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Abstract: We present a model of an evolving spherically symmetric dissipative self-

gravitating fluid distribution which tends asymptotically to a ghost star, meaning that the

end state of such a system corresponds to a static fluid distribution with a vanishing total

mass and an energy density distribution which is negative in some regions of the fluid. The

model was inspired by a solution representing a fluid evolving quasi-homologously and

with a vanishing complexity factor. However, in order to satisfy the asymptotic behavior

mentioned above, the starting solution had to be modified, as a consequence of which the

resulting model only satisfies the two previously mentioned conditions asymptotically.

Additionally, a condition on the variation in the infinitesimal proper radial distance be-

tween two neighboring points per unit of proper time was imposed, which implies the

presence of a cavity surrounding the center. Putting together all these conditions, we were

able to obtain an analytical model depicting the emergence of a ghost star. Some potential

observational consequences of this phenomenon are briefly discussed in the last section.

Keywords: relativistic fluids; interior solutions; spherically symmetric sources

PACS: 04.40.-b; 04.40.Nr; 04.40.Dg

1. Introduction

In a recent paper [1], the concept of a ghost star was introduced and studied in detail.

Such a concept, inspired by the early ideas of Zeldovich [2,3], describes fluid distributions

which do not produce a gravitational field outside their boundary surface (i.e., their total

mass vanishes). In order to achieve the vanishing of the total mass (for a non-trivial

fluid distribution), one must assume the existence of some regions within the fluid sphere

endowed with a negative energy density. Some examples of this kind of fluid distribution

may be found in [1,4,5] (see also [6] for more recent developments).

More recently, we have studied solutions which either correspond to the adiabatic

evolution of a ghost star or describe the evolution of fluid distributions which attain a

ghost star status momentarily at some point in their existences, abandoning such a state

immediately afterward [7].

It should be stressed that the term “Ghost stars” comes from an analogy with some

Einstein–Dirac neutrinos (named ghost neutrinos) which do not produce a gravitational

field but are still characterized by a non-vanishing current density [8–10]. Thus, any
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confusion regarding the use of the same terminology in quantum field theory should

be dismissed.

However, neither of the models exhibited in the references above describe solutions

leading asymptotically (as t → ∞) to a ghost star.

It is the purpose of this work to present a model of an evolving fluid distribution

describing the emergence of a ghost star as the end point of its evolution.

In order to obtain our model, we initially started by imposing three conditions:

• The vanishing of the complexity factor [11,12];

• Quasi-homologous evolution (QH) [13];

• The variation in the infinitesimal proper radial distance between two neighboring

points per unit of proper time vanishes [14].

The first two conditions have been shown to be useful in the description of the structure

and evolution of self-gravitating fluids. The second one represents a generalization of the

well-known homologous evolution in Newtonian hydrodynamics [15–17].

The third condition implies the existence of a cavity surrounding the center and

therefore appears to be a useful tool for the modeling of cosmic voids [18,19].

Notwithstanding, we resorted to using the above conditions for purely heuristic reasons,

their physical interest being, in the context of this work, a fact of secondary relevance.

The solution obtained under the three conditions above (hereafter referred to as the

“primeval solution”) does not satisfy the asymptotic conditions required to obtain a static

ghost star as the end point of the evolution. Accordingly, we modified this solution in order

to satisfy the conditions ensuring the formation of a ghost star.

The final solution matches smoothly on the external boundary surface with the

Minkowski spacetime as t → ∞. On the other hand, matching conditions are not sat-

isfied on the boundary surface delimiting the fluid distribution from the inside (not even

asymptotically); accordingly, we have a thin shell on that surface.

The physical properties of the model will be analyzed in detail and the characteristics

of the ghost star appearing at the end of the evolution will be discussed.

2. The General Setup of the Problem: Notation, Variables and Equations

We consider a spherically symmetric distribution of a fluid, which is bounded from the

outside by a spherical surface, Σ(e), and since we shall assume there is a cavity surrounding

the center, the fluid is also bounded from inside by a spherical surface, Σ(i). The matter

content consists of a locally anisotropic fluid (unequal principal stresses) undergoing

dissipation in the form of heat flow (diffusion approximation).

Thus, in comoving coordinates, the general line element may be written as

ds2 = −A2dt2 + B2dr2 + R2(dθ2 + sin2 θdφ2), (1)

where the functions A, B and R depend on t and r.

The energy–momentum tensor takes the form

Tαβ = (µ + P⊥)VαVβ + P⊥gαβ + (Pr − P⊥)χαχβ

+ qαVβ + Vαqβ, (2)

where µ is the energy density, Pr the radial pressure, P⊥ the tangential pressure, qα the heat

flux, Vα the four velocity of the fluid, and χα a unit four vector along the radial direction.

These quantities satisfy

VαVα = −1, Vαqα = 0, χαχα = 1, χαVα = 0. (3)
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It will be convenient to express the energy–momentum tensor (2) in the equivalent

(canonical) form,

Tαβ = µVαVβ + Phαβ + Παβ + q
(

Vαχβ + χαVβ

)

, (4)

with

P =
Pr + 2P⊥

3
, hαβ = gαβ + VαVβ,

Παβ = Π

(

χαχβ −
1

3
hαβ

)

, Π = Pr − P⊥.

Since we are considering comoving observers, we have

Vα = A−1δα
0 , qα = qB−1δα

1 , χα = B−1δα
1 . (5)

It is worth noticing that we do not explicitly add bulk or shear viscosity to the system

because they can be trivially absorbed into the radial and tangential pressures, Pr and

P⊥, of the collapsing fluid (in Π). Also, we do not explicitly introduce dissipation in the

free-streaming approximation since it can be absorbed into µ, Pr and q.

2.1. Einstein Equations

Einstein’s field equations for the interior spacetime (1) are given by

Gαβ = 8πTαβ. (6)

The non-null components of (6), along with (1) and (2), read as

8πT00 = 8πµA2 =

(

2
Ḃ

B
+

Ṙ

R

)

Ṙ

R
−

(

A

B

)2
[

2
R′′

R
+

(

R′

R

)2

− 2
B′

B

R′

R
−

(

B

R

)2
]

, (7)

8πT01 = −8πqAB = −2

(

Ṙ′

R
− Ḃ

B

R′

R
− Ṙ

R

A′

A

)

, (8)

8πT11 = 8πPrB2 = −
(

B

A

)2[

2
R̈

R
−

(

2
Ȧ

A
− Ṙ

R

)

Ṙ

R

]

+

(

2
A′

A
+

R′

R

)

R′

R
−

(

B

R

)2

, (9)

8πT22 =
8π

sin2 θ
T33 = 8πP⊥R2 = −

(

R

A

)2[ B̈

B
+

R̈

R
− Ȧ

A

(

Ḃ

B
+

Ṙ

R

)

+
Ḃ

B

Ṙ

R

]

+

(

R

B

)2[ A′′

A
+

R′′

R
− A′

A

B′

B
+

(

A′

A
− B′

B

)

R′

R

]

, (10)

where dots and primes denote derivatives with respect to t and r, respectively.

2.2. Kinematical Variables and the Mass Function

The three non-vanishing kinematical variables are the four-acceleration aα, the expan-

sion scalar Θ and the shear tensor σαβ. The corresponding expressions follow at once from

their definitions.

Thus,

aα = Vα;βVβ, (11)

producing
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a1 =
A′

A
, a2 = aαaα =

(

A′

AB

)2

, (12)

with aα = aχα.

The expansion Θ is given by

Θ = Vα
;α =

1

A

(

Ḃ

B
+ 2

Ṙ

R

)

, (13)

and for the shear tensor, we have

σαβ = V(α;β) + a(αVβ) −
1

3
Θhαβ, (14)

with only one non-vanishing independent component.

Using (5) and (14), we may write

σαβ = σ

(

χαχβ −
hαβ

3

)

, (15)

where

σ =
1

A

(

Ḃ

B
− Ṙ

R

)

. (16)

2.3. The Mass Function

Next, the mass function m(t, r) introduced by Misner and Sharp [20,21] is given by

m(t, r) =
R3

2
R23

23 =
R

2

[

(

Ṙ

A

)2

−
(

R′

B

)2

+ 1

]

. (17)

To study the dynamical properties of the system, let us introduce, following Misner

and Sharp, the proper time derivative DT , given by

DT =
1

A

∂

∂t
, (18)

and the proper radial derivative DR:

DR =
1

R′
∂

∂r
. (19)

Using (18), we can define the velocity U of the collapsing fluid as the variation in the

“areal” radius (R) with respect to the proper time, i.e.,

U = DT R. (20)

Then, (17) can be rewritten as

E ≡ R′

B
=

[

1 + U2 − 2m(t, r)

R

]1/2

. (21)

From (17), we may easily obtain

DRm = 4π

(

µ + q
U

E

)

R2. (22)

Equation (22) may be integrated to obtain
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m =
∫ r

0
4πR2

(

µ + q
U

E

)

R′dr, (23)

(assuming a regular center for the distribution, so m(0) = 0) or

3m

R3
= 4πµ − 4π

R3

∫ r

0
R3µ′dr +

4π

R3

∫ r

0
3q

U

E
R2R′dr. (24)

2.4. The Junction Conditions

Outside Σ(e), we have the Vaidya spacetime (or the Schwarzschild spacetime in the

dissipationless case), described by

ds2 = −
[

1 − 2M(v)

r

]

dv2 − 2drdv + r2(dθ2 + sin2 θdφ2), (25)

where M(v) denotes the total mass, and v is the retarded time. The matching of the non-

adiabatic sphere to the Vaidya spacetime on the surface r = r
Σ(e) = constant, in the absence

of thin shells (Darmois conditions [22]; see also [23]), implies the continuity of the first and

second fundamental forms on the matching hypersurface, producing

m(t, r)
Σ(e)

= M(v), (26)

and

q
Σ(e)

= Pr. (27)

In a case when a cavity forms, we also have to match the solution to the Minkowski

spacetime on the boundary surface delimiting the empty cavity (Σ(i)). In this case, the

matching conditions imply

m(t, r)
Σ(i)

= 0, (28)

q
Σ(i)

= Pr
Σ(i)

= 0. (29)

As we shall see below, in our model, the Darmois conditions cannot be satisfied on Σ(i),

in which case we must allow for the presence of thin shells on Σ(i), implying discontinuities

in the mass function [24].

On the other hand, Darmois conditions are satisfied on Σ(e) but only asymptotically (as

t → ∞). In other words, a thin shell is present on Σ(e) during the evolution, disappearing

as the ghost star forms.

2.5. The Transport Equation

In the diffusion approximation, we shall need a transport equation to evaluate the

temperature and its evolution within the fluid distribution. Here, we shall resort to using

a transport equation derived from a causal dissipative theory (e.g., the Israel–Stewart

second-order phenomenological theory for dissipative fluids [25–27]).

Thus, the corresponding transport equation for the heat flux reads as

τhαβVγqβ;γ + qα = −κhαβ(T,β + Taβ)−
1

2
κT2

(

τVβ

κT2

)

;β

qα, (30)

where κ denotes the thermal conductivity, and T and τ denote the temperature and relax-

ation time, respectively. Observe that, due to the symmetry of the problem, Equation (30)

only has one independent component, which may be written as

τq̇ = −1

2
κqT2

( τ

κT2

)˙
− 1

2
τqΘA − κ

B
(TA)′ − qA. (31)
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In the case of τ = 0, we recover the Eckart–Landau equation [28,29], and in the Newtonian

limit, we recover the Cattaneo equation [30–32].

For simplicity, we shall consider here the so-called “truncated” version, where the last

term in (30) is neglected [33]:

τhαβVγqβ;γ + qα = −κhαβ(T,β + Taβ), (32)

whose only non-vanishing independent component becomes

τq̇ + qA = − κ

B
(TA)′. (33)

3. Three Conditions Underlying Our Model

As mentioned before, we shall start building up our model by imposing three con-

ditions on the fluid distribution; these are the vanishing complexity factor condition, the

quasi-homologous condition and a kinematical condition on the variation in the infinites-

imal proper radial distance between two neighboring points per unit of proper time. In

what follows, we shall briefly describe these conditions.

3.1. The Vanishing Complexity Factor Condition

The complexity factor is a scalar function that has been proposed in order to measure

the degree of complexity of a given fluid distribution [11,12].

The complexity factor is identified with the scalar function YTF, which defines the

trace-free part of the electric Riemann tensor (see [12] for details).

It can be expressed in terms of physical variables as

YTF = −8πΠ +
4π

R3

∫ r

0
R3

(

µ′ − 3qBU

R

)

dr, (34)

or in terms of the metric functions

YTF =
1

A2

[

R̈

R
− B̈

B
+

Ȧ

A

(

Ḃ

B
− Ṙ

R

)]

+
1

B2

[

A′′

A
− A′

A

(

B′

B
+

R′

R

)]

. (35)

We shall impose the vanishing of the complexity factor in order to find an analytical

solution; however, as we shall see below, such a solution does not satisfy the required

asymptotic behavior. In order to obtain a model with the appropriate asymptotic behavior,

we shall modify this primeval solution, as a consequence of which the resulting model will

satisfy the vanishing complexity factor condition only asymptotically.

3.2. The Quasi-Homologous Condition

The QH condition is a generalization of the homologous condition (H), which was

assumed in [12] to represent the simplest mode of evolution of the fluid distribution.

However, this last condition appears to be too stringent, thereby excluding many potentially

interesting scenarios. Therefore, in [13], we proposed relaxing (H) and replaced it with

what we called the “quasi–homologous” condition (QH).

More specifically, the H condition implies that

U = ã(t)R, ã(t) ≡
U

Σ(e)

R
(e)
Σ

, (36)

and
RI

RI I
= constant, (37)
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where RI and RI I denote the areal radii of two concentric shells (I, I I) described by

r = rI = constant and r = rI I = constant, respectively.

These relationships are characteristic of homologous evolution in Newtonian hydrody-

namics [15–17]. Moreover, in this latter case, (36) implies (37). However, in the relativistic

case, both (36) and (37) are, in general, independent, and the former implies the latter only

in very special cases.

On the other hand, the QH condition only requires (36), which, using the field equa-

tions, may also be written as (see [13] for details)

4π

R′ Bq +
σ

R
= 0. (38)

As has already been mentioned, we shall start building up our model by assuming that

the evolution of the fluid distribution proceeds in a quasi-homologous regime (QH). Since

such a condition leads to asymptotic behavior which is incompatible with the formation of a

ghost star, we should modify the primeval solution. As a consequence of this modification,

the final solution will not satisfy the QH condition except in the static limit t → ∞ when it

is trivially satisfied.

3.3. A Kinematical Restriction

In order to obtain our primeval model, besides imposing the conditions of the vanish-

ing complexity factor and quasi-homologous evolution, we shall impose a condition on a

kinematical variable. To do this, let us first introduce another concept of velocity, different

from U, which measures the variation in the infinitesimal proper radial distance between

two neighboring points (δl) per unit of proper time, i.e., DT(δl). Thus, it can be shown that

(see [14,34] for details)
DT(δl)

δl
=

1

3
(2σ + Θ), (39)

or
DT(δl)

δl
=

Ḃ

AB
. (40)

As an additional restriction, we assume that DT(δl) = 0, in which case B = B(r),

from which a reparametrization of the coordinate r allows us to write, without a loss of

generality, B = 1, implying R′ = E, and from (13) and (16) it follows that

σ = −U

R
= −Θ

2
. (41)

Since the center of symmetry (r = 0) does not move throughout the evolution, it

appears evident that any evolving fluid satisfying the condition B = 1 cannot fill the central

region. Therefore, we shall assume the center to be surrounded by a void cavity with the

boundary surface Σ(i), whose areal radius changes in such a way that DT(δl) = 0 for all

fluid elements.

From the comment above, it should be clear why this condition has been considered

in the past as a useful tool for describing galactic voids. However, we should stress the fact

that here we are adopting this kinematical condition as a heuristic hypothesis only in order

to obtain an analytical model describing the emergence of a ghost star.

In the next section, we shall build up a model resulting in the depiction of a ghost star.

4. Building up the Model

We shall now proceed to construct a model giving rise to the depiction of a ghost star.

This will be achieved in three steps. First, we shall find a primeval solution satisfying the

three conditions YTF = 0, (38) and B = 1. In the second step, we shall modify this primeval
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solution in order to satisfy the desired asymptotic behavior. Finally, in the third step, we shall

make a specific selection of some arbitrary functions and constants to fully determine the

model. This final model will satisfy the condition B = 1, but conditions YTF = 0 and (38) will

only be satisfied asymptotically.

4.1. The Primeval Solution

Let us start by considering a model satisfying the constraint B = 1. This model is

endowed with a cavity surrounding the center; accordingly, we should not worry about

regularity conditions at the center.

In this case, the physical variables read as

8πµ =
1

A2

Ṙ2

R2
− 2R′′

R
− R′2

R2
+

1

R2
, (42)

8πPr = − 1

A2

(

2R̈

R
− 2Ȧ

A

Ṙ

R
+

Ṙ2

R2

)

+
2A′

A

R′

R
+

R′2

R2
− 1

R2
, (43)

8πP⊥ = − 1

A2

(

R̈

R
− Ȧ

A

Ṙ

R

)

+
A′′

A
+

R′′

R
+

A′

A

R′

R
, (44)

4πq =
1

A

(

Ṙ′

R
− A′

A

Ṙ

R

)

= −σ′ − σ
R′

R
, (45)

and for the kinematical variables, we have

σ = − Ṙ

AR
, Θ =

2Ṙ

AR
. (46)

Next, imposing the quasi-homologous condition, we obtain

U = ã(t)R ⇒ ã(t) =
Ṙ

AR
⇒ σ = −ã(t). (47)

In other words, the QH condition implies that in this case, σ only depends on t.

On the other hand, the condition YTF = 0 produces

YTF =
1

A2

(

R̈

R
− Ȧ

A

Ṙ

R

)

+
A′′

A
− A′

A

R′

R
(48)

= σ2 − σ̇

A
+

A′′

A
− A′

A

R′

R
= 0. (49)

Thus, the conditions of a vanishing complexity factor, B = 1 and quasi-homologous

evolution read as

A′′ − A′R′

R
+ Aσ2 = σ̇, (50)

and
Ṙ

R
= −σA, (51)

respectively, with σ = σ(t).

In order to solve the above system of equations, it would be useful to introduce

intermediate variables (X, Y):

A = X +
σ̇

σ2
and R = X′Y, (52)

in terms of which (50) and (51) become
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−X′

X

Y′

Y
+ σ2 = 0, (53)

Ẋ′

X′ +
Ẏ

Y
= −σX − σ̇

σ
. (54)

In what follows, we shall impose an additional restriction to solve the above system;

specifically, we shall assume that X is a separable function, i.e.,

X = X̃(r)T (t). (55)

Then, feeding (55) back into (53) and taking the t-derivative, we obtain

− X̃′

X̃

(

Ẏ

Y

)′
+ 2σσ̇ = 0. (56)

Likewise, feeding (55) back into (54) and taking the r-derivative, we obtain

(

Ẏ

Y

)′
= −σX̃′T . (57)

The combination of (56) and (57) produces

X̃′2

X̃
= −2σ̇

T ≡ β2, (58)

where β is a constant.

Then, from the integration of (58), we have

X̃ =
(βr + c1)

2

4
and T (t) = −2σ̇

β2
, (59)

where c1 is a constant of integration. Thus, the metric functions become

A =
σ̇

2β2σ2

[

2β2 − σ2(βr + c1)
2
]

, (60)

R = F(t)g(r)(βr + c1)e
σ2

4β2 (βr+c1)
2

, (61)

where F(t) and g(r) are two arbitrary functions of their arguments. This is a generalized

version of the solution exhibited in Sec. 7.2.1 in [13].

However, functions F(t) and g(r) are not completely arbitrary. Indeed, taking the

t-derivative of (61) and feeding it back into (51), we obtain

Ḟ

F
= − σ̇

σ
, (62)

producing

F =
c2

σ
, (63)

where c2 is an arbitrary constant.

The above result implies that in the static limit (when σ = 0), F → ∞, resulting in

R → ∞ in that limit.

Still worse, from the above and (61), it follows that

Ṙ = − c2σ̇g(βr + c1)

σ2
. (64)
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Thus, if we want our system to be static in the limit t → ∞, we should demand that
σ̇
σ2 → 0 as t → ∞, but because of (60), such a condition would imply that A → 0 as t → ∞,

which of course is unacceptable.

On the other hand, using (60) and (61), the vanishing complexity factor condition (50) reads as

σ̇g′(βr + c1)

βg
= 0, (65)

implying g = constant. However, as we shall see below, we shall need g = g(r) in order to

satisfy the matching conditions.

In other words, the metric functions (60) and (61), obtained from the QH condition

and the vanishing complexity factor condition, are incompatible with the condition that the

system tends asymptotically (as t → ∞) to a static regime. On the other hand, in the case of

B = 1, the QH condition implies that the shear scalar is a function of t only, and therefore,

in order to achieve static asymptotic behavior, σ should be function of both t and r.

4.2. The Asymptotic Conditions

In order to obtain the expected asymptotic behavior, we shall assume the same forms

for metric functions (60) and (61) but replace σ with an arbitrary function of t (say, f (t)),

such that in the limit t → ∞,

F(t) → γ = constant > 0, f (t) → 0,

ḟ

f 2
→ constant > 0, (66)

where g is not a constant.

Obviously, such metric functions do not satisfy (50), (51) and (65) in general (for any t),

although they do satisfy such conditions in the limit t → ∞.

From the comments above, we shall assume our metric variables read as

A =
ḟ

2β2 f 2

[

2β2 − f 2(βr + c1)
2
]

, (67)

R = F(t)g(r)(βr + c1)e
f 2

4β2 (βr+c1)
2

. (68)

Using these expressions in (17) and (42)–(45), for the physical variables, we find

8πµ =
4β4 f 4

ḟ 2[2β2 − f 2(βr + c1)2]2

[

Ḟ

F
+

f ḟ (βr + c1)
2

2β2

]2

− 2

[

g′′

g
+

g′
[

2β2 + f 2(βr + c1)
2
]

gβ(βr + c1)

+
f 4(βr + c1)

2

4β2
+

3 f 2

2

]

−
[

g′

g
+

β

(βr + c1)
+

f 2(βr + c1)

2β

]2

+
e
− f 2(βr+c1)

2

2β2

F2g2(βr + c1)2
(69)

8πPr = − 4β4 f 4

ḟ 2[2β2 − f 2(βr + c1)2]
2

{

2F̈

F
+

2Ḟ f ḟ (βr + c1)
2

Fβ2
+

(βr + c1)
2( ḟ 2 + f f̈ )

β2

+
ḟ 2 f 2(βr + c1)

4

2β4
− 2

[

f̈

ḟ
− 4β2 ḟ

f [2β2 − f 2(βr + c1)2]

][

Ḟ

F
+

f ḟ (βr + c1)
2

2β2

]

+

[

Ḟ

F
+

f ḟ (βr + c1)
2

2β2

]2
}

− e
− f 2(βr+c1)

2

2β2

F2g2(βr + c1)2
− 4β f 2(βr + c1)

[2β2 − f 2(βr + c1)2]

[

g′

g
+

β

(βr + c1)
+

f 2(βr + c1)

2β

]

+

[

g′

g
+

β

(βr + c1)
+

f 2(βr + c1)

2β

]2

(70)
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8πP⊥ = − 4β4 f 4

ḟ 2[2β2 − f 2(βr + c1)2]
2

{

F̈

F
+

Ḟ f ḟ (βr + c1)
2

Fβ2
+

(βr + c1)
2( ḟ 2 + f f̈ )

2β2

+
ḟ 2 f 2(βr + c1)

4

4β4
−

[

f̈

ḟ
− 4β2 ḟ

f [2β2 − f 2(βr + c1)2]

][

Ḟ

F
+

f ḟ (βr + c1)
2

2β2

]}

+
g′′

g
− 2β2 f 2

[2β2 − f 2(βr + c1)2]
+

f 4(βr + c1)
2

4β2
+

g′[2β2 + f 2(βr + c1)
2]

gβ(βr + c1)
−

2β f 2(βr + c1)

[2β2 − f 2(βr + c1)2]

[

g′

g
+

β

(βr + c1)
+

f 2(βr + c1)

2β

]

+
3 f 2

2
(71)

4πq =
2β2 f 2

ḟ [2β2 − f 2(βr + c1)2]

{

Ḟ

F

[

g′

g
+

β

(βr + c1)
+

f 2(βr + c1)

2β

]

+
g′ f ḟ (βr + c1)

2

2β2g

+
f ḟ (βr + c1)

2β

[

3 +
f 2(βr + c1)

2

2β2

]

+
2β f 2(βr + c1)

[2β2 − f 2(βr + c1)2]

[

Ḟ

F
+

f ḟ (βr + c1)
2

2β2

]}

(72)

m =
R

2

{

1 +
4R2β4 f 4

ḟ 2[2β2 − f 2(βr + c1)2]
2

[

Ḟ

F
+

f ḟ (βr + c1)
2

2β2

]2

−R2

[

g′

g
+

β

(βr + c1)
+

f 2(βr + c1)

2β

]2
}

. (73)

4.3. The Matching Conditions

So far, our model is determined up to three functions, F(t), f (t) and g(r). The form of

these functions will be suggested by the asymptotic conditions as t → ∞ and a condition to

avoid shell-crossing singularities (R′
> 0).

We are looking for a model which asymptotically (as t → ∞) approaches the state of a

static ghost star, m(t → ∞, r
Σ(e)) = 0.

As mentioned before, to achieve the asymptotic behavior required of the model, we

must demand that in the limit t → ∞, the conditions in (66) are satisfied.

Let us now consider the matching of this model on Σ(e). We shall demand that the matching

conditions (26) and (27) be satisfied asymptotically (as t → ∞) when a ghost star is expected

to form. Thus, we shall demand that

m(∞, r
Σ(e)) = 0. (74)

On the other hand, as can be seen from (72) and (66), in the limit t → ∞, we obtain

q → 0 as expected from the static limit; therefore, we must also demand that

Pr(∞, r
Σ(e)) = 0. (75)

Using (66) in (73), the condition m(t → ∞, r
Σ(e)) = 0 reads as

γg
Σ(e)(βr

Σ(e) + c1)

[

g′
Σ(e)

g
Σ(e)

+
β

(βr
Σ(e) + c1)

]

= 1. (76)

To specify our model further, we shall assume that for the function g(r) and the

constant c1,

g = c3r, c1 = 0, (77)

where c3 is a dimensionless constant.

Then, condition (76) becomes

r
Σ(e) =

1

2γc3β
. (78)
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On the other hand, condition (75) reads as

g′
Σ(e)

g
Σ(e)

+
1

r
Σ(e)

=
1

γg
Σ(e) βr

Σ(e)

, (79)

where (66) and c1 = 0 have been used. Feeding (77) back into (79), we obtain

r
Σ(e) =

1

2γc3β
, (80)

which is exactly (78). Thus, the above choice of constants ensures the asymptotic fulfillment

of matching conditions on Σ(e) for our fluid distribution with Minkowski spacetime.

It is worth mentioning that for this choice of the values of g and c1, the matching conditions

are not satisfied on Σ(i). Therefore, this model has a thin shell on this surface, and r
Σ(i) is a

free parameter.

4.4. The Model

Finally, in order to fully describe our model, we have to specify the two functions, F

and f , which must satisfy the asymptotic conditions in (66).

For the sake of simplicity, we choose

F = γe−
r
Σ
(e)
t , f = −1

t
. (81)

With the above choice and (77) and (80), the metric functions A and R read as

A = 1 − x2

2t∗2
, R =

r
Σ(e)

2
e−1/t∗x2e

x2

4t∗2 , (82)

where t∗ ≡ t
r

Σ
(e)

changes in the interval [ t0
r

Σ
(e)

, ∞], with t0 being a positive constant, and

x ≡ r
r

Σ
(e)

changes in the interval [
r

Σ
(i)

r
Σ
(e)

, 1].

In order to ensure the positivity of A, we must assume that t∗ > 1√
2

.

Using the above expressions in (69)–(73), the physical variables describing our model

read as

8πµ =
4t∗4( 1

t∗2 − x2

2t∗3 )
2

r2
Σ(e)(2t∗2 − x2)2

− 2

r2
Σ(e)

[

(2t∗2 + x2)

t∗2x2
+

x2

4t∗4
+

3

2t∗2

]

− 1

r2
Σ(e)

(

2

x
+

x

2t∗2

)2

+
4e

( 2
t∗ −

x2

2t∗2 )

r2
Σ(e)x

4
, (83)

8πPr = − 4t∗4

r2
Σ(e)(2t∗2 − x2)2

{

2

(

1

t∗4
− 2

t∗3

)

− 2x2

t∗5
+

3x2

t∗4
+

x4

2t∗6

−2

[

− 2

t∗
+

4t∗

(2t∗2 − x2)

](

1

t∗2
− x2

2t∗3

)

+

(

1

t∗2
− x2

2t∗3

)2
}

−4e
( 2

t∗ −
x2

2t∗2 )

r2
Σ(e)x

4
− 4x

r2
Σ(e)(2t∗2 − x2)

(

2

x
+

x

2t∗2

)

+
( 2

x + x
2t∗2 )

2

r2
Σ(e)

, (84)
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8πP⊥ = − 4t∗4

r2
Σ(e)(2t∗2 − x2)2

{(

1

t∗4
− 2

t∗3

)

− x2

t∗5
+

x4

4t∗6
−

[

− 2

t∗
+

4t∗

(2t∗2 − x2)

](

1

t∗2
− x2

2t∗3

)

+
3x2

2t∗4

}

− 2

r2
Σ(e)(2t∗2 − x2)

− 2x

r2
Σ(e)(2t∗2 − x2)

(

2

x
+

x

2t∗2

)

+
x2

r2
Σ(e)4t∗4

+
(2t∗2 + x2)

r2
Σ(e)x

2t∗2
+

3

2r2
Σ(e) t

∗2
, (85)

4πq =
2

r2
Σ(e)(2t∗2 − x2)

[

2

x
+

x

2t∗2
− 2x

t∗
− x3

4t3∗ +
x(2t∗ − x2)

t∗(2t∗2 − x2)

]

, (86)

m =
r

Σ(e)x2e−
1
t∗ e

x2

4t∗2

4







1 +
x4e−

2
t∗ e

x2

2t∗2

4

[

(2t∗ − x2)2

t∗2(2t∗2 − x2)2
− (4t∗2 + x2)2

4x2t∗4

]







. (87)

The temperature for this model may be calculated using (33), producing

T∗ = − 1

4π

∫

(τ∗ ∂q∗

∂t∗
+ q∗A)dx + Φ(t), (88)

where T∗ ≡ κTr
Σ(e) , τ∗ ≡ τ

r
Σ
(e)

, q∗ ≡ 4πqr2
Σ(e) , Φ(t) is an arbitrary function of integration

and A and q are given by (82) and (86), respectively.

However, the resulting expression is cumbersome and not very illuminating. Worse

still, it depends on an arbitrary function (Φ) and the numerical value of the relaxation

time τ. The former may be related to the temperature at the boundary surface, but this is

also unknown unless we specify the microphysics of the fluid further. On the other hand,

the numerical value of the relaxation time also depends on the microphysics of the fluid.

However, a microscopic setup of the model is out of the scope of this work.

Thus, the only way to obtain the required information is by assigning the value of τ

and the profile of Φ in an ad hoc way, which, due to its intrinsic arbitrariness, deprives the

obtained expression for the temperature of any physical relevance. Accordingly, we will

dispense with the temperature graphic. It is suffice to say that asymptotically, the tempera-

ture tends to a constant, as expected from a static distribution in thermal equilibrium (as we

shall see below, the “thermal inertial term” Ta [35] vanishes asymptotically in this model).

We shall now illustrate the formation of the ghost star as t → ∞ for the model described

so far. To do that, we need to evaluate the energy density in the limit t → ∞. Integrating (66),

(77) and (80) in (69), we obtain

8πµ(t → ∞, r) =
4

r2
Σ(e)

(

1 − 2x2

x4

)

, (89)

where x ≡ r
r

Σ
(e)

, whose values are within the interval [
r

Σ
(i)

r
Σ
(e)

, 1].

With the choices made above, the expressions for U
Σ(e) and m

Σ(e) read as

U
Σ(e) =

(2t∗ − 1)Ψ

2t∗(2t2∗ − 1)
, (90)

and

m
Σ(e) =

Ψr
Σ(e)

4

[

1 +
Ψ2(1 − 1

2t∗ )
2

t∗4(2 − 1
t2∗ )2

− Ψ2

4
(2 +

1

2t∗2
)2

]

, (91)

where Ψ ≡ e
− 1

t∗ +
1

4t∗2 .
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The three curves in Figure 1 illustrate the emergence of the ghost star. The first curve

depicts the radial distribution of the energy density as t → ∞ and shows a region of negative

values for this variable, which ensures the vanishing of the total mass, as illustrated by the

third curve. Finally, the second curve shows the tendency to a static situation.

The behavior of the physical variables is depicted in Figures 2 and 3. The graphics

for Pr, P⊥ and q were drawn for the variables t∗ and x in the intervals [0.9, 15] and [0.5, 1],

respectively. On the other hand, for µ, we chose the intervals [1.7, 15] and [0.67, 1] in order

to better illustrate the appearance of the region of a negative energy density. The fast

convergence of the system to the static regime is well illustrated in Figure 3.

Figure 1. 8πµr2
Σ(e) , evaluated at t∗ → ∞, as function of x in the interval [ 1

2 , 1]; U
Σ(e) and m

Σ(e) as

functions of t∗.
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Figure 2. 8πµr2
Σ(e) , 8πPrr2

Σ(e) and 8πP⊥r2
Σ(e) as functions of x and t∗.

Figure 3. 8πqr2
Σ(e) as function of x and t∗.
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5. Discussion

The main purpose of this work has been to exhibit the viability of the formation

of a ghost star as the end point of the evolution of a self-gravitating fluid distribution.

To achieve this goal, we have presented an analytical model of a dissipative spherically

symmetric fluid distribution evolving toward a ghost star.

We initially found a primeval solution satisfying the vanishing complexity factor

condition, quasi-homologous evolution and B = 1. Next, this primeval solution was

modified to satisfy the required asymptotic conditions in (66). Finally, we chose the

remaining arbitrary functions to fully specify our model. This final model represents an

expanding fluid distribution endowed with a cavity surrounding the center, tending to

a static configuration. The end point of the evolution of this model is a ghost star, as

illustrated by Figure 1.

Furthermore, in the limit t → ∞, we have A → 1, implying, because of (12), the

vanishing of the four-acceleration of the fluid forming the ghost star (which explains the

vanishing of the “thermal inertial term” mentioned before). This implies, in turn, according

to (A1), that the gravitational term in the dynamic Equation (A2) (the Tolman mass [36])

vanishes and the equilibrium is reached through a balance between the radial pressure

gradient and the anisotropic factor. A particular model of a ghost star with a vanishing

complexity factor and vanishing Tolman mass was considered in [1].

The model satisfies asymptotic Darmois conditions on the external boundary surface,

whereas on the inner boundary surface, such conditions are not satisfied, thereby indicating

the appearance of shells on this hypersurface. The presence of these thin shells is likely to

be a result of the simplicity of the model. More involved analytical models or numerical

models could avoid these “drawbacks”.

We should recall that the very existence of ghost stars relies on the assumption of the

existence of regions of a fluid distribution endowed with a negative energy density. In

this respect, it should be mentioned that a negative energy density (or negative mass) is

a subject extensively considered in the literature (see [37–52] and the references therein).

Particularly relevant are those references relating the appearance of a negative energy

density to quantum effects.

It is worth mentioning the relevance of the observational aspects of ghost stars, in

general and of our model in particular. On the one hand, it is evident that the shadow of

this kind of object should differ from the one produced by a self-gravitating star with a

non-vanishing total mass. In the particular case of the model considered here, one should

be able to detect the variation in the shadow as the system approaches the state of a ghost

star. We have not examined if this has been achieved in ongoing observations of this

kind [53–56], but this is an important issue to consider. A research endeavor in a similar

direction has recently been published in [57].

In the same order of ideas, it should be clear that the radiation emitted from the surface

of a ghost star should not exhibit gravitational redshift, opening the way for the possible

detection of such objects. In our case, a continuous measurement of such redshift and its

ensuing decrease as evolution progresses would indicate the formation of a ghost star.

On the other hand, it is worth noting that ghost stars are a sort of reservoir of dark

mass produced by the appearance of a negative energy density is some regions of a fluid

distribution. It remains to be seen if the general problem of dark matter could, at least

partially, be explained in terms of ghost stars [58].

We would also like to mention that an important piece of theoretical evidence sup-

porting the concept of a ghost star is still missing. We have in mind a microscopic theory

accounting for the appearance of a negative energy density. Research in this direction could
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provide further support for the astrophysical relevance of ghost stars by allowing us to

clarify important questions about the structure of these objects, such as their stability.

Finally, let us mention two natural extensions of the work presented here:

• Our solution was based on a set of heuristic conditions mentioned above. Alterna-

tively, solutions of this kind might be found by using the general methods presented

in [59–62] or utilizing some of the recently presented results in the study of gravita-

tional collapse (see, for example, [63–65] and the references therein).

• We have resorted to using GR to describe the gravitational interaction. It would be

interesting to consider the same problem within the context of one of the extended

gravitational theories [66].
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Appendix A. Dynamical Equation

Using (12), (17), (20) and (70), we can easily obtain

DTU = − m

R2
− 4πPrR,+Ea, (A1)

which allows us to write the dynamical equation following from the Bianchi identities as

(see [12] for details)

(µ + Pr)DTU = −(µ + Pr)
[ m

R2
+ 4πPrR

]

−E2

[

DRPr + 2(Pr − P⊥)
1

R

]

− E

[

DTq + 2q

(

2
U

R
+ σ

)]

. (A2)
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