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Abstract. In this paper, we investigate the possibility of selecting high-redshift Lyman-
Break Galaxies (LBG) using current and future broadband wide photometric surveys, such
as the Ultraviolet Near Infrared Optical Northern Survey (UNIONS) or the Vera C. Rubin
Legacy Survey of Space and Time (LSST), using a Random Forest algorithm. This work is
conducted in the context of future large-scale structure spectroscopic surveys like DESI-II,
the next phase of the Dark Energy Spectroscopic Instrument (DESI), which will start around
2029. We use deep imaging data from the Hyper Suprime Camera (HSC) and the Canada-
France-Hawaii Telescope Large Area U-band Deep Survey (CLAUDS) on the COSMOS and
XMM-LSS fields. To predict the selection performance of LBGs with image quality similar
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to UNIONS, we degrade the u, g, r, i and z bands to UNIONS depth. The Random Forest
algorithm is trained with the u, g, r, i and z bands to classify LBGs in the 2.5 < z < 3.5 range.
We find that fixing a target density budget of 1, 100 deg−2, the Random Forest approach
gives a density of z > 2 targets of 873 deg−2, and a density of 493 deg−2 of confirmed
LBGs after spectroscopic confirmation with DESI. This UNIONS-like selection was tested in
a dedicated spectroscopic observation campaign of 1,000 targets with DESI on the COSMOS
field, providing a safe spectroscopic sample with a mean redshift of 3. This sample is used to
derive forecasts for DESI-II, assuming a sky coverage of 5,000 deg2. We predict uncertainties
on Alcock-Paczynski parameters α⊥ and α∥ to be 0.7% and 1% for 2.6 < z < 3.2, resulting in
a 2% measurement of the dark energy fraction. Additionally, we estimate the uncertainty in
local non-Gaussianity and predict σfNL

≈ 7, which is comparable to the current best precision
achieved by Planck.
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1 Introduction

Lyman Break Galaxies (LBGs) are young and actively star-forming galaxies at z > 1.5. LBG
spectra display a decrement of flux bluewards the Lyman limit at 912 Å (rest-frame), given
by the infinity end of the Lyman series spectral lines. This flux reduction is due to neutral
atomic hydrogen that can absorb photons with that energy or more. The LBG spectra
also display a Lyman alpha break at a wavelength shorter than 1216 Å (rest-frame), due to
absorption by intervening neutral hydrogen clouds along the line of sight.

LBGs appear to be promising tracers for studying the spatial clustering at high redshifts
with the Dark Energy Spectroscopic Instrument (DESI, [1]). The DESI survey started in
2021 and has already provided millions of redshifts for different tracers with unprecedented
precision up to z ∼ 1.5, allowing to study the nature of dark energy and dark matter through
Baryon Acoustic Oscillation and Redshift-Space Distortions [2, 3]. DESI-II, the next survey
campaign of DESI will start around 2029. DESI-II aims to collect 40 million redshifts at
higher densities and at higher redshifts than DESI [4] to address the problems of dark energy
and inflation [5, 6]. LBGs at 2 < z < 4.5 are of particular interest for DESI-II, expected to
represent ∼ 2.5 million reconstructed redshifts. Optimized target selections for these high
redshift tracers over the DESI footprint can be achieved by using completed and forthcoming
multi-band and wide imaging surveys, including the DESI Legacy Surveys such as the Dark
Energy Survey (DES, [7]) and the Dark Energy Camera Legacy Survey (DECaLS, [8]), but
also the Ultraviolet Near Infrared Optical Northern Survey1 (UNIONS, [9–11]), the Legacy
Survey of Space and Time of the Vera C. Rubin Observatory2 (LSST, [12]), and the Eu-
clid mission3 [13], which will deliver imaging data in various optical and near-IR bands, of
unprecedented depth and area for this purpose.

This paper aims to explore a possible target selection of high redshift LBGs for DESI-
II based on the imaging of existing wide photometric surveys, such as the Canada-France
Imaging Survey u-band (CFIS, [14]), DECaLS (g, r, and z) as well as the ongoing UNIONS
(u, g, r, i and z). Our work is focused on UNIONS, but similar strategy could be adopted
with the Rubin LSST that will provide u, g, r, i, z and y-bands.

In Section 2 we present the different datasets that are, or will be, available for LBG
selection on large footprints promised by wide photometric surveys. We also present a method
to degrade existing deep photometry to shallower depths to simulate the properties of future
wide imaging surveys. Section 3 presents the Random Forest method used in this work to
select LBGs from multi-band ugriz photometry, which we compare to the more standard
color-color box selection used in [15]. In Section 4, we first present how we create a sample
of LBG targets from simulated photometry at UNIONS depth on the COSMOS field. First,
we use a method to degrade existing deep photometry to shallower depths to simulate the
properties of future wide imaging surveys. Then, we validate the degradation method by
studying the performance of a Random Forest-based target selection using CFIS+DECaLS
imaging available on the XMM-LSS field. Then, we create a sample of UNIONS-like LBG
targets on the COSMOS field and describe the sample of LBGs observed by the DESI pilot
survey. We present in Section 5 several forecasts on the precision of several cosmological
parameters that can be achieved with this new selection and future spectroscopic surveys.
We conclude in Section 6.

1https://www.skysurvey.cc/
2https://rubinobservatory.org/about
3https://www.esa.int/Science_Exploration/Space_Science/Euclid

– 2 –

https://www.skysurvey.cc/
https://rubinobservatory.org/about
https://www.esa.int/Science_Exploration/Space_Science/Euclid


Surveys u g r i z

CLAUDS (udeep) 27.1(27.7) - - - -
HSC/PDR3 - 27.4 27.1 26.9 26.3
CFIS 24.6 - 25.5 - -
DECaLS - 24.7 23.9 - 23.0
UNIONS 24.6 25.5 25.5 24.2 24.4
LSST Y1(Y10) 24.1(25.6) 25.3(26.8) 25.3(26.9) 24.7(26.4) 24.1(25.8)

Table 1. Magnitude depth for different present and future imaging surveys. Numbers in parentheses
indicate either the depth of the ultra-deep fields included in the CLAUDS program (compared to the
depth of deep fields), or the depth after 10 years of observations with LSST (compared to 1 year).

2 Optical photometry from imaging surveys

This section presents current and future photometric surveys providing ugriz imaging. The
Table 1 summarizes the ugriz-band depths for the surveys discussed in this paper. Our study
relies on the COSMOS and XMM-LSS fields, which are both covered by the dataset we use
hereafter (CLAUDS, HSC, DECaLS, and CFIS). These fields are well-studied areas of the
sky to bench test target selections for new tracers.

2.1 Deep imaging surveys

2.1.1 HSC/PDR3

The Hyper Suprime Camera (HSC, [16]) is mounted on the 8-meter Subaru Telescope at
the Mauna Kea Observatory in Hawaii. The last Public Data Release 3 (PDR3) of HSC
Subaru Strategic Program (HSC-SSP) in 2021 includes deep multi-band data over 36 deg2.
The 5σ point source magnitude depths listed in Table 1 are taken from Table 1 in [16]
(Deep/UltraDeep). In this work, we focus on the HSC griz data which were combined
with CLAUDS (CLAUDS is detailed hereafter) on deep (XMM-LSS, COSMOS, ELAIS-N1,
DEEP2-F3) and ultra-deep (E-COSMOS in COSMOS, and SXDS in XMM-LSS) fields, over
26 and 4 deg2, respectively. The combination of CLAUDS and HSC-SSP data over the
XMM-LSS and COSMOS fields is detailed in [17]. We will use a combination of deep and
ultra-deep fields, and from [17] (see their Table 2), the magnitude depths for the griz-bands
on XMM-LSS range from 26.5 to 24.0 (resp. from 26.9 to 24.9) for the deep (resp. ultra-deep)
field. Moreover, the magnitude depths for the griz-bands on COSMOS range from 26.4 to
24.7 (resp. from 27.0 to 25.5) for the deep (resp. ultra-deep) field.

2.1.2 CLAUDS

HSC was supplemented by the U-band imaging from the Canada-France-Hawaii Telescope
Large Area U-band Deep Survey (CLAUDS, [18]). CLAUDS used the MegaCam imager
mounted on the 3.6-meter CFHT telescope to provide very deep U -band imaging (depth in U
of 27.1 and 27.7 AB in the deep and ultra-deep fields, respectively) over 18.60 deg2. CLAUDS
was designed to follow the HSC deep fields to similar depth, astrometric solution, and pixel
scale. Moreover, CLAUDS U -imaging uses the original MegaCam u∗ filter and an upgraded
u filter installed in 2014, which has better throughput and covers the entire MegaCam mosaic
of 40 CCDs (compared to 36 with the original filter). The different characteristics of the u
and u∗ filters are detailed in [18] (see their Figure 2) and filter parameters are available on
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the MegaCam filter database4. The XMM-LSS field was imaged with the u∗ filter, while
both u and u∗ filters were used for the COSMOS field. The 5σ point source (in 2 arcsec
apertures) magnitude depths listed in Table 1 are taken from [18].

2.2 Wide imaging surveys

2.2.1 DECaLS

The Dark Energy Camera Legacy Survey (DECaLS) is one of the three public projects of
the DESI Legacy Imaging Surveys5 [19] with the Beijing–Arizona Sky Survey (BASS) and
the Mayall z-band Legacy Survey (MzLS), that aim to provide the targets for the DESI
survey over 14,500 deg2. DECaLS makes use of the Dark Energy Camera (DECam [20]) on
the Blanco 4-meter telescope (in Cerro Tololo, Chile) that was initially built to conduct the
Dark Energy Survey, to provide the optical imaging in grz bands over 9,000 deg2. Through
this paper, we use the data release 9 (DR9) of the Legacy Imaging Surveys and whose
magnitude depths are shown in Table 1.

2.2.2 UNIONS

UNIONS is a collaboration between the Hawaiian observatories Canada-France-Hawaii Tele-
scope (CFHT, Mauna Kea), the Panoramic Survey Telescope and Rapid Response System
(Pan-STARRS, Maui), and the Subaru telescope (Mauna Kea). UNIONS is currently pro-
viding ugriz imaging for 5,000 deg2 of the northern sky. First, the CFHT Canada-France
Imaging Survey (CFHT/CFIS) is targeting the u-band and r-band with the Megacam imager
at CFHT and will provide competitive image quality to all other current, large, ground-based
facilities, up to a magnitude depth of 25 for the r-band over 5,000 deg2 and to a u-band depth
of 24.6 over 9,000 deg2. At the same time, Pan-STARRS is obtaining the i-band, and the
Wide Imaging with Subaru Hyper Suprime-Cam of the Euclid Sky (WISHES) will provide
the z-band. UNIONS has already completed more than 80% of the survey, and the first data
release was available on the XMM-LSS field as we ended this manuscript. So the 5-6 year
program of DESI-II that will start in 2029 could benefit from these datasets in the Northern
sky. Expected magnitude depths to be reached by the ongoing UNIONS in the u, g, r, i, and
z bands are listed in Table 1 (Gwyn et al., in prep.), [21].

Moreover, the XMM-LSS field was observed with a strategy strictly identical to CFIS-u.
These observations on XMM-LSS aim at testing LBG selection at a shallower depth than
CLAUDS (2-3 magnitudes deeper), to extend the LBG science program over the extensive
CFIS-u sky coverage of several thousands square degrees. In the latter, observations of
XMM-LSS à-la CFIS will be referred to as CFIS observations for simplicity.

2.2.3 LSST

The Vera C. Rubin Observatory, still under construction, is designed to conduct a 10-year
wide-area, deep, multi-band optical imaging survey of the night sky visible from Chile. The
Legacy Survey of Space and Time (LSST [22]) will catalog about 20,000 deg2 of the southern
sky starting in 2026 in the ugrizy bands. After 1 year and after 10 years of observations, the
survey will reach respective magnitude depths6 as indicated in Table 1.

4In the table at https://www.cfht.hawaii.edu/Instruments/Filters/megaprime.html, u∗ is labeled as
U ′, and u as u′.

5http://legacysurvey.org/
6The 5-sigma point source depths for LSST are reported from the latest Rubin simulation v3.6, whose

details can be found at https://usdf-maf.slac.stanford.edu/
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2.3 Simulating shallower depth

In this section, we present a method to degrade the imaging of a deep survey to mimic
a shallower imaging. This step is mandatory since we want to test the LBG selection at
UNIONS-like depth, whose images are still being processed. In this section, we make use
of the different imaging datasets available on the XMM-LSS field, namely CLAUDS+HSC
imaging (the deep survey) that we will degrade to CFIS+DECaLS-depth (the shallower
survey), and compare to the existing CFIS+DECaLS dataset on XMM-LSS. Let us note
that XMM-LSS was not surveyed by the CLAUDS-u filter but with the CLAUDS-u∗ one, so
we consider CLAUDS-u∗ in this section but will use CLAUDS-u on COSMOS.

We first define the typical magnitude error, for a given flux and magnitude depth. The
magnitude error ∆m is linked to the error ∆f in the flux measurement via7 ∆m = s∆f/f ,
where s = 2.5/ log(10) ≈ 1.0857. We can adopt a simple model for the flux error ∆f as being
roughly constant [23], and linked only to the magnitude depth mdepth (5σ detection) of the
survey. For a galaxy with index k, the error on the measured flux is given by

∆fk =
f5σ
5

(2.1)

with f5σ = 10−0.4(mdepth−22.5) for a given band. Using fk = 10−0.4(mk−22.5) for an arbitrary
magnitude, the magnitude error model ∆mk = s∆fk/fk becomes

∆mk = s
∆fk
fk

= 0.2× s× 100.4(mk−mdepth). (2.2)

More complex models for the magnitude error can be used, as proposed in [24, 25], where
the magnitude error depends both on the magnitude depth and the effective exposure time
(we define the exposure time in Section 4.2). To degrade the depth, we first randomize the
galaxy flux fk,deep from the deep imaging to fk,shallow, such as

fk,shallow ∼ N (µ = fk,deep, σ
2 = [σf ]

2
k) (2.3)

where the additive flux variance [σf ]
2
k for the k-th galaxy is given by

[σf ]
2
k = [∆fk]

2
shallow − [∆fk]

2
deep =

(
fk,deep

s

)2

[σm]2k, (2.4)

where [∆fk]shallow and [∆fk]deep are given in Eq. (2.1), respectively with the ”shallow” and
”deep” magnitude depth with f5σ, and

[σm]2k = (∆mk)
2
shallow(mk,deep)− (∆mk)

2
deep(mk,deep), (2.5)

where (∆mk)
2
shallow and (∆mk)

2
deep are obtained from Eq. (2.2), and mdeep is the mea-

sured magnitude of the deep imaging. The degraded magnitude is mk,shallow = 22.5 −
2.5 log10(fk,shallow), and its error is

[σ̂m,shallow]k = [σ̂m,deep]k × 100.4(mk,shallow−mk,deep) × 10−0.4(mdepth,shallow−mdepth,deep). (2.6)

The first term is the measured magnitude error (corresponding to the deep imaging), the
second term shifts the error to a higher value if the magnitude mshallow > mdepth, according

7Using the galaxy AB magnitude m = 22.5− 2.5 log10(f).
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Figure 1. Left: Binned map of the CLAUDS u∗-band magnitude depth estimates over the XMM-LSS
field. Right: Binned map of u∗-band magnitudes corresponding to a flux signal-to-noise ratio between
4.5 and 5.5.

to our error model, and the third term shifts the magnitude error to a higher value due to
the difference in depths since mdepth,shallow < mdepth,deep. This magnitude error correction
ensures that the new magnitude error follows on average the error model in Eq. (2.2) for the
new magnitude depth. So this method can be used on a homogeneous deep field (input) to
simulate shallower imaging (output), from which we can compute the randomized fluxes via
the additive noise from Eq. (2.4). We point out that those equations work for point sources
(i.e. the scaling between two different depths), since object size could play a role.

We can apply this methodology to degrade CLAUDS+HSC to a CFIS+DECalS depth.
CFIS+DECaLS magnitude depths for u, g, r, z (taken from the literature) are listed in Ta-
ble 1. For the three datasets, we use a cut on the magnitude error σ(mag) < 5 in all bands
and we only consider galaxies within 23 < r < 24.3. Such magnitude cuts in the r-band
are motivated by (i) the fact that most LBGs at a redshift ∼ 2.5 − 3 are above a r-band
magnitude of 23, then the lower limit cut removes stars and other galaxies (ii) the fact that
the efficiency of the spectroscopic redshift measurement for very faint objects (with a r-band
magnitude higher than 24.3) is low [15] for a typical exposure time of 2 hours (again, the
details on effective time and spectroscopic redshift measurement are presented hereafter in
Section 4.2).

The magnitude depths in Table 1 are indicative only and do not take into account
possible inhomogeneities in the survey depth over the XMM footprint for CLAUDS, HSC,
CFIS, and DECaLS. To illustrate this, we reconstruct the two-dimensional depth map of
the CLAUDS u∗-band imaging using two different methods. First, using our error model in
Eq. (2.2), we convert each measured magnitude m̂i and its error ∆m̂i on an estimate of the
survey depth m̂depth,i in the considered band. The binned two-dimensional map of magnitude
depth estimates is represented in Fig. 1 (left panel). We see three different regions (the ultra-
deep region in one of the HSC pointing, the deep region, and the edges with shallower depths,
see Figure 3 in [18]).

The method detailed above relies on a given error model for the measured magnitude.
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Figure 2. Left : Distribution of magnitude u-depth estimated from Eq. (2.2). The vertical bars
indicate the average position of the three distinct peaks in the distribution. Right : The colored
histogram (arbitrary scaling) is the distribution of magnitude error in the u-band as a function of the
u-band magnitude. Black lines are the magnitude error models.

For the second method, we can estimate the magnitude depth independently of our error
model, by measuring the binned map of measured magnitudes that have a flux signal-to-
noise ratio in the u∗-band between 4.5 and 5.5. The corresponding binned average map of
these magnitudes is shown in Fig. 1 (right), displaying the same features as our previous
method, however noisier since we use fewer galaxies.

In Fig. 2 (left panel), we show in blue the histogram of the depth estimates from our
first method over the full XMM footprint. We see three distinct features in the distribution,
represented by the vertical lines (positioned by hand), given by mdepth = [25.9, 26.4, 27.4].
Similarly, we show in green the histogram of object magnitudes with flux signal-to-noise ratio
between 4.5 and 5 in the u∗-band, displaying the three same features.

In Fig. 2 (right) we show the magnitude error against magnitude for the u-band, and we
over-plot the three error models using respectively mdepth = [25.9, 26.4, 27.4]. Again, we see
that the error models follow the three distinct patterns in the error-magnitude distribution,
revealing that a single error model with a unique mdepth is not relevant in this case.

For that reason, for the rest of the analysis with CLAUDS+HSC data, we restrict to
the central 2 deg2 region of the CLAUDS XMM-LSS imaging Fig. 1, compared to the full
field of 4.13 deg2. The histogram of the u∗-band depth estimates in this restricted field is
displayed in orange in Fig. 2 (left panel). In this restricted area, the recovered magnitude
depths for CLAUDS+HSC are presented in Table 2 (third line), showing a deeper average
u-band magnitude than the full XMM footprint (second line). After these cuts, the final
CLAUDS+HSC dataset comprises 41,000 objects.

Second, we similarly want to restrict to a homogeneous footprint in depth in the CFIS+
DECaLS imaging. The CFIS observations, coming from a dedicated program isolated from
the CFIS footprint, have non-negligible edges with shallower coverage: we reject regions
covered by one CFIS exposure only (we keep the number of exposures to be equal to 2 or
3) over the XMM footprint. After these cuts, the CFIS+DECaLS dataset comprises 71,000
objects. The recovered magnitude depths after applying this cut are given in the first line of
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Survey Photometry u(u∗) g r i z

XMM-LSS
CFIS+DECaLS 24.2 24.9 24.7 - 23.7
CLAUDS+HSC - full (27.3) 26.6 25.9 25.6 25.4
CLAUDS+HSC - partial (27.3) 26.6 25.8 25.5 25.4

COSMOS
CLAUDS+HSC 27.0 (26.3) 27.0 26.7 26.5 26.0
UNIONS-like 24.6 25.5 25.1 24.2 24.4

Table 2. Measured 5-sigma point source magnitude depth on the XMM-LSS (first line) and COSMOS
(second line) fields. ”full” indicates the full XMM-LSS fooprint, displayed in color in Fig. 1. The
”partial” denotes for data within the white box (again in Fig. 1).

Figure 3. Left : magnitude error as a function of u-band magnitude. Dots and error bars present
results for CLAUDS imaging (red), CLAUDS imaging degraded to CFIS+DECaLS depth (green),
and actual CFIS+DECaLS imaging (blue). Right : normalized magnitude distribution in the u-band
after a cut SNR(fu) > 5.

Table 2.
After such a treatment and considering input (i.e., CLAUDS+HSC) and output (i.e.,

CFIS+DECaLS) depths in Table 2, we can proceed to the degradation of the CLAUDS+HSC
magnitudes. We show in Fig. 3 (left panel) the magnitude error as a function of the u-band
magnitude for the three different datasets: the input CLAUDS+HSC in blue, the output
CFIS+DECaLS-like (i.e. degraded CLAUDS+HSC imaging) in green, and the targeted
imaging CFIS+DECaLS in blue. The error models with depths from Table 2 match well
the true CFIS+DECaLS magnitude errors. In Fig. 3 (right panel), we show the u-band
magnitude distribution of the three different datasets, after applying a u-band flux signal-to-
noise ratio cut > 5, represented by the back dashed line in Fig. 3 (left panel). The similarity
between the CFIS+DECaLS-like and CFIS+DECaLS u(u∗)-band magnitude distributions
validates that the degradation method works as expected. We repeated the same procedure
on the CLAUDS grz bands and found the same conclusions when comparing them to true
CFIS+DECaLS imaging.
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3 Selection methods

This work investigates the feasibility of selecting high redshift LBGs from their imaging prop-
erties with a Random Forest algorithm. We also aim to compare Random Forest selection
with the more common color-color box selection method used in the literature. This sec-
tion uses CLAUDS+HSC deep field imaging data and photometric redshifts obtained from
CLAUDS and HSC-SSP imaging data [17] with the LePHARE template-fitting code [26–28].

3.1 Color-color box selection

The color-cut selection method for selecting high redshift LBGs uses the flux decrement
blueward of the Lyman limit of LBG spectra in their rest frame, due to absorption by
neutral hydrogen. High redshift LBGs are then selected for their lack of emission in the
u-band, compared to their observed flux in other bands [15]. This u-dropout method allows
LBGs to be selected in the redshift range [2.5, 3.5]. Similarly, the g-dropout (lack of flux in
the g-band) can be used to select LBGs at redshift 3.5 < z < 4.5. In this section, we use the
color-color box selection referred to as [COSMOS: TMG u-dropout] in [15] (see their Table
1), which is given by:

(i) 22.5 < r < 23.75 (3.1)

(ii) u− g > 0.3 (3.2)

(iii) − 0.5 < g − r < 1 (3.3)

(iv) [u− g > 2.2× (g − r) + 0.32] ∪ [u− g > 0.9 ∩ u− g > 1.6× (g − r) + 0.75] (3.4)

(v) err(u) < 1 (3.5)

where err(u) is the uncertainty on the u-band magnitude. Fig. 4 (left panel) shows the ugr
color-color plot from a fraction of the CLAUDS+HSC imaging. The blue box represents
the color-color cut selection and provides a target density of 1290 per deg2. The selection
was applied to the entire COSMOS dataset, and the photometric redshift distribution of
the target density is represented in blue in Fig. 4 (right panel) and has a mean redshift
⟨z|z > 2⟩box = 2.67 with a total target density of z > 2 LBGs given by nbox(z > 2) = 946
deg−2.

3.2 Random Forest

Machine Learning methods have proven to improve target selections for spectroscopic sur-
veys compared to standard methods [29–31]. In this work, we use a Random Forest8 (RF)
algorithm [32] that can be used in the context of target selection for both regression tasks (i.e.
trained to predict the redshift of a test galaxy from its imaging properties) and classification
problems (i.e. to predict the class of a test galaxy). In this work, we consider using RF
classification to select galaxies in a given redshift interval.

3.2.1 Principle

Training: A Random Forest is a supervised, ensemble learning algorithm based on a set
of NRF decision trees. A decision tree is a flowchart-like tree structure where each internal
node represents a feature, the branch represents a decision rule, and each leaf node represents

8We use the scikit-learn implementation available at https://scikit-learn.org/stable/modules/

generated/sklearn.ensemble.RandomForestClassifier.html.
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Figure 4. Left : color-color plot illustrating the selection of LBGs used in [15] (CLAUDS+HSC
photometry with 22.5 < r < 23.75). The green/yellow dots represent the parent sample. The blue
polygon corresponds to the color-color box selection. For illustration purposes, the black-edged dots
are the mean positions of the parent sample in 6 different redshift bins with width ∆z = 0.5, ranging
from z = 0.5 to z = 3.5. Right : photometric redshift distribution of LBG targets, obtained from the
Random Forest classification in red, and the color-color box selection in blue.

the outcome. In a Random Forest algorithm, each k-th tree is built by drawing a random
selection of training data Dtrain,k (taken by replacement) and a random selection of training
data features (colors, magnitudes, morphology, etc.) plus associated classes C. In this work,
classes identify training objects in a dedicated redshift interval, namely

Ctrain =

{
1 if z ∈ [zmin, zmax]
0 else

(3.6)

After training, each k-th tree returns a probability Pk(D) (resp. 1 − Pk(D)) for a new data
set D to have C = 1 (resp. to have C = 0). The average probability is defined as

P (D) =
1

NRF

NRF∑
k=1

Pk(Dtest) (3.7)

Predicting object class: For a new test sample denoted by Dtest, its imaging properties
(e.g. measured photometric properties of a galaxy) are queried down the forest of trees and
the prediction is obtained by aggregating the NRF tree predictions in the average probability
P (Dtest) in Eq. (3.7). The final classification Ctest of a test sample is given by

Ctest =
{
1 if P (Dtest) > Plim

0 else
(3.8)

where Plim is an RF quality threshold, and is a free parameter that can be chosen to match
a given target density budget. The hyper-parameters of an RF algorithm are the number of
trees and nodes in each tree. An RF can then (i) model complex non-linear relationships be-
tween features and target classes (ii) reduce over-fitting, a recurrent problem in classification
by decision trees, and reduce prediction variance compared to a single decision tree. RF-
based selection learns a more complex relation between the observed features and redshift,
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Figure 5. Left : Random Forest purity against efficiency (the RF algorithm is trained with ugrz-
bands). The different colors correspond to different training sample sizes Ntrain elements. Right :
mean purity against mean efficiency, with corresponding dispersions. The colors matched the ones
used on the left plot.

especially when characteristic LBG spectral features (i.e. the two Lyman breaks at 912 and
1216 Å, rest-frame) are observable at optical wavelengths at z > 2.5.

The Random Forest training sample is obtained by using the magnitude cut 22.5 <
r < 23.75 and err(u) < 1 (to be consistent with the color-color cut example). After these
cuts, the total dataset is about 180,000 objects. The number of objects to be used for
training is discussed in the next section. We consider the 4 colors constructed from the
CLAUDS+HSC ugriz magnitudes. To decide the object classes in Eq. (3.6), we choose
[zmin, zmax] = [2.5, 3.5], where we use photometric redshifts from LePHARE. In this redshift
range, the spectral features of LBGs appear in the optical bands. Moreover, the spectroscopic
redshift measurement is more efficient at z > 2.5, than in 2.0 < z < 2.5 [15] (we detail this
method in Section 4.2). From this approach, our first aim is to identify objects within the
redshift range of 2.5 < z < 3.5 from their imaging properties, without explicit mention of
their type (LBGs, Quasars, etc.). Then, the minimization of the contamination (we define
this performance metric hereafter) by objects other than LBGs is not a primary goal of
our Random Forest approach. In a Random Forest perspective, inspired by the u-dropout
technique, we rather expect to find a high correlation between colors and redshift for LBG
specifically in this redshift range, to be learned by the algorithm. One could improve the
classification by training with other target characteristics, such as morphology, that can help
mitigate the contamination from point-like objects, for instance.

3.2.2 Performance

The algorithm uses the training data to learn the relationship between the features and the
target classes. The test data are used to evaluate the performance of the model. Using a test
sample from which we know the true classification, we define two parameters to evaluate the
performance of the Random Forest classification. For a given threshold Plim, the number of
selected targets of the test sample is given by Nsel. The number of selected LBG is denoted by
NLBG

sel (in this section, we refer to as LBG the galaxies within the redshift range 2.5 < z < 3.5)
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and NLBG
true is the number of galaxies in the test sample that are in [zmin, zmax]. We define the

purity p and the efficiency ϵ respectively given by

p =
NLBG

sel

Nsel
and ϵ =

NLBG
sel

NLBG
true

, (3.9)

where NLBG
sel = Nsel(2.5 < z < 3.5). The purity denotes the fraction of selected galaxies that

are effectively in the desired redshift interval. The efficiency denotes our ability to select the
parent distribution of galaxies in the considered redshift interval.

First, using purity/efficiency as performance metrics for the RF training, we investigate,
at CLAUDS depth, for which training dataset size, Ntrain = {200, 500, ...}, the RF perfor-
mance becomes stable. In the following, we also refer to the fraction of the total dataset
used for training ftrain = Ntrain/Ntot. We use the remaining data for testing for the different
Ntrain. For different Ntrain, we show in Fig. 5 (left panel) the purity against efficiency where
Plim runs from 0.1 (lower right part of the lines) to 0.8 (upper left part of the lines). We see
that using a few hundred objects for training results in poorer performance (i.e., lower purity
and/or efficiency) compared to using a few tens of thousands of objects. From ftrain = 30%
(a few tens of thousands of objects) to ftrain = 70%, the RF performance is stable.

Then, we want to test the precision of our RF regression, i.e. the accuracy of the RF
prediction after the resampling of the training sample. First, we define K = Ntot/Ntrain

independent splits, each one containing Ntrain objects. For instance, Fig. 5 (left panel) shows
the RF performance metric measured of a single split, for different fractions of the training
sample ftrain (colors). We have repeated the training of the RF algorithm using each inde-
pendent K-th split as the training dataset, and we tested the algorithm with the remaining
K-1 splits. For each independent K-th training, we have computed the performance metrics.
This method should not be confused by the ”K-fold” cross-validation technique, where each
fold (or split) is used once as a test sample while the K−1 remaining folds form the training
set. The mean purity against the mean efficiency is displayed Fig. 5 (right panel) for different
Ntrain values. For Ntrain = 100 or Ntrain = 1, 000, there are ∼ 2, 500 and ∼ 250 independent
splits, respectively. For both cases, we measured the mean performance and the dispersion
with only 30 splits rather than using all splits (we have tested using 50 to 100 splits, and
the results are similar). We see that for these two cases, the performance is poorer and the
dispersion over the K independent splits is large. When considering larger fractions of the
dataset used for training, such as from ftrain = 0.2 (from which we can construct 5 inde-
pendent splits) to ftrain = 0.5 (2 splits), we have checked that each K-th RF performance is
dispersed by less than 1% around the mean performance (note that for ftrain = 0.2, 0.5, they
are respectively 5 and 2 independent splits) and that there is less than 1% difference between
using ftrain = 0.2 or ftrain = 0.5 (namely, using from 5× 104 to 105 objects for training).

Alternatively, we can also look for the features used for training that most affect LBG
classification. The importance features metric for the RF implemented in scikit-learn is
based on the Gini importance, which counts the times a feature is used to split a node after
the Random Forest is trained, weighted by the number of samples it splits. A feature with
a higher importance value is more discriminating in the classification than a feature with a
lower importance value. The feature importances are shown in Fig. 6 (left panel) for the four
features used for training, namely the colors u − g, g − r, r − i, and i − z. Our baseline is
to classify galaxies within the range z ∈ [2.5, 3.5], for which the corresponding importance is
shown in blue. We see that the u−g and r− i color play a key role in LBG selection since the
first measures the u-dropout for z ∈ [2.5, 3.5] galaxies, and the second encodes more complex
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Figure 6. Left : Importance of the 4 different features for the Random Forest algorithm. Right : As
in Fig. 4 (right), the green/yellow dots represent the parent test sample. The red dots correspond to
LBG targets selected by our RF algorithm, to match the target density provided by the color-color
box selection (in blue).

correlations between color and redshift that the RF algorithm has learned from data. We
can test the RF regression when modifying slightly the LBG classification by including lower
redshifts, namely using the interval z ∈ [2.0, 3.5]. We see that with this setup, displayed in
orange in Fig. 5 (left panel), feature importances are not enhanced/decreased at higher/lower
redshift. In the following, we will continue with the baseline [2.5, 3.5].

3.2.3 Comparison with color-color box selection

We use Plim = 0.24 in Eq. (3.8) to select LBGs, to match the color-color box selection target
density9 of 1290 deg−2. This gives a purity p = 0.68 and an efficiency ϵ = 0.78. The LBG
targets selected by our Random Forest algorithm are represented in red in Fig. 6 (right panel).
Moreover, ∼ 60% of RF-selected targets are also selected by the color-color cut method, and
reversely. Fig. 4 (right panel) presents the corresponding photometric redshift distribution in
red, compared to that of the color-color box selection in blue. We find that the RF selection
gives a mean redshift ⟨z|z > 2⟩RF = 2.79, and a target density nRF(z > 2) = 1040 deg2

so providing an improvement of 100 deg−2 compared to the color-color box selection and a
higher mean redshift by 0.1.

The LBG selection we have presented above is based on CLAUDS+HSC imaging on
the COSMOS deep field, offering deep u-band imaging with a depth larger than 27. By the
end of 2027, CFIS and the Rubin LSST will provide a 5-sigma point source depth in the
u-band of 24.1 over a few thousand square degrees. By 2035, with 10 years of LSST, we can
anticipate a depth in the u band of around 25.6.
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Figure 7. Left : Purity (with 1σ band) as a function of target density for the CLAUDS+HSC imaging
(red), CFIS+DECaLS imaging (blue), and CLAUDS+HSC imaging degraded to CFIS+DECaLS
depth. Right : Corresponding photometric redshift distribution of targets for a density of nLBG =
1, 100 deg−2.

4 UNIONS-like LBG selection with a Random Forest algorithm

4.1 Validation with CLAUDS imaging degraded to CFIS depth on XMM

We have presented in Section 2 a method to degrade magnitudes to shallower depth. We
also have illustrated this method by degrading CLAUDS(u)+HSC(grz) magnitudes towards
CFIS(u)+DECaLS(grz) depths on the XMM-LSS. In this section, we compare the corre-
sponding Random Forest performances for selecting LBGs when using a CLAUDS+HSC-to-
CFIS+DECaLS degraded dataset on XMM-LSS.

We train a Random Forest classifier on three different configurations, first based on
CFIS+DECaLS imaging, second on CLAUDS+HSC imaging, and third on the CFIS+DECaLS-
like imaging obtained by degrading CLAUDS+HSC data. For the CFIS-DECaLS training
dataset, since we want to compare with the CFIS+DECaLS-like case, we use a cut on the
u-band number of exposures introduced earlier to estimate the u-band depth. This ensures
that the magnitude depth of the CFIS+DECaLS data is the same as the CFIS+DECaLS-like
data for a fair comparison.

For consistency, the three RF algorithms have been trained on the three configura-
tions10 using ∼ 35, 000 galaxies. For CFIS+DECaLS, we consider the full XMM footprint
since the cut on the number of exposures removes too many galaxies. For CLAUDS+HSC
and CFIS+DECaLS-like, we use the data within the field represented by the white box in
Fig. 1. As a result, fewer galaxies (6,000) are used for testing in the CLAUDS+HSC and
CFIS+DECaLS-like cases, compared to CFIS+DECaLS (35,000).

We trained the RF algorithms using two different sets of features, first considering the
3 colors derived from the optical bands ugrz, and second, adding the near-IR bands W1 and

9The target density for the RF approach is calculated as NRF
sel /(ftestS), where S is the surface area in

deg2, to ”remove” the test sample from the target density estimation, whereas it is given as Nbox
sel /S for the

color-color box selection.
10Again, the three configurations are (i) CLAUDS+HSC (ii) CFIS+DECaLS (iii) CFIS+DECaLS-like,

where the latter is obtained by degrading CLAUDS+HSC photometry to a shallower depth. Each RF algo-
rithm is trained on ugrz-bands.
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CLAUDS+HSC CFIS+DECaLS-like CFIS+DECaLS UNIONS-like

⟨z|2.5 < z < 3.5⟩RF 2.74± 0.25 2.39± 0.41 2.2.77± 0.22 2.85 (2.88)
⟨z|z > 1⟩ 2.66± 0.31 2.41± 0.39 2.35± 0.50 -
⟨z|z > 2⟩ 2.66± 0.29 2.52± 0.29 2.55± 0.35 2.76 (2.83)

nRF(2.5 < z < 3.5) 503 deg−2 247 deg−2 277 deg−2 683(429) deg−2

n(z > 1) 792 deg−2 619 deg−2 669 deg−2 -
n(z > 2) 789 deg−2 538 deg−2 522 deg−2 873(493) deg−2

n(z > 2.5) 479 deg−2 233 deg−2 270 deg−2 -

Table 3. First block: Mean redshift for (i) RF-selected LBGs within the redshift range 2.5 < z < 3.5
(ii) z > 1 RF-selected LBGs (iii) z > 2 RF-selected LBGs. We consider a target density budget of
1, 100 deg−2. Second block: corresponding LBG densities. For the last column (UNIONS-like), the
numbers in parenthesis are obtained after applying the correction of the total spectroscopic redshift
efficiency (2 hours of exposure).

W2 provided by WISE [33]. We use only ugrz since the i-band was in fact observed by DES
but not included in the data release 9 of the Legacy Surveys.

Fig. 7 (left panel) shows the Random Forest purity as a function of the obtained LBG
target density11, first by training only with the optical ugrz colors (full lines) and second by
adding the two infrared magnitudesW1 andW2 (dashed lines). The optimistic scenario using
the CLAUDS+HSC photometry is displayed in red, whereas the CFIS+DECaLS scenario is
in blue and the training from the CFIS+DECaLS-like dataset is in green. For clarity, we only
show the error bar on the purity for the ugrz case, but they are similar in the ugrz+W1W2
case. We see that the larger number of galaxies used for testing in the CFIS+DECaLS case
gives much smaller error bars (in blue).

From Fig. 7 (left panel), for the same target density of nLBG = 1, 100 deg−2 (dashed
vertical line in Fig. 7, left panel), CLAUDS+HSC gives a purity of 0.5 when CFIS+DECaLS
provides around 0.3. The RF performance when trained on the CLAUDS-degraded dataset
fairly reproduces the CFIS+DECaLS behavior as a function of the target density for the
ugrz case but provides slightly better performance when using W1 and W2. The difference
is not meaningful if errors are taken into account.

Once fixing the target density to nLBG = 1, 100 deg−2 for all selections, Fig. 7 (right
panel) shows the photometric redshift distribution of LBG targets for our three configura-
tions. The CLAUDS+HSC optimistic case is represented in red, the CFIS+DECaLS-like is
represented in green mimics fairly well the targeted one (in blue).

Keys numbers such as the mean redshift and density on different redshift ranges for these
three selections are given in Table 3 (first three columns). First, restricting to 2.5 < z < 3.5
(i.e. the redshift range used for training the RF), the mean LBG redshift and LBG density12

are labeled as ⟨z|2.5 < z < 3.5⟩RF and nRF(2.5 < z < 3.5) = Nsel(2.5 < z < 3.5)/fS,
respectively. In practice, we would possibly use the LBG sample starting from z ∼ zmin, we
indicate the LBG density n(zmin < z) = Nsel(zmin < z)/fS for different value of zmin.

Moreover, we have tested the impact of cuts applied to data on the RF performance.
We have tested different magnitude error cuts (from err(m) < 5 in all bands to higher values,

11Since the three configurations were not trained on the same sky area, target densities are given by
ni = Nsel/(ftest,iSi), where ftest,i is the fraction of the dataset used for testing (that is different from a
configuration to another) and Si is the sky area (either 4.13 or 2 deg2).

12Let us note that the number of LBGs selected in the redshift range considered for the Random Forest
algorithm (i.e. 2.5 < z < 3.5) are obtained by p(1, 100 deg−2)× 1, 100 deg−2, where p is the purity.

– 15 –



and for all datasets), different numbers of exposures for the CFIS u-band imaging (changing
the output magnitude depth in Eq. (2.4)) or the maximum r-band magnitude for all datasets.
All of these changes affect the training samples for each dataset, and thus RF performances.
These tests gave at most a 10% difference with the baseline that we presented above. We
also mention that the error model we use considers that the data are in the sky-limited noise
regime, and does not account for specific systematics in the calibration for the input and
output surveys, in addition to the possible difference in shape and response between the
input (CLAUDS+HSC) and output (CFIS+DECaLS) photometric pass-bands.

In this section we have presented the Random Forest classification of LBGs using de-
graded imaging data from CLAUDS-HSC imaging on XMM-LSS, to mimic a shallower depth
survey (CFIS+DECaLS). We demonstrated that the performance of the RF we get using the
simulated dataset compares fairly to the ones obtained using the true dataset, thus validating
our approach of mimicking shallower photometry from deep photometry.

4.2 LBG selection from UNIONS-like imaging on COSMOS

In this section, we degrade CLAUDS+HSC imaging on COSMOS to UNIONS depths (see
Table 1), and we train a Random Forest classifier to extract a list of LBG targets. We also
study the impact of spectroscopic redshift efficiency on the recovered photometric redshift
distribution.

UNIONS depths from literature are summarized in Table 1. To degrade the CLAUDS+
HSC imaging on the COSMOS field, we use input depth in the first and second lines in
Table 1 and UNIONS-like output depth still in Table 1. Since the CLAUDS+HSC depths
are not strictly equal to the ones in the COSMOS field (COSMOS CLAUDS+HSC depths
are listed in the 4-th line in Table 2), the effective depths that we use to obtain the UNIONS-
like dataset are slightly different of a few percent and are listed in Table 2. We use the
method of Section 2 to degrade CLAUDS photometry to UNIONS depths and then train
the RF with the complete set of ugriz degraded data. The full dataset after a cut in the
r-band given by 23 < r < 24.3 and err(m) < 10 in all bands gives 280,000 objects, where
55,000 are used for training and the remaining (80%) is used for testing. Curves of purity as
a function of target density for UNIONS-like and CLAUDS-based classifications (full lines)
are shown in Fig. 8 (left panel). As expected, the UNIONS-like selection provides poorer
results than CLAUDS+HSC, going from p = 0.9 to p = 0.6 for nLBG = 1, 100 deg−2 (vertical
dashed line). Let us note that CLAUDS+HSC purity is significantly enhanced compared to
the one measured in Section 4.1 (see Fig. 7, left panel) using CLAUDS+HSC photometry on
XMM-LSS. Indeed, we have found that CLAUDS+HSC ugriz-band are deeper than those
measured on XMM-LSS (see Table 2). Moreover, compared to the RF classification on XMM-
LSS, we add the i-band to the existing ugrz bands on COSMOS. It does not impact our
degradation method, since the updated UNIONS-like magnitudes are computed with input
CLAUDS+HSC photometry on COSMOS to reach the desired depth in Table 2. Fixing a
target budget of nLBG = 1, 100 deg−2, the photometric distribution of UNIONS-like targets
are shown in blue in Fig. 8 (right panel).

In addition to the Random Forest performance, the efficiency of the spectroscopic red-
shift measurement needs to be accounted for to compute the final spectroscopically-confirmed
LBG density. This work is conducted in the context of the next phase of the Dark Energy
Spectroscopic Instrument (DESI, already introduced) that is installed on the Mayall 4-meter
telescope at Kitt Peak National Observatory. DESI is a multiplexed instrument capable
of taking spectra of 5,000 objects simultaneously [34, 35]. For the spectroscopic redshift
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Figure 8. Left : purity as a function of target density for CLAUDS and UNIONS-like LBG Random
Forest selections. The pure RF selection is displayed in full lines, whereas the CNN redshift efficiency is
plotted in dotted-dashed (resp. dashed) lines for 4h (resp. 2h) of effective time. Right : target density
distribution for a UNIONS-like selection for a density budget of 1, 100 deg−2 in blue, corrected for
CNN redshift efficiency in green (4h) and orange (2h). The right y-label indicates the CNN redshift
efficiency whose behavior as a function of redshift is given by the dashed lines.

determination from LBG spectra, we consider the method presented in detail in [15] who in-
vestigated the feasibility of a color-cut LBG target selection with CLAUDS and HSC imaging,
supplemented by several dedicated spectroscopic observation campaigns, two on the COS-
MOS field in 2021 and 2023, and one on the XMM-LSS field in 2022. First, a convolutional
neural network (CNN) derived from QuasarNET13 [36] is applied to each DESI spectrum to
perform successively a classification (LBG type or not) and a redshift regression task. The
training of the CNN is based on the identification of 14 absorption lines and two emission
lines. For each emission/absorption line, the CNN returns a confidence level (CL). The 16
CLs are ranked in decreasing order, and a spectrum is declared as classified as an LBG by
CNN if the fifth CL exceeds a given threshold. The CNN output redshifts correspond to
the maximum CL. A more precise LBG redshift is then obtained using the RedRock (RR)
software14 [37] that uses the CNN output redshift as a prior and refines its measurement. In
this analysis, LBG-specific templates are used for RR, created from 840 visually inspected
LBG spectra from the DESI pilot survey of the XMM-LSS (see the full details of the CNN
and RR architectures in [15]).

For the color-color box selection from CLAUDS photometry used in [15] and for a CNN
CL threshold of 0.97, the redshift determination efficiency of the CNN+RR procedure (the
number of CNN classified LBGs divided by the number of proposed targets) was found to
vary with redshift, from 25% at redshift 2.1 up to a plateau of 80% between redshift 3.0 and
3.4, for a fiber exposure effective time15 of 4 hours (see their Figure 18, right panel in [15]).

13QuasarNET is the algorithm used for QSOs in DESI as part of the spectroscopic classification pipeline.
14https://github.com/desihub/redrock
15Exposure time refers to the amount of time that a single DESI fiber collects light from a celestial target

during an observation. An effective time of 4 hours means that spectra from different exposures were co-added
for a total effective time of 4 hours. More technically, effective exposure time denotes the amount of time
necessary to reach a certain uncertainty in ’nominal’ observational conditions for DESI, defined to be a 1.1”
seeing, a sky background of 21.07 AB magnitude per square arc second in r-band, photometric conditions,
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Figure 9. Left : photometric redshift distribution of DESI LBG targets (1000 targets from the
UNIONS-like RF selection): in blue for the total target sample, in red for those targets with spec-
troscopic confirmation by the CNN using a CL> 0.97 selection. The black line is the expected
distribution from the full UNIONS-like sample corrected from the expected CNN+RR redshift effi-
ciency and rescaled to the CNN CL> 0.97 sample size. Right : total efficiency as a function of the
photometric redshift. Green and orange correspond to the total efficiency obtained on XMM (with
CLAUDS+HSC imaging) for two different effective exposure times. Blue points correspond to the
efficiency measured on COSMOS after DESI observations of the UNIONS-like RF LBG selection.

These results from [15] are shown as dashed lines in Fig. 8 (right panel), in orange for an
effective time of 4 hours and in green for 2 hours, as a function of the photometric redshift.
The drop in efficiency at low redshift originates from different effects, such as the difficult
redshift determination for non-emitting LBGs, combined with a possible evolution effect of
the LBG population which would disadvantage emitters at redshifts lower than 3. At fixed
redshift, the spectroscopic efficiency depends slightly on the effective time.

The redshift determination efficiency degrades the overall performance of the RF LBG
selection, as shown in Fig. 8 (left panel), where we define the effective purity

peff =
1

Nsel

NLBG
sel∑
k=1

w(zk), (4.1)

that is now the fraction of true LBGs selected from the RF classification, and whose spec-
troscopic redshifts are successfully reconstructed from our CNN+RR approach. Here above,
w(zk) is the spectroscopic redshift efficiency evaluated at the object’s redshift zk. The ef-
fective purity is displayed as dotted-dashed lines for 4 hours of effective time and as dashed
lines for 2 hours of effective time. After convolution with the redshift determination efficiency
curves (assuming that these also apply to our case), we obtain the photometric redshift dis-
tributions in orange in Fig. 8 (resp. green) for an effective time of 2 hours (resp. 4 hours).
We see that the spectroscopic efficiency lowers the LBG population at lower redshift, and
the effect is as important as the effective time is small.

observations at zenith, through zero Galactic dust reddening [38].
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Since the LBG spectroscopic redshift reconstruction is limited below z = 2 due to
spectroscopic redshift estimation, we investigate the key numbers for the selected sample
at z > 2, which are presented in Table 3 (last column). The numbers without parenthesis
are obtained after RF selection only, whereas the numbers in parenthesis are obtained after
applying the spectroscopic redshift efficiency (2 hours of effective time). From an initial
budget of 1, 100 deg−2 we can have a LBG density of 493 deg−2 with confirmed redshifts at
z > 2.

4.3 Pilot observations of COSMOS with DESI

DESI has completed a pilot survey on COSMOS in 2024 to test the UNIONS-like LBG
selection. We proposed a density budget of 1,100 deg−2, and a total of 1,000 targets were
retained for the spectroscopic follow-up by DESI. Galaxy spectra were measured with an
effective time of 2 hours. In this section, we present the results of this pilot survey, i.e. the
spectroscopic redshift distribution of the targeted LBGs.

The photometric redshift distribution of the 1,000 DESI targets is represented in blue in
Fig. 9 (left panel), within the redshift range of interest z ∈ [2, 3.5]. After spectroscopic red-
shift determination with the CNN+RR procedure described in Section 4.2, the photometric
redshift distribution of the final sample, corresponding to a CNN confidence level CL> 0.97
is represented in red. This provides a mean redshift ⟨zphot|zphot > 2⟩ = 2.87 ± 0.23. The
fraction of secure LBGs over the zphot > 2 sample of DESI targets is 0.44, a bit lower than
the expected ratio from last Section 4.2 which is 493/873=0.56, with spectroscopic redshift
efficiency taken from [15]. This difference can be seen in Fig. 9 (right panel), since our
measured spectroscopic efficiency per redshift bin is slightly lower.

To obtain the black dashed line, we use the photometric redshift distribution of the full
sample of RF-selected LBG targets provided to DESI (i.e. with nLBG = 1, 100 deg−2) and
apply the CNN+RR spectroscopic redshift efficiency for 2 hours of effective time described in
Section 4.2. This distribution has a mean redshift ⟨zphot|zphot > 2⟩ = 2.86± 0.24. Rescaling
this distribution to the size of the CNN CL> 0.97 sample (red histogram) produces the black
dashed line. The agreement between the two is very good.

The total CNN efficiency for this RF-based LBG selection is represented in blue in Fig. 9
(right panel) as a function of the photometric redshift, showing roughly good agreement with
the CNN+RR efficiency described in Section 4.2 for 2 hours of effective time (orange), though
slightly lower.

Fig. 10 (left panel) shows the photometric redshifts as a function of the CNN+RR
spectroscopic ones, for the CNN CL> 0.97 sample. The spectroscopic redshift distribution
for the CL> 0.97 sample is represented in Fig. 10 (right panel). The mean redshift is
⟨zspec|zspec > 2⟩ = 3.0± 0.3.

5 Forecasts

In this section, we present forecasts on the Alcock-Paczynski (A.P.) parameters, the fraction
of dark energy, and local Primordial non-Gaussianities (NG) from the LBG redshift distri-
bution derived in Section 4.2 and in Section 4.3, respectively. We restrict the forecast to
the redshift-space galaxy power spectrum and do not explore the possibility of using LBG
Lyman-α forests. However, valuable information might be extracted from this observable,
thanks to the large increase in lines of sight [39]. Such forests have been detected in [40]
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Figure 10. Left : photometric redshift as a function of the CNN+RR spectroscopic redshift for a
CNN CL threshold of CL> 0.97. Right : CNN+RR spectroscopic redshift distribution for the observed
RF LBG targets, using a CNN CL threshold of CL> 0.97.

and by the CLAMATO survey [41, 42]. Forecasting Lyman-α forest constraints is more com-
plicated than those for the galaxy power spectrum, and we leave this possibility for future
work.

For our forecasts, we adopted a bias value bLBG = 3.3, as measured in [15], without
any redshift evolution because of the lack of current constraints. We fix the DESI-II sky
coverage to 5,000 deg2 and test both 800 and 1,100 deg−2 target densities. We adopted a
redshift binning ∆z = 0.1. For the spectroscopic distribution with an 800 deg2 budget, we
re-scaled the 1, 100 deg2 one by the appropriate factor, without accounting for a possible
shift, since the purity is roughly similar. The integral of each densities over the range [2, 3.5]
is respectively 0.44 × 800 = 353 deg

2
and 0.44 × 1, 100 = 486 deg

2
. We make use of the

forecasting tool FishLSS16 whose implementation is described in [43]. We compare these
DESI-II forecasts with the full 14,000 deg2 DESI program ones. We use the tracer biases
and distribution reported in [44] (and we re-do the forecasts with FishLSS for consistency),
as well as the Ly-α forest BAO forecasts (which were done with a code from [45]). We also
compute the cosmic variance (CV) limit associated with both survey volumes.

We first report in Fig. 11 the uncertainties on the Alcock-Paczynski parameters, ob-
tained from the measurements of the BAO feature. The relative errors on α⊥ and α∥ can be
interpreted as relative error on DA/rs and rsH. The methods used involved marginalizing
over a linear bias and 15 “broadband” polynomials, reproducing the experimental procedure
(for details we refer to [43]). Our results show that a DESI-II survey will reach few-percent
precision in both distance measures in the redshift range 2.45 < z < 3.45, for a binning
∆z = 0.1. The lowest relative uncertainties are 1.7% (α⊥) and 2.4% (α∥) for bins around
z∼ 3 for the target density 1,100 deg−2. For every bin, the highest density sample benefits
a significant gain of around 20% over the lower density one. In both cases, these samples
provide highly complementary measurements to the DESI ones, peaking in the redshift range
where the Ly-α forest constraint becomes loose (z > 2.6). A single bin forecast gives a com-

16https://github.com/NoahSailer/FishLSS
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Figure 11. Forecasts of the Alcock-Paczynski (A.P.) parameters for the DESI survey (in blue, with
LRGs+ELGs+QSO for z < 2.1 and Ly-α auto- and cross-correlations for z > 2.1), the two DESI-II
proposed survey of this article (red), compared with the cosmic variance limit for 14,000 and 5,000
deg2 surveys (grey). We adopted a redshift binning ∆z = 0.1 for every configuration. TD stands for
target density.

bined uncertainty for 2.6 < z < 3.2 of 0.73% (0.89) for α⊥ and 1.0% (1.2) for α∥, for 1,100
deg−2 target density (800 deg−2). These measurements are more than a factor of two higher
than the cosmic variance limit. Consequently, they can be improved, at the cost of a new
facility with higher multiplexing power.

The recent measurement of BAO from the DESI collaboration has shown a preference
for dynamical dark energy at more than 2σ (when combined with CMB or SN) over the
standard constant Λ model[46–48]. Thus it is crucial to investigate the potential of a DESI-
II survey to constrain dark energy models, particularly for a redshift range loosely constrained
by DESI. In Fig. 12, we forecast the uncertainty on the dark energy fraction for the different
surveys, with a simplified procedure. We use the first Friedman equation, which for z < 4
is Ωm(z) + ΩDE(z) = 1. We neglect the covariance between h(z) and ωm, we assume the
uncertainty from CMB+DESI on ωm to be σωm = 6.5 × 10−4 (cf. Table 3 of [43]), and we
take the relative error on h(z) from the radial BAO measurements: σlnh = σlnα∥ [43, 49]. Our
forecasts predict at best 5-6 % constraint for individual bins, and a 2% one for an effective
measurement 2.6 < z < 3.2. As illustrated by the right panel, it will not be sufficient to
measure a Λ contribution which is predicted to be a few-percent component at z > 2. Still,
we gain sensitivity compared to the DESI Ly-α forest to measure a high redshift (z ∼ 3)
departure of a dark energy component from the ΛCDM framework. In particular, these types
of early dark energy models have the potential to relieve the H0 tension between early and
late time measurements.

Extending the precise observation of LSS 3D modes to the high-redshift universe, DESI-
II will be competitive (and complementary through lensing) with CMB observations [50] as
a probe of primordial perturbations and, therefore, a key survey to test inflationary models
beyond the standard single-field, slow-roll scenario. Addressing the full potential of a DESI-II
survey to investigate primordial features is beyond the scope of our work, and we humbly
limit our forecast to the study the scale-dependent correction to linear galaxy bias, ∆b(k) ∝
fNLbϕ/α(k), particularly significant at large scales [51, 52], consequently associated with
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Figure 12. Left : Forecast on the fraction of dark energy ΩDE for the same configurations as Fig.
11, from the radial BAO parameters σα∥ , with redshift bins ∆z = 0.1. Right: Evolution of ΩDE for

constant Λ, and the associated errors for C.V. (grey, for a 14,000 deg2 survey), DESI (blue, galaxy
and Ly-α), and DESI-II (red for a target density of 1100 deg−2 and light red for 800 deg−2). TD
stands for target density.

systematic challenges not explored here. Such correction is induced by “local” primordial
non-Gaussianity, characterized by a large signal in squeezed bispectrum configurations, a
specific prediction of multi-field inflation. For forecasting details, we refer the reader to [53].
A recent constraint on fNL with DESI QSO and CMB lensing is [54]. We fix the minimal mode

to kmin = 2πV
− 1

3
bin , and evaluate our Fisher matrix for a single redshift bin 2.5 < z < 3.5,

neglecting the evolution of the galaxy distribution. We do so to avoid under-evaluating
long-range mode by dividing the redshift range into bins. Furthermore, high density has in
practice relatively small impact on NG, since the nP > 1 is rapidly reached, and the volume
is usually the limiting factor. Marginalizing over the galaxy bias, we predict σfNL

= 6.9
and 7.6 for 1,100 and 800 deg−2 densities. In the dense limit (evaluated for n ∼ 10−2 h3

Mpc−3, b ∼ 3.3), the predicted uncertainty on NG is σfNL
≈ 4.7 for our DESI-II volume.

Thus our predicted measurement is close to the lower limit, and the asymptotic possible gain
would require a large increase of the density. Still, our prediction is at a similar level as
Planck result: fNL = −0.9±5.1 [50], which is currently the best bound and would be further
improved by combination with DESI measurements.

In the Fig. 13, we further explore the impact of the increase of the LBG sample,
forecasting the constraints on the fraction of dark energy, and NG, respectively for redshift
bins 2.6 < z < 3.2 and 2.5 < z < 3.5, varying the observed LBG numbers within each bin,
for three galaxy biases: bLBG = 2.5; 3.3; 4.5. The points corresponding to the (full) target
density of 800 and 1,100 deg−2 are highlighted in black. For NG, the asymptotic regime
is rapidly reached, (for NLBG twice smaller than our ’smaller’ fiducial survey), and there is
no significant gain in doubling the target density of our proposed survey. One can see the
improvement with higher biases: not only is the asymptotic convergence faster, but the limit
is also lower with higher biases. This difference is due to our model bϕ = 2(bLBG − p), which
increases the derivative ∂∆b/∂fNL with galaxy bias, and so some coefficients of the Fisher
matrix. For dark energy, and more generally BAO measurement, the asymptotic regime
starts for larger densities than NG. For instance, we gain a 50% (resp. 30%) with a target
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Figure 13. Impact of the sample size, through the number of LBG within the redshift range, and
galaxy bias bLBG, for two different science cases: the fraction of dark energy (left panel ), and local
non-Gaussianity amplitude (right panel). The two proposed survey forecasts are represented by black
crosses. We assume a DESI-II sky coverage of 5,000 deg2. TD stands for target density.

density of 2,000 deg−2 versus 800 (resp. 1,100). For comparison, the NG gain is limited to
25% (resp 10%). As for NG, higher bias is associated with better measurements, but with
the same CV limit. This figure illustrates the possibility of adjusting the target density,
depending on the science cases, to optimize observational time.

In the above, we have computed the forecast considering two target densities 1, 100 deg−2

and 800 deg−2, where we assumed that the recovered spectroscopic distribution obtained
in Section 4.3 with a target density of 1, 100 deg−2 can be re-scaled to match the n(z)
corresponding to a target density of 800 deg−2, with higher purity. Since DESI observations
were made for 1, 100 deg−2, we cannot change easily the level of purity of targets, so we
explore more in detail the effect of purity on the shape of the n(z) and then on forecasts,
by considering photometric redshifts, as performed in Section 4.2. Fig. 14 (left panel) shows
the four different photometric distributions for four different target densities, namely 800,
1,100, 1,500, and 2,000 deg−2, that we obtain by applying different quality cut Plim to the
test dataset in Section 4.2. Moreover, we convolve the distribution with the spectroscopic
efficiency presented in Section 4.2 (with 2 hours of exposure), and we consider the redshift
range [2, 3.5], providing a density of LBG of 375, 495, 645 and 795 deg−2, respectively. As
expected, the recovered n(z) are very similar (up to a factor), since the purity is stable in that
target density range, demonstrating that target density can be increased up to 2, 000 deg−2

and providing roughly the same fraction of confirmed LBGs for the LBG science program.
Fig. 14 (left panel) shows the forecasts of the uncertainty on the dark energy fraction with
these three different n(z) in Fig. 14 (right panel), showing that the constraining power is
maximum at a redshift of ∼ 2.85. The mean redshift is not perfectly consistent with the
one recovered from spectroscopy (see Fig. 10, left panel). Another difference is the lower
uncertainties for 2.2 < z < 2.6 compared to Fig 12, as expected from the larger tail of the
distributions.
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Figure 14. Left : Photometric redshift distribution for three different Random Forest quality cuts,
after accounting for spectroscopic redshift efficiency. Right : Associated forecasts on the dark energy
fraction for a 5,000 deg2 survey, on top of DESI Ly-α forest ones.

6 Conclusions

In this paper, we have explored the selection of high redshift Lyman Break Galaxies from
UNIONS-like imaging using a Random Forest approach.

We have introduced a method to mimic a shallower imaging dataset by degrading the
magnitudes of a deeper survey. We have tested this methodology on XMM-LSS by degrading
CLAUDS+HSC imaging to CFIS+DECaLS depth, showing that the RF performances when
using this simulated dataset compare fairly to the targeted one.

We used this methodology to degrade CLAUDS+HSC imaging on COSMOS at UNIONS
depth, in preparation for a DESI pilot survey in May 2024. We have studied the perfor-
mance of this UNIONS-like selection and found that budget of nLBG = 1, 100 deg−2 provides
nLBG(z > 2) = 873 deg−2, and turns nLBG(z > 2) = 493 deg−2 after accounting for the
efficiency of the spectroscopic redshift measurements.

From 1,000 observed targets on COSMOS by DESI initially proposed for a target budget
of 1, 100 deg−2, we have derived the corresponding spectroscopic redshift distribution. This
distribution is found to be consistent with the expected photometric redshift distribution
convoluted with the spectroscopic redshift efficiency.

We have explored the constraining power of the recovered redshift distribution on
the Alcock-Paczynski parameters, the fraction of dark energy, and local Primordial non-
Gaussianities, displaying a maximum at redshift 2.8-3, within a redshift range z > 2 currently
probed by the Lyα forest. Our forecasts predict at best 5-6 % constraint for individual bins,
and a 2% one for an effective measurement 2.6 < z < 3.2.

We also have explored the forecasts on the fraction of dark energy when considering
different target budgets, reaching lower values of purity of the LBG sample. We found that
the slow decrease in purity, going from 800 to 2, 000 deg−2 of target density budget does
not strongly affect the shape of the photometric redshift distribution to lower redshifts. The
constraining power is then increased due to higher LBG density, with a constant maximum
at z ∼ 2.8− 3.0 (photometric redshift) over target budgets.
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Data availability

All the material needed to reproduce the figures of this publication is available at this site:
https://doi.org/10.5281/zenodo.13709754.
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