Palx) + - 1] Bo(x),
2 2
k and ¢q are given by
2 2
k2 :pwnl q2 — pwnl
ni v 7y g9y’

Each mode characterized by n,/, a corresponds to the generic N. n is a
positive integer which represents the energy level for a fixed angular
momentum /. Thus, on interaction of the spherical detector with a
GW, the toroidal modes do not contribute. The contribution comes
only from the spheroidal modes. F'; for a sphere can now be found
from (4.33) and (4.35) with which the energy stored in the modes is

obtained as,

2

)

1 .. .
Ey(n,0,m)= éai(?l,o fhm(t)e_lwnotdt

2

1 . .
(4'41) Es(n,2,a’) = Ebial’z fha(t)e_uunztdt

With these results in hand, the energy stored in each quadrupole
mode of the sphere for the GW from our modified theory may be found
from the description given below. Riemann tensor from the modified

theory can be written as

hy he O
1 . .
(4.42) Ripjo = 3 hy —hy 0 )
0 0 m?h,

ij
where h, and h« are the massless polarizations from the GTR and
hs is the massive scalar polarization coming by employing the modifi-

cation.
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Let (%,7,2) be the detector frame basis. Let 0 be the angle from the
2 axis and ¢ the angle between % and the projection into the (,7)
plane. Now, for a generic arrival direction given by the angle (6, ),
we have to perform a rotation in order to obtain Riemann tensor in

the antenna frame. This can be achieved as [148]:

hy hx 0
1 ..
(4.43) RioJ'o:E Cl hy -h. 0 cT ’
0 0 m2h

ij

cosfcos¢p —sin¢ sinfcose
with,  C=|[ cosfsin¢ cos¢ sinfOsin¢

—sinf 0 cosf

The components of #25(¢) can be obtained using (4.32) as,

.. V4
ime) = TﬂmZhs,

.. .. 1
ho(t) = \/g(sin29h+ + Sm?cos?0h,)
e 47 . .. . . .. 1 5.
h™(t)= 1—5(—s1n6cosﬁcos¢h+ + sinfsinph — §m sinf cosf cos phs),
1s 4 . . .. . .. 1 5. .
h(t) = B(sm@cos@smgblur — sinf cosph « + g™m sinf cosOsinghy),

. 4 . .
h2(t) = 1 / 1—75T (cos?Ocos® ph, — 2cosOsinpcosph,),

47

h%(t) = \/ I (cos29sin2c/>cos2 (,bii+ — cosfsin? (piix).

Using these equations the energy stored for each mode is obtained
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from (4.41) as,

2
’

47 ~
E(n,0,m = ?a%m‘l |2 s(wno)

/4 ~ 1 -
By(n,2,0)= 75 b}[sin’ 0, A (wno)|” + g cos'0 |As(wn2)|],
27190 4 21 i 2 1 2 29 - 2 T 2
Es(n,2,lc):1—5bn[wn2((cos 0sin” 0 cos (/>|h+(wn2)| + sin“ @ sin cp|hx(wn2)| -
- o~ 1 ~
cosOsin’ 0 sin? ¢Re(hh})) + Z(m4 sin26cos26cos2cp |h8(wn2)|2)],
2790 4 20 im0 win2 i 2 2 2 17 2
Es(n,2,ls):1—5bn[wn2(cos 0sin” 0 sin cp|h+(wn2)| + sin“ 6 cos cp|hx(wn2)| -
~ . 1 ~
cosOsin®Osin2¢p Re(h k%)) + Z(m4 sin?0 cos?0sin? ¢ |A(wno)| ],
2190 4 2 2[00 2 Loz 2 21 win2
Es(n,2,20):1—5bn[wn2((l+cos 0)“(cos (,b—§) |h+(wn2)| + 4cos”Osin“ ¢

cos? ¢ VL x (a)nz)|2 — 4 cosOsin¢cos P(1 + cos? 0)(cos? p—

1 Lo
E)Re(h+hi)),

(4.44)
E.n,2,28)= i—gb%[a}%((l + cos20)? cos® (/)sin2 ¢ |ﬁ+(wn2)|2 + cos?0(cos? ¢—
sin? ¢)? |ﬁ « (wn2)|2 + 2cosOsingcos P(1 + cos® H)(cos? ¢—
sin? p)Re(h h%)).
It is assumed that A, and A, decrease fast enough as ¢t — +oo to
allow integration by parts and %, (w), A «(w) and A¢(w) stands for the
Fourier transform of +, x and scalar polarizations respectively. If the
source emits randomly polarized radiation we can re-write A, hy
and A in terms of one possible intrinsic polarization with as[149],
(4.45)

hi =cos(y)e, +sin(yY)ex, hyx =—sin(y)e; +cos(yp)ex, hg=es.
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Since & has no v dependence, averaging (4.41) over ¥ will not make
any change in the i term. Then, for a source emitting randomly

polarized radiation, the average energy for each mode can be written

as,
_ 4
Ey(n,0,m) = ?ﬂaim‘L AR
_ T .93 . 40 4 402 1~ 2. 1 4 4,2
Es(n,2,0):ﬁbn[zsm Ow, (€ ]” +éx] )+gm cos~0|ég|“l,

E.(n,2,1c) = %b%[wiQ(SinQ 6(cos? 0 cos? o+ sin® (/))(Ié+|2 +lex?)+
i(m4 sin2900s29cos2</>|és|2)],
Ey(n,2,1s) = %b%[wiz(cos29sin2 ONIE4 12+ 16, 12)+
i(m4 sin29cos29sin2¢|ésl2],
Ey(n,2,2c)= 1—71519,21[(0;112((1 +cos20)%(cos® ¢ — %)2 + 4 cos20sin? ¢ cos® )
(141 +lex )],
Ey(n,2,2s) = %bi[wfﬂ((l +cos20)? cos? psin? ¢ + cos?O(cos® ¢ — sin? )?)

(Ié; 1 +16. 1.

The average energy corresponding to the monopole mode does not
involve any angular terms. It is also interesting to note that the
massive wave does not contribute anything to the quadrupolar 2¢ and
2s modes. ie., only three of the five orthogonal modes are triggered
by the massive wave. The energy sensitivity for the monopole and
quadrupole modes respectively of the antenna for the massive wave

are defined as,

. E (n,0,m)
M= 15 2
Fmtal el
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(4.46) €a = —fb;’; 42;72
60900 s

Calculation of the energy sensitivity for the monopole mode is direct.
For calculating the energy sensitivity of quadrupole modes towards a
massive GW, we first write the average energy stored for each mode
for the massive wave alone by setting e, = ex = 0. The resulting
equation for the average energy stored is substituted in (4.44). Since
the energy sensitivity for the monopole mode does not involve any
angular dependence, its value is a constant and is maximum. The
energy sensitivity thus got is plotted and shown on the right hand side
of each pair of figures in Fig.4.1. They show the energy transferred
from massive GWs to the quadrupole modes of the sphere in the order
of modes 0, 1¢ and 1s. The corresponding sensitivity for the + and x
polarizations obtained by setting e; = 0 is given on the left hand side
of each pair of figures for the sake of comparison. Red color indicates
a maximum and blue color indicates a minimum. It can be seen from
the figure that in the massive case, the maximum has been shifted.
The region where it showed a maximum for +, x polarizations is no

more a region of maximum sensitivity.

From Fig.4.1 it can also be inferred that for massive waves, the
detector becomes very directional. For a fixed source whose galactic
coordinates (b,/5) are known one can find the angles (0,¢) of the
source with respect to the detector frame[150]. Fig.4.2 gives the total
sensitivity of the sphere towards a massive GW. However, Fig.4.3
shows how strong this directional dependence is. Those well defined

peaks in the case of a massive wave clearly quantifies the strength
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Figure 4.1: Comparison of €,: Each pair shows comparison of GR(left)
with that of f(R)(right) for €g,e1., €15 respectively from top

of the directional dependence of the antenna. Fig.4.4 displays the
energy €, stored in the modes 0, 1¢ and 1s of a sphere near Leiden,
Holland (latitude I = 52.16°N, longitude L = 4.45°E), as functions of
Greenwich sidereal time (in sidereal hours) and of galactic longitude
b for a randomly polarized source lying in the galactic plane (/; = 0).
Again, red color indicates the maximum and blue the minimum value.
Fig.4.5 shows the energy sensitivity for the mode a = 0 near the

galactic center b = 0.
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Figure 4.2: Total energy sensitivity as a function of 6 and ¢ for the
spherical antenna detector

Figure 4.3: Figure showing the directionality of spherical antenna
towards massless waves from GR (shown on the left of each pair) and
towards massive wave (shown on the right side of each pair). Well
defined peaks of massive GW quantifies the directional dependence
of antenna towards such a wave

4.4 Modified TIGA Configuration for

Detecting Massive Mode

A simple spherical antenna is not a good practical detector. When
a sphere interacts with a massive wave, because of the smallness

of h, the magnitude of the displacement of the detector will be very
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Figure 4.4: Sensitivity of the modes 1¢,1s and 0 as a function of the
GW source position in the galactic plane
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Figure 4.5: sensitivity of the mode a = 0 as a function of sidereal time
for a source at the galactic center

low, of the order of AL, L being the length of the detector. So, in
order to amplify these displacements, a set of mechanical resonators
are needed. One of the normal modes of each of these mechanical

resonator is tuned to be resonant with the frequency of the antenna.
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The motion of the surface of the antenna excites this mode and there
is a resonant transfer of momentum between the resonator and the
antenna. Frequencies other than the fundamental mode and nearby
frequencies will not be amplified by the system[151]. Hence it acts as
a resonant mechanical transformer, turning small motions of the large
antenna into large motions of the small resonators. In the presence of
the resonators, the equation of motion given by (4.24) gets modified
as[143],

4.47)
U7, t)

WA -V T = L g,

where 1) is a parameter that takes the values m, 0, 1c, 1s, 2¢, 2s, 1, 2,

3,...=18S,i}. It is clear that the first components of this force density,
(4.48) Faw=Y 550 =Y FSFh5w),

are the usual ones attributable to GW while,

(4.49) Frs=Y fUT)g0),

are the new contributions given by the elastic terms of resonators. A
minimum of five resonators are required to measure the five quadrupole

modes of a sphere and one for the monopole mode.

Merkowitz and Johnson[142], in their paper, have proposed Trun-
cated Icosahedral Gravitational wave Antenna (TIGA) for measuring
the quadrupole modes of a sphere. It consists of a highly symmet-
ric arrangement of six resonators. These resonators are tuned to

the quadrupole frequency w,2. Each resonator is assumed identical,
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and the mass of the resonator mgr and spring constant, kg of each
are tuned to match the frequency of the five sphere modes so that
kr/mp = w?. The quantity that is measurable is ¢(¢), the resonator
amplitude which is the displacement of the resonator relative to the
sphere surface. Since the resonators mimic the motion of the sphere,
even when only one sphere mode is excited, most of the rest of the
modes will also be excited. The fixed linear combination of the mea-
sured amplitudes q(¢) separates out each of the spherical amplitudes
h%(t) and serves as a direct way to determine the spherical ampli-
tudes ~2%(¢). These linear combinations are called ‘'mode channels’ to
show that each one is coupled only to a single amplitude 2%(¢) of the

gravitational field. The mode channel is given by,

(4.50) plw)=Yq§(w),

where §(w) is the Fourier transform of ¢(¢) and Y is the pattern matrix.
Pattern matrix is the collection of pattern vectors whose elements
are the values of the relative radial displacements of the surface of
the sphere at the resonator locations. In other words, (4.50) can be

written as,

pilw)=Y,iq;

where i is the number of resonators and the number a corresponds
to the spherical modes present. In the case of + and x polarizations,
the spherical modes are the five quadrupole modes and for the TIGA,
six resonators are used to detect the massless polarization. Therefore,

with i =6 and @ =5 and the pattern matrix Y is given by[106],
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(4.51)
_1 _1 _1 __1 __1 __1
Var N | N Var Var \/E‘
315 346 3-v6 345 3-v5 3-v6
VEE Sis is (il i fud
3+v5 3+v5 3v5 3v5
0 VEE -y I 0 Vi |
3-v5 3-v5 3-v5 3+v5 3+v5 3+vV5
\/ 61 _\/ 47 _\/ 247 - ;4n \/ -E'n _\/ ;471
3—V5 3-V5 3+V5 345
0 _\/ 871 \/ 81 En 0 - -gn

where, Y =Y}, ; 4(0;,¢;) =Y12,4(0;,¢;), i =6 forms a 5 x 6 matrix and
is the real spherical harmonics. Three of the resonators have the
azimuth angles 8; =02 =03 =04 and ¢1 =0,¢2 = %”,(bg = %” and the
other three have 04 = 05 = 0s = Op and ¢4 = 5,5 = 7,¢g = 5?” The

angles 04, 0p lies between 0 and g and are solutions of the equation,
45c0s*0—30cos?0+1=0.

The above TIGA configuration can be extended to include the monopole
mode a = 0 by adding another resonant transducer to this arrange-

ment [151, 152]. It is then tuned to the monopole frequency w,o. The

pattern matrix will then look like,

(4.52)
0 & a e e i i
0 JuE _\uE o fa [k [
00 VEE -yRE JEE o0 58
0 VRE JBE RS \fuE [k [3E
0 0 _\/3;\7{5‘ \/3;5‘ 3+v5 0 _/3+VF

]
®
3
®
B

115




CHAPTER 4. MASSIVE GRAVITATIONAL WAVES AND ITS DETECTION USING
SPHERICAL ANTENNA

withY =Y, ;5(0;,¢;),i=7,1=0,2 and S = 6 with one monopole and
five quadrupole modes. Y has now become a 6 x 7 matrix and p(w) vec-
tor has six components meaning that there will be six mode channels,
one corresponding to the monopole and the other five corresponding
to the quadrupole modes. Y can be made a 7 x 7 by adding another
row of unity to the matrix which embraces the condition that the sum
of all the displacement corresponding to the quadrupole modes is zero

(in the case of a high SNR) and then can be inverted to find §(w) as,
q=Y 'p.

with the mode channel given by,

1 Aam*A"(w)
47 (02 - 02 )w? - w?)’

Pm(w) = =0,

3 Abw*h%w)
4.53 5 = ,1=2,
(4.53) Dalw) 27 @2 — 0 — )

where a, b and A are the same constants a,, b, and A,; of (4.38)
and explanations given there with n = 1 because it is at this mode
that the cross section is the most significant [106]. w, and w_ are
the upshifted and downshifted frequencies from their corresponding

fundamental frequencies respectively. The gs are then obtained as,

(Zm(w) = 2\/;ﬁm(w)a

3 3
\/?Fﬁo(w) + g(\/g+ Dpic(w)+ g(\/g— poc(w),

3
Ga(w) = %’Tﬁo(a}) —~ ‘/1—?(\/5 +1)p1c(w) + ‘/TF(\/E +1)pis(w)-

3
%0/5 —Dpoc(w)— \/?’7(\/5 — Dpos(w),

g1(w) =
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Gs(w) = \/?Eﬁo(w) - %(\/E+ Dp1c(w) - \/?7?(\/5+ 1)p1s(w)—
‘%”(\/5 —Dpoc(w)+ \/TE(\/E— Dp2s(w),
Ga(w) = —\/?Eﬁo(wH %(\/5 —~1Dp1e(w) + ‘%FNE ~Dp1s(w)-
\/1587[(\/5+ Dpoc(w)+ %ﬁ(\/g+ Dpas(w),
gs(w) = —\/?Fﬁo(w) - @(\/E —Dp1(w) + @(\/E + Dpzc(w),
Go(w) = —gﬁo(w) + */IE;(\/E— Dp1c(w) - ‘%F(\/E— Dp1s(w)-
V3n

pis
1—8(\/g+ Dpoc(w)— \/T—(\/g_k Dpas(w).
Taking the squared absolute value of these quantities, we can find the
sensitivities. A%(w) can be written in terms of 4., A_ and /. Here,
in this calculation, like in the previous section of this Chapter, we
take only the contribution from massive polarization 4. Then the

sensitivity of each resonator is given by the ratio,

1G;(w)?

(4.54) m@,p) = —— |
6.9 Blw) &2

~ 2

(4.55) Qi0,¢) = — L)

Bw)é4 2 +1exI?)

with,
A2a®’m8
ﬁ(a)):,7 9 9 9 9 2al:O,
(@2 - 0@ - ?)
212, .8
(4.56) B(w) = Abw l=2.
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Each @; being,

(457) an: 1’
(4.58) Q1 :(3\1/§cos29—\/?§(\/g+ l)cosesinecos¢)2,
Q9o =( 1 cos? 0 + \/_§(\/g+ 1)cosOsinf cos ¢p—
(4.59) 3V3 18
%T(\/g+ 1)cosOsin0sin$)?,
Qs =( 1 cos?0 + \/_§(\/g+ 1)cosOsinf cosp+
(4.60) 3V3 18
\/?E(\/gﬁL 1)cosOsinOsinp)?,
Qsi=(— 1 cos?6 — \/_§(\/§+ 1)cos6sin6 cos p—
(4.61) 3v3 18
iy VB 9
?( 5 +1)cosOsinfsin ),
(4.62) Qs :(—3\1/§ cos20+\/?g(\/g—l)cosesinecoscp)z,
Re=(- ! cos?0 — \/_§(\/g_ 1)cosOsinf cos P+
(4.63) 3v3 18
N3

?(\/E —1)cosOsinfsin)?.
These @s give the sensitivities of the seven resonators towards a
massive GW. Again, the monopole mode has the maximum sensitivity
towards the massive wave. Fig.4.6 shows the sensitivity plotted for the
quadrupole modes. Here too, in the presence of mechanical resonators,
the antenna shows directional dependence. Fig.4.7 shows the total
sensitivity of the sphere with resonators for / = 2 modes. A comparison
of the strength of the direction dependence of the massive wave with

that of massless waves for the quadrupole modes is given in Fig.4.8.
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Figure 4.6: Sensitivity of six resonators as a function of § and ¢

4.5 Summary of the Chapter

In this chapter, GWs from f(R) gravity with f(R) of the form R +aR?,
a being some unknown constant, is studied using the simplest method.
A massive mode in addition to the massless modes is also obtained.
Thus f(R) gravity produced gravitational waves with +, x and an
additional scalar, s, polarizations. The sensitivity of the sphere modes
of a spherical antenna detector towards such a massive wave is de-
termined. It shows that massive scalar polarization can be detected

using spherical antenna detectors .
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Figure 4.7: Total energy sensitivity as a function of § and ¢ for a
spherical antenna detector with resonators

The sensitivities of the monopole and quadrupole modes of a sphere to-
wards an incoming massive GWs are calculated. The monopole mode
shows the maximum sensitivity towards a massive GW. However, the
massive wave is found to trigger only three of the five quadrupole
modes of the sphere. If, in addition we know the galactic coordinates
of the source, then the sensitivity of the antenna can be predicted
exactly. Thus the massive component can be easily recognized and will
be detected if ever possible. We have also found a modified TIGA con-
figuration wherein an additional resonant transducer has been added
to the six resonator TIGA configuration for detecting the monopole
mode of the sphere. This / = 0 mode shows a maximum sensitivity
towards a massive wave and hence its detection will be straightfor-

ward.

Now, it will be worth looking at the detection possibility of this mas-
sive mode in the interferometric detector LIGO since they grab the

current relevance in GW detection. This is done in next chapter.
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Figure 4.8: Figure showing the directionality of spherical antenna in
the presence of resonators towards massless waves from GR (shown
on the left of each pair) and towards massive wave (shown on the
right side of each pair).






CHAPTER

MASSIVE GRAVITATIONAL WAVES AND ITS
DETECTION USING LASER

INTERFEROMETERS

5.1 Introduction

As discussed in the previous chapter, the existence of Gravitational
Waves (GWs) is a natural outcome of GTR. With the path breaking
discovery of GWs, LIGO serves as the center of attention for future
research in Gravitational Wave Astronomy. Gravitational waves from
binary black hole merger was detected by the LIGO detector. A laser
interferometer defines its own coordinate system so that the x and
y axes run along the two interferometer arms and the origin is at
the beam-splitter. The Fig.5.1 shows an indicative picture of LIGO

oriented towards GW source.
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Figure 5.1: Orientation of the LIGO detector with respect to the source
of gravitational waves

The arrangement consists of two beam lines of 4 km length which
form a power-recycled Michelson interferometer with Gires-Tournois
etalon arms. A pre-stabilized 1064 nm Nd:YAG laser emits a beam
with a power of 20 W that passes through a power recycling mirror.
The mirror fully transmits light incident from the laser and reflects
light from the other side increasing the power of the light field be-
tween the mirror and the subsequent beam splitter to 700 W. From
the beam splitter the light travels along two orthogonal arms. By the
use of partially reflecting mirrors, Fabry-Perot cavities are created in
both arms that increase the effective path length of laser light in the
arm. The gravitational waves will interact hardly at all with the light.

Instead, they will push the end mirrors back and forth relative to the
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coordinate system, thereby lengthening one arm while shortening the
other. These changing arm lengths will cause a changing interference
of the light returning to the beam splitter from the two arms, and
that changing interference will produce the fluctuating light intensity

I,,:(t) o h(t) measured by the photodetectors[153].

The gravitational sources producing detectable GWs are astrophys-
ical in nature. Of the different GW sources present, Gamma Ray
Bursts (GRBs) form an important class. GRBs are intense flashes
of y-rays which occur approximately once per day and are isotropi-
cally distributed over the sky [154, 155]. They are grouped into two
broad classes by their characteristic duration and spectral hardness:
a) short GRB, the progenitors of which are thought to be mergers of
neutron star binaries or neutron-star black hole binaries and b) long
GRB which are associated with core-collapse supernovae. Both merg-
ers and supernovae scenarios result in the formation of stellar-mass
black holes with accretion disk and the emission of GWs is expected

in this process.

GWs are considered to be one of the promising tools to probe the early
Universe. The detection of GWs involves the statistical analysis of
the observed data. It should tell whether the data contain the sig-
nal or not or whether the data supports a certain theoretical model
or not with reliability. Statistical analysis can follow one of the two
perspectives[156]: 1) Frequentist/Classical analysis and 2) Bayesian
analysis. In a frequentist analysis, the probabilities are viewed in

terms of the frequencies of random repeatable events whereas proba-
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bilities in Bayesian analysis provide a quantification of uncertainty.
From a Bayesian perspective, we can use the machinery of probability
theory to describe the uncertainty in model parameters or in the
choice of the model itself. Bayesian analysis can be parametric or non-
parametric. Non-parametric models constitute an approach to model
selection and adaptation where sizes of models are allowed to grow
with data size whereas in parametric models, a fixed number of para-
meters are used. A Bayesian formulation of non-parametric problem
is non trivial since a Bayesian model defines the prior and posterior
distribution on a single fixed parameter space, but the dimension of
this parameter space in a non parametric approach changes with the

sample size [157].

In the recent studies on the discovery of GWs, it is noted that no
studies were done aiming at constraining parameters corresponding
to any of the alternative theories of gravity due to lack of predictions
for what the inspiral-merger-ringdown GW signal would look like in
those cases. Also the Fermi Gamma-ray Burst Monitor (GBM) obser-
vations at the time of the LIGO event GW150914 reveal the presence
of a weak transient source above 50 KeV, 0.4s after the GW event was
detected, with a false alarm probability of 0.0022. This weak transient
lasting for 1s does not appear to be connected with other previously
known astrophysical, solar, terrestrial, or magnetospheric activities.
Its localization is ill-constrained but consistent with the direction of
GW150914. This is suggested to be a weak Short Gamma Ray Burst
(GRB)[158]. All the facts throw motivation for the modeling and pa-

126



5.2. RESPONSE FUNCTION OF ADVANCED LIGO TOWARDS MASSIVE
GRAVITATIONAL WAVES

rameter estimation of a GW event occurring from GRB that may help
in studying the alternative theories of gravity. Also, a second detection
of GWs from coalescence of two-stellar mass black holes is reported
recently[159]. GRBs form one of the potential astrophysical sources
that may provide us a strong field regime to study the existence of
GWs in ETG[160, 161]. However it is to be noted that the production
and detection of GWs on the basis of ETG for GRBs are not explored
much. Another area of current interest is massive gravity which will
result in a massive polarization component of GWs. f(R) theory of
gravity forms an easy-to-handle modification of GTR and hence is a
wise choice for such studies. The LIGO response function for massive
GWs produced from f(R) gravity is derived in the following section of
this chapter.

5.2 Response Function of Advanced
LIGO Towards Massive Gravitational

Waves

The production of GWs in f(R) theory of gravity is detailed in chap-
ter 4.2. The utilization of metric f(R) gravity results in additional
polarization sates compared to the usual polarization states, + and
x in GTR. In f(R) theories, GWs can have a massive scalar mode
besides the usual transverse-traceless modes in GTR. Six polarization
modes are possible in f(R) theories [162]. In the work of Rizwana et
al.[163], it is shown that in metric f(R) theory in addition to the +

and x, a breathing mode which goes along with the + and x modes
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and a longitudinal scalar mode which moves propagating along the
direction of propagation of the GWs with a velocity less than the
velocity of light exists. But in Palatini formalism f(R) theories possess
only the usual transverse-traceless modes as in GTR. GWs in most
of the extended theories of gravity possess more than the two usual
polarization modes. The detection of GWs is particularly a challeng-
ing issue and it may be capable of distinguishing the different modes
and may help us to find the correct formulation of gravity. In this
work, only the case of massive scalar polarization component[164] is
considered. In an earlier work[165], the detection of scalar component

of gravitational radiation in Brans-Dicke theory has been studied.

The effect of GWs is to produce a transverse shear strain and this
fact makes the Michelson interferometer an obvious candidate for
a detector. When GWs pass through the detector, one arm of the
detector gets stretched in one direction whereas the other arm gets
compressed. The dimensionless detector response function A of an
interferometric detector is defined as the difference between the wave
induced relative length change of the two interferometer arms and is

computed from the formula given as[166],
1 - 1 -
(5.1) h(t) = §n1.[H(t)n1] - §n2.[H(t)n2],

where n; and ny are unit vectors parallel to the arms 1 and 2 respec-
tively. Once a detector is built, it will be difficult to move it or even
to change its orientation and hence the location and orientation of

detector will decide how the detector is sensitive to GW sources and
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likelihood of detection. Hence, the matrix H(¢) can be written as[167],
(5.2) H(t) = MOH®OMT (8),

where H(t) is the spatial metric perturbation given by,

hye hy 0
(5.3) hy —-hy O
0 0 m2h,

M is the three dimensional orthogonal matrix of transformation from
the wave cartesian coordinates to the cartesian coordinates in the
proper reference frame of the detector. m is the massive contribution
of the GW. If we follow Kausar et al.[163], 2, can be taken as h, +
h®, where A® is the breathing polarization mode and A, = k. + —hP°.

From (5.1), (5.2) and (5.3), we can write the response function as,

(5.4) h(t) = F (0o (t) + Fx(h(8) + Fo(t)(m?hy(2)),

(5.5) =F (0)h (&) + Fx(Dh () + Fs(t)h(t)

where h(t) = m2h, and we have ignored hb: F.(t), Fy(t) and Fy(t)
are called beam pattern functions. The beam pattern function also
called as response function determines the sensitivity of the detector

towards an incoming GW from a source.

In order to express the beam pattern function in terms of right ascen-
sion (a) and declination (6) of the GW source, we follow Jaranowski

et al.[167]. Accordingly, the matrix M can be represented as,

(5.6) M =MsM;MT,
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where M; is the matrix of transformation from wave to detector
frame coordinates, My is the matrix of transformation from celestial
to cardinal coordinates and M3 is the matrix of transformation from

cardinal to the detector proper reference frame coordinates.

A B C
(5.7 M,=|\D E F|,
G H I

where,

A =sinacosy —cosasind sinv,
B = —cosacosy —sinasindsiny,
C =cosésinvy,

D = —sinasiny —cosasind cos v,
E =cosasiny —sinasindcosy,
F =cosdcosvy,

G = —cosacos?,

H = —-sinacosd,

I =—-sind,

sinAcos(¢p +Qt) sinAsin(¢p+Qt) —cosA
(5.8) My =| —sin(¢+Qt) cos(¢p +Qt) 0 ,
cosAcos(¢p+Qt) cosAsin(p+Qt) sinAd

and,

—sin(y +{/2) cos(y+{/2) 0
(5.9) M3 =|—-cos(y+(/2) —sin(y+{/2) 0],
0 0 1
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where A is the latitude of the detector site, Q2 is the rotational fre-
quency of earth in the units Wllhours) and ¢ is a deterministic
phase which defines the position of the Earth in its diurnal motion at
t = 0. y determines the orientation of the arms of the detector with
respect to local geographical directions, { is the angle between the

arms of the interferometer and n; and ny have the coordinates,
(5.10) n; =(1,0,0),n9 =(cos{,sin(,0).

The beam pattern functions can be found from (5.1)-(5.9) and are
given by,

1«2 me2 2 N
(6.11) F,.= 5[(8 —T“)—(Scos{+vsin{)* — (T cos{ +wsin()"],

1
(5.12) Fo=2 [2S T'sin? ¢ —sin2¢(Sw + Tv)? - 2vwsin?{],

(5.13)

F, = i sin{[2cos(2(y + {)) sin a[2cos 62 cos(2(¢ + Qt)) sin a sin A+
cos Asin 26[— cos(¢p + Q1) + sin(¢p + Q)11+
sin(2(y + {))[—2cos A% sin 62 + sin a sin 28 sin 2A[cos(¢p + Q)+

sin(¢ + Q)] + cos 62 sin a?[2 cos(1)2 + (=3 + cos(21)) sin(2(¢ + Q]I

131



CHAPTER 5. MASSIVE GRAVITATIONAL WAVES AND ITS DETECTION USING
LASER INTERFEROMETERS

where,
a = sinacosy —cosasindsiny,
b = -—sinasiny —cosasindcosy,
¢ = —cosacoso,
d = —cosacosy—sinasindsiny,
e = cosasiny —sinasindcosy,
f = —sinacos?,
g = cosdsiny,
h = cosdcosv,
i = -—sind,
J = |asindcos(¢p+Q¢)+dsinAsin(p + Q) — gcosA|,
k = [bsinAcos(p+Q¢)+esinAsin(p+Qt)—hcosA]|,
I = [csindcos(¢p+Qt)+ fsinAsin(p+Qt)—icos],
m = —asin(¢+Qt)+dcos(¢p +Qt),
n = =bsin(¢p+Qt)+ecos(¢p+Q),
o = -—csin(¢p+Qt)+ fcos(¢p+Qt),
S = —Jjsin(y+{/2)+mcos(y +{/2),
T = -—ksin(y+{/2)+ncos(y+(/2),
u = =lsin(y+{/2)+ocos(y+/2),
v = —jcos(y+{/2)—msin(y +{/2),
w = —kcos(y+{/2)—nsin(y +{/2),
x = —=lcos(y+{/2)—osin(y +{/2).
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Table 5.1 : GRB instances chosen for the analysis
| SLNo. | GRB Name | RA | DEC |

100206A 3h8m405 | 13910’
100213A | 23717305 | 42022’
100216A | 10217035 | 35931’
100225B | 23"31™245 | 15°02
091223B | 15725045 | 54%44’
100410B | 21716™59% | 37926’
070201 | 0"44™21° | 42018’

<O Ot W N

In the present study, we are only concerned with the response function
of the massive polarization component. The behavior of the massive
response function with respect to the azimuth angle can be plotted
using (5.13). As examples we have chosen the GRB instances given in
Table 5.1. The sources given in the table corresponding to SI.No.1-3
are short GRBs taken from Table I, S[.No.4 -6 are long GRBs taken
from Table II of Abadie et al.[168] and GRB 070201 from Table 5.1
of Abbott et al.[169]. Fig.5.2 shows the variation of beam pattern
function with ¢ for the above sources in the range [—7n,7] for the
detectors LIGO (Hanford) and LIGO (Livingston). From the figure
it can be seen that for different sources the pattern function vary
differently, which means that depending on the location of the detector,
the response function changes. Also, the response functions for the

same source are found to be different for the two LIGO detectors.

Fig.5.3 shows the beam pattern function behavior with the azimuth
angle ¢ and the polarization angle . The antenna patterns are
in agreement with that proposed for massive scalar polarization

component[165]. It can be inferred from the figure that the beam
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Figure 5.2: Variation of F'; with ¢ in the interval [, ] for the sources
described in Table 5.1 for the LIGO Hanford (left) and LIGO Liv-
ingston (right) respectively.

pattern function behaves in a highly directional manner towards
an incoming wave of massive polarization. If a GW is present the
detector should be able to identify it from other noises. To filter out
the GW signal from the noise, a statistical analysis has to be done. If
the waveform of the signal expected from a source is modeled using
certain parameters, then based on the observation of a real signal it
will be able to discard or accept the proposed model using Bayesian

analysis and hence Bayesian analysis has gained much importance.
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Figure 5.3: Beam pattern function for the massive wave as a function
of ¢ and v for the sources described above in their order for the LIGO
Hanford (left) and LIGO Livingston (right) respectively.
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5.3 A Bayesian Approach to Signal

Detection
In this section, the Bayesian method is invoked to analyze a massive
GW signal. Bayesian data analysis has already been done for the case
of Pulsar timing arrays for the + and x polarizations of GWs by Finn
and Lommen[170]. The study of Bayes factor as a norm for model
selection, as to which model describes the data best is also studied in

this section.

5.3.1 Bayes theorem

The two fundamental rules of probability theory are[171]:

Sum Rule :

(5.14) plx) = ;p(x,y)
Product Rule :

(5.15) p(x,y) = p(ylx)p(x)

Here, p(x,y) is the probability of x and y called as Joint Probability,
p(ylx) is the probability of y given x called as conditional probabil-
ity, p(x) is just the probability of x called as marginal probability.
From the product rule, together with the symmetry property that
p(x,y) = p(y,x), one can arrive at a relationship between conditional

probabilities as[156],

(5.16) plylx) = IM,
p(x)
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which is called ‘Bayes Theorem’. Using Sum rule the quantity in

denominator can be expressed as,

(5.17) p(x)=)_ plxly)p(y),
y

which can be called as the normalization constant.

The Bayesian view is more general in which the probabilities provide
a quantification of uncertainty ie., the result of Bayesian analysis is a
quantitative measure stating how far the chosen proposition is true.
The is especially useful for events that are nor repeated and one has to
update the degree of uncertainty when the event is observed. Now, let
w represent the choice of model parameters. The assumptions about
w done before observing the data are captured as the prior probability
distribution, p(w). The effect of the observed data & is expressed
through the conditional probability p(2|w). The Bayes theorem given
by,

. p(2|W)p(W)
(5.18) p(W|2) = @
then allows to evaluate the uncertainty in 0 after we have observed
2 in the form of the posterior probability p(i0|2). p(D) is the normal-
ization constant that makes the posterior distribution a valid one and

also ensure that it integrates to 1. p(D) according to (5.17) can be

written as,

(5.19) p(D) = f p(Dlw)p(w)duw.

p(21w) is called the likelihood function that tells how probable the

observed data set is for different settings of the parameter vector w
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and Bayes theorem in words looks like,
posterior « likelihood x prior

One advantage of the Bayesian viewpoint is that the inclusion of prior
knowledge arises naturally. Bayesian analysis is completely controlled
by the Bayesian law of conditional probabilities that includes the sum

rule and the product rule.

5.3.2 GW signal analysis

Bayesian approach to the GW signal analysis is applied to analyze
the GWs from GRBs[170]. Suppose that the observed data is D and
let A be the proposed wave that describes the data D. The output
data that we receive from a detector will be a mixture of the original

waveform & and the noise, n of the detector, ie.,
(5.20) D =h(t)+n(),

where A(t) is given by (5.5). Here we deal only with the massive scalar
mode. Assuming that the wave exhibits only a single mode at a time,

the above equation can be written as,
(5.21) D =F(0,p)hs +n(t).

In this equation, we have taken m? = 1 for convenience. The noise
is assumed to be a zero mean additive Gaussian noise. Then, the

Bayesian law given by (5.18) can be written in the form,

AD|h)p(h)
5.22 h|D)= ———
(5.22) p(h|D) D)
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where p(h|D) is the posterior probability density, A is the likelihood
function, p(h) is the prior probability density and p(D), the normal-

ization constant. The likelihood function A can be written as[171]
(5.23) A(h|ID)=N(D -F;h|C),

where N denotes data drawn independently from a multivariate
Gaussian distribution. C is the noise covariance and N(x|C). For a
multivariate normal distribution with zero mean random deviate x
given covariance C is given by,

exp —%xTC'lx)

V@2V det||C||

(5.24) N(x|C) =

where .4 is the number of elements in vector x. Assuming that the a
priori probability distribution is of Gaussian form, we can write,

p(hs) = N(hslosI)
(5.25) 1 h2
=[2no2)] exp(-5=),
2 0%
As discussed already, the Bayesian non-parametric formulation de-
pends on the dimension of the parameter space. Therefore, dimension-
ality should be included in the a priori distribution. The Gaussian
distribution in higher dimensional space containing many input vari-
ables is then given by[170, 172, 173],
1 RS
(5.26) plhy) =12no2) 1 exp(-= Y. %),
2 k=105
where o is an undetermined constant, A" can be treated as the

number of data taken and I denotes an appropriately dimensioned

identity matrix. The normalization constant p(D) is the integral of
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the product of the likelihood function and the a priori probability
density over all possible values of 5. Exploiting (5.19), (5.23), (5.24)

and (5.25), we can write,

p(D) = f AGBID)p(hod” b

_exp(=3[h(»)"C'h®))

(5.27) B VemnX det||C||
_expGESCT @) ATYES CT R @)

\/det||Al|o2Y

where A is given by,
(5.28) A=02I,+FIC'F,,

and I is an appropriately dimensioned identity matrix. Finally, the

posterior probability density p(k|D) can be written as[172],

det||All 1 r
5.29 h|D) = —(h—ho) Ah—h
(5.29) p(h|D) @) exp[z( 0)" A( o)l
where h satisfies,
(5.30) Aho=FIC7 h@).

It can be easily inferred from the above equation that A is the wave-
form that maximizes the probability density p(hs|h(¢)). The amplitude
Signal-to-Noise Ratio, p associated with A is given by[170],

(5.31) p? = (Fsho)' C1(F;sho).

Finally, the quantity Bayes Factor helps us to decide on whether a

signal is present or not. It chooses between different models. For
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any observations D, the Bayes factor for M against M is defined

by[174, 175],

_ mi(0)

(5.32) By = -
p(DIMy)
5.33 = & 7
633 p(DIMo)’

0 is some unknown parameter. The probabilities given in (5.33) are

nothing but the likelihood function. Therefore, one can express,
(534) p(DlMl): A(DlMl,h8’08)7

gives the probability density of observations D assuming the GW

signal described by parameter o, is present,
(5.35) p(DIMo) = A(D|My),

gives the probability density of D assuming no signal is present. The

Bayes factor can then be written as[170],

(5.36)

d2Qy, exp(-3[DTC'D))
B(D):f 47 dimhy
\/detIAlag Lmits
Now, from Bayes theorem, the posterior probability of model M; can

be expressed through Bayes factor as[174],

p(M71)m1(D)
5.37 MiID) =
( ) p(M1|D) p(M1)m1(D)+ p(Mgy)my(D)
p(M1)B1o
5.38 = ’
(5.38) p(My) + p(M1)B1o

where p(M;) is the prior probability of model M; for i = 0. In the
absence of any prior knowledge, p(Mo) = p(M1) = 1/2. Therefore, the
model M; is more likely to be chosen if p(M;|D) > % or equivalently
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BlO > 1.

Thus, Bayes factor is always positive. On the average, Bayes factor
will always favor the correct model. A Bayes factor that is large
compared to unity will favor M; while a Bayes factor small compared

to unity will favor the model M.

5.3.3 Methodology

Firstly, in order to check the possibility of detecting massive GW in
the LIGO, the simulated data from (5.21) is used. For that a simplest
adhoc waveform given by a Gaussian distribution is employed for A,
and can be written as in Abbott et al.[176],

(2nfot)?

(5.39) ho(t+ty) = hs,o(wm)cos(2ﬂf0t)exp(—Q%Q2

),

where ¢ is the central time, fj is the central frequency, which is taken
in the range of 0 to 200Hz; A, is the amplitude parameter that is

characterized by w,, and is given as [177],

(540) Wy =,

m is the mass of the graviton, v, is the velocity of propagation of
GW and @ is a dimensionless constant which represents roughly the
number of cycles with which the waveform oscillates more than half
of the peak amplitude. A standard choice in LIGO burst searches for
Q is 8.9. ¢t will be very short and is taken in the range 0 to 1s. kg is
given by[154],

1 [ 5GE
(5.41) hso==1| e
r\ c3Qfodn’?
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In order to simulate the detector output signal A(¢), (5.41) is sub-
stituted in (5.39). This in turn is substituted in (5.26). Simulated
F; are taken from (5.21). As an example to check whether massive
scalar polarization resulting from metric f(R) gravity will be de-
tected, we take the random sample GRB070201. For this candidate
Eqw =1.14x10"*Myc? and r = 770Kpc[178]. Taking F from (5.14),

the simulated waveform for different m are shown in Fig.5.4. The data

S
=
$
=

& . . . . . . . . . r . . . . . . .
01 008 006 004 D02 0 002 004 006 008 O1 ‘b2 015 01 005 o 005 01 015 02
Time () Time ()

Figure 5.4: The simulated output signal for GRB070201 for m =1,
m=1x10"21m =1x10"22 and m =1 x 10 22eV/c? from top left

used in this section for Bayesian analysis is taken from this simulated
output waveform. Also, the predicted waveform is taken from (5.39).
Even though it is not the wisest choice, it will serve the purpose of the

present work. After having the data D and the predicted waveform A,
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the parameter o is to be estimated in order to get the most probable
waveform and also the Bayes factor. This is done by the optimization
of (5.27) with respect to os. While optimizing, maximization is used
since it is more favored[179]. The equation as such is too complicated
to optimize and therefore it is simplified taking logarithm of p(D).
This procedure is fully justified since logarithm is a monotonically
increasing function of its argument. So, maximizing log p(D) with
respect to o, is equivalent to maximizing p(D). Then we can write,
exp—3[h(t)"C"h(®)]

V@mydimzdet||C||
exp%(FSTC_1h(t))TA_1(FZC_1h(t))]

VdetlAllo24mhe

logp(D) =1logl[

(5.42)

+log[

Since we are maximizing log p(D) with respect to o, the first term
on the right hand side can be suitably omitted as it is independent of
0. The second term is optimized. Using the values of matrix A that
is obtained by optimizing, (5.30) is simultaneously solved for hy, the
most probable waveform(inferred waveform) for the given data. After
getting hy, the signal to noise ratio (p) can be calculated using (5.31).
Then the Bayes factor can be evaluated using (5.36).

5.3.4 Results
The phenomenological limit on the graviton mass from recent dis-

0722¢V/c? and hence using the

covery of GWs is given as[159] 1.2 x 1
method discussed in the previous subsection the optimization is done
for m =10721,10722 and 10723¢V/c? and is shown in Table 5.2. Com-
paring the values given in Table 5.2 with those in Table 2 of the

Ref.[170], it can be seen that the Bayes factor and SNR values are
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Table 5.2 : Results showing the calculation of log of Bayes factor and
SNR for different values of m.

’ m(eV/c?) \ O Iy InBp \ signal ‘
10721 1x10711 [ ~0.1360 | ~—-1.7x 10 | weak/Absent
10722 1x10711 | ~0.1360 | ~—1.7x10% | weak/Absent
10723 1x10711 | ~0.1360 | ~—1.7x10% | weak/Absent

very low indicating the absence of the signal. Thus it can be concluded
that with the given sensitivity and orientation of the LIGO detector,
a massive scalar polarization from f(R) theory with a value for the
graviton mass in the range m =1 x 10721 to 1 x 10723¢V/c? is unlikely
to be detected. The comparison of most probable waveform with the
actual one is shown in Fig.5.4. This null result can be compared
with the results obtained in the works of Aasi et al.[180] and Xihao
Deng[181] where they predicted null results for GRBs in the case of

+ and x polarization with the existing observational set up.

5.4 Summary of the Chapter

In this chapter we have presented the studies on the production of
massive GWs from a metric f(R) gravity and the beam pattern it pro-
duces on an interferometer detector. We have calculated the antenna
response function in the detector coordinates for massive GWs. These
are then considered to find out the response function of LIGO Han-
ford and Livingston detectors using seven Gamma Ray Burst(GRB)
sources. These sources are selected at random. It is found that the
beam pattern functions are highly directional. They are sensitive to
the direction in which the massive GW come. A Bayesian analysis has

been done to check the possibility of detecting a massive GW compo-
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nent from the source GRB 070201 using simulated data for LIGO for
the values of graviton masses: m = 10721, 10722 and 10723eV/c2. The
parameter of the predicted waveform, which is nothing but the rms
amplitude of the wave, is determined by optimization method. The
Bayes factor and the SNR values are also determined. For all the cases
the analysis gave low values of SNR and Bayes factor. Thus with the
model discussed in this work for a GRB event and the beam pattern
function, the massive polarization is not likely to be detected. The
results are prone to change with a different a priori waveform. Even
though the results presented in this work are not conclusive enough,
it gives insight in to the study of GWs from alternative theories or

extended theories of gravity.

146



# 10

-20

Lo d)d

Inferred wavefarm
Actual wavefarm

-3
02

I
-0.18

01

I
-0.05 ]

I
0.08

I
01 0.158

02

‘ ]

inferred waveform
actual waveform

I
-0.15

I
01

I
-0.05 ]

I
0.05

I
01 015

02

Inferred waveform
Actual waveform

-3
02

I
-0.15

01

I
-0.05 ]

I
0.05

01

I
0.15

0z

Figure 5.5: Comparison of the inferred and the actual waveforms
for the LIGO detector for m =1 x 107! (top) and for m = 1 x 10722
(middle) and 1 x 10"23eV/c? (bottom).






CHAPTER

SUMMARY AND CONCLUSION

The existence of black holes and GWs are important predictions done
by GTR and is now proved. Hence any massive theory of Gravity
should also give similar solutions and should reproduce the same

results when graviton mass becomes zero.

In this thesis, QNMs are calculated for the case of black holes in
dRGT massive gravity in dS space-time and is found to be depen-
dent on the graviton mass. Also the QNMs are found to be higher in
magnitude compared to the Schwarzschild de Sitter (SdS) case. The
thermodynamics and P-V criticality showed that the neutral black
hole shows a near Van der Waals phase transition while a charged
black hole shows exactly Van der Waals phase transition. The study
of the entanglement entropy in the above cases too showed similar

results which is interesting to note. The QNMs calculated for (2 + 1)

149



CHAPTER 6. SUMMARY AND CONCLUSION

dimensional BTZ black hole in massive gravity shows phase tran-
sition and this phase transition behavior is found to be dependent
on the mass of the graviton, charge and the cosmological constant.
The thermodynamics of the above black hole also showed the exis-
tence of a phase transition. The phase transition behavior for dS and
AdS space-time are compared and is found that phase transition is
shown in the dS case for a wide range of charge values whereas for
AdS space-time phase transition is shown only for a limited range of

charge.

Thus, the QNMs which form the characteristic sound of a black hole
are different for massive gravity when compared with the case of GTR
and is also found that they take the same values as that predicted
by GTR when the graviton mass is zero. And their thermodynamics
shows interesting results like Van der Waals phase transition. Hence
exploring these aspects help in paving way for a quantum gravity
theory and at the same time the validity of the theory itself can be

checked by searching for its QNMs via gravitational waves.

Another important aspect is to search for the GW itself coming out
of such theories. The production of GWs from f(R) theory of gravity
is studied by varying the action and then linearizing. The resulting
wave equation led to a massive polarization in addition to the + and
x polarizations familiar in GTR. The detection possibility of such a
massive polarization using a spherical antenna is studied. A modi-
fied TIGA is proposed for its detection and the energy sensitivity of
modified TIGA is calculated and it is found that the sensitivity shown
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towards a massive polarization is higher compared to the massless
modes. The detection possibility of the aforesaid massive polarization
is then studied for the Advanced LIGO detector using Bayesian anal-
ysis employing Gamma Ray Burst (GRB) samples. The result showed
that with the present configuration of LIGO it is difficult to detect the

massive mode.

Future Plan of Work

The QNM study can be extended to more classes of massive gravity
in both dS and AdS space-times and also the analogy of similar phase
transition behavior from QNM study and thermodynamics can be
utilized to study the entanglement entropy. The production of GWs
from f(R) theory is discussed in the work. This work can be extended
to study the production and detection of GWs from different classes
of Massive Gravity also. Since this work is time bound, the aforesaid

works are planned for future studies.
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