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Fast Estimation of Sparse Quantum Noise
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As quantum computers approach the fault-tolerance threshold, diagnosing and characterizing the noise
on large-scale quantum devices is increasingly important. One of the most important classes of noise chan-
nels is the class of Pauli channels, for reasons of both theoretical tractability and experimental relevance.
Here we present a practical algorithm for estimating the s nonzero Pauli error rates in an s-sparse, n-qubit
Pauli noise channel, or more generally the s largest Pauli error rates. The algorithm comes with rigorous
recovery guarantees and uses only O(n2) measurements, O(sn2) classical processing time, and Clifford
quantum circuits. We experimentally validate a heuristic version of the algorithm that uses simplified Clif-
ford circuits on data from an IBM 14-qubit superconducting device and our open-source implementation.
These data show that accurate and precise estimation of the probability of arbitrary-weight Pauli errors is
possible even when the signal is 2 orders of magnitude below the measurement noise floor.
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I. INTRODUCTION

Estimating noise in quantum computers is becom-
ing increasingly important as we begin to test quantum
error correction (QEC) on current noisy intermediate-scale
devices [1]. Much of the current effort in noise estima-
tion is focused on identifying methods that will remain
tractable as the system size increases beyond the few qubit
regime [2–15]. In such larger systems it is important to
identify not only the errors that occur when qubits are
operated in isolation or in small groups but also the addi-
tional errors that occur when the device is implementing
fault-tolerant QEC circuits and nontrivial quantum algo-
rithms. If we are able to characterize the noise and noise
types (such as control errors, decoherence, and crosstalk
errors) in such a system then that will allow us to better
diagnose and fix such errors, for instance by enabling cal-
ibration in the presence of crosstalk. Characterization of
the noise will also allow the construction of tailored quan-
tum error-correcting codes and decoders and customized
fault-tolerance protocols designed to counteract the spe-
cific noise in the system. Such bespoke systems have been
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shown to outperform their generic counterparts at quantum
error correction [16–21].

Noise estimation is possible in principle using quan-
tum process tomography [22], but in practice this is often
not desirable for several reasons. First, even using meth-
ods such as compressed sensing [23–28], the enormous
Hilbert space of a multiqubit machine makes it difficult to
efficiently estimate all possible parameters beyond a hand-
ful of qubits. Second, standard tomography protocols are
susceptible to state preparation and measurement (SPAM)
errors [29], which limit the accuracy in estimating noise in
quantum gates.

One promising approach to make noise characterization
more tractable is to reduce the noise to a smaller set of rele-
vant parameters that can be estimated in a SPAM-free way.
A natural candidate for this approach is to learn the Pauli
projection of a quantum noise channel. This is the chan-
nel obtained when the noise channel is twirled over the set
of n-qubit Pauli operators. The remaining parameters of
the channel, known as the Pauli error rates, are the most
relevant parameters for near-term applications of QEC
and fault tolerance because of the dominant role played
by stabilizer codes [30]. Moreover, practical methodolo-
gies have been developed to implement the Pauli pro-
jection without substantially changing the average error
rate in a given round of gates [31–33]. Furthermore, QEC
tends to make noise less coherent [34–36], which fur-
ther justifies the Pauli approximation at the logical level.
Finally, Pauli error rates can be learned in a SPAM-free
way [37,38].
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Focusing on Pauli channels reduces the number of
parameters required for complete noise estimation to 4n,
where n is the number of qubits of the device. Although
this has better scaling than other SPAM-robust meth-
ods that attempt to learn an entire noise channel (e.g.,
Refs. [39,40]), this is unfortunately already too large to
be tractable for some present-day quantum devices [41].
There are several ways to try to reduce this parameter count
even further while still capturing the most relevant param-
eters for fault tolerance and QEC. For example, when
the Pauli error rates form a bounded-degree Markov field,
then the channel can be learned efficiently in n [37]; this
algorithm was experimentally validated in Ref. [38]. Ref-
erence [37] also gave an efficient algorithm for estimating
the class of s-sparse Pauli channels, i.e., those with at most
s nonzero Pauli error rates.

These two classes of Pauli channels are motivated by the
fact that quantum devices approaching the fault-tolerant
regime will have very few significant errors (and there-
fore are approximately sparse) and will have errors that are
only weakly correlated (and therefore are approximated by
a low-degree Markov field).

However, the algorithm for estimating the class of s-
sparse Pauli channels discussed in Ref. [37] required a
prohibitively large number of samples in practice, and
could only guarantee recovery for O(ε−4) samples. In
order to recover Pauli error rates as large as 10−3, over
1012 measurements are required, rendering the algorithm
impractical on modern noisy, intermediate-scale quantum
(NISQ) devices. As we discuss shortly the scaling for the
present algorithm is orders of magnitude better in every
regime of interest.

A. Main results

In this paper, we give a new algorithm for estimating s-
sparse Pauli channels that is distinct from Ref. [37]. This
algorithm can reconstruct an s-sparse Pauli channel with
a recovery guarantee that is much more efficient than any
existing algorithm. We note that for a Pauli channel each
Pauli is an eigenvector of the channel, the respective eigen-
value representing how faithfully that Pauli is transmitted
through the channel [see Eq. (4) and related discussion].
Then we first assume that an experiment can be mod-
eled as having access to a noisy oracle that can return
an eigenvalue of an unknown Pauli channel with some
independent Gaussian noise with variance ξ 2. Then using
at most O(sn) queries to the noisy oracle, the algorithm
returns s estimated error rates p̂j that agree with the chan-
nel error rates pj with precision |p̂j − pj | ≤ O

(
ξ/
√

s
)
. In

fact, the bound is slightly stronger than this. The precise
statement is given in Theorem 1, together with Assump-
tion 1, which lay out the precise mathematical assumptions
used in the derivation.

We then show how to replace the abstract Pauli
eigenvalue oracle with a concrete experimental proce-
dure that uses only Clifford quantum circuits and com-
putational basis measurements, detailing the process to
determine the required information and how to perform
the entire estimation efficiently. We show that noisy
eigenvalues can be estimated to within variance ξ 2 by
using only Clifford quantum circuits and computational
basis measurements. Our results use modifications of the
algorithm from Ref. [37] and show how the relevant noisy
eigenvalue queries can be obtained with only O

(
n2/ξ 2

)

measurements.
Next, we validate these algorithms using experimental

data from a 14-qubit superconducting device [38]. The
original experiment exhaustively estimated the averaged
eigenvalues in this device. We use these data to construct
our eigenvalue oracle. We then simulate various levels of
measurement noise on top of this “true” experimental sig-
nal to validate our algorithms. Our results are depicted in
Fig. 1. We show that when the noise added to the eigenval-
ues has any standard deviation in the range of 10−3–10−5

then we can accurately recover Pauli error rates as small
as 2 orders of magnitude less than the noise added on the
eigenvalues. Importantly, even when we artificially add
arbitrary many-body Pauli errors with comparable error
probabilities, we still recover these strongly correlated
errors with high relative precision.

Our results suggest that practical characterization of
all Pauli error rates with probabilities greater than 10−4

or 10−5 in a quantum device with 10–20 qubits can be
achieved with around 106 or 107 experimental measure-
ments. In such quantum devices having submicrosecond
gate times and submillisecond state preparation and read-
out times, this puts practical noise characterization within
reach on a time scale of hours, not days or weeks.

Finally, we write open-source code, available on GitHub
[42], which reproduces all the figures in this paper and
contains other examples, which explain how to use the
algorithms in real experiments.

The remainder of this paper is organized as follows. We
provide some notation and background in Sec. II followed
by an intuitive overview of our recovery algorithm in Sec.
III. We state our precise recovery guarantees in Sec. IV. We
describe the circuits we use for practical eigenvalue esti-
mation and provide details of our validation results in Secs.
VI and V. We defer the precise definition of the algorithm
until Sec. VII and the proofs until Secs. VIII and IX. We
conclude in Sec. X.

II. NOTATION AND BACKGROUND

Given a set of n qubits with Hilbert space dimension 2n,
we can introduce the following notation. Let Pn denote the
group of Pauli operators on all n qubits and Pn = Pn/〈i〉
be the Pauli modulo phase. There is a natural isomorphism
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FIG. 1. (a) This figure shows the ability of the reconstruction algorithms to recover sparse Pauli error rates from experimental data.
The “actual” error rates (barely visible beneath the data points representing the estimated error rates) are constructed using data from
a 14-qubit experiment [38], as described in the main text (Sec. V). Dots indicate recovered Pauli error rates using our algorithm with
artificially added zero mean normally distributed noise (variance ξ 2) on top of the true error rates to simulate finite sampling and other
noise sources. The reconstruction used two experimental designs using a number of randomized benchmarking style experiments: type
I (see Sec. V) used 58 and type II (see Sec. V A) used 365 such experiments, each with the same number of samples per experiment.
The type-II experimental design runs more experiments and therefore takes more data overall, but allows recovery of an increasing
number of Paulis while keeping constant the number of measurements per experiment. (b) The recovery of 1000 different error rates
as low as 10−7 with high relative precision, when the experimental noise varies between ξ = 10−3–10−5. Notably, the error rates
are recovered with a precision almost 2 orders of magnitude below the standard deviation ξ of the noise added to the signal. (c) a
more detailed look at the recovery in the regime between 10−6 and 10−7 with noise levels of ξ = 10−5. (d) Violin plot of the total
variational (1-norm) distance between the original probability distribution (p) and the reconstructed probability distribution (p̃), being
1
2‖p− p̃‖1. The charts show the spread of recovery error over 200 different randomly generated samples of noise. As can be seen, the
entire probability distributions are consistently recovered to high precision. (e) A separate experiment where four distinct uniformly
random many-body Paulis are added to the oracle with error rates chosen randomly from a normal distribution N (0.005, 0.001). The
algorithm is run with this additional signal to test if it can recover these Paulis as well. In all cases the planted Paulis are recovered
with small relative error, as shown.

between multiplication on Pn and bit-wise addition of
2n-bit strings F

2n
2 given by

a ∈ F
2n
2 , a←→ Pa = Paxaz = iax×az X [ax]Z[az], (1)

where ax, az ∈ F
n
2 and X and Z are the standard single-

qubit Pauli matrices, and Pa ∈ Pn is understood to be
a canonical coset representative. Here X [ax] = X ax1 ⊗
. . .⊗ X axn , and similar for Z[az]. Using this isomorphism,
we can directly use a ∈ F

2n
2 to denote the Pauli matrix Pa.
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For any two Pauli matrices Pa and Pb, we have PaPb =
(−1)〈a,b〉PbPa where the symplectic inner product

〈a, b〉 = ax × bz + az × bx mod 2 (2)

is symmetric and bilinear.
We define a stabilizer group S to be a linear subspace of

F
2n
2 such that for all a, b ∈ S, 〈a, b〉 = 0. Thus a stabilizer

group forms a commuting subgroup of the full Pauli group
by the mapping in Eq. (1).

An n-qubit Pauli channel E acting on a quantum state ρ

is of the form

E(ρ) =
∑

j

pj Pj ρPj , (3)

where pj is the error rate associated with the Pauli operator
Pj . The Pauli error rates pj form a probability distribution
over all N = 4n elements of the n-qubit Pauli group mod-
ulo phases. These are closely related to, but distinct from,
the Pauli channel eigenvalues, which are defined as

λj = 1
2n Tr

[
Pj E(Pj )

]
. (4)

Because it is clear from the context, we often refer to
these simply as the “error rates” and the “eigenvalues.”
Thus, when a state ρ is subjected to the noisy channel
E , the error rate pj describes the probability of a multi-
qubit Pauli error Pj affecting the system. In contrast, the
eigenvalues describe how faithfully a given multispin Pauli
operator is transmitted through the channel. The error rates
pj and eigenvalues λj are related by a Walsh-Hadamard
transform (WHT). From Eqs. (3) and (4) and the orthog-
onality relations of the Pauli group, we can compute the
Walsh-Hadamard transform coefficients:

λk =
∑

j∈F2n
2

(−1)〈k,j 〉pj . (5)

The symmetrical nature of the Walsh-Hadamard transform
means we also have the inverse relation:

pj = 1
N

∑

k∈F2n
2

(−1)〈j ,k〉λk. (6)

Note that our WHT is ordered by Pauli commutation
relations—see Appendix for a further discussion of this
subtlety. Finally, for any natural number N , we then write
[N ] to mean {0, . . . , N − 1}.

In an analogy with discrete Fourier transforms, the error
rates can be thought of as the frequency domain compo-
nents of the time domain signal, which in this case is the
eigenvalues. Our goal is to sparsely sample the dense time-
domain signal (the eigenvalues) and reconstruct the entire

(but sparse) frequency domain (the error rates). The theory
of compressed sensing allows us to do this in principle with
very few measurements, namely O(s log N ). However the
standard reconstruction methods either use convex opti-
mization [which requires poly(N ) classical computation]
or use sampling methods and cannot therefore guarantee
exact support recovery [43]. Therefore, unlike in com-
pressed sensing, we must reconstruct the sparse frequency-
domain signal using only poly(s, log N ) resources for our
algorithm to be considered efficient, which is indeed what
we achieve here.

Throughout this paper, we restrict to a sparsity regime
with only s� 4n/2 nonzero error rates, each having proba-
bilities greater than a specified cutoff ε0. (In our proofs, we
assume that any error rate less than ε0 is identically zero,
although the heuristic algorithm is more forgiving.) This is
what we mean when we refer to an s-sparse model. This
allows our algorithm to perform in the regime where s is
exponential in n. When such an exponential scaling holds,
it makes our algorithm inefficient in n, but this is also a
relevant regime if we wish to estimate Pauli channels with
an extensive entropy. Distributions with extensive entropy
will generally require an exponential number of error rates
to estimate them with arbitrary accuracy.

Our recovery methodology builds on one of the main
results of Ref. [37] and an adaptation of the classical algo-
rithms described in Refs. [44,45]. In Ref. [37], the authors
show how to recover all N = 4n Pauli channel eigenval-
ues to relative precision ε using O

(
ε−2n2n

)
measurements.

The recovery of all N eigenvalues would require 2n + 1
applications of depth O(m+ n2/ log n) Clifford circuits, or
3n applications of depth O(m) Clifford circuits. The fac-
tor of m in the circuit depth must be large enough to
resolve the decay curve of the largest eigenvalue in the
channel that we wish to faithfully estimate [46]. While
the depth of this algorithm is efficient, the number of
distinct circuits required is clearly not scalable in n. A
single individual eigenvalue can still be learned to rela-
tive precision ε using only O

(
ε−2

)
measurements, how-

ever. It is the need to sweep through 2n + 1 (or more)
sets that leads to the factor of O (n2n) in the sample
complexity.

In Ref. [37], the authors also derived what is essen-
tially a variant of the Kushilevitz-Mansour algorithm [47]
for learning decision trees via the Fourier spectrum and
applied it to the case of Pauli channels. The idea is to
breadth-first search through the marginal Pauli error rates,
keeping those with large probability mass and pruning
the search tree when the mass is below a threshold. This
algorithm is theoretically efficient in s and n, however
our numerical experiments using this algorithm suggest
that the number of eigenvalues required per recovered
error rate will make it difficult to use in practice, at least
in its current instantiation and in the relevant regime for
quantum-computing applications.
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III. ALGORITHM OVERVIEW

The problem of reconstructing a sparse set of Pauli error
rates by measuring few eigenvalues is closely related to a
classical problem of computing a sparse Walsh-Hadamard
transform. This problem was studied by Scheibler et al.
[44] and later (in the regime of noisy signals) by Li et al.
[45] by decoding a signal x ∈ R

N , which contains 2n points
indexed by j ∈ F

n
2. In our circumstances we are not analyz-

ing the frequency domain of a signal, but rather the global
probability distribution of the Pauli error rates in a quan-
tum device and the eigenvalue distribution of the Paulis in
a superoperator representation of a Pauli noise channel, so
this formalism requires some adaptation.

Given the WHT mapping in Eqs. (5) and (6), the algo-
rithms presented in Refs. [44,45] are broadly applicable,
but require some modifications. We note where adjust-
ments have to be made. One major difference is our
inability to simultaneously measure noncommuting Pauli
operators. Below we give a broad overview of the recon-
struction algorithms as applicable to our needs. A complete
and rigorous analysis can be found in Sec. VIII, but the
main recovery guarantee is stated below in Theorem 1. We
first deal with the noiseless case.

The main idea behind the algorithm is to note that each
eigenvalue is made up of a linear combination of all the
error rates. By subsampling the eigenvalues, we are able
to split up the error rates, figuratively creating “bins” of
error rates, where each bin contains a linear combination
of a smaller number of error rates. Provided that there are
sufficient bins, then in the sparse regime most of these bins
will only contain a few error rates with weight ≥ ε0. Using
aliasing, we can identify these bins and can therefore eval-
uate these error rates. This information will allow us to
reconstruct all the sparse error rates. With this in mind,
the reconstruction algorithm can be broken down into three
main steps.

1. Determine the subsampling bins and perform the
experiments to measure the required eigenvalues.

2. Calculate and measure the aliased bins to enable
identification of single-Pauli bins (singletons) and
the Pauli error rates that occupy them.

3. Run a decoder to “peel back” singletons, converting
multi-Pauli bins to single-Pauli bins and repeat until
all error rates are identified.

We describe these three steps in an intuitive man-
ner below and relegate the analysis and proofs to
Sec. VII.

Step 1—Subsampling. The intuition behind the first step
is that it is possible to sample a specific pattern of eigen-
values that will allow the reconstruction of the global
probability vector, but where various probabilities are
binned (i.e., added together). For instance, given a global
probability vector with N = 4n values it is possible to

rewrite this as a “reduced” vector (p̃) with B = 2b values,
each value being composed of the summation of N/B of
the original global probability values (possibly with signs).
In the regime where our sparsity is s < 2n then we show
that with appropriate random sampling a large number
of these reduced vector values (which we call bins), will
be composed of none or one of our sparse Pauli errors,
i.e., those with a weight ≥ ε0 for a parameter ε0 to be
chosen later. In what follows we always choose B = 2n,
but we occasionally use the notation B = 2b (so that b =
n) to illustrate where a given numerical factor originates
from.

Whereas Ref. [44] imagined using specific bit patterns
of binary strings to index the requisite eigenvalues to sam-
ple, we wish to exploit the ability of a quantum device
with independent measurement on each qubit to sample
from a bit string of 2n values. As previously discussed,
the protocol in Ref. [37] shows how to measure, to multi-
plicative precision, the Pauli eigenvalues of 2n commuting
Paulis using one randomized-benchmarking style exper-
iment with n-bit spin measurements at the output. The
constraint that the Paulis measured be mutually commut-
ing is exactly the constraint we require for the subsampling
to allow us to create the required reduced probability
vector p̃.

Suppose we have a specific stabilizer group S. We post-
pone how to choose this group until later. We can represent
the entire stabilizer group by an n× 2n binary matrix S
whose j th row is the stabilizer generator sj .

Now let v ∈ F
n
2 label the elements of the chosen stabi-

lizer group, for example via the mapping v.S, where v is
thought of as a row vector. Our reduced probability vector
p̃ then consists of B bins each containing a sum of N/B
distinct Pauli errors. It is labeled by a string j ∈ F

b
2 and is

given by

p̃j = 1
B

∑

v∈Fn
2

λv.S(−1)j ·v . (7)

The effect of this is that the sampled Pauli eigenvalues
from the stabilizer group, when transformed by the Walsh-
Hadamard transform, give us B bins each containing a sum
of 2n = N/B error rates, many of which will be zero in
general.

The binning is chosen in such a way that with high
probability there will be a large number of bins that only
contain a single Pauli error rate with a weight ≥ ε0 (the
other Pauli errors allocated to that bin being, effectively,
zero). This will depend on the size of the bins and the spar-
sity of the Pauli error rates, and is discussed further in Sec.
VII. A simple example of the subsampling and binning
idea is shown in Fig. 2.
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FIG. 2. Illustrative diagram of the bipartite graph that is used to extract information from the subsampling bins. Here we show a
simple example for two qubits, where only three nontrivial Paulis (IY, XY, and ZX ) have errors. To follow the diagram, we have
on the right-hand side all 16 possible Pauli errors. The ones with weight > ε0 are darker colored. The WHT transform combines
these Pauli errors, forming the “dense eigenvalues.” The color of the arrow indicates whether the Pauli is added or subtracted by the
transform—although the detail is not necessary to follow here. The subsampling algorithm then selects two sets of stabilizer groups.
In this example the first corresponds to the II , IX , XI , and XX stabilizers, the second to the II , ZY, XZ, and YX stabilizers. These
form the two sets of sampled eigenvalues. Each of these two groups of four sampled eigenvalues can then be transformed back using a
WHT transform yielding four numbers for each group. Each of these four numbers is made up of the sum of four possible Pauli errors,
which are indicated inside the inner boxes. For ease of reference the Paulis with weight greater then ε0 are colored red. This is shown
in the right-hand side of the “bipartite graph” section of the diagram. To summarize, at this stage, the subsampling algorithm has split
the Paulis up as shown (II , IX , XI , and XX stabilizers for group 1 and II , ZY, XZ, and YX for group 2), separating them into bins
consisting of singletons, multitons, and zerotons, as described in the text. In this example, it can be seen that the IY Pauli exists as a
singleton in group 2, allowing its value to be recovered. It can then be “peeled” from the third bin in group 1 converting that bin from
a multiton to a singleton containing just Pauli XY. This then allows Pauli XY to be recovered as well, which would not otherwise be
possible, as the signal would conflate with that of IY (if one were looking at group 1 in isolation). Iterative peeling in this fashion will
eventually recover all of the nonzero Pauli error rates. Details as to how we determine if a bit is a singleton or multiton are contained
in the text. Workbooks in [42] contain example implementations.

So how do we construct our stabilizer group? The most
obvious way is to sample a random n-qubit Clifford (see
Refs. [48,49] for how to do this). However as n grows past
a few qubits, then on current devices the number of sin-
gle and multiqubit gates required to construct a generic
element of the Clifford group requires circuits of depth
O(n2/ log n), and if these circuits are noisy then this will
wash out the signal required to estimate the eigenvalues. A
better way for current devices is to use a random subset of
n-qubit stabilizers that can be formed from a single round
of nonoverlapping two-qubit Clifford gates. This has the
added advantage of making it trivial to work out how to
perform step 2.

Step 2—Aliasing. The question then becomes: how do
we detect which bins contain a single Pauli error rate?
To do this the reconstruction algorithm uses the shift and

modulation property of the WHT. Specifically, if we let
{pk} be the WHT of {λm} we have

λm+n
WHT←→ (−1)〈n,k〉pk. (8)

By taking each element of the stabilizer group and off-
setting the sample with a shifting bit pattern (e.g., for
four qubits the sample would be offset by the five follow-
ing bit patterns [0, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0],
[0, 0, 0, 1]) then the Pauli error rates consigned to that bin
are no longer merely summed but rather are added or sub-
tracted depending on whether the inner product of their “bit
strings” and the relevant pattern is zero or one. This result
is illustrated in more detail in Algorithm 2 and Lemma 1,
where we also discuss how to use bit-flip error-detection
codes to make the decoding more robust to noise.
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This leads to a number of remarkable effects. If the bin
is empty (i.e., contains no Pauli error rates with nonzero
errors) each of the offset bins (i.e., for a particular j each
p̃j ,d, d ∈ {20 . . . 22n}) will also be zero. If the bin contains
only one nonzero Pauli error rate then the magnitude of
the sum of each of the offset bins will be constant, and
the sign of the sums will identify exactly which Pauli has
the nonzero error rate. (For example using the four qubit
offsets shown above, if the absolute values of the bins
were all 0.001 and the signs of the four offset bins were
(+,−,−,+), this could only be caused by a single Pauli
error rate of 0.001, with a bit string of 0110.) In every
other case, the bin contains multiple Pauli error rates (a
multiton bin), which leads us to the PEELING decoder (see
step 3).

So how can we construct the experiments that will allow
us to extract the “shifted” eigenvalues? For instance, one
might note that for any particular stabilizer group S , the
offset bit pattern applied to each of the elements of the
group are unlikely to form a stabilizer group.

It transpires that where we use a stabilizer group created
by local two-qubit Cliffords (on each qubit pair), we can
do this simply by iterating each distinct qubit pair through
four further (different) two-qubit stabilizer patterns. There
are five two-qubit stabilizer groups, the union of whose
bases form a complete set of mutually unbiased bases; let
us label them S⊗2

1···5. We set out a specific choice of these
groups in detail, together with the two-qubit circuit needed
to create them, in Fig. 3. The initial stabilizer is chosen
by selecting randomly from S⊗2

1,2 for each qubit pair. This
becomes the stabilizer for the purpose of step 1. This cir-
cuit is used to conduct the first experiment and extract
2n Pauli eigenvalues. The offset pattern required for this
in step 2 is constructed by iterating over each qubit pair,
and replacing the circuit chosen in step 1 with one of the
other five (for a total of four further experiments per qubit
pair). The total number of experiments required is there-
fore 2n+ 1. By analyzing each of the experiments formed
we will be able to pull out all of the eigenvalues determined
by such experiments. Figure 3 shows the circuits used
for each experiment and illustrates the method described
above.

Step 3—Peeling. If we use a variety of subsampling
matrices (that is we repeat steps 1 and 2 for more than one
random initial choice of Cliffords) we are now in the posi-
tion where we have identified a number of Pauli error rates
(from bins that contain only one Pauli error rate) and we
will also have a number of bins that contain more than
one Pauli error rate (multiton bins). In general, for any
two stabilizer groups, different Pauli error rates will get
hashed into different bins. Where we identify a single Pauli
error rate under, say, stabilizer group 1, that same error
rate may be in a different bin under stabilizer group 2, a
bin it shares with one or more different high weight Paulis
(i.e., it may be in a multiton bin under stabilizer group 2).

However, because we know the value of this Pauli error
rate (since it is a singleton under stabilizer group 1), we
can remove it from the bin created by stabilizer group 2 by
simple subtraction. After this removal, some bins that were
previously multiton bins will now become singletons, or
at the very least they will be closer to being singleton in
that we are left with a bin that now has one fewer Pauli
error rate in it. This removal of the value of a previously
identified singleton from a different stabilizer group’s bin
is known as “peeling back” the known values, giving the
PEELING decoder its name. The goal is that when we peel
back our identified error rates, we create more and more
bins that now contain only one Pauli error rate. This can be
applied in an iterative fashion. We can then iterate this until
we either identify all the Pauli error rates (all the bins are
empty) or until we have no further single Pauli error rates
to peel back. All of these steps can be viewed in Algorithm
3. In the latter case the reconstruction algorithm has failed,
although we will at least know the magnitude of the error
rates we have failed to identify, and can perform additional
experiments to try to learn them.

A. Dealing with noise

Using the ideas in Ref. [45], we can modify the recon-
struction algorithm to handle noise of the form

λ→ λ+ w, (9)

where w is a Gaussian distributed noise vector, w ∼
N (0, ξ 21). It is only for simplicity in the proof that
we consider the isotropic case, and small dependencies
and correlations do not substantially affect the observed
numerical performance.

In our case, the noise arises as the estimation error in
our eigenvalues caused by finite sampling. These finite
sampling errors occur because of the limited number of
random sequences and measurement shots per sequence
occurring when the eigenvalue estimation experiments are
carried out. Errors of this nature have been analyzed in
Ref. [37]. To reduce noise, the number of sequences and
shots per experiment needs to be increased, and this sample
complexity was also bounded in Ref. [37]. In the rele-
vant regime of high precision, the estimation error on the
eigenvalues will be approximately normally distributed,
and empirical estimates of the variance and covariance
can be determined by bootstrapping from the observed
measurement outcomes [38].

The PEELING decoder only requires two adjustments
to account for such noise: the zero-Pauli verification and
the single-Pauli search protocols.

For the former, in the noiseless model we identify a bin
as being empty if the value of the bin (and each of the off-
set bins) is zero. Where we have noise, we simply relax the
requirement that the bins are exactly equal to zero before
identifying them as empty. We can bound an acceptable
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(a)

(c)

(b)
(d)

FIG. 3. (a) The type of circuit described in Ref. [37] that allows the recovery of 2n eigenvalues of the averaged noise channel of the
device. The random Pauli gates (blue) are used to twirl the channel and by averaging over a number of random choices of Pauli gates,
the noise channel in the device is transformed into a Pauli channel. In a similar way to randomized benchmarking, by repeating the
twirl for a certain number of Pauli gates (m) and then returning the system into the computation basis by choosing the Pauli inverting
the twirl, a decay curve will be induced and this can then be fit to determine the eigenvalues independently of state preparation and
measurement errors. The single n-qubit Clifford (and its inverse at the end) determines which of the 4n Paulis are sampled and an
appropriate Clifford can be used to select any n-qubit stabilizer set. (b) A further modification of the circuit, where instead of using
a generic n-qubit Clifford only two-qubit Cliffords are used. (Where the device has an odd-number of qubits, a single Clifford can be
used on one of the qubits.) As discussed in the text, for each chosen value of m the circuit is repeated for multiple sequences with
different randomly chosen Paulis, but for fixed Cliffords. Collectively each of the runs for multiple choices of Paulis carried out over
several different lengths of m are defined as an experiment. (c) How, once an experiment has been chosen in step 1 of the procedure,
further experiments are created in order to determine the offsets required to identify the Pauli (see text). As shown in step 2, each
of the two qubit Cliffords needs to be cycled sequentially through the four other two-qubit stabilizer groups (i.e., the four that are
different from the initial choice). This means that for each sequence in step 1, a further 2n experiment needs to be performed, leading
to 2n+ 1 experiments per chosen stabilizer group. For the second group an offset of one qubit should be chosen, meaning the local
stabilizer groups now span different qubit pairs. Simple Pauli twirls can be carried out on any odd or isolated qubits. (d) Some example
subcircuits required to perform the transform into the local stabilizer group listed in (c)—step 2. The inverse gate will be of a similar
form.

small value as indicating an empty bin, given the num-
ber of “noisy” zeros in the bin and our estimate of the
noise variance. This will lead to a noise floor of Pauli error
weights we can recover. That is, we are unlikely to recover
those Pauli errors with a value so small they are swamped

by the noise in the bins. This is an inevitable consequence
of the noise.

The latter case of single Pauli identification has two
aspects that need to be considered. The first is “does the
bin contain only a single Pauli?”, and the second is “if
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so, which Pauli?”. For a noisy version the first question is
dealt with the same way as the noisy zero, i.e., we require
only the magnitudes of the offset bins to match to within
some estimated noise window. While this runs the risk of
not noticing some small Pauli error rates that are also in
the bin, it appears to work well in practice. The second
is more akin to a noisy bit-flip channel, in that the noise
may cause us to incorrectly identify a “1” as a zero or vice
versa. (This is more likely when the noise is commensurate
with or greater than the Pauli error weight.) One simple
method of dealing with this is to repeat sample with dif-
ferent offsets, and then take a majority vote, however our
numerical simulations do not suggest that this is neces-
sary. Finally we can use a number of random offsets and
some additional fixed offsets chosen in such a way they
form a classical error-correction code to further protect the
algorithm from noise. When an appropriate classical code
is chosen this does not alter the sample complexity scaling,
though it does increase slightly the number of experiments.
It also comes with a robust recovery guarantee as described
in the next section and Sec. VII.

IV. RECOVERY GUARANTEE FROM NOISY
EIGENVALUES

Using the algorithm illustrated above and leveraging
some proofs contained in Ref. [45], we can construct the
following recovery guarantee that relates our ability to
recover Pauli error rates with bounded error to the noise in
the estimated Pauli eigenvalues. The intuition behind the
guarantee is that by increasing the number of offset obser-
vations we can reduce the chance of incorrectly detecting
whether the bin occupancy is zero, or one, or more than
one. If the bin detection succeeds, then the peeling step
will succeed with high probability for appropriate choices
of the subsampling and aliasing designs.

Our recovery guarantee does however rely on several
assumptions, which we now state explicitly.

Assumptions 1. Let p ∈ R
N be the target Pauli error rates

with support K = supp(p) and sparsity s = |K|.
A1 (Random sparse support.) The support set K is cho-

sen uniformly at random from all subsets of [N ]
of size exactly s, where s = 4δn is sublinear in the
dimension N = 4n for some 0 < δ < 1/2.

A2 (Independent Gaussian noise.) Each queried Pauli
eigenvalue λj has noise given by independent Gaus-
sian noise centered around the eigenvalue with
variance ξ 2.

A3 (Good signal to noise.) Each error rate pm for m ∈
K is lower bounded by pm ≥ ε0 for some ε0 > 0, the
eigenvalue noise variance is upper bounded as ξ 2 ≤
min( B

s2 , 1), and the two are related via ε0 ≥ 2ξ/
√

B.
Here B is the number of bins in a single subsampling
group.

Our main theorem is then the following.

Theorem 1. Suppose Assumptions 1 hold for an unknown
Pauli channel with eigenvalues λ and error rates p.
Then with failure probability PF ≤ e−O(n), Algorithms
2–4 estimate the s-sparse Pauli error rates p̂ such that
‖̂p− p‖∞ ≤ 2ξ/

√
B using O (sn) eigenvalue queries and

O(sn2)-time classical computation.

Proof. The proof is given in Sec. VIII. �
Note that our main theorem references a noisy eigen-

value oracle rather than a direct sample complexity for
estimating the eigenvalues. From Ref. [37], O(sn) queries
to the eigenvalue oracle can be approximated to within
variance ξ 2 using only O

(
n2/ξ 2

)
samples. While a variant

of the protocol in Ref. [37] can make the noise indepen-
dent, it will not be exactly isotropic Gaussian noise, so we
can only heuristically claim this as the sample complex-
ity. This is why we state the formal main result in terms of
query complexity.

It is worth remarking on the strength of the assump-
tions that go into the statement of the theorem. Assump-
tion A1 is mathematically convenient, but is certainly too
strong physically since most errors in near-term quan-
tum devices are likely to have low weight. This could in
principle be compensated by incorporating a randomiz-
ing permutation into the experimental design. However,
our experiments (see the next section) do not seem to
require such a compensation for convergence. Assumption
A2 is again mathematically convenient, and it will only
ever be approximately true in practice. We believe that
other error models with weak correlations and bounded
variance will have similar guarantees, but an analysis of
this would introduce significant complications without elu-
cidating anything about the algorithm. Weakening A2 in
this way would be interesting future work, as it would
let us make direct formal statements about the sample
complexity. As for our final assumption, a signal-to-noise
assumption along the lines of Assumption A3 seems to
be a mathematical necessity for convergence. However,
it may be possible that a guarantee could still be proven
with a smaller signal-to-noise ratio or with weaker restric-
tions on ε0 and ξ . For example, a simple corollary of our
result is a guarantee in the total variation distance (1-norm)
such that 1

2 ‖̂p− p‖1 ≤ sξ/
√

B, which is nontrivial exactly
when ξ <

√
B/s (cf. A3). It might be easier (and more nat-

ural) to directly prove this implication of our result, or it
may be possible to prove this using weaker assumptions.

V. EXPERIMENTAL VALIDATION

To validate our algorithm we use data extracted from
a 14-qubit superconducting device build by IBM. In Ref.
[38] the complete distribution of locally averaged Pauli
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error rates in the device was estimated. In this work, we
recycle the data from that experiment to validate our new
algorithms.

The data set from Ref. [38] consists of 214 locally aver-
aged eigenvalue estimates, meaning that each eigenvalue
is labeled by a 14-bit string that labels the presence or
absence of a nontrivial Pauli on each corresponding qubit.
This is in contrast to the full eigenvalues, each of which
would require a 28-bit label and could additionally resolve
the entire set of 228 Pauli eigenvalues, without local aver-
aging. Although we could run our algorithm on the 214

locally averaged eigenvalues, to make it more challeng-
ing we look at random self-consistent extrapolations of the
data onto the full set of 228 ≈ 2.7× 108 eigenvalues.

The random interpolation proceeds as follows. From
the estimated eigenvalues of Ref. [38], we reconstruct the
locally averaged error rates. (In fact, this step was already
done in Ref. [38].) For each locally averaged error rate, we
pick a uniformly random point in the probability simplex
of the Paulis supporting the local average. This defines a
new probability distribution on the full set of 228 Paulis.
Every such extrapolation has the property that locally aver-
aging it will return the original experimentally observed
data. We construct a “true” set of known Pauli channel
eigenvalues by transforming (using the Walsh-Hadamard
transform) on these extrapolated error rates. This gives us
a family of experimentally derived eigenvalue oracles that
we can use to validate our numerical reconstructions.

The data from Ref. [38] have a “no-error” probability
of about 0.86, and upon extrapolation they have approx-
imately 200 Paulis with an error rate above 10−5, about
600 above 10−6, and about 2000 above 10−8. Although
the original estimation cannot resolve error rates as small
as 10−8 with meaningful error bars, our eigenvalue oracle
still has access to these numbers as part of the simulation.
For this discussion, we focus on reconstructing errors in
the regime above 10−5, as these are the most relevant. This
corresponds to a sparsity s = 4δn with roughly δ ≈ 1

4 .
As can be seen from Fig. 1, the sparse recovery protocol

performs well in this regime (δ � 0.25), requiring only a
fraction of the eigenvalues that would be required for a full
recovery of all Pauli error rates. The limiting factor in this
regime is the noise in the oracle, which equates directly
to the number of measurements and sequences sampled
as part of the original experiment (see Ref. [37] for rele-
vant reconstruction guarantees). It appears that the effect
of the protocol is to allow recovery of the Pauli error rates
to (approximately) an order of magnitude or more less than
the noise in the oracle.

Importantly, if a device has unexpected many-body cor-
relations (for example through unexpected qubit interac-
tions or crosstalk), then we should also be able to find these
errors whenever their probability is above our noise floor.
We validate this feature of the algorithms as well by inject-
ing known high-weight Pauli errors into the oracle. Our

algorithm reveals and evaluates such Pauli error rates to a
high degree of relative accuracy, as shown in Fig. 1(e).

Section V A discusses the regime where (δ ≥ 0.25). In
that case continued recovery of Paulis with low error rates
requires some changes to the local stabilizer groups used
(or a switch to global random stabilizer groups).

A. Experiments in the regime 1
4 < δ < 1

2

While the experimental protocol presented above is
likely to be all that is required in most practical regimes, if
the number of Paulis to be recovered is large then a slight
modification might be needed. Unlike the situation where
one is using completely random stabilizer groups, the local
stabilizer protocol can fail when trying to reconstruct many
low-error Paulis that differ only in one or two Paulis, in
such a way that they cannot be separated by the local stabi-
lizers. This might occur, for instance, in the regime where
δ > 0.25. In such circumstances, one can cycle each dis-
tinct set of two qubit pairs through the five stabilizer groups
identified in Fig. 3(c), and then generate the offset bins for
each of them. The number of experiments that need to be
performed are the original experiment (1), then a further
four for each qubit pair (4), times the number of qubit pairs
(n/2), times the number of experiments needed to generate
the offsets on the remaining n− 2 qubits [4(n− 2)], for
a total of 1+ 8n(n− 2) = O(n2) total experiments. The
eigenvalues gathered this way allow the creation of n/2
properly offset subsampling matrices of 2n+2 bins each
containing 2n−2 Paulis. Empirically, this appears to be suf-
ficient to exactly recreate the global probabilities up to
δ = 0.5. Figure 1(b) illustrates the extra recovery power
available in the highest precision regime.

VI. HEURISTIC NOISE RECONSTRUCTION

Here we describe in more detail the intuition behind
the algorithm, the experiments prescribed and a simplified,
practical extraction algorithm. Our GitHub repository [42]
contains code and examples showing how the algorithms
can be used to recreate the figures in this paper.

A. Determining a suitable number of subsampling
groups

Our proofs relating to the recovery of s-sparse Pauli
errors require an assumption that each element in the
support set K is chosen independently and uniformly at
random from [N ]. At first glance it may appear that this is
not likely to be the case in a quantum device as the Pauli
errors are likely to cluster around low-weight Pauli errors
rather than be uniformly distributed over the 4n different
possible Pauli errors. However where we choose random
n-qubit stabilizers (global stabilizer groups) as the basis for
sampling the Pauli eigenvalues, this effectively random-
izes the bin into which we consign any specific Pauli error
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rate, which (empirically) allows us to satisfy the uniformly
random distribution requirement.

Given this we can continue to use the “balls-and-bins”
model utilized in Ref. [45, Appendix B]. We can use this
insight, together with our ability to simultaneously sample
2n commuting eigenvalues, to determine practical values
for the number of subsampling groups C given our bin size
of B = 2n.

Since the sparsity s� N , we have that the expected
number of Paulis (balls) in one bin will be s/N × N/B =
s/B, which in the sparsity regime of interest will be < 2.
Assuming we have an s-sparse distribution, with B = 2n

being the number of bins sampled, we define the sparsity
coefficient η = B/s, which is at least 1. This means that
we require only C, the number subsampling groups, to be
2 in order to recover all of the edges in O(s) iterations with
probability at least 1− O(1/s) (see [45, Appendix B]). It
can then be seen that as each experimental run recovers 2n

eigenvalues, we need to perform at least one experimental
run for each bin plus one for each of the offsets of the bin
times the number of subsampling groups. This means that
the minimum number of experimental runs is 2(2n+ 1).
As we discuss later, by increasing the number of offsets
we can increase the recovery guarantees, but at the cost
of sampling more eigenvalues (although still only scaling
proportional to n).

In the case where our device is too large for η ≥ 1,
for instance where we have had to marginalize over the
measurements as log2(B) ≥ 30, then we can increase our
effective C by marginalizing over randomly chosen qubits
and creating our subsampling matrices from such ran-
domly chosen subsamples of the measurement outcomes.
This will allow us to retain the recovery guarantees with-
out increasing the number of experiments on the device,
although this incurs an increased computational cost in
setting up and performing the peeling decoder.

B. Heuristic algorithm using local circuits

Our numerical simulations based on the data collected
in the experiments from Ref. [38] indicate that randomly
chosen global stabilizers are not in fact necessary to dis-
tribute the Pauli errors widely enough to allow recovery.
It appears that local stabilizer groups suffice. This allows
us to dramatically reduce circuit complexity while keeping
the number of experiments required to a minimum. Figure
3(c) details the local two-qubit stabilizer groups that can be
selected to perform an extraction experiment that is viable
on most current devices. In Fig. 3(d) we show the local
Clifford circuits that can be used (with their corresponding
inverse) at the beginning (end) of the measurement cir-
cuits to create these local stabilizer groups. In Ref. [37]
it was shown that using such circuits we can estimate 2n

Pauli eigenvalues with relative precision ε, using O(ε−2n)

measurements.

Having chosen the series of stabilizers to measure,
together with the circuits for offsets, we will have all
the relevant eigenvalues required to use the noisy peeling
decoder.

In Algorithm 1 we show how to operate the decoder on
a practical level, assuming that there are a large number

Algorithm 1. Noisy peeling decoder.
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of Paulis sitting below the level of interest (i.e., with an
error rate � ε0). To understand how it works one should
note that there are two main components to dealing with
the noise. The first is when deciding if the bin is zero, i.e.,
when the only values in the bin and its offsets are noise. We
initially start willing to assume this is the case and slowly
become less willing (by δz) to accept that the bin is really
zero as we start to try and recover smaller and smaller error
rates. This means that initially the decoder will concentrate
only on bins that have relatively large Pauli errors in them
and will be less likely to mistake noise as indicative of an
error.

For instance, assuming a reconstruction error normally
distributed with a standard deviation of 0.01, then if a bin
contained 214 0-error Paulis with such noise, we would
expect the mean of such a bin to be centered around 0,
with a standard deviation of

√
(0.012/214) ≈ 7.8× 10−5.

Therefore, allowing 3 standard deviations we expect the
square of the noise in the bin to be less than approximately
5.5× 10−8. By ignoring bins with a squared value less
than 5.5× 10−8 and slowly decreasing this number to, say,
5.5× 10−10 one can ensure that higher error rate Paulis are
first recovered, before exploring possibly empty bins for
low error rate Paulis.

The second component is the willingness to accept that
there is only one value in the bin offsets. This time we start
with a strict check, and we accept only a Pauli if the noise is
below a threshold, then slowly relax this (by δs) as we aim
to recover Paulis that happen to have increasing amounts
of noise in the bins with them.

VII. PROVABLE RECOVERY ALGORITHM

In this section, we describe in detail a hashing-based
subsampling recovery algorithm for which we prove a
recovery guarantee. For convenience, we collect the nota-
tion used in the provable recovery algorithm into a glossary
of symbols in Table I.

Consider a Walsh-Hadamard transformation among n-
qubit Pauli eigenvalues and Pauli error rates like Eq. (5).
In order to recover a set of sparse error rates with noisy
eigenvalues, it is necessary to consider a noisy variation

λ̂k =
∑

m∈F2n
2

(−1)〈k,m〉pm + wk, k ∈ F
2n
2 . (10)

Note that we employ wk to indicate the sampling errors
of the eigenvalues, and for simplicity we are assuming
that they are all independent Gaussian random variables
with distribution N (0, ξ 2). The proposed algorithm fol-
lows the SPRIGHT framework of Ref. [45]. It first samples
Pauli eigenvalues and forms several groups of bins. The
algorithm then implements the peeling-decoder Algorithm
4 to recover individual Pauli error rates from the sampled
bins.

To subsample bins from noisy eigenvalues, this
algorithm employs C subsampling groups. Each subsam-
pling group is specified by a binary matrix Mc ∈ F

2n×b
2 for

c ∈ [C] and a set of P offsets. The binary matrices Mc serve
as hash functions to isolate individual Pauli error rates into
B bins with high probability. In our experimental setting,
this B is always chosen as B = 2n for convenience, while

TABLE I. Glossary of symbols used throughout the proof.

Glossary of symbols

n number of qubits
N 4n, the number of Pauli operators modulo phase
s sparsity, s = 4δn for 0 < δ < 1

2
δ related to sparsity by s = 4δn and 0 < δ < 1

2
B number of bins in a single subsampling group, in the experimental regime described in this paper, typically B = 2n

b B = 2b for 0 < b ≤ 2n. Typically B = 2n, but this b is used to indicate the bin number
η the sparsity coefficient, being B/s
C is the number of subsampling groups
P1 the number of random offsets chosen for each subsampling group
P2 the number of extra offsets chosen for each subsampling group to form an error-correcting code
P P = P1 + P2
Uc,t[j ] the bin generated from subsampling group c ∈ [C] with index j ∈ F

b
2, and the subscript t ∈ [P] indicates the offset

this bin uses
ξ the standard deviation of the noise in the estimated Pauli eigenvalues created by shot noise from the original

experiments
σ the standard deviation of the noise in the Pauli error rates created by WHT from the noisy Pauli eigenvalues
ν the standard deviation of the noise in a given bin, created by subsampling the noisy Pauli eigenvalues
ε0 the lower bound on the nonzero Pauli error rates, required by assumption A3
wk Noise on the eigenvalue λk, distributed like N (0, ξ).
Wm Noise on error rate pm, induced by the WHT.
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in the following proof it is sufficient for B to be as large as
s, and increasing B exponentially to s is enough to find out
the magnitude of s. Therefore in the proof, we use the gen-
eral case that B = O(s). The P offsets provide redundancy
designed to make the recovery algorithm robust to limited
amounts of sampling noise.

Before constructing explicit algorithms, we shall intro-
duce a method for choosing offsets by using good error-
correcting codes [45].

Definition 1 (Offsets). Let P = P1 + P2 with Pi = O(n)

for i = 1, 2. We choose P1 random offsets dt for t =
0, . . . , P1 − 1 chosen independently and uniformly at ran-
dom over F

n
2, and P2 coded offsets dt for t = P1, . . . , P − 1

such that the offset matrix G = [· · · ; dt; · · · ; ] ∈ F
P2×2n
2

constitutes a generator matrix of a linear code with param-
eters [P2, 2n, βP2] with β > P. Here P is an upper bound
on the probability that the sample error will change the
sign of a singleton bin (i.e., a bin with a single nonzero
Pauli error rate).

It is convenient in what follows to define a 2n× 2n
matrix Jn given by

Jn = X ⊗ In =
(

0n In
In 0n

)
, (11)

where 0n is the n× n zero matrix and In is the n× n
identity matrix. This is the symplectic form that controls
the commutation relations in the Pauli group. That is, if
p , q ∈ F

2n
2 , then

〈p , q〉 = pTJnq, (12)

where the arithmetic is implicitly modulo 2.
We now introduce Algorithm 2 to use for data prepro-

cessing and bin construction. The indices on each array are
considered to be modulo their respective dimension, and
each element of the summation M′c�+ dc;t is calculated in
the field F2. The algorithm calculates bin coefficients using
the corresponding binary matrices and by taking sums over
the whole space F

b
2. After this subsampling process, each

subsampling group contains P sets of B = 2b bins, where
b is a free parameter. The result of applying Algorithm 2 is
summarized in the following lemma.

Lemma 1 (Basic observation model). The B-point WHT
subsampled bin coefficients with index j ∈ F

b
2 can be

written as

Uc;t[j ] =
∑

m: MT
c m=j

pm(−1)〈dc;t,m〉 +Wc;t[j ], ∀t ∈ [P].

(13)

Algorithm 2. Subsampling and WHT.

Moreover, the sample error is as follows:

Wc;t[j ] =
∑

m: MT
c m=j

Wm(−1)〈dc;t,m〉,

where Wm is the noise of the Pauli error rate pm.

We remark that the noise Wm on the error rate pm is
induced by the Gaussian noise {wk} on the noisy eigenval-
ues {λk} by the WHT. It is important to keep these two
noise sources separate, although we do not make much
direct use of wk in the remainder of the paper.

Proof. Denote pm +Wm by p̃m, so the noisy Pauli eigen-
values can be transformed to

λ̂k =
∑

m∈F2n
2

(−1)〈k,m〉p̃m, ∀ k ∈ F
2n
2 .

From Algorithm 2, a specific bin Uc;t[j ] for some c ∈ [C],
t ∈ [P], and j ∈ F

2n
2 is constructed as follows:

Uc;t[j ] = 1
B

∑

�∈Fb
2

∑

m∈F2n
2

(−1)〈m,M′c�〉(−1)〈j ,�〉(−1)〈m,dc;t〉p̃m.

A key observation is

〈m, M′�〉 = mTJnM′�

= mTJn × JnMJb�

= (MTm)TJb�

= 〈MTm, �〉,
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where the first equation is from the definition of the sym-
plectic inner product in Sec. II, and the second equation
comes from the Modify part in Algorithm 2, and the third
is due to the following property of J :

Jn × Jn = I2n ∀ n ∈ N. (14)

Thus the bin can be simplified as follows:

Uc;t[j ] = 1
B

∑

m∈F2n
2

∑

�∈Fb
2

(−1)〈M
T
c m+j ,�〉(−1)〈m,dc;t〉p̃m

=
∑

m: MT
c m=j

p̃m(−1)〈m,dc;t〉

=
∑

m: MT
c m=j

pm(−1)〈dc;t,m〉 +Wc;t[j ],

where Wc,t[j ] is defined in the lemma. �
We note that from Line 10 in Algorithm 2, the fact that

the original noise w is isotropic, and the fact that the �-bit
WHT is proportional to an orthogonal transformation, it
follows that the noise in each bin Wc[j ] remains Gaussian
distributed, but according to the distribution N (0, ν21)

where ν2 = ξ 2/B. Moreover, we can combine each Uc;t[j ]
for different t ∈ [P], and get a vector

Uc[j ] := (Uc;0[j ], . . . , Uc;P−1[j ])T,

and an analogous vectorization can be implemented on the
offsets

Dc := [dc;0 · · · dc;P−1].

Therefore, Lemma 1 can be rewritten as follows.

Lemma 2 (Bin observation model). The B-point WHT
subsampled bin with index j ∈ F

b in the cth subsampling
group is

Uc[j ] =
∑

m: MT
c m=j

pm(−1)〈Dc,m〉 +Wc[j ], (15)

where the noise Wc[j ] =∑
m: MT

c m=j Wm(−1)〈Dc,m〉 is dis-
tributed as wc[j ] ∼ N (0, ν21) with ν2 = ξ 2/B, and Wm is
the WHT noise of Pauli error rate pm.

Proof. This is a variation of Lemma 1. �
After subsampling and calculating bins, it is straightfor-

ward to design a protocol to extract information from these
bins. The idea is to construct a bipartite graph G, as in Fig.
2, with s left nodes representing nonzero Pauli error rates
and BC right nodes representing bin vectors Uc[j ].

We draw an edge from each left node (a nonzero Pauli
error rate) to every right node that contains that Pauli. Each
Pauli error rate will occur exactly once in each subsam-
pling group, the degree of the left nodes is therefore C. We
can use the resulting degrees of the right-hand nodes to par-
tition them into three types. We call a bin with exactly one
nonzero Pauli error rate a singleton, and similarly there are
zeroton and multiton bins that contain exactly zero or con-
tain more than one Pauli error rate, respectively. (Recall
that this graph is depicted in Fig. 2.) Shortly we describe
in detail a method to detect which type of bin a particu-
lar node has been partitioned into. After invoking such a
bin detector, the peeling decoder can be designed to peel
out the detected singleton Pauli error rates by subtracting
them from every multiton bin in which they appear, remov-
ing the associated edge from the graph. This will reduce
the degree of that right-hand node, potentially turning it
from a multiton bin into a singleton bin. For the range of
parameters that we choose and the assumptions outlined
above, iterating this decoder to discover new singletons
and reduce multitons will converge to reduce the graph to
only zeroton and singleton bins with high probability.

In Algorithm 3, we apply an array T that indicates the
variance of the propagated noise part, Wc;t[j ], in each bin.
These numbers help track the propagation of error in the
bin detector from the calculation in Line 12 of Algorithm
3. The equation in Line 11 of that algorithm describes how
to update T. Lemma 7 below shows the need and utility of
this parameter.

One subtlety to applying the peeling decoder to this
graph is that the graph might have cycles. Peeling on a
graph with cycles will in general lead to dependencies
in the random variables, which complicates the analysis.
However, as we show below in Lemma 5, large local
neighborhoods of the peeling graph look locally treelike
with high probability, therefore we can peel for a large
number of steps before encountering a cycle. With the
correct choice of parameters, the treelike neighborhood
can be made large enough throughout the graph to ensure
convergence of the peeling decoder.

As we previously mention, the peeling-decoder algorithm
is based on a subroutine that we call bin detector (it is
set out in Algorithm 4). We denote it by BD(Uc, Dc, T).
The subroutine, BD, will take a bin, the offsets chosen,
and a noise parameter T as inputs, and it will output an
estimate for the type (zeroton, singleton, or multiton) of
the bin B̂, and if the bin is a singleton it also returns the
estimated index m̂ and Pauli error rate p̂m̂. The subrou-
tine BD also depends on two parameters γ1 and γ2, but
these can be chosen as arbitrary constants in the interval
(0, 1). Their only purpose is to ensure exponential decay
of the failure probability of bin detection, as we discuss in
Lemma 10.

By using the sparsity assumption and our choice of sub-
sampling matrices, this peeling process will succeed with
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Algorithm 3. Subsampling and WHT.

high probability. Intuitively we can see this from our abil-
ity to choose subsampling matrices M in such a way that
we can find bins that typically contain only zero or one
nonzero Pauli error rate. In Ref. [45] the authors pro-
vide a proof that if a bin-detector algorithm always returns
an exactly correct answer, then the oracle-based peeling
decoder has a failure probability that vanishes with the sig-
nal size. So it suffices to propose a suitable design for the
bin detector and a corresponding recovery guarantee.

In designing such a bin detector we need to estimate the
index of the relevant Pauli in the bin. For index estimation
in the setting where there is noise we need to make our
estimation robust. One approach is to use some repetition
of detection and a majority voting. A better approach is to
use some form of error-correcting code for the offsets, as
discussed above in Definition 1. In what follows, we use
the following definition of a sign function:

sgnx =
{

0 if x ≥ 0,
1 if x < 0.

(16)

With this definition, we have the following lemma, which
confirms that offsets chosen in accordance with Definition
1 can be used to estimate the indices.

Lemma 3. Given a singleton bin (m, pm) observed with
noise

U = pm(−1)〈d,m〉 +W, (17)

and supposing that the variance in each row (offset, d) of
the bin is equal to Tν2, then the sign of each observation
satisfies

sgn [U] = 〈d, m〉 ⊕ Z, (18)

where Z is a Bernoulli random variable with probability
Pr(Z = 1) ≤ Pm := √

Tν2/2πp2
me−p2

m/2Tν2
.

Proof. The first term in Eq. (18) follows trivially from the
sign of the power of minus one in Eq. (17) and the fact
that pm, being a probability, is always positive. The second
term, Z, will be 1 if and only if |W| is larger than pm so
that it can change the sign generated by the first term of
Eq. (17). Therefore, Z is Bernoulli distributed with a prob-
ability that we can bound as follows. Recalling that W is
a Gaussian random variable, we can use the relevant tail
bounds for our assumption on the variance (for details see
Ref. [50]) to obtain

Pr(Z = 1) = 1
2

Pr(|W| > pm) = Pr(W > pm)

≤
√

Tν2

2πp2
m

e−p2
m/2Tν2 = Pm, (19)

where T is the number extracted from the array T in
Algorithm 3. �

Remark 1. If we assume that the maximum degree of right
nodes in the bipartite graph G is not larger than 1

2 P1, Pm <
1
2 is satisfied for all m ∈ F

2n
2 (using A1 in Assumptions 1

and Lemma 9). We bound the probability that this right-
hand degree assumption fails in Lemma 8.

In what follows, we ignore the subscripts c and indices j
of the bins when it does not lead to any misunderstanding.

Now Lemma 3 can be used to identify m̂, the index of
the Pauli error rate in a singleton bin. Given the offsets
chosen in Definition 1 and recalling Lemma 2, we have the
following equation from the code generator G for the signs
of every element in a bin,

⎡

⎢
⎣

sgn [UP1 ]
...

sgn [UP−1]

⎤

⎥
⎦ = 〈G, m〉 ⊕

⎡

⎢
⎣

ZP1
...

ZP−1

⎤

⎥
⎦ . (20)

Since the bit length of the index m is 2n, we can choose
the number P2 as follows. We choose any linear code with
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Algorithm 4. Bin Detector: BD(Uc, Dc, T).

rate R and distance d, and a decoder that can decode up to
at least a minimum distance β2n/R for parameters β, R =
�(1). Obviously this requires d ≥ β2n/R. The additional
constraint on β is that β is larger than the probability P of
any of the Bernoulli random variables Zi to be 1. Then we
can choose P2 = 2n/R. That is, we are looking for a clas-
sical linear code with parameters [2n/R, 2n, d ≥ β2n/R].
There are a number of pre-existing candidate codes that
can be decoded up to a constant fraction of the minimal
distance in linear time in the length of the code exist that
satisfy these stringent conditions. For example, expander
codes [51] can be implemented to construct the code gen-
erator G and the parity check matrix H, and the greedy
linear-time decoder [51] can correct errors with weight up
to d/4. The decoder of the corresponding code is required
to retrieve the estimate m̂. Since the manner of coding and
decoding is flexible, here we use only Decode to indicate
the decoder.

m̂ = Decode

⎛

⎜
⎝

⎡

⎢
⎣

sgn [UP1 ]
...

sgn [UP−1]

⎤

⎥
⎦

⎞

⎟
⎠ . (21)

With this we can specify the modified algorithm to
detect the bin U with the offsets as in Definition 1 along
with the corresponding number T.

We are now ready to give a precise specification of the
bin-detector algorithm.

VIII. PROOF OF MAIN THEOREM

We now repeat the statement of the main theorem.

Theorem 2. Suppose Assumptions 1 hold for an unknown
Pauli channel with eigenvalues λ and error rates p.
Then with failure probability PF ≤ e−O(n), Algorithms
2–4 estimate the s-sparse Pauli error rates p̂ such that
‖̂p− p‖∞ ≤ 2ξ/

√
B using O (sn) eigenvalue queries and

O(sn2)-time classical computation.

Recall that using the protocol in Ref. [37], we can
estimate O(sn) eigenvalues to within variance ξ 2 by
doing O(n2/ξ 2) measurements. Therefore, heuristically,
the entire algorithm needs O(n2/ξ 2) measurements to
achieve this recovery guarantee.

Proof. Firstly we consider the stated query and computa-
tional complexities. From [45, Theorem 2], it is shown that
the oracle-based peeling decoder succeeds with probability
1− O(1/s) for a random sparse set (obeying assumption
A1) as long as C = O(1) and B = O(s). Therefore, to
prepare these bins, the number of queried eigenvalues is
BPC = O(Ps).

To construct the bins and the corresponding graph, the
computational complexity can be calculated by the com-
plexity from the construction algorithm. Note there are P
offset coefficients d and each Uc,t[j ] comes from the sum
of B samples in Algorithm 2. To construct the total set
{Uc,t[j ]}C,P,B, we can use a fast WHT [which has complex-
ity O(B log B) to calculate a B-point WHT] for each offset.
Therefore, the computational complexity for this part is

Z1 = O(PB log B) = O(Psn).

The second part of computational complexity comes from
the computation of Algorithm 3. Each step in the bin detec-
tor checks the type of the bin with O(P) calculations, and
there are O(B) iterations. Accordingly, the complexity is

Z2 = O(PB) = O(Ps).

Therefore, the total computational complexity is Z = Z1 +
Z2 = O(Psn).

Let us denote by Ebin the event that any invocation of the
bin detector (in the execution of Algorithm 3) returns one
or more of the following: (a) an incorrect identification of
the type of bin; (b) wrong indices for a detected singleton,
or (c) a misestimate of the Pauli error rates of a detected
singleton by more than 2ν = 2ξ/

√
B. Furthermore, let D

denote the event that the maximum degree of the right
nodes in the graph G is less than or equal to P1. Let H
be the event that all the peeling routes in the procedure are
cycle-free. Then utilizing the law of total probability we
can bound the failure rate of the entire algorithm as

PF ≤ Pr
(
peeling decoder fails

∣
∣Ec

bin

)

+ Pr (Ebin|D, H)+ Pr
(
Dc)+ Pr

(
H c) . (22)
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Here the subscript c denotes the complement of the event,
e.g., Ec

bin, denotes that no bin detection error occurred in
the entire execution of Algorithm 3.

The first term in Eq. (22) is the chance that the oracle-
based peeling decoder fails, even though the bin decoder is
always correct. This probability scales as O(1/s) (Proposi-
tion 4 in Ref. [45]).

To bound the second term, it is more convenient to con-
sider the probability that every invocation of a bin detector
works correctly given D and H . Let M denote the num-
ber of times the peeling decoder calls the bin-detector
subroutine. This probability can be expressed as follows:

Pr

(
M⋂

i=1

Ec
i

∣∣D, H

)

= Pr

(

Ec
M

∣∣
M−1⋂

i=1

Ec
i , D, H

)

Pr

(
M−1⋂

i=1

Ec
i

∣∣D, H

)

= Pr

(

Ec
M

∣∣
M−1⋂

i=1

Ec
i , D, H

)

· · · Pr
(
Ec

1|D, H
)

,

where Ei denotes the event that the ith call of bin detec-
tor returns a wrong answer. According to Lemma 7, the
parameter T will always correctly estimate the variance if
all the earlier bin detectors worked correctly. From Lemma
10, each term in the above equation will be lower bounded
by

Pr
(
Ec|D, V, H

) ≥ 1− e−O(P1),

where V here just indicates that all the previous bin
detectors work correctly. So we have

Pr

(
M⋂

i=1

Ec
i

∣∣D, H

)

≥ [
1− e−O(P1)

]M
.

Moreover, since M , the number of times the bin detector
routine is called, is at most O(BCs), the upper bound of the
second term is

Pr (Ebin|D, H) ≤ 1− [
1− e−O(P1)

]M

≤ O(BCs)e−O(n) ≤ e−O(n).

Lemma 8 provides that the third term in Eq. (22) is also
exponentially decaying with P1:

P
(
Dc) ≤ e−O(P1) ≤ e−O(n),

where the last inequality comes from the definition of
P1 from Definition 1. Similarly Lemma 5 and Remark 2

provide the bound on the probability of H c:

Pr(H c) ≤ O

[
loglog log(s) s

s

]

≤ e−O(n).

Therefore, the total failure probability of our peeling-
decoder algorithm is vanishing exponentially with the
number of qubits n. And from Definition 1, the total
number of offsets consists of P1 = �(n) random offsets
and P2 = �(n) coding offsets, thus P = �(n) and stated
complexities have been proven. �

IX. TAIL BOUNDS

In this section, we prove several statements bounding
the failure probabilities of various events that can cause
the bin detector outlined as Algorithm 4 to fail. One of the
main lemmas that we need is the following tail bound on
Gaussian random variables.

Lemma 4 (Tail bound [45, Lemma 11). Given g, k ∈ R
N

where k is an isotropic Gaussian random variable k ∼
N (0, ν21N ), then the following tail bound holds:

Pr
(

1
N
‖g+ k‖2 ≥ τ1

)
≤ e−(N/4)

(√
2τ1/ν2−1−

√
1+2θ0

)2

(23)

Pr
(

1
N
‖g+ k‖2 ≤ τ2

)
≤ e−(N/4)

(
1+θ0−τ2/ν2

)2
/(1+2θ0),

(24)

for τ1, τ2, and θ0 satisfying

τ1 ≥ ν2(1+ θ0), τ2 ≤ ν2(1+ θ0), θ0 = ‖g‖
2

Nν2 .

Since we use this Lemma 4 to get a failure bound, it is
critical to show the sample errors within the different off-
sets for a particular bin are independent. However, given
that bins are created as shown in Line 12 in Algorithm 3, it
is not immediately clear that the sample errors remain inde-
pendent. To show this independence let us first extend the
definition of the sample errors Wc;t[j ] to take into account
the effect of peeling-decoder Algorithm 3. Recall that for
any particular bin we have P = P1 + P2 offset bins.

Definition 2. For a specific bin, regard Uc[j ] as a vec-
tor of length P as in Lemma 2. At a given time step in
Algorithm 2, denote the set of indices of the current con-
tained nonzero Pauli error rates by P . Define the random
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offset errors and the coded offset errors by the equation

Wc;t[j ] := Uc;t[j ]−
∑

m∈P
(−1)〈dc;t,m〉pm,

where t ∈ [P1] for the random offset errors and t ∈ P1 +
[P2] for the coded offset errors. We can combine all of
these sample errors to define Wc[j ] following the manner
of Lemma 2.

In order to discuss the independence of errors and the
evolution of their variance, we first introduce some results
to rule out some delicate situations. To define this more
rigorously, consider the directed neighborhood N l

e in the
bipartite graph, which consists of nonzero Pauli error rates
(left nodes) and all the bins (right nodes). The neighbor-
hood N 2l

e with length 2l and an edge e = (v, c) is an
induced subgraph containing all the edges and nodes on
paths e1, e2 · · · , e2l from node v where e �= e1.

Denote by Tl the event that for every edge in the bipartite
graph, this subgraph N 2l

e is cycle-free. If Tl occurs, then all
the first l peeling iterations will progress independently and
there will be no initial error propagating to any bin more
than once in the first l iterations. It has been shown in Ref.
[45] that with sufficiently large s and N , the effective part
of the subsampling-based bipartite graph, similar to Fig. 2,
is sufficiently cycle-free for our purposes, as the following
lemma illustrates.

Lemma 5 (Ref. [45, Lemma 6]). For any iteration l, the
probability of the complement of Tl is bounded as

Pr (T c
l ) ≤ c0 × logl s

s
,

for some constant c0.

Remark 2. Reference [45] shows that the probability pl
that an arbitrary edge remains after l peelings given that
the event Tl is true can be calculated recursively as

pl =
{

1 l = 0
(
1− e−pl−1/η

)C−1 otherwise,
(25)

where η is the factor B/s and C is the number of subsam-
pling groups.

To illustrate the convergence of Algorithm 3 given the
event Tl, consider taking C = 6 and η = 1, which are
reasonable choices in the regime of interest. Then the prob-
ability of an edge will decrease to approximately machine
precision in only three iterations. In general this pl vanishes
exponentially with an exponent of l. Using the law of total

probability, the probability that there exist any edges after
l = �(log log s) iterations is

pl + Pr(T c
l ) = O

(
loglog log s s

s

)

. (26)

Therefore, the event that there exist bins getting peeled by
some earlier bins in a cyclic manner during the whole pro-
cess happens with probability of the same magnitude of
Eq. (26), which converges to zero with s.

Lemma 6. For an arbitrary timestamp in Algorithm 3,
sample errors in each of the random offset errors for a par-
ticular bin Uc[j ] remain independent of each other given
that the peeling route is cycle-free.

Proof. For an initial bin subsampled from Algorithm 2,
consider an arbitrary pair of offsets labeled by t1, t2 ∈ [P1]
in the same bin Uc[j ]

Wc;t1[j ] =
∑

m: MT
c m=j

Wm(−1)〈dc;t1 ,m〉,

Wc;t2[j ] =
∑

m: MT
c m=j

Wm(−1)〈dc;t2 ,m〉.

Since all the errors Wm are i.i.d. Gaussian random variables
N (0, ξ 2/N ), it is obvious that E(Wc;t1[j ]×Wc;t2 [j ]) = 0.
So they are independent given that the expected values of
the samples errors are 0.

The peeling decoder in Line 12 in Algorithm 3 causes
errors in the estimate of Wc;t[j ] to propagate in the follow-
ing manner:

Wc;t[j ]← Wc;t[j ]+ (pm − p̂m̂)(−1)〈dc;t,m̂〉.

We now proceed by induction. As discussed above, the
noise is initially independent, so the base case is satisfied.
Now assume that the sample errors before peeling are inde-
pendent of each other. Observing that the updated error still
has mean zero, we can calculate the expected value of a
product between an arbitrary pair of sample errors in the
offsets of a bin to show independence between the offset
bins. For convenience, denote the updated error by Wc;t[j ]′.
Then we have

E(Wc;t1[j ]′ ×Wc;t2[j ]′)

= E
{
Wc;t1[j ]×Wc;t2[j ]

+Wc;t1[j ]× (pm − p̂m̂)(−1)〈dc;t2 ,m̂〉

+Wc;t2[j ]× (pm − p̂m̂)(−1)〈dc;t1 ,m̂〉

+ (pm − p̂m̂)2(−1)〈dc;t2+dc;t1 ,m̂〉} = 0.

The first three terms vanish because the noise has zero
mean and the peeling route is cycle-free, and the last term
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vanishes because the expectation over the independent ran-
dom offset phases is E

[
(−1)〈dc;ti ,m〉] = 0 for any ti ∈ [P1]

and m. �
In Algorithm 3, we employ an array T to keep track of

the variance of sample error for each bin. This array gets
updated whenever the algorithm peels a bin using an esti-
mated Pauli error rate. We now show that this does indeed
correctly track the variance of the sample errors in the bins.

Lemma 7. Suppose that at a given arbitrary timestamp in
Algorithm 3 all the bin-detector subroutines called earlier
have correctly identified their bins and the peeling route is
cycle-free. Then for each bin and its corresponding offsets
Uc[j ], the sample error for that bin and each of its offsets
Wc[j ] have the same variance Tc[j ]× ν2.

Proof. Since this statement is based on the premise that all
of the earlier bin-detector runs are accurate, we can assume
that the index m̂ = m is correct. We still write m̂ to distin-
guish these index estimates from the original index m. The
idea is to calculate the variance after a peel by induction
with the fact that for any two random variables,

Var (X + Y) = Var (X )+ Var (Y)+ 2Cov (X , Y) .

Assume that the statement in the lemma holds before a
peeling. Then we need to show that if we subtract an esti-
mated Pauli p̂m̂ from a bin in a different subsampling group
that contains this Pauli, the statement is preserved when
updating Tc[j ]. To do this we work out the variance of
the sample error in each term and the covariance between
these sample errors. Armed with this we are able to prove
that the statement is preserved after peeling.

The peeling process (Line 12 in Algorithm 3) causes
error propagation for the error part of the bin Uc[j ] as
follows:

Wc;t[j ]← Wc;t[j ]+ (pm − p̂m̂)(−1)〈dc;t,m̂〉. (27)

The variance of the first term is by induction Tc[j ]ν2, while
the variance of the second term is not so trivial. The esti-
mated Pauli comes from the singleton search, where all
the first P1 observations get summed after adding a ran-
dom sign. Since all the random signs of the Wm̂ terms are
annihilated before summation, and all the other error parts
still remain random, the variance of this second term in Eq.
(27) is

Var (pm − p̂m̂) = Tc′[j ′]× ν2

P1
+ (P1 − 1)B× ν2

P1N
. (28)

Because of the assumption that all the initial errors in dif-
ferent bins are independent and the condition that the every

peeling route is cycle-free, the covariance term vanishes.
Therefore, we calculate variance as follows:

Var
(
Wc;t[j ]

)
after /ν

2 = Tc[j ]+ Tc′[j ′]
P1
+ (P1 − 1)B

P1N
,

which proves the lemma. �
In order to prove Theorem 1 and find a bound on the

variances of the sample errors, it is necessary to find an
upper bound on the parameters Tc[j ], which need to be
analyzed for both the graph and the algorithm. Denote by
G the bipartite graph of which each right node represents a
bin observation, each left node represents a nonzero Pauli
error rate, and edges come from the hash function relation:

MT
c m = j . (29)

That is, a bin-observation-node Uc[j ] is connected to error-
rate-node pm if and only if it holds that MT

c m = j . A right
node is a singleton node if and only if it has a single edge
connected to it. Every time we peel a left node (that is, we
identify a Pauli error) we remove the edges connecting it
and the right nodes. Each peeling therefore decreases the
degree of the right nodes.

The following two lemmas help us bound the integer
array T as we peel along the graph G. We first bound the
right degree of G.

Lemma 8. The maximum degree of the right nodes in G is
less or equal than P1/2 with probability 1− e−O(n).

Proof. Put the right nodes in some sequential order, and
define events {Xi}BC

i=1 where Xi denotes the ith node and
is linked to more than P1/2 left nodes. According to the
bin-observation model, Eq. (15), each bin connects with
N/B Pauli error rates (most of which will be zero), so the
expected degree of a right node is s/B where s is the num-
ber of left nodes. Since the algorithm chooses B = O(s),
the expected degree s/B = O(1).

Note that by Assumption 1, the support of the Pauli error
rates is chosen randomly. Therefore, concentrating on a
specific bin i, we can introduce a random variable di that
denotes the degree of bin-observation-node i (a right node),
and introduce the variable dij , which is 0 if the correspond-
ing j th Pauli error rate is zero or if pj is not in the ith bin,
and 1 otherwise. Then we have the relation

di =
∑

j

dij , (30)

since this counts the support in the ith bin. These variables
dij are actually all Bernoulli variables and the only cor-
relation among them comes from the constraint that there
are exactly s elements in the entire support. This constraint
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means that the dij are negatively correlated, and so the
probability of dij = 1 can be upper bounded by consider-
ing the event that all the other Pauli rates linked with this
bin are zero,

Pr
(
dij = 1

) ≤ sB
N (B− 1)

.

Now consider another set of i.i.d. Bernoulli variables {d′ij }j
each of which is 1 with probability sB/N (B− 1). We then
have

Pr (Xi) = Pr

⎛

⎝
N/B∑

j=1

dij ≥ P1

2

⎞

⎠ ≤ Pr

⎛

⎝
N/B∑

j=1

d′ij ≥
P1

2

⎞

⎠ .

Since the expected value of the sum of {d′ij } is s/(B− 1),
the Chernoff bound is suitable for this case, and we find

Pr (Xi) ≤ Pr

⎛

⎝
N/B∑

j=1

d′ij −
s

B− 1
≥ P1

2
− s

B− 1

⎞

⎠

≤ e−[(B−1)P1−2s]2/2(B−1)[(B−1)P1+2s].

According to the union bound, the event X , which denotes
that there exist some left nodes with degree larger than
P1/2, follows from the upper bound,

P (X ) ≤ BCP (Xi) ≤ BCe−[(B−1)P1−2s]2/2(B−1)[(B−1)P1+2s].

That this is at most e−O(n) follows since B = �(s), s =
�(N δ), and P1 = �(n). �

The degree bound we have just proven allows us to
bound the maximum element of the array T.

Lemma 9. Suppose the maximum degree of the right
nodes in G is not larger than P1/2. Then for any time
step in Algorithm 3, assuming all previous bin detections
succeed, the maximum element of the array T is at most 4.

Proof. The recursive equation for T (Line 11 in
Algorithm 3) is

Tc′[jc′]← Tc′[jc′]+ Tc[j ]
P1
+ (P1 − 1)B

P1N
.

The algorithm defines a time sequential order for each
nonzero Pauli error rate to be detected. For each step i,
let Uzi be the next bin in which we find a nonzero Pauli
rate. Let Tmax be the current maximum element in a subset
Tpeeled of T. Then Tpeeled contains those Tc[j ] of bins in
which we already find a nonzero Pauli error. Also, we use
T′max to indicate the maximum Tc[j ] that will exist after the
next step.

According to the assumption, the maximum degree of an
arbitrary right node is less than min(P1/2, N/B), and the
number of peels needed is never more than the maximum
degree of that node. Note we assume that the previous bins
have been accurately detected, so the process will always
choose nonzero Pauli error rates (and the corresponding
bins) to peel. The noise in the peeling bin will increase by
at most Tmax/P1 + (P1 − 1)B/P1N . Each T is initialized
as 1, and denote the number of peelings by κ . Therefore

T′max ≤ 1+ κ ×
[

Tmax

P1
+ (P1 − 1)B

P1N

]

≤ 1+ Tmax

2
+ 1.

Then by induction, because initially the maximum element
in Tpeeled is equal to 0 and in each step this value will
increase via the above formula, the maximum element we
can get is the limit of this recursive inequality, which is
Tmax ≤ 4. �

According to the above two lemmas, the integer Tmax
indicates that the upper bound of the maximum element
in the array T is not larger than 4 with high probability
for a sufficiently large N . In order to compute the failure
rates and make the algorithm realizable, we assume (as in
Assumption A3) that the minimum nonzero Pauli error rate
ε0 satisfies ε2

0 ≥ 4ν2 = 4ξ 2/B, which makes a distinctive
barrier between Pauli error rates and any noise.

In anticipation of applying the union bound, let us define
the following error categories and their probabilities. For
brevity, we denote a zeroton, singleton, or multiton by just
the letters z, s, or m, and we denote the true value of the
bin by B.

Definition 3 (Failure modes for bin detection). The bin-
detection-algorithm failure modes are defined as follows:

(a) The singleton false negative probability:

Pr(SFN) := Pr(B̂ = z|B = s)+ Pr(B̂ = m|B = s).

(b) The singleton false positive probability:

Pr(SFP) := Pr(B̂ = s|B = z)+ Pr(B̂ = s|B = m).

(c) The multiton↔ zeroton confusion probability:

Pr(MZ) := Pr(B̂ = z|B = m)+ Pr(B̂ = m|B = z).

(d) The index error probability:

Pr(I) := Pr(B̂ = s, m̂ �= m|B = s, m).

(e) The value error probability:

Pr(V) := Pr(B̂ = s, |p̂m̂ − pm| > 2ξ/
√

B|B = s, m, pm).
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Of course these probabilities are not all independent.
However, by the union bound it suffices to bound each of
these bad events individually and the total failure proba-
bility will be at most the sum of the probabilities of these
failure modes. We show that all of these failure probabili-
ties decay exponentially with P1, the number of randomly
chosen offsets.

Lemma 10. Let E denote the event that an arbitrary bin
detection with inputs as those in Algorithm 3 returns either
the wrong bin type, the wrong index or an estimated Pauli
error rate with error larger than 2ν = 2ξ/

√
B. Let D be

the event that the maximum degree of the right nodes in G
is not larger than P1/2. Let V be the event that all prior bin
detections succeed. And denote the event that every peeling
route is cycle-free by H. Then

Pr (E|D, V, H) ≤ O(1)e−O(n). (31)

Proof. This theorem means that the bin-detector algorithm
succeeds with high probability whenever D, V, and H
occur. To show it, we have to bound the failure probabil-
ities for each failure mode of the bin-detection algorithm
and then apply the union bound. We prove most of our
statements by bounding failure probabilities with expres-
sions of the form e−O(P1). This is equivalent to a bound of
the form e−O(n) since P1 = �(n) by Definition 1. Also note
that conditioning on events D, V, and H allows the use of
Lemmas 7 and 9, specifically that the variance of noise in
each row of this bin is Tν2 from Lemma 7, and that this T
is no more than 4 according to Lemma 9.

We first consider the singleton false negative probabil-
ity in Definition 3. Note in this case the underlying bin
contains only one Pauli error rate along with noise, that is

Uc = pm(−1)〈Dc,m〉 +W. (32)

Let f1 = Pr
(
B̂ = z|B = s

)
. Then by Line 2 in Algorithm

4, the probability can be upper bounded by the probability
of a singleton bin passing the zeroton verification:

f1 ≤ Pr
[

1
P1

∥∥pmsc,m +W
∥∥2 ≤ T(1+ γ1)ν

2
]

,

where sc,m is the vector such that sc,m[t] = (−1)〈m,dc;t〉.
Since here the noise vector W comes from the sum of noise
w, it is obvious that all the elements of W are Gaussian
distributed with variance Tν2. Therefore, according to the
tail bounds of Lemma 4, the following holds as long as
γ1 < ε2

0/Tν2.

f1 ≤ e−(P1/4)
(
ε2

0/Tν2−γ1

)2
/(1+2ε2

0/Tν2). (33)

Now let f2 = Pr
(
B̂ = m|B = s

)
. This kind of fail-

ure happens if and only if the singleton bin fails during

singleton verification,

f2 = Pr
[

1
P1

∥∥Uc − p̂m̂sc,m̂
∥∥2 ≥ T(1+ γ2)ν

2
]

.

Considering the underlying structure of this bin (32), this
probability can be bounded using a conditional probability.
We first denote the event {|̂pm̂ − pm| >

√
4ν2 or m̂ �= m} by

E0. Then we observe

f2 ≤ Pr (E0)+ Pr
[

1
P1

∥∥Uc − p̂m̂sc,m̂
∥∥2 ≥ T(1+ γ2)ν

2
∣∣∣Ec

0

]
.

Using the tail bound, Eq. (23), we have that

Pr
[

1
P1

∥∥Uc − p̂m̂sc,m̂
∥∥2 ≥ T(1+ γ2)ν

2
∣∣∣Ec

0

]

≤ e−(P1/4)
(√

1+2γ2−
√

1+2×4/T
)2

. (34)

Then using union bound, we can deal with the first term

Pr (E0) ≤ Pr
(
|̂pm̂ − pm| >

√
4ν2

)
+ Pr (m̂ �= m)

≤ Pr
(
|̂pm̂ − pm| >

√
4ν2

∣∣∣m̂ = m
)

+ 2Pr (m̂ �= m) . (35)

Note above, the estimated Pauli error rate can be calculated
according to Algorithm 4, so we obtain the bound

Pr
(
|̂pm̂ − pm| >

√
4ν2

∣∣∣m̂ = m
)

= P

(∣∣∣∣∣
sT

c,mUc

P1
− pm

∣∣∣∣∣
>
√

4ν2

)

= P
(
|Y|/P1 >

√
4ν2

)
≤ 2e−

4P1
2T , (36)

where Y is the sum of P1 i.i.d. Gaussian variables with
N

{
0, [T + (P1 − 1)B/N ] ν2

}
like Eq. (28), and the last

inequality comes from the Chernoff-Hoeffding bound [52].
According to Lemma 9, exponents in (34) and (36) are
both scaling linearly with P1, thus the probabilities decay
exponentially with P1.

Since the second term in Eq. (35), Pr (m̂ �= m), is essen-
tially the probability of the index error, the failure proba-
bility of such a decoding process also decays exponentially
with P2. In accordance with Eq. (20), the sign vector[
sgn

[
UP1

]
, . . . ,sgn [UP−1]

]T is the sum of a codeword
〈G, m〉 and a vector of noise. Since the decoding process
fails only if the weight of the noise is larger than the code
distance βP2 and each element of the noise is an inde-
pendent Bernoulli random variable with error probability
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upper bounded by P, the index error probability can be
bounded by the Chernoff-Hoeffding bound:

Pr (m̂ = m) ≤ e−[(β/P−1)2/3]P2 . (37)

Moreover, as noted in Remark 1, we have Pm < 1
2 for all

m ∈ F
2n
2 . Given the assumptions of D, V, and H , we choose

the maximum Pm to be P = maxm Pm. Therefore, using the
law of total probability we have

f2 ≤ e−
P1
4

(√
1+2γ2−

√
1+2×4/T

)2

+ 2e−
4P1
2T

+ 2e−
(β/P−1)2

3 P2 . (38)

Recall from Definition 1 that P1 and P2 are proportional to
n, so we have a bound f2 = e−O(n).

We now turn to the case that the bin-detection algorithm
incorrectly recognizes a zeroton or a multiton bin as a
singleton bin, i.e., we consider the singleton false posi-
tive probability. For this, we need to consider the general
underlying bin structure

Uc = Scp+W, (39)

where Uc is either zeroton or multiton, and only contains
the P1 fully random offsets when choosing as in Definition
1. Here Sc ∈ {±1}P1×N/B is the sign matrix constructed
according to Lemma 2.

Now consider the probability of the bin detector
falsely detecting a zeroton as a singleton, and denote
Pr
(
B̂ = s|B = z

)
by f3. By Line 2 in Algorithm 4, the

probability of f3 can be bounded by the probability of
zeroton verification failing

f3 ≤ Pr
[

1
P1
‖W‖2 ≥ T × (1+ γ1)ν

2
]

.

According to the tail bound, Eq. (23), this failure probabil-
ity can be bounded by an exponentially decaying function

f3 ≤ e−(P1/4)(
√

1+2γ1−1)2
. (40)

Now let f4 = Pr
(
B̂ = s|B = m

)
. This error probability

can be evaluated under the multiton model when it passes
the singleton verification step for some estimated index-
value pair (m̂, p̂m̂). Using Line 11 in Algorithm 4,

f4 ≤ Pr
[

1
P1

∥∥Uc − p̂m̂sc,m̂
∥∥2 ≤ T × (1+ γ2)ν

2
]

.

Let

g = Scp− p̂m̂sc,m̂, (41)

and let the sample error be W = k. Then the law of total
probability can be used as follows:

f4 = Pr
[

1
P1
‖g+ k‖2 ≤ T(1+ γ2)ν

2
]

≤ Pr

[
1

P1
‖g+ k‖2 ≤ T(1+ γ2)ν

2
∣∣∣
‖g‖2

P1
≥ 2Tγ2ν

2

]

+ Pr

(
‖g‖2

P1
≤ 2Tγ2ν

2

)

. (42)

Note that the first term can be bounded by Eq. (24)
since the conditional part shows the lower bound of the
parameter θ0 as defined in Lemma 4

Pr

[
1

P1
‖g+ k‖2 ≤ T(1+ γ2)ν

2
∣∣∣∣
‖g‖2

P1
≥ 2Tγ2ν

2

]

≤ e−
P1
4

γ 2
2

1+4γ2 . (43)

The second term can be bounded as follows. Let α = p−
p̂m̂em̂, and we have

Pr

(
‖g‖2

P1
≤ 2Tγ2ν

2

)

= Pr

(
‖Scα‖2

P1
≤ 2Tγ2ν

2

)

.

Here ek is the vector with support only on the kth element.
We denote the support set of the vector α by L0, and define
the ε0-essential support of α to be

L = {
i ∈ F

2n
2

∣∣|αi| ≥ ε0
}

. (44)

Denote the cardinality of L by L. Then the above proba-
bility can be bounded by an application of the Chernoff-
Hoeffding bound.

With the same argument as in the proof of Lemma 6, the
sample error in each row in vector g is independent, and
so is the square of that error. When we calculate ‖g‖2, we
can regard it as a sum of P1 independent random variables.
Also, each term in this sum contains the same structure,
and identically distributed parameters, so we can claim
each term is identically distributed.

Therefore, we first analyze the expected value E of each
variable in this sum. Take one of these terms Xi as an
example,

Xi :=
⎡

⎣
∑

j∈L0

(−1)〈di,j 〉αj

⎤

⎦

2

, (45)

where {di} is a set of independent random 2n-bit strings.
The expected value E of Xi satisfies the following bound:

E = E(Xi) ≥ Lε2
0 . (46)
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Note that above we use the fact that any random strings are
independent.

Moreover, since we want to show this term will be large
with high probability, we should consider the random cross
terms in each Xi, and that is

Ri =
∑

u>v
u,v∈L0

(−1)〈di,u+v〉2αuαv , (47)

where the order is in lexicographical order. Note the
remaining part of Xi is a deterministic one, so we calcu-
late only the variance for this Ri. It is straightforward that
we have

Var (Ri) = E[R2
i ], (48)

and the only contributed terms are those without ran-
dom signs in R2

i . For example, if we consider a specific
u, v and the term (αuαv)× (αwαx) with some (w, x) �=
(u, v) (assume w > x), this term will contribute to the
expected value only if w+ x + u+ v = 0. Therefore, the
only potential effective terms are those with four differ-
ent Pauli error rates. Moreover, since w+ x + u+ v must
be in the null space of M T

c according to Lemma 1, of
which the size is N/B = (1/η)e(1−δ)n, we can estimate this
probability using a balls and bins model.

Regardless of the square terms, the number of potential

terms is
(

L
4

)
. Let Gi be the probability that the number of

terms in bin 0 is at least a chosen constant η0. Then Gi can
be bounded as

Pr (Gi) ≤
(

L
4

)
×
(

B
N

)η0

=
(

L
4

)
× e−(1−δ)nη0

η
,

which is decaying exponentially with n. Given that the
complementary event Gc

i happens and defining the set of
contributing terms to be Ai, the variance of Ri is the sum

Var (Ri) =
∑

(u,v,w,x)∈Ai
u>v>w>x

8αuαvαwαx +
∑

u>v
u,v∈L0

4α2
uα

2
v .

Then by Cauchy-Schwarz we have (αuαv)
2 + (αwαx)

2 ≥
2αuαvαwαx. Averaging this over the other distinct parti-
tions and using |Ai| ≤ η0, we find

Var (Ri) ≤ η0 + 3
3

∑

u>v
u,v∈L0

4α2
uα

2
v .

Now we can use the Hoeffding bound to obtain

Pr

(
‖g‖2

P1
≤ 2Tγ2ν

2

)

≤ Pr

(
‖g‖2

P1
≤ 2Tγ2ν

2
∣∣∣∣G

c

)

+ Pr (G)

≤ e−3P1(Lε2
0−2Tγ2ν2)2/2(3+η0)L2ε4

0 + O
[
P1L4e−(1−δ)nη0

]
.

The last inequality uses the fact that

E[Xi]2 ≥
∑

u>v
u,v∈L0

4α2
uα

2
v ≥ 2L(L− 1)ε4

0 .

For any nontrivial signal, we have that 1 ≤ L < P1/2. As
long as 0 < γ2 < ε2

0/2Tν2 and choosing η0 = 6, for any
multiton we have

f4 ≤ e−(P1/4)[γ 2
2 /(1+4γ2)] + e−P1(ε2

0−2Tγ2ν2)2/6ε4
0

+ O
[
e−6(1−δ)n] . (49)

Therefore, f4 ≤ O(1)e−O(n).
Next we consider the multiton–zeroton confusion prob-

ability

Pr(MZ) := Pr(B̂ = z|B = m)+ Pr(B̂ = m|B = z).

Denote the first term Pr(B̂ = z|B = m) by f5 and the
second Pr(B̂ = m|B = z) by f6. For f5, recognizing a
multiton as a zeroton, we have the following inequality:

f5 ≤ Pr
[

1
P1
‖U‖2 ≤ T × (1+ γ1)ν

2
]

.

Note this probability can be analyzed in just the same way
as f4, and the only difference is that when we consider f5,
the α is just based on several underlying Pauli error rates
without any subtraction, so L ≥ 2 for this case. As long as
0 < γ1 < ε2

0/Tν2, then for any multiton we have the bound

f5 ≤ e−(P1/4)[γ 2
1 /(1+4γ1)] + e−P1[(ε2

0−Tγ1ν2)2/6ε4
0 ]

+ O
[
e−6(1−δ)n] , (50)

so f5 ≤ O(1)e−O(n). Moreover, it is clear that the failure
probability of recognizing a zeroton bin as a multiton bin,
namely f6, is smaller than f3.

Next, consider the index error probability, and denote
Pr
(
B̂ = s, m̂ �= m|B = s, m

)
by f7. This probability can

be bounded by the probability of estimating a wrong index
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m̂ and some Pauli error rate, and still passing the singleton
verification

f7 ≤ Pr [(m̂ �= m) ∧ (m̂, p̂m̂) passes verification]

≤ Pr (m̂ �= m) ≤ e−
(β/P−1)2

3 P2 . (51)

Note the last inequality is just Eq. (37), and according to
Remark 1, Pm < 1

2 for all m ∈ F
2n
2 given that events D and

V happen and we choose the maximum one to be P.
Finally, let us consider the value error probability, and

denote Pr(B̂ = s, |p̂m̂ − pm| >
√

4ν2|B = s, m, pm) by f8.
Note that we have chosen

√
4ν2 as the error bound for the

Pauli error rate, so similar to the index error probability,
this f8 can be bounded by the probability of estimating a
noisy Pauli error rate and passing the singleton verifica-
tion. We can loosen this bound by only considering the
first event, and we obtain the inequality

f8 ≤ Pr
(
|̂pm̂ − pm| >

√
4ν2

∣∣∣m̂ = m
)
+ Pr (m̂ �= m)

≤ 2e−4P1/2T + e−[(β/P−1)2/3]P2 ≤ 3e−O(n). (52)

Note the middle inequality comes from a combination of
Eqs. (36) and (37). According to Remark 1, we again have
Pm < 1

2 for all m ∈ F
2n
2 given that events D, V, and H

happen and we choose the maximum one to be P.
Following the taxonomy in Definition 3, we treat all of

the failure cases of the bin-detector algorithm. Using the
union bound, we can get the following inequality:

Pr (E) ≤
8∑

i=1

fi.

As we illustrate at the beginning of this proof, events D, V,
and H have shown that the variance of the noise in each
row of this bin is Tν2 from Lemma 7, and that this T is
no more than 4 according to Lemma 9. Furthermore, they
imply that θm is strictly smaller than 1

2 for all m ∈ F
2n
2 in

Eqs. (38), (51), and (52). Since constraining the peeling
graph G to obey this event is independent of the above
analysis of the failure probabilities of the bin detector, it
follows that

P (E|D, V, H) ≤ O(1)e−O(P1).

This completes the proof. �

X. CONCLUSION

We show that for sparse Pauli channels we can learn
all the significant Pauli errors, even those associated with
high-weight Pauli strings, using realistic experimental
resources that scale with the sparsity of the Pauli errors

rather than the dimension. In particular, we demonstrate
that using only a few local two-qubit gates and a number
of quantum experiments that scales linearly (with a factor
of about 4), we can recover up to 4δn of the largest error
rates, where δ � 0.25. Our numerical analysis indicates in
the regime where 0.25 < δ < 0.5 we can still recover these
errors with a number of experiments that only scales as
O(n2).

We support these experimental protocols by defining
and analyzing an algorithm with rigorous performance
guarantees. This provable algorithm confirms that, with
explicitly stated assumptions, high-precision reconstruc-
tion is possible when querying only a number of Pauli
eigenvalues that scales like O(sn). Moreover, the heuris-
tic practical circuits used above are able to approximate
the relevant noisy eigenvalue queries with sufficient preci-
sion ξ using only O(n2/ξ 2) measurements. These circuits
exploit the protocols presented in Refs. [37,38] to learn
up to 2n commuting Pauli eigenvalues per experiment, and
greatly reduces the required experimental resources.

This work provides an experimentally realizable method
of identifying the relevant Pauli errors in large-scale quan-
tum devices even if there are unexpected long-range corre-
lations between the qubits. The ability to do so will be vital
as we seek to mitigate the errors in such devices, to learn
the noise patterns that exist when such devices are operated
holistically and will allow better designing and tailoring of
error correction and fault tolerance in such devices.

Many interesting open questions remain.
For example, what about very large-scale devices? The

practicality of the algorithm in the regime of greater than
(say) 30 qubits, where memory storage becomes an issue,
could potentially be addressed as follows. We keep the
protocol executed on the device identical as system size
increases. However, we can take advantage of the fact
that the WHT commutes with the marginalization of the
observed probabilities and the process of fitting required to
ascertain the SPAM-free eigenvalues (see Ref. [38]). The
actual observations require only n bits of data to store. We
can, therefore, marginalize the observations to obtain over-
lapping sets of 2m eigenvalues (where we choose m to be
the largest computationally tractable number for our classi-
cal computer). This will mean that we have multiple sets of
2m bins, each potentially containing 22n−m Pauli error rates.
Given this, the s-sparse assumption now becomes s < 2m.
It would be extremely interesting to implement this version
of the algorithm on real data.

Another approach to dealing with very large-scale
devices is to incorporate our algorithm as a subroutine in
a larger algorithm that builds a globally consistent Pauli
error distribution from estimations of marginal error rates.
For example, as proposed in Ref. [37], one could effi-
ciently estimate a Markov random field description of
a Pauli channel if the underlying graphical model has
bounded degree correlations. This idea has been performed
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experimentally on 14 qubits in Ref. [38]. We believe using
the algorithm presented here would improve the estimation
of the core subroutines and lead to better performance of
the global reconstruction.

There are also several open mathematical questions
about the reconstruction of sparse (or approximately
sparse) Pauli channels. For example, it would be interest-
ing to relax the random sparsity assumption on the support,
or to allow for prior information in the distribution of the
support. It would also be interesting to treat more general
noise on the eigenvalue oracle. In particular, treating the
case of noise with bounded variance seems to be the most
relevant for providing recovery guarantees that relate to
practical experimental capabilities. It might also be pos-
sible to weaken our assumptions about the signal-to-noise
ratio. A lower bound would help to clarify where the limits
are to these types of algorithms.

A further important open question is understanding the
power of the structured circuits that we use for eigenvalue
estimation. When using shallow depth Clifford circuits to
prepare stabilizer bases for eigenvalue estimation, what
recovery guarantees are possible? Is it still possible to effi-
ciently reconstruct arbitrary sparse Pauli channels? Our
heuristics suggest that pseudorandom and relatively shal-
low Clifford circuits allow sufficient randomness in the
support that the algorithm can still have provable conver-
gence guarantees, but it would be interesting to establish
this rigorously.

Finally, the most important open problem is to use
our algorithms on real experiments to characterize noise,
improve calibration of a device, or customize an error-
correction procedure.
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APPENDIX: WALSH-HADAMARD ORDERING

In this paper we use a variant of the Walsh-Hadamard
transform where the ordering is determined by the commu-
tation relations between the Paulis. The natural (bit-wise)
ordering of a WHT matrix can be calculated from the
tensor product as

Hn (natural ordering) =
(

1 1
1 −1

)⊗n

. (A1)

In this case, like the sequency order and dyadic order vari-
ants of the WHT, we reorder the columns of the transform
matrix. Unless otherwise expressly noted, we use a WHT
where the (i, j )th entry of the Hadamard transform matrix

is given by (−1)〈i,j 〉, where the inner product is the sym-
plectic inner product introduced above. The advantages of
using this variant of the WHT is that when it is used to
transform eigenvalues to error rates and vice versa [Eqs.
(5) and (6)], the position of each Pauli in the transformed
vector remains constant.
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