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Abstract. I stress a role of clustering in describing the structure of such state that is difficult
to understand from the mean field. The examples include the neutron-halo of 11Li, 3H+p and
3He+n clustering in 4He, and a unified description of the ground and first excited 0+ states of
16O.

1. Introduction
Cluster model has a long history. Especially a microscopic version of the cluster model is known
for a long time as a unified theory of both structure and reactions for light nuclei [1]. Quite often
a semimicroscopic cluster model taking into account the essence of the Pauli principle has been
employed to reproduce those states which are difficult to understand from the shell model. One
well-known example is the first excited 0+ state of 16O. The state together with other low-lying
states of 16O are reproduced well by an α+12C cluster model [2] in which the rotational motion
of 12C is taken into account. The same model also successfully describes low-energy α+12C
scattering [3].

Since it stresses a particular type of nuclear excitations, the cluster model misses many other
modes of excitations, e.g. monopole and quadrupole excitations that are well described in a
symplectic model [4]. The coupling between the cluster and symplectic models was studied
more than 20 years ago [5] using the SU(3) algebra [6], and it was applied to the 16O and
20Ne region [7]. This problem appears to attract some attention even today [8] as experimental
observation of the monopole strength reaches higher in the excitation energy.

Some evidence indicating the importance of a cluster concept appears in heavy nuclei as well.
The recent observation of the unnatural parity states in 212Po [9] that have enhanced electric
dipole transition strength is interpreted in an α+208Pb cluster model [10] in which 208Pb can
be excited to the 3− vibrational state. Note, however, that a microscopic calculation with the
cluster model becomes more difficult as the mass number of the nuclear system increases. See,
for example, a calculation for the α-decay of the 212Po ground state [11].

I focus on three topics performed from the cluster viewpoint: the neutron halo structure of
11Li [12], 3H(t)+p and 3He(h)+n clustering in the excited states of 4He [13], and the shell-cluster
competition in 16O [14]. In each of these I stress different roles of the cluster model. In the
first case we want to quantify how much the distortion of 9Li improves the halo nature of 11Li
in a multi-cluster approximation. In the second topic I point out the emergence of a cluster
structure in 4He based on the results of a four-body calculation for 4He with realistic potentials.
In the last case I attempt at describing both the ground and first excited states of 16O in a
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12C+p + p + n + n five-body calculation. The basis functions we use are explicitly correlated
Gaussians [15] that were proposed more than a half century ago, and further augmented greatly
by developing a global vector representation of the angular part responsible for a rotational
motion [16, 17, 18, 19]. An optimization of the basis functions is performed by a stochastic
variational method [16, 17].

2. Neutron halo structure of 11Li

A basic feature of 11Li can be understood from its Borromean structure of 9Li+n + n. It is
interesting to know the extent to which the excitation of the 9Li core plays a role in binding
the halo neutrons. To examine this problem, we need to break the core. For the moment no
ab initio calculation is available for 11Li, obviously because 11Li is so fragile that an accurate
calculation is beyond a present theory. We used a microscopic multi-cluster approach in which
9,10,11Li are described assuming α, t, and n clusters. That is, 9Li and 11Li are treated as four-
and six-body systems of α+ t+ n+ n and α+ t+ n+ n+ n+ n, respectively. The inter-cluster
motion is solved as accurately as possible while the intrinsic wave functions of α and t are kept
fixed as 0s wave functions. In this way we can quantify the distortion of the 9Li core. The
nucleon-nucleon interaction employed is the Minnesota potential, and the total wave function is
properly antisymmetrized. This model is consistent with an earlier description of 7,8,9Li [20].

The wave function of 9Li is constructed in the α+ t+n+n model by carefully optimizing the
parameters of the correlated Gaussians. The properties obtained for 9Li are listed in Table 1.
They are in excellent agreement with experiment. The basis functions for 11Li are constructed
by adding two neutrons to 9Li. They are characterized by Y- and T-type arrangements as
well as the orbital and spin angular momenta of the neutrons. Two types of calculations are
compared in Table 1. One is a frozen (fr.) model in which the 9Li core is fixed to its ground state
configuration. The other one called a full model takes into account the excited configurations,
which allows for the distortion of the core. It is seen that a significant gain of the energy is
obtained by accounting for the core distortion. The inclusion of the distortion makes the proton
radius (rp) considerably larger (by about 0.3 fm) and the neutron radius slightly smaller. This
seems to be understood from a mechanism similar to what we found in 6He [21]: The halo
neutron receives more binding by gaining the attraction with the protons inside the 9Li core
as the np interaction is more attractive than the nn interaction. For this to happen, the core
has to be distorted so as to have more chance that the protons can approach the halo neutrons
more frequently. On the other hand the neutron size would shrink because of stronger binding.
Though no accurate values on the proton radii were available when we published the results
in 2002, our full model result agrees very well with the recently measured radius of 11Li. The
binding of 11Li receives approximately equal contributions from p- and s-wave single-particle

Table 1. Properties of 9Li and 11Li. The energies ϵ are given from the two-neutron thresholds.
See text for the frozen (fr.) and full models.

Nucleus ϵ rp rn rm Q µ σR
(MeV) (fm) (fm) (fm) (efm2) (µN ) (mb)

9Li −5.91 2.12 2.54 2.41 −3.37 3.40 799±3
exp. −6.09 2.11 [22] −3.06 3.44 796±6

11Li fr. −0.12 2.15 3.21 3.15 −3.52 3.21 1054±2
full −0.34 2.43 3.09 3.03 −3.71 3.23 1023±2
exp. −0.37 2.38 [22] |Q|=3.33 [23] 3.67 1056±14
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states. The deviation of the calculated magnetic moment from experiment is probably due to
that of t. See Ref. [12] for detail.

3. Clustering due to parity inversion in 4He
4He is a doubly magic nucleus. This system is small enough to make it possible for us to perform
an ab initio calculation using realistic nucleon-nucleon interactions. Its first excited state with 0+

is located between the t+p and h+n thresholds. This state is found to have large spectroscopic
amplitudes to those decay channels, consistent with the 3N +N cluster structure [24]. We find
that in this state the spins of the 3N and N clusters are coupled to I = 0, and the orbital
angular momentum of the relative motion between them is ℓ = 0 [13].

There are several negative-parity states above the excited 0+ state. Though they are
conventionally considered on the shell-model basis, an inversion doublet picture may be useful
to interpret some of their structure. That is, a negative-parity state that has basically the same
3N + N configuration may appear near the threshold [25]. Unlike in the case of α+16O or
α+12C, the clusters are, however, not spinless in the present case. Actually when the 3N +N
clusters are coupled to I = 1, the odd ℓ value is favored for the relative motion, especially
ℓ = 1 is most interesting. The coupling of I and ℓ suggests that some 3N + N cluster states
with Jπ = 0−, 1−, 2− may show up. The calculation using a realistic nucleon-nucleon potential
confirms that the lowest 0−, T = 0 and 2− states can in fact be well understood from the cluster
model rather than the shell model [13]. Figure 1 displays the spectroscopic amplitudes of the
three states. As expected, each of three curves shows behavior indicating the 3N + N cluster
structure. The peaks are centered around 2 fm near the 3N surface. The 3N +N spectroscopic
factors are large, 0.58, 0.52, and 0.53 for the 0−0, 2−0, and 2−1 states.

The negative-parity states of 4He actually have broad widths. Though a bound-state method
used in Ref. [13] may be useful to obtain the level spectrum qualitatively, one should in principle
treat the continuum more properly. For example, strength functions for electric dipole [26] and
spin-dipole operators give us information on the relevant resonance states.
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Figure 1. Spectroscopic amplitudes of the three lowest-lying negative-parity states of 4He for
the p-wave h+ n decay with I = 1.

4. The 0+ states of 16O
A description of states that show prominent clustering on the basis of single-particle orbits
is extremely hard because it requires in general enormous major-shell excitations. See, e.g.,
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Refs. [27, 28]. It is thus obviously very interesting to attempt at describing such states without
assuming the clusters a priori. The case of 4He discussed in the previous section is one such
attempt. Here we focus on the two 0+ states of 16O. The ground state is again doubly magic,
and a typical shell-model state. The first excited state defies a shell-model description. We ask
a question of if both states can be described well with a model built on a 12C core plus four
valence nucleons (p+ p+ n+ n).

12C is treated by a rotational model. The valence nucleons are constrained not to include
those orbits that are occupied by the core. A brief formulation is given in Ref. [14]. The
Hamiltonian reads

H = T +Hcore +
∑
i

Ui +
∑
i<j

Vij , (1)

where the potential Ui acts between the core and valence nucleon and Vij is the potential acting
among the valence nucleons. Letting ψF denote the orbits occupied by the core, the total wave
function has to satisfy the condition

⟨ψF|Ψ⟩ = 0 for all valence nucleons. (2)

As a first attempt we ignore the excitation of 12C, and thus Hcore is a constant. The potential
Ui is determined following the rotational model and its strength is set to reproduce the single-
particle energies of 13C. The orbits ψF are taken as 0s1/2 and 0p3/2. The total wave function
is assumed to be given as a combination of the correlated Gaussians with the global vector
representation for the angular part. Figure 2 displays the energies of the two 0+ states. The
energy convergence is rather slow. This is probably because fulfilling the condition (2) is hard
at least in a small basis dimension.

The calculation further continues up to the basis dimension 8500. The ground state is almost
converged well, and its energy turns out to be close to experiment. After choosing the basis
functions so as to optimize the excited state, the first excited state reaches only slightly above
the threshold. The state still contains some forbidden-state components, which pushes up the
energy. Estimating this energy loss, we think that the first excited state is obtained just below
the α threshold. It appears that we thus obtain the two 0+ states at the expected positions. An
analysis of their structure is in progress.
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Figure 2. The ground and first excited 0+ states of 16O as a function of the basis dimension.
The dotted line is the calculated α threshold. The Minnesota potential is used. The experimental
energies of the two states are 7.16 and 1.11 MeV below the threshold.
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5. Summary
In this talk I showed three examples. In a microscopic multi-cluster description of 11Li the
distortion of 9Li is vital to gain the binding of the halo neutrons. An ab initio calculation using
realistic forces confirms that some positive- and negative-parity states of 4He show 3N + N
cluster structure. Though a unified approach of 12C+p + p + n + n for 16O is quite expensive,
we have an indication that the ground and first excited states emerge at the expected energies.

Clustering is an important and useful concept in both structure and reactions. It certainly
deviates from a mean field picture. Thus a fully microscopic description of clustering is quite
expensive. It is a challenge of next generation to found clustering on innovative microscopic
theories. With a progress of research for exotic nuclei, I expect physics of clustering will play a
vital role furthermore.
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[22] Nörtershäuer W, Neff T, Sánchez R and Sick I 2011 Phys. Rev. C 84 024307
[23] Neugart R et al. 2008 Phys. Rev. Lett. 101 132502
[24] Hiyama E, Gibson B F and Kamimura M 2004 Phys. Rev. C 70 031001(R)
[25] Horiuchi H and Ikeda K 1968 Prog. Theor. Phys. 40 277
[26] Horiuchi W, Suzuki Y and Arai K 2012 Phys. Rev. C 85 054002
[27] Suzuki Y, Arai K, Ogawa Y and Varga K 1996 Phys. Rev. C 54 2073
[28] Neff T and Feldmeier H 2009 Few-Body Syst 45 145

HITES 2012 IOP Publishing
Journal of Physics: Conference Series 403 (2012) 012030 doi:10.1088/1742-6596/403/1/012030

5




