
Proceedings of the Ninth International Conference

on General Relativity and Gravitation





PROCEEDINGS OF THE
' NINTH

INTERNATIONAL CONFERENCE
ON GENERAL RELATIVITY

AND GRAVITATION‘, ‘ '

JENA, 14—19 JULY 1980’
Under the auspices of

International Society for General Relativity and Gravitation
International Union of Pure and Applied Physics

Friedrich-Schiller University, Jena

Edited'by
E. S CHMUTZER

Department of Relativistic Physics, Friedrich-Schiller
University, Jena, German Democratic Republic

CAMBRIDGE UNIVERSITY PRESS

CAMBRIDGE

LONDON ' NEW YORK - NEW ROCHELLE - MELBOURNE ° SYDNEY



Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

32 East 57th Street, New York, NY 10022, USA
296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia.

© .1983 VEB Deutscher Verlag der Wissenschaften, DDR— 1080 Berlin,
Postfach 1216, German Democratic Republic

First published 1983

Printed in the German Democratic Republic by
VEB Druckhaus ”Maxim Gorki“, 7400 Altenburg

Library of Con! 'z catalogue card number:

ISB ‘1 521 24669 5



Editor’s Preface

The scientific material for the discussion groups of GR9 was handed out to the
participants of the conference in 3 Abstracts Volumes (about 750 pages) at the be-
ginning of the congress.

This Proceedings Volume contains most of the GR9 plenary lectures. Unfortuna-
tely the publication of this volume has been delayed by nearly half a year, because
some of the authors could not keep the mutually agreed term for handing in their
manuscripts, which was the end of September 1980. Although the publishers pro-
longed the time limit for submitting the manuscripts up to the end of 1980, some of
the important contributions which were greatly appreciated by the participants
have not arrived yet. I regret that these articles cannot be included in this volume.
They are the lectures held by: I. Robinson, J. Ehlers, and Ya. B. Zeldovich. By
reason of time the interesting lecture read by J. Trautman can only be published in
form of an extended abstract.

In honour of Albert Einstein’s 100th birthday in 1979 I — contrary to the tradi-
tion of the GR congresses — established a circle for historical studies on the occasion
of GR9 which was met with great interest by the participants. Both of the larger con-
tributions to this topic read by H. Melcher and L. Pyenson are included in this Pro-
ceedings Volume.

For general information I present some data on the distribution of the participants
per country and the grants given for GR 9. These facts are part of the Appendix,
which ends with a poem on GR9 by N. V. Mitskievich, who, unfortunately, could not
take part in the congress.

The succes of GR9 was guaranteed especially by the well founded contributions
of the plenary lectures and the moderators as well as by the active support of Fried—
rich Schiller University Jena, the Ministry of Higher Education of the GDR, the
IUPAP and the International Society on General Relativity and Gravitation
(Berne). Their support is gratefully acknowledged. I express my sincere gratitude
to the President of our Society, Prof. Dr. P. G. Bergmann, and its secretary,
Dr. A. Held, as well as to the secretary of GR9, Dr. R. Collier, and to our office
secretary, Frau U. Kaschlik for permanent help in the organisation of the congress.
I thank Miss C. Conlin and Herr E. Hahn for the translations. Last not least I would
like to thank the staff of the VEB Deutscher Verlag der Wissenschaften, Berlin, for
his sympathetic understanding and help in solving technical problems.

Jena, February 1981 Ernst Schmutzer
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OPENING SESSION





Welcoming Address
by the Rector of Friedrich Schiller University Jena
F. Bolck (Jena)

Ladies and Gentlemen,

I have the pleasure to welcome you in our country, in this town and especially at
our University. — We are very happy about the decision of your Committee on Gene-
ral Relativity and Gravitation to give the 9th Conference of your Society to Jena,
and that our University has the honour of being the host of this conference.

Your Conference has gained great interest which is expressed by the fact that the
Deputy Minister for Higher Education, Mr Harry Groschupf, has come to this opening
session. I Welcome you, Mr Deputy Minister, and now I have the honour to inform
you about an address to the Conference from our Minister of ‘Higher Education,

which I will read in German.

I would like to express my sincere thanks to you, MrPresident, and to the members
of your Committee for your kind interest in our University.

Our University was founded about 420 years ago in 1558. This was the time of the
reformation. In its development our University has been closely connected With the
names of many eminent scientists in the arts as Well as in the natural sciences and
medicine. This is not the place to go into historical details, but there are three im-
portant aspects which I would like to mention:

firstly: The role of the University in the time of German Classicism is connected
with the names of Goethe and Schiller. Schiller was a professor of history in Jena
and it is to him that the University owes its name,

secondly: The foundation of the Zeiss works is closely connected with the Uni-
versity.

Carl Zeiss was the University mechanician and Ernst Abbe was a lecturer at our
University.

This combination was of great influence on the sciences, especially the physics at
the University as well as on the developing optical industry.

thirdly: Our University was the first one in Germany to be reopened after the
second World War in 1945. Since those days a new University has developed which
is open to all people, who have as their aim to do scientific work in the interest
of the population as well as in the interest of science itself and to educate the young
generation in the spirit of peace.
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It is well known that science can develop only in peace and that the application of
scientific results postulates a permanent preservation of peace. Therefore the ideas
of mutual understanding and peace are the aims of our country as well as of our Uni-
versity.

In connection With this scientific and social responsibility of the University theo—
retical physics plays an important role. Let me enter into a few remarks on some emi-
nent representatives of this field:

It was Ernst Abbe who started with his thesis in 1863 a theoretical physical re—
search of high international reputation in the field of optics. These investigations
were the scientific basis of the industrial development in the Zeiss factory.

In 1912 F. Harres published his thesis about the Sagnac experiment Where the
light path nearly completely went through glass; and he approximately confirmed
the theoretical hypothesis.

Georg Joos repeated the Michelson experiment in a basement of the Zeiss factory
in 1929—30 with the confirmation of the special relativistic hypothesis; the limit of
error was i1.5 km/sec. In those days this was the greatest precision of this experi—
ment.

Between 1947 and 1951 Friedrich Hund and his coworkers carried out research
work in relativistic quantum field theory.

Since 1957 Ernst Schmutzer and his group have started general relativistic re—
search at our University. The research covers the following subjects:
— Unified field theory, especially projective relativity theory;
— Theory of the spinors in curved space;
— Quantization of physical fields in curved space—time;
~ General relativistic continuum mechanics and thermodynamics;
~ Electromagnetics and quantum theory in non-inertial frames;
~ Exact solutions of the Einstein—Maxwell theory;
— the border area of gravitation and low temperature physics.

This research work has led to many publications and scientific conferences. But it
also resulted in an interdisciplinary cooperation between physics and philosophy;
these common efforts are concerned With the problem of the unity of physics. Ernst
Schmutzer’s publication “Relativity theory today — a contribution to the unity of
physics” is also devoted to the philosophical interpretation of the relativity theory.

It is not possible to mention all the publications of Ernst Schmutzer and his co—
workers, but about 10 books have been published on relativity theory.

I think I am correct, when I say that our history as well as the present scientific
work have contributed to the decision to hold your 9th International Conference on
General Relativity and Gravitation at our University.

I welcome you once more in Jena and I Wish you successful scientific work and a
pleasant stay in this town and its surroundings.



Welcoming Address
by the Minister of Higher Education of the GDR
(read by Rector F. Bolck)
H.-J. Bohme (Berlin)

Meine sehr verehrten Damen und Herren!

Der 9. Internationale GravitationskongreB 1980 in Jena fiihrt bedeutende Gelehrte
und Spezialisten auf dem Gebiet der Relativitatstheorie und Gravitation aus zahl-
reichen Landern der Erde zum Wissenschaftlichen Gedankenaustausch und zur Dis-
kussion neuester Forschungsergebnisse zusammen und 1t Impulse fiir die Auf-
hellung grundlegender physikalischer Zusammenhange der Entwicklung des Kosmos
erwarten.

Wir betrachten die Ausrichtung dieser bedeutsamen internationalen Tagung durch
die Friedrich-Schiller—Universitat Jena als einen Wichtigen Beitrag der Deutschen
Demokratischen Republik zur Entfaltung einer dem Frieden, den humanistischen
Idealen und dem Menschheitsfortschritt verpflichteten Wissenschaft und als Wiirdi-
gung der Leistungen unserer Wissenschaitler auf dem Gebiet der Relativistischen
Physik.

Der 9. Internationale Gravitationskongrefi in Jena ist Ausdruck der Wahrung,
Pflege und Fortfiihrung des progressivenWissenschaftlichen und humanistischen Erbes
des Begriinders der Relativitatstheorie, Albert Einstein, in der Deutschen Demo-
kratischen Republik.

Die Begegnung von Wissenschaftlern aus allen Teilen der Welt Wird einen Beitrag
leisten zur Sicherung und Bewahrung des Friedens als Grundvoraussetzung fiir das
weitere Gedeihen der Wissenschaften zum Wohle der Menschheit.

Ich Wiinsche dem 9. Internationalen KongreB fiir Allgemeine Relativitiitstheorie
und Gravitation einen erfolgreichen Verlauf und den Teilnehmern schone und erlebnis-
reiche Tage in unserem sozialistischen Staat.

Translation

Ladies and gentlemen!

The 9th International Congress on Gravitation unites eminent scientists and spe-
cialists in the field of General Relativity and gravitation from many countries of the
world for the exchange of scientific ideas and the discussion of the latest results of
their research, and new impulses for the elucidation of fundamental physical inter-
relations and of the development of the Universe are to be expected.
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We regard the organization of this important conference by the Friedrich
Schiller University of Jena as a considerable contribution of the German Demo—
cratic Republic to the development of a science obliged to peace, humanistic ideals
and human progress and as an appreciation of the achievements of our scientists in
the field of relativistic physics.

The 9th International Congress on Gravitation in Jena is an expression of the pre-
servation, cultivation and continuation of the progressive scientific and humanistic
heritage of the founder of Relativity Theory, Albert Einstein, in the German Demo-
cratic Republic.

The meeting of scientists from all parts of the world will contribute to the protec—
tion and preservation of peace as a fundamental prerequisite for the further devel-
opment of science for human welfare.

I Wish the 9th International Congress on General Relativity Theory and Gravita-
tion successful work and the participants pleasant and eventful days in our socialist
country.



Welcoming Address in the Name of IUPAP
by the President of the National Physics Committee
of the GDR
J. Auth (Berlin)

Mister chairman, ladies and gentlemen!

On behalf of the National Comittee on Physics of the German Democratic Republic
I welcome all participants in the Ninth International Conference on General Relativity
and Gravitation. I welcome you very heartly in our country. The physicists in the
German Democratic Republic are very glad about the decision of the International
Society for General Relativity and Gravitation to have their Ninth International
Conference here in this country and in this town.

I welcome you also on behalf of the International Union of Pure and Applied
Physics, the IUPAP, which is sponsoring your conference. Our National Committee
is representing the IUPAP in this country. The German Democratic Republic is
a member of the International Union of Pure and Applied Physics since 1960 and we
think that the activities of this Union are very important for the advance in science,
especially in physics, for a fruitful exchange of ideas, and for a useful cooperation
in physics between the different member countries all over the world. And we think
also, that the activities of this union can contribute to a lasting peace in the world.
The conference we are opening now is a further contribution in this direction.

The German Democratic Republic is now thirty years old. We can say that with
the foundation of the GDR a new stage began in the development of sciences in our
country in general. The very successful evolution of sciences in the last thirty years
is a convincing expression of the continuity of the science policy of the Socialist
Unity Party of Germany and of the Government of the GDR that is derived from
the laws of social development and based on the active link between working class and
progressive science. Scientific basic research is governed in our country by 8 large
long term national research programs in the main branches of science as mathema-
tics, physics, chemistry and so on.

These programs have been worked out by the cooperation of very many scientists
and the details of these programs, the main directions of research, the aims and the
best ways to put them into practice are discussed in many consulting councils be—
tween scientists from the research institutes of the Academy of Sciences of the GDR,
the universities and the industry. We see in this practice one special but important
part of our real democracy. A very important characteristic of the physics research
program is the very close connection of pure and applied physics. In this framework
physics in our country is developing very well. You may see this very clearly at the
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physics department of the Friedrich Schiller University Jena, one of the leading
universities in physics in our country and the friendly host of this conference.

And I think, that it is right to underline the fruitfulness of a close connection,
a strong interaction of pure and applied physics, just at this place, at this town, as
Jena in history of science and technology is one of the first places in the world,
where this concept has proved to be fruitful in the very close relations between the
Carl Zeiss Factories and the University in Jena.

But underlining the great social responsibility of our physicists and of physics
in general for the solution of the great problems of mankind, as the energy problem
for instance, does not mean, to see in physics only a practical instrument, a
tool for solving problems. Physics is rather an extremely important, an essential part
of our culture by itself. The great work of Albert Einstein has demonstrated this
matter of fact once more in a very convincing way. Therefore it was only quite con—
sequent, that the 100th anniversary of the birth of Albert Einstein one year ago in
our country found a wide public interest. We are very glad to meet here in Jena again
some of the famous scientists that took part in the governmental ceremony and in the
scientific conference of the Academy of sciences and of the Physical Society of the
GDR in 1979 in honour of Albert Einstein.

General Relativity and gravitational theory is one of the most fundamental parts
of physics and any real progress in this field is of exceptional interest for physics
as a whole. Unexpected connections may exist, and they may give us new proofs of
the unity of physics and of the unity of the world. Gravitational waves, supergravity
and other very important topics you will discuss in the next days here in Jena. And
these discussions may give us some new understanding of fundamental problems of
physics, some new insights into basic laws of nature that are controlling the evolu—
tion of the Universe.

The Ninth Conference on General Relativity and Gravitation in this sense is not
only a very important point in our scientific life, it is of considerable philosophical
interest and also an outstanding cultural event. It is a great honour and an obliga—
tion for us, too, the Physical Society and the National Committee on Physics of the
GDR, that this conference takes place in Jena. I hope it will be a full success and you
will have a nice stay in our country.



Opening of the Conference
by the President of the International Society
for General Relativity and Gravitation
P. G. Bergmann (Syracuse, N. Y.)

According to the official program, it is my task, as the retiring president of our
Society, to open GR 9, the Ninth International Conference on General Relativity
and Gravitation. To do so, I should need mostly a trumpet, plus the ability to play
one. Lacking both I have thought about how to use best the few minutes consigned
to this ceremonial act.

As relativists, and as physicists, astronomers, and mathematicians with at least
a tangential concern for general relativity and its ramifications, we all are conscious
of the Albert Einstein Centennial Year, which has just come to a close and which
has been the occasion for many of us to join hands in celebrations all over the world,
commemorating the contributions that Albert Einstein has made to science, and to
the social betterment of humanity as well. The conference GR9 will in many respects
serve as a continuation of the gatherings last year. We shall share recent scientific
advances in general relativity and related areas, and we shall do so as an increasingly
international group, including, for the first time, a colleague from the People’s
Republic of China.

The year 1980 marks another anniversary, the twenty-fifth year after the first
international conference on general relativity, which had been conceived by Wolfgang
Pauli to mark the fiftieth anniversary of (special) relativity and which had been
welcomed and supported by Einstein in the months preceding his death. This con-
ference, at Berne, had been attended by fewer than ninety colleagues. GR 9, by con-
trast, has drawn somewhere between five hundred and one thousand participants, the
precise number not yet known to me. The list of members of the Berne conference of
1955 is to be found in the famous Fourth Supplement of Helvetica Physica Acta.
Looking it over we find the names of many who have continued to be active in our
field, and, sadly, also the names of those who are no longer with us, foremost among
them the president of the Berne conference, Wolfgang Pauli, and, our most recent
loss, Christian Mcller, who had been the first president of the International Society
for General Relativity and Gravitation.

Other colleagues this morning will present you with their views as to the present
status of our field, but I shall take this opportunity to mention at least what seem to
me among the most exciting aspects of relativity research just now. The principal
contribution of general relativity to the edifice of physics appears to me the recogni-
tion that space and time form part of the physical universe, and that their geometric
properties must be explored by the methods of experimental science. The state of

2 Proceedings GR9
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our comprehension may well be cast into the form of axioms, and one possible axiom
of this kind is that space—time be a pseudo—Riemannian manifold, or perhaps, in—
stead, that it be a \Veyl—type conformal manifold, or something else. But any such

axiom is a proposed law of nature, a hypothesis concerning the actual properties of
space-time, and its claim to validity must be viewed in that context.

Astronomy has presented us in recent years with new relativistic “laboratories",

and the newest are pulsars in doublestar systems. I have no doubt that so far astro—

nomers and space scientists have barely scratched the surface of the new possibilities,

and that soon we shall be confronted by avalanches of new discoveries.

()n the theoretical level the most exciting development to me is that a number of

early attempts at a unitary field theory appear to converge with approaches stimu—

lated by elementary particle physics. For a number of decades it appeared that ge-

neral relativity was an appropriate physical theory for astronomical systems and in

cosmology, but that it had nothing to contribute to the physics of the very small.

It now looks as if this will change, and we find that ideas originated at one end of the

scale stimulate progress at the other end. Perhaps what are fond hopes today will

mature into viable theoretical structures within our lifetime.

It is often said that science is an international enterprise, which requires for its

health the free circulation of discoveries and ideas throughout the world. \Vc all

consider this statement a truism, which requires no elaborate justification. But
seience is a human enterprise, interacting in many ways with social and political
developments. If you agree with me that human survival depends on the mainte-
nance and the continuing strengthening of peace among the nations, then obviously
we scientists bear a special responsibility for doing our part toward this end.

In'forming our International Society we have attempted a new model that deviates
from the standard pattern exemplified by the Scientific Unions: We encourage in-
dividual membership, and we accept corporate membership only by scientific and
academic organizations. rather than by country. It remains to be seen whether this
kind of international organization serves well its technical purpose, the support of
research in relativity in our case, and also fulfills its further task of strengthening
the bonds of international friendship. I certainly hope so.

The holding of international meetings is beset with all kinds of problems and
difficulties, among which the raising of the necessary funds is but one. Those of us
who have been concerned with the preparatory work are aware of the tremendous
work and effort that has been exerted first of all by Ernst Schmutzer and by R. Col-
lier, both of the Friedrich Schiller University of Jena, our host institution. I have

no doubts that their efforts have been aided by officials of the University, by its
Rektor, Professor F. Bolck, and by the younger members of the local relativity group.
They in turn have been supported by various authorities of the Government of the
German Democratic Republic, the DDR, and we owe thanks to all of them. Finally I

should mention the very great help by the Secretary of the Society, Dr. Alan Held,
who managed to act, as the international problem—solver of GRQ in many ways
while seeing to its fruition the major contribution of our Society toward the Einstein
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Centenary, “General Relativity and Gravitation”, in two volumes, which has come
out just a few weeks ago, and of which a few copies will be found here for all to look
at. '

On this happy note of accomplishment I shall close. GB 9 is now officially open!

Address: Prof. Dr. Dr. h. 0. Peter G. Bergmann
Department of Physics, Syracuse University
Syracuse, New York 13210, USA
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OPENING LECTURES





Einstein’s Second Century
J. A. Wheeler (Austin)

Predict our progress in the century now beginning? That, we know, is beyond our
power. We ask ourselves instead What tasks and opportunities lie ahead.

The Illusion Behind Reality and the Reality Behind Illusion

To see how far we have yet to go in the exploration it may help to recall how far we
have come. Two hundred years ago electricity was a toy. A hundred years ago we
were barely beginning to use electricity. Of the electron we did not even know the
name, much less the existence. Today we see a great railway train, a thousand tons
of mass, thunder over a bridge, driven by electrons, colorless abstract objects, run-
ning smoothly, quietly along overhead Wires. Those electrons in turn derive their
energy from the world of the fantastically small, from billions upon billions of quiet
acts of nuclear fission, fission yielding neutrons that we cannot see or touch or
hear; and those neutrons in turn yielding more fission, plus the heat that makes
power.

As if we did not have in electrons and neutrons a world of enough abstraction and
untouchability, we get our daily news by a carrier that is no particle at all. It flies
in to us on the wings of an invisible wave, the flip-flop bending of electric lines of
force, lines that are born and die without ever once in their existence acquiring any-
thing that anyone would call separability, identifiability, touchability.

Have we not discovered in the past century that physics is a magic window?
Is it not the destiny of physics to show us the illusion that lies behind reality — and
the reality that lies behind illusion? And is our task not therefore immensely greater
than we once thought it to be?

A great textbook of physics of a hundred years ago gives the impression that it
would be enough for making our science complete to know the list of all substances
and the physical properties of each. Today it is popular to speak of our task in
equally positive terms: to know the three or four or five laws of force and the
principle linking them. Will this vision in time to come prove itself equally short
sighted?

Can any vision of science that confines itself to science ever reveal the scope of
science? The modern university has a finance officer who knows how much money
to give to physics, how much to mathematics, and how much to philosophy. However,
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at the time this world of ours came into being, this finance officer was not around
to keep his kind of order. The act of creation became a great tangle of philosophy,
mathematics and physics.

T0 straighten out today and tomorrow our understanding of the deeper issues, can
we count on our friends, the philosophers? “No”, they tell us, “We don’t know enough
physics to do the job. It is more reasonable for you physicists to learn the necessary
philosophy.” Can we leave the task to our wonderfully helpful colleagues, the mathe—
maticians? With our immediate work they help us more with each passing decade;
but not ordinarily with the finding of the central questions, the formation of concepts,
and the fitting together of the pieces of the larger puzzle. On those enterprises is the
impression justified that mathematics and philosophy even retreat before the
advance of physics? How else could they better tell us what they see our future task
to be?

In Einstein’s first ’century physics won some understanding of physics. In Ein—
stein’s second century physics has a far greater task. It must win some understanding
of existence itself.

Einstein told us that one question concerned him more than any other: “Did God
have any choice in the creation of the world?” How else better than by that question
can we symbolize the greatness of the tasks and opportunities that lie before us?

Jena, Leibniz, and the Issues Raised by Leibniz

No one who wanders about Jena, reflecting on the challenges of our own day, can
fail to be reminded of the great men of Jena’s past. They walked and talked together
on these very streets: the Friedrich Schiller from whom this university gets its name;
his friend, also poet and thinker, Johann Wolfgang Goethe; and, above all, and in
a still earlier day, Gottfried Wilhelm Leibniz.

Leibniz, one of Einstein’s great heroes, more clearly than anyone was intellectual
great—grandfather of Einstein’s lifetime question, is there room for “any choice in the
creation of the universe” — and of other queries tributary to that central issue:
absolute space? absolute time? and space and time as preconditions for knowledge?

Space, Time and Inertia

Leibniz questioned the Newtonian concepts of absolute space and absolute time.
Ernst Mach translated this doubt into concrete form. Acceleration relative to abso—
lute space? What else could that mean but acceleration relative to the frame of
reference defined by the faraway stars? No conception did more than this “principle
of Mach” to drive Einstein to his 1915 and still standard “general relativity” or “geo—
metrodynamics”. How else could Einstein have conceived of accounting for gravita-
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tion, not as a foreign and physical force propagated through space, but as a mani-
festation of the curvature of space?

Does Einstein’s theory really in the end automatically contain within it a proper
mathematical formulation of Mach’s principle? Does it explain how “mass-energy
there fixes inertia here”? Or is this an antiquarian idea that has outlived its use-
fulness? So many for a time supposed. Then came the first investigations on the so-
called initial value problem of general relativity by Elie Cartan, André Lichnerowicz
and Yvonne Foures-Bruhat, followed by the still more useful results of the latter
(now Yvonne Choquet-Bruhat), James W. York, Jr., Naill O’Murchadha and others.
Thanks to them, new light broke on Einstein’s equation.

We came to see general relativity as part of dynamics in the great tradition.
It deals With the dynamics of geometry. We have only to tell the equation what the
geometry of space is now — and how fast that geometry is changing —- and it will
tell us what the geometry of spacetime itself is everywhere and at all times. But
what that spacetime geometry is at a point, Einstein tells us, is law and measure for
what inertia is at that point.

To “determine inertia here for all time” we thus have to “specify the geometry
of space everywhere at one time”. But this specification, now, is only then possible
when we state where all the sources of mass-energy are, now. This is the sense in
which we learn at the end that inertia here is fixed by mass-energy there.

Space and Time as Prerequisites for Knowledge

Having in hand a modern version of Mach’s principle, we have come to appreciate
better the motives of Leibniz in questioning the doctrine of absolute space. But
Leibniz has even more in mind when he warns that “. . . space and time are orders of
things and not things”. So does Einstein when he adds, “. . . time and space are modes
by which we think and not conditions in which we live”.

Neither statement is idle talk. Both are calls to action. They demand of us a
foundation for space and time. That underpinning even general relativity does not
provide. To this demand Immanuel Kant makes an heroic response. He points out
that no knowledge whatsoever is possible unless we have in hand the tools to combine
in thought the detached elements of experience. He is not concerned with how these
sensory impressions reach us. However, to organize them — or any experience — in
any meaningful way, he stresses, would be absolutely impossible in the absence of
the two essential conditions for sense perception: space and time. Time and space
exist because knowledge exists!

As science advances, Kant’s considerations lose favor. Relativity contributes to
this fall. Out of “a priori pure reason” does Kant purport to derive the existence of
space as one category and time as another? And does Einstein demonstrate that
there are no such things as space, separately, and time, separately, but only space-
time? Then there must be something wrong with Kant’s reasoning.
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It is one position to say that Kant is all wrong. It is quite another to say that he is
right in general conception, wrong in detail. If he could publish evidence in 1754
arguing for a slow change in the axial rotation of the earth, and in 1755 calculate

how fast the Milky Way must rotate to withstand gravity, perhaps he had as good
a nose for physics as anyone today. Few conceptions are grander than Kant’s idea
that space and time are preconditions for a knowable world. Properly to assess that
view — and, more broadly, to answer the questions of Leibniz a is business that

is unfinished — and important.

What “Pregeometry” Lies Behind Geometry?

A less ambitious question often received attention a few decades ago, “Why does
space have dimension three?”. Nowadays we are beginning to raise our sights and
ask a question that is bigger though not so big as Kant’s. We ask, “How does the
world manage to give the impression that it has dimension three?”

Nowhere more clearly than at a crack does a crystal reveal that it is not a conti—
nuum at the submicroscopic level. Nowhere more conspicuously than at a selvedge
does cloth show that it is not a continuum but woven out of thread. Spacetime —
with or without “gauge” or “phase” or “internal spin” degrees of freedom — often
considered to be the ultimate continuum of physics, evidences nowhere more clearly
than at big bang and at gravitational collapse that it cannot be a continuum. Obliter-
ated at the bounds of time, we see no escape from concluding, is not only matter,
but the space and time that envelop that matter.

If a crystal is built out of electrons and nuclei and nothing more, if cloth is woven
out of thread and nothing more, we are led to ask out of what “pregeometry” the
geometry of space and spacetime are built.

Nothing is more basic to the description of a crystal than elasticity, and nothing
is less basic. There is no such thing as “elasticity” in the space between the electron
and the nucleus. A hundred years of the study of elasticity would never have revealed
that it goes back for its origin to electrons, nuclei and Schrodinger’s equation and
nothing more. The direction of understanding went, not from the large to the small,
but from the small to the large. If elasticity is the last place to look for a clue to
Schrodinger’s equation, geometry would seem to be the last place to look for a clue
to pregeometry — and quantum theory the first. It is no wonder that “quantum
geometrodynamics” 0r “quantum gravity” is such a central topic of concern to so
many today.

Space and time: reality or illusion? Whatever Einstein’s second century has in
store for us on this question, Leibniz will surely still have the last word: “Although the
whole of this life were said to be nothing but a dream and the physical world noth—
ing but a phantasm, I should call this dream or phantasm real enough, if, using
reason well, we were never deceived by it.”
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Gravity as Illusion

The illusion behind reality, and the reality behind illusion, show up nowhere more
strikingly than in gravity itself. In fig. 1 the ball is thrown across the room. The
action of gravity makes its path parabolic, or so we are accustomed to say. Fig. 2
illustrates that same ball thrown across the same room with the same initial velocity.

Fig. 1 Fig. 2

Now its path is straight. The change is not in the ball but in the frame of reference
from which it is regarded. The room has been dynamited loose from the cliff. No
longer is it driven from its natural track through space by the thrust of the beam.
Instead it is in a condition of free fall or, better stated, “free float”. In a freely

floating frame of reference gravity disappears. Einstein abolished gravity as the
first step toward explaining gravity. A fifteen-year old granddaughter expressed the
idea in these words,

“What’s the fault of the force on my feet?
What pushes my feet down on the street?
Says Newton, the fault is at the earth’s core.
Einstein says, the fault’s with the floor.
Remove that and gravity’s beat” Frances Ruml (1978)

or as Stephen Schutz characterized Einstein’s geometric theory of gravitation in
response to a 1966 examination question, “Rather than have one global frame with

gravitational forces we have many local frames without gravitational forces.” Acceler-
ation, the old measure of gravity, is recognized as illusion. That acceleration depended
on choice of reference frame. Relative acceleration of nearby test masses, the new
measure of gravity, is reality.
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Reality, Illusion and Quanta

What we shall call illusion, and What reality, has proved even more difficult to clarify
in quantum physics than in gravitation.

We walk through the art gallery on our way to visit again a favorite picture. We
pass by the painting “Impressions”, first shown by Claude Monet in 1863 at the Salon
des Refuses. To a glance so brief how does the canvas project a coloration so vivid?
Because quanta are so numerous. So a simple calculation informs us. A single dab of
paint in the single second of our passage throws into a single pupil of our eye 50,000
photons. These quanta of light, this stream of information, is so impressive that
there’s no mistaking it. No wonder that our predecessors could believe light to be
continuous.

In actuality, we know today, light consists of individual quanta of electromagnetic
energy. Moreover, each of these photons is accidental in its time of emission and di—
rection of travel. This Einstein taught us in the same magic year, 1905, in which he
gave us special relativity. To him more than anyone we owe the lesson that “God
plays dice”.

Unteach this lesson, circumvent indeterminism, overthrow complementarity,
restore predictability: that was the directly opposite thrust of Einstein’s endeavors
from the late 1920’s to the end of his life. When Richard Feynman, then a graduate
student, was developing in 1941 his beautifully simple distillation of quantum me—
chanics into a “sum over histories”, I called on Einstein to describe the progress
of the work. Every conceivable classical history contributes to the probability
amplitude for a transition with the same weight as every other history. That is
Feynman’s principle of the “democracy of histories”, I explained. However, these
contributions, identical in magnitude, differ in phase one from another. The resulting
destructive interference Wipes out the contributions of all but histories close to the
classical history. How could nature operate more beautifully, I exclaimed. Does this
not make you more willing to accept quantum theory? “No”, Einstein replied,
“I still cannot believe that the good Lord plays dice” — and then added in his
humorous way, “Of course I may be wrong; but perhaps I have earned the right to
make my mistakes”.

To the extent that chance comes in, Einstein knew, predictability goes out. What
else is reality if it is not predictability? We can understand why he told Otto Stern,
“I have thought a hundred times as much about the quantum problems as I have about
general relativity theory”. We can also appreciate Why Einstein, in his famous 1935
paper with Boris Podolsky and Nathan Rosen, made his central objection to quantum
theory this, that in his View it conflicts with any “reasonable definition of reality”.

Your concept of reality is too narrow — that was the thrust of Bohr’s reply. It —
and elucidation of the term “phenomenon” — marked the climax of the three-
decade—long dialog between the two men. In the early years of that debate no issue
brought more insight than the double—slit experiment (fig. 3).

The illumination level can be made so low that the record made by each individual
photon is subject to registration. Does that photon arrive via both holes in the doubly
slit metal sheet — or only one?
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The accumulation of many photons builds up on the photographic plate the tra—
ditional pattern of interference fringes. The result would seem to argue that each
photon comes through both holes. This conclusion discomfited Einstein. He pointed
out that in principle one can measure the lateral kick each photon gives to the photo-
graphic plate — to the right if it arrives from the left hand hole; to the left, if from
the right. The photon arrives from both holes? And yet arrives from only one hole?
What inconsistency! Is not quantum theory logically self-contradictory? To establish
this point was Einstein’s endeavor in the first phase of the dialog.

Bohr’s reply is well known. To register the interference fringes we hold the photo-
graphic plate fixed; for example, by inserting the pin shown in fig. 3, upper left. We
have to remove the pin and let the plate slide freely to record the lateral kick im-
parted to the plate by the photon. Put the pin in or take it out: we can do either, but
not both at once! We can observe fringes, evidencing that photons have made use
of both holes. Or we can observe the kick, telling us from which hole the photon arri-
ved. But no experiment can display the two features of nature at the same time. Com-
plementarity, Bohr tells us, is a governing principle of knowledge: “Any given appli-
cation of classical concepts precludes the simultaneous use of other classical concepts
which in another connection are equally necessary for the elucidation of the pheno—
mena.” V

After Bohr had successfully defended the logical consistency of quantum theory,
Einstein in the final phase of the great debate attacked the theory as incompatible
with any reasonable idea of reality. We do not have to turn to the EPR experiment
of 1935 to meet the central lesson, Bohr’s concept of “phenomenon”. We see it as
simply as anywhere in today’s so-called “delayed-choice” version of the double-slit
experiment (fig. 4).

The photographic plate has been sliced into strips like the blades of a Venetian
blind. They stand open in the diagram. Above is a new lens. It focuses onto one photo-
counter a photon that comes through one hole in the doubly slit metal sheet; onto
the other counter, a photon that comes thrOugh the other hole. Alternatively we
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can flatten the blades to make the photographic plate operative. Then we can re—
gister one more contribution to the usual pattern of interference fringes.

In the delayed—choice experiment we use a timed source. The photon it emits we
permit to pass through the doubly-slit metal sheet. Only then do we decide Whether
to open or to close the blades of the Venetian blind. Open? Then we learn through
which hole the photon came. Closed? Then we augment our interferometric record of
photons that came through both holes. But the photon had already gone through the
metal plate at the time we made our choice. Are we not therefore in this delayed—
choice experiment deciding what shall have happened after it has already happened?

“Phenomenon”

“Decide what shall have happened after it has already happened” is the wrong set
of words. “Phenomenon” is the right word. Bohr had to introduce it to make clear
his position ms (in 121's Einstein on the EPR experiment. We can use that word to state
the central lesson of quantum physics: “No elementary quantum phenomenon is a
phenomenon until it is a registered phenomenon.”

Specifically, it is wrong to speak of the “route” of the photon in the double-slit
experiment. It is wrong to attribute a tangibility to the photon in all its travel from
the entrance slit to its last millimeter of flight. A phenomenon is not yet a phenom—
enon until it has been brought to a close by an irreversible act of amplification such
as the blackening of a grain of silver bromide emulsion or the triggering of a photo-
detector.

Nature at the quantum level is not a machine that goes its inexorable way. What
answer we get depends on what question we put, what experiment we arrange, what
registration arrangement we choose. The disposition of the equipment is inescapably
involved in bringing about that which appears to be happening.

Quantum Phenomenon: Elementary Act of Creation?

How did the universe come into being? Is that some strange far-off process, beyond
hope of analysis? Or is the operative mechanism still going on today?

Of all the signs that testify to “quantum phenomenon” as being the elementary
act of creation, none is more striking than its untouchability. In the delayed-choice
double-slit experiment we could have intervened at some point along the way with
a different measuring device, before the phenomenon to—be had become a phenom—
enon. Nevertheless, that intervention would have given us no more right than before
to say what the photon was doing in all its long course from point of entry to point
of detection. Yes, we would have had a new phenomenon. No, we would have come
no closer than before to penetrating to the untouchable interior of the phenomenon.
For a process of creation that can and does operate anywhere, that reveals itself and
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yet hides itself, What could one have dreamed up out of pure imagination more magic
— and more appropriate — than “quantum phenomenon?”

Of all the features of that “act of creation” that is the elementary quantum phenom-
enon, the most startling is that seen in the delayed-choice experiment. It reaches
back into the past in apparent violation of the normal order of time. The distance of
travel in the laboratory double-slit experiment might be three meters and the time
ten nanoseconds; but the distance can as well be billions of light years and the time
billions of years. Thus, the decision in the here and now to observe “from which hole”
or alternatively to register “interference of the contributions from both holes” has
an irretrievable consequence for what one has the right to say about a photon that
was given out long before there was any life in the universe:

,,Sein Licht braucht eine Ewigkeit
Bis es dein Aug’ erreicht!
Vielleicht vor tausend Jahren schon
Zu Asche stob der Stern,
Und doch steht dort sein milder Schein
Noch immer still und fern.“

Gottfried Keller

Gravitational Lens and Delayed Choice

Two astronomical objects, known as 0957 + 561 A, B (fig. 5), once regarded as two
distinct quasistellar objects or “quasars” because they are separated by six seconds
of arc, are considered now by many observers to be two distinct images of one quasar.

Fig. 5

Evidence has been found for an intervening cluster of galaxies, and in particular
for one galaxy G-l naturally identified as the principal component of a gravitational
lens, roughly a quarter of the way from us to the quasar. Calculations by several
groups indicate that a normal galaxy at such a distance has the power to take two
light rays, spread apart by some sixty thousand light years on their way out from
the quasar, and bring them back together at the earth. Thus there is nothing in
principle to prevent the promoting of the double-slit delayed-choice experiment
from the scale of the laboratory to the scale of the cosmos.



32 J. A. Wheeler (Austin)

The natural stages in this evolution would seem to be (1) gross determinations of
distances and speeds, (2) interferometric measurements via radio emissions from the
quasar source, and (3) interference at the single quantum level. Each in turn is
worthy of a little consideration.

If and when one of the quasar images indicates a flareup, then the other image
should also briefly brighten, but a month or so later — according to calculations of
C. C. Dyer and R. C. Roeder — and for a simple reason. The two routes of travel,
extending over billions of light years, are bent by slightly different amounts, and
therefore have slightly different lengths. Whithin a few years, surely, our colleagues in
the world of astrophysics will detect such flareups, measure the flare—flare interval,
and eventually even determine how that interval alters from year to year in conse-
quence of quasar drift and lens motion.

Today thin strands of measurement connect us with the most remote objects we
know in the universe. Tomorrow will not those strands thicken to a network? And as
astronomy, patient spider of the stars, continues the spinning of this web, will it
not grow to be even more spectacular and revelatory than the marvellous grid which
geodesists have laid down on the earth to track the shape and drift of continents?

As photography reveals the flare-flare interval, and its rate of change with time,
it will set the stage for radio interferometry. That interferometry will compare the
phase of the radio waves recorded on two tapes. Those tapes will not contain, as
today, records taken at two points of one source (“very long base—line astronomy”),
but records taken at one point of the two apparently different sources produced by
gravitational lensing. The delay and Doppler shift of one as compared to the other
will allow one to determine still more precisely the galactic grid and its drift.

Radio interferometry operates at the classical level. So many photons come into
play that quantum effects don’t ShOW up. However, one can hope to work someday
with a part of the spectrum Where only one photon at a time comes into consideration.
On the way one will face an unprecedented problem in delay—line technology. One will
have to learn how to keep alive, by superconductor or otherwise, and for a chosen time,
of hours, days or months, the “image-A probability amplitude”. One will also have
to be able to bring it back out of storage with the right time delay, and right Doppler
shift, to give it a determinate phase relation to the “image-B probability amplitude”.
Then the choice is clear (fig. 6): Operate the receptor, with its two photocounters,
so as to tell “by which route” the photon comes. Or insert the half—silvered mirror,
(1/2)S, and, with sufficient counts, determine with arbitrary precision the phase differ—
ence between the two routes.

The first such cosmic-scale delayed—choice experiment lies in the future. Today
quantum theory already foretells its lesson: We have no right to say that the
photon travelled from the quasar of red shift 2 : 1.41 to our delayed-choice detector
by route A or route B or a linear superposition of the two. We are dealing with an
elementary act of “creation”. It reaches into the present from billions of years in
the past, It is wrong to think of that past as “already existing” in all detail. The
“past” is theory. The past has no existence except as it is recorded in the present.
By deciding what questions our quantum registering equipment shall put in the
present we exercise an undeniable choice in what we have the right to say about the past.
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The phenomena called into being — by choices of what measurements to carry
out — reach backward in time in their consequences as symbolized in fig. 7, back
even to the earliest days of the universe. Registering equipment operating in the here
and now has an undeniable part in bringing about that which appears to have hap-
pened. Useful as it is under everyday circumstances to say that the world exists
“out there” independent of us that view can no longer be upheld. There is a strange
sense in which this is a participatory universe.

...‘./
321.4. 'RCUTES'

-WHAT RELM‘l'v’E .
PHASE? Flg- 6

‘\\\Fig. 7 y Fig. 8

The universe, depicted schematically by the letter “U” in fig. 8, starts with a big
bang (upper right), grows (thickening calligraphy of the U), and ultimately gives
rise to one and another registering device, symbolized by the eye. That recorder
signals by an irreversible act of amplification the arrival of a photon of the primordial
cosmic fireball radiation. Only then has the “long travelled” photon finally led to
an elementary quantum phenomenon, a happening that one person can communicate
to another in plain language. In such acts as this a tangible reality is at last conferred
upon the past. The past so inferred is remote and hot. In that heat, registering equip-
ment could not survive, let alone come into being. Neither could there be any such
thing as meaningful communication.

3 Proceedings GRQ
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It takes the present to give us a meaningful past, even as it took the past to give us
the present. The past, we come to recognize, is an elaborate plaster-work construction
of imagination and theory trowelled onto a sparser framework of observation, ob—
servations symbolized by the lattice work of fig. 7.

As theory — in the shape of general relativity — plasters deeper and deeper back
into the past, it finds itself fabricating a troublesome architectural feature, an out—
burst of creation, a big bang, a “singularity.” Is that singularity, we have to ask,
anything but a plasterer’s device to accomodate 7 and, having accomodated, con—
ceal i the billions upon billions of elementary quantum acts that frame existence?
What is the one big act of creation but illusive screen over many little acts of creation?
What is the theoretical untouchability of the big bang but sum and deceptive sub—
stitute for the undeniable untouchabilities of all those individual elementary quan—
tum phenomena? VVhere else than in them does that transformation come about —
from the nothingness of the undecided to the somethingness of the decided — that
makes the world?

Any more challenging question than this to light up Einstein’s second century it
would be difficult to name. We can recapitulate it in a triple phrase: “Must build,
do build, how build.” The universe declares, “Must build! I do not endure forever.
There has to be a way for me to come into being.” Quantum phenomenon replies,
“Do build! Granted a piece of equipment, an experimental device, a probe, that asks
me a question at the elementary quantum level, I provide out of nothingness an
answer. Without supplementary parameters, without hidden variables, without any
known internal machinery, out of indefiniteness I build definiteness 7 at the micro-
scopic level.” That declaration and that reply leave for us this question, “How build
— at the microscopic level? What architectural principle offers itself for combining
these many little definitenesses — the reality — into the world’s all-encompassing
definiteness — the illusion?”

Einstein’s first century explodes Newton’s absolute space and absolute time ~
with gravitational forces a into many local spacetime frames without gravitational
forces. Einstein’s second century has to explode “global reality” into many micro—
scopic realities.

The many local Lorentz frames Einstein united into one curved spacetime mani-
fold. The arbitrariness of the coordinates at first seemed to take all definite structure
away from everything we call solidity. In the end physics, after being moved bodily
over onto the new underpinnings, shows itself as clear and useful as ever. Now we
are required to move physics a second time, over onto the still more ethereal founda-
tion of elementary phenomena. We cannot doubt that the second transplantation
will give us a still more successful physics.

The first move took away gravitation as a foreign and physical force transmitted
through space. It gave us back gravitation as a manifestation of the curvature of
space. The second move will surely take away much more — space and time them-
selves, as well as fields and particles — and give them back to us in a new light and
new language, transfigured. To transform our outlook will be a great creative enter-
prise. Surely contributory to that undertaking is much of the work going on today,
in many places, by many colleagues. About some of this research we shall be hearing



Einstein’s Second Century 35

in this conference. It includes investigations on the production of particles out of
the vacuum, on vacuum polarization, and on quantum fluctuations in the geometry
and topology of space. Quantum gravity continues to give us new insights into the
dynamics of space geometry, also the meaning and limitations of the concepts of
“spacetime” and “time”. Time, we are more and more coming to realize, is not a
primordial category in the description of nature. It is secondary, approximate and
derived. Surely no analysis will ever be able to unravel the structure of existence
which does not transcend the category of time.

Turning to the topic of time at a humbler level, we celebrate the many alternative
ways of treating time, and the evolution of geometry with time, that have been
developed in recent years. Among them we may pick out one by way of illustration,
and an application of it that throws some light on our larger problem. Variously
called “extrinsic time”, “York time”, “mean curvature”, “trace of the extrinsic
curvature”, “trace K”, “Tr K”, and simply, “contraction”, it measures the frac-
tional decrease of space volume per unit of time.

Fig. 9

A wide class of closed model universes, according to J. B. Marsden and F. Tipler,
admit a unique “slicing” or “foliation (fig. 9) into a sequence of space-like hyper-
surfaces.” On each hypersurface the “contraction time” is constant. The value of
this constant differs from slice to slice. The contraction approaches —oo near one
end of time, the big bang, and +00 at the other, gravitational collapse. This time
parameter is useful in analyzing an interesting question about collapse.

In a closed model universe What is the architectural relation between (1) the big
crunch of the entire geometry and (2) the black hole formed by collapse of some of
the matter? For a simple model we may take a “dust-filled” Friedmann 3—sphere
universe, cut out of it — With a “2-sphere cookie cutter” — a fraction, say 1/120
of its volume and replace it with a cloud of dust of slightly higher density, itself a
small sector of a Friedmann geometry. Starting in this way near the big bang, the
larger and the smaller sectors both expand. HOWever, the smaller and denser sector
goes through its cycle of expansion and contraction in a shorter time. It collapses
to a black hole. Fig. 10 shows it on its way to this fate. Surrounding it is an empty
space. There the geometry has the Schwarzschild character characteristic of any

3*
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spherically symmetric center of attraction. The slicing of the global 3—geometry by
spacelike hypersurfaces of constant contraction time shows these hypersurfaces
engloving more and more closely a single spike, like one of the two spikes in fig. 9.
That spike, that black hole singularity, is not touched by a single one of these hyper—
surfaces except the final one, the one of infinite contraction, of final collapse. In
this way A. Qadir and l have been led to conclude that the black-hole singularity
and the big crunch are not two separate features of the geometry, but part and parcel
of a single, global, singularity — renewed incentive for concern about what
happens to physics at the gates of time.

Fig. 10

In our subject there are challenges and opportunities for us all, from those concer—
ned with concepts to those who love mathematics, and from those excited by fields
and particles to those attracted to astrophysics and experiment. The rich col-
leagueship of those with all these interests makes gravitation physics what it is
today:

,,Zum \Verke, das wir ernst bereitent
Gezieint sich wohl ein ernstes \Vort;
Wenn gute Reden sie begleiten,
Dann flieBt die Arbeit munter fort.“

Friedrich Schiller

One cannot mention the word “experiment” Without, recalling the interest we all
feel in the ongoing search of C. W. F. Evcritt and W. Fairbank and their colleagues
(fig. 11) to detect and measure the “gyrogravitational force” generated by the rota-
tion of the earth (fig. 12), an effect as different from everyday gravitation as magne-
tism is different from electricity. Neither can we put out of our minds the many
other tests of relativity receiving attention today, and among them especially gravi—
tational radiation. The pulse produced by the collapse of a star in a distant galaxy
is predicted to produce a fantastically small alteration in lengths here on earth.
Weak though the wave is in this sense, it nevertheless contains so many quanta that
it admits without any question a description in terms of the concepts of classical
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general relativity. It is different with the response of the measuring device. It is so
weak that there is doubt that it can be measured, or measured as precisely as one
would like, without pushing measurement technology — and measurement theory —
into the quantum domain. There, issues are encountered to which V. B. Braginsky
has given the name “quantum non-demolition” and with which he, A. B. Manukin,
C. Caves, K. S. Thorne and others have grappled, With profit to our understanding.
The pioneering going on, both theoretical and experimental, will surely have payoffs
for measurement in fields far removed from gravitation.
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In no way does physics make a more pOWerful contribution to the larger commu-
nity than in the instruments it provides for everything from biology to medicine
and from astronomy to manufacturing. Not otherwise can one understand how it
comes about that, quite apart from the variety of instrument makers and the va-
riety of sizes in which instruments come, mankind now makes daily use of over two
thousand kinds of instruments.

Scientists are delegated by society to keep watch for all mankind on what lies
ahead of peril and promise. Whether we work on better instruments or better mathe-
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matics or better theory, we all 00t ourselves as friends of the future. As friends, we
are prepared to go anywhere, see anyone, ask any question that will help us make
progress with our work. No words are greater inspiration in our enterprise than Ein-
stein’s, “In my opinion, there isthe correct path and... it is in our power to find it.”
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Prospects for Relativistic Physics
E. Schmutzer (Jena)*)

1. Retrospect

In opening the 9th International Conference on General Relativity and Gravitation
here in Jena today, we should thank such people as W. Pauli, A. Mercier, A. Lichné—
rowicz, M.-A. Tonnelat — to name but a few — who after the terrible turmoils of
the Second World War and following the “Golden Jubilee Conference” in Berne 1955,
found the energy to start the series of the international GR congresses [1]. I myself
have been fortunate enough to be able to take part in these international meetings of
scientists, with one exception, since Warsaw in 1962. Not only did I gain from these
congresses professionally, they were also milestones of international understanding.
I am convinced that Jena 1980 will also serve both components — science and hu-
manism. It is in this sense that I would like to give our guests from 51 countries a warm
welcome. I hope that you find the congress fruitful and wish you many memorable
personal meetings, especially during our cultural events. If we give this basic idea
priority during our congress we will be doing justice to the great heritage of the
past master and founder of our science, Albert Einstein, whose second century we are

inaugurating here in Jena.
Furthermore, I would like to offer all plenary lectureres, moderators and the many

hardworking helpers from Jena, particularly the Secretary for GR 9, Dr. R. Collier,
and our office secretary, Mrs. Kaschlik, my most heartfelt thanks for all the work
they have done so far and are doing this week. I should further especially like to
thank the GDR Ministry for Higher Education, the IUPAP, the Gravity Research
Foundation and the Secretariat of our Society for the generous financial assistance
and the administration of the Friedrich Schiller University for their continuous sup-
port throughout the conference preparations.

The content of our congress is expressed in our conference logo: The
R symbolizes Relativity as the basis of the new theory of the form and structure

of the fundamental physical laws of nature acting in 4-dimensional space-
time.

In my philosophical interpretation the G should instead of “general” rather sym-

bolize the phenomenon of gravitation which has been recognized as the geometrical
curvature of space and time. Gravitation is the focus of our present-day specific
research. Our conference symbol is so designed as to acknowledge Newtonian gravi-
tation — characterized by the symbol Q5 — as the first step of cognition on the way
to Einsteinian gravitation. In the sense of the continuity of scientific development

=“) in memoriam Dr. med. Christel Schmutzer
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without the Newtonian gravitational theory the more advanced Einsteinian gravi—
tational theory would not exist.

If we draw up a comprehensive balance of general-relativistic physics today, we
can state with satisfaction that in View of the framework of the limits of validity of
its theoretical structure it can be regarded as having been outstandingly confirmed.
a) General-relativistic Einsteinian mechanics has proved itself excellently. It is — as

the perihelion and periastron motions show — in a position to explain very small
deviations in the motions of celestial bodies from the prediction of Newtonian
mechanics.

b) General-relativistic Einsteinian gravitational theory can be regarded as experi-
mentally satisfactorily confirmed in spite of the minuteness of effects on its main
fields of application with an uncertainty of 1% and less.

c) General—relativistic cosmology has afforded an outstanding insight into design
and structure of our Universe. Within its framework the phenomena of world
expansion and of microwave background radiation are explained as a matter of
course.

d) General—relativistic Maxwell theory covers the phenomena of electromagnetism in
curved space—time in a logically satisfactory way.

e) General—relativistic Dirac theory signifies a decisive step towards describing
quantum phenomena in curved space—time.

We consider that the general—relativistic Maxwell theory and Dirac theory still
contain considerable potential which has not been fully exploited experimentally.
An even better utilization of the interaction of gravitation with electromagnetic
and quantum phenomena ought to prove very useful in various areas of experi—
mental Relativistic Physics, especially in proving the existence of gravitational waves.

Let me now ask: Where do the unsolved problems of the present day theoretical
Relativistic Physics lie? If we disregard many unsolved questions of detail, relating to
the proven foundation, and if we keep the main line of development in view, we are
still lacking, as youall know very well, the logical fusion between physics in curvedspace—
time and quantum physics. Or in other words: the logical fusion of Einstein space—
time and Hilbert space. Our own conceptions of this process were presented in several
papers five years ago which dealt as a first stage with quantum mechanics in arbitrary
frames of reference. We also sketched quantum field theory in rough outlines [2].

In the light of this challenge to fuse relativity theory and quantum theory it is
legitimate to ask whether the series of GR conferences will stop at some time in' the
future and a qualitatively new series of RQ conferences will start.

After this general retrospect we would now like to go into more detail.

2. The experimental verification of the Einstein theory

Experimental Relativistic Physics has been receiving great impetus for about ten
years. About one third of the activities of the GR conferences are today devoted to
this field. Our conference will pay a great deal of attention to this tendency.
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Terrestrial and planetary experiments

From the lectures by R. D. Reasenberg and I. I. Shapiro we will learn about the
latest state of research on terrestrial and planetary experiments using radioastro—
nomy. In summary one can say that Shapiro’s radar echo method has provided a
decisive contribution towards progress in the verification of Einstein’s theory. It
has become an indispensable device for measuring the radar time delay of electro-
magnetic waves in the planetary system (Shapiro effect), the deflection of electro—
magnetic waves by the sun and recently for measuring the perihelion motion by very
precise ranging of planets and sun satellites. The effects just mentioned confirm Ein-
stein’s theory according to the state of research in 1979 with an uncertainty of 1%
and better.

With the help of the Viking project, Where extremely accurate maser-clocks are
being used on an orbiter round Mars, the Einstein theory was confirmed last year up
to an accuracy of 0.2%. ‘

The projected goals for the Viking project of 1985 using highly developed radio-
astronomy methods consist of the following objectives:

a) to measure second order gravitational effects, where in the sense of an “experi—
mentum crucis” competitive gravitational theories which offer partial explana-
tions for first order effects should be put to the test;

b) to determine the mass quadrupole moment of the sun and the planets in order
to gain new insights into the internal structure of these celestial bodies;

0) to introduce a serious search for planets of other fixed stars;

(1) to investigate the detailed structure of galaxies and especially of their cores.

Furthermore, let me mention that the Mossbauer effect, which by using gamma rays,
allows an extremely precise measuring of lineshift, is probably still the best experi-
mental means for detecting frequency shifts of the electromagnetic waves in the
gravitational field. It has verified the Einstein theory with an uncertainty of 1%.

Finally, let me note that in recent years the binary pulsar system PSR 1913 —l— 16
has become a very interesting object of research regarding periastron motion and

gravitational radiation. The immense periastron motion of

(A<P)Psmsls+is = 4.226°

per year will still be of use for many conclusions in Relativistic Physics.

Exotic stellar objects and cosmology

The present state of research in exotic stellar objects and in cosmology will be out-

lined in the lectures by H.-J. Seifert and Ya. B. Zeldovich.
Even if we still do not possess an accepted and completely consistent quasar

model, a considerable progress has nevertheless been achieved in the last few years.
It is fairly certain that thermonuclear energy sources do not account for the enormous
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energy bursts of quasars. Furthermore the observed polarization of the electromagne—
tic waves is in contradiction to the radiation of thermonuclear processes. The syn-
chrotron type of radiation observed, namely the polarization and distribution of the
radiation over the spectrum from the ultraviolet to the radio region, points to the
existence of strong magnetic fields, where the bursts of the radiating plasma chiefly
follow the direction of the magnetic axes. I am quite sure that at our congress the
hypothesis will be exhaustively discussed whether in the centre of a quasar there
really does exist a supermassive black hole which could be the cause of the enormous
energetic effects.

Superdense-stellar objects have become a bonanza for Relativistic Physics. It
is only through the relativistic gravitational theory in connection with relativistic
electromagnetics that we have been in a position to supply the correct scientific
basis for the physics of these objects with the observed mass densities. Now we
possess a rich collection of empirical material on neutron stars (pulsars) in the optical
and X-ray region. The theoretical expectations of relativistic magnetohydrodynamics
for the magnetic fields of pulsars of about 1012 Gauss were outstandingly confirmed
in 1976 by the measurements of the research group led by J. Triimper and others.
It would be the task for a complex research group consisting of nuclear physicists,
elementary particle physicists and relativists to trace the equations of state of
matter at such extreme densities, pressures and temperatures.

The most interesting objects in this field of cosmic physics are black holes. Perhaps
we will hear this week something new about the situation in the experimental dis—
covery of black holes whose thermodynamics was essentially established by St. Haw—
king. The question whether black holes exist or do not exist has become crucial to
the Einstein theory of gravitation with respect to the limits of validity of this theory.
If black holes really exist with their topology in nature, then the Einstein theory is
valid far beyond the region to which many researchers would like to restrict it. In this
case 7 in connection with the wellknown questions of singnature — we would come
across entirely new discoveries about the internal dimensionality of 4—dimensional
spaceiime. If black holes with these properties do not exist in nature, then we have
come to the limits of validity of the Einstein theory and must start looking out for
a higher theory. In this connection — though not being inclined to agree with his
basic line of thought — I recall the warning words of Ch. Muller about the “break—
dovm of physics” which was said to be induced by Einstein’s theory, and of his endeav-
ours over a period of more than 20 years to establish a tetrad gravitational theory.

It turned out that more Abstracts than average have been submitted to the dis—
cussion group led by N. Rosen about alternative gravitational theories. So we can
say that many research activities today are situated at what could be a theoretical
nodal point.

In the field of cosmology we can take as granted that the rough structure of the
Universe from the moment of time a few seconds after the big bang can be very
well described by the Friedman model of the expanding universe. We should always
be aware of the fact that findings such as world expansion and microwave back—
ground radiation which confirm the Friedman model belong as organically connected
facts to the best evidence of the Einstein theory.
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During the next few days we will hear how far the hitherto conventional numerical
values for the Hubble factor and the temperature of the background radiation:

CH m 60 km/sMpc, T m 2.65 K,

can be further refined.
After sifting extensive statistical material M. Koch [3] gave the value

q = 0.64

for the acceleration parameter as very probable, which would correspond to a closed
universe.

Gravitational waves

As has been usual for the last ten years, our congress will also devote a great deal of
time to the problem of gravitational waves. This problem will be treated in various
plenary lectures. J. Ehlers will deal with this subject from a theoretical angle in
connection with the mechanical equations of motion. J. E. Marsden will probably
refer to this subject in dealing with the gravitational initial value problem.

The lectures by V. B. Braginsky and K. S. Thorne will give us a general survey of
the present state of experiments in detecting gravitational waves, and L. P. Grishchuk
will deal with the perspectives of electromagnetic detectors. In the five corresponding
discussion groups we will have the opportunity of learning the details of gravita—
tional wave experiments. It is to be expected that the three main experimental
tendencies: Weber cylinders, Braginsky monocrystals and electromagnetic detectors
will complement each other very well.

In recent years another very important research area has been added to these three
approaches: research by means of quantum detectors, an area whose theory has
among other things to take into account the influence of gravitation on superconduc-
tivity.

Let me finally mention that additionally to the direct proof of gravitational
waves by detectors there was developed in recent years the indirect astrophysical
method which was exemplified by the binary pulsar PSR 1913 + 16 mentioned
above with extreme accuracy. The new value

P = (1.04 :1; 0.13) - quadrupole result

recently found by J. H. Taylor for the temporal alteration of the revolution period of
the pulsar certainly brings us a considerable step forward in evaluating the Einstein-
Eddington quadrupole formula. Time will tell whether this system really radiates
according to the quadrupole formula

for the gravitational radiation power
(a Einstein’s gravitational constant, D6,, mass quadrupole moment).
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3. Some unsolved fundamental theoretical problems

A survey of theoretical relativistic research reveals many unsolved problems. This
opens wide perspectives to our subject and it is at the same time an appeal and a
challenge particularly to the brightest of the younger generation. In our remarks
we can only touch on the tasks which seem to us to be most important and we have
already referred to what might be the limits of the Einstein theory with respect to
superdense mass configurations.

Exact solutions

Certainly we all agree that in View of physical inconclusiveness 0f the linearised Ein—
stein theory it is correct to emphasize the field of the exact solutions of the Einstein—
Maxwell equations. Many scientists have been researching in this field. In Jena we
have been working in this direction for more than a decade. The collected experience
of research available has been published in the monograph “Exact solutions of Ein—
stein’s field equation” by D. Kramer, H. Stephani, E. Herlt (Jena) and M. A. H.
MacCallum (London). The plenary lecture of D. Kramer and H. Stephani will under-
line a few main points here.

For some time the investigation of exact solutions of the Einstein-Maxwell
theory has been enriched by the step towards the complex solution methods which
I. Robinson will report about and by involving highly developed computer methods
about which R. A. d’Inverno will speak to us.

For which physical problems is the study of exact solutions of fundamental im-
portance? Let us pick out a few of these, not in order of importance:

Certainly a complex of questions regarding gravitational radiation plays a central
role here. We ought to arrive at exact and conclusive statements about the radiation
field of bound mass distributions with internal degress of freedom of motion. Of
course we can only expect mathematical solutions for the most simple configurations.

As an example the exact solution of the gravitational two-body problem would
be of fundamental importance. We are aware that the solution of this problem is
very difficult. However, international research should be continued, because the
solution of this problem would also have enormous significance for cosmogony.
It seems to us that up till now we are not able to state conclusively whether — pre—
supposing gravitational radiation ~ the twobody problem sun/earth or earth/moon
(as an idealisation) would end in escape or collapse.

As a first step in the direction sketched it would even be of immeasurable value
to physics if we had an exact solution for the interior Kerr problem for a rotating
fluid body — in analogy to the interior Schwarzschild solution.

Quantization in curved space-time

if we disregard the mathematical and technical difficulties, we can state that we
have a mathematical grasp and in principle a physical understanding of the quanti—
zation of the non—metrical fields in Minkowski space using the rectilinear Galilei
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coordinates. The quanta of these fields are the elementary particles. Further, the
situation becomes more complicated if we consider the same elementary particles,
objectively existing in Minkowski space, in curved coordinates or even from a non-
inertial frame of reference. As these last two tasks do not involve any interference
with objective physical facts, the difficulties occurring must be regarded as being
of mathematical nature.

We are confronted with a qualitatively new situation if these quanta are situated
in a gravitational field. And this is actually the normal case: Our devices are set up
in the gravitational field of the earth. They measure the properties of elementary
particles which exist as quanta in the gravitational field. This means, the quantiza-
tion of non-metric fields in a gravitational background field is, therefore, a genuine
physical challenge which has been on principle understood and has also been mathe—
matically solved for simple cases. In his lecture G. W. Gibbons will report on the
state of research on this subject.

If we continue along this line of thought we arrive at the basic question: Is the
gravitational field also quantized in nature? In other words: Do gravitons exist in
nature as quanta of the gravitational field? The understanding of this problem has
been hotly contested up to now. \

If one allows oneself to be too strongly guided by the analogy with non—metric
fields, then the quantization of the gravitational field appears to be a quite natural
consequence. The mathematical theory of this was worked out in detail by P. A. M.
Dirac and many others.

But we can also have serious doubts about this analogy, as we know that the
gravitational field represents in quite decisive points basically quite a different kind
of physics. We are going to hear more about this from D. Brill and P. S. Jang.
What, for example, is the significance of quantizing the metric in a rotating carousel
in Minkowski space, where there is no curvature and therefore no gravitation?
Here we come up against basic questions of physics to which we can still give no
clear answer. It is doubtful whether bimetric theories which attempt to separate the
“coordinate-metric” from the “gravitation-metric” will bring genuine progress here.
It seems to me that at this point we strike the hard fact of the principle of equi-
valence between kinematics and gravitation. It is only when one begins to doubt
this basis of Relativity that one obtains room to manoeuvre for the quantization of
gravitation.

If on the other hand, we adhere to the classicity of gravitation which is under-
lined by many arguments, then we are apparently still confronted by the old contra-
diction in the Einstein equation:

1
Rik — E {MR = ”Tile-

,—__._ ~_/_/
classical quantic

It has sometimes been suggested that in order to avoid this contradiction the va-
cuum expectation value should be placed on the right hand side:

Tik —><OlTik10>-
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But this is an ad—hoc interference with the essence of the theory considered and is
hardly compatible with self—contained Lagrange-Hamilton formalism.

Supergravity

The failure of Einstein’s idea of a unified field theory on the basis of the geometriza-
tion of gravitation, electromagnetism and possibly of other fields as well, has re—
sulted in a stagnation in this branch of physics lasting for many decades. However,
I believe that most theoreticians find Einstein’s philosophical basic idea attractive
— but admittedly in contrast to W. Paulis’s thesis: “What God has put asunder let
no man join together”.

Going back to an old idea of H. Weyl, the gauge field theories have brought a
new theoretical stimulus. It is a well-known fact that for a field system consisting
of a matter field and a Maxwell field a suitable combination of gauge transformation
(for the Maxwell field) and phase transformation (for the matter field) guarantees
the gauge—phase-invariance of the Whole field system. If we now look at a rather more
special case of a free matter field system which is only invariant with respect to a
global phase transformation, then the transition from the global to the local phase
transformation leads us directly to the Maxwell field as a compensating field. As is
well known, this consideration is also the basis for introducing the Yang—Mills fields
as compensating fields.

It is still a controversial question whether this analogy equally applies to the
gravitational field which one would like to consider as a compensating field. (Mean
while the designation “gauge fields” has been adopted for the compensating fields of
the type I described, although hardly anything has remained of the original gauge
idea.) Here the gravitational field is accounted for as the compensating field which
is required to compensate the effect which occurs when one makes the transition from
global tetrads to local tetrads h(i)k(x7) which are attached to the metric as follows:

hawk“): : 9k;-

With this idea we are really entitled to doubt whether this procedure really does
include gravitation and not just the coordinate effects.

Going beyond these gauge considerations it appears that in recent years seine fun-
damental theoretical progress has been made by the discovery of the supersymmetry
of boson and fermion fields. The point here is that field systems which are constructed
from boson and fermion fields exhibit invariance properties by the combined boson—
fermion transformation (in abstract notation):

E : 013 + 02F,

F : “/18 f 72F

which then in the sense of the Noether theory supply the basis for the understanding
of conservation laws.

This supersymmetry is the basis for the theory of supergravity as a unified field
theory. In this way it would be possible to give a unified treatment of the gravita—
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tional field and of the electromagnetic field as boson fields and of the spinor fields
of the elementary particles as fermion fields, so that the way would be opened for
the fusion of the Einsteinian gravitational theory with the elementary particle
theory — if this new research trend should prove true. The plenary lectures by
P. van Nieuwenhuizen and S. Ferrara will acquaint us with the most up—to-date
state of these investigations.

Subject to certain modifications the plenary lecture by A. Trautman on the Ein—
stein-Cartan theory also belongs to this framework of ideas. His lecture is concerned
with the extension of the Einstein theory by the inclusion of a hypothetical space-
time torsion.

The twistor program, the present state of which will be discussed in R. S. Ward’s
plenary lecture, is also devoted to a unified description of bosons and fermions,
admittedly under somewhat different premises. '

From these foregoing remarks you will gather that the Einstein idea of a unified
field theory is still Very much alive, even if we are still unclear which of the appro-
aches adopted so far will lead to a definitive breakthrough.

It is still to be hoped that progress in constructing a unified field theory Will also
open new prospects for the Mach principle which raises the extremely profound
question of the origin of the inertia of mass and the existence of inertial frames of
reference. Within the framework of the Einstein theory there is apparently no full
solution of Mach’s hypothesis.

My personal ambition in the direction of a unified field theory used to lie in the
5-dimensional Projective Theory of Relativity. I began working in this field 25 years
ago [4], because I was fascinated by its elegance and compelling logic, particularly
after 1?. Jordan [5] (1945) dropped a constraint hitherto used. Let me also recall in
this connection the independent research by A. Einstein and P. G. Bergmann in
this field.

I outlined the state of research 15 years ago in the last chapter of my monograph.
In the course cf the last year I have reanalysed the then occurring difficulties which
caused a stagnation in this line of development and I arrived at a basic modification
right at the roots. I would like to outline some ideas of this new theory [6, 7].

4. Some remarks on the traditional Projective Relativity Theory

4.1. Arguments for 5-dimensi0nality

During our congress we obviously shall hear of a lot of new results on quantum gauge
theories based on the gauge idea and supersymmetry. Therefore, in the following I
will separate the quantum phenomena from my considerations and only dwell at
first on Einstein’s program of a unified field theory of gravitation and electromagne-
tism. Of course, I am aware that all new physical theories, concerning their contents
of objective reality, must be taken carefully until they have been proved by ex-
periments. Therefore I speak on the following subject with due scientific caution. Why
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do I advocate taking the 5-dimensionality of physics seriously ~ more than has been
done by the theoreticians during the last two decades? My main arguments are the
group equivalence and the intrinsic structure of the field equations.

Group equivalence

The projective approach to gravitation and electromagnetism leads to a prototype of
gauge theory in a logically self-contained and aesthetically satisfying way (Latin
indices run from 1 to 4, Greek indices run from 1 to 5):

5-dimensional homogeneous
coordinate transformations:

X‘“ : X“'(X’)

arbitrary 4-dimensional coordinate
/ transformations: xi, : xi'(x7')

/

I \\4 gauge transformations:

AiZAi+Z,ia Bii:Bij

Field equations

The 5—dimensional field equations yield by 4-bein projection and radial projection
into space-time the structure of generalized gravitational equations, generalized
electromagnetic equations and a scalar equation:

Notes: a) Jordan’s field equations With his exotic parameter A > 1, introduced by
astrophysical arguments are in my opinion not convincing.

b) The above sketched theory has logically nothing to do with the Brans—
Dicke ad-hoc theory.

4.2. Difficulties of the conventional scheme

In my opinion the most serious difficulties of the traditional theories (also of my
version of 1957) arise from two facts:

a) The generalized gravitational field equation contains second order derivatives
of the scalar field, which leads to second order derivatives in the energy tensor
of the scalar field. This fact induces physical problems with respect to the po—
sitive—definiteness of the energy of the scalar field.

b) The equation of motion of an electrically charged test particle shows a force term
proportional to e2 (8 electric charge of the particle). The order of magnitude of
this force term is too large and therefore, in my opinion, in contradiction to
experience.

Apart from other difficulties both these facts were the main reasons for me to start
a new approach from the roots, which will be sketched shortly in the following.
Details should be taken from my publications.
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5. A new Unified Projective Field Theory

5.1. Fundamentals

in our opinion the most likely approach to a unified field theory — if Einstein’s
program of geometrization of electromagnetism etc. is reasonable at all — should be
based on the following fundamentals:

1. The geometry of the 5-dimensional projective space with curvature and torsion
is characterized by the axioms [4]:
The metric tensor is symmetric.
The connexion is transvection-invariant, non-symmetric and metric.

2. Projector property of the most important 5-dimensional quantities to guarantee
4-dimensional relationships in space-time after projecting.

3. The 4-dimensional space-time has Riemamu‘an geometry.
4. The use of our vectorial projection formalism [4] for linking both space manifolds

is recommended. This formalism allows a short and transparant treatment of
these calculations.

It proves that the 5-dimensional geometry based on these fundamentals is so con;
structed that projection into space-time yields Riemannian geometry for this
manifold.
Let us use the following notation (see fig. 1):

X1" 5—dimensional projective coordinates,
x“ 4-dimensional space-time coordinates,

5-dimensional basis vectors (5-bein),
ei 4-dimensional basis vectors (4—bein),
R = eFX!‘ 5-dimensional radius vector (projector),
g," = efie, 5—dimensional metric, u
gii = eiej 4-dimensional metric,
9;“? = eye; mixed metric (projection cosine).

. \

/
"'\_
i

4 bein{ei}

4
I
l

‘\\‘“=:/ -

g ‘ ’ space—time
/‘ l 7‘

V
5-bein {e‘u _
pr'OJective space Fig. 1

k
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Apart from the well—known relations

a‘) ei : 95707. etc., b) gijgik Z 91k: 6f:

, _ z _ i.c) e,‘ = gme” etc., d) gmg“ — gfi _ (5“

one finds the linking relations

a) e; : giae" etc., b) 91'5n : 91:,
(2)

0) ea : giei + 808: d) gi‘g: : 95‘ _. 8,,8“,

where

a) 3,: b)s:—;£, cJR2:SZ= (1)3221. (3)

For the decomposition of vectors or products yields

a) a = epal‘ : eia" + (as) s, b) ab : (1)1)" : aibi + (as) (bs), (4)

C) MD" : MD“ + Um“) (9‘06")
with

a) a‘ : gia", b) xi : gg‘zy etc. (5)

With respect to the axiomatics of relating the differential quotient 55"“) t0 the mixed
metric gi, important questions in principle arise:

My version of 1957 [4:] started in correspondence with Jordan and Ludwig [5]
from

23‘!“ : gL. (6)

Some years ago I found it rather interesting to introduce an explicit 4—vector

Xi : gm (7)
related to the electromagnetic 4—potentialAi. As to this type of theoriesI studied two
versions [6] in detail:

1
82

a) xi“, : g; XiXfl,

b) xii/t : git *

Where

a) a; : giXi, b) 22 : 55m. (9)
Both these variants lead to considerable difficulties With respect to the gauge inva-
riance of the theory. Therefore, I interrupted further work in this direction and
devoted my succeeding investigations to the special case Xi : 0, but instead of (6)
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on the basis of the new axiom [7]

wily = e"/2gf, , (10)
where a ist defined by

S = So e” (80 free constant). - (11)
Since we adopt the conventional relation between the 4-dimensional and 5-dimen-
sional coordinates, namely

xi = x‘(XP) (12)
to be a homogeneous function of degree 0, the relations
a) x'luX!‘ = 0 and b) g); X" = 0 (13)
are valid.
The final version of my theory with the axiom (10) was elaborated in detail after GR 9.

The general covariant derivative (double stroke) and. the Riemannian covariant
derivative (semicolon) are defined as follows:

a) a" v = a." y + I'fi‘ a1 (Ff eneral affinities ,II I v r g

14b) all” 2 owl” + { 'u } a1 GEM} Christoffel symbols). ( )1v 1'

The quantityWM” <15»
is related to torsion.

As in the conventional theory we use the 5-dimensional curl tensor

X," = Xv“: — Xm» (16)
whose 4-bein projection reads

a = 92.93;,»- (17)
In this connection one should mention the validity of the Killing equation

X” —|— XV”, = 0 (18)
for the quantities XF.

For some practical reasons of calculation it is convenient to introduce the curl

1 .
spv = v“; — 8p|v = _ X," + Spa]! _ 3761;; (19)S

whose 4-bein projection is

1
s,” = gags”, = E Xm". (20)

4*
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Further

(21)
holds.

On our geometrical axiomatics the constancy of the unit vector (3a, b) can be
prOved: ‘

a) 3,1“, = O or b) Sm : 0 or c) s” = 0 (22)

(already found in our former papers, see e.g. our monograph [4]).
‘ Furthermore, for the torsion vector the explicit expression

1 1
Hm : eyl,‘ — 9w : s [8," + —2— (svo'lfl — gala] + 2 (BPO'IV — 6mg) (23)

results, Whereas for the torsion tensor

1 ,

Sr): : E (”It w I7”) (24)

the relation
1 1 ,

263m : 3,3," —l— 2 (gyr — sflsr) 6|, — 2 (g,, — ($3,) am (25)

holds. For the combination

all“): : Six); + 81px + Sluxl: (‘26)

defined by (15), we find

20'"); : szspv + Spszr + Svspr + (gyt _ spsr) Ulr _ (gr: — 8781) Ulp‘ (27)

, 5.2. Projection theorems for derivatives

On the basis of the new postulate (10) the projection theorems take the shape:

a) Ivy; : e"/ZII,,, b) away; ,=,c ea/Qanm, (28)

c) avaliflg;g§g:n : ea/zansmw

V a v [4 a 1
d) a’UlMIIAgsgngm : e a’a;n;m + E Ulmaam '

For‘ a general vector 11 the equation

7 u U 1“Ilvllugngm : ‘3 alum + gamma (29)

/ yields, Whereas for the basis vectors

evlluQZQFm : 60/261: ;m (30)
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is valid. This relation shows the consistency of the geometrical axioms: eMm = 0
and 8,1“, = 0 (metricity). For practical calculation the formula

1 .
l;u9;’§9"m = 3“ [Fllum +3 (Flkalm + Flmalk — 9kmF|j0")] ‘ (31)

is useful.

5.3. Cyclic relations and curvature tensors

With respect to the cyclic MaXWell system of electromagnetism the existence of a
4—dimensional cyclic relation is of interest:

The 5—dimensional cyclic relations

3‘) X<aglr> = 0: b) S<aelr> = 0 (32)
follow immediately from the definition of X“9 and 8,9 as curls. Equivalent to (32)
are the equations

a) aw'eaXe,;, = 0, b) 8 19689,,” = 0 (33)[Av

(ew‘W 5-dimensional Levi-Civita pseudotensor). Using the relation [4]

5
smnks = syemnkav (34)

between the 5-dimensional and the 4-dimensional Levi-Civita pseudotensors and the
projection theorems, we arrive at the 4-dimensional cyclic relations

X Xa) emf“ (—“) = 0 resp. b) [( k’) ] = 0. (35)
83 :i ‘83 ;;' (klj)

The 5-dimensiona1 general curvature tensor 0"”; is defined by

Tullunz — Txnzrlu = w — Tum» + TvG'xnz + 2T,‘”,Sl,,“. (36)
Expressed by the affinities it reads

GK”; = 1121],; * 11m + 1:11—1:14 — m4 :1- (37)

It has the symmetry properties

a) Gum = _wd’ b) Gum = ~Gaxzp (38)

Furthermore, the generalized cyclic relation

Ga(vrcr) = 2mm“: _2Sarfisflu](var) (39)

and the generalized Bianchi identity

[GBIWH' — 2GflP”¢Sflra](var) i 0 (40)
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are valid, from which the contracted Bianchi identity

1 5
(GF‘, — E 95G) : 2GI‘aSma — Gfil‘mSm‘“ (41)

”M

results, Where

a) G“, : Gfilflfl, b) G : G55. (42)

The analogous formulas for the Riemannian geometry can be obtained by the spe-
cialization G —> B.

Let us conclude this section by reproducing some important formulas resulting
from the projector postulates:

a) Gym/3X2 : 0,

1
b) XvvyZ : E- Xp}. ;x a (43)

l
C) X’XARWI‘; : Sll‘Sl" + SSI";:“ + I XZZXAM.

5.4. Decomposition formulas for the curvature tensor

Using the algebraic relations previously derived, we arrive at the following auxiliary
formulas:

2») SW31“ : eUSIjSU, b) smut : eC‘SUU.’ (44)

5 5
a) XMX”,Z : Xm-Xmi + 4eUSlnSlm,

b) XflX“ : ii + 8e°S|jS'j, (45)

C) giX"A|u : eU/Zlj'
Applying this decomposition procedure to the curvature and torsion quantities, we
find

5 v 1 1 k (I 4 3 1 ka) a : 9,3,v : E Snksz + e Rnl + E GNU]! *3 gnlal ;k a

5 1 4 3b) R : ~4— 8,,k.8”k + e0 (R + E alkal" — 0"“),
5 (46)

1 , .
0) X"Ryz : E 90/229133

A 1d) XVX/RM : _Z aa + 82 cosmm.
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In deriving these decomposition formulas the relations

mm, = 0 (47)
and

4

Gskml = gggzgi‘ngfaaxpl = eaRakml . (48)

were used.
Though the 5-dimensional coordinate differential dXI‘ is not a projector itself,

fortunately its projection according to (10),

g; dX“ = e"’/2 dxi, (49)

leads to a 4-dimensional quantity. This means that (with some caution) we can use
the 5-dimensional coordinate differential and the tangential vector as basic concepts
of our theory.

5.5. Field equations and conservation laws in the 5-dimensional projective space

As we already did in 1957, we start from the 5-dimensional field equation

1 5
RI" —— E g/"R + D” = 5:00!" (x0 free constant), (50)

Where 0‘" is the “substrate projector” of the non-geometrized matter, and

D'" = 1080(g!" + O'sI‘s‘) (110, 0 free constants) (51)
With

DI";, = 0 (52)
means a generalization of the so-called cosmological term. Then the conservation
law

01"“ '= 0 (53)

follows. Taking into account that from (50) also the relation
5 2 2 5
R = RF}: = E 1080(0 + 5) — E- x06 (54)

with
5

t9 = 0% (55)

results, we can give the field equation (50) the different form

5
RI" — g (0 + 2) 1018'n — AOCSCSI‘S’ = x0 (0!“ — % 0g”). (56)
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5.6. Field equations and conservationlaws
expressed by 4-dimensional geometrical quantities

5.6.1. Tensorial field equation

Using the abbreviations
e

Ch
m

75
m gill"

5 5
a) 6”” = 6F'gf,”g;', b) 67"," =

and the relations
5/5 5 5

a) R = Rm," —|— RmsPs”, b) 9 = 6”,” + 6#V8”8",

we find by 4-bein projection of (50) the tensor equation

5 1 5 5

a) Rum — 39MB + 10509“ : xofimn resp.

(59)
5 A10 5 1 5

b) Rmu = 3 (C + 2) 809””; ‘i— ”0 611m M g gmn6

and hence

2/105 5 ~ 5 5Rsm+x0(%6—6mm) ?(1~C)SC. (60)

Rearranging (59) by means of (46a) and (46b) gives the 4-di1nensional tensorial
field \ equation

\
4 51 4 _ 1 1 ..

Rmn _ E 917a + [080 e_ogmn : KO e—Uemn + E e¥g [SmkSkn ‘i— Z gmnfgjksfl‘]

3 1 ”c

- E U|ma|n _ E gmnaflca '

5.6.2. Vectoriai field equation

Radial projection of (50) leads to the vector equation
1 5

lifl‘TXI : xOBWX, — E Xl‘ [x06 + 210(0 — 1) SC]. ‘ (62)

Further 4—bein projection yields
5 5 .

RWX, = xOGM‘X, (63)
if we introduce the abbreviation

5 ,
6"" : 01119;". (64>

Using the results (460), instead of (63) we arrive at the vectorial field equation
5KW, = -—2x0 e‘“/26’",X‘. (65),]
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5.6.3. Scalar field equation

Our next step is to perform a further radial projection of (62). By means of (58b) we
find

2 5 5 2RP‘XHX, = 3082 (E 0 — 6mm) — EMU _ 1) 30+? (66)
q

Rearranging (66) with the help of (46d) gives the scalar field equation

I k _ 2 5 5 1 . 2
0' .k = no e 6 — 0 — 0m," + — e‘°skj.s*7 — — 20(0 — 1) e’”SC. (67)’ 3 4 3

5.6.4. Conservation laws

For the purpose of deriving the conservation laws we first rewrite (53) as

9“”. = 0%..” + swam. (68>
Eliminating the torsion quantities by means of (27) and performing 4-bein projection
leads to the vectorial conservation law

1 5. 1 5 1 5 3 5 .
— 07'" = — 4/28" 0’”,s‘ — 0 —— — 0'” a", 69(S )m S e m + S ( 2 m) ( >

Whereas radial projection gives the continuity equation

(e°/2g’"l‘s,‘);m = 0. (70)

5.7. Evaluation of the field equations and conservation laws

5.7.1. Cyclic Maxwell system of electromagnetism

It is obvious that the cyclic relation (35 b) offers to be interpreted as the cyclic (homo-
geneous) Maxwell system of electromagnetism ‘

Bump = 0 (71)

if we identify the electromagnetic field strength tensor as
\

€080 €080Bu = "F X“ =F ski: (72}

Where according to dimensional considerations eo may be the universal constant
“electric elementary charge”.

5.7.2. Inhomogeneous Maxwell system of electromagnetism

If we identify the electromagnetic induction tensor as
Hmi : boX'M' = byssmi (b0 free constant) (73)
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and if we introduce the electric current density by

. b 52"" = ——”° 08° e°/26m.sr, (M)27':

the vectorial field equation (65) takes the shape of the inhomogeneous Maxwell
system (CGS-system of units):

47:j : 7m. (75)
C

Hm.

I would like to introduce for the phenomenon connected with the scalar field S
(dimension of lenght) resp. a (dimensionless) the notion “scalarism” in analogy to
electromagnetism. If such a new phenomenon exists in nature, a prediction which,
of course, can only be decided by experiments, this would mean that even in the case
of vacuum a scalaristic polarisation phenomenon according to the relation

Hkl = 53kt, (76)
where

5 : 11"— s3 (77)
9080

is the scalaristic dielectricity of the vacuum, has to be expected (see also [8]).

5.7.3. Field equation of scalarism

Considering the scalar field equation (67), we form the opinion that the true physical
substrate quantities should be defined by

5S
0 m = e_“0m (energy tensor of the substrate),771 12 : S

w

a) 0

(78)So 5 5
b) 6 : — 6 : e_“6 (trace).

8

Then by means of (72) and (73) the equation (67) goes over into the field equation
of scalarisni

(C _ 1) 80-1. (79)Bi"? _ 22.080
3

2
GUI”: : K0 (7 6 ¥ 6mm) +) /.) 460 0

5.7.4. Generalized field equation of gravitation

Let us now propose a reasonable physical interpretation of the tensorial field equation
(61). First we introduce the electromagnetic energy tensor (Minkowski tensor)

1

1 1 ,
Emh = 4— (akn + Z gnj/ck) (80)
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and the scalaristic energy tensor

3 1

Then the generalized gravitational field equation takes the form

4 1 4

Rmn _ E 97MB + 108080—19mn = ”(damn + Emu ‘l— Zmn)‘ (82)

Conclusitm:

The free constant 7‘0 has to be identified with Einstein’s gravitational constant. This
means that the gravitational coupling factor remains a true constant, in contrast to
all predictions concerning a variability of the gravitational constant.

Furthermore, we come to the result that scalarism induces gravitation by means

of the energy tensor (81). This scalaristic energy tensor consists of partial derivatives

of first order and therefore avoids the physical difficulties of the previous theories
which were in the dilemma of having an energy tensor with second order derivatives.

From (81) for the scalaristic energy density the expression

3244 = i ( Ema — W) (83)
4x0 a=l

results, which specializes for a static field to the positive definite quantity

3 3

E was” a 0. (84)
4:760 “=1

(244)5tat =

5.7.5. Equation of motion of the substrate

We identify the vectorial conservation law (69) as the equation of motion of the sub-
strate. Indeed, by means of ('72), ('74) and (78) we obtain the structure of the equation

of motion of a continuum, namely

mmm = _% Blmfm ‘l— (a ’_ E 0mm) 0"] (85)

if we fix the free constant b0 by

1,0 = 2—7‘_ (86)
607%

The Lorentz force density

(mp = __1_ Bimjm (87)
C
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appears in a quite natural way automatically. But furthermore the scalaristic force
density

.4
<S>fi : (a — 3 (9mm) ow (88)

is predicted.

5.7.6. Continuity equation

Considering (70) and (74) we immediately find out that (70) has to be identified as
the continuity equation for the electric current density, i.e.

jmgm : O (89)

Thus the equation of motion and the conservation of the electric charge prove to be
consequences of the field equations.

5.7.7. Discussion of the free constants

The free constants zo and (70 have been already fixed above, i.e. we are left with the
further free constants SO, 20 and C, where SO has the physical dimension of length. Let
us now in our next step eliminate b0 in (77) by means of (86):

27:

eOZSCWO
(If: S3. (90)

It seems to be reasonable to demand that in the “infinitely diluted state of matter”
(infinity of an isolated system)

a) 8100 : SO, i.e. b) (7)00 : 0 (91)

and

a) Bkj|°o : i i.e. b) 5100 = 1. (92)[005
Applying these boundary conditions to (90), we find for the scalaristic dielectricity
of the vacuum

8 3g : (3—0) : <93)
and further the interesting equation for the constant 80:

So = 60 l/ :7: (94)

which plays the role of a fundamental constant of the physical dimension of length.
We propose to call it the universal constant “scalaristic elementary length”. Rememb—
ering the numerical values for Einstein’s gravitational constant zo and the electric
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elementary charge e0 (yN Newton’s gravitational constant):

\ 8”0 = TWN4 = 2.08 - 10-43 g"1 cm‘1 sz, e0 = 4.8 - 10‘10 g“2 cm“2 s’l, (95)
c

we find [4]:

80 = 2.76 - 10-34 cm. (96)

Eliminating the electric elementary charge e0 in (94) in favour of Sommerfeld’s fine

structure constant

2 1_eo_ : 1 (97)

ha 137.04
asv

we get

80:1‘.‘7M. (98)

‘ 21':

Usually Planck’s elementary length is defined by

, h 111, = 111 = —2— ]/ fmoc = 4.05 - 10—33 cm. (99)
03

Comparing it with (98) leads to the relation:

9 2\_\' (100)so :1P 1

Our further considerations concentrate on the scalaristic field equation (79). It

seems reasonable to demand according to the boundary conditions (91) and (92)

for isolated systems

(7"‘;1,|0° = 0. (101)

This condition means

0 = 1. (102)

Introducing the cosmological constant

AC = 1080 (103)

Whose justification is on the same footing as in Einstein’s theory, from (82) and ('79)

we finally get the generalized gravitational field equation

4 1 4

Rmn _' "E gmnR 'l‘ Zcgmn : ”0(6mn + Emu + Emu) (104)

and the scalaristic field equation

32 z .
0'12], = E x0 (0 — —2— 0mm) i Bi'”. (105)
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Conclusion:

Since according to our theory electromagnetism induces as a source term scalarism
(105), and scalarism via the scalaristic energy tensor E,” as a source term gravitation
(104), our theory does not contain the Einstein-Maxwell theory (simple superposition
of gravitation and electromagnetism) as the special case a : 0. This is a question of
principle: If the Einstein—Maxwell theory is valid, our theory must be wrong and vice
versa. Of course, this basic question can only be decided by an experimentum crucis.

Let us finally note that from (80) and (81) the useful force density relations

1 3 .
Emnm : : Bnmj" ‘l— E Biflc 0|m (106)

and
3 3 ._

Emnm : _ 0 H E Gnu 0'|m — W Bifl‘UW (107)
TC

result.

5.8. Coordinate differential and line element

The 5—dimensional and 4-dimensional line element vectors

a) d§ : e); d_X", b) ds4 : ei dxi (108)
resp. the squares of the line elements

a) ((132: gdt‘dX“, b) (dé) : gudxidxi (109))
obey the relations

a) d3 = e-U/Zdé + sfidi, b) (d3 = _ (d2)? (110)
Where the abbreviation

,6s":815 (111)

with

dX

d8
a) tv : b) t : evt” (tangential vector) (112)

was used.
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5.9. Metric projection tensor

As it is well known, from the 4—dimensional metric tensor 9'7 and the 4-velocity u‘
d2:i I= d— the 4—dimensional metric projection tensor is constructed as follows:1:

.. .. 1 . .he] = 91.1 + _ utu1_ ' (113)62

For this quantity the relations

3) ‘hakkmk = him: 1)) haw" = 0, 0) hmm = 3, d) hikhik = 3 (114)
hold.

Let us now introduce the 5-velocity by
I‘ t

w = ic = ict" (115)
ds

with
u,‘ = —cz. (116)

By means of (112) we find

uysl‘ = icfi. (117)

Furthermore, because of (110)

a.- = W 2 Mm (118)
is valid.

For several reasons it seems to be convenient to define the 5-dimensional metric
projection tensor by*)

1
k!" = g!" + —2 ul‘u'. (119)

c

From this definition the following relations result:

ifia) hP’u, =0, b) M’s,=sF +—ul‘,
c

c) hfl'sfllsv = 1 — 162, d) hfl’hfl = ha, (120)

' ‘ -- 2 . .

9) hp» 2 4’ 1‘) MW" = 4; :3) WWW = h" _ iW.

*) See for a. different definition Erice proceedings [7].
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5.10. Equation of motion for a test particle

5110.1. Investigation of a modified geodesic /

Let us first investigate the following variational principle in the projective space as
a mathematical problem:

P1 _
6ff(S)d§ = o (121)

P0
with

51mm: 5mm : o. (122)
Using the well known relation

5 (d3) : égwlatt‘tvéX“ d? + gm” d(6X0‘) (123)

and remembering (112), we obtain as a necessary condition for satisfying (121) the
following differential equation

W16 2 f7 (SIR — Etc.) (124)
d?

(prime means differentiation with respect to S). Radial projection leads to

= E ()60 constant), (125)
f8

Whereas 4—bein projection yields

i ‘ _ 1):} ' IM: (w‘ y1 —152);j ui = 16130832 XiiujDr f35/2

._ 02 ELL fl 1.- i':(}__LS_‘ T22-W<9fl 2+/)a+dr‘2 f)V1 flu (126)

or by means of (’72)

Du" _ iqb’0 e“/2 B . 02 (i 3 _ _ fl) 0“
D17 7 feo—flz ju+1—fi2 2—2}? f

1 do 1 3 2_fl i _

+1—52E(2—2fl f)u' (121)

5.10.2. Equation of motion

The decision on the choice of f(S) is now rather complicated. We studied different possi-
bilities:

(i) Reflecting on (126), it first occurred to us:

a)i—fl: . ._ )22 f 0,1.e. b)]_Sl. (128)



Prospects for Relativistic Physics 65

This choice leads to the mass formula

“] riff: emu-7 129
m = m ——

0 l [/231‘115’3 ( )

(m0 constant rest mass and e electric charge of the particle) and to the equation of
motion

a” (130)

with a scalaristic force term proportional to 62. This term induces serious physical
trouble. Concerning numerical values, the inequality

ezefi (3—3“
—— > 1 131macs: > ( )

holds, i.e. the mass formula can hardly be accepted. This trouble already occurred in
our former theory [4] and blocked our further investigation for more than two de-
cades.

(ii) We also took into consideration the choice f = % which leads to

Dmui e .. . mdo‘ .a) #=—B'fu7 +mc2al' ———u",
Dr c 2 dr (132)

b) m = mo e_3°/2, c) [3 = 1

with trouble of another kind.

(iii) Finally we decided to approach as close as possible the traditional equation of
motion. This standpoint brought us to the choice

1

1 3 fl=0, i.e. b) f: 1 SOS _1 .—a)_2-—§fi2_f 1_fl2_§ygg+soss. (133)

Then the equation of motion (127) takes the well known shape

D1" = i Bijui (134)

if we identify the electric charge as follows

WM
9080 O

- (135)

After we have used (125), the variational principle (121) acquires the 5-dimensional
form

P;

a I 81/2) 1 _ 3% d2 = (136)
Po

5 Proceedings G39



66 E. Schmutzer (Jena)

which by means of (110) goes over into the 4-dimensional form
P)

(£26213 4a 1 — —°—° ds 2 0. 137f( 1.13.411) ( ’
Pa

This last equation shows that for a particle without electric charge the geodesic motion
applies.

5.11. Electrically charged perfect fluid

We try to treat the model of a medium consisting of uniform test particles with electric
charge but without interaction. Of course, this model is an extreme idealization but

rather adequate to this unified field theory of gravitation, electromagnetism and
scalarism.

Up to now the substrate projector 0f the non-geometrized matter 6*” played the
role of a fully abstract quantity. In this chapter we shall investigate an ansatz for
it for the case of this rather simple model which corresponds to a superposition of
the test particles treated above. In constructing the substrate projector we will
be supported by the above findings on the motion of the test particles.

Let us start with the most general ansatz*)

6‘” = Auflu” + Bsf‘s” + 0g” + D(u“s” + u”s*‘) (138)

(A, B, C, D free coefficients). If we demand that by 4—bein projection the 4-din1en-
sional energy tensor of the substrate

a) 0“ : — (u + 6—1;) Muj — Pg”, b) 0’1 = #62 — 310 (139)

(/L mass density, p pressure) has to result, we obtain for the coefficients A and 0:

S (/J + g) S
a) A:———, b) C:—-—p. (1410)

30(1 — b”) So
Furthermore, the electric current density ('74) takes the form of a convective current
density

1"" : 1112'” (141)
with the electric charge density

‘ 0283/2 '5 ti — F")
2L— M—l—‘flz—l—fU—‘J—D. (142)2.1912 V1 — 12 c J

It seems reasonable to assume that the pressure p does not induce electric charge.
Hence follows

90

i332];D : ~_'_ ,1,11 _ .121 , - (143)
*) See new results in the Erice proceedings [7].
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whereas the charge density takes the form

$0283” (144)
90 = —_ ,46033’21/1— #2

The most difficult problem is now how to find arguments for determining the last
coefficient B. After long reflecting on this question we were led by the following idea:

Since a perfect fluid of the above type is apart from the 4—velocity characterized by
the three physical properties [1, p and go, we have to expect that according to (105)

the scalarlsm inducmg 1nvar1ant (0 —- E 6“,") can 1n a certain way only be pro—

portional to these quantities ,u, p and 90:

(i) The mass density ,u has to be excluded, because for a static field we would be
left with

A0 N ,u . (145)

Furthermore, from (88) there would result a scalaristic force density of the structure

(”f N ,u grad a. , (146)

Since the Newtonian gravitational theory, which has to be contained in our theory
as the first approximation, means the Newtonian field equation (45 Newtonian
gravitational potential)

A45 = 41-:p (147)

and the Newtonian gravitational force density

(mi: —p grad (D, (148)

we arrive at a parallelism of <15 and a. This would mean that the empirical gravitational
potential is a linear combination of {D and a, i.e. the relation (95) between Einstein’s
and Newton’s gravitational constants would not hold.

(ii) We also exclude the charge density 90, because this version would according to
(88) lead to a scalaristic force density of the type

“V" ~ 930” - (149)

Passing over to the equation of motion of a test particle, we would arrive at a sca—
laristic force term, as already pointed out in (130). The physical trouble involved
has already been discussed.

(iii) The only choice left and not being in contradiction to present experience seems
to be that we admit the pressure p to induce scalarism and to appear in the
scalaristic force density. This version leads to

192103_ #623 _ __ 2So<1 — x92) (1 3‘92) + Sou — :22)‘ (150)
5*
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Since our model of the fluid considered consists of the superposition of independent
test particles, there must exist a fully logical consistency between the fluid theory
and the test particle theory. Indeed, since the relations

a) 90 : en, b) y : men (n particle density) (151)

are valid, with the help of (125), (133), (135) and (144) we find the coincidence

§2_in_@fii (mm
!‘ m0 6080

The choice (150) determines the substrate projector as follows:

0

1—w
0w : [—(M + 64) «W + {% <1 — 3&2) + 1321)}SP6"

—|— 218—]? (My —|— ’lt’S")] — eapgl‘”. (153)
0

Hence results

9__gi.:__ 1542? ( )

For this model the scalaristic field equation (105) takes the form

1 .ak*::T—%pe+jfl—BHHH, 05m
3 87:

whereas the equation of motion (85) and the corresponding balance equation are:

pDu’" p I 1 _ 1
_ _ n m:_m _Bm"n___ [m’(“czhfiltnzW 1 (mm

p 1 (11) 1 do _
_ n =——— —— —. 15'

[(p + 62) u lm (:2 dr + 202 11 d7 ( I)

5.12. Variational principle

5.12.1. 5—dirnensional variational principle

Let us introduce the field theoretical action in the 5-dimensional projective space and
in the 4—dimensional space—time by [4]:

1 5 1 4

Wz—[v:—fw 0%)
0 . 6

V5 V4
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5 4
(L 5-dimensional Lagrange density, L 4-dimensional Lagrange density). The 5-dimen—
sional Hamilton principle reads :

5
a) 6 Ld‘5)f = 0, where b) 69 ,I = 0. (159)[l (V5)

V5

The variation of the 5-dimensional metric tensor yields the Lagrange equation
5 5 5

6$=d$_(3$)=0 (160)
69F” 89)" 89mm la

5 5 —
if we restrict ourselves to Langrangians Z = L 1/; of first order. According to

5 (0)5 (0)5 (0)5$=$+$+$ mu
(6)5 (0)5

the Lagrangian consists of the pure geometric term 3, the cosmological term 2
(9)5

and the substrate term 2, Where
5

(ms R

_ 275055“)

Further, the relation

— (c)
1/3 '+ divergence term, b) 3 2 208

75080
3. am

(0)5L306 3’
5— 6 v aV9 g#

is valid.
If we take these facts into account, we find that the Lagrange equation (160) is

identical With our basic field equation (50).

of" = 0%

5.12.2. 4-dimensional variational principle
We are not able to prove here the relation

4 5
L = E L. (164)6’

Using (162) we arrive at the 4-dimensional Langrangian
4 4 4— (G)4 (0)4 (9)4 (6)4 (0)4 (9)4 '4—$=Lg=$+$+$=(L+L+flw, am

Where
(6)4 1 (0)4 3

= R—a)'L 2x0 4ny82
1

S n8,” — '— Bu ”k:I 1671: I‘H
aw

(0)4 2C (0)4 (9f)4

mL=—3 ®L=L+iAm.
C”o
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(0)4
In these formulas R means the quadratic part of the 4—dimensional curvature

(om
invariant, L is the interaction free substrate part and A" is the electromagnetic
potential according to

a : Amm _ Amm- (167)

Now the well-known 4—dimensional variational procedure is applied With the follo-
wing result:

‘g,,- —> generalized gravitational field equation (104),
A” —> inhomogeneous Maxwell equation (75),
S —+ scalaristic field equation (105).

Here the definition

(0)4

61-;- : __2_g4‘ a ..V9 9.,

has to be used.
Thus the full consistency of the 5-dimensional and of the 4—dimensional variational

principles is guaranteed.

(168)

Ladies and Gentlemen,

Please, let me summarize: I think we can optimistically look at our highly interesting
field of physics which presents us With fresh challenges day by day. We are working
at the roots of nature. We should gain new courage and strength when we reflect on
Goethe’s word in “Faust” written on this same historic soil, where our conference is
taking place:

“that I might discover
the secret law
which holds the world
together at its core”.
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Exact Solutions Of Einstein’s Field Equations
D. Kramer and H. Stephani (Jena)

Introduction

When preparing a short review on exact solutions, a field in Which about 100 papers
a year are published, one needs some selection rules. We decided firstly to concentrate
on papers which appeared since 1974, With emphasis on the most recent years
(1974 is the year of Kinnersley’s report [0] on exact solutions, given at GR 7). Sec-
ondly, we agreed to give preference to the inhomogeneous cosmologies and to the
stationary axisymmetric solutions because, in our opinion, the most interesting recent
discoveries were made in these two fields.

Of course, this choice is also a matter of taste and inevitably reflects our own re-
search interests.

Concerning the remaining classes of exact solutions, we can make only a few re-
marks. A more detailed presentation of what is known about exact solutions can be
found in [1].

Starting point of all considerations are of course Einstein’s famous field equations

1
Rab _ 3' Rgab = ”Tab: (1)

and in this review we shall deal only With the energy-momentum tensors for dust,
perfect fluids, pure radiation, and electromagnetic fields (given in Table 1).

Table 1. Energy-momentum tensors

dust: Tab = puaub, uau“ = —1,

perfect fluid: Tab = (,u + p) uaub + pgab

pure radiation: Tab = salcb, leak“ = 0,
1

electromagnetic field: Tab = FMFI,c — I gacdF‘d.

1. Homogeneous and inhomogeneous cosmologics

Einstein’s theory has an important impact on cosmology. The cosmic matter con—
tent is usually assumed to be dust, or a perfect fluid with an equation of state

p = (y — 1) M: y = const, (2)
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and the cases most frequently considered are incoherent radiation (p : A11/3) and stiff
matter (p 2 it). A perfect fluid, or dust solution of Einstein’s field equations will be
called a cosmological model or, simply, a cosmology.

In the well-known BobertsonMaker-Friedmann (RWF—) models, all space points
and all directions at any space point are equivalent. These spatially—homogeneous
and isotropic models fit the experimental data very well. The isotropy on a large scale
has been confirmed by observations of the microwave background. But was the uni-
verse homogeneous and isotropic already at its early stages, and has it still these
properties in very distant regions? Some phenomena suggest that anisotropic models
could provide a more appropriate description of the early stages than the RVVF—
models. Physical processes such as particle creation might have damped anisotropy.
There are also exact anisotropic and inhomogeneous perfect fluid solutions which
evolve towards RVVF-models [2].

A cosmology is either homogeneous, or spatially-homogeneous, or (spatially) in—
homogeneous. A homogeneous cosmology admits a group of motions acting on space—
time; the group orbits of a spatially—homogeneous cosmology are spacelike hyper—
surfaces. All other cosmologies are said to be inhomogeneous.

1.1. Homogeneous cosmologies

All perfect fluid solutions, homogeneous in space and time, are known [3, 4], but
they can hardly provide a realistic picture of the universe. As recently shown [5],
the only homogeneous vacuum solutions are special plane waves, and the Petrov
solution [6]

A22 ds2 : (l + e4” dy2 + ex [cos V? odd/1‘3 — dtz) —2 sin [$17 dz dt] (3)

(k constant). The solution (3) admits a simply—transitive group G, and has been inter—
preted as the field in the interaction region of colliding plane waves [7], or as the ex-
terior gravitational field of a cylindrically symmetric, stationarily rotating dust
source [8].

The only homogeneous Einstein-Maxwell fields where the electromagnetic field
shares the space-time symmetry are special plane waves, and the Bertotti-Robinson
solution [9, 10]

k2 (1,592 : (1192 —[— Sin2 1? dq + def? — sinh2 x dt2 (4)
(I; constant), which plays a role in studies of colliding plane waves in the Einstein—
Maxwell theory [11].

The existence of a space-time symmetry implies

GsFab : OFab (5)
for the Lie derivative of the Maxwell tensor Fab with respect to the Killing vector 5".
(Fab denotes the dual Maxwell tensor.) C is a, constant for non—null electromagnetic
fields [14] and the gradient 0,, must be proportional to the repeated principal null
vector of a null field [15].
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There are homogeneous Einstein-Maxwell fields Where the electromagnetic field
has lower symmetry than the geometry. An example is [12, 13]

a
; (dx2 + dyz) + x2 d(p2 — (dt —— 2y dtp)2, a constant, (6)

x.ds2 =

— 2 . 4 —
]/2¢F41 = Z cos2ln x, V;F13 =-:y cos 21n x, ]/zF23 =2sin2lnx,

with x“ = (x, y, (p, t). For the Killing vector E = x 8, + y 81, — (,1) 8g) one obtains
O = 2 in (5). By the way, (6) is a Petrov type I solution and the principal null
directions of the Weyl and Maxwell tensors are not aligned.

1.2. Spatially-homogeneous cosmologies

Next we come to the anisotropic spatially-homogeneous cosmologies. The group of

motions is either a (multiply-transitive) four-parameter group or a (simply-transitive)

three-parameter group. Since in the former case there is a one-parameter group of

local rotations, these spaces are called locally rotationally symmetric (L.R.S.). This

rotational symmetry is a remnant of the three-parameter isotropy of the RWF-
models.

Atll but one of the L.R.S. metrics contain a simply-transitive subgroup. The ex-
ceptional case

d32 = —dt2 + A2(t) dav2 + B2(t) (dy2 + sin2 y dzz) (7)

has been investigated by Kantowski and Sachs [16], and other authors.
The cosmologies admitting a simply-transitive group are the so-called Bianchi-

type models. They can jointly be described by the metric

as = —dt2 + amt) amt, a, ,3 = 1, 3, (8)
Where a)“ are three (time-independent) basis one-forms invariant under the group. The

isotropic models are contained as special cases, e.g.

a)“ = dx“, g“, = a2(t) 6,5. (9)
The metrics (7) and (8) cover all spatially-homogeneous models. Cosmologies in

which the fluid 4-velocity is not orthogonal to the homogeneous space slices, the
group orbits, are said to be tilted. .

The field equations lead to sets of ordinary differential equations. Nevertheless,

explicit analytical solutions are known only for some cases, especially for an equation

of state 19 = (y — 1) ‘u, y = 1,4/3,2, and much work remains to be done. For illu-

stration we give as an example of an exact Bianchi-type solution the metric [17, 18]:

t2 do:2
_— —2.1: 2 22 2
(m _ ”)2 t2(m+n) (e dy + e dz )’dsz = —dt2 +

m2 + mm + 722 4mm
t2

2m2 + 2n2 + m + n = O, m, n constants.

, (10)xy=4
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Table 2. Contributions to the spatially-homogeneous cosmologies (since 1970)

p : (y ~ 1) [u Collins [17], Dunn and Tupper [18], Vajk and Eltgroth [19]

A-term Siklos [20], MacCallum and Siklos [21]

dust Evans [22]

stiff matter (p : p) Send [23], Maartens and Nel [24], Barrow [25],
Ruban [26], Wainwright et al. [27]

Some papers from the last decade are listed in Table 2. In particular, Wainwright
et al. [27] derived a variety of both new tilted spatially—homogeneous and new in—
homogeneous cosmologies with irrotational stiff matter, see also section 1.3.4. One
of these exact solutions has been interpreted as a gravitational wave pulse of finite
duration moving through a Bianchi type model.

If the matter content is not a perfect fluid but an electromagnetic field, new so—
lutions are given by Barnes [28] who generalized an ansatz due to Tariq and Tupper
[29]. The essential assumption is that the derivatives of the (complex self-dual)
Maxwell tensor along its null eigendirections are proportional to this tensor. It is
surprising that this assumption implies the existence of a three—parameter group of
motions. The Barnes solutions contain new spatially-homogeneous vacuum models
as special cases.

Some solutions with perfect fluid and electromagnetic field have been studied,
e.g. [30—32]. For large cosmological time, the model considered by Damifio Scares
[32] asymptotically approaches a perfect fluid solution with the equation of state
I? = #5-

As far as we are aware, none of the known anisotropic statially—homogeneous
cosmologies is favoured by observational evidence.

If the group of motions acts on timelike, not on spacelike hypersurfaces, then corre—
sponding similar solutions exist. For an Abelian group, they usually are interpreted
as stationary cylindrically symmetric solutions.

In the case of three—dimensional null orbits it has been shown [33] that if the
energy conditions are satisfied, there is a non-expanding and shearfree geodesic null
congruence which is a common eigendirection of both the Weyl and Ricci tensors.
The corresponding space—times are algebraically special.

1.3. Inhomogeneous cosmologies

The inhomogeneous cosmologies include two physically important types. The first
type could be termed stellar models; they possess a closed 2-surface of vanishing
pressure and could in principle be matched to an exterior vacuum solutionf The se—
cond type justifies the name cosmology in so far as these solutions resemble the real
universe in some aspects and can at least be considered as a reasonable description
of parts of the universe.
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1.3.1. Spherically symmetric solutions

All spherically symmetric dust solutions have been known for a long time; this class
is due to Tolman [34]. Large classes of static perfect fluid solutions have been found,
and numerical methods are available. A disadvantage of most of the analytical
methods for finding solutions is that the equation of state cannot be prescribed at the
beginning, but has to be calculated from the resulting metric.

The treatment of the non-static case depends very much on the shear of the fluid.
If the radial motion' is non-shearing, i.e. if a moving volume element does not

change its shape, then the field equations reduce to the single equation [35]

vx = L2($, t) F(£E), LJ =l= 0- (11)

Once a solution L is found, the metric can be calculated via

(182 = ewmw (1292 + 1'2 sin2 a dip2 + M) — 212 e-W (1:2, (12)
fl —}. __L=e , xzrz,

F(x) and f(t) being arbitrary functions. All known non-static shearfree spherically
symmetric perfect fluids belong to the class

F(x) = (ax2 + bx + c)‘5/2 (13')

discovered by Kustaanheimo and Qvist [35].
In the case of a shearing radial motion, only a few rather special solutions have

been found so far, see [36—39]. So, perhaps contrary to what the outsider might
expect, we have to state that only a minority of the spherically symmetric perfect
fluid solutions are actually known.

1.3.2. Plane symmetric solutions

All plane symmetric dust solutions are known; they are contained in the general
spherically symmetric dust solutions.

Plane symmetric perfect fluid solutions have been found less attention than the
corresponding solutions with spherical symmetry. So even in the static case, only
a few solutions have been found. Cases which have been treated are, e.g., ,u = const
[40,41]; ‘u = p [42, 27]; ,u 2 3p [43]. For illustration, we give the static solution
with ,u = 3p; it reads

d52 = .22(d.1t:2 —|— dyz) + zF‘1 dz2 —- 19—1/2 dtz,

5F = xp0(216 — 10825 + 18210 — 2.15), (14)

p = p0(3622 — 1227 + 212).

1.3.3. Stationary axisymmetric solutions

The stationary axisymmetric perfect fluid solutions should provide the most simple
models of the interior of a rotating star. Such models require a physically acceptable
equation of state, and a matching to an exterior vacuum solution. None of the known
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solutions seem to meet these two requirements. The interior (perfect fluid) Kerr
solution is still an unsolved problem! But let us have a look at the solved problems.

All known perfect fluid and dust solutions obey the circularity condition, which
ensures that the 4-velocity is coplanar with the Killing vectors.

All stationary rotating dust metrics of this type are known up to quadratures. This
result, which covers the general case of differential rotation, was obtained by Wini—
cour in 1975 [44]. In order to construct these metrics, one has to choose a real func—
tion of one variable, and an axisymmetric solution of the potential equation in flat
3-space. Then the metric functions, the angular velocity, and the mass density can
be determined by means of line integrals and elementary operations. In principle,
all solutions of this class are known, but since the procedure of calculating the metric
is rather involved, the physical properties of rotating dust are in fact only incomple—
tely known. In Newtonian gravity, an isolated, axisymmetric, steadily rotating dust
cloud cannot exist: any density gradient (or jump of density) in the direction of the
rotation axis would cause a motion in that direction. In Einstein’s theory, a similar
result is to be expected.

A subclass of cylindrically symmetric Winicour solutions, including the rigidly
rotating van Stockum cylinder [45], has the remarkable property that it can be
matched to a static exterior vacuum solution [45, 46].

In the perfect fluid case, we know only one stationary axisymmetric solution
without higher symmetry: the rigidly rotating fluid solution found by Wahlquist
[47]. It obeys an equation of state M —}— 3p : const.

1.3.4. Inhomogeneous cosmologies with irrotational stiff matter

Progress has been made in constructing inhomogeneous cosmological models with
irrotational stiff matter:

0— flMa = :, I) 2 ll.- (15)
ll _0.ca'c

It is assumed that an Abelian group 02 acts on spacelike orbits and that 2—surfaces
orthogonal to these orbits exist, i.e., G2 is an orthogonally transitive group. In this
case, the metric can be put into the form

ds2 : eM(dz2 — dt2) —}— 9A3 dxA d, A, B = 1, 2, (16)

where the metric coefficients depend only on $11. The structure of the field equations

R0,, : 22010030, 19 : ,u : —a_ca'c, (17)

allows one to generate perfect fluid solutions of the type under consideration from
known vacuum solutions, simply by replacing M in (16) by a new function which is
to be calculated via a line integral [42, 2’7].



Exact Solutions of Einstein’s Field Equations ' 81

1.3.5. Inhomogeneous cosmologies With conformally flat slices
Now let us turn to another class of inhomogeneous cosmologies. In his 1975 paper
[48], Szekeres very successfully started considering metrics of the form

(182 = e24 dr2 + e23(dx2 + dy2) — dt“,
(18)

A = A(x, 2, 7‘, t), B = B(a:, 3/, 7,13), u“ = (0, 0, 0, 1).

It was discovered only later that these metrics can be characterized by the existence
of conformally flat slices t = const. Szekeres found all dust metrics of this class, and,
among others [49—52, '70], dealt With the perfect fluid case. Szafron and Wainwright
[51] presented a new class of inhomogeneous and anisotropic cosmologies, which,
in the limit of large cosmological time, approximate a RWF solution.

For the integration procedure of the field equations, two cases have to be distin-
guished.

If B depends on r, then the metric must have the form

d32 = (152(7, 13) [P‘2(dac2 + dyz) + (8, ln {<15P’1})2 drz] — dlfi2 (19)

with x-y-spaces of constant curvature K:

Pa, .21, r) = am (x2 + y2> + mm + cm y + dc),
K = 4ad — b2 — 02.

(20)

The function 45 is a solution of the ordinary (Friedmann-type) differential equation

2M3 + (1‘52 + xp(t) o2 = 1 — Km. (21)

To get an explicit solution, one has to prescribe the pressure p and the four real func-
tions a, b, c, d and then to solve (21).

For dust (p = 0), this differential equation can be completely solved. The solutions
contain as special cases the Friedmann and Tolman dust solutions. In these spher-
ically symmetric cases, the radially moving dust clouds can be thought to form con-
centric shells. In the corresponding general Szekeres solution, the different dust shells
would have different centres, and the metric admits no Killing vector. Surprisingly,
these solutions can be matched to the exterior Schwarzschild solution! They thus
provide us With an example of a non-spherically symmetric system of particles in
free gravitational motion which does not emit gravitational radiation. This remark-
able result is due to Bonnor [53].

If B does not depend on 7', then the metric is

ds2 = ¢2(t)[P‘2(a:, y) (drzo2 —|— dyz)

+ {00" ’3) 13-1 (0(7) (2:2 + 3/2) + 170‘) x + WU) y + Z("))} (172] — dtz (22)
with

P=1+k(x2+y2)/49 15:0: i1:

24x25 + (132 + zpa) (.132 = —k, (23)

0:252 + 304645 — Ck = 2U + kZ.

6 Proceedings 6R9
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To get an explicit solution, one has to specify the pressure p(t) and the functions
U(r), V(r), W(r) and Z(r) and then to determine @(t) and C(r, t) from (23).

For dust, the general solution was given by Szekeres. It contains the Kantowski—
Sachs models as special cases. The evolution of these solutions has been studied by
Bonnor and Tominiura [54] with the result that some of them become spatially—
homogeneous for t approaching infinity.

1.3.6. Algebraically special inhomogeneous cosmologies

We close this chapter with a few remarks on the Petrov types of the known inhomo-
geneous cosmologies. Most of the solutions considered above are of type I), e.g. the
spherically (or plane) symmetric solutions, the VVahlquist solution, and the Szekeres
class with conformally flat slices. Making explicit use of the existence of a geodesic
and shearfree (or twistfree) multiple null eigenvector, Wainwright [76, 77] and Oleson
[78, 79] constructed several classes of algebraically special perfect fluid solutions. In
general, they do not have an obvious physical interpretation; their Petrov types are
II, D, N, and O. Apparently, no type III perfect fluid (or dust) solution is known.
In the type N solutions, the fluid must have non-zero acceleration ['79].

2. Stationary axisymmetric vacuum and Einstein-Maxwell fields

It is very attractive to study the stationary axisymmetric vacuum and electro-
vacuum fields because they include the exterior gravitational fields of rotating iso—
lated mass and charge distributions. Moreover, the field equations can be reduced
to a fascinating symmetric form when expressed in terms of two complex potentials:
the Ernst and the electromagnetic potentials. In the last few years, successful and
exciting studies were devoted to this problem. Now there are new powerful methods
which enable one to construct reasonable solutions with any number of parameters,
and it is very likely that even the general solution will be found on the basis of these
recent developments.

In the following sections we shall give a survey of these methods and the main
results. Table 3 shows how (and when) these generation methods have developed and
how they are interrelated.

All the results mentioned in this section also apply, with slight modifications, to
the (non-stationary) cylindricallg symmetric fields.

2.1. The SU(2,1) internal symmetry

Prior to 1974 the Tomimatsu—Sato class covered all known vacuum fields, including
the Kerr solution, which might be produced by isolated rotating massive sources.
Furthermore, one knew of a solution—generating procedure for stationary axisymmetric
Einstein-Maxwell fields outside the sources. This method can be summarized as
follows. The Ernst and electromagnetic potentials, and their complex conjugates, can
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be considered as local coordinates in the potential space. Due to an internal symmetry
of the field equations, this potential space admits an SU(2,1) symmetry group [55, 56]
which, for vacuum fields, contains an SU(1,1) subgroup [57]. The corresponding
finite invariance transformations preserve the potential space metric and the form
of the field equations. By means of such transformations, which contain at most 8
real parameters, new solutions were obtained from previously known ones. For in—
stance, electrified versions of the Tomimatsu-Sato solutions were generated. Another
example is an exact solution for a Kerr black hole embedded in an asymptotically
homogeneous magnetic field [58].

2.2. The infinite-parameter group

The starting point for further investigations was the idea that one can successively
perform two kinds of invariance operations: the internal symmetry already referred
to, and linear transformations of the ignorable coordinates (p and t associated with
the two Killing vectors. The product of these two non—commuting Lie groups forms
an infinite—parameter group, K. In order to represent the infinitesimal actions of
K, Kinnersley and Chitre [59] introduced an infinite hierarchy of potentials, one
of them being the Ernst potential.

For some special subgroups of K which do preserve asymptotic flatness, Kinnersley
and Chitre [59, 60] succeeded in exponentiating the infinitesimal transformations.
The finite transformations of one of these subgroups yield generalized Tomimatsu-
Sato—solutions.

For instance, the Ernst potential E of the generalized (5 : 2 Tomimatso-Sato
solution is given as

i, 5 : 3:,
1 + 5 5

a : 19%“ — 1) — 2%";94961/(062 — 2/2) + 4%“ — 1)
—2ia(x2 + 3/2 — 2x2y2) — 2ibxy(:c2 —]— 3/2 — 2) + ((12 ~ b2) (2:2 — y2)2, (24)

fl : 2px(x2 — 1) — 2iqy(1 — y2) ~ 27f(pa + iqb) 05(952 — y?)

—2i(pb + iqa) W"? — 2/2),
where (x, y) are prolate spheroidal coordinates and p, q (p2 —]— q2 : 1), a, b are para-
meters. ‘

Another subgroup gives rise to the HKX-transformations [61]. They can be applied
to any given solution. When applied to Minkowski space, the simplest members of
these transformations yield an asymptotically flat generalization of extreme Kerr. For
a special choice of parameters, the corresponding gravitational potential 5 is given,
in terms of spherical coordinates (7‘, 19), in the form

c173 ~ 26272 cos 29 ~ 21.022 cos 1? sin2 29 25
74 ~ 717173 cos 1? + 2ic272(cos2 19 — sin2 19) — €22 sin: 19(1 + cos2 1?) ( )

E:
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(c1, (:2 constants). When higher—rank transformations are included, the tedious, but
straightforward calculations lead to Ernst potentials of rapidly increasing complexity.
. The common feature of the two kinds of finite transformations which have been
found so far by exponentiation is that they preserve asymptotic flatness.

To master the infinite hierarchy of potentials (which represents a very redundant
description) and to find the exponentiations, it proved to be convenient, if
not necessary, to work with generating functions from which all the potentials can
be derived. These generating functions depend on at least one additional variable
besides the two non—ignorable space-time coordinates.

The Kinnersley—Chitre representation of K allows an interesting reformulation
due to Hauser and Ernst [62] : the corresponding finite transformations can be effected
by solving a linear integral equation of the Cauchy type. This integral equation in
turn is equivalent to a homogeneous Hilbert problem which is dealt with in complex
function theory. In the vacuum case, this problem can be stated as follows [63].

Let L be a smooth contour surrounding the origin in a complex s—plane. Find two
2 X 2 matrix functions X+(s) and X_(s) such that

(i) X+(s) is holomorphic on and within L,

(ii) X_(s) is holomorphic on and outside L,

(iii) X+(0) = I = unit 2X 2 matrix,

(iv) the inverses of X+(ac) and X_(s) exist,

(v) the boundary values on L obey

X_(8) = X+(8) 61(8), G(8) = F(8) MS) F'1(8), (26)
where the 2 X 2 complex matrix functions u(s) satisfy the relations

det u(s) = 1, 11(5)“L s 11(9) 2 a,

0 1 _ (27)
s = , u(s)+ = hermltean conjugate of u(§),

— 1 O

F(s) is a 2 X 2 matrix generating function associated with a given vacuum solu—

tion,

(vi) certain conditions at infinity are imposed.

Once this Hilbert problem has been solved, for given F(s) and u(s), one obtains a

new vacuum solution from the generating matrix function F’(s) = X+(s) F(s). The

general solution of the Hilbert problem in several unknown functions is not known

in closed form. Nevertheless, this new formulation might be helpful in gaining deeper
insights into the underlying mathematical structure of the field equations.

2.3. The method of Backlund transformations

Now we turn to another very successful approach: the extension of methods used in
soliton physics to Einstein’s theory of stationary axisymmetric fields. Again we Will
restrict ourselves to the vacuum case.
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The space—time metric can be written in the standard form

d32 : e‘2U(e2" dz d2 + W2 dgvz) —e2U(dt + o) dong, (28)

Where all functions depend on the complex conjugate coordinates z and 2. The rele—
vant field equations are (in three-dimensional vector notation)

Wi : 0, (Re E') AE = (VE)2, E Ernst potential. (29)

Introducing new variables

a m W.;
A1 = , B1 : 73E+E E+E’

2 E: IV:

A2: E”_ 3 32: M_) 022—”:
E+E E+E W

01:

(30>

the field equations (29) can be cast into the system

1 1
ALE : —AIB2 + A1A2 — E" 01442 — 3 02A}

.4

1 1
A ,' : —A‘JBl + A1A2 — 3 01A2 — E CZAIK: r

1 1
31.3 : _-BIA2 + BIBZ — E 0132 ‘ ‘2‘ 02B1 (31)

1 1
B2,: : ‘BzAi ‘l‘ 3132 _ E 0132 — 7 0231

A

01.3 : —0102

02,: = _0102

of first—order differential equations.
For W : 1, these equations reduce to a subsystem connected With the sine—

Gordon equation

’u‘zg : sin u (32)

(in two space dimensions) which plays an important role in various areas of physics,
e.g. superconductivity theory. With the aid of Backlund transformations (BT) one
can generate new solutions of this equation, by purely algebraic manipulations.

A look at the differential equations (31) suggests that the BT of the sine—Gordon
equation, i.e. of the subsystem with Cl : C2 : 0, should have a generalized version
for Einstein’s theory of stationary axisyininetric vacuum field, i.e. for the total sys—
tem. This gravitational counterpart does indeed exist [64—66]. The repeated applica—
tion of these gravitational Backlund transformations to a known solution (eg. flat
space) leads to new solutions with any number of parameters.
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Let us have, a look at the final formula. for the Ernst potential E" of a new solution
which is obtained, after an even number of recursion steps, from an initial solution
With the Ernst potential E '

5 1 l 1 1

lac “1:1 (12:2 “11:71
1 C12 :22 ‘ " a ‘

a0 a1C13 a2§23 anéns

Fan 61C?“ (12%“ anCnnfl'

_‘1 c1", :2" c." 1
E' = E (33)

1 1 1 l

“151 012:2 anCn
C12 €12 C712

1 “14-13 a2§23 anCns

‘1 a‘lCi‘_l (-12:2n_1"' ancnn—l

11 c1" :2" an
(Neugebauer [65]). This closed-form expression for E" contains only E, the quantities
6,, defined by . ,

__ -— 1/2
Q, = (6" m) , cl, constants, (34)ck + 12 \

and the solutions a], of the total Riccati equation

1

E + E

1 1 — a2
2: —— E2 —— E3“’ E+E[(a C) '+(: ) l

with different integration constants indicated by the index k. At each recursion step
further integration constants appear. They can be chosen such that the reality ,of
the metric and asymptotic flatness are preserved.

The total Riccati equation (35) dan be linearized'by the ansatz a = —1p/x Which
gives rise to the linear eigenvalue equations

[(a — 0177.: +012! — a) Ea],afiz =

(35)

1
v.2 = 3101/2 + Ex), v.2 = 32(11’ + f x)

1
25.2 =Jh<x +Cw), 25.; = A2 (I +?ip),
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where the eigenvalue is hidden in C. The two complex potentials 1p and Z are closely
related to the matrix generating function F mentioned above.

The formula (33) provides us with a simple recipe for constructing new solutions.
To our knowledge, all stationary axisynimetric solutions given hitherto in the lite—
rature can be obtained from this formula (including limiting procedures).

The application of the formula (33) to flat space (E : 1) leads to a non—linear
superposition of Kerr—NUT solutions [65, 67]. It is a tempting task to find out whether
the gravitational attraction of corotating Kerr particles can be balanced by rotational
repulsion.

For Weyl’s static class, the Riccati equation for a can be solved exactly, and (33)
yields Kerr— NUT superposed on static solutions [73, 74].

At the limit where two or more columns of the generalized Vandermonde deter—
minants in the numerator and denominator of (33) coincide, one arrives at the HKX—
transformations. For instance, the solution (25) can be rediscovered as such a limiting
case.

It has been shown by Cosgrove [68] that the method of ET is equivalent to the
approach developed by Belinsky and Zakharov [69]. These authors extended the
inverse scattering method to Einstein’s theory; they started from linear eigenvalue
equations, with spectral parameter A, and solved them by expansions in terms of
poles in the complex 2—plane. The so—called soliton transformations thus obtained
correspond to the BT and, at the limit of coalescing poles, to the HKX-transforma—
tions. Belinsky and Zakharov did not derive an explicit formula for calculating the
new metric. The non-soliton part of the inverse scattering transform gives rise to
a linear integral equation, and an associated Hilbert problem, which is similar but
not equivalent to that stated above.

Some of the approaches listed in Table 3 have been generalized to include electro—
magnetic fields, see e.g. [62, 63, ’71].

Herlt [97] has recently been able to generate a new class of asymptotically flat
static Einstein—Maxwell fields in closed form. This class contains a disposable axi—
symmetric solution of the potential equation in flat 3-space and goes over to the
Schwarzschild solution when the electric field is switched off.

3. Algebraically special solutions

Algebraically special solutions are characterized by the existence of (at least) one
repeated null eigenvector k“ of the VVeyl tensor. The techniques of constructing solu—
tions depend essentially on the properties of the corresponding null vector field,
especially on the complex divergence g : —(6 + iw). For Einstein—Maxwell fields
it is also important whether or not the eigenvector I5“ is parallel, or aligned, to an
eigenvector of the Maxwell tensor.

Table 4 shows the present status of the algebraically special vacuum, Einstein
Maxwell, and pure radiation fields. It also indicates for which classes new results have
been obtained since 1974. The symbols mean: 1]: solutions do not exist, A: All solu—
tions are known, S: Some solutions are known.
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At a first glance, the progress made so far in this field looks quite satisfactory.
However, with the exception of the plane waves (type N, g : 0) and type D solu-
tions our present knowledge is limited to solutions of comparatively little physical
importance — or at least this importance has not yet been discovered.

In our opinion, the most interesting developments of the last years are connected
with three questions.

The first question concerns the twisting type N tbarcurum solutions. It is known
that the expanding non-twisting type N vacuum solutions must have singular lines.
lt is an open question whether twisting solutions may describe more realistic radiation
fields. The only known solution was found by Hauser [82], but unfortunately it is
not asymptotically flat [941].

The second problem concerns the type D Einstein—Maxwell now/lull fields. In the
vacuum case, all type D solutions are known. Due to the efforts of Debever [95],
l’lebai’iski—Demianski [83], and Leroy [81, 85], the problem to find all diverging type D
Einstein-Maxwell fields seems to be almost settled.

Finally, progress has been made in finding new type N pure radiation fields [92].

Summary

To sum up: a lot of exact solutions are known. The storage of solutions which admit,
to a certain extent, a physical interpretation has increased. Methods for treating
non—linear partial differential equations, which were known in other branches of
mathematical physics, have been successfully used in General Relativity.

Progress might result from new interpretations of already known solutions.
Schmidt, in his abstract [96] for this conference, presented a nice idea: the Einstein—
Rosen waves, usually interpreted as cylindrical waves, can be globally reinterpreted
such that some of them describe radiation fields which become Minkowski space in
the remote future.

Many problems are still unsolved. Is it possible to extend the generation methods
for stationary axisymmetric vacuum fields to the perfect fluid case and to find an
interior Kerr solution? Does a system with purely gravitational interaction emit
radiation? in our opinion, this basic question cannot be answered convincingly
until appropriate exact solutions will be available.
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Computer Methods in General Relativity
R. A. d’Inverno (Southampton)

Introduction

High speed digital computers have been around for well over three decades, and yet
it has only been in the last decade or so that computers have been used to any great
degree in General Relativity. The area of application falls into the two distinct cate-
gories of numerical computing and algebraic computing. Much of the numerical
work is of fairly recent origin and is still in development form, but nonetheless the
literature is in a very accessible state thanks to the recent volume edited by L.
Smarr [1] — indeed part of this review leans heavily on this reference and an excellent
review article by T. Piran [2], where more detailed references may be found. Although
algebraic computing seems to have been around longer its impact, outside the field
of exact solutions, has been less obvious, and the associated literature is still in a
rather patchy form (although see [3]).

In a review of this length we will only have an opportunity to attempt to convey
some impression of the sorts of area of application involved, the methods employed
and the results so far achieved. The hope is that it proves sufficient to give a flavour
of the richness of the area by outlining the successes and the potential of computer
methods. This is especially so since there is evidence of a rapid growth of interest
in these techniques, and the consequent likelihood that their impact in the next
decade will prove to be quite dramatic. The first part of the review is concerned with
Numerical Methods and looks at the main method involving the 3 + I approach and
the newer characteristic approach, and finally mentions briefly the Regge Calculus.
The second part covers Algebraic Methods and after discussing some of the main
ideas involved in algebraic computing, looks at a number of relativistic applications
of the main systems and ends with a brief critique of the/area.

1. Numerical methods

1.1. The 3 + I approach

Over half a dozen successful numerical codes have been developed for investigating
spherical collapse, dust collapse, 2-dimensional axi-symmetric neutron star bounce,
2-dimensional two black hole collision, Brill waves, planar symmetry solutions,
cylindrical symmetry solutions (for references see [1] and [2]) and colliding plane
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gravitational waves. In all but the last case, the technique involved has been based,
directly or indirectly, on the 3 + I approach to General Relativity. We therefore
start with a brief description of the 3 + 1 formalism, but for further details see, for
example, the article of J. York in [1].

The 3 —}— I approach starts by slicing up space—time into a foliation of space-like
hypersurfaces. The foliation is then rigged with a transvecting vector field. This vector
field may be equivalently thought of as a fibration threading the foliation given by
the congruence of curves to which the vector field is tangent. The foliation and fi—
bration decompose the 4—metric 9," into the constituent parts

d82 : 9w dxf‘ dx” : 0:2 dt2 — gl-J-(dsri + {3‘ dt) (dxj + [37 dt)

where gij (latin indices run from 1 to 3) is the 3-metric on the hypersurfaces, 0c is the
lapse function which defines the foliation and [ii is the shift vector determining the
fibration (see fig. 1). With this decomposition the ten Einstein field equations

GM : 871T!”

reduce to six evolution equations which are second order in time, and four constraint
equations which are first order in time.

Fig. 1. Lapse and shift for a 3 + 1 foliation and fibration

In the usual formulation of the Cauchy IVP (initial value problem) one starts by
prescribing data on an initial hypersurface, and then this data is propagated forward
in time by means of the evolution equations. The initial data cannot be freely speci-
fied but must satisfy the constraint equations. However, if the constraints are satis—
fied on the initial hypersurface then, by virtue of the Bianchi identities, they remain
satisfied for all future time. Thus the Cauchy problem is ‘well-posed’.
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In the majority of numerical schemes the six second order evolution equations are
replaced by twelve first order equations. This involves introducing six additional
variables, and it is now generally accepted that the natural choice of variables con-
sists of the 3—metric gij together with the extrinsic curvature K;- (which is essentially
the first time derivate of gij). The field equations then comprise twelve evolution
equations

8
3t- gii = —20‘guK§ + filgw + gilfll'j + n/gl'i

E Xi : IglIQJ + Kfflli — K543”: — 0‘7“; + MEX; + R],- + gl’Tul

and four constraint equations

R — 1‘3;n + K2 = 20c‘2[T” — 2TH]? + Tijflifii]

(Ki _ 5iK)Ii = '0‘_1(Tti —' 3'15!)
where 131. is the 3-dimensional Ricci tensor and I denotes covariant derivative with
respect to gij.

1.2. Numerical relativity

Smarr defines Numerical Relativity as a method of obtaining solutions of Einstein’s
field equations based on an evolution of initial value data defined on an edgeless
spacelike hypersurface. The computational method for obtaining a solution is that of
finite differencing. The procedure involves two separate steps: first the space-time
is replaced by a finite lattice of grid points, and then the derivatives in the partial
differential equations are replaced by a finite difference approximation. The exact
solution to the finite difference equation depends separately on both the specification
of the grid and of the finite difference approximation used. Unfortunately there are
an infinite number of possible finite difference analogues, each With its own solution,
but a large number of them will bear little resemblence to the exact solution of
the original equations. This is because of instabilities which arise due to an incorrect
choice of discretization of space—time. Even if one is using a stable scheme, another
major source of inaccuracy occurs in truncation errors. These latter errors stem from
the fact that one is essentially approximating a function by a finite part of a Taylor
series expansion.

Now in the continuum case, initial data satisfying the constraint equations is
evolved into data which, by virtue of the Bianchi identities, still satisfies the con-
straints. However, this relation breaks down in a finite difference scheme. In such a
case the equations are written on a space and time lattice and due to the non-
commutative nature of finite difference derivatives all the equations cannot be satis-
fied simultaneously in a trivial way (for example to the same order in space and time
increments). The fact that the finite difference version of Einstein’s equations leads
to an overdetermined system is the most important current problem in numerical
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relativity. As a result one of two strategies have to be adopted, either the constraints
are simply ignored which is termed free evolution, or they have to be artificially
imposed. In the latter case, one method involves imposing the constraints after

finite intervals of time (chopped evolution) and another is to impose them at every
stage of the integration (fully constrained solution). Unfortunately, each method has
an associated drawback. For example, computations with particular solutions have
demonstrated that a freely evolved solution drifts further away from the true solu—
tion as it is evolved in time [4]. Similar problems arise with chopped evolution and
fully constrained solutions. Piran has indicated this schematically in fig. 2, where
the plane represents the subspace of solutions which satisfy the constraint equations
[3]-

/ ‘2. .- 'Oryof solu'rior- I
data m

Fully giggly-"a.“ , /

Fig. 2. Schematic representation of drift away of different
numerical solutions from true solution

Other integration schemes have been proposed which involve the addition of
auxilliary variables or auxilliary equations. but they all have the same attendant
defficiencies. The empirical evidence suggests that a fully constrained solution is
perhaps the best that can be currently obtained.

1.3. Coordinate and boundary conditions

General Relativity is a gauge theory in that it admits the 4—diiiiensi0nal pseudo—
group of co—ordinate transformations. In Numerical Relativity the exploitation of
this fact by adopting a particular choice of coordinate (gauge) conditions is an im—
portant and integral part of any scheme. This usually takes the form of specifying
the lapse and the shift directly, or of specifying conditions giving rise to equations
which in turn determine the lapse and the shift. Now the choice of the lapse is parti—
cularly important because the resulting foliation determines what part of space—time
can be explored. The choice of the shift can be thought of as determining the 23-dimen-
sional coordinates on the slices.

The simplest choice of setting a : 1, [3i : 0 (which is still used in several codes)
does not work very well in general because the congruence emanating from the initial
slice converges and eventually focussing occurs. Thus coordinate singularities result
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and so prevent a maximal development of the solution. As Lichnerowicz originally
pointed out, this focussing can often be avoided if the foliation consists of maximal
slices, that is those for which trace K; = 0. Indeed it is now generally accepted that
the best choice for the lapse is maximal slicing for open universes and constant mean
curvature (trace K;- = f(t)) for closed (spatially compact) universes. However there
are a number of open questions associated with this choice. For example, do maximal
(constant) slices exist generally? Clearly the important question is to determine a
slicing which allows one to obtain the maximal development. In the words of York
[2] “the development of a constructive prescription for generating a foliation covering
the maximal Cauchy development is the number one problem in the dynamical ap-
proach to the solution of Einstein’s equations”. Another conjecture concerns whether
or not maximal slicing avoids intrinsic singularities. The conjecture pictures a maximal
foliation wrapping itself around the singularity with the lapse collapsing to zero as
the singularity is reached. There are counter-examples to this conjecture in non-
vacuum space-times, but no known ones for vacuum space-times. As far as the shift
is concerned there are a number of different conditions apart from setting ,6" = 0
which have been adopted including a choice which diagonalises the metric and a
rather complicated condition known as the minimal distortion shift vector condition
{1]. It is probably true to say that all of these choices have difficulties and limitations
associated with them.

Another problem area arises with boundary conditions. If initial data is pre-
scribed on a finite portion 80 of an initial slice, then the solution is only determined
within D+(So) the Cauchy development of So. Since a numerical grid must of neces-
sity be finite this limits the size of the development and so one may not be able to
generate a solution which covers the Whole area of interest. However if 80 is a subset
of a global Cauchy hypersurface, and the space-time is empty and asymptotically
flat then the solution can be extended by specifying boundary conditions on R X So.
This is limited by the attendant danger that false boundary conditions may change
the solution within R X 8'0 and so ultimately lead to a false solution. For example,
in a collapse problem certain boundary conditions may enable one to extend the
calculation as long as nothing crosses the boundary, but they reflect all outgoing
perturbations (gravitational wave pulses) back into the solution. There have been
techniques developed for overcoming this problem [4]. Another difficulty relates to
inner symmetry boundaries (e.g. the axis of an axi—symmetric solution) where there
are severe problems with existing codes in keeping the solution regular along such
boundaries.

1.4. Computer calculation

To summarise, a numerical calculation typically breaks down into the following
steps:

(i) choice of equations
(ii) choice of coordinate conditions
(iii) specification of initial data

'7 Proceedings GRQ
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(iv) solution of the initial value problem
(v) specification of boundary values
(vi) choice of grid lattice
(vii) transformation of equations into finite difference form
(viii) implementation on computer
(ix) interpretation of the results.

A considerable number of problems confront Numerical Relativity at present in—
cluding numerical instabilities, truncation errors, coordinate conditions, coordinate

singularities, limitations in computer time and memory and the difficulty of represen—
ting the solution from the final results. All the existing codes are essentially one or
two dimensional in character. However three dimensional codes are beginning to
become feasible, even though they entail enormous demands on computer time and
store. Another problem which is also causing difficulties involves the successful
treatment of relativistic shock waves, although some advances have recently been
reported [5, 6, '7].

1.5. The characteristic approach

The 3 + I approach fails if the foliation becomes null, because the metric gij of a null
hypersurface is degenerate. Yet characteristic initial value problems are of interest
in their own right for a number of reasons. First of all they present a natural vehicle
for studying gravitational radiation because information propagates along null
geodesics which rule null hypersurfaces. Again a Bondi—type problem involving stu—
dying the asymptotics of isolated radiative systems gives rise to a characteristic IVP.
Another obvious candidate is Cosmology where, after all, we gather information
about the Universe by observations along our past null cone. From a calculational
viewpoint one main advantage of this approach is that hyperbolic partial differential
equations reduce to ordinary differential equations along characteristic curves.

An attempt to develop a formalism for characteristic lVP’s analogous to the 3 + 1
formalism was begun by the author and J. Stachel [8] and completed more recently
with J. Smallwood [9]. The resulting 2 + 2 formalism begins by foliating space-time
into two families of space-like 2—surfaces. Each family can then in turn be considered
as foliating a three-dimensional hypersurface which may either be null, timelike or
spacelike depending on the IVP under investigation. Figure 3 illustrates schematically
two of these hypersurfaces for a double null and null—timelike IVP. The 2 + 2 for—
malism then identifies the so—called conformal 2-structure — essentially the family
of conformal metrics of the 2—surfaces V as dynamical degrees of freedom. The Ein—
stein field equations involve only two evolution equations propagating the con—
formal 2—structure. This formulation avoids the difficulty of the 3 + 1 approach
since the initial data is no longer constrained. Formal integration schemes have been
obtained for double—null, null-timelike, null—spacelike and Cauchy (spacelike—tilnelike)
IVP’s. The formalism has the property of not only being manifestly covariant, but also
of clarifying the geometrical significance of the gauge freedom which exists. It is hoped
that this approach may provide a possible route towards quantisation since, unlike
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the 3 + I approach, the constraints are fully eliminated. No “hard” theorems for
existence and uniqueness have yet been obtained in general for all these IVP’s,
and it may be that in certain cases (for example those involving spacelike hyper-
surfaces) the problems may not be well-posed in anything but the rather restrictive
case of analytic solutions. However, such theorems have been obtained for the double-
null IVP by H. Muller zum Hagen and H. Seiffert in the harmonic gauge [10] and
by J. Stewart in the Newman-Penmse gauge [11].

Fig. 3. Spacelike 2-surface foliation for two hypersurfaces in the double null
and null-timelike IVP

Only two numerical codes have been developed to date which involve the charac-
teristic approach. G. Bicknell and R. Henriksen have a code for spherical collapse
[12], evolving their solution along the hydrodynamic characteristics (no information
propagates along the null geodesics because of the spherical symmetry). More ex—
citingly, J. Stewart and R. Corkhill have used the Newman—Pemose formalism to
handle the double-null characteristic IVP [11]. They have applied this work in parti-
cular to investigating colliding plane gravitational waves. Their resulting numerical
code has been able to follow the evolution of the waves up to the formation of the
intrinsic singularity (see fig. 4). Using recent results of H. Friedrich [13], it is possible
to show that the constraints and Bianchi identities are always satisfied (to within the
usual numerical accuracy) in this method. These same workers are also exploiting the
Penrose technique of conformal compactification to consider asymptotic character-
istic IVP’s (see for example [14]). There seems little doubt that characteristic codes
are likely to provide a very fruitful method for obtaining numerical solutions in the
near future.

1.6. Regge calculus

There are two principal ways of solving partial differential equations on a computer.
The first involves finite differencing Where one essentially discretises the derivatives

Occurring in the equations, and the other involves a finite elements method Where
one essentially discretises the underlying space. The Regge Calculus is related to
the class of finite element methods and has attracted attention in recent years as

7*
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Fig. 4. Two colliding plane gravitational waves (chopped off as curvature mounts towards
the singularity)

a numerical method for solving Einstein’s equations [15, 16, 17]. In Regge Calculus,
one replaces the four-dimensional continuous curved space—time with four—dimensional
flat simplices. The curvature is concentrated in a 6—function form on the bones or
two-dimensional edges of these simplices and can be expressed in terms of a deficit
angle associated with each bone.

The basic advantage of this approach is that it no longer leads to an overdetermined
system, since there is a one-to—one correspondence between the variables (the lengths
of the legs or edges of the bones) and the equations they satisfy. However the equations
do not separate into evolution and constraint equations but are rather on the same
footing. This presents difficulties in formulating an IVP. In addition the construction
of the simplices is rather an elaborate process and the resulting equations are compli—
cated. Although there is some debate, the consensus would seem to hold that finite
element methods are better suited to solving elliptic equations and finite difference
methods to hyperbolic equations. Indeed, examples are known of hyperbolic equa—
tions where the standard finite elements procedure breaks down. However there are
techniques which essentially transform hyperbolic equations to elliptic ones (by
treating the time coordinate separately) and then finite element methods can be
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used successfully. It would be very helpful to know to what extent these difficulties
with finite element methods apply to Regge Calculus. In any case, Einstein’s equa-
tions become elliptic for spherically symmetric or static configurations and Regge
Calculus has been shown to give convergent solutions in these cases [15, 16]. The
time development of some simple model universes has also been computed from Regge
Calculus in a type of 3 + 1 approach where the time is treated essentially as a conti-
nuous variable [17]. Once a Regge Calculus space-time has been constructed, then it
should be possible using a recently reported technique [18] to compute the space-
time geodesics.

2. Algebraic methods

2.1. Background

Algebraic computing came into existence because, in the words of Jean Sammet,
“. . . it has become obvious that there are a large number of problems requiring very
tedious time-consuming error-prone and straightforward algebraic manipulation and
these characteristics make computer solution both necessary and desirable” [19].
A. C. Hearn has pointed out that one central area Where algebraic computations
arise in theoretical physics is in the application of a theoretical model to some ‘real’
problem [20]. It is rarely the case that the problem can be treated exactly and so
recourse has to be made to approximation techniques. The methods involved, such
as perturbational analysis, are better suited to the exact arithmetic of algebra rather
than the less accurate numerical methods which are currently employed. To date,
significant applications of algebraic computing have been made in the fields of
Quantum Electrodynamics, Quantum Mechanics, Celestial Mechanics, Fluid Me-
chanics and, increasingly, in General Relativity.

In the case of relativity the most frequent application has been the so-called
metric application. This involves calculating curvature tensors and related quantities
from a given metric form. Such a calculation is clearly algorithmic since it can be
broken down into a series of well-defined steps (which is a necessary prerequisite for
a computer calculation). A specific example, which has become a canonical one for
attempting comparisons between different algebra systems [3], is the Bondi metric
used for studying isolated radiative systems, namely

ds2 = (VF:l e” — U272 e27) du2 + 2e“ du (17' + 2Ur2 e27 du d6
—rz e27 d02 — r2 e‘27 sinzfi do)2

Where V, U, [3 and y are all functions of three of the coordinates u, r and 0. Figure 5
illustrates an excerpt from a SHEEP program in which the Bondi metric is read in
from SHEEP’s library of solutions and one of the components of the Ricci tensor
is computed. In the original hand calculation of the Ricci tensor the work was spread
over something like a six month period. Nowadays the more efficient algebra systems
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can duplicate the calculation in a little over ten seconds. Moreover, unlike the original
hand calculation, the computerresults are error free. Before considering some of the
issues involved in algebraic computing we shall introduce a little of the computer
terminology involved.

*(DSKIN BOND!)

Bondi radiating metric
Bondr etal1962 Proc. Roy. Soc. A, Vol. 269,p.21
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Fig. 5. SHEEP interaction excerpt (typed input is underlined)

2.2. Computer terminology

The modern computer in its barest essentials is illustrated in fig. 6. First of all there is
a medium for communication with the computer. The information which the computer
is fed, termed input, is often in the form of punched cards and then the corresponding
information received back, the output, consists of sheets of typed material known as
computer listing. Increasingly though the computer terminal is becoming the most
frequently used form of communication. It consists of a typewriter keyboard linked
to some form of display, either on a video screen or in hard print form. These termi—
nals enable users to communicate very much more readily with the computer.
Moreover they may be quite remote from the actual site of the computer, simply
being connected to it by some form of telephone link—up. The pieces of equipment
which handle the different sorts of input and output are known as peripheral devices.
The computer proper mainly consists of a device for storing large amounts of informa—
tion, usually in the form of numbers or characters. This is known as the memory,
the core or the main store of the computer. The actual manipulation of this information
is then carried out by the ‘brain’ of the computer called the central processor. Finally
the storage capabilities are greatly extended by the so—called backing store which
usually consists of disks or drums and magnetic tapes. Main store differs from back-
ing store in that information in it can be accessed directly and very rapidly whereas
information in the backing store has first to be loaded into the main store before it
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can be utilised. However, since the backing store is relatively very large, users may
reserve areas of it for permanent storage. In the case of disks these areas are known as
files. The advent of terminals for communication and files for storage in recent years
has significantly eased the activity of computing. The work presented to the computer
for processing is termed a job. In older machines these jobs are batch processed Which
means that they queue up and are processed one by one. Most modern machines are
time sharing which means that they are capable of processing a number of jobs
simultaneously (this is possible, for example, since one job may be processed whilst
input is awaited from the various terminals hooked 11p to the machine).

Central
I ”3: ProcessorII‘I

Punched Card; I?
I | 'I'

. I II l

\ ...' I . . . 7““ e;
l " .‘ Disk
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Terminal Main Store

COMMUNICATION COMPUTER BACKING
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Fig. 6. Skeletal Form of Computer

The actual instructions for the machine to carry out are contained in the program.
This is written in a special language which can vary quite markedly in appearance.
In a low level programming language the instructions are of a very detailed nature
involving numerical codes which vary from one make of computer to another. At the
other extreme, high level languages are much closer to English language statements
and to mathematical notation and therefore are significantly easier to write in.
More importantly they are machine-independent and so work on all machines possess-
ing the language. Computing is perhaps at its most efficient when a programming
language is an interactive one. This means that the language possesses a conver-
sational component so that it is possible to communicate directly With the computer
and obtain responses which are essentially spontaneous. Unfortunately most languages
do not as yet have interactive versions generally available. The best known high level
languages are FORTRAN and ALGOL and they are mainly used for numerical
work. Although many algebra systems are FORTRAN or ALGOL based, the majo-
rity of the most successful ones are written in a rather esoteric language called LISP.
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Because of its importance in algebra we shall discuss two of the central properties of
LISP. -

LISP offers a natural representation for algebraic expressions. This is because
the data items of LISP are objects called lists. A list is essentially a row vector whose
elements may in turn be row vectors. For example, consider the mathematical ex—
pression

a+bc.

First of all we need to make all operators explicit, so that if we denote multiplication
by the symbol *, we can rewrite this as

a+b*c.

The next step is to change this infix notation to a prefix form by writing each operator
first followed by its arguments. Then this expression becomes

(+a(* bc)).

This is now a list. It consists of three items, the first two being + and a. The last item
is itself a list consisting of the three items *, b and c. Figure 7 gives a representation of
how a structure like this is actually stored in the computer. In a word—orientated
machine the storage is divided up into words which are usually used to store a number.
Lists are formed by chaining a sequence of words together. This is done by dividing
the word into two halves, the first half containing a representation of the corres—
ponding item in the list and the second half containing the address in store of the
next word in the chain. LISP is a language for constructing, searching and modifying
lists. .

w:r: of 5*. are
1EH '6' ti ‘

Fig. 7. Internal representation of the LISP expression (+a(* bc))

Now the main way in which an algebraic computation is different from a numerical
one is the existence of intermediate term swell. Most algebraic calculations involve
expanding out expressions as a preliminary to cancellation, and these intermediate
expressions are often very large. In a complicated calculation they could swell to-
fill up the whole machine — known as ‘blow-up’ * and so cause the program to
halt through lack of store. However many of these expressions are no longer needed
since they have arisen through intermediate steps in a calculation. If we could throw
these redundant expressions away, then we could reclaim the store they occupy
and so the program could start up again. Infact LISP possesses an automatic device
called a garbage collector which does precisely this. The ability of a program to start
itself up again when it runs out of store proves to be an essential prerequisite in most
cases for the construction of an efficient algebraic computing system.
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2.3. Issues in algebraic computing

We shall outline some of the main issues which confront designers of algebra systems.
The first relates to the problem of simplification. Simplification is needed in order to‘
keep expressions compact both to economise on store and to render them intelligible
to the user, and to check whether or not an expression is zero. The first problem is that

simplification is not in general algorithmic since there does not exist a unique form
for a fully simplified expression. However the problem is more profound because»

Richardson has proved that simplification is not even decidable [21]. That is, it is
not possible to decide in a finite number of steps whether or not an algebraic ex-
pression of sufficient richness is zero (specifically he considered that class of expres-

sions built out of the integers, n and a: by means of addition, multiplication, division,

substitution, sine, exponential and logarithm). This places an ultimate restriction

on the capabilities of an algebra system. Nonetheless, ad-hoc procedures have been

developed which work extremely well in practise.
The next issue concerns the factorisation of polynomials. A simple example occurs

in the simplification

fl—yK+W+WHx—w ——>x—y.
x+y x+y

Several systems possess factorisation capabilities of some form or other, but al-
though sophisticated factorisation programs are now available they tend to be

very large specialised systems and any problem involving large amounts of simplifi-
cation would need to make use of 'such a system. The design of present day operating

systems controlling the organisation of a computer make transfer of information

between different systems a relatively straightforward procedure in principle. One
of the biggest breakthroughs in recent years concerns the integration of elementary

functions. Originally integration, in contradistinction to differentiation, was not con—

sidered to be an algorithmic process. However Risch has discovered a decidable

proCedure which can determine whether or not an expression is integrable within a
given class of functions and, when it is, gives a constructure prescription for deter-

mining the integral [22]. This has recently been implemented on the system REDUCE
and partly on the system MACSYMA. The integration programs are very large and
should again be considered as specialist systems.

The biggest remaining issue concerns the question of user orientation. One aspect

of this relates to the format of mathematical expressions. Most of the systems pos-
sess a FORTRAN or A LGOL like infix notation for the input of expressions, and

it does not take very long to learn how to use it. In an interactive environment input

expressions can be echoed back for instantaneous checking. A fair proportion of the

systems possess a two—dimensional format for displaying output expressions, thus.

aliasing superscripts. subscripts, powers and the like to be easily recognised. One-

advantage is that these formats are immediately intelligible to the non-specialist-

One of the present limitations involves the chracter-set' available, Which usually

consists of upper or lower case latin letters only. Other aspects of user orientation

revolve around the ease, or otherwise, with which a new user can become an actual
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user of a system. CLAM claimed to be a system which could enable a new user to pro—
cess most metrics after about half an hour’s study. SHEEP has a fairly readable
manual which starts off with some demonstrations of interactive sessions processing
particular solutions. Most manuals are unfortunately notoriously difficult to use.
Interactive languages may be helpful in this respect, since they essentially enable a
user to de—bug a program as it is being written. A suggested direction for improvement
is contained in the design of the MACSYMA primer. This is an interactive program
which aims to teach a new user how to use MACSYMA step by step, offering choices
for items to be studied, exercises to attempt, and the like. Designing systems in such
a way that they make the conversion of a potential user into an actual user in as
easy a manner as possible is an important problem which has often been overlooked in
the past when efforts were concentrated on making systems more powerful and
efficient.
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2.4. Algebraic systems

The following table contains the more important systems, as far as relativity appli-
cations are concerned, together with three recently reported systems. In the opinion
of the author, the ‘big four’ are SHEEP, CAMAL, MACSYMA and REDUCE.
SHEEP and MACSYMA are interactive Whereas most versions of CAMAL and RE-
DUCE are not (this is perhaps less of a disadvantage with CAMAL Which has a rather
different design philosophy). SHEEP was written especially for relativity, parti-
cularly with metric applications in mind. The other three are general algebraic
systems but possess relativity packages. Further details and references may be found
in [3] and [26]. In the next section we shall consider examples of relativity applica-
tions of three of the big four, together with the systems LAM, ALAM and CLAM
which although they have been substantially used are largely now of historic interest.

2.5. Some relativistic applications

2.5.1. LAM, ALAM, CLAM

Descriptions of these systems may be found in [27, 28]. They are now essentially
obsolete, having been superseded by the system SHEEP. However, among the
applications which they have been used for we mention the following:

(i) Well over 100 metrics have been processed by them. Included in these is the
classification of the 40 vacuum solutions due to B. Harrison [29] (in fact 4 turned
out to be non-vacuum [30].) Many of these metrics are exceedingly complicated
and it has been estimated that if the calculations had been carried out by hand
it would represent more than a life-time’s work.

(ii) The systems had limited capabilities for calculating frame components of cer-
tain quantities. These were helpful, for example, in finding the principal density
and pressures of a given energy-momentum tensor.

(iii) These were the first systems to process a program for determining the Petrov
type of a metric [30]. This is clearly an algorithmic calculation since it essentially
involves classifying the roots of a quartic equation.

(iv) The system could perform functional differentiation. This facility was used for
variational calculus investigations. In particular, the Noether identity for
Bondi’s metric was investigated with this tool and it eventually led to a new
formalism [31, 32] which was a precursor to the 2 + 2 formalism reported earlier
in this review.

(v) ALAM had some very sophisticated capabilities for handling truncated power
series expansions. They were used, in particular, for obtaining a power series
expansion of the vacuum Bondi solution in inverse powers of the luminosity
distance parameter (which was taken to the eighth order compared to the second
order previously obtained by hand), and producing an independent derivation
of the Bondi massloss result by an asymptotic investigation of the Landau—
Lifschitz pseudotensor.
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(vi) At GR7 in a review of exact solutions, W. Kinnersley reported that there were
no known twisting type N or twisting type III vacuum solutions. CLAM was
used to check the resulting discoveries of I. Hauser [33] for twisting type N,
and I. Robinson [34] and A.’ Held [35] for twisting type III. This investigation
led to the new technique of functional form invariance which may be of use,
among other things, for obtaining killing solutions [36, 37].

2.5.2. SHEEP

A description of this system is given in [38], and an illustration of the power and
versatility of the interactivity of SHEEP may be found in [39]. There are now about
ten institutions which have access to SHEEP, and there are consequently a signifi-
cant number of applications of the system. Of those known to the author we mention
the following:

There is a coordinate component version and a frame component version of
SHEEP. The frames may be chosen to be null, quasi—null or Lorentzian in parti-
cular.

There is a growing library of most of the well known solutions (in both coordinate
and frame component form).
There is a Petrov classification package and an Einstein—Maxwell package.
SHEEP possesses truncated power series facilities. They have been used by
J. Aman [40] to check and extend the work of J. Synge and P. Florides on ro—
tating bodies in General Relativity [41].
It is relatively easy to write programs in SHEEP to compute new tensors. One
application has involved calculating the differential invariant Rwea;,R""‘-’°5’
for black hole solutions which has led to a prescription for avoiding black holes
[42].
Perhaps the most exciting recent development relates to the local equivalence
problem in General Relativity, that is the problem of deciding whether or
not, given two metrics g,“ and {7 1m there exists a coordinate transformation
which transforms one metric into the other. Following on the original work of
C. Brans [43], A. Karlhede has now developed an algorithm which makescom—
puter calculation a viable proposition [44]. The algorithm involves calculating
at most the seventh covariant derivative of the Riemann tensor for type D or N
metrics and the fifth covariant derivative for types I, II or III. However this
degree is reduced if the metric possesses an isometry group or if there are
functional relationships between the components of the Riemann tensor in a
particular frame. The algorithm has been implemented in SHEEP by J. Aman
[45]. It turns out in practise that only the first covariant derivative has been
required for those solutions investigated so far (see (4) (iii) below in this connec—
tion). As an example of a new result obtained with this program, they have
found that the Harrison solutions III — 9(a) and III ~ 9(b), which were pre—
viously considered distinct, are in fact the same [45]. This suggests that there.
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may be slight defficiencies in W. Kinnersley’s classification scheme for type D
solutions [46]. The ultimate objective of this work is to compile a library of
all known solutions on computer file. Moreover, these solutions would be fully
classified. Then any ‘newly’ discovered solution could be checked for originality
by the equivalence program, and the library updated accordingly. This would
then hopefully avoid duplicate discoveries, as well as providing an easily acces-
sible catalogue of exact solutions.
Finally we mention the very sophisticated system STENSR of L. Hornfeldt
[47]. This was originally implemented in SHEEP but has also recently been
implemented in MACSYMA as well. STENSR is a tool for carrying out tensor or
spinor calculus with symbolic indices. It can cope with covariant differentiation,
complicated symmetries, contractions, and complex conjugation among other
things. It can also exploit side relationships, such as sin2 + cos2 2 1, in a
fairly optimal way. This turns out to be crucial in certain calculations resulting
in the collapse of enormous expressions to a manageable size. In addition the
system possesses a ‘tensor compiler’ which enables one to define new tensorial
or spinorial quantities in terms of existing ones using formulae very similar
in character to hand written formulae. The program can then automatically
calculate the components of these quantities for a particular solution, thus
avoiding the need to write a particular program in SHEEP (or LISP) to ac-
complish this task. STENSR has a growing number of applications in classical
relativity, quantum gravity and supergravity [47, 48].

2.5.3. MACSYMA

A description of this system may be found in [49], and some of its applications in
General Relativity are discussed in [50]. In particular we mention: —

(i)

(ii)

MACSYMA has been used to investigate the viability of gravity theories alter-
native to General Relativity [50]. In particular R. Pavelle found that Yang’s
theory (with ‘pure space’ equations Rm, — RI”? = 0) admits a static spheri-
cally symmetric solution additional to that of Schwarzschild. He then demon-
strated that this property violates Birkhoff’s theorem. (In fact MACSYMA
was used to clarify the status of Birkhoff’s theorem foranon-vacuum solution
showing that The energy—momentum tensor must be diagonalisable and static).
Similar problems were found with Brains-Dining theory and Yilxnuz theory.
In addition Pavelle has found that the theory of Manson ll‘l and Chang is definitely
inequivalent to General Relativity.

MACSYMA possesses a package culled ITENSR for performing indicial tensor
manipulation. The ability of this package to carry out {ovarian}. differentiation
led to the discovery of a new a gorithm for performing multiple covariant
t’liffercntialion [51]. This package {together with STENSH‘} has also been used
to investigate the Riemann invariant densities [48]

K(m) = V;alum---MRI:m-'--Il2m-2Rllzm-r"#2m
V1V2"'Vm ”figmvzm-z V2m—1“"2m '
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In particular

K(2) : R2 — 412”” + RWRW
was confirmed as satisfying the Gauss-Bonnet theorem in four dimensions
(which has importance in both quantum gravity and supergravity). In addition
K(3), K(4) and K(5) have been computed explicitly. If fully expanded by hand
K(5) would involve 3.6 million terms and would take an estimated five man
years to complete. After simplification it reduces to 93 quintic terms and takes
about 6 hours to compute by machine.

2.5.4. CAMAL

There is a manual describing some of the system’s capabilities [52], and a relativity
package which has been developed for CAMAL [53]. We mention the particular appli—
cations: —

(i)

(ii)

(iii)

2.6.

CAMAL was used by J. Fitch to check many of the calculations originally
carried out by ALAM and CLAM, including the classification of the Harrison
metrics and the expansion of the Bondi vacuum solution [54]. Included among
the exact solutions investigated by CAMAL is the Sato-Tomimatsu solution
which was identified as a type I naked singularity [55]. In addition some inh0«
mogeneous cosmological models due to P. Szekeres have been classified [56].
These have been extended to obtain a new class of inhomogeneous and aniso—
tropic cosmologies with perfect fluid matter content [57]. It has also been used
to identify some new type D solutions with perfect fluid sources [58].
J. Wainwright and S. Campbell were the first to implement the Newman—
Penrose formalism on a computer [59]. In particular it turns out to be more
efficient to process certain metrics by starting from a null tetrad.
M. MacCallum has also embarked on a similar project to that previously
reported concerning the equivalence problem. He hopes to use CAMAL to set
up a library of all known solutions [60]. The recently published volume of
exact solutions Will provide an excellent starting point for this venture [61].
Moreover, MacCallum intends to exploit an algorithm for the equivalence pro—
blem due to S. Siklos [62], Where it is believed that, in all cases, it may only be
necessary to compute the first covariant derivative of the Riemann tensor
(or its equivalent). If this turns out to be the case then it should significantly
improve the chances of a successful outcome for this important project.

Advantages and disadvantages

There would appear to be three different ways in which algebra systems can be
employed. First of all they can be used as a desk calculator for spontaneous help
in solving day-to—day problems. (In fact a desk calculator algebra system already
exists and it may not be too fanciful to anticipate the future existence of pocket
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algebra calculators). Next, they are clearly of great help in solving straightforward
(that is algorithmic or semi-algorithmic) but very tedious problems. Finally they
make certain calculations possible which would otherwise be considered intractable

because the time taken to complete them by hand would be prohibitive. We have

already pointed out that the whole area of perturbational analysis will profit from

the existence of these systems. Perhaps the other point to emphasise is that the re-

sults obtained from a computer calculation are much more likely to be error free.

There may be some difficulty in accepting this fact by those who are unfamiliar with
the internal workings of these systems. However a sufficiently large number of com-

plicated calculations have been carried by systems designed in such completely

different manners and yet all giving identical results, that they should command as
much faith as is given to numerically-based computer calculations.

The experience of the author is that the best vehicle for algebraic computing con-

sists of an efficient system which is interactive. In most applications, for example,

substitutions play an important role and it is rarely clear beforehand exactly what

these substitutions should be. In such a case man—machine interaction would seem

to be the best expedient (see [39] in this connection). Finally we mention the fact

that it has happened on more than one occasion that a very complicated calculation,

perhaps involving thousands of intermediate terms, has ended up producing a

very simple result. This then suggests that there may be some underlying structure,

and a closer investigation of the problem has then led to a means of reproducing the

result which is independent of any intermediate computation. This is particularly

significant when one takes into account the fact that the problems may not have

otherwise been tackled because of the apparent complexity of the calculations in-
volved.

The biggest current drawback with algebra systems is that they are all more or

less machine-dependent. For example, SHEEP only operates on a DEC PDP 10

computer (although there are plans to write a version in canonical LISP which would

make it available on vmisiderably more machines). This machine-dugiendcm-e is less

of a problem in the: [7.3. Where most of the big computers are linkml mgeilier thrnuglx

a iiaaional network enabling users in one installation access. to (.‘(,Jlil}.)lli€l'f:4 in other

installations. One answer to this drawback then would be the introduction of more

and bigger networks. Other systems, such as MACSYMA, are not for general

distribution and so again cannot be accessed by most users. Another limitation lies

in the fact that many of the systems are not interactive. It is also probably true to

say that although system documentation is improving, it still is generally rather poor

and this tends to deter potential users. As we have already pointed out, self-instruc—

tional packages would help in the initial stages. This should then be allied to some

form of system documentation available on file which could be looked up for help

during a computing session.
Despite these defficiencies one can nonetheless point to a fairly impressive list

of succesful algebraic computations. As there must be something approaching a

hundred users in existence, there is likely to be a substantial increase in these applica-

tions in coming years. Their impact may not be quite so easy to detect because the
published literature does not always refer to the réle an algebra system may have
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played in the work reported. The message to relativists would therefore seem to be
to use Whatever systems are locally available. It is only through increased usage
that greater effort is likely to be expended in improving the existing systems. It is
surely only a question of time before algebra systems become a commonplace tool for
all those engaged in scientific research.

References

[1] Sources of Gravitational Radiation, ed. L. Smarr, Cambridge (1980).
[2] T. Piran, “Numerical Relativity”, in: Recent Developments in General Relativity, ed.

R. Ruffini (to appear).
[3] R. A. d’Inverno, “A Review of Algebraic Computing in General Relativity”, in: General

Relativity and Gravitation, volume 1, ed. A. Held, Plenum (1980).
[4] T. Piran, J. Comp. Phys. 35, 254 (1980).
[5] J. M. Centrella, “Interacting Gravitational Shocks in Vacuum Plane-symmetric Cosmolo-

gies”, in preparation 1979.
[6] J. M. Centrella, “Interacting Gravitational and Matter Shocks in Plane-symmetric Cos-

mologies”, in preparation 1979.
[7] A. M. Anile, J. C. Miller and S. Motta, “Numerical Calculation of Formation and Damping

of Fully Relativistic Strong Shocks”. GR9 Abstracts, Volume 1 (1980).
[8] R. A. d’Inverno and J. Stachel, J. math. Phys. 19, 2447 (1978).
[9] R. A. d’Inverno and J. Smallwood, “On a Covariant 2 + 2 Formulation of the Initial

Value Problem in General Relativity”. Phys. Rev. D (to appear).
[10] H. Miiller zum Hagen and H. J. Seiffert, GRG S, 259 (1977).
[11] Private communication.
[12] G. V. Bicknell and R. N. Henriksen, Astrophys. J. 232, 670 (1979).
[13] H. Friedrich, Ph. D. thesis, Hamburg University 1979.
[14] H. Friedrich, “On the Regular and Asymptotic Characteristic Initial Value Problem in

General Relativity”, GR 9 Abstracts, volume 1 (1980).
[15] Cheuk—Yin W'ong, J. math. Phys. 12, 70 (1971).
[16] P. A. Collins and R. M. Williams, Phys. Rev. D 5, 1908 (1972).
[17] P. A. Collins and R. M. Williams, Phys. Rev. D 7, 965 (1973); 10, 3537 (1974).
[18] R. M. Williams and G. F. R. Ellis, “Regge Calculus and Observations”, GR9 Abstracts,

volume 1, (1980).
[19] J. E. Sammet, Commun. ACM. 9, 555 (1966).
[20] A. C. Hearn, Commun. ACM. 14, 511 (1971).
[21] D. C. Richardson, Ph. D. thesis, Bristol University 1966.
[22] R. H. Risch, Bull. Am. Math. Soc. 76, 605 (1970).
[23] A. Krasir'iski and M. Perkowski, “ORTOCARTAN — A Computer Program for Calcu—

lating Curvature Tensors”, GR9 Abstracts volume 1 (1980).
[24] D. W. Ebner, “GOEDEL i A Computer Language for Symbolic-Algebraic Calculations”,

GR9 Abstracts, volume 1 (1980).
[25] S. V. Tarasevich, “GRATOS ~ A FORTRAN—based System for General Relativity

Symbolic Manipulations”, GR 9 Abstracts, volume 1, (1980).
[26] H. I. Cohen, O. Leringe and Y. Sundblad, Gen. Rel. Grav. 7, 269 (1976).
[27] R. A. d’Inverno, Comput. J. 12, 124 (1969).
[28] R. A. d’Inverno, and R. A. Russell-Clark, Comput. J. 17, 229 (1971).
[29] B. K. Harrison, Phys. Rev. 116, 1285 (1959).
[30] R. A. d’Inverno and R. A. RusselLClark, J. math. Phys. 12, 1258 (1971).
[31] R. A. d’Inverno, J. math. Phys. 16, 670 (1975).
[32] R. A. d’Inverno, J. math. Phys. 16, 674 (1975).



Computer Methods in General Relativity 113

[33] I. Hans-er. Phys. Rev. Letters 33, 1112- (1974).
[34] 1. Robinson. Gen. Rel. ‘lrav. b'. 4'23 (1974).
[35] A. Held. Lett. Nuovo Cimento 11, 545 (1974).
[36] R. A. d'Inverno and J. Smallwood, Gen. Rel. Grav. 9, 195 (1978).
i371 R. A. d’lnverno and J. Smallwood. Gen. Rel. Grav. 9, 215 (1978).
[38] l. Eric-lg. "The Computer Algebra System SHEEP. What it can and cannot do in General

Hijelstiivity". Stockholm University. Sweden 1977.
[39] R. A. d’Inverno and I. Frick, “Interacting with SHEEP”, Gen. Rel. Grav. (to appear).
[40] Private communication.
[41] P. S. Florides, in “General Relativity: Papers in Honour of J. L. Synge”, Oxford, 167

(1977).
[42] A. Karlhede, U. Lindstrom, J. A. Aman, “How to avoid Black Holes”. Stockholm Uni-

versity, Sweden 1980.
[43] C. H., Brans, J. math. Phys. 6, 94 (1965).
[44] A. Karlhede, “On a Coordinate Invariant Description of Riemannian Manifolds” (sub-

mitted to Gen. Rel. Grav.)
[45] A. Karlhede and J. Aman, “Classifying Geometries in General Relativity”, GR9 Abstracts,

volume 1, (1980).
[46] W. Kinnersley, J. math. Phys. 10, 1195 (1965).
[47] L. Hornfeldt, “Indicial Tensor and Spinor Calculus with Computer”, GR9 Abstracts,

volume 1, (1980).
[48] L. Hornfeldt and R. Pavelle, “Gauss-Bonnet Invariants and Indicial Tensor Manipula-

tion on MACSYMA”, GR9 Abstracts, volume 1, (1980).
i491 MACSYILA Referenci- Manual. Laboratory for Computer Science, M. I. T.

150] R. PEVEllE'. "Applications of MAC-SYRIA to problems in Gravitation and Differential

Geometry". Proceedings of 1979 MACSYRLA Users Conference, Washington.

" R. Pavelle. Gen. Rel. Urnx‘. 7. 383 (1976).
P. Fitch. CAMAL User‘s Manual. Computer Laboratory. University of Cambridge 1975.

“'ainwright. "CAMAL Programs for GET: A Users Guide”, University of Waterloo,

anada 1977.
P. Fitch. Pli. D, thesis. Cambridge University 1971.

. W. Gibbons and R. A. Russell—Clark. Phys. Rev. Letters 30, 398 (1973).
Vl'ainm‘iglit. J. math. Phys. 15. 672 (2977).

[1:
L21 .1.
[:3] J.

C

5
5
5

‘1
Ga

C_!

T.

D. A. Seafron and J. Wainwright, J. math. Phys. 18, 1668 (1977).
I. \Vainwright, Gen. Rel. Grav. 35. 799 [1977).

_ S. J. Campbell and J. Wainwright. Gen. Rel. Grav. 8, 987 (1977).

[60] Private communication.
[61] D. Kramer, H. Stephani. 31.}isc0iillum. E. Her-11.: Exam. Solutions of Einstein’s Field

Equations. VEB Dent-sober Verlag der Wiseenschnften Berlin, 1980.

[62] S. T. C. Siklos. "The Equivalence Problem in Geneml Relativity”. Queen Mary College

Preprint, (1980).

(
J

Address: Prof. Dr. R. A. d’Inverno
Fae. Math. Studies
Univ. of Southampton
Southampton 809 5NH
England

8 Proceedings GB!)





The Initial Value Problem
and the Dynamics of Gravitational Fields‘)
J. E. Marsden (Berkeley)

This lecture will survey some of the recent advances that have been made in the dyna-
mics of general relativity and other classical relativistic field theories. In addition, we
shall indicate a few open problems that appear to be of basic interest.

1. Existence and Uniqueness Theorems for Geometrodynamics

The basic existence and uniqueness theorem states that Cauchy data on a spacelike
hypersurface determines uniquely (up to spacetime diffeomorphisms) a piece of
spacetime (filled with Whatever matter or other fields are under consideration)
containing the hypersurface. Moreover, it makes sense to look at the maximal devel-
opment of such Cauchy data, just as it makes sense to look at maximal integral
curves of ordinary differential equations.

The rigorous theory developing results of this type begins with Choquet—Bruhat
[1948], [1952]. The subject as it existed up until about 1972 is adequately presented
in Hawking and Ellis [1973]. Some of the key developments since then are as follows,
in more or less chronological order:

(a) Fischer and Marsden [1972a] show how to write the evolution equations as a
first-order symmetric hyperbolic system.

(b) Miiller-zum-Hagen and Seifert [1977] study the characteristic initial value
problem.

(0) Hughes, Kato and Marsden [1977] prove a conjecture of Hawking and Ellis,
showing that the equations are well posed, with the metric in HS, 8 > 2.5.-
(See also Fischer and Marsden [1979 a].)

(d) For asymptotically flat spacetimes, Choquet-Bruhat and Christodoulou [1980]
and Christodoulou [1980] prove well—posedness in the weighted Sobolev spaces
of Nirenberg-Walker and Cantor (“SNWC spaces”; see Cantor [1979]). The
crucial point here is to allow Hilbert spaces (cf. McOwen [1979]).

(e) Christodoulou and O’Murchadha [1980] solve the boost problem in SNWC
spaces; i.e. they show that the piece of spacetime generated by the initial data
is large enough at spatial infinity to include boosts. The methods may allow also
for capturing a piece of .Q.

1) Research partially supported by the National Science Foundation.
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Some open problems for 1.

(i) Gauge Problem: Current existence theory is based on the harmonic gauge of
Choquet-Bruhat. Is there a direct proof valid in any gauge?

(ii) Global Problem: Find a gauge (such as the constant mean curvature gauge,
i.e. x—gauge) in which global existence holds. Recent work of Christodoulou,
Eardley and Moncrief on Yang-Mills fields and Maxwell Klein—Gordon fields
gives one hope that the gravitational problem may be solvable. (See Segal [1979],
Moncrief [1980a, b, c] and Eardley and Moncrief [1980]). For globally hyper—
bolic spacetimes with a compact Cauchy surface (cosmological case) global
existence in a constant mean curvature gauge implies that the evolution in that
gauge captures the entire spacetime; see below and Marsden and Tipler [1980].
For non-compact Cauchy surfaces, this need not be true; see Eardley and Smarr
[1979].

(iii) Boundaries and Gravitational Shocks. Try to lower 8 even below 2.5 in the Cauchy
problem to allow for jump discontinuities in the second derivatives of the metric
(s : 2.5 is the crucial value, below which jumps are allowed). This would allow
gravitational shocks. The solutions are presumably non-unique if s < 2.5 and
the physically correct ones are picked out by some kind of entropy condition, as
one does in gas dynamics. Can recent advances in geometric optics and Fourier
integral operators (Guillemin and Sternberg [1977]) be used in the study of
gravitational waves and shocks?

2. Hamiltonian Structures

The Hamiltonian formalism in general relativity goes back to Choquet-Bruhat,
Dirac, Bergmann and Arnowitt-Deser and Misner. This formalism (referred to com-
monly as the ADM formalism) is found in, for example, Misner, Thorne and Wheeler
[1973].

This formalism can be exhibited as follows (Fischer—Marsden [1976, 1979]). Let a
slicing of spacetime (V, (4)9) be given, based on a 3-manifold M. This slicing determines
a curve 9(1) of Riemannian metrics on M and a curve of symmetric tensor densities
71(1) (the conjugate momentum). Let the slicing have a lapse function N and a shift
vector field X. Einstein’s vacuum equations Ein ((4)9) : 0 (the Einstein tensor formed
from (4)9) are then equivalent to the evolution equations in adjoint form

i(1):.U<)D¢(gl,rz)"‘(£); J=( 0 I)
81 7: N —I 0

together with the constraints

@(g, 7:) = 0

where (15(9, 7:) : (.9?(g, In), 1(9, 71)) is the super energy—momentum.
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The choice of slicing is a gauge choice, and one may wish to determine it along with
the dynamics. In particular, the constant mean curvature gauge is especially inter-
esting, as we have already noted. As was indicated in Professor Wheeler’s lecture and
in Qadir and Wheeler [1980], this gauge has the property that its spacelike hyper-
surfaces tend to avoid singularities. If one can show that the mean curvature 24 runs
from —oo to co and M is compact (closed universes) then the foliation fills out the
whole Cauchy development and in fact this development is a “Wheeler universe”
(see Tipler and Marsden [1980]).

Some other developments of interest in the Hamiltonian formalism are:

(a)

(b)

(d)

The Hamiltonian and symplectic structures are investigated directly from the
four dimensional point of view in Kijowski and Szczyrba [1976], and Kijowski
and Tulczyjew [1979].

There has been development of the idea that the constraint Q5 = 0 is the same aS/
the vanishing of the Noether current generated by the gauge group of relativity
i. e. all diffeomorphisms of V (equalling the identity at infinity for open uni-
verses); for relativity, see Fischer and Marsden [1972b], for gauge theories, see
Cordero and Teitelboim [1976], Moncrief [1977] and Arms [1978].

The Poincaré group at infinity or the BMS group have Noether currents of
interest as well, (although we do not set them zero) such as the ADM energy-
momentum tensor or the BMS energy-momentum tensor; see Regge-Teitelboim
[1974] and Ashtekar and Streuble [1980].

How x-slicings fit together with the BMS group and gravitational radiation has
been investigated by Stumbles [1980]. (For related information on x-slicings,
see Choquet-Bruhat, Fischer and Marsden [1979], Eardley and Smarr [1979],
Marsden and Tipler [1980] and Treibergs [1980] and references therein).

(e) Teitelboim [1977] and Pilati [1978] have investigated the geometrodynamics
of supergravity. Bao [1981] has put it onto the adjoint form above.

Some open problems for 2.

(i)

(ii)

(iii)

Find sufficient conditions on a relativistic field theory with a given gauge group
to ensure that the constraints in a Dirac analysis will be the zero level of the cor-

responding Noether current. (This is true for all the examples mentioned above).

How is the classical Noether constraint “color charge = 0” for Yang-Mills
fields on Minkowski space related to quark confinement? (See Arms, Marsden
and Moncrief [1980] for some discussion).

Is it true that the long time dynamics for a typical relativistic field theory is
chaotic? Is the Kolmogorov-Arnold-Moser theory relevant? (Recently, Barrow
has embarked on a very enlightening investigation of Misner’s mixmaster model
from the point of view of chaotic dynamical systems).
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3. Spaces of Solutions and Linearization Stability

Let V be a fixed four manifold and let6 be the set of all globally hyperbolic Lorentz
metrics g : “’9 that satisfy the vacuum Einstein equations Em (g) : 0 on V (plus
some additional technical smoothness conditions). Let go 6 6 be a given solution. We
ask: what is the structure of 6’ in the neighborhood of go?

There are two basic reasons why this question is asked. First of all, it is relevant
to the problem of finding solutions to the Einstein equations in the form of a per-
turbation series:

I3

where 7. is a small parameter. If g(/'.) is to solve Ein (9(2)) : 0 identically in 2. then
clearly 7L1 must satisfy the linearized E ins-rein equations:

DEin(g)'h1 : 0

Where D Em (g) is the derivative of the mapping g i—> Ein (9). For such a perturbation
series to be possible, is it sufficient that kl satisfy the linearized Einstein equations,
i.e. is h1 necessarily a direction of linearized stability? We shall see that in general
the answer is no, unless drastic additional conditions hold. The second reason Why the
structure of 6 is of interest is in the problem of quantization of the Einstein equations.
\Vhether one quantizes by means of direct phase space techniques (due to Dirac,
Segal, Souriau and Kostant in various forms) or by Feynman path integrals, there
will be difficulties near places where the space of classical solutions is such that the
linearized theory is not a good approximation to the nonlinear theory.

The dynamical formulation mentioned in § 2 is crucial to the analysis of this
problem. Indeed, the essence of the problem reduces to the study of structure of the
space of solutions of the constraint equations @(g, n) : 0. I

As we shall see, the answer to these questions is this: 6 has a conical or quadratic
singularity at go if and only if there is a nontrivial Killing field for 90 that belongs to
the gauge group generating (15 : 0 (thus, the flat metric on T3 X R has such Killing
fields, but the Minkowski metric has none.) When 6‘ has such a singularity, we speak
of a bifurcation in the space of solutions.

(a) Brill and Deser [1973] considered perturbations of the flat metric on T3 X R and
discovered the first example of trouble in perturbation theory. They found, by
going to a second order perturbation analysis, that they had to readjust the first
order perturbations in order to avoid inconsistencies at second order. This was
the first hint of a conical structure for 6 near solutions with symmetry.

(b) Fischer and Marsden [1973] found general sufficient conditions for 6 to be a
manifold in terms of the Cauchy data for vacuum spacetimes.

(c) Choquet-Bruhat and Deser [1973] proved a version of the theorem that 6 is a
manifold near Minkowski space, which was later improved by Choquet-Bruhat,
Fischer and Marsden [1979].
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(d) Moncrief [1975a] showed that the sufficient conditions derived by Fischer and
Marsden for the compact case Where equivalent to the requirement that (V, go)
have no Killing fields. This then led to the link between symmetries and bi-
furcations.

(e) Moncrief [1975b] discovered the general splitting of gravitational perturbations
generalizing Deser’s [1967] decomposition. The further generalization to momen-
tum maps (general Noether currents) was found by Arms, Fischer and Marsden
[1975]. This then applies to other examples such as gauge theory and also gives
York’s decomposition (York [1974]) as special cases.

(1) D’Eath [1976] obtained the basic linearization stability results for Robertson—
Walker universes.

(g) Moncrief [1976] discovered the spacetime significance of the second order condi-
tions that arise when one has a Killing field and identified them with conserved
quantities of Taub [1970]. Arms and Marsden [1979] showed that the second order
conditions for compact spacelike hypersurfaces are nontrivial conditions.

(h) The description of the conical singularity in 6" near a spacetime with symmetries
is due to Fischer, Marsden and Moncrief [1980] for one Killing field and to Arms,
Fischer, Marsden and Moncrief [1981] in the general case.

(i) Moncrief [1977], Coll [1975] and Arms [1977, 1979] obtained the basic results for
pure gauge theories and electromagnetism and gauge theories coupled to gravity.

(j) An abstract theory valid for arbitrary momentum maps was developed by Arms,
Marsden and Moncrief [1980].

(k) Moncrief [1978] investigated the quantum analogues of linearization stabilities.
Using T3 X R, he shows that, unless such conditions are imposed, the correspond-
ence principle is violated.

For vacuum gravity, let us state one of the main results in the cosmological case:
suppose g0 has a co’mqoact spacelike hypersurface M CV. (Actually we require the
existence of at least one of constant mean curvature for technical reasons). Let Sgu
be the Lie group of isometries of go and let k be its dimension.

Theorem.

1. k = 0, then 6 is a smooth manifold in a neighborhood of go with tangent space at
ya given by the solutions of the linearized Einstein equations.

2. If k > 0 then 6” is not a smooth manifold at go. A solution h1 of the linearized equa-
tions is tangent to a curve in 6" if and only if hl is such that Taub conserved quanti-
ties vanish; i.e. for every Killing field X for go,

f X - [D2 Ein (go) - (hi, ho] - z dMM = 0
M

where Z is the unit normal to the hypersurface M and “.” denotes contraction
with respect to the metric g0.
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All explicitly known solutions possess symmetries, so while 1. is “generic”, 2. is
what occurs in examples. This theorem gives a complete answer to the perturbation
question: a perturbation series is possible if and only if all the Taub quantities vanish.

Let us give a brief abstract indication of why such second order conditions should
come in. Suppose X and Y are Banach spaces and F: X —>Y is a smooth map. Sup-
pose F(X0) : 0 and 2:0.) is a curve with 22(0) : 11:0 and F(x(A)) E 0. Let h1 : x'(0)
so by the chain rule DF(x0) - h1 : 0. Now suppose DF(x0) is not surjective and in
fact suppose there is a linear functional l E Y* orthogonal to its range: (i, DF(:1:0) - u)
: 0 for all u E X. By differentiating F(z(l)) = 0 twice at i. : 0, we get

D2F(x0) - (h1, h) + DF(x0) - x”(0) = 0.

Applying [ gives

<1, Dam) - (kl, h» = 0
which are necessary second order conditions that must be satisfied by hl.

It is by this general method that one arrives at the Taub conditions. The issue
of whether or not these conditions are sufficient is much deeper requiring extensive
analysis and bifurcation theory (for k = 1 the Morse lemma is used, while for k > 1
the Kuranishi deformation theory is needed see Kuranishi [1965], Atiyah, Hitchin and
Singer [1978] and § 4 below).

Some open problems for 3.

(i) Is the above phenomenon a peculiarity about vacuum gravity or is there an
abstract theorem applicable to a broad class of relativistic field theories? The
examples which have been and are being worked out suggest that the latter is the
case. Good examples are the Yang-Mills equations for gauge theory (Moncrief
[1977], Arms [1979]) the Einstein-Dirac equations (cf. Nelson and Teitelboim
[1978]), the Einstein—Euler equations (Bao and Marsden [1981]) and super—
gravity (Pilati [1978], Bao [1981]). In each of these examples there is a gauge
group playing the role of the diffeomorphism group of spacetime for vacuum
gravity. This gauge group acts on the fields; when it fixes a field, it is a symmetry
for that field. The relationship between symmetries of a field and singularities
in the space of solutions of the classical equations is then as it is for vacuum
gravity.
For this program to carry through, one first writes the four dimensional equa—
tions as Hamiltonian evolution equations plus constraint equations by means
of the 3 + 1 procedures of Dirac. The constraint equations then must

1. be the Noether conserved quantities for the gauge group and 2. satisfy some
technical ellipticity conditions: (D¢)* must be an elliptic operator. As is already
been mentioned, for 1, it may be necessary to shrink the gauge group somewhat,
especially for spacetimes that are not spatially compact. For example the iso—
metries of Minkowski space do not belong to the gauge group generating the
constraints but rather they generate the total energy-momentum vector of the
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spacetime that this vector is time-like is the now famous positive energy
problem see Brill and Deser [1978], Choquet/Bruhat, Fischer and Marsden
[1979], Deser and Teitelboim [1976] and Schoen and Yau [1979, 1980].

(ii) In the space of solutions, the kernel of the symplectic form coincides with the
infinitesimal gauge transformations (this follows from Moncrief’s decomposi-
tion). Therefore, one can construct the space of true degrees of freedom, the
quotient of (f by the gauge group. Using Marsden-Weinstein [1974], one proves
that this quotient is a smooth symplectic manifold near points Where 6’ is smooth.
This leaves open the question: what is 6/(gauge group) like near points of sym-
metry, where 6" is singular?

(iii) How should one treat the Schwarzschild solution in the context of linearization
stability? Do singularities in the space of solutions affect spacetime singulari-
ties in the sense of Hawking and Penrose? Do they affect Cauchy horizons?

4. Bifurcations of Momentum Maps

The role of the constraint equations as the zero set of the Noether conserved quantity

of the gauge group leads one to investigate zero sets of the conserved quantities asso-

ciated with symmetry groups rather generally. One goal is to begin answering ques—

tion (i) in the previous section. This topic is of interest not only in relativistic field

theories, but in classical mechanics too. For example the set of points in the phase

space for 7» particles in ]R3 corresponding to zero total angular momentum is an inter-

esting and complicated set, even for n = 2!
We shall present just a hint of the relationship between singularities and symme-

tries. The full story is a long one; one finally ends up with an answer similar to that
in vacuum relativity. We refer to Arms, Marsden and Moncrief [1980] for additional

details.
First we need a bit of notation (see Abraham and Marsden [1978], Chapter 4). Let

M be a manifold and let a Lie group G act on M. Associated to each element 6 in the

Lie algebra @ of G, we have a vector field {PM naturally induced on M. We shall denote
the action by (15 : G x M —> M and we shall write Q59 :M ——> M for the transformation

of M associated with the group element 9 E G. This §M(a:) = EC:— diexp(t5,(x)ll=o.

Now let (P, to) be a symplectic manifold, so a) is a closed (weakly) non-degenerate

two-form on P and let G5 be an action of a Lie group G on P. Assume the action is
symplectic: i.e. (15:0) = a) for all g E G. A momentum mapping is a smooth mapping

J: P —> (3* such that

(dJ(x) ' 7):, E> : (D(Ep(x), ’01.)

for all E E (13, 1),, E TIP where dJ(x) is the derivative of J at x, regarded as a linear
map of TIP to (6* and (,) is the natural pairing between (S and (5*.
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A momentum map is Adik—equz'tvan‘ant when the following diagram commutes for
each 9 E G:

* 1*65 —’Ad;_1 e

where AdZLI denotes the co-adjoint action of G on 65*. If J is Ad* equivariant, we
call (1’, w, G, J) a Hamiltonian (Jr—space.

Momentum maps represent the (Noether) conserved quantities associated with
symmetry groups acting on phase space. This topic is of course a very old one, but
it is only with more recent work of Souriau and Kostant that a deeper understanding
has been achieved.

See Fischer and Marsden [1979] for the sense in which the map (15 described in §2
is the momentum map associated with the group of diffeomorphisms of spacetime.
See Moncrief [1977] and Arms [1979] for the corresponding result for gauge theory.

Let SI0 : (the component of the identity of) {g E G l gafo : To}, called the symme—
try group of .750. Its Lie algebra is denoted .41, so

: {s e c l 5pm.) : 0}.0

Let (P, a), G, J) be a Hamiltonian G—space. If :ro E P, #0 : J(:r0) and if

dJ(;l:0) :TxP a 65*

is surjective (with split kernel), then locally J'1(Iu0) is a manifold and {J*1(,u) l y 6 @*}
forms a regular local foliation of a neighbourhood of $0. Thus, when dJ(xO) fails to be
surjective, the set of solutions of J(ac) : 0 could fail to be a manifold.

Theorem. dJ(x0) is surjective if and only if dim SIo : 0; i.e. .sfo = {0}.

Proof. dJ(x0) fails to be surjective if there is a 5 $ 0 such that <:dJ(x0) ~ CID, E) : 0
for all 010 E T101). From the definition of momentum map, this is equivalent to
c)Ia(EP(.t0), 1,150) : 0 for all l‘ra. Since cur0 is non—degenerate, this is, in turn equivalent
to §P(I0) : 0; i.e. .a a‘: {0}.

One then goes on to study the structure of J_1(,“0) when .170 has symmetries, by
investigating second order conditions and using methods of bifurcation theory. It
turns out that, as in relativistic field theories. J’1(,u0) has quadratic singularities
characterized by the vanishing of second order conditions. The connection is not an
accident since the structure of the space of solutions of a relativistic field theory is
determined by the vanishing of the momentum map associated With the gauge
group of that theory.
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Some open problems for 4.

(i) All the results obtained so far on spaces of solutions are local. What is the global
structure? Is there a global Morsetype theory for momentum maps?

(ii) Much current work on Yang-Mills fields and the twistor program for gravity
utilize a Euclideanized viewpoint. Some routine calculations show that in such
a context the connection between symmetries and bifurcations is lost. (In parti-
cular, the symmetries discussed by Rebbi and Jackiw [1976] are not related
to Euclidean linearization instabilities.) What has become of the difficulties with
perturbation series and quantization encountered in the Lorentz context?

(iii) Bifurcation theory exploits connections between symmetry and bifurcation to
study phenomena like pattern formation. See for example, Golubitsky and
Schaeffer [1979] and Sattinger [1980]. Can one use this theory in relativity to
study physical consequences of breaking the symmetry of a solution of a rela—
tivistic field theory?
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The Present State of the Twistor Programme
R. 8. Ward (Dublin)

1. Introduction

The twistor programme contains several different aspects. To begin with, it has the
general aim of providing an alternative framework for relativistic physics, one in
which the underlying space is not space-time, but twistor space. According to this
point of view, space-time points are derived rather than primary objects, and the
possibility is opened up of formulating a theory of quantum gravity in which space-
time points are “fuzzy”, i.e. subject to quantum-mechanical uncertainties [1, 2].
The first step in this programme is that of translating standard space-time physics
into the language of twistor theory. The twistor programme is still at this “trans-
lation” stage, although the new language has already provided several indications as
to how one might modify (and perhaps improve) the conventional theory.

One of the most remarkable features that have so far appeared is the way in which
certain classical field equations become considerably simpler when translated into
the twistor picture. This simplification is closely tied up with the fact that twistor
space is a cmlex manifold, and emphasizes the importance of complex numbers and
holomorphic (i.e. complex—analytic) functions in the theory. Most of my lecture will
be concerned with this aspect of the twistor programme, but I should at least mention
two other areas of current research: elementary particle theory [3, 4], and the trans—
lation of Feynman diagrams into “twistor diagrams” [2, 4, 5].

2. Flat-space Twister Theory

Let us begin by recalling the standard construction of the twistor space correspond-
ing to Minkowski space-time M. More detailed descriptions may be found in [2, 6].

Let N denote the space of (unsealed) null geodesics in M. As a real manifold, N is
diffeomorphic to R3 X 82. A point x in M may be represented by the sphere’s worth of
null geodesics through 00 (i.e. by its null cone), so as is represented in N by a 2-sphere
S, (see fig. 1). The crucial step now is to imbed the five-real-dimensional space N
in a three-compleX-dimensional space T called (projective) twistor space. There is
a completely natural, Poincare—invariant way of doing this. One of the important
consequences of having this structure is that it identifies those spheres in N which
correspond to space-time points x. If we look for smooth spheres in N which belong
to the appropriate homology class, then there are an infinite-parameter family of
them; but only four real parameters’ worth of these are holomorphic curves (i.e. one-
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dimensional complex—analytic submanifolds) in the complex manifold T, and this
four-parameter family consists exactly of the spheres S, which correspond to space-
time points.

So, given the spaces N and T, one can “reconstruct” the space-time manifold M.
Furthermore, the conformal structure (i.e. the null cones) of M automatically come
out of the construction. For it is clear from the correspondence that

x 8: y are null-separated (a) S, 8: Sy intersect. (1)

This is perhaps the most crucial and important feature of the space—time twistor space
correspondence.

Fig. 1

Another striking consequence of the complex structure of T becomes apparent when
we transform relativistic field equations from the space-time picture into the twistor-
space picture. The simplest example is the wave equation E145 : 0. What one arrives
at is the following.

Let f be a holomorphic function on some subset of T. Let fz denote the restriction
of f to the sphere 8,; thus f: is a holomorphic function on some subset of the Riemann
sphere (extended complex plane) 8,. Let y be a closed contour in this subset; i.e. y
is a circle on S, which avoids the places where fz is not defined. Put

We) : gSyfz- (2)

Then <p(x) is a solution of the wave equation, and every real-analytic solution of the
wave equation arises in this way [2].

One may think about this result as follows. The general solution <p(x) of [hp : 0 in
four-dimensional space—time is in effect one or more free functions of three variables.
For example, initial data on a spacelike hypersurface determines a solution through-
out space-time. Similarly, the function f above is a free function of three variables,
and determines a solution via the formula (2). (Admittedly, f is a function of three
ammlex variables, but since f is holomorphic, it is correct to count these as three
rather than six.)
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Remarks

(i) We see, therefore, that the complex structure of twistor space, combined with
the geometry of the space-time/twistor space correspondence, leads to a neat
solution procedure for the wave equation. Much more remarkable is the fact
that there are analogous solution procedures for certain nonlinear equations,
as we shall see below.

(ii) The function f above is a rather awkward object to deal with, because it is not
defined everywhere on T (it has singularities, in general) and because many
different f’s will give rise to the same ¢p(:c). It turns out that f should properly be
regarded as an element of a sheaf cohomology group [4, 7].

(iii) The points of the space N correspond, of course, to null geodesics in space-time.
But what about the points of T? They too can be interpreted in space-time:
the most useful interpretation is to think of the points of T as corresponding
to certain complex 2-planes, called oc-planes, in complexified Minkowski space-
time [2, 6].

(iv) The hypersurface N divides twistor space T into two halves, T+ and T’ (see
fig. 1). The holomorphic curves in T which lie entirely in T+ correspond to the
points of the forward tube [8] in complexified space-time [2]. As a consequence
of this, the decription of fields q2(:c) which are of positive frequency, and the
decomposition of fields into positive and negative frequencies, is particularly
natural in the twistor picture.

3. Twistor solution of differential equations

When one transforms field equations from the space-time picture into the twistor-
space picture, it sometimes turns out that a drastic simplification occurs: in fact,
that the partial differential equation disappears altogether. We saw above that this
happens to the scalar wave equation in flat space-time, and several more examples
will be mentioned in this section. It seems that this phenomenon (in its simplest form)
occurs only when the differential equations are of a rather simple type: namely
when they satisfy Haygens’ Principle.

Huygens’ Principle may be stated as follows. If the field (p satisfies a hyperbolic
field equation, then its value 97(95) at some field point 95 may be expressed as a func-
tional of the initial data on Dr, the intersection of the initial-data surface S and the
causal past of the point a: (see fig. 2). If the field equation is such that go(:v) depends
only on the initial data on the boundary 8D,, of D1, then we say that Huygens’
Principle is satisfied. Qualitatively, it means that the field propagates “cleanly”
along light rays, without back-scattering.

The standard example of a “Huygens” equation is the one we encountered in the
previous section, namely the wave equation in flat space-time. The next examples
that occur to mind are the equations for massless spinning free fields, such as Max-
well’s equations. Here again one finds that the general solution of the equations in
space-time corresponds naturally to “free” holomorphic data in twistor space [2, 4, ’7].

9 Proceedings G119
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So far, all the equations mentioned have been linear. There are also nonlinear
equations which satisfy Huygens’ Principle; the best-known example is the self—
dual Yang—Mills equation, where one has a gauge field which is required to be self—
dual (or anti—self-dual). In this case, it turns out that the self-dual gauge field in
space—time corresponds to a holomorphic vector bundle over twistor space [9, 10].
Once again the partial differential equation in space-time disappears on going over
to the twistor picture; and so (as a practical bonus) the twistor translation programme
has presented us with a procedure for generating solutions of these nonlinear equa—
tions. This procedure has been successfully applied to the search for instanton
[10—13] and monopole [14] solutions.

/ S / Fig. 2

In situations where rest-mass and/or scattering is present, Huygens’ Principle
will not hold; and in such cases the twistor translation appears to be not quite so
neat. The presently-accepted way of dealing with rest—mass is to use functions of
several twistors, and this approach brings with it a new way of looking at the classi—
fication of elementary particles [3, 4]. An example of scattering is provided by the
“full” (i.e. non-self-dual) Yang-Mills equations; here also there has been progress in
understanding the twistor translation [15—17].

4. Curved space-time

Up until now we have dealt only with twistors for flat space—time, but it is essential
for the twistor programme that one should be able to translate curved space-time
into the twistor language. In general, the presence of gravitation leads to scattering
and the failure of Huygens” Principle, so in View of the remarks made in the previous
section, we must expect matters to be less simple in curved space than in flat. Another
(related) way of putting this is that there is in general no natural embedding of the
space N of null geodesics into a three—dimensional complex manifold (cf. section 2).

This problem is one of the main areas of research in twistor theory. The most
promising approach at present seems to be that of hypersurface twistors [2, 6].
The idea here is that if one selects a spacelike (or null) hypersurface S in space—time,
then N can be naturally embedded in a twistor space T(S), which depends on S. The.
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complex manifold T(S) contains, in its complex structure, information about the
gravitational field “at S”; as one moves from one hypersurface to another, the struc-
ture of S “shifts”. One interesting possibility that was recently raised is that hyper-
surface twistor theory might throw new light on the decomposition of fields into
positive and negative frequencies (cf. section 2), and hence on the definition of parti-
cles in curved space—time [18].

There is a special class of curved space-time where, in a sense, Huygens’ Principle
does hold, and for which there is a very satisfactory and useful twistor description.
These are the space-times with self-dual or anti-self—dual conformal curvature, i.e.
where the Weyl tensor Cam satisfies

1/25abcCdef = :kioabef-

Because of the factor i in this equation, the only self—dual Lorentzian space is Min-
kowski space—time. Non—trivial self-dual spaces are either complex or have a non-
Lorentzian signature (such as ++++); both possibilities are of some interest
[19, 20].

The remarkable feature of the twistor description is that Einstein’s field equations
“disappear” on translation into the twistor picture. Roughly speaking, one finds that
self-dual solutions of the equations Rab = 19“,, (for any desired value of the constant 1)
correspond to holomorphic deformations of the “flat” twistor space T of section 2,
preserving certain differential forms [21, 6, 22]. For some recent applications of
this correspondence, see [23, 24]. It is worth emphasizing that a “direct” attack
on the self-dual Einstein equations still leaves one with a nonlinear partial differential
equation to solve [19]; the twistor approach eliminates the equation altogether.

In conclusion, a good deal more progress clearly needs to be made before the twistor
programme can begin to fulfil its more ambitious aims. But enough remarkable
features have already appeared to make a search for this progress seem well worth
while.
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Black Holes, Singularities, and Topology
H.-J. Seifert (Hamburg)

A friendly warning: This is a written version ofa lecture for a larger auditory and lacks in comple-
teness and precision.

Two types of references have been preferred to “original papers” published in journals (the
authors might forgive me):
— Textbooks which are still up to date and review articles in the Einstein centenary volumes

(comprehensive and well readable introductions into the subject with quite complete biblio-
graphies),

— papers contributed to the discussion groups of the conference (to stimulate these discussions,
with the risk that the reader who did not join the conference has difficulties to get them and the
risk that some claimed results turn out to be wrong).

One might wonder why “black holes” are scarcely explicitly mentioned in this paper. Now, exact
solutions, astrophysical evidence, numerical calculations, and quantum effects had been covered
by other lectures; so it was left to me to discuss the connection between black holes and singularities.

My aim is to sketch the present state of affairs and to suggest what problems should be attacked
next. Doing so I shall not try to hide my personal biased views.

0. Introduction

The title (given by programme committee) could have been formulated more seriously,
e.g.: “Recent progress in qualitative fundamental theory of gravitational fields” or
“Global properties of space-time”. There was good reason for not doing that. The
recent progress is slow; since the last GR conference several nice papers have appeared
but nothing really exciting happened. The non-existence of some results might be
as important as the existing papers.

On the other hand, “black holes, singularities, and topology” are still thrilling
objects. You can tell even non-physicists about them (the imperfection of the theory,
the lack of details and precise theorems turn out to be Virtues for such a conversation),
and they will listen to you, because these three topics are deeply connected with a
very old problem:

The physical cosmos generally was considered being finite in space and time (the
farther you go back in occidental history, the tinier it was); the geometrical back-
ground was infinite Euclidean space. What happens beyond the border where physics
stops and geometry goes on? and: what was before physics started? All the attempts
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failed to construct physical, philosophical or theological frame works in which these
two questions are convincingly either answered or excluded.

General relativity is the first theory that brings together again the geometrical and
the physical cosmos:

A finite time can be related with singularities, a finite space can be related
with a compact topology,

and which allows to construct models for the world in which the two questions from
above turn out to be improperly posed.

Admittedly, they are still asked (compare the history of the singularity problem,
beautifully described in [3]), global relativity is still full of belief, hope and “theo-
logy”.

1. Singularities: the positive (physical) aspect.
(Singularities as dramatic events in the life of our cosmos)

1.0. Why does one expect singularities?

Gravitation is a contracting interaction (nonlinear hyperbolic field equations),
hence one expects crushes, caustics, poles of densities and similar events as one knows
from hydrodynamics. Gravitation is a universal interaction (the field is the back-
ground geometry itself), hence one does not simply have localizable irregularities
of the field on a still regular background. Instead, the Whole description by the
theory comes to an end; incompleteness rather than discontinuity is the expected
manifestation of singularities.

1.1. Does a prediction of singularities have to be taken serious?

People agree that near physically relevant singularities of a general relativistic
space-time the classical theory becomes invalid and has to be replaced by some
quantum theory. They do not agree, Whether (the still not existing) quantum gravity
would remove the singularities. But even if it would, the situation near big bang or
star collapse in the region, which has to be classically described, becomes so uncom—
fortable that — from the macroscopic view — some densities are practically infinite.
Singularities of General Relativity could indicate extreme situations of a revised theory
(it is easier to obtain criteria for infinities than for “very large” finite values).

1.2. Do singularities present a convincing picture of past origin
and of final end?

Even after having removed god as an explicitly used ingredient of cosmology there
is such a lot of belief in diverse principles left over that one could not convince all
relativists with one picture. But besides the obvious requirement: agreement With
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observations, there is at least one important demand: in view of the fact that astro-physical objects grew old and have a finite lifetime as a result of increasing entropyand dissipative processes, past and future borders of the cosmos should be relatedwith that process of aging, the picture of the collapse should explain why the historyof objects comes to an end within finite time. This is expressed in Penrose’s [5]
Time-Arrow Hypothesis (TAH):
Initially (big bang) the entropy of the geometrical/gravitational field should
be minimal and becomes infinite in final collapses (and — as a measure for
that entropy —the Weyl curvature 0“”, goes from 0 to co).

2. Singularities: the negative (mathematical) aspect.
{Singularities as breakdown of some space-time structure)

2.1. Classification (corresponding to the hierarchy of structures in GeneralRelativity one can find a first subdivision of singularity types)

2.1.1. Non unique evolution (field equations)

The existence and uniqueness theorems (available at present time on the initial value
problems for Einstein’s field equations) require slightlyl) higher smoothness assump-
tions than one needs for Lorentz spaces acceptable as space-times. Hence, the follow-ing types of singularities cannot be excluded:

(i) a solution of Einstein’s field equations which cannot be extended as a solution
but as a regular Lorentz manifold,

(ii) a solution which can be extended as a solution in different ways (more precise:
identical initial data develop into not even locally isometric domains of depend-
ence).

I do not know of any example of these types. Type (ii) is quite unlikely in view of the
fact (Hawking 8: Ellis [1] proposition 7.5.2.) that two such branches both have to be

a 2/3coarse (hence analoga to the standard example: [I u + 3 (—11,) = O; u E 0 and
at

u E 0030) (t — to)3 with a branch at t = to do not exist). For type (i) the gap between
the smoothness requirements is smaller than for (ii) and more likely to be filled in near
future.

1) It is difficult to give a simple but precise measure for this gap, as in the initial value theorySobolev classes W" are used rather than 0"
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2.1.2. Discontinuities (metric structure)

Given a smooth manifold, it is possible to consider fields (including the metric
tensor field) which are discontinuous. 0n the other hand, in view of the fact that
space—time is a manifold which — together with the metric — develops in time it is
hard to see what the smoothness of a manifold with a discontinuous metric physically
means. (A field theorist paints a picture on an already given — usually flat — canvas,
the general relativist knits a sweater producing the pattern together with the back-
ground). For certain idealized situations (pointlike test particles, impulse shock waves,
surface layers) one uses manifolds with some discontinuities. Unfortunately the usual
methods of treating these formally singular situations cannot be easily translated
to General Relativity:

— Distributional differential geometry is not fully developed and the accepted
junction conditions do not go down to those low smoothness classes one wants to
consider in some cases (cf. [4], sect. 5.3 (i); [2] p. 551f),

— conserved quantities are not easy to obtain on a space—time without symmetries.
Surface integrals around the discontinuities suffer from the difference of covariant
and partial derivatives; nevertheless, they had been used successfully for a
long time (e.g. Einstein 85 Grommer [6] for the point particles).

2.1.3. Incompleteness (affine structure)

As explained in sec. 1.0. this is the type of singularities one expects. There is a
complicated hierarchy of inequivalent incompletenesses ([8], sect. 5; [3], sect. 42).
Fortunately, the Penrose-Hawking singularity theorems as well as the explicitly
known examples have an incompleteness which is natural from the physical point of
view ([1], p. 258): inextensible causal geodesics with finite (affine) length.

There are, however, examples of singularities (e.g. ReiBner—Nordstrom) where no
timelike (only null-) geodesics are terminating, in physical terms: all freely falling
particles avoid falling into the singularity. It may be conjectured that a suitable
version of Cosmic Censorship will forbid these “repellent” singularities.

2.1.4. Acausality (conformal structure)

The hierarchy of causal requirements is even more impressive than that for the com-
pletenesses (cf. [9, 10]). In context of singularity discussions one can come along with
four causality classes:

(i) Non chronology: closed timelike worldlines exist.
(ii) Stable causality: a time function exists ([1]; prop. 6.4.9.), or: causal infinity

can be incorporated into the causal ordering of space-time ([11]).
(iii) Global hyperbolicity: the whole spacetime is the development of initial data on

a “Cauchy surface” S, or: the set of causal curves connecting any pair of events
is compact ([1], sect. 6.6.).

(iv) Asymptotic simplicity (not a purely causal, i.e. conformal, requirement!) ([1],
sect. 6.9.).

/
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2.2. Description (singular boundaries)

A lot of different methods to attach the “endpoints” of incomplete non-extensible
curves had been proposed in the past (a comprehensive survey is given in the diploma
thesis of F. Miiller [12]):

(i) The g—boundary (Geroch, Hawking) collects all endpoints of incomplete geo-
desics with the structure imposed by the initial data for the geodesic equation.
Many examples, partly given by Geroch himself, show that for general Lorentz
spaces the g-boundary is unsatisfactory. It may well be (and I believe it) that
for the generic collapse singularity this boundary will have a renaissance (see
sect. 4.4.).

(ii) -The b-boundary (Schmidt, [1], sect. 8.3.) has a very elegant mathematical
formulation, and despite the exceeding difficulties in investigating it even for
the simplest special space-times it was considered until recently as the foremost
description of singularities. But then it turned out that (Bosshardt, Johnson,
[3], sect. 5.2.) this boundary is not reasonable unless it is modified (which lowers
the elegance and enlarges the problem in calculating it).

(iii) The c-boundary (Geroch, Kronheimer 8: Penrose; Seifert; Budic 8c Sachs [1],
sect. 6.8.; [3], sect. 4.2.) is comparatively simple to calculate (the c—bound-
aries of practically all explicitly given space—times are known) and describes at
least that aspect of singularities which is disputed most (causal interaction,

cosmic censor, horizons or mixmaster in the big bang?).

3. The character of singularities

3.1. Incompleteness is a general feature of space-time

The famous Penrose-Hawking singularity theorems (1965—1970) show that realistic
space-times are generally (non extensibly) incomplete. To be a little more precise,

the conditions

(i) a quite weak energy and generality condition (non-negativity of energy density
which leads to gravitational attraction and focussing),

(ii) an initial geometric arrangement (“trapped set” which one expects to occur
in collapse as well as in an expanding cosmos),

(iii) causality (which is a requirement if one applies certain theorems to show that
extremal geodesic arcs which are not allowed to have focussz'ng (conjugate)

points exist)

are shown to contradict

(iv) non-singularity (completeness of all causal geodesics).
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During the last decade only minor improvements of these theorems have been
found.

Tipler gave evidence ([3], sect. 5.1. (ii)) that incompleteness is not prevented by
acausality (i.e. (i), (ii) solely contradict (iv)). The omission of the merely technical
assumption (iii) is plausible in view of the feeling that the focussing caused by (i) gives
rise to the bounds on the length of geodesics; acausality at best repeats focussing
rather than prevents it.

Beem and Ehrlich [13] generalized the initial situation (ii) to

(ii’) Existence of causally disconnected sets: All causal curves between two sets
A, B (A C I+(B), B C I’(A)) meet a compact set K, see fig. 1.

Fig. 1. Two non compact sets A and B causally separated by a compact set K.

3.2. The geometric nature of singularities

A singularity which has been developed from a regular situation should display in
its geometry why the incomplete world lines do have finite lifetime. In other words,
the curvature which measures the deviation from the flat geometry, strength of
the gravitational field (Weyl tensor), and the matter density (Ricci tensor) should
diverge sufficiently.

The following beautiful theorem presented by Isenberg and Clarke [14] at this
conference is likely the most important result in singularity theory obtained in the
last few years:

Curvature Singularity Theorem (CST)

Let M be the development of some initial situation (in other words: let M be globally
hyperbolic), and let 3/ be a world line (causal curve) of finite (affine) length, then
— either the curvature 13;)“, is discontinuous (curvature singularity) 0r algebraically

special (violation of generality) along 7/,
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— or M can be extended to a space-time M, which contains the endpoint of y as a
regular interior point, the boundary 8M inM being a Cauchy horizon generated
by null geodesics.

It seems that the astrophysicists now can forget the jocose incompletenesses cut and
sawn by the space-time tailors (for an example see fig. 2). Although, this theorem is
not the ultimate answer, because there are reasons for believing that discontinuity
of the curvature is not a guarantee that the geometry becomes sufficiently disastrous
to bring all physics to a definite end, see sect. 4. One needs lower bounds for the rate
of divergence of the curvature, and today we only know upper bounds (Tipler [3],
sect. 5.4. (iii)).

future I!
. \ J
\ / _/ ,3 \‘ ~.\
n- futurel \'\\.

Fig. 2. A quasiregular singularity: double covering of 2-dim. flat space after one
point p removed (In a “picture” one has a cross-over along the “cut”, which does
not affect the internal geometry). Branch-point 1) cannot be put back as it would
possess two past- and‘ two future-nullcones. If one poses an initial value problem on
SI u 52, two separated sheets of Minkowski space, hence a disconnected but regular
space-time will develop.

4. Cosmic Censorship or whether singularities interact
with the regular outside

4.1. Preliminary versions of. the conjecture

The majority of relativists believes (or simply hopes?) in

Cosmic Censorship (OCH): No (then called “naked”) singularities can be
seen by outside observers.

To find arguments for or against this hypothesis was the key issue in the singularity
and black hole theory during the last decade.
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The formulation of CCH as given above is misleading in at least two points:

(i) Naked Singularities are not rejected because one has a horror of glancing at
singularities; the initial big bang singularity is in the causal past of all of us
“observers”, but nobody considers this as a counter-example t0 CCH. What one
really likes to exclude is an interaction with regular regions: the region, where
(classical) General Relativity holds, should be, in concordance with the ideology
of classical deterministic physics, the time evolution of some regular initial data
surface S. This (principal) predictability breaks down if singularities act into
the future of S without leaving a trace of this influence on S itself or without being
incorporated into the theory (a distribution calculus or some conserved quantities
or integral formulas might allow to remove some uncertainty). Briefly stated:

Strong Cosmic Censorship (SCCH): That part of space-time which is describ—
able by Einstein’s theory is also predictable by Einstein’s theory.

In other words: the whole (regular) space—time M is the evolution of the
data on some Cauchy—surface S; M is globally hyperbolic.

The cosmic censor, who was originally only involved in the collapse singularity and
far distant observers, now regulates the interior of black holes (no interaction between
singularity and observers diving into the black hole) and, in passing, forbids timelike
parts of regular infinity (which, in fact, could only occur for unreasonable matter
densities or nonvanishing cosmological constant).

(ii) There are a lot of special solutions violating CCH or SCCH. Until now the dis—
cussion has been focussed on ruling out these examples as non—relevant. The time
has come to collect all these scattered results and arguments to formulate some
more precise versions of CCH which are not disproved by known counter-
examples and at least have a chance to be proven or disproven within the next
decade.

4.2. The challenge by counter-examples

Most discussed in this context is the “shell crossing” singularity ([15], [8], [3], sect.
6.2. (ii); [7], several articles) of spherically symmetric collapsing perfect fluid ball.

(i) Shell crossing has analogues in Newtonian hydrodynamics. But: big bang has
a Newtonian analogue, too and is still a most serious singularity.
On the other hand: big bang is an initial singularity, collapse a final one Where
one expects according to TAH (sect. 1.2.) that gravity (Weyl tensor) dominates
matter (Ricci tensor).
Admittedly, shell crossing singularities are not the inevitable and definite end of
the collapse which, in fact, continues and later on forms a horizon; nevertheless,
the singularity influences the regular outside region and, in contrast to Newtonian
hydrodynamics, produces a singularity of the gravitational field.
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The fact that in hydrodynamics shell crossing can be removed leads to the next
suggestion :

(ii) Shell crossing only occurs as one uses an unrealistic equation of state; perfect
fluid cannot be a good approximation if the shear of the matter flow tends to
infinity, and therefore, no matter how small the viscosity coefficients are, the
viscosity stresses blow up, or more likely, damp the shear and prevent the shell
crossing.

Hydrodynamic singularity conjecture ([7] comments by Hawking and Sei—
fert). If one uses a description of state (like viscosity) which in Newtonian
hydrodynamics does not allow infinite densities, naked singularitiesl) will
be prevented in almost spherical collapse.

Viscosity damps out the relative motion of flow lines which is started by the initial
arrangement (in the shell crossing case: outer shells shrink quicker than some inner
ones); dynamical viscosity will prevent infinities of shear, bulk viscosity might retard
the growing of convergence but cannot stop it as gravitation dominates finally and
leads to a hidden collapse:

H0019 conjecture (Thorne [19]). If a suitable amount of matter is concentrated
in a region with a given diameter (in all directions, a hoop surrounds the
region), a horizon (black hole) forms.

Before I continue (in the next two sections) the discussion Opened by the shell
crossing, I would like to mention an example which has attracted much less attention
but is even more puzzling: Winicour, Janis, and Newman [20] found a family of
static solutions (Schwarzschild plus an arbitrary small quadrupole moment) with a
singular pointlike event horizon; as a matter of fact, it does not violate SCCH (the
singularity is nowhere timelike), it marginally violates CCH (disproving the wording
“Strong” and “Weak-”CCH) and heavily violates concepts of stability of the
Schwarzschild black hole which arise from a naive interpretation of Penrose’s first
singularity theorem. Recently, Kates [21] has revisited these solutions and argues
that singular event horizons can occur also in the dynamical process of collapse.

4.3. Retreat to the pure vacuum

The other, undoubtedly simpler direction to escape the problems of shell crossing
matter is to restrict the investigations to pure vacuum solutions in order to find those
singularities which are really gravitational and not generated by an accidental ar-
rangement of matter ([4], conjecture 5.1.; [3], sect. 6.2.(ii)):

Vacuum Cosmic Censorship (VCCH): Asymptotically flat vacuum initial
data cannot develop into naked singularities.

1) With the methods of Lifshitz and Khalatnikov, Grishchuk has constructed [16] a stable
solution for viscous fluid with a non-spacelike hence naked singularity. One more reasonto
clarify, whether the “Russian stable singular solutions” can be strictly established or defi-
nitively disproved (cf. the dispute between Barrow 81: Tipler [15] and Belinsky, Khalatnikov,
Lifshitz [16]).
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Three papers presented at this conference signal-ize a progress into this direction:

Christodoulou and O’Murchadha [22] show that the evolution of asymptotically
flat vacuum data not only covers some neighbourhood of the initial surface but con-
tains at least one hyperboloid (the closer the data are to the flat metric, the larger
is the range of existence of the solution).

Moncrief and Eardley [23] give arguments that VCCH would be a consequence of a
global existence theorem in the “slice gauge” (13 = to surfaces are extremal spacelike
hypersurfacesl); global means: for to —>- 00) for which they have already obtained an
analogue for certain compact slices.

Fig. 3. The regions where the existence of a solution for initial value problems has
been shown (F: Friedrich, CM: Christodoulou and O’Murchadha) and where one
hopes to show it (VCCH; the dotted line marks the slices t = const in Eardley,.
Moncrief) .

Friedrich [24] proved that, for general data posed on a regular J7, vacuum solu—
tions exist. This is the first theorem proving rigorously the existence of dynamical
vacuum solutions which are (weakly) asymptotically simple and, for that matter,
that the set of space-times for which the (original) Cosmic Censorship is a sensible
requirement is not empty. Furthermore, the domain of existence fits nicely together
with the ones of the theorem and the conjecture mentioned above, see fig. 3.

1) The existence of which still has to be shown, despite the universal belief in them.
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No doubt that the proof of VCCH would be a great success. But I do not share
the view of Horowicz ([4], [7]) that this would almost settle CCH. Let us consider
the following example:

An axisymmetric star with an exterior vacuum Which is (at least for t 4, 00)
the Tomimatsu‘Sato (TS) solution might collapse starting at a regular
initial situation. Such a star will uncover the naked singularities of the TS—
solution outside the horizon, hence undoubtedly developing a naked vacuum
singularity violating CCH. On the other hand, the TS vacuum (without
the star) would possess the singularity from the beginning; we cannot find
regular initial data and therefore have no violation of VCCH. I do not know
any arguments within local physics which say that TS—solutions are funda—
mentally inferior to Kerr solutions as stationary endstate solutions: the
characterizing theorem for Kerr-fields (Israel—Carter-Hawking—Robinson)
already assumes what one would like to prove here: no singularities between
black hole and J.

If one investigates properties of the collapse (CCH was especially formulated for this
situation) by throwing away the matter ball, the “reason” for the outside vacuum
field, one may be left with an unreasonable field.

4.4. Might curvature singularities not be singular enough?

The last class of arguments in the “shell crossing discussion” that I want to mention
is concerned with strength.

If matter density blows up on a sphere, the surface density remains finite; in other
words, the rate of growth is smaller than in the pointlike collapse. The more mathema—
tical approach is to go back to the treatment of discontinuity hypersurfaces (sect.
2.1.2.). Whether physical processes necessarily come to an end is a question of how
strongly the gravitational tidal forces will damage a body encountering the singularity.

One has to specify (A) the structure of the body (physical system) and (B) What one
considers as the “action” of the force.

A (i) Dust cloud (world lines are geodesics),
(ii) rigid body (say: world lines have constant Fermicoordinates based on some

“central line”),
(iii) elastic body (something between (i) and (ii)).

In all cases the system should better be treated as finitely extended (not, as is uSually
donel), as an infinitesimal test body), as one expects the curvature to be very dras-
tically over any characteristic length of the body. This implies that one has to cal-
culate some mean values by integration.

1) Ellis and Schmidt ([7], p. 994) apply the calculus for gravitational wave detectors ([2],
sect. 3'7) on the Schwarzschild singularity: Mashhoon [25] calculates the tidal force components
along world lines with Taylor’s formula.
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B (i) The system consists of pointlike atoms (tidal forces are obtained by integra-
tion of the tidal force producing components of the Riemann tensor along
connecting arcs between the atoms).

(ii) The atoms are smeared out (integration over the bulk volume).

(iii) Energy-momentum transfer, work (integration of force along the central line).

To give the notion:
Tidal stress singularity: The tidal forces become infinite if one approaches
the singularity,

and the conjecture:

Tidal stress Cosmic Censorship: All tidal stress singularities are hidden be-
hind horizons,

a precise meaning one has to specify the structure of the detector. Some difficulties:

— For sufficiently accelerated bodies the total energy transfer can be kept finite,
B (iii) seems sensible only for freely falling bodies (geodesic central lines); cf.
Ellis’ and Schmidt’s result that an accelerated detector could escape destruction
before reaching the singularity ([7], p. 996).

— Which curves one should take as connecting lines in B (i) (for spacelike geodesics,
all tidal forces in the sense of B (i) in the shell crossing solutions remain finite,
for connecting lines with r = const they can diverge):

For geodesic world- and connecting-lines, the shell crossing singularities in all the
models discussed above have finite tidal forces, the Schwarzschild-Kruskal singularity
has infinite forces.

Yodzis suggested ([8], sect. 8) a related type of a “strong singularity” which is.
geometrically formulated and circumvents the ambiguities discussed above. The
limits of the Christoffel symbols in normal coordinates have to be evaluated. (The
F’s are 1St order quantities similar to the integrals over the tidal force producing
components; this “geodesic singularity” is comparable with tidal force singularity
in the sense of A (i), B (iii)).

After arriving at a satisfactory definition of “physically strong singularities” or
“breakdown of Cl-structure singularities” one still has to find a relation to the singu-
larity existence theorems (analogue to Clarke’s results for curvature singularities).

5. Topology

5.1. The global manifold

Once When relativists discovered topology, they tried to find out how many different
topological (global) structures space-times can have (infinitely many). Today, one
tries (quite successfully) to reduce all these possibilities down to four: C3 X R
(C3 2 R3 or S3 or ]R X 82 or ]R2 X 81; S" being the k-dimensional sphere).
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An early theorem stated:
A globally hyperbolic space-time (admitting a Cauchy surface C) is homeo-
morphic to C X R.

For cosmology this can be used to show:
A nearly spatially homogeneous, simply connected space-time is homeo—
morphic t0 lR“ or S3 X R.

For the study of bounded astrophysical systems one obtains the following results
(Tipler; Brill 8c Lindblom [26]).

(i) Any non-singular, weakly asymptotically flat and empty, causally regular and
generic space-time is globally hyperbolic,

(ii) if, in addition, the past part is asymptotically simple, space—time is homeo—
morphic to 1R4.

5.2. The local manifold

Most (classical) physicists take the manifold (or even the Euclidean) structure for
granted- After Kronheimer and Penrose promoted causal structure as a (or the) basic
structure and obtained the topology from the causal ordering ([1], p. 196), it was
natural to ask, Whether the geometrical properties of space-time could be described
in terms of causality. The basic properties (connected, countable, etc.) can be quite
easily reformulated; but a convincing characterization of a manifold in terms of
general topology has not been found till now.

One might conjecture that manifolds are those topological spaces which are parti—
cularly homogmous [27], but only for very low dimensional manifolds one has found
theorems:

(i) Any (linearly) ordered, connected, separable set is homeomorphic (in the ordering
topology) to an interval of R; this gives a nice description for curves as “world
lines”.

(ii) Any connected, locally connected, non—degenerate metrizable space which is
~ compact and separated by any pair of points is g SI,
k separated by any homeomorphic map of 81 but not by a pair of points is g S2

(Kline).
This gives a comparatively complicated characterization of the set of all direc—
tions (Where light rays come from; the separation property says that silhouettes
are closed curves).

Using these theorems one can construct local parts of space—time in “pine—tree”
coordinates: null cones (direction 82) X (null ray lR) along a world line IR. (S2 X ]R
UlPl) >< lR3gIR4-

For a characterization of differentiability in a similar way I cannot present even
a vague conjecture.

10 Proceedings GR9
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6. What to do till the next GR conference

I expect that some progress can be obtained in the following topics:

Differential geometry:

— Study of geodesics near singularities (1St order singularities), sect. 4.4.;
— Existence of extremal spacelike hypersurfaces, sect. 4.3.;
— Hoop conjecture, sect. 4.2.;
— Treatment of discontinuities, sect. 2.1.2.

Field equations and initial value problems:

—— Vacuum Cosmic Censorship, sect. 4.3.;
— Belinski—Khalatnikow-Lifshitz singular solutions;
— Viscosity and anisotropic collapse, sect. 4.2.

In any case, a closer familiarity with the theory of nonlinear field equations is a
demand on any “global relativist”. Admittedly, partial differential equations are
more formalistic and less enjoying than qualitative differential geometry. Brilliant
results in global geometry have been presented in 2-page papers (Penrose’s singularity
theorem, Hawking’s monotony of black hole area), but for results on differential
equations you need at least 20 pages. But lack of appeal is not lack of importance.
To my opinion, one often underestimates the role of the full field equations, e.g.
by the statement that singularities in a solution will be avoided unless they are forced
by a few weak consequences of the full field equations ([7] Hawking’s comment). It
seems to me of minor importance to look for further definitions unless one has a
chance to use them in theorems (more boundaries of space-time; more definitions
of “black holes” in general spaces, etc.).
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Terrestrial and Planetary Relativity Experiments
R. D. Reasenberg and l. l, Shapiro (Cambridge/MA)

Abstract

The advance of technology has made possible the current activity in experimental
relativity. Radio and optical ranging techniques provide interplanetary and lunar
distance measurements with fractional uncertainties as small as 10‘“. The analysis
of these data yields results consistent with general relativity; the fractional uncer-
tainty in the confirmation of specific effects is as low as 10*3. Future experiments
may extend the range of effects checked and permit the accuracy of some tests to
be increased by several orders of magnitude required to detect post—post-Newtonian
phenomena.

1. Introduction

Physics, as a productive human enterprise, has been able to outshine many other
activities because of the balanced interplay of theory and experiment. For a long
time, general relativity was in danger of being an exception to this pattern, being
solely the province of theorists. Today, at least, the experimentalist is able to make
a contribution to this subject thanks to the availability of high technology.

\Ve first discuss relevant examples of this technology and then review the status
of terrestrial and planetary experiments to test general relativity.

2. Instrumentation

2.1. Ranging to Passive Target-s

The first high technology applied to experimental relativity was radar. As early as
1946, radar observations of the Moon were possible using techniques that were an
outgrowth of World war II developments. By 1964, echo delays from radar obser—
vations of planets were being made with accuracies sufficient to be of use even today
in studying the dynamics of the solar system. With the Arecibo radar, these delays
are now being made routinely with uncertainties of a few tenths of a microsecond,
equivalent to range errors of a few tens of meters.

The most severe difficulty that one has in using these radar observations is not
with their accuracy but with the uncooperative nature of the planets. They are not
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polished spheres. Typically, planets have topographic variations which modify the
round-trip propagation time of the radar signals by up to a few tens of microseconds,
as compared to the several-tenth microsecond uncertainties of the current radar
measurements of echo delays. In addition to continental-size constructs, there are
also mountains, craters, and rilles of various sizes which add topographic noise from
this level down to the measurements uncertainties and below.

What can one do about such degradation of precise measurements? Our first
approach was to use an ad 7200 model for the surface heights on each planet. The
general “rule of thumb” was: the more free parameters, the better the model. We
currently use such a model with 123 free parameters for the surface of each inner
planet. This model “absorbs” much of the topographic structure, yet a great deal
remains. We also analyzed the topography statistically, modelling the surface heights
as a correlated noise process. However, the resulting ~ 20% improvement in the
accuracy of parameters estimated from the radar observations of Mars, for example,
is not sufficient to justify continued development of this approach because of the
availability of substantially better data, not yet fully exploited. A third approach
is the utilization of auxiliary data, like the topographic map of Venus (Pettengill et al.,
1980) obtained from the radar altimeter aboard the Pioneer 12 spacecraft in orbit
about Venus. We are now applying the information in this map in our analysis of
solar-system dynamics.

Lunar laser ranging is another marvelous example of modern technology. The
several sets of retroreflectors on the surface of the MOOn are by-products of the
Apollo and Lunakhod programs. Each laser ranging system now in use consists of
a laser on the Earth that sends light beams through a telescope to a retroreflector;
the return beams pass through either the same or a different telescope to a detector.
With the aid of electronics, the round-trip propagation time is measured very accu-
rately, often to within a few tenths of a nanosecond. The McDonald Observatory
has been involved in lunar laser ranging for over 10 years, longer than any of the
others. Its laser transmits a 3J pulse, 20 times per minute. The receiver system on
average detects one photoelectron per 10 pulses transmitted, even though the retro-
reflectors return 100 times as much power as does the illuminated surface of the Moon.
A typical 15-minute session of observations yields a “normal point,” an equivalent
single measurement of the distance from the observatory fiducial point to a retro-
reflector, With an uncertainty of 10 cm. The uncertainty in instrumental calibration
is about 5 cm.

2.2. Ranging to Active Targets

One way to circumvent the problems of planetary topography is to observe space-
craft instead. Spacecraft provide superb targets for studies of solar-system dynamics.
However, their use, too, is not devoid of problems. One must make precise measure-
ments and convert them to equivalent measurements made in vacuum; in addition,
one must have an accurate model for the location of the end points of the pro-
pagation path. Spacecraft carry transponders which usually allow measurements of
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both a Doppler shift and an echo time delay. With current transponders, for an inte-
gration time of 1 minute, Doppler measurements have an uncertainty of about 3 mHz,
or about one part in 1012 of the 2.3 GHZ carrier frequency; however, since the radial

velocity between Earth and spacecraft is usually of the order of 1040, the fractional
accuracy of the Doppler-shift measurements is about one part in 103. The time—
delay measurements now have uncertainties as small as 10 ns which is about one
part in 1011 of a typical round-trip echo delay.

In discussing the location of the end points of the propagation path, it is useful to
consider three separate classes of spacereaft. The first is the deep—space probe; a
craft sent from Earth into solar orbit. A Mariner class spacecraft, with an area—to—
mass ratio of about 0.1 cmZ/g, is a rather flimsy object compared to the natural
solar-system bodies observed with radar. Solar radiation pressure can cause an acce—
leration of such a spacecraft of order 10—5 cm/sz; even the solar wind produces an
acceleration of order 10’3 CHI/82. The Mariner class spacecraft carry active attitude
control systems which tend to produce slightly unbalanced thrusts from their gas

jets. These cause accelerations of the order of 10‘-6 or 10’7 0111/82, which tend to be

stochastic and are therefore difficult to model accurately. To place these numbers in
context, note that after 10 days of acceleration at 10‘7 cm/s2, the spacecraft is dis-

placed far enough to produce a change in the time-delay observable of 2.5 us compared
to the 0.1 to 0.01 us uncertainty of measurement. Clearly, this situation is undesir-

able.
An improvement is realized when the spacecraft is placed in an orbit around a

planet; the effect of “reasonable” unmodelled accelerations can then be estimated
on a time—scale comparable to the orbital period. Thus a planetary orbiter, whose
orbital period is typically about one day, can be located much more accurately
than can a deep—space probe, whose orbital period is comparable to a year. There are,
of course, penalties to be paid for being close to a planet. Reflected and re—radiated
solar energy adds a new dimension to the complexity of modelling radiation pressure.
The atmosphere of the planet, for a spacecraft that dips near to the surface, may
perturb the orbit importantly. The Pioneer 12 orbiter of Venus, discussed above,
experienced changes of orbital period of as much as 30 s during a single passage
through periapsis. Perhaps most importantly, the gravity field of the host planet
is not spherically symmetric and the higher-order spherical harmonics collectively
perturb the trajectory of the spacecraft. Nonetheless, a planetary orbiter is preferable
to a deep—space probe, if the object is to” locate the spacecraft. From this point of
view, the best spacecraft currently possible a the third class — are planetary lan-
ders. Gone are all the standard problems with spacecraft in flight. Arising are only
a few new, much smaller problems.

2.3. Clocks

We now discuss devices used to measure time. For relativity experiments, hydrogen
masers are now preferred because of their greater stability over time scales of hun-
dreds to tens of thousands of seconds. Substantial further improvements in these
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clocks seem feasible, especially with operation at low temperatures if suitable wallmaterials can be developed.
Another clock, under development by Turneaure (Stein and Turneaure, 1975) isa supig-rconducting cavity stabilized oscillator. With this iechniqne. a superconductingcavity is illuminated with a signal from a \‘olt‘:igc~«.:rintrolled oscillator. The deviationbetween the oscillator frequency and the cavity remnant-c. frei’incncj.‘ is forced tozero by the action of a closed loop feedback system which drives the oscillator to thecavity frequency. With this instrument, an Allan variance close to 10‘16 is being ob—tained for intervals of about 100 seconds (Turneaure, 1980).
A different type of cavity stabilized oscillator, based on a cavity without metallicWalls. is also being developed (Braginslzy. 1980). Made of a piece of sapphire in aring configuration. the principal advantage of this cavity is an extremely low coeffi-cient of thermal cxpansicn. lf teiiiperamre variations are the principal source ofdrift, then use of sapphire at liquid helium temperatures will result in a fractionalchange in frequency of about 5 ':-'1 ill—”ii ‘. The Q of such a cavity has not yet beenmeasured, but based on laboratory measurements of the power factor of this material

at 3 cm wavelength, the Q is expected to be of order 5 X 108.

3. Experiments

The solar system is probably the best understood of the laboratories in which experi—
ments in relativity are feasible to perform. The next best is now provided by thebinary pulsar, PSRIQH— it}. With any; such laboratory, there are always aspects
of the system not incorporated in the model used in the dam airsilysis. in fact. with
the solar system, there are many aspects of the dynamics 1iiat We know about and
do not incorporate in our model because unknown physical pars: mm crs .'"i1.~‘:3‘.:lt'lii 1&l with
these aspects would also have to be estimated. If we tried to incorporate all of these,
the number of parameters to be estimated would become “astronomical” and the esti-
mator, degenerate. Model error is guaranteed to produce biased parameter estimates.
So, one is caught between degeneracy and model error. Our procedure has been to
start with all of the parameters that appear to be of importance, and then to do a
large number of numerical experiments incorporating first one, then another, and then
some combination of the smaller effects in an attempt to bound the errors that re-
sult from the model errors.

3.1. Principle of Equivalence
The principle of equivalence is often considered the foundation stone of general
relativity. As early as the 5th century, this principle was a topic of discussion by
Ioannes Grammaticus (Cohen and Drabkin, 1948) who asserted its correctness. Hisapproach, of course, was somewhat different from that taken today. A number oflaboratory experiments conducted in more recent centuries have yielded bounds onany possible violation of this principle. If we define a as the deviation from unity of
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the ratio of gravitational to inertial mass, then the results of the experiment by
E6tv6’s were claimed to satisfy |£] < 5 X 10—9; that of Roll, Krotkov, and Dicke
(1964), [5| < 3 X 10‘“; and that of Braginsky and Panov (1971), |e| < 3 X 10—12.
However, for this last experiment, very few details have been published. The modern
results imply that equal numbers of electrons and protons; neutrons; electromagnetic,
strong, and weak binding energies; and kinetic energy all obey the principle of
equivalence.

What do these experiments tell us about gravitational self—energy? Let us define
the fractional gravitational self-energy, A, as

A = Ms/Mr:

Where M862 is the gravitational binding energy, or self energy, and Mr is the rest mass.
If we consider a typical laboratory body, say a sphere of gold 1 m in diameter, we
find that A is of the order of 10-23; thus even the most precise principle-of—equi~
valence experiments performed in the laboratory could not begin to address the ques-
tion of Whether gravitational self energy satisfies this principle. One must consider
much larger bodies since the gravitational self energy varies as the square of the scale
size of the body.

Nordtvedt (1968) has considered the possibility of violation of the principle for
astronomical bodies. In his analysis, Nordtvedt discussed the relation between the
parameterized-post—Newtonian (PPN) formalism (Will, 1973) and 9], a coefficient he
introduced to represent any violation of the principle for gravitational self energy:

111, : M,(1 + 774)-
Tn this equation, Mg and .M; are, respectively, the gravitational and inertial masses
of a body; 17 : 0 implies no violation.

Laser measurements of the Earth-Moon separation are sensitive to the difference
between A (Earth) and A (Moon); fortunately these are very different. The observ—
able effect, for 17 > 0, would be a displacement towards the Sun of the orbit of the
Moon around the Earth. The corresponding change in the Earth—Moon distance would
have a monthly period and an amplitude of about 877 meters. The ordinary, Newto-
nian gravitational effect of the Sun, however, also causes a monthly variation in
the Earth-Moon distance Whose phase is the same as for 17 > 0, but Whose amplitude
is 110 km ! So one must, in effect, detect a small signal in the presence of a far larger
one. Fortunately, the solar term can be determined to more than sufficient accuracy
from other manifestations of the solar perturbations. Thus, from prior analyses of
classical observations, its amplitude is known to within about 1 cm.

One of course employs a rather detailed and precise model to analyze the lunar
laser ranging data. This model includes the effects of many perturbations on the orbital
and rotational motion of the Moon such as the low-order spherical harmonics of the
gravitational fields of the Moon and Earth and the tidal torque produced by the
Earth. The model also includes the effects on the position of the observatory in
space due to the irregularities of the position of the pole and the rate of rotation of
the Earth.
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From analysis of some 2000 of the lunar laser “normal points”, obtained from
about 5 years of observation, the principle of equivalence has been upheld. The
estimate of 77 was consistent with zero. The two groups that analyzed the data assigned
different uncertainties to their estimates: 1.5% (Shapiro et al., 1976) and 3% (Wil-
liams et al., 1976), the former being fourfold larger than the statistical error accom-
panying the estimate. We should emphasize that the allowance for systematic errors
is somewhat subjective and depends on approximations made in the theoretical
model, on trends discernible in the residuals, and on experience in the analysis of
similar data.

Our MIT group has since incorporated the more accurate data gathered in the past
five years and has also reduced the residuals substantially, principally by improving
the model used for the rotation of the Earth. A new estimate of 17 should be published
within a year.

Another system in which one could seek evidence for any violation of the principle
of equivalence is the Earth-Mars-Sun-Jupiter system. We are analyzing a combina-
tion of radar and spacecraft data to estimate 97 for this system.

3.2. Gravitational Redshift

In their now famous redshift experiments, Pound, Rebka, and Snider used the
Mossbauer effect to obtain a y-ray spectrum from an Fe57 sample with an extremely
narrow line width. A similar crystal was used as a radiation absorber. The source
and absorber were separated by a 26 m height and the predicted gravitational
redshift was confirmed to within 1% (Pound and Snider, 1965).

More recently, a hydrogen maser clock was flown in a rocket to an altitude of
10,000 km to test the “redshift” prediction. The first-order Doppler shift of up to
2 X 10‘5 had to be determined or cancelled to sufficient accuracy to observe the pre-
dicted gravitational effect of up to 4 X 10—10. A clever arrangement of the tracking
instrumentation provided cancellation of the first—order Doppler shift, except for
that portion which resulted from the acceleration of the tracking station during the
round-trip propagation of the signals to the spacecraft. The latter was easily included
in the post-flight analysis. Similarly, the effect of the neutral atmosphere on the signal
propagation 'Was automatically cancelled to the extent that the atmospheric con—
tribution was constant during the $ 0.1 s round-trip propagation time from ground
to rocket. A judicious choice of tracking frequencies and technique also provided
virtual cancellation of the contribution of the ionosphere. The predicted gravitational
redshift was confirmed to well within the uncertainty of 140 parts per million
(Vessot et al., 1980).

What kind of experiment could be done to test the predicted gravitational redshift
at a level of accuracy substantially higher than has been possible with a clock in a
rocket? Clearly, such an experiment could be performed with a clock carried by a
suitable spacecraft in solar orbit. With a perihelion distance of four solar radii, where
the dimensionless gravitational potential is about 0.5 X 10"“, such a spacecraft would
carry the clock through a change in potential about one thousandfold greater than in
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the rocket flight- Unfortunately, there are serious, although not insurmountable,
engineering and economic problems associated with such a spaceflight; a proposed
mission, with the needed trajectory, is discussed in Section III 5.

3.3. Light Bending
The bending of light rays by the Sun was one of the early predictions deduced from
the general theory of relativity. The predicted effect, 1775 for Sun-grazing rays, is
multiplied by (1 + y)/2 in the PPN formalism. Visual sightings of stars during a
total solar eclipse were the first data to be used to check this effect. The most recent
such observations were carried out by the Texas Mauritanian Eclipse Expedition
of 1973. Although adverse weather conditions degraded the seeing and the accuracy
of the results, the Texas team (1976) obtained (1 —|— y)/2 : 0.95 j: 0.11.

Substantially better accuracy can be obtained by the use of radio interferometry
(Shapiro, 1967). Two or more separated antennas are used to receive signals from
distant radio sources. The goal is to determine the apparent position of one source
relative to another as a function of their angular separation from the Sun. In very-
long-baselinc interferometry, a hydrogen maser or other very stable clock is used at
each antenna to convert the incoming microwave signal to a video signal which is
subsequently recorded along with timing data on magnetic tape. The magnetic
tapes from the antenna sites are brought together and cross-correlated to construct
the fringes for the interferometer. In connected-element interferometry, a common
clock or oscillator is used to convert the incoming microwave signals to video. The
video signals are carried by cable directly to the cross-correlator and the fringes are
formed in “real time”. Both techniques suffer most from the contribution ‘of the
neutral atmosphere to the difference in the signal paths from the different sources.

The most accurate deflection experiment thus far conducted using very-long—
baseline interferometry yielded verification of the deflection predicted by general
relativity to within the estimated uncertainty of 3% (Counselmann et al., 1974).
A connected-element interferometer was used somewhat later to obtain higher
accuracy (Fomalont and Sramek, 1976). In this latter experiment, three sources were
observed that lie nearly on a line segment 10° in extent on the plane of the sky, with
one source being nearly in the ecliptic and nearly half way between the other two.
Observations were made at two frequency bands, 2.7 and 8.1 GHZ, from the ends
of a 35 km long baseline. The central source was observed half of the time and the
other two sources were alternately observed for the other half. Data were obtained
on a total of 12 days during the month surrounding superior conjuction. The analysis
of the data yielded (1 + y)/2 : 1.015 j: 0.011.

The post—post—Newtonian (ppN) contribution to the gravitational bending is pre—
dicted to be 10’.’9 X 10‘“ (Epstein and Shapiro, 1980) for a signal grazing the limb
of the Sun, as compared to 1’_’75 for the post—Vewtonian (pN) contribution. The prin-
cipal problems that have been encountered in the experiments to detect the pN contri—
bution have been the effects of the Earth’s atmosphere and the solar corona. To avoid
the latter, one can utilize extremely high radio frequencies or, better, optical fre—
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quencies. To avoid the former, observations should be made above the atmosphere.
Thus, we have proposed a satellite with “crossed” optical interferometers (Reasen-
berg, 1980). Each interferometer would have a pair of telescopes to gather light and
bring it together into an instrument that would form and detect fringes. The fringes
formed in a beam splitter would be focused and dispersed to produce channelled
spectra, an old idea developed by Fizeau and Foucault. From the pattern of the chan-
nelled spectra, one could determine the differential path length along the two arms
of the interferometer and therefore the angular offset between the interferometer axis
and the star direction.

To do a useful experiment, one could use a pair of these interferometers, about 90°
apart. Laser metrology would not only monitor the angle between the two inter-
ferometers, but would also monitor each optical component, with an apparently
achievable error budget of about 0.1 A over the proposed 10-m length of the instru-
ment. We are examining this instrument from an engineering standpoint, and have
so far found no technological problem that would prevent our achieving an accuracy
sufficient to detect the pp)? contribution to the deflection, but this assessment may
simply reflect the early stage of our investigation. We are continuing the engineering
analysis, but the project is clearly long-term and we foresee little chance of obtaining
results much before the turn of the century.

3.4. Signal Retardation

The “anomalous” time delay, Ar, attributable to the gravitational field of the Sun
is given by

AT=%(1+ ”In re +7.23 +3),
7,, + rp — Ita 2

where r0 (E 2GlllG/c'2) is the gravitational radius of the Sun; and 7,, 7p, and R are,
respectively, the distances from the Sun to the Earth, from the Sun to the target
planet, and from the Earth to the target planet. The coefficient (1 + y)/2 is unity
in general relativity. When the raypath passes close to the Sun, the argument of the
logarithmic term becomes egg/dz where dis the impact parameter of the ray (Shapiro,
1964). This term gives rise to the characteristically sharp spike which is very impor-
tant because it makes this effect relatively easy to distinguish from the various per-
turbations of the orbits of the Earth and target planet.

From radar data obtained through 1972, it was possible to estimate (1 + y)/2
with an uncertainty of 40.3. The main contribution to the uncertainty was the
limited signal-to-noise ratio available. The solar corona had a negligible effect since
the radio frequency used in the radar measurements was nearly 8 GHz. Analyzing
tracking data from Mariners 6 and 7 yielded an uncertainty of 3% (Anderson et al.,
1976). The tracking data from the Mariner 9 mission, combined with the radar data,
gave us a 2% uncertainty; in all cases the estimated value was in agreement with the
prediction of general relativity to within the estimated uncertainties.

The solar corona posed an important limitation in the accuracy of the experiments
that utilized the Mariner spacecraft because they were equipped with a transponder
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operable only at the relatively low radio frequency of 2.3 GHZ. This plasma problemwas greatly alleviated, although not solved, in the Viking relativity experiment.With two launches, each yielding an orbiter and a lander, there were four Vikings
to observe. Each orbiter had a transponder operable at 2.3 GHz and, in addition, the
ability to transmit an 8.4 GHz signal coherent with the 2.3 GHZ signal. The landers,
firmly emplanted on the surface of Mars, solved the usual spacecraft problem of
unmodelled accelerations. But the landers were equipped with transponders that
only transmit 2.3 GHz signals. Since the effect of the plasma of the solar corona has
been seen to double in only a few hours, it is clear that no deterministic model will
be particularly useful for analyzing the time-delay data from the lander for this
relativity experiment.

When Mars was near superior conjunction during the Viking Mission, we therefore
tried to obtain simultaneous, or nearly simultaneous, observations of both a lander
and an orbiter. A 2.1 GHZ signal was sent from the ground to a lander and trans-
ponded back to the Earth at 2.3 GHz while another signal, sent from a separate
tracking station to an orbiter, was transponded at both 2.3 and 8.4 GHZ coherently,
and sent back to the Earth. For the orbiter “downlink” path, therefore, we had a
measure of the integrated electron density. What we wanted, however, was the inte-
grated electron density along the lander uplink and downlink paths. Since the down—
link paths were not very far apart in space and in time, we could take the information
gained from the orbiter downlink and apply it directly to the lander downlink.
But even for simultaneous observations of lander and orbiter, the corresponding
assumption is not valid for the lander uplink path. For this latter path, the signalpasses the Sun at a significantly earlier time. What we did, therefore, was to applythe “thin-screen” approximation. In this approximation, we assume the entire
plasma contribution occurs just as the signal passes a screen that contains the Sun and
is normal to the Earth—Mars line. Then, aside from the important time difference, the
plasma contribution for the lander uplink is the same as the plasma contributionfor the orbiter downlink. With a time delay of one Sun-Mars—Sun light-propagation
time, we applied the plasma effect deduced from the orbiter data as one of the correc-tions to the echo delays measured for the Earth-lander path.

Using these plasma corrections, we were able to obtain residuals for the measure-ments of echo delays to the lander that were moderately free from systematic trends.However, there are systematic trends remaining and they represent a serious prob—lem. It is not clear how much we can improve upon this plasma calibration, althoughwe have a few more techniques in mind to try.
Despite its limitations, our analysis has yielded an excellent estimate of y: (1 + y)/2: 1.000 j: 0.001. The model used in this analysis contained 24 parameters; aside

from y, we estimated six initial conditions for the Earth and Mars; six coordinatesrepresenting the positions of the two landers on Mars; three parameters describing
the rotation of Mars and one the rotation of the Earth; and the Earth-Moon massratio. The data used included measurements of delays to the landers for the first
400 days following arrival of Lander 1 on Mars. HOWever, in addition to this analysis,we made and studied over 100 other least—squares solutions. Various other parameterswere included; the data set was cut in various ways — ends deleted, pieces in the
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middle deleted, etc. Other types of numerical experiments were also carried Cut in

an attempt to uncover hidden biases. The uncertainty of 0.001 represents the “equi—

valent” standard error inferred from the results of these numerical experiments.

What is the likelihood that better results will come from further analysis of the

Viking data? For several reasons, we think the likelihood is high. First, we now have

data obtained during a period of over 1400 days, more than three tunes as long as the

span discussed ahove. [Although data continue to he gathered. the data-taking rate

is now not nearly >0 high as it was .earh~ in the missionJ SQ’COl‘ltl. data were obtained

during a second superior conjunction, although those data are not nearly so numerous

as for the first conjunction. Third, we intentl to include relevant Doppler-tracking

data, radar data, and other spat-ec'sft data. Fourth and finally, our recently CODI—

pleterl st urly of plasma—cali‘oration techniques has shown that it is possible to improve

the plastiia calibration twofold. If our optimism proves justified, our final uncer—

tainty in {1 —‘ 1'l will be about :2 parts in 104.

3.5. Perihelion Advance and the Sun’s Quadrupole Moment

The measured advance of the perihelion of Mercury was the first test of the general

theory of relativity. The contribution of the Sun to this secular advance is given by

377% [2 + 2}) — fl .1s
+

10 3 Topclip = ] rad/rev,

where {:3 —; 2y -— .638 is a combination of l’PN parameters, identically unity in

general relativity: J2 the (dimensionless) coefficient. of the second zonal harmonic

of the Sun’s gravitational field Ij'“qiiac'ir't11_iole moment”): If and r.—J the physical and

gravitational radii of the Sun, respectively; and p the semilatus rectum of the orbit.

The quadrupole moment of the Sun, because it has not been measured, makes it

most troublesome addition to the secular advance.

Among the planets and presently charter! asteroids, Mercury is the best to observe

to detect the relativistic contribution to the secular advance of the. perihelion. in

deciding which bodies are best to observe, several fat-tors need to he considered.

First is the rate. of the advance: Mercury far eXt-eeds the other bodies in that respect.

Serond is the observaliiility of the advance: a completely circular orhit would in»

inappropriate: the larger the orl‘iit and the large‘ the eccentricity, the larger the

“handle" that one has to observe. The. protiiuct of seu'ii—major axis. eccentricity.

and rate of advance thus forms a reasonable figure of merit for measurement. T i~

figure is given for each of the inner planets by Reasenberg (198th. liars appears as

the most useful target, after Mercury, although the orbit of Mars is complicated by:

its t‘lose proximity to the asteroid belt.
Whereas there. is only one principal target. the contribution of the Sun to the

secular advance contains the parameter J2 and the PPN parameters, y and {3 (as well

as others. if we consider possible violations of emiservation laws and possible preferred—

location effects: Will, 1973). Thus, our ignorance of J2 is the outstanding serious

problem that prevents our isolating the relativistic contribution to the advance.
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Inference of J2 from measurements of the visual oblateness of the Sun is difficult;
this method has been tried, but the results are in dispute (Dicke and Goldenberg,
1974; Hill and Stebbins, 1975)- Inference of J2 from comparison of results from
Mercury and Mars is also difficult; the effect for Mars is very small, and the influences
of the asteroid belt on the orbit of Mars makes the interpretation of a measured
advance difficult. A third approach that may be useful is to attempt to detect the
difference in the predicted effects from relativity and from J2 on the periodic terms in
the orbit of Mercury. This approach, too, is difficult. The best approach, if money
were no object, would be to track a spacecraft that passes close to the Sun. We will
discuss this option below.

The most useful data now available for the determination of the secular advance
are the radar measurements of echo delays from Mercury; similar radar echoes from
the other inner planets are also useful, especially in the refinement of the Earth’s
orbit which is of importance for the determination of Mercury’s.

From radar observations of the inner planets made through the early 1970’s,
the combination (2 + 23/ ~— fi)/3 of PPN parameters was estimated to be 1.003
i 0.005 (mentioned in Shapiro et al., 1976) on the assumption that the contribution
of J2 was negligible. 0n the other hand, if we attempt to estimate J2 simultaneously,
we find the estimates very highly correlated and thus very susceptible to systematic
errors- We have therefore not yet extracted a useful estimate of J2 from this ap-
proach.

The determination of J2 for the Sun can be accomplished most accurately by
placing a spacecraft close to the Sun, as already mentioned. The U.S. National
Aeronautics and Space Administration “Starprobe” Mission, now under preliminary
consideration, is being designed to approach close to the Sun. In one possible version of
such a mission, the spacecraft would be sent from Earth to pass by Jupiter to ob-
tain a “gravity assist”- After the Jupiter enCOunter, the spacecraft would move
toward the Sun in a very eccentric orbit with a perihelion distance of four solar radii.
The orbital plane would be perpendicular to the ecliptic. After several years of flight,
the spacecraft would pass by the Sun in less than a day; yet some very interesting
results can be obtained from that brief encounter. Foremost, from our point of
view, would be the possibility to estimate J2. Direct improvement in the estimate
of (2 Jr 29/ — [3V3 would be slight. If a clock were on the spacecraft, there would
also be the potential for a very good redshift experiment, as discussed earlier.

There are, of course, problems in tracking a spacecraft close to the Sun. The black—
body equilibrium temperature at perihelion will be ~2400 K, well above the melting
point of steel. The solar wind and solar radiation pressure become very serious as
the spacecraft approaches the Sun. In fact, if those problems are not countered, the
Starprobe Mission becomes useless for determining J2. Fortunately, there is a tech-
nology, at least partially developed, to allow “drag—free” motion of the spacecraft,
i.e. motion free from substantial perturbations by nongravitational forces: A small
homogeneous ball is shielded inside the spacecraft so that it can follow a gravitational
trajectory. Capacitive probes, or other sensors, and an electronics package allow the
position of the ball to be determined and signals to be sent to the thrusters which
keep the spacecraft “centered” on the ball. When the latter moves off center, in-



160 R. D. Reasenberg and I. I. Shapiro (Cambridge/MA)

stead of pushing it back, the spacecraft pushes itself to follow the ball. The space-
craft in essence is a small ball with a big slave shield following it.

This technology is very difficult to implement for use in Starprobe. If an accept-
able degree of drag-free motion can be obtained, then a sensitivity study we have
done becomes applicable (Reasenberg and Shapiro, 1978; see also Anderson et al.,
1978). For a particular orbit and a particular set of measurements and measurement
errors, we find that the uncertainty in the estimate of J2 drops off drastically to a
few times 10—9, shortly after periapsis passage. This uncertainty is sufficiently small
to virtually eliminate the effect of J2 on the accuracy of our solar-system tests of ge-
neral relativity-

3.6. Possible Temporal and Spatial Variations of the Gravitational Constant

Dirac (1938), building on the speculations of Milne and Eddington, has discussed
extensively a numerical relation that he refers to as the Large Numbers Hypo-
thesis. There are only very few large dimensionless numbers that can be formed from
known physical constants. One of these N1, say, is the ratio of the electric to the
gravitational attraction between an electron and a proton; another, N2, is the age
of the universe expressed in units of atomic time:

62

G'memp

T
TA

NIE :7X1039,

In these equations, 6 is the charge of an electron, mo and m, are the masses of an elec-
tron and a proton, respectively, T is the age of the universe (of the order of the in-
verse of Hubble’s constant, Ho ~ 60 km/sMpc), and TA (= e2/m803) is the unit of
atomic time. A third large number, N3, is the number of baryons in the observable
universe, about (1039?.

Since such large numbers are unusual in physics, perhaps they are related in a
fundamental way:

N1: IcN2=k’]/-l—V_3,

where k and k’ are constants of order unity. Certainly the age of the universe is not
a constant. If we assume that the two similar large numbers remain in a fixed ratio,
then one of the other “constants” must be variable. The other variable is often taken
to be G (see Dyson, 1972); solar-system dynamics should disclose any evidence for
G 2% 0.

Since data related to the dynamics of the solar system span a time very short
compared with the age of the universe, we may use a linearized expression to re-
present any variation of G with time:

Ga) = G, + Ga — to).
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Since the fractional change in G' is small during an orbital period of a planet, it
follows that

20 N E
G if a

where a, P, and n are, respectively, the semimajor axis, orbital period, and mean
motion of the planet. If we compare this planetary gravitational clock to an atomic
clock, and if G is varying with time, then we should see a change with time of the re-
lative rates of the two clocks. If we were to observe a planet from the Earth with
radar, and were able to isolate the contribution to the echo delay of the signals attri—
butable to any variation of the gravitational constant, we would find that contri—
bution to vary periodically with an amplitude that grows quadratically with time
and that is proportional to G.

One approach that has been taken to seek evidence for a time variation of G is
based primarily on the use of lunar observations. In particular, Van Flandern (1975)
has utilized precise timings with an atomic clock of stellar occulations of the Moon
to determine changes in the Moon’s orbital period or mean motion. Because this
period is affected significantly by tidal interactions with the Earth, he also employed
classical observations of the Moon and the planets to determine the Moon’s orbital
period with respect to the gravitational clock provided by the planets. By comparing
these two periods, he in effect compared atomic time to gravitational time, using the
Moon as an interpolation oscillator. Although conceptually correct, there are many
problems with this procedure. The lunar orbit is particularly complicated. In addi—
tion, the old classical observations are difficult to interpret reliably.

Van Flandern has published a number of results, based on repeated analyses of
virtually the same data. Over a span of a half decade, his estimates of G/G' have varied
from (—12 j: 3) X 10‘11yr’1 through 0 to (+3 1 1) X 10’11yr‘1 (Van Flandern,
1974 and 1979). Based on our experience with similar types of observations, we
believe that it is not possible to obtain a reliable value for a standard error nearly
so small askthose given by Van Flandern. Further, there is little hope for substantial
improvement with the use of the classical observations, these were gathered over a
period of a few hundred years and provide a limiting uncertainty which cannot be
improved upon within a time scale short compared to a century.

An alternative approach which was, in fact, the first to be used to estimate G/G
with useful accuracy, is based on radar data which determine planetary positions
on an atomic time scale. If G 4: 0, the orbital phase of a planet would develop an
offset which would grow quadratically on an atomic time scale. The corresponding
signature in the radar observations would be periodic with an envelope that would
increase quadratically with time. Our analysis (Reasenberg and Shapiro, 1976)
provided the bound |GIG| g 1.5 X 10—10 per year. Preliminary sensitivity studies
combining radar and Viking data show that the uncertainty can be reduced to
about 10’11 per year. Within a year we hope to obtain an estimate of GIG with an
uncertainty at that level.

We now consider possible spatial variations of the gravitational constant. Long
(1974) has correctly noted that there is little experimental basis for the assumption

7

N PNfi
— P—n

1 1 Proceedings GR 9
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that the value of G applicable in the laboratory is also applicable for astronomical
distance scales. He notes that on theoretical grounds it has been argued that G
could vary With position over distances small compared to those distances encountered
in an astronomical setting.

Long has analyzed 19th century data from terrestrial laboratories. When he
plots the estimated values of G versus in (R), where R is the separation between the
test masses, he finds that the values of G fall near a straight line with a slope that, at
least formally, is significantly different from zero. Unfortunately, as with much old
data, there are difficulties in determining reliable values for the uncertainties. The
data Long analyzed were obtained by different experimenters working in different
laboratories under different conditions and may well contain subtle biases which are
not discernible from even a careful reading of the original papers.

Long (1976) has also done a laboratory experiment and has obtained a result which
he describes as being consistent with the result he obtained from his analysis of 19th
century data. However, this result has not been confirmed. Independent and more
accurate laboratory experiments (Spero et al., 1980; Newman et al., 1980) to measure
the variation of G with distance yielded a result consistent with G not varying for
separations from 2 to 5 cm, as expected from ordinary theory. More experiments are
being planned to seek evidence for a spatial variation of G over larger distance scales.

3.7. Precession of Gyroscopes

The possibility of using a gyroscope in Earth orbit to test a prediction from general
relativity concerning the dragging of inertial frames was suggested independently
by Pugh (1959) and by Schiff (1960). A Stanford group has been developing the techno-
logy for this test for about 15 years. There are two principal effects to be measured:
the first is the so-called motional effect which is related to the Lense-Thirring preces-
sion; for a gyroscope in a low polar orbit, the direction of the spin axis is predicted
to change by about 0705 per year. The second is the geodetic precession, for which
general relativity predicts the direction of the spin axis to change by 7” per year.
Needless to say, this experiment is extremely difficult to carry out successfully.

The Stanford group has developed a design concept in which two pairs of counter-
rotating gyroscopes and a proof mass orbit for two years in a drag-free configuration
much like the one discussed earlier. The instrumentation would be cooled by liquid
helium. Several areas of technology have been advanced in this development and most
of the concepts have been tested successfully in the laboratory. The gyroscope ex-
periment appears ready for flight in Earth orbit (Everitt, 1980).

In the past decades, advancing technologies have made possible new and more
accurate tests of the theory of gravitation. So far, the experiments have been con-
sistent with the predictions of general relativity. The decades to come will surely
bring even more stringent tests based on technologies which perhaps have not yet
even been conceived.
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Quantization about Classical Background Metrics
G. W. Gibbons (Cambridge/U.K.)

I have been asked to survey the current status of this field and I shall try to cover
what seems to me to be the most interesting developments since the last General
Relativity Conference at Waterloo in 1977. In a talk of this length it is impossible
(even if desirable) to mention everything that has been written on the subject in
that time. To the extent that any selection is inevitably subjective I risk the danger
of neglecting material which others (or Time) will see in a quite different light.
Let me therefore take this opportunity of apologizing at the outset for any uninten—
tional omissions or misrepresentations.

l. The Subject Defined

To begin with it is perhaps a good idea to ask precisely What is being reviewed. Several
different attitudes to the subject have recently emerged and these affect considerably
the questions asked and the methods used to answer them. These attitudes may be
summarized under the following headings:

1. Pure External Field Theory
2. a," : swam
3. The Background Field Method in Lorentzian Spacetime
4. The “Euclidean” Functional Integral Approach
Let us take these in turn.

1.1. Pure External Field Theory

By this I mean the view that the metric gm really is fixed or given to one ahead of
time, only “matter” fields are quantized. Although this is, on the face of it, mathe—
matically a completely consistent theory per se no-one would, I imagine, regard
it as physically satisfactory since no possibility is allowed for the metric to react to
the effect of the matter present. At best it is usually thought of as an approximation
to some more exact theory. Recently Duff [1.1] has questioned this extent to which
it can ever be regarded as a consistent approximation to any more extended theory.
I shall comment further on this below.
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1.2. Gm = 81t<TM)

By this I mean the View that the metric should not be quantized at all and that back
reaction effects are computed using regularized expectation values of the stress
tensor in Whatever state is of interest.

Recently Kibble [1.2] and later Kibble, Randjbar-Daemi and Kay [1.3] have argued
that mathematically this is a well defined theory though it is not Quantum Mechanics.
Indeed Kibble [1.2] points out that it can be regarded as providing a sort of non-
linear generalization of Quantum Mechanics in which the Principle of Superposition
is abandoned. Physically on the other hand, this theory leads one to a number of diffi-
culties of interpretation and it is by no means obvious that these can be solved. HOW,
for instance, does the spacetime geometry change when a quantum mechanical
“measurement” is made? By the full amount corresponding to the actual measure-
ment or by a reduced amount corresponding to its expectation? How does one make
sense of the “delayed choice” experiments, so beautifully described by Wheeler at
this Conference, in this picture? Furthermore, it would seem possible to violate the
Uncertainty Principle for ordinary matter if one does not allow the gravitational
field to respond to the full change rather than its expectation value — cf. the famous
discussion between Einstein and Bohr which hinges precisely on this point [1.4].
Problems like this seem to me to make this theory physically untenable. On the other
hand, “Pure External Field Theory” is presumably a consistent mathematical appro-
ximation to it. Finally let me remark that if quantum fluctuations are small (i.e. the
dispersion in the quantum state is small) G,“ = 87-:(j1‘1.) seems to be a reasonable and
consistent approximation to describe the gravitational effects of very many particles
as for instance in a neutron star. Indeed all current work on neutron stars is based
precisely on this idea. Such fluctuations are however not small about the vacuum
state.

1.3. The Background Field Method in Lorentzian Spacetime [1.5]

This is of course the standard, obvious, view of the subject although this is not very
clearly stated in most papers. One expands both the matter fields and the gravitational
field about some classical background metric and matter field configuration. Schema-
tically:

$7 = (PC + 59%

gm : glue + 69;“:

where for consistency {w gflfi} solve the classical equations of motion. 69“. represents
“gravitons” and an important point (for ciblymade by Duff [1,1]) is that the effects
of gravitons are comparable with those of “matter” particles as far as the production
of particles and their contribution to closed loops is concerned. That is at this level
gravitons cannot be ignored.

A good illustration of the point is provided by Page’s computations [1.6] of the
graviton emission from black holes Where it amounts to 2% of the total for a hole
whose mass exceeds 1015 g.
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Once the basic point has been realized it becomes difficult, if not impossible, to
maintain a clear cut distinction between matter and metric fluctuations. They are of
the same magnitude and in the quantum theory one expects to be able to make
arbitrary field redefinitions which leave physical quantities like the S—matrix or
other global objects invariant but which mix the local metric with the matter fields.
Furthermore, as has been emphasized by ’tHooft [1.7] typical quantum corrections
will involve effective actions in which the curvature tensor couples to the matter
field derivatives in such a way as to alter the characteristics of the matter field
equations. That is gf” no longer gives the light cone. A striking example of this occurs
in the work of Drummond and Hathrell [1.8] who compute one loop vertex correc-
tions to QED in an external gravitational field and find to order eglm2 the effective
action

1 62 1I 175,31?” — — — {—5Rraflrafl + zaizwrwrg — 2R“ Fafirw — 24Fu6fiFMi0}m2 28807:2 ’iii”

The term RaflmFafiF“ gives rise to characteristics Which lie outside the light cone
defined by 9,3,. This paper raises but does not entirely resolve the difficult question of
what precisely is the background metric and how well defined is it in the presence
of quantum effects. It would be interesting to see how the characteristics change under
a field redefinition of the background metric and electromagnetic field for example.

1.4. Expanding about Riemannian Metrics

In flat space quantum field theory it is customary to evaluate functional integrals
by “Wick rotating” to imaginary time and dealing with Euclidean quantum fields.
Physical amplitudes are obtained by analytic continuation back to Minkowski space.
The analogue in General Relativity is field theory in spaces with a positive definite,
Riemannian, metric. The idea that the path integral for gravity is to be evaluated
by summing over positive definite metrics is referred to as “Euclidean Quantum
Gravity” and leads naturally to a consideration of quantum fluctuations about clas—
sical solutions of the Einstein equations (“Gravitational Instantons”). There has been
a considerable amount of activity in the field since Waterloo and this will be dis-
cussed later. However, now is perhaps the time to make What is an important general
point. The realization by particle physicists of the existence of solitons and magnetic
mono—poles in Minkowski spacetime and of Yang—Mills Instantons in Euclidean space
has led to an enormous interest in expanding the full quantum equations about
classical backgrounds. Structurally, Yang-Mills theory and General Relativity have
much in common and a great deal can be gained by studying them together or by
trying to extend ideas found useful in Yang-Mills theory to Gravitation. Examples
of this will appear later.
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2. Experimental Aspects

This section is by far the shortest and easiest to write — there are very few experi-
ments. However it is perhaps worth mentioning a few relevant experiments and ob-
servations on the behaviour of elementary particles in gravitational fields. Good
remarked several years ago [2.1] that the KL, KS mass difference is so small that one
could rule out the possibility that particles feel the earth’s gravity differently from
antiparticles. Measurements on non-relativistic neutrons falling under gravity have
shown that they do indeed satisfy Schroedinger’s Equation [2.2] with spinorial wave—
functions [2.3]. Perhaps more relevant for our present interest is the apparent ob-
servations of electron-positron pairs production by classical electromagnetic fields
[2.4].

Of course there are numerous astrophysical consequences of the Hawking evapora-
tion by Black Holes including the interesting remark by Turner [2.5] that interactions
in Grand Unified Theories may cause the asymmetric production of baryons over
antibaryons. This offers some exciting prospects for cosmology [2.6] but is a little
outside our present topic.

3. Particle Creation

This is usually thought of as pair production. However it has become clear that under
suitable circumstances this description may not be correct. Labonte [3.1] and later
Wald [3.2] realized that the general theory of fermion Bogoliubov transformations
allowed the possibility of “strong Bogoliubov transformations’ ’ which would correspond
to the creation of particles and antiparticles (not necessarily in equal numbers) with
absolute certainty rather than in pairs with a certain probability as is usually the case.
Unaware of this work I found an explicit example of this phenomenon [3.3] and was
able to relate this to the gravitational anomaly in the conservation of the axial current
[3.4]. The parallel phenomenon in Yang-Mills theory was discovered independently
by Christ [3.5]. Later work by myself and Richer [3.6] has shown that gravitationally
single fermions can be created — a phenomenon which can occur in Yang-Mills theory.

Adopting an abbreviated notation we expand the field operator 4,0 as

v3 = pmdm + nmfifi. (3.1)
= pontdout ‘l‘ noutég-ut (32)

where pin and pm“ are positive frequency solutions in the past or future respectively
and um and mm” are negative frequency solutions. d and b are the corresponding
annihilation operators.

. . A B(pout, flout) : (pm, ”111) ( ) (3-3)

= (pin, an) s (3.4)
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Where S is the Classical S-matrix. Then

din A B ‘0.+ = {‘3‘ (3.5)
bin 0 D bout

In order to preserve the commutation relations and conserved inner products 8
must satisfy the unitarity constraints

S+Gs : G (3.6)
SGS+ : G (3.7)

where “L denotes transposed conjugate and for

BOSONS
1 0G: (0 _1) (3.8)

But for

FERMIONS

1 0a:(0 1) (3.9)
These yield the following constraints for the Bogoliubov coefficients

BOSONS

AA+ — BB+ : 1 (3.10)

011+ — DB+ = O (

00+ — DD+ : —1 (

AtA —- 0+0 : 1 (3.13)

B+A —— D+C = O (

B+B — D+D : —1 (

But for

FERMIONS

AA+ + BB+ : 1 (

011+ + DB+ = O (

CO+ + DD+ = 1 (3.18)

AM + 0+0 = 1 (
B+A + D+0 : 0 (

B+B + D+D = 1 (
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We introduce the operator F by

F = (3+)+ 2113+
where for

FERMIONS

M is a skew symmetric matrix

but for

BOSONS

III is a symmetric matrix

[R d] = “Mbt

[in 13] = —Ma.+
thus

e-Fdef" = d + 3113+
e-Féefi =13 + Md+

defining the state IB) by

13) = exp <—F 10—»,

(3.22)

(3.23)
(3.24)

(3.25)
(3.26)

(3.27)
where |0_> is the “in-vacuum” and F out is constructed from the out creation opera-
tors. The in-vacuum )O_> satisfies

din \0—> = 0
5m JO—> = O

that is

(Ado... + (AM + B) ‘3...) [3) = 0
{(5 + 5M) d3... + 1713012} ll?) = 0

If det A 2|: 0 we have 3 Weak Bogoliubov Transformation. We choose

M = —A‘1B
and

13> = exp 1W ro+>
whence

m = exp (—iW) exp F [03
l<0+ l W = exp (—2/mW)

(3.28)
(3.29)

(3.30)

(3.31)

(3.32)

(3.33)
(3.34)
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and for

BOSONS

|<0+ | 0—>|2 = ldetAl’Z (3-35)

While for

FERMIONS
l<0+ I 0,))2 : Idet AI+2 (3.36)

The weak Bogoliubov transformations correspond to pair creation since (0,) contains
out—pairs. For bosons the unitarity constraint (3.10) shows that det A is never zero
(it may well be infinite) and so bosons are always created in pairsl). 0n the other
hand for fermions the unitarity constraint (3.16) allows the possibility that det A
should vanish. If this is the case then the Bogoliubov Transformation is said to be
Strong. If Hg) is the one particle in Hilbert space and similarly H93), Htti etc. we
have that

A: H”l —> Hf; ’out

(—) (+)H —>HmB'- out

0: H232 +1???
D.’ H31: —> HE:

The unitarity equations show that 0 provides a bijection 0f the Kernel of A into
the Kernel of D, and B provides a bijection of the Kernel D into the Kernel of A. Now
restricting equation (3.30) to the complement of the image of A (which is non empty
since det A = 0) we have

1313;,t (B) : 0 (3.37)

Which will be satisfied if |B) has all antiparticle states in the Kernel of D occupied.
Similarly equation (3.30) requires that all particle states in the Kernel of A be filled.
On the image of A we may invert A and construct an F which creates pairs. Thus

|0_) 2 at [3) (3.38)

and [0) contains dim KerA particles and dim KerD antiparticles with certainty.
In fact

(0+ ) 0,) : 0 (3.39)

1) Audretsoh [3.15] has given an interesting example of a Robertson Walker universe for which
A = I and B = 0 for bosons and yet presumably vacuum polarization effects are still present.
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The net excess of particles over antiparticles is given
AN = dim Ker A — dim Ker D (3.40)

= dim Ker A — dim Ker A+ (3.41)-

: index A (3.42)

where (3.42) defines the Index of the Fredholm operator A. This discussion is essen-
tially that given by Christ [3.5]. I have repeated it here at length because most re-
views of the subject cover the boson case and omit this fermion case thus missing some
interesting physics. The final result may be easily understood in terms of “hole
theory”. Kernel A can be thought of as outgoing positive frequency waves which had
no positive frequency component in the past and similarly for the Kernel D with
positive changed to negative. Since in hole theory such states were filled in the past
they must be filled with certainty in the future. ,

The above decision is general. A specific example in the context of cosmological
particle production was givenin [3.3], [3.4] and [3.7] for neutrinos where it leads to
a violation of the neutrino number. This violation is in fact the well known anomaly
in the conservation of the chiral current in a different guise.

The basic idea is that for a metric of the form
as = —dt2 + gums, 13) def dxi (3-43)-

the instantaneous energy eigenvalues and eigenstates will not in general be in 1—1
correspondence if parity is broken. As time varies the energy-eigenvalues will change
and may even change sign. Such sign changes or “level crossings” correspond to
strong Bogoliubov transformations and the total number with due regard being paid
to sign (called by mathematicians the “spectral flow”), gives the total excess of
particles over antiparticles created. This turns out to be even. If however one adds
cross terms to the metric:

ds2 = —(dt —]— a),- dx“)2 —|— gU-(m, t) (155“ dmf (3-44)
it can be odd [3.7].

Another interesting development in the general area of particle creation is the
realization by Birrell and Davies [3.8] that in interacting field theories the Well known
argument of Parker and Zeldovich [3.9], [3.10] that there should be no creation of
non-interacting conformally invariant particles in conformally flat spacetimes,
breaks down when one considers the effects of the renormalization of coupling
constants. This renormalization introduces a mass scale — call it y — and thus
breaks conformal invariance unless by chance the renormalization group fi-function
vanishes. The result is that “conformally invariant” particles can be creat edeven in
Robertson-Walker spacetimes. Further aspects of the effects of interaction upon
particle creation are given by Birrell, Davies and Ford [3.11].

Other aspects of particle creation which have recently received some attention are
production by “white holes” by Wald and Sriram Ramaswamy [3.12] and of massive
particles in anisotropic cosmologies [3.13]. The Whole area Of cosmological particle
production has been ably reviewed by Hu [3.14] recently and the reader is referred
there for further information.
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4. Renormalizability of Interacting Field Theory
about Fixed Backgrounds

It is well known by now that non—interacting field theory on fixed backgrounds gives
rise to divergences in for example the expectation value of the stress tensor (TM)
which cannot be eliminated by a renormalization of the cosmological constant A and
Newton’s constant G but which can be eliminated if one introduces new terms in the

gravitational action proportional to R2 and 13.513“ — 5R2 . Recent reviews of the

methods used to establish these results are given in [4.1] and [4.2]. The introduction
of “boundaries” can change this situation and introduces (at least if one uses stand—
ard Dirichlet or Neumann boundary conditions) new infinities. Some of these can
be regarded as coming from surface contributions to the gravitational action but
others remain — even in flat space [4.3], [4.4].

The question naturally arises Whether or not interactions introduce any new
infinities. Does a theory which is renormalizable in flat space remain so in curved
space? This latter question has been answered (as far as the Green’s functions of the
theory are concerned) affirmatively by Freedman and Pi [4.5] using perturbation
theory about flat space and by Birrell and Taylor [4.6] using generalizations of tech-
niques used in flat space. These results enable one to conclude that using the Thermal
Green’s function techniques introduced by Perry and myself [4.7], that black holes
can remain in equilibrium with a bath of interacting thermal radiation at the black
hole temperature. This does not mean however that the spectrum of emitted particles
is Planckian since particles escaping from the horizon can interact with each other
(just as radiation escaping from the centre of a star can) to cause deviations. Some new
work by Hawking [4.8] provides a framework for computing this effect.

In addition to these general analyses there exist discussions of the renormalization
of vacuum—vacuum amplitudes in Robertson-Walker Universes by Bunch, Panan—
gaden and Parker [4.9], [4.10] for 1494 theory to second order using the concept of
normal ordering and adiabatic regularization, and in a general space, again to second
order using a momentum space technique, by Bunch and Parker [4.11]. This latter
technique which bears a close relation to the Wigner method in quantum mechanics
and the theory of pseudo differential operators in Pure Mathematics appears to be
a powerful means of analyzing curved space wave equations.

For a more detailed discussion of the renormalization of interacting theories in
curved space and other aspects of the interacting field theory in curved space the
reader is directed to the recent review by Birrell [4.12].

5. Topological Effects on Lorentzian Spacetimes

There has recently been a considerable upsurge of interest in topological effects.
This interest stems from a widespread suspicion that spacetime is not smooth and flat
on small scales but may have an extremely complicated topological structure on scales
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1/2
comparable with and perhaps much smaller than thePlanck length E?) I: 10‘33 cm.

0
This is because (as has been repeatedly emphasized by Wheeler) one expects large
quantum fluctuations of the metric at this scale and below. One might also think of
these fluctuations — in some loose sense — as “virtual” black holes [5.1] which might
be formed because of fluctuations leading to an excess of virtual gravitons in a par-
ticular region of space. Such black holes should then evaporate almost as quickly as
they have formed via the Hawking evaporation process. The net effect would be a
short lived fluctuation or dislocation in the causal structure of spacetime (see fig. 1)-

‘ . " "ll/"flight cones

1’ x l ‘1’ _ t

z x
.'/l

I.

1/
Fig. 1. A virtual Black Hole as a short lived dislocation in the causal structure of
space time. N.B. Null rays are only at 45° near the true plot.

If this picture is correct it might help us to overcome the problem of the diver-
gences in quantum field theory and quantum gravity; A foamh'ke structure at Planck
scales and below might produce an effective cutoff on Feynman integrals. These
virtual black holes might interact with elementary particles and give rise to observ-
able processes which are otherwise forbidden, for example baryon decay [5.2], [5.3],
[5.4]. For instance a virtual black hole might swallow a proton and spit out a positron
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and some photons. Only conservation laws associated with long range Yang—M ills
type fields would still hold in the presence of gravity. Of course baryon decay is now
permitted in Grand Unified Theories which put the quarks and leptons in the same
TBpI‘BSBHtEl-tlons. One might speculate that these Virtual black holes “wormholes”
might give rise to other interesting processes [5.5], particularly if they can carry a
handedness, analogous to those described in section 3.

The problem with trying to implement some of these ideas in Lorentzian spacetimes
are however formidable. To develop Quantum Field Theory convincingly, the space—
time must be globally hyperbolic which implies that its topology is R X E where 1-3
is the time and E some spacelike surface. In particular the topology cannot change
[5.6]. The existence of the Lorentzian metric or the existence of a foliation both
imply the existence of an everywhere non vanishing vector field. For closed manifolds
(compact without boundary) this requires a vanishing Euler number, x, and in fact the
vanishing of Z for a closed manifold is the necessary and sufficient condition for the
existence of a foliation of codimension one [5.7]. From this it would appear that the
Euler characteristic can play no role in the quantum field theory on globally hyper—
bolic spacetimes. One way to evade this obstruction is to move into the “Euclidean
Regime”. Indeed it seems to me a compelling reason for pursuing the Euclidean
approach. This will be the subject of later sections, in the meantime I wish to con—
sider what has been done in Lorentzian spacetimes.

There are essentially two sorts of topological effects that can arise in such spaces.

1) Effects arising purely because the topology is non trivial
2) Effects arising because the space in which the fields take their values is non

trivial. These effects can only happen if E is topologically non trivial.

1) IEE is not simply connected (751(2) # 0) we can move to the universal covering
space 2'. Typically one can regard E as an identification space obtained by identifying
points on 27 under the action of a discrete group of isometries F i.e. E : 27/11 It
is then the case that the fundamental group mm!) is isomorphic to 1". (An excellent
account of the basic mathematical concepts required here is given by Dowker [58]).
If i is compact the Poincare Conjecture implies that it is homeomorphic to 83. Non
compact S can frequently be regarded as being homeomorphic to S3 with N points
removed. For asymptotically flat manifolds, E the number of asymptotic regions
is N. If 2: is compact the homology groups H1(Z) and 1112(2) are isomorphic by Poin—
care Duality and are (by Hurewitz Theorem) given by the abelianization of F that is
F/[F,F] where [RF] is the commutator subgroup of F ({g:g : aba‘lb‘l; (1,?)
E Fl). H203) is isomorphic with b2 copies of Z the group of integers together with
copies of cyclic groups (the torsion subgroup). Geometrically b2, the second Betti
number, gives the number of independent 2-spheres which cannot be shrunk to a
point- Commonly encountered examples are the “elliptic” spaces where 2? : S3
and T a suitable subgroup of 80(4). Table 1 shows some typical 3-manifolds and
their homotopy and homology groups.

The relation between quantum field theory on spacetime and on its universal
covering space has been much studied by Dowker and Banach and Unwin under the
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name of “Automorphic Field Theory” [5.9] to [5.15]. The basic tool is the “method
of images”. Let G(:v, y) be a Green’s function on the universal covering space 5' then
0(93, 3;) = Z G(:c,gy) a(g) is a Green’s function on E = Z/T' Where a(g) is some uni-

gEF
tary representation of F. The introduction of a(g) allows one to introduce “twisted
fields”. That is we contemplate fields which are not functions but sections of some fibre
bundle over spacetime.

Table 1 Some compact 3 man-{folds

G" N2 111(2) H1(M, Z) H1(M, Z2)

S3

RPa
S1 X 82
S1 X S1 X81

N

+z+z

N

+Z+Z N
N

N
O

N

Z2+Z2

3-sphere
real projective space
wormhole
Torus
p-wormholes
Lens Space p = 1 mod 2
Lens Space 13 = 2 mod 4
Lens Space 1; = 0 mod 4
Binary Dihedral Space
n = 1 mod 2
Binary Dihedral Space
n = 2 mod 4
Binary Dihedral Space
in. = 0 mod 4
Binary Tetrahedral Space
Binary Octahedral Space
Binary Icosahedral Space

N
N

lfi

1+8(1))
Mam
L(P, q)
Ham
SZ/Dfll

'D '6 N
o
fi

N'U 'U

NU
N

N
N
fi
N

N
N

o

N
N

N
N

N
N

N
O

is
'U

c
o

c
c
i-
c
1

W
H

O
O

U pie Z4 M

S3/D*n e il-
5

N
N! + N
N

O

N
N

NN
[\7

+
N

N
N

+

toSs/Dfll
S3/T* T* Z3 0
33/0“ 0* Z2 . 0
S3/I* 1* O i 0 O

N
O

Ni

2) By now it is generally recognized that mathematically “fields” should be re-
garded as sections of a suitable fibre bundle E with projection map :5 and Whose base
space is spacetime M. The simplest case to consider is When the bundle is trivial.
Topological effects then arise from the topology of M because the fibres have non
trivial topology. The latter case includes various generalizations of the non—linear-
model in which the fields take their values in spheres or other similar spaces [5.16].

Since in 4-dimensions these models are not renormalizable they do not provide
very useful models in particle physics and rather more interesting it seems to me
are Yang-Mills type theories where the bundle is either a principal or associated
bundle With structural group G, and G is a Lie Group. Another possibility is that G
is a discrete group like Z2 and one obtains the twisted fields introduced by Ishanl
[5.17].

The classification of all principal G-bundles over spacetime has been discussed in
an important article by Avis and Isham [5.18]. The results have been summarized in

[5.19]. One finds that Z2 bundles are possible only if the manifold is not simply connec-
ted and are in 1— 1 correspondence with elementsl) of H1(M, Z2). In terms of the auto-

1) The number of elements in H1(M, Z2) ist called the Moebiusity of M.



Quantization about Classical Background Metrics 177

morphic fields approach a(g) : j: 1 depending on the path With Lie groups the solu-
tion is much richer. If G = SO(n), Sp(n), G2, F4 and E8 the bundles are classified by
the familiar instanton number or second Chern number, provided M is compact and
orientable, otherwise they are all trivial unless special boundary conditions are im-
posed. The group U(1) is especially interesting since we are now talking about
electromagnetism. As is well known non trivial U(1) bundles are specified by ele—
ments of H2(M, Z). By de Rham theory these may be represented by closed but
inexact Maxwell fields whose flux satisfies the Dirac Quantization condition. In
Lorentzian spacetime one is in effect talking about quantized versions of the worm—
holes introduced by Misner and Wheeler in their well known paper on “Geometro—
dynamics” [5.20].

The quantization of the Maxwell field in spacetimes for which H2(M, Z) =|= 0
presents some interesting new features. A simple example would be the Schwarz—
schild solution. If one does not quantize the magnetic chargeP one has a two para—
meter family of “vacua”. Transitions between the vacua are not allowed because of
a “superselection rule” and the representations of the CCR’S are not Fock ones.
This situation has been analyzed by Ashtekar and Sen [5.21]. Each vacuum state
corresponds to a spontaneous breakdown of duality invariance. Sorkin [5.22] has
also studied this problem. If one introduces charged matter fields one has no option
but to quantize the magnetic monopole moment. One then has the possibility of
gravitationally induced CP violating effects [5.23]. Let me here remark parentheti—
cally that in Riemannian metrics there is no distinction between magnetic and electric
charge and indeed the electric charges are also quantized [5.24], [5.25].

The zero point energies of twisted scalar fields have been discussed by Hart,
Isham and de Witt [5.19] and Banach and Dowker [5.13]. I have tabulated some of
the results from this latter reference in Table 2 which nicely illustrates the effects
of spacetime topology and twisting. In general it appears that twisting always
increases the zero point energy. Note that the sign of the zero point energy can be
either positive or negative. For interacting fields more dramatic effects are possible.
Spontaneous symmetry breaking in flat space depends upon fields Whose values are
constant and non vanishing. These correspond to an everywhere non vanishing sec-
tion of the fibre bundle and will not exist if the bundle is non trivial. Thus in a topo—
logically non trivial background the vacuum state will not be homogeneous. This and
the stability of the twisted vacua are discussed in some detail for the case of E
2 S1 X R2 by Avis and Isham [5.26].

Another quantum effect on scalars which arises in spaces with non trivial topology
is the possibility of “topological mass generation” discovered by Ford and Yoshimura
[5.27], [5.28] and elaborated upon by Toms [5.29], [5.30]. The basic idea is to start
with a theory like Aqu‘l which has only dimensionless coupling constants and con—
sider quantum corrections in a region of size L by evaluating the effective potential
for (p. These give rise to terms quadratic in (p with a coefficient of order L‘z. They can
either be mass terms (if they have one sign) or if they occur with the opposite sign
they can cause spontaneous symmetry breakdown. Clearly for cosmological distances
(i.e- closed universes) the mass is negligible. It may not have been in the past, cf.
[5.31]. At the Planck length it is enormous. This might lead to difficulties if one tried

{2 Proceedings GB. 9
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to introduce scalar fields into a theory of spacetime Which incorporated the idea of
topological structure at Planck scales. Certainly this and the Avis Isham example
indicate that the Higgs mechanism in topologically non trivial spacetimes can be
very different from What it is in flat spacetime (cf. [6.37], [638]).

Table 2 Scalar zero point energies on some homogeneous
3-manifolds, radius a

E i Moebiosity Untwisted Twisted

sa

RP3

33/24

S3/D’“2

l 1 1

2400,
—7 1

iififi 7;
—67 1

_Z§6—7E
—18'7
960

30
53 1
480 a
53

iii?
——3761 1
8640 I;

11321
17260
——43553

8971* f 43 200 /

83flF* 2
3 799
17 280sw0* 2

A potentially even more dramatic effect of n1(M) has been discussed by Kiskis

[5.43]. Consider action invariant under 0(2) — e.g. 2 scalar fields, (pl and (p2. One

might wish to define a charge by assigning say charge +1 to the combination

JV: (go1 + iq) and — 1 to % (971 — i922). This can always be done locally but if the 0(2)
2

bundle is non trivial it may not be possible to do it globally (i.e. reduce the bundle’s

grmxp from UK!) to 80(2)). Thus “charge” cannot be globally defined and hence

not globally conserved. This effect is possible only if n1(M) 2|: 0. A potentially inter-

esting em triple from the point of view of N = 8 supergravity is a theory whose algebra

is that of 80(8) which has a finite automorphism group, 9, of order 6. This gives rise

to inequivalent discrete bundles labelled by H1(M, .9).
The other sot“: of boson field occurring in Nature are Yang—Mills fields. Topological

effects of muse fields have received some study in Lorentzian spacetime from the

point of View of Marl; holes [5.32] to [5.37] and also in Riemannian spacetime [5.38]

m [5.42] from :he win: of View of 31151311:a but presumably progress in this field
will have to await a better understanding of the flat space theory. Nevertheless it
should be possible to clarify the question of What Yang—Mills “hair” and monopoles—
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structure a black hole can support. At present no complete treatment of this exists in
the literature.

The various effects associated with spinorial fields will be discussed later.

6. Ricmannization

In modern flat space quantum field theory, both in rigorous “constructive” quantum
field theory and in the more heuristic approaches, extensive use is made of the Eucli—
dean ansatz [6.1, 6.2]. Green’s function and functional integrals are first evaluated
on flat Euclidean 4-space and physical values obtained by analytic continuation in
the imaginary time variable — the so called Wick rotation. Provided certain condi-
tions hold — the most important of which is the requirement of Reflection Positivity
~— the analytically continued Green’s functions define a quantum field theory satis-
fying the Wightman axioms. Indeed using Reflection positivity the Hibert space of
quantum mechanics can be constructed entirely in geometric terms in Euclidean
space without having to analytically continue back to Minkowski space [6.3, 6.4].

It is natural therefore to attempt to carry these ideas over to quantum field theory
in a fixed background metric. This has been done in some cases [6.5, 6.6] and has shed
much light on the thermodynamic behaviour of event horizons and their quantum
radiance [6.7]. In particular it has allowed the introduction of powerful thermal
Green’s function techniques to discuss interacting fields around black holes [6.8].
Furthermore it has lead to the development of the elegant and powerful technique
of zeta—function regularization to deal with functional integrals in curved space
[6.10, 6.11].

However the problem with this technique is that most spacetimes do not admit a
Riemannian section. One possible way out of this would be to introduce an arbitrary
timelike vector field and consider the class of metrics

gar“) : 1V. Vfi + 9w (6-1)
One now considers the theory as a function of l, A : —2 corresponding to a positive
definite metric (6.11).

Recently Uhlmann [6.12] (see these proceedings) has shown how to apply the idea
of Reflection Positivity to curved space. He requires a Riemannian space {M, gag)
equipped with a reflection map 0 : M —> M such that

1) 6 is an isometry of gag
2) M may be decomposed into two disjoint regions Mi such that 6Mi : M3F
3) (8M+) 0 (8M‘) is a smooth hypersurface

Using 6 Uhlmann shows how to construct the Hilbert space of Quantum Mechanics.
For spaces with hypersurface orthogonal Killing vectors (i.e. the analytic continuation
of static spacetimes with no horizons) Uhlmann’s method gives the standard results.
In more general cases it may still be useful where other methods fail. However it
clearly cannot be generic. Furthermore it is interesting to note that there is a topo—

12*
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logical obstruction to the existence of such a 6, the Pontryagin number of the manifold.
This is because 6 reverses parity. The Pontryagin number is an integral over the mani-
fold of Ra5,6E“5“”RP,7/" plus possible boundary terms. Since the integrand is odd
under 6 and the boundary terms vanish if the boundary has an orientation reversing
isometry [6.13] the Pontryagin number must vanish. It is easy to construct examples
of manifolds with non vanishing Euler number, x, which admit a 0-map. Of course if
one wished to construct a Hamiltonian by defining a time coordinate one would also
encounter the Euler class as a topological obstruction.

Within the limits of Quantum Field Theory on a fixed background these diffi-
culties described above limit the general utility of Riemannization techniques
although much can be done (see e.g. [614]).

Where these techniques really come into their own is in the Riemannian approach
to Quantum Gravity [6.15, 6.16, 6.17, 6.18]. In this approach one regards the path
integral for gravity as being over all Riema-nnian (positive definite) metrics of a
certain class. The boundary conditions satisfied by the metrics correspond to the
freedom to pick an arbitrary matrix element in the conventional Hilbert space ap-
proach to Quantum Mechanics. In practice it seems that three sorts of boundary
conditions are relevant for Quantum Gravity.

1) Asymptotically Euclidean metrics (A.E.)
2) Asymptotically Flat metrics (A.F.)
3) Compact metrics.

These are relevant for the description of the

1) Vacuum State
2) Grand-Canonical Ensemble
3) Volume-Canonical Ensemble

for Quantum Gravity. The definitions of these metrics are as follows.

1. An asymptotically Euclidean metric is one that inside a compact set K tends to
the standard flat metric on ]R4

2. An asymptotically Flat metric is one that outside a compact set K tends to the
standard flat metric on R3 X S1 with the time periodically identified.

3. By compact is also meant with boundary sometimes called “closed”.

Stationary points of the gravitational action amongst these classes of metrics satisfy
the Einstein condition Rafi = Agag and are called “gravitational instantons” [6.19].
In addition to these boundary conditions there exist weakened local forms — the
ALE [6.20] and ALF [6.21] boundary conditions Whose physical interpretation is at
present unclear. Accounts of the properties of the known gravitational instantons
are given in [6.22] and [6.23].

The action for gravity is unusual in not being positive definite in the Euclidean
Regime [6.24] and this shows up when one quantizes around a background field [6.25].
A special prescription must be made to deal with conformal deformations which can
decrease the action by arbitrary amounts. Deformations of the metric which change
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the conformal structure will in general increase the action. If metrics obey the All
boundary conditions such changes will always increase the action —— by the Positive
Action Theorem [6.26, 6.27]. For AF metrics however some changes of the conformal
structure can decrease the action [6.28, 6.29]. The Positive Action Theorem also shows
that the only A.E. instanton is flat space [6.27]. The Schwarzschild—Kerr family of
solutions are A.F. instantons. Since their application to the thermal properties is
by now familiar I will turn to the other general case of instantons A the closed ones.

The principle application for closed instantons is to the Hawking’s volume canonical
approach to spacetime Foam [6.30]. In this approach one sums over all compact me—
trics with a given 4-volume V. This constraint is enforced using a Lagrange multiplier
which turns out to be the familiar cosmological constant A. However its interpreta—
tion is entirely different from the standard one. Remarkably it turns out that there are
many closed solutions of Einstein’s equations with negative A, Whereas there is only
one known example with A : 0 (the K3 surface) and just four with A > 0. The
examples for A < 0 are known indirectly by an existence proof due to Yau which
settles the Calabi—conjecture [6.31, 6.32, 6.33]. Given that the metrics exist it is now
necessary to quantize the fluctuations about them. Since the background has A 2]: 0
these necessitate a modification of the usual techniques [6.33, 6.34]. Because of an
unfortunate error in [6.33] corrected in [6.34] the quantum corrections used in [6.30]
were incorrect and the (tentative) conclusions reached there must be modified. The
point is that for a general background the most one can calculate at present is the
scaling behaviour of amplitudes due to the one—loop divergences of the theory. These
cause the amplitude Z to scale as p7 where it is the renormalization mass which is
necessary to introduce in order to regularize the functional determinants. For a
closed instanton with volume V and Euler number x, 7/ given by [6.34] (for Einstein’s
Theory)

where
A2

27:2
02:

This can be either positive or negative depending upon the particular instanton.
This unsystematic behaviour is radically changed when we turn to supergravity
theories (see later). Interpretations have been suggested for other Riemannian back-
grounds but no consensus appears to have been reached as yet [6.35, 6.36].

Recently Hawking, Page and Pope have investigated the influence of a micro-
scopic foam—like structure of spacetime on the propagation of particles through it
[6.37, 6.38]. They find that whereas particles with spin are scarecely affected, scalar
particles are considerably influenced. Sufficiently so that as to suggest to them that
any Higgs scalars found in nature must be composite. Since dynamically in flat space
a scalar and a second rank antisymmetric tensor are equivalent it would be inter—
esting to see whether the conclusion held for second rank antisymmetric tensors as
well, especially since these descriptions are now known to be inequivalent at the
quantum level [6.39].
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7. Topology of 4-dimcnsional Riemannian Manifolds

As I have indicated above if one restricts oneself to Globally Hyperbolic Lorentzian
spacetimes the topology is restricted to that of the Cauchy surfaces. The object of
interest is then 7:1(M), the fundamental group. If on the other hand one works with
more general Lorentzian spacetimes or moves into the Riemannian regime one
encounters all the richness of fourdimensional topology. The topology of 4-manifolds
is a vast and difficult area of modern mathematics. In this review I shall merely
recall a few of the more important features and refer the reader to the recent review
of Mandelbaum [7.1] or the earlier and more concise account of Milnor [7.2] which
contains all that is needed for the present purposes.

First of all we note that the problem of classifying all closed 4-manifolds is an
unsolvable one [7.3]: This is because any finitely presented group can be realised as
the fundamental group of some 4-manifold and there exists no effective algorithm for
telling when two such groups are isomorphic.

For this reason attempts to classify closed 4-manifolds are restricted to simply
connected 4-manifolds and then only up to homotopy type. From a physical point
of view one cannot help wondering about the significance of this undecidability
property. Imagaine for instance what it would mean if it were (as it is not) the case
that all Feynman graphs were not classifiable. Someone doing perturbation theory
could not systematically evaluate graphs and know that he had not counted twice
or left something out. Perhaps this undecidability reflects a richness and variety of
possibilities in natural phenomena which we are at present unable to appreciate. Or
possibly some limitations on our knowledge of spacetime. Whatever the physical
significance is no progress has yet been made in understanding it and so we shall turn
to simply connected closed manifolds.

Having rid ourselves of 71:1(M) we are left only with H2 (M, Z). Elements of H2(M, Z)
can (if 2:1(M) = 0) be represented as smoothly embedded orientable 2-surfaces
(7.1) but not necessarily as 2-spheres. We then have an integer values symmetric
bilinear form I5" on H2(M, Z) obtained by counting algebraically the number of times
the surfaces intersect one another or a slightly displaced version of itself. By Poincare
duality the inverse matrix, Ii,- is also integer valued and given by the cup product
on H2(M, Z). Thus

Wm=a WM
and

daIm==1=uhth5 (1%
Using Hodge de Rham theory we may‘represent torsion free elements of H2(M, Z)

by closed 2-forms, Ff)... If {01-} is a basis of H2(M, Z) dual to F7“, i.e. such that

ffi=a, ca
01

we have
f Fi A Ff = Iii (7,4)

M
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The signature, 1:, is obtained by diagonalizing Ii,- over the reals. It is thus the num—
ber of linearly independent self—dual harmonic 2-forms (bf) minus the number of
linearly independent antiself-dual harmonic 2—f0rms (b2‘). The Hirzebruch Signature
Theorem reads

1 _
r : bf _ 52; mflyb *Raflvfl V9 d4x

: 481:2
M

where :1: denotes the Hodge dual on the first two indices. The Euler number x is given
by the alternating sum of the Betti numbers

lo—b1+b2+ +b2T—b3‘hb4 (7-5)

: 2 — b1 + 52+ ‘i— bz— (7-6)

1
= Ram WW?” 1/; (14% (7.7)

321:2 ‘

by the Gauss-Bonnet theorem.
M has spin structure (see section 8.) if the diagonal elements of Iii are even. Ii]-

is then said to be of even type. In that case M admits a tetrad field which is singular
at just one point, p. (M is almost parallelizable.) If one surrounds p with a small sphere
one gets a map from S3 —> 80(4) in an obvious way. Thus we get an element of

1
3148001)) : Z {—9 Z specified by 2 integers 2 (2% j: 31). These are related to the

vacuum states of quantum gravity [6.20, 6.18].
If M has spinor structure the Atiyah-Singer Index Theorem gives the number of

normalizable solutions of the Dirac equation counted algebraically according to their
chirality as

1
71+ — no : —§ (7.8)

If 711(M) = 0, ‘L’ and I ~ 2 gives the signature and rank of I17- One asks

(1) Does this fix I5,- up to changes of basis?
(2) Does this fix M up to homotopy type?

If Iif is not definite (2;; 2): III) I and I fix Iii. For even Ii,- it must be what it would
1 3

be for the connected sum of E X _. 2 W) 82 X 82’s and fl K319 whereas if Ii].
1 1

is odd it must be What it would be for the connected sum of —2— (§ 95 —|— T) 0132’s
v1 1 ; __

and E (E Z — I) CPZ’s, where OP2 is complex projective 2-Space, 82 X 82 the pro-

duct of two 2—spheres, K3 is Kummer’s surface and CW is 0P2 with the opposite
orientation. An optimistic conjecture would now be that the manifold must be homo—
topic (or even diffeomorphic) to such a connected sum. Thus one has a picture of
simply connected closed 4—manifolds as being built up of basic building blocks com-
prised of 8'2 X 82’s, K33 and CP2’s [6.37].
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As an example consider algebraic hypersurfaces in GP3 of degree R g 4 [7.4].

r = —% R(R2 —— 4) (7.9)

x = R(R2 — 4R + 6) (7.10)

Ii,- is even as R is even or odd. Yau’s results (6.3) now provide Einstein metrics on

these surfaces with A < 0 depending upon -1— (R + 3) (R + 2) (R + 1) real para-
meters. 3

Thus we have (R > 4)

(R—2)(R+2)R
48R even K3’s and g (R — 4)2 82 X 8%

Rodd 1301323 and gear _ 1) We

The case R = 4 corresponds to K3 but with 58 real parameters. Similarly for the
complete intersection of r hypersurfaces of degree di(75 = 1, . . . r) in OPf we have:

x =%(1c12 + B) 0 (7-11)

I = l 30 (7.12)
3

where

A =Eldi— (T +3) (7.13)
i=1

B = Ed? — (r + 3) (7.14)
i=1

0 = 5rd: (7.15)
i=1

which can be thought of as

c c
—B k3 —A2 3—33 82X8248 i I 3H: 8 ( + l l)

or
c c _

— A2 3B OF2 — A2 — B GP212 ( + l # 12 ( )

depending upon whether it has spin structure or not.
For non-compact manifolds the preceding theory must be modified — using “rela—

tive homology”. Some aspects of this are described in [6.22]. In both cases the im-
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portant point is that the topology of the manifold is given by the intersection matrix,
and that this describes how the non-trivial 2-surfaces lie in the manifold. These 2-
surfaces can be thought of as Riemannian black holes. Indeed in the Schwarzschild
case the horizon analytically continues to that 2-surface (called in [6.22] a “bolt”)
which represents the non—trivial element of H2(M) and gives the manifold a non—
trivial Euler number of 2.

I would like to thank N. Hitchin for supplying (7.11) to (7.15)

8. Spinors in Curved Spacetime

Perhaps one of the most profound discoveries of this century is that Nature makes
use of “2—valued” representations of the rotation group — i.e. of spinors. Not sur-
prisingly the introduction of spinors into curved spaces leads to some interesting new
features. The basic questions are of course:

1) Can one introduce spinors (globally) at all?
2) How many inequivalent ways are there of doing so?

In Lorentzian spacetimes the answers were given some time ago by Geroch [8.1].
In Riemannian spacetime it has also been known for some time [8.2]. More recently
the question has been re-examined by Isham [8.3]. In general the obstruction to
elevating the tangent bundle (with structural group SO(3,1) or 80(4)) to a spin
bundle (with structural group SL(2, C) or SU(2) >< SU(2)) is the second Stieffel—
Whitney class of the tangent bundle. For Globally Hyperbolic Spacetimes this always
vanishes and one is left with inequivalent spinor structures which are in 1—1 corre-
spondence with elements of H1(M, Z2). The number of these elements is just the
“Moebiusity” we encountered in section 5. These inequivalent spinor structures
arise because although the bundles as bundles are trivial the spin connection maps are
inequivalent [8.3]. One can split the local tetrad rotations into two classes, “big”
and “small”. The big rotations cannot be lifted to local SL(2, C) or SU(2) >< SU(2)
rotations whereas the small ones can. One finds that the big rotations permute the
inequivalent spinor structures amongst themselves. If one does not include all the
spinor structures on the same footing one does not obtain generating functionals
for spinors which are independent of local tetrad rotations [8.4].

The problem of inequivalent spinor structures arises from a non trivial fundamental
group. The more serious problem of there being no spinor—structure at all can and does
arise in simply connected manifolds and can clearly not be eliminated by passing to a
covering space. As mentioned before the mathematical criterion for the existence of
a spinor structure is that the intersection matrix I i,- has only even entries on the dia—
gonals. CP2 is an example of an Einstein space for which this is not true.

If the third Stieffel—Whitney class of the tangent bundle vanishes (which happens
if 7E1(M) = 0), one may use a spine structure. Physically this means that one must
consider charged spinor fields in a topologically non trivial background electro-
magnetic and gravitational field. This possibility was discussed for CP2 by Hawking
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and Pope [8.5]. It leads to the conclusion that boson fields have charges Which are
even multiples of some basic unit Whilst all fermions have charges which are an odd
multiple of this basic unit — the so called “Charge Statistics Relation”.

If the manifold is not simply connected spinc structures cannot be constructed and
one must use more general structures. For instance one can introduce a background
SU(2) Yang-Mills field [7.4]. The full range of possibilities has been discussed by
Avis and Isham [8.6].

We now turn to the quantized theory. Classically massless Dirac fields on a back-
ground admitting spinors possess a conserved chiral current,

J15 = Mme/I (8-1)

1,0” is the Dirac adjoint, because the action is invariant under chiral rotations
’q} —> e‘“751p. However when this current is regularized using Feynman diagrams or
point splitting techniques there arises an anomalous divergence and one finds [8.7,
8.8, 8.9, 9.10]

1
WJ’E’ = 192 2TC

Ram *Rwya (8-2)

as before =I= denotes Hodge dual on the first pair of indices. The right hand side of
this expression is the integrand for the Hirzebrach signature theorem and the Atiyah-
Singer Index Theorem. The relation between these facts has been discussed in [6.19,
8.11, 8.12, 8.13]. The discussion is similar to that for the closely related phenomenon
in Yang-Mills theory. Consider for simplicity a closed Riemannian manifold. (Various
boundary effects are discussed in [8.15, 8.16, 8.17].) The Dirac operator iy‘Va will
have non zero eigen values 1,, Which come in 7/5 conjugate pairs. That is if

il’avay’n = lu’l’n (8.3)

iyavdyflun) = _2'n(757l’n) (8.4)

The zero eigen values do not however come in such pairs. One can split them into 15+
modes 1p”) such that1‘

rswl“ = vi“ (8-5)
and 'n_ modes 10]" such that

ad” = —w$-" (8-6)
The functional integral for fermions is

zap, n] = f div dw exp f (WWW?! + 27% + W 1/3 as, (8.7)
Where the twiddled fields are independent of the untwiddled ones. Using Berezin’s
rules one obtains

2371517] = (172.) 1]f saw/E d4x f (1791,05)n422 exp (— ff 77mm) (8.8)
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where

is the inverse of (iyava) 1 , the Dirac operator orthogonal to the zero-modes. The extra
zero modes give rise (on differentiating With respect to the spinoral sources 7]” and 7])
to helicity changing amplitudes [9.17]. This also means that under a chiral rotation
of the sources

,7 _> eml’m (8.10)

1'1” —> 1'7” 6'1““ (8.11)
the functional Z transforms as

Z[17D,17]—> exp 2mm — m) 21279.27] (3.12)
Since formally we could have compensated for the change by transforming

y) —> e’m‘vap (8.13)

1P” ’> 171” 6"“? (8-14)
in the functional integral it has been argued [8.18] that the “measure” (117)” dip is
not chirally invariant but changes as

d1?” day —> exp 2ioc(n+ — 7L) dfu” dip (8.15)

which is consistent with the Berezin rules. Now under the transformation
1}) —> exp (—iy5) 'q) the action changes as

fiiiDy“Vaw—>f i171?“ up — f a(V"J,.5) I/g'd4x (8.16)
using integration by parts. Now

1 1n. — n_ = __ Ram saw 1/; (1495 : —— mm; 1/; (14:; (8.17)
384111:2 2

which is consistent (see also [8.19]). A different approach is to construct a current .7:
from GHQ}, y) using point splitting or zeta function regularization. This yields [8.11,
8.12, 8.13]

_ 1
V”: = —2 Emprawi — m Ram * W?" (8.18)

Integration of this expression gives the Atiyah-Singer Index Theorem.
From the physical point of view the important points are that the zero modes

give rise to helicity flipping amplitudes and that the difference of positive and nega~
tive chirality zero modes is a topological invariant. The relation between this Rie-
mannian discussion and what happens in Lorentzian spacetimes where the zero modes
correspond to “level crossings” and may be related to Strong Bogoliubov transforma-
tions is discussed in [3.3, 3.4, 3.5 and 3.6].
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9. Super-gravity and Quantum Field Theory in Curved Spacetime

Although the idea of cancelling the infinitely positive zero point energies of bosons
against the infinitely negative zero point energies of fermions goes back at least as
far back as Pauli [9.1] who thought that the equality of boson and fermion degrees
of freedom was unlikely to hold in practice, it was not until 1976 that a supersymme-
tric theory of gravity was constructed [9.2, 9.3]. Since that time developments have
been rapid and I shall make no attempt to cover them all, but refer to Peter Van
Nieuwenhuizen’s Lecture for a recent review. I merely wish here to focus on effects
arising from quantizing about non trivial backgrounds.

The first point to be made is that by there exists a version of simple supergravity
which incorporates a possible (negative) cosmological term [9.4, 9.5, 9.6] and that
gauging 0(N) supergravity for N = 4inevitably gives rise to aA term. It is not yet
known whether the N > 4 models can be gauged. We see now the importance of the
considerable body of QFT work done previously in curved spacetimes with non
vanishing A, [9.7, 9.8]. It is inconsistent to quantize these theories about flat spacetime
— the background must be non trivial. The background field method was used by
Yoneya [9.9] to discuss simple supergravity and has been extended recently [9.10]
to include backgrounds with A 2]: O, and the results are summarized in [9.11]. The
main point is that the scaling parameter )2 has the form so; + 3/02 where as, y:

N = 0 9: = 106/45 9 = —87/60
N = 1 11/24 47/72
N = 2 11/12 —13/18
N = 3 0 —5/12
N = 1 —1 —1
N = 5 —2 0
N = 6 —3 0
N = 7 —5 0
N=8 —5 0

The case N = 0 is ordinary gravity. The remarkable feature is that the C2 contribu-
tions vanish for N > 4. This is unexpected and indicates that the theory is less diver-
gent than might have been expected. Recently it has been pointed out by Siegel [9.12]
that spin zero fields used in [9.10, 9.11] were all scalar fields whereas the dimensional
reduction from 11-dimensional simple supergravity [9.13, 9.14, 9.15] suggests the use
of (for N = 8) 63 scalars, 7 2-forms and 1 3-form. Although classically the scalars
and 2-forms are equivalent representations of a spin 0 field and a 3-form has no
dynamical degrees of freedom Duff and van Nieuwenhuizen [6.39] have pointed out
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that they have different quantum properties. In particular because of inequivalent
ghost structures the trace anomalies differ. When applied to N = 8 we Obtain the
striking result that y : 0 [9.16]. There are no quantum corrections even on non
trivial backgrounds. Note that this result applies to the known ungauged theory
as well as the as yet unknown and postulated gauged theory.

The results just given apply to any background. If one examines particular back-
grounds even more striking things arise. In particular self-dual backgrounds are of
special interest. The subject was initiated by Hawking and Pope [9.17] who showed
that at the one loop level the divergences due to the non zero eigenvalues in the func-
tional determinants all cancelled. To do this they made use of the existence in these
spaces of covariantly constant spinors to relate fields of different spin. The relations
may in fact be thought of as global supersymmetry transformations on the system
being considered. Because of the limited number of invariants one can construct
on a self—dual background it was later pointed out by Christensen, Deser, Duff and
Grisaru [9.18] and Kallosh [9.19], that higher loop correction must be finite on these
spaces. The fascinating combination of Riemannjan Geometry, topology and quantum
field theory deployed in these studies has encouraged further activity along these
lines [9.19, 9.20, 9.21, 9.22].

An as yet only partially explored area is the connection between the twisted
fields of Isham and supersymmetry. It appears that twisted scalar fields really are
bosonic — nevertheless there are fascinating hints of a deeper relation between
supersymmetry and topology. For instance the twisted scalar fields and the inequi-
valent spin structures on a manifold are both given by elements of H1(M, Z2) and
paired in such a way as to permit the extension of supersymmetry to non trivial
sectors [9.20].

Conclusion

The subject of quantization about background metrics is evidently a flourishing one.
One sign of this is the comparitively small overlap of the material covered here and
that covered in my earlier review for an Einstein centennial volume which was
written in the autumn of 1977. However the direction of research has changed some—
what from the rather narrow confines of quantizing only the matter fields to quantiz-
ing gravity as well. Thus one regards the subject as a tool to elucidate the structure
of quantum gravity rather than an end in itself. In the case of supergravity for which
a non-vanishing A term is required it is an essential tool — quantizing about flat space
is inconsistent. I believe if the relation to the full quantum theory of gravity is
borne in mind one can expect many exciting developments in the future. If it is not
then the subject will turn into a stagnant backwater. In particular, the most urgent
problem facing this subject is the renormalizability or possible finiteness of quantum
gravity. Elaborate computations based on a divergent theory — for instance, based
on trace anomalies — seem to me to be misguided. At present the most promising
candidate for a finite theory of gravity is the N : 8 extended supergravity model. It
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is completely finite around curved backgrounds to one loop. It seems an appropriate
theory to tackle such questions as the back reaction problem to one loop. At least
at that level the results are unambiguous.
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Supergravity and Geometry
P. van Nieuwenhuizen (Stony Brook)

Einstein tried to show that elementary particles are simply singularities of the gra-
vitatiOnal field, and a number of people have tried to work that idea out. However,
a major problem in this idea is that the singularities of the gravitational field can at
best describe bosons, but not fermions. In order to be able to describe also fermions as
singularities of some kind of the gravitational field, this field must be fermionic.
Supergravity is such a gravitational theory: there are two basic gravitational fields,
the first a b0s0nic gravitational field (the usual vierbein field eL") and the second a
fermionjc gravitational field, the gravitino field wfi. This gravitino field is a vectorial ,,
spinor and carries spin 3/2; it is massless and real. Thus it looks very much like a
fermionic counterpart to the vierbein field, and indeed, there is even a symmetry
between both: local supersymmetry. Since in supergravity fermions play an essential
role, the notion of spin has been unified With the geometry of spacetime. A practical
consequence is that relativists WhO start working in supergravity must use spinors in
field theory.

Under local supersymmetry the vierbein field rotates into the gravitino field, and
the gravitino field rotates into the covariant derivative of the local gauge parameter
(which indicates that the gravitino is in some sense the gauge field of local super—
symmetry)

66:1 : % gqpw 6%! : — De“: (1)

These rules are a fusion of two different symmetries of the linearized theory,
namely

(i) global (= constant) supersymmetry transformations:

(56”? : éymzpfl ,

N
IH

[\
i

5% = (wash-m. (ems),
see [6].

(ii) local gravitino gauge transformations

61% : fishy),

see {4].
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A similar situation holds in Yang-Mills theory:

(310?, = DMA“

is a fusion of

620$ = Bylaw

and
a __ abc .13 06w“ — a zap/1 ,

which are both separate invariances of the linearized action.

Clearly the gauge parameter a is a fermionic field with spin 1/2; like the gravitino
it is real, and in order that the varied fields have the same statistics as the fields
themselves, the parameters a“ (a = 1,4 in four—component notation) are anticommut-
ing. The covariant derivative involves the spin connection

1 1
Dfl‘s : 8/118 + E wpm"0mne, amn = Z [71m yn] (2)

and, as we shall see, the spin connection is a function of the vierbein and gravitino
fields. Thus supergravity contains nonvanishing torsion, the torsion tensor being

x2

Spa 2 I WWW» (3)

The action of the simplest model of supergravity [1, 2] (appropriately called simple
supergravity) is Hilbert’s action plus the Rarita-Schvvinger action for a real massless
spin 3/2 field W: the latter appropriately covariantized with respect to gravity

6 e _ 0'

g = _fi 3(6: 60) ‘— 3 WV"? Deva (4)

Here 6 = det 6;", 311“?" is a product of three Dirac matrices antisymmetrized in Iugo‘
(note that y" = yme; depends on the vierbein field), While the gravitino curl contains
only a Lorentz connection

, 1 -

Dell/(a = 091.00- + E wgm’fzamnipa (0)

One can now use Palatini formalism, and solve the field equation of the spin connec-
tion. The result is

9
W‘ _ _ _

60;“ = a),z""‘(e) + I (WWW ~ WW“ + wmww”) (6)

Where wZ‘”(e) is the usual spin connection Without torsion

(new, — {9 } 6;” —{— wflfle) en, = O (7)
yr

The torsion (3) follows from (6).
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Thus here we have a theory of gravity with a new local symmetry, supersyiiimetry.
The action in (4) is invariant under (1) provided (6) holds. (The proof [and many other
details] can be found in a forthcoming Physics Report by the author.) However,
this is not yet a theory because the tWO fields 6;” and a): do not form a representation
of the symmetries of the theory. These symmetries are

(i) general coordinate invariance
(reparametrizations)

(8)(ii) local Lorentz invariance
(iii) local supersymmetry,

and what does not hold is that the commutator of two local symmetries is again
a local symmetry. It almost holds, except in one case, namely in the commutator of
two local supersymmetry variations of the gravitino [3]. For the vierbein this commu—
tator is given by (use (1))

[65111)(51), asupfgzll (5):” : Ezl'mDpEI T (1 H 2) (9)

Elementary algebra shows that this commutator is a sum of a general coordinate
. _ . .l.ii'.-'-::s:iori1i;=_‘i.i\~ii u .‘Tli parameter 7 527's]. {1 local Lorentz transformation With para-

.41 . . . .-’ ——)E3;' hm; ' is. .‘_,"l and a legal snpt-rsymmetry transformation With parameter

Egy'mD#61 — (1 <—> 2) : 38/18:” 448,51) 63;” * §"cu1m"(c,yj) 6,”, — 51E}-:/7)‘1/)#,

1 am
A : — 5271512

5‘

However, for the gravitino one finds, in addition to three similar terms, extra terms
proportional to the field equation of the gravitino. These terms are themselves of
course invariances of the action, but they are not one of the three local invariances.
If one would add this invariance to the list in (8) and keep computing commutators,
one would find an infinite dimensional algebra.

One can find a representation of the local algebra in (8) in terms of the following
fields [4]

(6:1: qr S: I), Am) (1 1)

ln the action one simply must add —% (S2 + P2 — A ) so that the scalar S, and2
m

pseudoscalar P, and the axial vector A m are auxiliary fields. The transformation rules
of the fields in (11) are not very complicated, but will not be given here.

We mentioned already the Palatini formalism, and one might wonder Whether one
can treat a)?" as an independent field. Indeed, one can do so, but the transformation
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law of ruffle, 1p) in second order formalism [1] is not the same as 6w?” in first order
formalism [2] (even after substituting (6) in the result for 6697:”).

Actually — one could have anticipated this. The difference of the gravitino law
in first and second order formalism is given by (see [1])

‘
1

WM - (smegma) = W — me, am] (a ass) (12)
and is thus proportional to the field equation of the spin connection, see (6). In the
same way one finds that

r7
Z (EynRym _ EVmn _ gyisn) (13)6wymn(second) — 5wlumn(fiFSt) =

where Rm is proportional to the gravitino field equation

Rum : enzy(Dywv _ Dv’w ‘l‘ eaODgl/Ja) = —?’;.0—,ul

R’1 = tDgtua = gravitino field equation (1-4)

So, in going from second to first order formalism one must add

dwfltextra) ~ g, awfumnmxtra‘) N 6_I_ (15)

(560 61,11

and it is clear that in the variation of the action such terms can cancel

(SI (SI (SI
(SI— 66 +6306”) I dwaw

In all formulations of supergravity, it is the second order formalism which seems
the appropriate formulation. For example, no auxiliary fields are known for the first
order formalism (the analogue of (11) would need, in addition to ruff", quite a number
of auxiliary fields), while in superspace second order formalism is the only possible
formalism.

The observant reader may have become uneasy at this point. The parameters in the
commutator in (10) are field-dependent. Phrased differently, instead of structure

constants, we have structure functions. However, one can find a larger set of auxiliary
fields (larger than in (11)) for which one has constant structure constants. This set
follows from superspace, to which we now turn. However, there is nothing bad about
structure functions; it is merely unusual.

The variation of the action in (4) is invariant under the local symmetries in (8),

but the Lagrangian varies as follows

65?: Co

. 1 ,—
;,(5Agl + 8, (—'§ wana) (1‘)

The first term is of course the standard result for the variation of a scalar density,
and shows that general coordinate transformations are not internal symmetries, but
rather spacetime symmetries, in contrast to local Lorentz transformations which are
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genuine internal symmetries and which keep even the Lagrangian invariant. The
last term reveals a deep property : local supersymmetry is more like general coordinate
than like local Lorentz transformations, and is thus in some sense a spacetime sym-
metry. Going back to (10), we see that two local supersymmetry transformations
produce a general coordinate transformation (plus more) so that in this sense super—
gravity is the square root of general relativity. More precisely: in Dirac’s constrained
Hamiltonian formalism the generators 1/”, Q“ and Jm” for the symmetries in (8)
satisfy Poisson bracket relations, one of which reads [5]

1
{Qua Q5} : ’2— (VmO—l)a5 3307”

Where a?” is a covariant translation and generates the transformations in (10) in
Hamiltonian formalism.

If local supersymmetry is a spacetime symmetry, What is then that spacetime?
Just as one associates With 5‘ a coordinate x1 it is tempting to associate With 5“ a
coordinate 6“. Thus one is led to superspace: a space With four bosonic and four
anticommuting fermionic coordinates [6]. From a more mathematical point of
view, one can consider the global algebra which underlies local supersymmetry. It
is the super Poincare algebra, with generators Q“, Pm, Jmn. In addition to the usual
Poincare' algebra one has two relations which say that Q“ is a conserved spin 1/2
generator

[(2% Pm] = 0, [9: MM] = % (ammo (18)
and the equivalent of (18)

1{9“, Q5} = 5 (WC-1W Pm, Gym-1 = 7 WT (19>
That this is a closed algebraic system follows from the fact that the Jacobi identities
are satisfied,

[A, [3, 0]] s [[A, B], 0] + (are [3, [A, 0]], (20)

Where [A, B] is a commutator unless both A and B are Q generators, in which case
one has an anticommutator (a = 0 for bosonic generators and a = 1 for fermionic
generators).

One can now consider coset spaces (P + M + Q)/M, and identify x“ and 6" with
the coset generators Pm and Q“. In this way one can find, using standard mathe-
matical techniques, general properties of superspace. In particular, it is clear that
local Lorentz transformations are the internal symmetries in superspace, but one
also finds that fermionic general coordinate transformations are equivalent to local
supersymmetry.

An elaborate theory of superspace supergravity has been developed. In the most
obvious extension of general relativity [7], one introduces “achtbeins”

EAM, A:(‘u:l,4;oc:l,4), M:(m:],4;a:1,4) (21)
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and spin connections whose base manifold index is again 8-dimensional and which
gauge the internal symmetry (only local Lorentz invariance)

hf”, A = (,u = 1, 4; o; = 1, 4); ”1,72 = 1, -l (22)
. . . . 1Covariant derivatives are defmed by D31 = 6‘1 —‘ 3 711”"a where X,“ are the

Lorentz generators, and defining flat covariant derivatives by D1 E EAADJ, one
defines supertorsions and supercurvatures by

1 _
[Dita DB] 2 _2TABCDC ‘l— 48.4a 3 Am” (23)

The symmetries in superspace are
/\i) general supercoordinate invariance

(5%, 6) = 5-“, 5“)
(ii) local Lorentz invariance (41771"(2‘, 6))

To make contact with ordinary space one identifies £“(a‘, 6 = 0) with the ordinary
reparametrization parameter, §“(a:, 6 = 0) with the supersymmetry parameter
3"(33) and Am”(2:, 6 = 0) with the local Lorentz parameter }.m”(x). Further, hf’ikv, 6 = O)
= cuff", Eflx, 6 = 0) = 6L" and Efi(a:, 6 = 0) = off. In superspace the transformation
rules are superreparametrization and local Lorentz invariance

1aEiM = EnaflEiM —: (are) E..M + 3 AMMXMEJM (24>
If one requires that these rules for Ema", 6 = O) and Efi(:c, 6 = 0) are compatible
With the transformations of the ordinary space approach, one finds that the different
coefficients of powers of 6 in E4“, him”, 5/1 and Am" are functions of the fields and
parameters of the x-space approach. In particular, one can

(i) Determine EA” to order 6 and hf"? to order 6: 0. This is due to the transport
term £“6‘dEAM in (24).

(ii) Substituting these results into (23), one finds that certain components of TABC
at order 6 = O vanish.

(iii) Since TABC are tensors in superspace, this implies that these supertorsion com-
ponents vanish to all order in 6. (Just like a tensor in general relativity which
vanishes at the origin of any coordinate system, is identically zero.)

In this way one finds the following constraints on the supertorsions of simple super-
gravity [7] (a, 6 flat fermionic indices; m, 7% flat bosonic indices).

Tuba : Tam” = Tm‘nr : 0: abm : (Cymhlb (25)

One can solve these constraints [8] and finds then three sets of results

(i) the spin connection him" 2 (hfflham) becomes a function of the supervielbein
EAM . This is the equivalent of second order formalism in the x-space approach.
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(ii) the bosonic components EMA of the inverse supervielbein are functions of the
fermiom'c components Ea”. This is thus “more second order formalism”.

(iii) the fermionic components E,“ are functions of prepotentials, just like in electro—
magnetism the constraint 5””9”8,FW = 0 can be solved to yield the potential A a
in F9, : 89A, 7 5,149. In fact, just as in this example, one finds also that super—
gravity, when formulated in terms of prepotentials, has an extra local gauge
invariance under which the EA” are inert.

The constraints for simple supergravity in (25) were found by building a bridge be—
tween ordinary space and superspace (gauge completion). For the extended super—
gravities (theories with more than one gravitino) it is very hard to find the correct
set of constraints. In fact, it was found that in N = 2 extended supergravityl) the
constraints involve squares of TA30 [10]. One must impose these constraints in order
to be able to write down an action. In fact, the action is just the invariant volume
element [7] in the N : 1 theory

I = f d4x d4z9' (superdeterminant EA”) (26)

Since one varies under the constraints (25), one does not find EAM :0, but rather
the same field equations as obtained from (4). The constraints are part of the “kine-
matics” of the theory, and hold, whether or not one chooses the dynamics as in (26)
or as given by some other action.

It is unsatisfactory that the constraints are imposed from the outside. It would be
nicer to have them follow as field equations from some action. This is what another
geometrical approach aims at: the group manifold approach [11]. In this approach
one has a larger space than superspace, namely 14 instead of 8 dimensional: one
coordinate per generator in (18, 19). The field equations then tell one that fields do not
depend on the Lorentz coordinates, and hopefully this method will yield a derivation
of the constraints in (25) which allows one to find the auxiliary fields of all super-
gravity theories. In the group manifold itself one has a closed gauge algebra (in fact,
one has so many auxiliary fields that one could almost speak of the maximal set of
auxiliary fields), but in using all field equations one looses closure. The standard
problem is thus to understand which field equations to use and where to stop, and
this is the cardinal problem in this approach.

The theories in supergravity cannot have more than 8 gravitinos, because the irre—
ducible representations of the algebra in (18, 19) with N Q“ (i : 1, N) involve
states with spins exceeding 2 as soon as N > 8. It has been shown by Berends, van
Holten, de Wit and the author [12] that one cannot couple spin 5/2 in a consistent
way to gravity. Several authors have tried to improve this result, without any success.
Thus nature seems to allow as fundamental particles only those whose spin J is
not larger than 2. For supergravity this means that only the largest model (the
N = 8 model) can come near being “the model of the world” (all other models with
N < 8 have too few particles to be realistic. See, however, Ferrara’s talk).

1) This theory unifies electromagnetism and gravity: the photon, graviton and two gravitinos
rotate into each other under local supersymmetry [9].
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Supergravity has remarkable quantum properties. Whereas the coupling of Ein-
stein gravity to any matter always leads to a divergent S-matrix (and the diverg-
ences are nonrenormalizable because they are of a different functional form than the
original action), in supergravity all infinities in the S-matrix cancel “miraculously.”
In fact, this is one way in which supergravity might have been discovered. The first
breakthrough in quantum gravity occurred in the N = 2 model [9] where a calcula-
tion of photon-photon scattering turned out to be finite [13] at the one-loop level.
At the two-loop, level, it was shown by theoretical considerations [14] that super—
gravity is finite. At the three-loop level an invariant exists which, if it occurs in the
S-matrix, would destroy finiteness of the theory [15]. However, I believe that this
3-loop invariant is a red herring; in fact, quite recently Grisaru, Rocek and Siegel
found by superspace calculations that a model in global supersymmetry which looks
very much like N = 8 supergravity is 3-loop finite, although also here a possible
3-loop invariant exists [16]. Clearly — if supergravity is all loop finite, it would be an
interesting model for quantum gravity.

Let me now mention a few separate results.

Inequivalence of different field representations for given spin. One can represent a
spin 0 field either by 9D or by Afl, = —A,,,; in the latter case the action reads

L = —(8#A,Q + cyclic terms)2 (27)

Coupling to gravity, and adding as gauge fixing term for the local invariance 6A,“.
: 8,,11, — 8A,, the deltafunction 6(D“A,,, — 1),), one finds that b, is constrained by
Dvb, = 0 because D”D"A,,, ~ RWAM = 0. Keeping track of all necessary ghosts [17],
one finally finds that

(i) the S-matrix for d5 coupled to gravity equals the S-matrix for A y, coupled to
gravity [18].

(ii) the trace anomalies differ [19],

AMA,” + gravity) — AL(§D + gravity) = —;{ (28)

where x is the Euler topological invariant. This result will be further discussed by
Duff.

R2 theories without ghosts with propagating torsion [20]. Taking the spin connection
as an independent field, one can consider actions with only two derivatives but with
propagating spin connection. These theories can be made unitary by fixing the free
parameters in such a way that the residues of all propagators are positive. However,
none of these theories is renormalizable.

All existing R2 theories were diagnosticized and found to violate unitarity. Thus
it seems that R2 theories with propagating torsion are sick, at least if one considers
ordinary perturbation theory. They are either nonrenormalizable (not: finite) or
nonunitary.
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Aspects of Supergravity Theories
S. Ferrara (Geneva)

Abstract

Some features of supergravity as a unitary gauge field theory for all fundamental
particle interactions are reviewed. Special emphasis is placed on the multiplet structure
of massive and massless representations of extended supersymmetry, and their sym-
metry properties are discussed.

1. A Framework for a Unitary Field Theory

The present theoretical understanding of low energy phenomena seems to indicate
that gauge field theory is a viable framework for the description of all fundamental
forces of Nature. This is true for long-range electromagnetic and gravitational forces
as well as for weak and strong short—range nuclear forces. If one accepts such a dyna—
mical framework for the known interactions of the fundamental constituents of
matter, there are several motivations which suggest the use of a further economical
principle, that is, different low energy symmetries become unified at energies which
are much higher than the energy scales needed today to understand low energy
physics. In the framework of gauge quantum field theory, a possible scenario for uni—
fication of the non—gravitational interactions is provided by GUTs [1] (Grand Unified
Theories). This picture embeds in a single gauge theory the Glashow—Weinberg—
Salam SU(2)left ® U(1)e1. theory of electroweak interactions and the colour SU(3)
gauge theory (quantum chromodynamics) of strong interactions. The minimal
GUT is given by the Georgi-Glashow SU(5) model [2] which provides the minimal
embedding of SU(2)left ® U(1)el.® SU(3)colour in a simple group. This model, as well
as any other GUT [3], must recover the fact that electromagnetic and weak forces
are unified at 100 GeV. This implies, using renormalization group arguments, that the
grand unification scale is of the order of 1015 GeV. GUTs have by now had much
success, for example, the explanation of charge quantization, the prediction of the
low energy weak angle BW and some relations between quarks and leptons. They
also imply new physical phenomena which can be tested experimentally like the
proton decay rate and neutrino masses [4]. However, GUTs have serious drawbacks
because they have an intrinsic hierarchy problem, they do not explain the family
repetition and, last but not least, the fact that, althOugh they become true symmetries
at scales not far from the Planck mass 1019 GeV, they completely neglect gravity.
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On the other hand, any attempt at superunification must incorporate a gauge field,
the metric tensor, which describes the gravitational interaction. This field, in the
quantum theory, describes a new gauge quantum, the graviton, which exists in two
states of helicity r1 = i2. This gauge field is related to the local symmetry of the
Einstein Lagrangian, i.e., the gauge Poincare symmetry.

The main motivation of supergravity [5, 6] is to provide a possible scenario for a
superunified gauge theory having the Planck scale as a unification scale. It is, in
fact, clear that in any attempt to construct a superunified gauge quantum field theory,
the unifying gauge principle must contain the space-time symmetry and the internal
symmetries in a unique algebraic structure. More importantly, in a truly unified
gauge theory, all the interactions should become purely geometrical and any distinc—
tion between matter and gauge fields should be elusive. Because of the diffferent spin
and statistics properties of the basic constituents of matter (fermions and bosons)
this seems to require that the unifying algebraic structure must have the property
of converting bosons into fermions and vice versa. This is achieved by Graded Lie
Algebras (GLAs) or supersymmetries [7, 8], which have a multiplication rule which
contains both commutators and anticommutators.

Supergravity is a synonym for the dynamical theory of local (gauge) super-
symmetry. In supersymmetry, the odd part (fermionic generators) of the GLA con-
tains N spinorial generators of Majorana type Q: (cc 2 1, . .., 4, 2' = 1, . . . , N). These
generators form the so-called grading representation of the Lie algebra part of GLA
which contains the Pioncaré algebra with the possible addition of an internal symmetry
acting on the index 2'. The representation properties of the spinorial generators arel)

[ 2, MW] = ”NONE Qé, [p Pg] = 0 (1)
and their anticommutation relations are

{ 1,52%} = Jaime + ms + 2% <2)
The generators Z”, Z”, both antisymmetric in the z', j indices, belong to the
centre of the GLA and for this reason are called central charges [9]. Although these
generators become important in some models, it is consistent to set them equal to
zero in (1) and (2) without violating any of the Jacobi identities. From now on we
will mostly consider the algebra defined by (1) and (2) with Z” = 2’7 = 0.

If we invert Eq. (2) we get

1 —. .
Pp = “E @113;a (3)

which shows that the spinorial generators are, in a certain sense, the square roots of
translations. From the previous relation it is evident that, if we gauge the fermionic
generators (2:, Le, if we make a theory invariant under supersymmetry transformations
with space-time dependent (anticommuting) parameters 3:05), then this theory must
also be invariant under general co-ordinate transformations. Conversely, any theory

1) In the present review we often use different metric conventions according to the original
papers quoted in the references.
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with general covariance and global supersymmetry is also locally supersymmetric.
When local symmetry transformations with parameter aux) are introduced, then one
expects gauge fields to be necessary in order to make a given theory locally super-
symmetric. This is entirely analogous to the introduction of the photon in order to
extend the global (first kind) phase invariance of the Dirac theory to a local (second
kind) invariance. This gauge field must, in the case of supersymmetry, transform
as (7,3; (+ more terms) and is therefore represented by a Rarita-Schwinger field wide).
This fermionic gauge field is supposed to describe, in the absence of supersymmetry
breaking, a new massless particle of helicity states 1 = i3/2, the gravitino. The
existence of a new gauge quantum of half—integral spin is the very clue to super-
gravity_ This hypothetical particle of spin 3/2 is, in fact, the bridge between the space—
time symmetry Whose gauge quantum has spin two (graviton) and internal symmetries
whose gauge quanta have spin one (Yang-Mills vector bosons). Moreover, from the
multiplet structure of massless representations of extended (N > 1) supersymmetry
[10] it follows that gauge particles of spin 2, 3/2 and 1 can also be unified with par—
ticle fields of spin 1/2 and 0. Then, in supergravity theories, two fundamental goals
are simultaneously achieved: unification of space-time and internal local symmetries
in a single gauge theory and unification of gauge fields and matter fields in a single
irreducible representation of the underlying symmetry group.

2. Supergravity from first principles

Quite independently of the unification programme several motivations have been
given for the introduction of supergravity in particle physics.

Firstly, to promote supersymmetry to a local invariance. This requires, at the same
time, invariance under general co-ordinate transformations. The gauging of super—
symmetry, irrespective of the particular mathematical framework which has been
used, yields uniquely the same action [5, 6].

When the gauge invariance of the free massless Rarita—Schwinger field is extended
to an interacting theory, supergravity emerges as the only solution for a consistent
coupling to other particle fields, overcoming the old difficulties for coupled higher
spin fields equations [11].

Supergravity provides, for the first time, the idea that fermionic fields, which are
usually associated with matter, can be genuine gauge fields. This gives a subtle
interplay between space—time geometry and the quantum mechanical concept of
spin.

Supergravity was also motivated as an attempt to build a meaningful quantum
theory of gravitation. Indeed, the improvement of the ultra-violet behaviour with
respect to Einstein’s theory, due to the short~distance contributions of the super—
symmetric partners of the graviton, is spectacular [12]- The ultimate hope is that
some versions of supergravity, the present preference being the maximally extended
N : 8 theory [13], will lead to a finite theory of quantum gravity.

14 Proceedings GR 9
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Supergravity gives a natural justification as to why gravity should be quantized
[14]. In fact, if there are symmetry operations which mix the metric tensor field
with other particle fields it would be perverse to quantize all fields but the metric.
For instance, in the simplest supergravity theory, the fact that the Rarita-Schwinger
field is a quantum field, already suggests that the metric tensor should be quantized
as well.

There have been several elegant reformulations of the basic (N = 1) supergravity
theory [5, 6]. In first order form, N = 1 supergravity can be regarded as the Einstein-
Cartan theory for a spin 3/2 massless particle with the non-minimal substitution
8“ —> 8p + 1/2 wyabaab in the Rarita-Schwinger Lagrangian [6]. This substitution is
not minimal in the sense that it is not the covariant derivative which acts on a spin 3/2
field. In the Lagrangian this makes a difference due to contorsion terms, but it is
necessary in order to preserve the ferniionic gauge invariance. Supergravity has also
been derived as the gauge theory of the graded Poincaré group [15] or de Sitter group
[16] in a space-time supplemented by a torsion-free condition. More sophisticated
techniques have also been used to derive supergravity in a simpler way [17, 18]. One
of them uses the concept of superspace which is [17, 19, 21] the quotient space of the
graded Poincare group over the Lorentz group. In superspace, multiplets of fields
are described by a single field, the superfield. In spite of these significant technical
improvements we would like to go through a derivation of the theory which does not
require any knowledge of differential geometry and group theory and is based on
some very simple physical considerations. From the representation theory of global
supersymmetry it is known that a massless (Majorana) particle with helicity it = 31:3/2
can form a supermultiplet with a bosonic partner of helicity $1 or i2. Indeed in
a free field theory both choices are equally possible. The first choice is the super-
gravity multiplet (i2, i3/2) with free Lagrangian:

1
“9’00 = c-g%‘mstein (hm) _ E Eweafipi’si’v 39% (4)

flinstem is the linearized Einstein Lagrangian with g,” = 77%;, + khw. $0 is invariant
under two separate Abelian transformations

all/nut : 81157 + EPEF

(51,0fl = apex

and global supersymmetry rotation

6km = 53’q + 534%:

My = Each/400908

(6}

The alternative choice is the multiplet (i3/2, $1) with free Lagrangian

1 1
$1 : —- T F"”FW — ‘2— SMQO'G—Dyhyvagwc (7)
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$1 is invariant under two separate Abelian transformations

6A,, = 8,,11, (51p, : 8,04 (Fm : 3,,A, -— 3,14,.) (8)

and a global supersymmetry rotation

5A» = 5%, 5% = 09m. We (9)
However, the difference between .9?" and $1, which correspond to the possible embed—
ding of the gravitino in a supermultiplet, comes when we try to promote the two
theories described by (4) and (7) to a fully interacting theory. If we have 5 : 5(50),
i-e., we perform a local supersymmetry transformation, then a new interaction term
is required of the form kfiflaJ’” (k is the gravitational coupling constant) with 3”J#a(x)
= O. This is nothing but the Noether coupling. On the other hand, it turns out that,
under a supersymmetry variation, the spinor supersymmetry current transforms into
the stress tensor of the system T”. Hence the Info.“ " coupling requires, at the same
time, a IshmT’” term and therefore only the ansatz given by (4) is possible. The final
theory derived by this step-by—step procedure gives the supergravity Lagrangian
in the form

1
$8“ = _ 2k2

— 1V—g tm) — E 8“”9“¢y75y~Dgwa
e

_ 3—2 “WWW/19) (WW? + 227mm — “WW/1’21 (10)
g,,, = 6,36,“ and em, is the vierbein field. .2050, is invariant under the following (non-
Abelian) gauge transformation with 8 : 3(a)):

660/: : hiya'PII

2 1
61.1)” : I I18 + Z koab£(2vflyflwb + wayfllf’b)

(11)

D,, is the ordinary gravitational derivative with Christoffel affinity. Then it happens
that, at the free level (k = 0), there are two independent Abelian transformation (5)
and a global (non—Abelian) supersymmetry rotation (6). At the coupled level (10)
they become a single non—Abelian gauge transformation (11). Thus the law 81g,
= (2/k) Dfle (DH : 2),, + contorsion terms) is of the same form as the transformation
law of a Yang—Mills potential A: under a local Yang—Mills transformation 6A: : Dfl/l“
= 81,11“ + f‘fl’C/lg. The only difference is that in supergravity 09:0, the spin connec—
tion is a non—linear function of the field variables. Finally, there is a very elegant
derivation [22] of the supergravity Lagrangian (10) which does not even require any
knowledge of the transformation laws of the fields given by (1]), but only the fact
that the gravitino field describes two physical massless states of helicities iii/2.
This derivation is straightforward and only requires the knowledge of the gravita—
tional Born amplitude for the scattering of two spin 3/2 particles. It also emphasizes
the interpretation of the four—fermion coupling present in (10) as a seagull term of

14*
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the same nature as similar terms present in ordinary Yang—Mills theories and in scalar
electrodynamics. If we take the Born amplitude for the scattering of two spin 3/2
fields through a one—graviton exchange, the polarization tensor 1,0,,(13) of any external

leg of momentum 1),, on the mass-shell (pagmp) = 0) satisfies the equations

20 - 10(1)) = 0, 59%(10) = m - 1MP) (12)

Equations (12) reduce the number of physical components of 7/4100) to four. To
reduce them further to 2 the 8 matrix element must vanish When we make the
substitution 1,0,,(p) = 319:4 where a is a constant Majorana spinor. It is a simple exercise
to prove that the Born amplitude due to one-graviton exchange does not fulfil this
requirement and that the 8’ matrix vanishes only if the contact term given in (10)
is added to the Born amplitude. There is a simple argument which shows that this
extra term can only be a four-fermion coupling and that additional contact terms
with more spin 3/2 fields would never help. Let us consider the scattering, in the tree
approximation, of n gravitini. The scattering can then proceed through exchanges
of gravitons between gravitjni (tri—linear coupling). The gravitational coupling con-
stant k in such graphs always appears with power 2(n — 1). Let us now assume that
we replace one of the external polarization tensors by its momentum, compute the

sum of all graphs contributing to the 8 matrix and find that it does not vanish. This
means that one has to introduce an additional term in the Lagrangian of the form
ggnamwnp)” Where 8’” means m derivatives and indices have been omitted. Now, a

trivial dimensional argument restricts such contact terms very severely: from the

kinetic term of the action the dimension of 30,, is (D — 1)/2 in unit of mass, D being the

space-time dimension which we leave arbitrary. Then, the dimension of the coupling

921; is: ‘

[92n1=D—n(D— 1) —m
However, such contact terms, if required, should match with possibly non—gauge

invariant terms, and for them 92,, ~ lam—1’. Since [k] = (2 — D)/2 then we get the

consistency equation

2 — D
2

2(n—1) =D—n(D—1)—mi.e. n=2—m

The only possible solution is m = 0, 'n = 2 for any D. We conclude that the contact

term for supergravity, in any space—time dimension, can only be a four-fermion

coupling with no derivatives.

3. Symmetries of extended supermultiplets

In any supersymmetric theory particle fields are grouped in supermultiplets. These
supermultiplets are collections of ordinary fields with different spin, statistics and
internal symmetry properties. In this section we Will describe, in some detail, the
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structure of massive and massless multiplets of N extended supersymmetry and their
internal symmetry properties. The states of these multiplets are supposed to be de-
scribed hy the asymptotic fields of supersymmetric quantum field theories. According
to Salem and Strathdee [23, 24], the construction of particle supermultiplets uses
the Wigner method of induced representations. We will temporarily consider the
supersymmetry algebra in (2) in the absence of central charges Zii and Z“ (zero charge
sector). We first consider the stability subalgebra of a time—like momentum p"
= (M, 6). M is the common mass of different spin states in a given massive super—
multiplet. In the Majorana representation the stability subalgebra becomes (M = 1)

{Q29Q1fi}: 64116“. (06,13 : 1! '-- 4; if: 1, ”-N) (13)

The anticommutators (13) define the Clifford algebra for the group SO(4N). Its
unique irreducible representation has dimension 2” and it breaks into two inequi—
valent irreducible spinor representations of SO(4N) of dimensions 22””. We can use
two component Weyl spinors and rewrite (13) as follows

{ is Q55} : fiat-15"", {C22, Q15} = 0 (06,13 : 1, 2) (14)
i, Q: satisfy the algebra of 2N fermionic creation and destruction operators. If

we start from a Clifford vacuum 9 defined by the condition

Q2!) 2 O (V (x, i), (15)

we build up the 22” states in the following way

52, Q39, Qfiiifiégfl, Q2; @252, (16)
These states are classified by an instrinsic spin operator

1 a. i — _
Wk : Z 0k “[Qm 433'] (17)

which belongs to the enveloping algebra of GLA. If we define the 2N component
spinors

Q::Qf, for i=1...N, nééeeafiég for a=N+1...2N (18)
then (13) and (14) become

{ 2,02} = saga" (ogfi = 1,2, a,b : 1...2N)
and

0 I (19)
Qab: __Qba :

—I 0), (QZ)* * Qabeg

The algebra given in (19) has a manifest SU(2) ® USp(2N) covariance [25, 26]. The
4N dimensional vector representation of SO(4N) remains irreducible in the group
decomposition

SO(4N) —> SU(2) ® USp(2N); 4N —+ (2, 2N) (20)
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The symplectic generators which classify the states in (16) are given by

Act = Tab + The. + We — Thu); Tab = sums, Q2] (21)
and they commute with the 8U(2) generators (17). The two spinor representations
of 80(4N) decompose into a sum of irreducible representations as follows

22N = (N + 1, 1) + (N, 2N) + (N — K + 1, [2N>< 2N},,)

+--- (1, [2Nx 2157],) (22)

[2N >< 2N]k is the k-fold antisymmetric traceless representation of U8p(2N).
The two irreducible representations of 80(4N), which correspond to the i1 eigen—
values of the )2”+1 operator, separate the integral (bosons) and half-integral spin
fermions in the decomposition (22). The 8U(2) spin J, in the spinor representations
of 80(4N), runs from J = 0 up to J = N/2. Let us consider, for definiteness, as an
explicit example, the case N = 2. Then the Clifford algebra corresponds to the group
80(8) and the Q: generators, which are vectors under 80(8), are embedded in the
(2,4) irreducible representation of 8U(2) ® U8p(4) ~ 80(3) 63) 8P(5) C 80(8).
From the Dynkin diagrams of D4 [27] is it known that the three inequivalent eight-
dimensional representations of 80(8): 8,, 8, 8’ decompose into: (2,4), (2,4), (3,1)
+ (1,5) (or permutations) under 80(3) 8) 80(5). We conclude that, in the funda-
mental massive supermultiplet of N = 2 extended symmetry, the fermions and the
bosons transform as (2,4) and (3,1) —|— (1,5) respectively under 8U(2) ® U8p(4).

More general representations of the supersymmetry algebra can be constructed.
We can relax the condition that the Clifford vacuum .9 is a singlet under the spin
group generated by the Pauli—Lubanski-Bargmann operator and assume that it
belongs to a non—trivial representation of the spin group and of the internal symmetry.
Then a general irreducible massive representation of N extended supersymmetry
will be classified by several Casimir operators, the superspin and the Casimir operator
of the internal symmetry part [23, 28]. In superfield language it is easy to write down
the Casimir operators in terms of covariant derivatives. In fact, if we replace, in
all previous expressions, the Q3 operators with the covariant derivatives D: we get
operators which commute with the supersymmetry generators because { 2, D2} = 0.
Then the Casimir operators of the algebra constructed out of the D‘; can be used to
classify the irreducible representations of N extended supersymmetry. In Table 1
some massive representations of N—extended supersymmetry are reported (up to
N = 5). Massive representations of N-extended supersymmetry have dimensions

d = 221" x 039 (23)

where d,;. is the dimension of the Clifford vacuum. Massive representations can have
smaller dimensions in the presence of central charges [29, 30]. We will give a few ex-
amples: in N = 2n extended supersymmetry massive multiplets with central charges
have a dimension 22H1 instead of 24“. The spin range is J = 0 up to J = 71/2 instead
of J = 0 up to J = n. These 22"“ states are a doublet of massive representations of
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Table 1. Some massive representations (without central charges)

11424.21 2
J3
N
l» \

p—
L ba

r—
s

3 . 1 6 14 14
I 1 6 14691 14®6 14

5 1 10 44 110 165 132

Table 2. Some massive representations (with
central charges). Complex representations

Je
N — 1 — 0

l

1
1 4 5®1 4

77,- extended supersymmetry Without central charges. The internal symmetry which
classifies these states is U(1) ® USp(2rL) instead of USp(4n). In Table 2 some massive
representations with non—vanishing central charges are reported.

Let us turn to massless representations. In this case, we may choose 1)“ = (1, O, 0, 1)
and the stability subalgebra written in terms of Weyl spinors becomes

{ i, {23"} = (1 + 63).:55”, { 3;, Qt} = 0 (24)
(24) implies that Qg : 0 and we have the Clifford algebra for N creation and destruc-
tion operators. If we set Qi : Q; we have (after the rescaling of Q“ by a factor 15)

{9‘} Qt} = (5”, {(2‘) Q} = 0 (25)
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If we define the real vector

Q“ = Q“ + a" ma ~ c)
1/5 1/?

(25) becomes the Clifford algebra of SO(2N). The fundamental massless multiplet
of N extended supersymmetry coincides with the spinor representation of SO(2N)
and has a dimension 2”. We will be interested in the decomposition of SO(2N) into
U(N) corresponding to the embedding N + N = 2N of the fundamental SU(N) re-
presentatiomin the SO(2N) vector representation. In fact, when M = 0 the USp(2N)
intrinsic group defined by (21) reduces to U(N) with generators

] (a = 1, ..., 2N)

Tsfi+Tfi+aWL-Wm Tfi=ilfifld @®
The U(1) part T = 1/4[Q‘, Qi] is related to the intrinsic helicity A : 1/2Q‘Q‘(AQ
= 0) by the following relation

NT=A—-—— 274 ()

If we consider the representation space spanned by .Q, @152, Q“ @342, the
spectrum of T runs from —N/4 up to N[4. If we define the Poincaré helicit;r as that
operator T which transforms the (—25 opposite to T then the superhelicity is given by
I' —|— T and is a Casimir invariant for a massless representation. If we want a multiplet
to be PCT self—conjugate we must have that F —|— T = 0, i.e., F9 = N[4.9. In this
case the multiplet contains a complete set of opposite helicity states 1/2(N/2 — k)
k = 0, . . .N which beIOng to irreducible representations of SU(N): [1V X fl X X 17ll:-
If F9 : 21.9 with A # N[4 then we must add to the multiplet with superhelicit}r
A — N[4 a PCT conjugate multiplet with opposite superhelicity N[4 — 71. This means
that FQ’ = (N/2 — 1).!2’. Note that a multiplet is never PCT self-conjugate if N
is odd. We can enlarge the dimension of the Clifford vacuum by assuming that .Q
transforms according to some irreducible representation R of the chiral group SU(N).

Table 3. Massless representations with
maximum helicity Z = 1

Z—>
N 1 ~1— 0
l

2 1 2 2:191
3 1 391 3@3

4 1 4 3®1®1®3



Aspects of Supergravity Theories 217

In this case, a PCT self-conjugate representation of the supersymmetry algebra will
be obtained by adding two representations with opposite superhelicities and Clifford
vacua transforming according to the R and R representations of SU(N) respectively.
Again, the doubling is not necessary if the superhelicity vanishes and if R is a self—
conjugate representation of SU(N). The dimensionality of an arbitrary represen—
tation will be 2” x dim R if the superhelicity vanishes or 21"+1 X dimRotherwise. From
the previous considerations it follows that the minimum helicity range for a PCT self—
conjugate massless multiplet is l = 0 up to l : N/4 (or (N —|— 1)/4 for odd N).
In Tables 3 and 4 massless multiplets with lmax : 1 and 2, singlets under SU(N),
are shown. We note that, as far as the internal symmetry properties are concerned,
the SU(N) subgroup of SU(N) is the maximal internal symmetry of the massless
multiplets for which the representations are vector—like. When SO(N) is enlarged to
SU(N) the massless multiplets are not invariant under parity. This is because a
given SU(N) representation acts on a state of given chirality which has no partner
of opposite chirality. However, it can happen that some states in a given multiplet
belong to a self-conjugate representation of SU(N). In this case we can define a
parity operation on these states. It is evident that a given irreducible PCT self—
conjugate multiplet is never self-conjugate under the chiral SU(N) symmetry which
rotates the generic state (251 Q54). However, we can add several massless multi-
plets in order to obtain only states which are “vector—like”, i.e., states which belong
to self—conjugate representations of SU(N). This is, for instance, the case when we
decompose the states of a massive representation with respect to states of a given
helicity [26]. The massive representation decomposes into a sum of irreducible mass-
less representations. The states of a given helicity are classified by the subgroup
SU(N) of USp(2N) according to the decomposition 2N e N + N of the vector re-
presentation of USp(2N) with respect to SU(N). In Table 5 we show such decompo—

Table 4. Massless representations with maximum helicity l : 2. SO(N) classification

t
1 1

2 1

w )— 3 3 1

4 3®1®1®3 4 2:191
5 1 1 5 10 10am 5@5

117,. 3 1r 2 _ 1 _A l 2 0

i

i
I
|

6 2‘ 1 6 : 15@1 20636 156915
7 1 1 l 7931 21@7 35®2l 356935
8 l 1 l 8 28 56 35935
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sition for the massive multiplet With spin Jmax = 2 of N = 4: extended supersymmetry
(fundamental representation).

From the previous analysis we find that the helicity range inside a massless re-
presentation is lower than in a massive representation. This is due to the fact that the
“rest frame’> Clifford algebra corresponds to SO(2N) rather than SOOLN). The mass-
less fundamental representation of Nextended supersymmetry is nothing but the
spinor representation of SO(2N) which corresponds to the particular decomposition
2N —> N + N of SO(2N) into SU(N). It is clear that the previous discussion can be
generalized to supersymmetries in any number of space-time dimensions. If, for
instance, we go in ten dimensions [31] and we consider massless representations
then the Clifford algebra is again S0(8), as for the N = 2 massive case in four
dimensions. In this case, the two irreducible 80(8) representations are just the vector
and the other spinorial representation. These two 80(8) representations describe a
vector field and a Majorana-Weyl spinor in ten dimensions. If we go to 11 dimensions
[32], we have the Clifford algebra of N = 8 massless multiplets or N = 4 massive
multiplets in four dimensions.

We conclude this section by considering again some representations of the N-
extended supersymmetry algebra with a non—vanishing central charge [29, 30],
We have seen that these representations are classified by USp(N) and have a spin
range from 0 up to N[4- (N even). Their dimension is 2“1 and they coincide, as far

Table 5. Decomposition of the massive N = 4, Jmax = 2 representation into massless
representations

Helicity ‘ Multiplicity l Irreducible massless multiplets

' - I
+2 I 1 (1) l 1 l .

+—:- l 8(8) i 4 4><1

+1 28(27+1) I 6 4x4 6><1‘

+ 56(48+8) | 4 4X6 ‘ 6X4 4x1

NI
H

0 70(42+27+1)| 1 4X4 6X6 4X41 1

,_ 56(48+8) i 4x1 6x4 4X6 4

3 8(8) 4x1 l 4
2almiii

Between brackets: USp(8) representations.
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as the helicity content is concerned, with the PCT self—conjugate massless represen-
tations of N—extended supersymmetry. These representations can be considered as
a particular embedding of USp(N) into SU(N). The SU(N) N-dimensional vector
representation remains irreducible when restricted to USp(N). If we apply the above
analysis to N : 4 supersymmetric Yang-Mills theories we conclude that any Higgs
mechanism which preserves supersymmetry must necessarily give rise to massive
nlultiplets with non-vanishing central charges whose spin states are classified by
USp(4). This is indeed what happens in spontaneously broken extended super Yang—
Mills theories.

4. Extended supergravity and particle physics

Extended supergravities [33] are the gauge theories of graded Poincare-Lie algebras
in which an N—plet of Majorana spinor charges Q; (i = 1 . . . N) is introduced through
the basic anticommutation relations given in (2). These theories, because of the exi-
stence of N-spinor generators, require the introduction of N spin 3/2 Rarita-Schwinger
fields which carry an internal symmetry index 75. The particle content of the super—
gravity multiplets of N extended supergravity can be read from Table 4. Because
multiplets with helicity 2. g 2 exist only up to N = 8 supersymmetry generators,
it follows that there is a very limited number of pure supergravity theories. In fact,
when the only coupling constant is the gravitational constant, there are only seven
possible theories with different particle content. However, it has recently been shown
[34] that different field representations can give inequivalent quantum field theOries,
which coincide at the classical level.

The simplest extended supergravity theory is the N = 2 theory [35]. It gives a
very elegant unification of the Maxwell theory with the Einstein Lagrangian. This
theory comes very close to Einstein’s dream of unifying photons and gravitons and
does so by adding two gravitini to the ordinary Maxwell—Einstein theory. The two
gravitim' are chargeless, but they interact with the Maxwell field via a non—minim a
coupling dictated by local supersymmetry,

1 _ 1 ~ .
2 6761?”? (F’” + 2 75F”) 1/578” (28)

This theory is an interacting theory whose free part reduces to the sum of the Lag—
rangians given by (4) and (7). It is also possible [36] to introduce in this theory a
charge coupling 9 for the gravitino doublet provided a “mass term” of strength 9/1;
and a cosmological term of strength (g/kz)2 are also introduced. Extended super-
gravities have a very large number of symmetries. Among the local symmetries,
beyond general co-ordinate, Lorentz and supersymmetry invariances, they also have
gauge symmetries related to the vector fields of the supergravity multiplet. These
latter symmetries, when only the gravitational constant is present, are related [37]
to the gauging of the central charges which appear on the right—hand side of the basic
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antioommutator of two supersymmetry generators, as given by (2). Among the global
symmetries they have a global SU(N) invariance which can be enlarged to U(N).
This is done [38] by a combined chiral and Maxwell-duality invariance which genera-
lizes the Maxwell-duality invariance of the Maxwell-Einstein system. The N left-
handed gravitini 1p: L transform as SU(N) vectors while the N(N —— 1)/2 Maxwell
field strengths F”? = —F#’," and their dual Fflfl, = 1/28#,9°FW transform as the two—
fold antisymmetric representation of SU(N). This combined chirality-duality in-
variance, together With the other local symmetries, has been proven crucial for the
one and two—loop finiteness of the quantum corrections of extended supergravity
theories [12]. It is important to point out that the combined chirality-duality in—
variance induces new contact terms of gravitational strength for the spin-3/2 fields
which do not reduce simply to torsion as in N = 1 supergravity. This fact shows
that local supersymmetry has a much richer geometrical structure than the Einstein—
Cartan theory of gravitation.

The global symmetries of extended supergravity have a much more interesting
structure when N > 4. Under these circumstances, scalar fields appear in the super-
gravity multiplets (see Table 4) Which now contain all possible helicity states from 0
up to two. It was shown [39], in the construction of N = 4 supergravity, that the
two real scalar fields are responsible for an additional global SU(1,1) invariance of
the field equations. This symmetry combines, in a non—trivial way, chiral transforma—
tions on the spinors, chirality transformations of the vector field strengths and pro-
jective transformations on the scalars. This non-compact global transformation
extended the full global symmetry of N = 4 supergravity to SU(4) ® SU(1,1). Some
time ago, Cremmer and Julia [40] further generalized these additional symmetries
of N = 4 supergravities by showing that all these theories have, in fact, a local
symmetry H = U(N) (SU(S) for N = 8) and a global non-compact symmetry G.
Furthermore, the scalar fields of the supergravity multiplet, Which belong to the
four-fold antisymmetric representation of the classifying group SU(N), parametrize
the coset space 0/3. H is related to Gin the sense that it is isomorphic to its maximal
compact subgroup H m H. This is the very reason for the absence of ghost states in
spite of the fact that the over-all symmetry of the equations of motion is a non-
compact one. In N = 4 supergravity G/fI = SU(1,1)/U(1) is a two-dimensional
manifold and it corresponds to the two scalar modes of the theory. Let us jump
immediately to the maximally extended N = 8 theory. In this case, G 2 E7 and
H = SU(S) [40]. The 70—sca1ar fields parametrize the homogeneous space G/H of
dimension 133 — 63 = 70. The SU(S) group which classifies the states is neither H
nor I7, but rather its direct sum H ® IT. The local SU(8) group of N = 8 extended
supergravity has a connection Qfig which is an auxiliary, non-propagating field whose
linearized part is a bi-linear expression in terms of the 70-scalar fields of the basic
N = 8 supergravity multiplet. Cremmer and Julia [40] suggested that these SU(S)
gauge vector potentials could become dynamical, namely their propagator could de—
velop a zero mass pole, in analogy with a similar phenomenon Which actually takes
place in (JP"—31 bi-dimensional non-linear 6 models in the 1/72 expansion [41]. This
assumption is nothing more than the statement that the elementary fields of the N = 8
supergravity Lagrangian bind to form a multiplet which contains the adjoint re-
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presentation of SU(8). This observation may be relevant in order to make contact
between supergravity and current particle phenomenology. In fact, previous attempts
which identify the elementary particles of “low energy” physics with the partners
of the graviton in the massless supergravity multiplet failed essentially because N-
extended supergravity can, at the most, accommodate an 80(8) Yang—Mills theory
[42]. The elementary vector particles belong precisely to the adjoint representation
of 80(8). This group, in spite of the fact that it has rank 4, does not contain SU(3)
® SU(2) ® U(1), the minimal gauge group of low-energy Physics. Even if we try
to identify only the exact (vector—like) symmetry SU(3) ® U(1), as a subgroup of
80(8), too many observed states of quarks and leptons are missing. However, if
we abandon the constituent picture of the elementary fields of N : 8 supergravity
and try instead to interpret them as “preons” of composite states which look ele-
mentary at present energies (quarks, leptons, vector bosons), then the local SU(8)
chiral symmetry may be sufficient to accommodate all observed states. In a very
interesting work, Ellis, Graillard, Maiani and Zumino [43] recently made a group—
theoretical analysis of the particle content of the SU(8) composite massless multiplet
which contains the A = i1 helicity states in the adjoint representation of SU(8)
and concluded that this multiplet is large enough in the spin 1/2 and 0 sector to
include all observed quark and lepton degrees of freedom as well as the Higgs particles
needed for subsequent symmetry breakings from the Planck mass down to the GeV
region:

SU(8) —> SU(5) » SU(3) ® SU(2)left ® U(1) —> SU(3) ® U(1).

It is remarkable that SU(8) appears to be large enough not only to give the GUT SU(5)
gauge group in a unique fashion, but also to give a family generation group due to
the splitting of SU(8) into SU(5) ® SU(3)mm-llies. In order to construct the PCT self-
conjugate massless multiplet which contains the vector particles in the adjoint
representation of SU(8), Ellis et al. [43] have used the fact that, in any supersymme-
tric theory with N g 4, there is a multiplet of currents which have the same on mass—
shell degrees of freedom as an N extended massive multiplet [44]. This multiplet
has the spin content

3 a
2: (E) 1 -‘- (29)

where the index on runs from 1 up to 2N and the lower spin states belong to antisym-
metric representations of USp(2N) according to the classification given in Section 3.
In the limit of zero mass, this multiplet decomposes in several massless multiplets
which are classified by SU(8) representations according to the decomposition 2N
—> N —|— N of USp(2N) into SU(N). For N 2 4 We have, for instance, the decomposi-
tion given in Table 5. The massless multiplet which contains the adjoint representa—
tion of SU(4) is the one starting with a +3/2 helicity state in the vector representation
of SU(4). This is true for all N g 4. Ellis et al. [43] assumed that for N > 4 the
relevant multiplet is also given by

3 A 1 A 3—N A

(E) (1)AB(§)IBC]N( 2 I (30)
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to Which one must add the PCT conjugate states

N—3 N—4 N—5 _3 3( 2 )A( 2 M 2 Lei—2L <1);
For N = 8 the over-all helicity content for left—handed particle states is

5
2: —: 8

:F2

}.=$2: 28+36

3 _
)1 = —: 8 56 1683F 2 + + (32)

z=$1z 63+1+70+378
1 _ ._

1:42—27: 8+216+56+504

11:0: 28 +420 +fi+4_20

The above authors made the drastic assumption of neglecting SU(8) trace represen-

tations in (32). For the spin 1/2 these representations are the 8 and 5—6 and for the
scalar sector the 28(fi). Under these circumstances, they conclude that the maximal
unbroken subgroup of SU(8) below the Planck scale 1019 GeV is SU(5). The maximal
anomaly free subset of spin 112 left-handed states which can be constructed out of

216 and Wrepresentations and which is vector-like under SU(3)colour ® U(1)em con-

tains exactly three families of (10 +5) SU(5)—representations plus a set of self-conju-
gate representations Which may acquire a big SU(5) invariant mass of order
~ 1015 GeV. Some possible alternatives can be envisaged in the approach considered
by Ellis et al. One should look to anomaly—free representations for spin 1/2 left-
handed fermions Without disregarding SU(8) trace representations. Another possi-
bility Which seems hard to fulfil is to restore conventional symmetry breaking by
considering more multiplets other than those given by (30) and (31). It is evident
that if one adds enough massless supermultiplets to (32) one can, in fact, give a
supersymmetric mass to every state by enlarging SU(8) to USp(16). It is easy to

See that this is achieved by a massive N = 8 multiplet With Jmax = 6. This is too much,

but one could explore intermediate situations Which fulfil the constraints imposed
by low energy phenomenology. It remains to be seen if this programme can have any
solution.
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The Einstein-Cartan Theory ’
A. Trautman (Warsaw)

Summary
(Full text of this lecture will be published elsewhere)

In 1923 Elie Cartan proposed to modify the Einstein theory of gravitation by allow—
ing space—time to have torsion and relating it to the density of intrinsic angular mo-
mentum of a continuous medium. Cartan’s idea did not attract any attention at
that time. This may be due, on the one hand, to the fact that Cartan’s paper had
appeared before the spin of the electron was discovered, and, on the other, to Ein—
stein’s fascination with the problem of unifying gravity with electromagnetism.

The idea of connecting torsion to spin became alive again around 1960, mainly
thanks to the work of D. W. Sciama and T. W. B. Kibble. There was considerable
activity on this problem from 1965 to 1975.

There is no “logical” or experimental, compelling need to modify Einstein’s theory,
but one can advance good heuristic arguments in favour of the Cartan idea:

(i) The geometrical independence of the metric g and linear connection P leads to
the idea of treating these quantities as independent variables in the sense of
a principle of least action. If g and F are assumed to be compatible, then the
freedom in the choice of F reduces to that of the torsion tensor Q.

(ii) According to relativistic quantum theory, the Poincaré — or the inhomogeneous
Lorentz group — is physically more significant than the Lorentz group itself. The
Poincare group has two fundamental invariants: mass and spin. The first among
them is related to translations and to energy-momentum. In Einstein’s theory,
the density of energy—momentum is source of curvature whereas spin has no
such direct dynamical significance. In a sense, the Einstein—Cartan theory re-
stores — to some extent — the symmetry between mass and spin. It introduces
also an unexpected “duality”: via Noether’s theorem, energy-momentum is
generated by translations whereas Einstein’s equation relates it to curvature,
which is responsible for rotations of vectors undergoing parallel transport. Con—
versely, spin is generated by rotations, but torsion induces translations in the
tangent spaces to a manifold (“Cartan displacement”). This duality can be
traced to the fact that the Einstein-Cartan Lagrangian is linear in curvature,
an assumption criticized by C. N. Yang. Recently, F. W. Hehl, Y. Ne’eman,
N. Straumann and their coworkers have studied a theory of gravitation based
on a Lagrangian quadratic in both curvature and torsion. It is clear however,
that there are no compelling reasons to abandon the linear Lagrangian.

(iii) There is an interesting analogy between the description of magnetic moments in
electrodynamics and spin in the theory of gravitation. In a phenomenological

15 Proceedings GR 9
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description of electromagnetism, the external magnetic field produced by a
ferromagnet may be obtained in at least three ways: by considering a surface
current equivalent to the actual distribution of microscopic currents and mag-
netic moments, by replacing the latter by a volume distribution of “Ampere
currents”, or, finally, by introducing a smooth field of the magnetization vector.
In the Einstein theory, there are analogues for the first two descriptions, whereas
the Einstein-Cartan theory provides the third.

The Einstein-Cartan theory assumes, as a model of spacetime, a four—dimensional ma-
nifold with a linear connection F compatible with a metric tensor 9. The gravitational
part of the Lagrangian, V——gR, is formed from the curvature tensor of F. This pre-
scription leaves no room for new arbitrary constants. The left hand sides of the field
equations are obtained by varying this Lagrangian with respect to g and Q. Variation
with respect to 9 may be replaced by that relative to the field of frames (tetrads).
The sources of the gravitational field are described by expressions resulting either from
phenomenology or by varying an action integral obtained by applying the principle
of minimal gravitational coupling to a special-relativistic Lagrangian. There are
subtleties concerning the Maxwell and other gauge fields.

The Einstein-Cartan field equations are

1 SEG
RAW — E 9MB = 15,1“! (EC4

811G5.. — 6:92. — 6:42;. = c, sf}. (0)

The Cartan equation (C) is trivial in the sense that if the spin density vanishes,
sfi, = 0, then so does torsion, Q19“, = 0. Quite independently of this, torsion is topo-
logically trivial: any linear connection can be deformed into a connection Without
torsion.

The Bianchi identities for RPM and Q?” give two sets of constraints on the sources.
One of them may be symbolically written as

Vt=R-8+Q-t~-R'Q
Without good reason, Cartan required Vt = 0 and was led to the algebraic constraint
R — Q = 0.

F. W. Hehl has shown that, by solving (C) for Q, one can reduce the system (E) — (C)
to an equation with the Einstein tensor, built from g, on the left and an effective
energy-momentum tensor,

Teff = t + div 8 + 82 (H)

on the right. The term quadratic in spin seems to be the only essential difference
between the Einstein-Cartan and Einstein theories. Similar terms have also been
obtained by B. M. Barker and R. F. O’Connell from Gupta’s quantum theory of
gravity.
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0n the basis of (H) one can argue that the Einstein—Cartan theory may be physi-
cally relevant only when the density of energy is of the same order of magnitude as
the spin density squared. For matter consisting of particles of mass m and spin 71/2,
this Will occur at densities of order mzc4/Gh3. For nucleons, the density in question is
1054 g/cm3, much less than the Planck density. Putting the same result in a slightly
different way, one can say that a particle should have a radius of order

01112 1/3 h
. ( he ) E

for gravitational effects of spin to be comparable to those of mass.
The Einstein—Cartan theory is viable, but differs so slightly from Einstein’s theory

that it may take a very long time to confirm it or disprove. '
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The Positive Energy Programl)
D. R. Brill (College Park) and P.—S. Jang (Syracuse, N-Y.)

1. Introduction: Description of the Problem

Some months ago I had the pleasure of meeting Konrad Wachsmann, the architect
of Einstein’s summer house near Potsdam. One of the things he said comes to mind:
“I am a marked man. Everyone thinks of me in terms of Einstein’s house, but that
is something I did a long time ago when I was very young.” Well, I am beginning
to feel the same way about Positive Energy: it is something I worked on a long time
ago, and the only recent paper I wrote on it is a review together with Pong 800 Jang
[1]. Immediately after finishing that review there was a flurry of activity in the field,
no doubt designed to outdate our review as quickly as possible. So it is now appro-
priate to assess the progress made since GR 8.

Thanks to the work of Jang, Schoen and Yan, and others, the positivity theorem
has now been firmly established. Important further progress is possible for at least
two reasons: (a) the theorem to be proved is becoming more ambitious, (b) the pre—
sent proof involves many complicated steps and should be capable of simplification.
So the positive energy program may still be an interesting topic three years hence
at GR 10.

I confine attention in this talk to the “ADM” energy defined on a spacclikc hyper-
surface. Its relation to other energy quantities, such as the Bondi energy, is another
topic on which significant research is just beginning today [2]. We have already
heard in other lectures of this conference (e.g. in that of Marsden) that unique ex-
pressions for energy and momentum on spacelike surfaces can be given if the geo—
metry is asymptotically flat:

m : P0 : lim (1/1671) f (am _ 3,9,7) d8,
—)00

Pi : lim (1/8n) f (Ki, — 53K) d8,-

By “asymptotically flat” we mean roughly

953' : (35; + 0(1/7),

Kw I 00/72):

recognizing of course that more precise definitions, e.g. in terms of weighted Sobolev
spaces, are available and necessary for the rigorous proofs [3]. The requirement on

1) Supported in part by NSF grant PHY 79—06940
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gs,- demands an asymptotic behavior, sufficiently close to the Schwarzschild spacelike
geometry of mass m, that total energy is well defined; similarly, the fall-off require-
ment on the extrinsic curvature (second fundamental form) K” assures that the
total momentum is well defined.

By the positive energy property we mean that P" is timelike and future pointing
on any asymptotically flat slice of spacetime, and that it vanishes only if spacetime
is flat. In particular, then, the total mass—energy m is non-negative, and vanishes
only for flat spacetime.

It has been customary to prove the second, more particular statement, and then to
appeal to the Lorentz transformation properties of P" to establish that it is timelike
(since P0 > 0 in all frames). However, the positive energy property makes sense for
a single spacelike surface, and it would be appropriate to have a proof which does not
involve more than one such surface. Only very recently has the interesting work
of Christodoulou and O’Murchadha [4] given an indication that asymptotically flat
Cauchy surfaces will generally be accompanied by other, boosted surfaces; but at
present the boost is not known to reach arbitrarily large values.

The general idea for establishing the positive energy property is simple enough:
Use the constraints,

R—KiiKij+K2'—2Q=O
1),.(Kii — Kg“) — Ji = 0 (2)

to express the energy in terms of interior gravitational fields and matter; if matter
has positive energy, i.e. satisfies “energy dominance”,

9 2 («RWY/2 (3)

then positivity of total energy should follow. The analogous situation in electro-
dynamics illustrates the procedure: the total charge is defined as an asymptotic
surface integral, (,1: f E » :18. By using the constraint, divE = 9, this can
be expressed in terms of the interior charge density, Q = f g dV; and if there were
a positivity property of g, the corresponding property of Q would immediately
follow. The analogous steps in the case of gravity lead to an expression of the suggestive
form

16nm=f(g 39 69 +KK —K2 +29)dV.

The first term, quadratic in derivatives of the metric, could be considered a gravita-
tional potential energy, the second term a gravitational kinetic energy, and the last
term the matter energy. However, the “potential” term has no particular positivity
property, and the “kinetic” term is positive only if K = 0, Le. if the spacelike sur-
face happens to be maximal.
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2. Solution for the Case of Weak Fields

The only situation where the positive energy program can be carried out completely
and straightforwardly is the case Of weak fields. Here the metric and extrinsic cur-
vature can be split up covariantly but nonlocally into (flat) background, trans-
verse—traceless parts, and remainder:

gij = 6,,- + 595T ‘l— 65727
”if ;: 91/2(Kii _ 917K) : 575mm + (351:7

where transverse and traceless means, e.g. for Bar”,

DjéflijTT : 0, 6ij6nijTT 2 0.

By expressing P0 in terms of this decomposition one can show that its first order
deviation from the flat—space zero value vanishes, and that the second order expres-
sion is

81:52P‘J : fE (vaggTfi + (dazfiTTP + 629] d%

Similarly the momentum has the second-order expression

gnaw : f [aiaggTanMTT + 62Ji] d3x
Therefore the desired timelikeness of (3213“,

162m 2 (VP)

follows manifestily from local energy dominance, |62Jil < (329. Furthermore, if
62F“ = 0 then we have

656951. : 0, (SJIijTT = 0

hence
6Ri7‘ : 0, a['45K]]k : 0,

which is the first order form of the Gauss-Codazzi equations for flat space-time, and
which assures us that the initial surface is embedded in flat space—time.

Of course, these lowest order results do not mean anything directly for the exact
theory. To establish a connection one needs: (1) a correspondence between solutions
of the linearized field equations and solutions of the exact theory in a finite neigh—
borhood of flat space—time. This is provided by the “linearization stability” of flat
space—time, as explained e.g. by Marsden in his lecture; and (2) an estimate of the
“remainder” between the exact energy-momentum and its quadratic approximation
62F”, showing that this remainder is sufficiently small in some finite “local” neigh—
borhood of flat space—time. This estimate was given by Choquet—Bruhat and Marsden
[5] in their solution of the “local” positive energy problem.
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3. Reduction to the Sourccless, Time-Symmetric Case

For the rest of this talk I shall confine attention to the proof of the positivity of
energy in the general case. This proof proceeds in a number of steps. The first takes
care of the “kinetic” part of the geometry, by reducing the problem to the sourceless,
time-symmetric case, Where the extrinsic curvature and the matter is entirely ab-
sent. This is easiest if the original data {7, K are given on a maximal surface, i.e. if
tr K = 0. In this case the constraints imply R = R(§) ; 0, and we can apply a
theorem of O’Murchadha and York [6]:

Every asymptotically flat metric 57 with R g 0, R # 0 has greater P0 than the unique
conformally equivalent metric g which has R = 0 (i.e. which satisfies the time-
symmetric, sourcefree constraints).

To prove this, let g" = 64g and choose the scalar function 6 such that R(g) = 0.
One can show that such a function 6 exists in the assumed case R g 0. One then finds

22 = 126—4 — 86—5416 = —86-5A6
Also we have

P"[§] = —4 f was + P"[g]
To finish the proof, we combine these equations to evaluate the energy difference,

P°[.¢7] — P°[g] = 4adV 2 (1/2) f R05 dV > 0.
. This theorem was generalized by Schoen and Yau [7] to include the case of general
initial surface, K ¢ 0. In this case, define new initial data,

. ii = .(Iij + Di’iw
K” = 1?? — (DiDv'w) (1 + (Vw)2)’1/2

'Q
H

H

where w is a scalar function with [Vw] = 0(1/r) satisfying Jang’s equation [8]

Awp Diu‘DiusDiiDai' _ K f;,D‘auDhtr
(1 + (Vw)2)1/2 (1 + (Vw)2)3/2 l —I— (\‘imi

Note that these new initial data have tr K = if” = 0, and that the asymptotic
dependence of g and E is the same to 0(1/r), so the surface integral which defines P0
is the same for both. Then make another, conformal change of the metric, g = 9545,
so that R[g] = O. Schoen and Yau have proved existence of the functions w_and (D
with the required properties. By expressing the constraints in terms of i, K, they
can then again show that

P°[§] — P°[gl > 0-
In this fashion the proof of positive energy in the general case is reduced to the

proof that sourceless, time-symmetric gravitational waves have positive total energy.
In some special cases — such as the case of axially symmetric waves [9] —— this can
be shown by converting the energy expression to a volume integral over a manifestly
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positive integrand. No such procedure is known in the general case. Instead one relies
on cancellations between positive and negative contributions to the integrand.
Theorems of global differential geometry, such as the Gauss—Bonnet theorem, show
that such cancellations can occur in quite general situations. The Gauss-Bonnet
theorem indeed plays a major role in the present methods of proof. Since this theorem
has no convenient 3-dimensional form, these proofs use a further, 2 + 1 decomposi—
tion of the 3-dimensional spacelike geometry.

4. Proof of Schoen and Yau

We start with a metric g with R[g‘] : 0 and g asymptotically flat. This means

§ij : (55} +191; With Pii : 0(1/7), 1’;c = 00/72), Picl : 0(1/7’4);

but, as emphasized by York [10], g,, does not need to be asymptotically Schwarz—
schildian in the sense

gii : (1 ‘l' 2m/T) 657‘ + 00/72).

(As a counterexample, York cites shoes of the Schwarzschild geometry which are
asymptotically boosted compared to the standard t = const. slices.) Therefore the
aim of the first part of the Schoen—Yau proof [11] is to reduce the general asympto—
tically flat case to the asymptotically Schwarzschildian case, by showing that a
change to asymptotically Schwarzschildian form can be made Without changing the
total energy appreciably:

Let $7,,- = (1 + mli)‘1 6,, + ‘65,», Where m is the mass-energy of g, m : POW],
so that P°[g] : 0. Use g to interpolate smoothly between m,- and (1 + m/Z'r)‘1 (5;,.
in a shell of radii 0' and 2a. The interpolating metric 6 depends on the arbitrarily

U

chosen radius 0‘ (and on the exact form of the smooth monotonically increasing
function C(r) with C : O for r < 0', C : 1 for r > 20'):

§=§ for r<a and §:(1+2m/r)46 forr>20‘.

Within the shell we have Rfi] :l: 0, but by choosing a large enough, this curvature

is sufficiently small that it can be changed back to zero by a conformal transformation,

9 = 11545, R[g] : 0.

One can then Show that

P°[gl = P°[§7l + 0(1/0) '
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so that the general time-symmetric sourceless case is now reduced to the asympto—tically Schwarzschildian time-symmetric sourceless case. Inother words, we now have

9s = (1 + 2W?) 5i;- + 0(1/T2), R[g] = 0
and want to show m 3; 0.

For the proof, Schoen and Yau [11] assume the opposite, and show that in this
case a 2-dimensional surface suitable for a 2 + 1 decomposition can be constructed;
and with its help they derive a contradiction. I outline the main ideas of the argu-
ment. Let x, y, 2 be asymptotically Cartesian coordinates, and construct the minimal
surface spanned by the circle 952 + y2 = R2 in the xy plane. In this case of low di—
mension it is known that such a surface of strictly minimum area exists and is smooth.
Furthermore, any maximum or minimum, 20, of 2 must occur in the interior region.
This is so because asymptotically the minimal surface condition becomes (with 2A
the 2-dimensional Laplacian on the surface)

2.42 = ——2mzo/r + 0(1/r3),

hence if m < 0, no maximum can occur in the asymptotic region at positive 20, and
no minimum at negative 20. In fact, the surface must lie between two surfaces iz
= const, Where the constant is no larger than the radius beyond which the above
asymptotic expression for 2Az dominates over the 0(1/7'3) terms. Therefore the radius
R of the spanning circle can be expanded to infinity, and the surface will remain
regular. Call the limit surface 2'. (In the case m > 0 the minimal surface would exist
for any finite R, but it would “run away” to infinity in 2 as R —> 00).

Now vary 2 by a one-parameter (.9) family of surfaces. Since 2' is minimal its area A
must satisfy

dA/ds = 0, dzA/ds2 ; 0.

This second variation can also be computed generally in terms of curvature quantities
(superscript 2 denotes 2-dimensional quantities intrinsic to E) and the normal 92‘
to E,

d2A/dsz = _f (Rn-mm — 2K,,2Kii — 2K2) dA
Into this substitute the 2 + 1 decomposition (Gauss equation) of the constraint
Rig] = 0,

2R = —2Kii2Kij + 2K2 —' 2Rijninj,

and use the Gauss—Bonnet theorem on Z to find

dzA/ds2 = —1/2 f 2K,,2K€idA < 0,
which contradicts the minimal area property of 2'.

Of course the rigorous proof is considerably more complicated; for example, the
Gauss—Bonnet theorem for 2', which was here simply taken to be I 2R dA = 0, re-
quires considerable justification.
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‘5. Proof of Jang

We follow the previous argument to the end of section 3 and consider another type
of 2 + I decomposition Which turned out to be successful in proving the positivity
of total energy of sourceless, time-symmetric gravitational waves. In addition, this
method shows up the connection between positive energy, horizons, and cosmic
censorship. Hawking [12] originated this method in his attempt to prove the positivity
of Bondi energy. Geroch used similar methods in his argument for the positivity of
ADM energy of time—symmetric gravitational waves [13]. Geroch’s argument failed
to be a proof because he had to assume the existence of a solution to a certain partial
differential equation. Recently, Jang [14] found a modification of Geroch’s argument
in which one does not need such an assumption.

5.1. Case of Spherical Symmetry

The essential structure of this 2 —|— 1 decomposition can be best illustrated in spheri-
cally symmetric, asymptotically flat space-times. Introduce the usual coordinate
system (If, r, 6, 45) so that the metric takes the form

dsz : —e2‘P(1 — 2M/r) dt2 + (1 — 2M/r)—1 dr2 + r2(d62 + sin2 0 (M52) (4)
where M and 1;) are functions of T and if only, and T > 2M. Using energy dominance,
Eq. (3), and the constraints, Eq. (2), one can then show

(31' + a) 3,111 g 0 and (—i“ + W) MI 2 0
where 3" and .pi are unit vectors along it and 7' direction, respectively. That is, the M
associated With each 2-sphere (r : const.) increases monotonically as one moves
outward from one 2-sphere to the next along spacelike or null directions. Hawking
noticed that this function m. can be expressed more" geometrically as the integral
over each 2—sphere,

M : AIM/321:3”- f (212 — 4M9) dA (5)

Here A is the area of the integration surface, 9 is the convergence of the outer null
normal ll, and (—y) is the convergence of the inner null normal 72", in the notation
of Newman and Penrose. Quantities referring to the 2-sphere, such as its scalar
curvature 2R, are denoted by preceding superscripts.

In the asymptotic region, both 9 and ‘u are negative. Suppose that the gravita—
tional field in the interior region is so strong that, as we move inward from the asym-
ptotic region, Q or ,u becomes zero on a certain 2—sphere H, of area A. From Eq. (5)
and the Gauss—Bonnet theorem, we find that, on H, M assumes the value (A/161c)1l2
: r/2. (Hence, the line element of equation (4) becomes Singular on H.) Since M
increases as we move outward in any spatial direction, the value of M evaluated
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at spatial infinity, i.e. the ADM energy m, is not only positive but also greater thanl)
(A/16n)1!2.

We need only a minor modification to deal with spherically symmetric space-times
with no such surface H. In this case, the coordinate system of Eq. (4) can cover the
whole space-time, and the regularity of the metric at the center of the spherical sym-
metry implies that M vanishes there. Hence, the monotonic property ofM still allows
us to conclude that the value of M evaluated at null infinity or at spatial infinity
(i.e. the Bondi energy or the ADM energy, respectively) is non-negative.

5.2. General Case

For any time-symmetric slice Geroch [13] gave apositive energy argument which is a
direct generalization of the above spherically symmetric one. LetH be the outermost
minimal 2—sphere on a time—symmetric slice S. Such an H is called an apparent horizon.
Geroch introduces a family of topological 2—spheres, parameterized by r E (To, co),
in such a way that r = r0 on H, and as 7 increases to infinity the surfaces approach
metric 2-spheres in the asymptotic region. Next, on each 2-sphere, set

M = (A1’2/32n3/2) f (2R — 2K2/2)c1A.
Note that this expression for M can be obtained from that of equation (5) using the
fact that S is a time symmetric slice.

Geroch then assumes that a one—parameter family of 2-surfaces can be chosen such
that the following equation holds on each surface,

2K = 2(85r6ir)1/2/r.

It is then a straightforward computation to show that dM/dr ; O for 7' > 71,. Since
M = (fl/167:)“2 on H, M evaluated in the asymptotic region, i.e., the ADM energy m,
is greater than (A/167r)1/2. As in the spherically symmetric case, we need only minor
modifications to deal with time-symmetric slices Without an apparent horizon.
In this case the 2-surfaces should be chosen so that they reduce to a point as r ap-
proaches zero. Then, noting that M —> 0 as r —> O and the montonicity of M, one
can still conclude the positivity of m.

Even though intuitive arguments suggest that Geroch’s 2-spheres generally exist,
this has not yet been proved?) Recently Jang [14] modified Geroch’s argument to
prove the positivity of m for maximal shoes. However, for slices with an apparent
horizon, Jang’s method does not prove m ; (Al/1670112 but only the positivity of m.
We briefly sketch Jang’s proof.

1) The relation m > (ill/1671:)11'2 also follows from the cosmic censorship hypothesis and other
commonly held beliefs concerning gravitational collapse. Penrose [15] proposed to test the
cosmic censorship hypothesis by examining the validity of such relationships. The above
shows that spherically symmetric space-times do not violate this consequence of cosmic cen-
sorship; a larger class of non-violating space-times was given by Jang and Wald [16].
2) Since this argument seems to be the most promising in establishing the above mentioned
relationship between m and the area of the apparant horizon, it would be of interest to settle
this existence question in one way or the other. (In this regard, we note that it is not at all
clear how one can modify Schoen and Yau’s method to prove m ; (A/167t)1l2 even for the spheri-
cally symmetric case.) ‘
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Let f be the solution of the Laplace equation with the boundary conditions that
f : f0 at H (where f0 is a positive constant) and f : 0 at infinity. Let the flux integral
of 8,-1‘ over a 2-surface enclosing H be (—4ne), and define r by e/f. On each T 2 con—
stant surface, set

W : (1/16n) f [H23 a 21(2/2) + (7/2) (2K — 2(arair)1I2/r)2]dA
If the r : constant surface is a submanifold, dW/dr evaluated on that surface is
non-negative. As before, we note that W is positive on H and that W evaluated at
infinity is also the ADM energy m; hence we can conclude the positivity of m. How-
ever, there are more technical details involved, because the level surfaces of the har-
monic function 1‘ need not be submanifolds. Jang handles this difficulty by using a
non-degenerate function 1" which is arbitrarily close to f in a suitable sense.

Showing the positivity of energy is perhaps the first step in understanding the re—
ations hip between the interior and the asymptotic structure of a space-time. I
believe that the various methods developed in the positive energy program Will find
many interesting applications in the study of isolated systems in general relativity.
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Present Status of Gravitational-Wave Experiments’)
V. B. Braginsky (MOSCOW) and K. S. Thorne (Pasadena)

We welcome you to our joint Soviet-American song and dance about the beauty of
recent experimental work on gravitational radiation.

Our show consists of five parts: a review of current astrophysical predictions of
the strengths of gravity waves bathing the Earth (§ 1) ; a description of how the chal—
lenge to detect gravity waves' is creating a new chapter in the field of quantum
electronics (§ 2); and descriptions of the current status of three types of gravity—
wave detection systems: Weber—type bars (§ 3), laser interferometers (§ 4), and space-
craft tracking (§ 5).

1. Predicted strengths of gravity waves

Astrophysicists and relativity theorists have worked hard, during the past five years,
to make realistic estimates of the strengths and frequencies of the gravity waves
bathing the Earth. This research was highlighted by a two—week workshop on ”Sources
of Gravitational Radiation” in Seattle, Washington, USA, July 47August 28,
1978. [1] Many sources were studied: Possible sources of broad-band bursts included
the collapsing and bouncing coresof supernovae in our galaxy and other galaxies;
neutrinos pouring out of a supernova; corequakes in neutron stars; the births of
black holes ranging from 3 solar masses to 109 solar masses; collisions between black
holes and between black holes and neutron stars, which may occur in globular clusters
and in galactic nuclei and quasars; and the final inspiral, coalescence, and destruc—
tion of compact binaries such as the binary pulsar. Possible sources of periodic
waves included binary star systems; rotating, deformed neutron stars; rotating,
deformed white dwarfs; and pulsations of white dwarfs that may follow nova Out-
bursts. Possible sources of a stochastic background included the big-bang singularity,
inhomogeneities in the very early universe, and the deaths—to—form—black—holes
of “Population HI stars” (stars that were born before galaxies formed).

From the many studies of all these sources and more, one of us [2] has drawn the
rather subjective conclusions shown in fig. 1. There we plot vertically the dimen-
sionless amplitude h of the gravitational waves (magnitude of the transverse-

1) Supported in part by the Mnistry of Higher Education, USSR, and by the National Science
Foundation, USAi
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traceless part of the metric perturbation associated with the waves), and horizon-
tally the frequency of the waves. Broad-band bursts, arriving at Earth once per
month, could have amplitudes as large as the topmost line in fig. 1 Without violating
any conventional “cherished beliefs” about the nature of gravity or the astrophysical
structure of our Universe. However, currently fashionable models of the Universe
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Fig. 1. Estimates of the strengths of the gravitational waves that bathe the Earth.
See text for explanation of the lines and hatched regions (from reference [2]).

suggest that the strongest onee-mr-uumtli bursts might lie far below the “cherished

belief" line — seinewhcre in the vertically~ hatched region of fig. I. The first burst

to he ciisun‘erecl may well 110 above the unce-per-mouth hatched I'eglun -— for example,

it :t-Eghl be from a. supernova in our Galaxy with strength somewhere in the dashed

region of fig. 1.
Similarly, fashionable models for the Universe suggest that the strongest periodic

sources might lie in the horizontally hatched region of fig. 1. And there could exist

a stochastic background as large as the solid line (energy density enough to close the

Universe) — though some strong but not certain astrophysical arguments suggest

the background will be weaker than this by several orders of magnitude or more. [3]

Figure 1 shows an enormous range of possible wave strengths, corresponding to

our enormous ignorance about the existence of and astrophysical behaviors of the
sources. Our ignorance results from the fact that the astrophysical information carried
by gravity Waves is nearly orthogonal to the information we now receive from radio,
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infrared, 'optical, ultraviolet, X—ray, and gamma-ray observations. Because of this
orthogonality, gravity waves have the potential to become a powerful tool for
astronomy — a clear window onto parts of the Universe that we now perceive
hardly at all. We have no guarantee that the gravity-wave window will be opened
successfully during the next decade, or even before the year 2000. But prospects for
success in the 1980’s are reasonably good. ‘

We can summarize by saying that the program to detect gravity waves is one of
moderately high risk and enormously high potential payoff.

2. A new chapter in quantum electronics

Figure 1 suggests a long—term goal of h N 10‘21 for ground—based detectors, which
operate at frequencies f N 100 Hz to 104 Hz. It is not ridiculous to hope to be nearing
this goal by the end of the 1980’s. To reach this goal Will require measuring displace-
ments of the ends of a one-meter bar detector with precision

AxGOAL r~_-' h - (1 meter) I: 1 X 10’19 cm. (1)

For comparison, if one regards the fundamental mode of oscillation of such a bar
as a quantum mechanical oscillator of mass m = 1 ton and frequency 01/271: : 103 Hz,
the half—Width of its ground-state wave function is

Axes : (Pi/27m”?!2 = 3 X 10719 em = 3AxGOAL- (2)

Thus, one—ton detectors of the late 1980’s must be regarded as quantum mechanical
oscillators. By contrast, the gravity waves one seeks to detect are highly classical —~
they typically have graviton occupation numbers, averaged over the beam-Width
of the antenna, of order 1037.

Classically one describes the oscillations of the bar’s fundamental mode by the
displacement a: of the bar’s end from equilibrium and by the corresponding canonical
momentum 1). As time passes x and p oscillate sinusoidally

:5: X1 cos out —|— X2 sin wt,
(3)p/mw : —X1 sin wt + X2 cos cot,

where X1 and X2 are constant amplitudes for the two different phases of oscillation.
Quantum mechanically a: and p are Hermitean operators, and so also are X1 and X2.
The commutation relation [22, p] = if; implies [X1, X2] 2 iii/mm, which in turn
implies the Heisenberg uncertainty relation [4, 5]

AX, AX, ; fi/2mw E (SQLF. (4)
Here SQL E 11s = (ii/2mm?"2 :4 3 X 10‘19 cm is the so-called “standard quantum
limit” for a gravity—wave detector. In real experiments, With real mechanical/elec-
trical transducers followed by electronic amplifiers, h is replaced by 2kTa/Q where k

1 6 Proceedings GB. 9
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is Boltzman’s constant, Ta is the amplifier noise temperature, and .Q is the "frequency
at which the amplifier operates. [6, 7] Then the standard quantum limit gets replaced
by a standard amplifier limit

kT'J‘Q E (SAW a (Stew. (5)AXIAX2 ;
mm

In all past and present bar-type detectors the electronics were designed to measure
X1 and X2 with equal precision (neither phase preferred over the other; circular error
box in phase plane of fig. 2). Such measurements can never measure gravity-induced
amplitude changes more accurately than the SAL — Which is inadequate for the
long-range goals of gravity-wave astronomy.

VY2 [ll/2

{2'33 \SA L 1

«n ‘W

-'\

(a) {b}

Fig. 2. Uncertainty error boxes for the amplitudes (X1, X2) of a bar-type detector
of gravitational waves. The error box for past and present measuring systems (draw-
ing (a)) is round and has a diameter no smaller than the standard amplifier limit
SAL. Quantum nondemolition measuring systems, planned for the mid and late
1980’s, produce long, thin error boxes (drawing (b)).

This obstacle was recognized early in the 1970’s as a result of detailed analyses
of the limiting performances of various measuring schemes. [8, 9] The above elemen-
tary viewpoint (Eqs. 3 to 5) brought with itself, in late 1977, an obvious solution to
the obstacle. [5, 6] Construct two detectors. On one detector measure X1 with high
accuracy (AX1< SAL) — and in the process perturb X2 so badly that one can gain
little information about it (AX2 > SAL). On the second detector measure X2 with
high accuracy (AX2<SAL), thereby perturbing X1 (AX1 > SAL). On a common
plot of the error boxes of the two oscillators (fig. 2) their tiny intersection point will
move, under the influence of a gravity wave, in precisely the same manner as the
system point of a classical oscillator. As a result, one can measure the full and detailed

, 1effects of the classical gravity wave with the desired precision A2: I: E SQL — and

in principle one can measure them with arbitrary precision, despite the quantum
mechanical nature of one’s detectors. The proposal to make such measurements, and
specific (rather simple) designs of apparatus for doing so, are opening up a new
chapter of quantum electronics called “Quantum Nondemolition Measurements”
(QND). For reviews see references [7, 10, and 11].
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Just as QND Will likely be a key element in bar detectors of the mid and late 1980’s,
so a second new concept — “squeezing the vacuum” [12] Will likely be a key element
in laserLinterferometer detectors. Recall that in such a detector one uses laser inter-
ferometry to measure the armlength difference L1 — L2 in a system consisting of

(0)
Photodiode

Sho‘i Noise : A(L1-L2)=)'c/1/AT

03) Mirror Pressure: A {p1—p2)= Wfi/I

Shot Noise : A (L112) =pX/1/AT
(6) Mirror Pressure: A [p1 —pz)=}L—1Wfi/)T:

Fig. 3. (a) Idealized version of a laser—interferometer gravity-wave detector.
(1)) The uncertainty error box for a normal mode of the electromagnetic field in its
ground state (vacuum fluctuations). The superposition of these vacuum fluctuations
on the laser light produces the indicated noises in the interferometer.
(c) The uncertainty error box for a Squeezed state of the electromagnetic field, and
the resulting superposition noises in the interferometer.

three masses suspended as pendula from an overhead support (fig. 3a). Such measure:
ments have two ultimate Sources of noise:
(i) photon shot noise, Which for the simple “one-bounce” interferometer of fig. 33.
gives the limit

A(L1 — L2) : z/VN (6a)
with it : (wavelength of light)/2rc, N = (number of photons collected by photo—
diodes during averaging time t); and (ii) photon preswre fluctuations on the mirrors,-

16*
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which produce differential momentum changes in the two arms [13]

mp, — p2) = 1/17 h/ic : h/A(L1 — L2) (6b)
and consequent length changes

4(L1 — L2) 1“ (T/m) M291 — P2) (60)
during the averaging time 1'. With currently available laser powers of S 10 watts the
shot noise (6a) is much larger than the pressure—fluctuation noise (6b, 0). One can
reduce the shot noise (at the price of increasing the pressure fluctuations) by either
of two methods: invent a more powerful laser (make N larger), or “squeeze the
vacuum”.

Squeezing the vacuum (an idea invented two months ago by Carlton Caves [12])
can be understood as follows: Both the shot noise and the pressure fluctuations can
be regarded as due to a superposition of two electromagnetic fields in the interfero-
meter: the laser field Which enters from the left part of fig. 3a, and the vacuum field
which enters from the bottom part. The vacuum field has equal amounts of noise

1(—4— quantum) in each of its two phases A1 and A2. The noise in phase A1 superimposes

on the laser light (N quanta) to give a random difference A(N, — N13) v: l- N
4

:1 VN in the number of quanta collected by the two photodiodes, resulting in the shot
noise limit (6a). The noise in phase A2 superimposes on the laser light to give a random

1 _ _
difference A(N1 — N2) 21/; N : VN in the number of quanta bouncing off

the two mirrors, resulting in the pressure fluctuation limit (6b, c). By sending the
vacuum electromagnetic field through a nonlinear optical device called a “degenerate
parametric amplifier”, one can squeeze its uncertainty error box by a factor .11.
(fig. 30) before it enters the interferometer, thereby reducing the mean number of
quanta in A1 to ”2/4 and increasing the number in A2 to ,u’2/4, and thence reducing
the shot noise by a factor )1 while increasing the pressure fluctuations by a factor )u‘l.
This technique may well be used in the mid and late 1980’s, unless lasers of much
increased power are invented.

The ideas of quantum nondemolition and of squeezing the vacuum are likely to
find application not only in gravitational wave detection, where they were invented,
but also in a variety cf other areas of modern technology. Even if gravitational
waves are never discovered, the effort may well be justified by technology spin-offs
such as these.

3. Weber-type bar detectors

The use of resonant bars as gravity-wave detectors was pioneered by Joseph Weber
at the University of Maryland during the 1960’s; and detectors of similar design were
constructed in Moscow, Glasgow, Frascati, Munich, Bell Labs, Rochester, IBM,
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Tokyo, Bristol, Reading, Stanford, LSU, Rome, Meudon, and Regina dUring the
1970’s. By 1975 the most sensitive of these room-temperature, aluminum Weber—
type bars had achieved rms noise levels of h I: 1 X 10—16 for frequencies f z 103 Hz.
For a review see, e.g., [14].

The GRS meeting in Waterloo (July 1977) occurred just two years after the com-
pletion of these “first-generation” detectors, and at a time when the design and early
development work for a “second generation” was underway. Since GRS good pro-
gress has been made on the second generation, in which the bars are made of new
types of materials and are cooled to 2°K or less, and their oscillations are measured
by totally new types of mechanical/electrical transducers. One such detector (at
Stanford) is now fully in operation, though with an rms sensitivity' h r: 3 X 10—13
that is well below its ultimate goal. Others elsewhere can be expected to start operat—
ing within the next year or two.

Table 1 summarizes the nature and current status of the bar—detector research
in various laboratories. Column I of Table 1 shows the location of each laboratory
and lists references describing that laboratory ’s recent work. Column II lists the mass
of the bar to be used in the final version of the detector. (Some laboratories prefer
to use lower-mass, prototype bars in their present developmental work :the prototype
masses are not listed.) Column II also lists the temperature of the bars in current
detectors. The statement “< 2°K” means that this laboratory possesses refrigeration
equipment capable of cooling the bars to temperatures below 20K. The bars now
being used or now being negotiated for purchase are made of various materials shown
in column III. Here “Al” means the same type of aluminum as was used in first—
generation bars; “5056” means a special alloy of aluminum with large magnesium con—
tent, which the Tokyo group [29] has discovered to have a rather high mechanical Q;
“Si” means silicon; “Nb” means niobium; and “Al203” means sapphire. Column IV
shows the mechanical quality factor Q of current prototype bars when cooled to the
operating temperature of ~ 20K. Column V describes the transducer system and
associated electronics being developed. Column VI shows the displacement sensitivity
actually achieved as of July 1980, with a prototype transducer with a 1 Hz band
width (1 second averaging time) — except that numbers shown in parentheses and
marked * are not sensitivities actually achieved but rather estimates of sensitivities
that would result if the present transducer were coupled to the best existing DC
SQUID amplifier (or, in the LSU case, to the existing SUPRAMP). Column VII lists
the sensitivity (RMS noise level) that would result today if a transducer which has
actually operated were coupled to the planned bar. In one case, that of Stanford (last
row), the coupling of transducer to bar has actually been carried out and the result—
ing detection system is fully operational. -

Note that Stanford’s gravity-wave sensitivity (column VII) is roughly a factor
30 better than the sensitivities of the best first—generation bars. The ultimate goal
of secOnd—generation work is improvement by an additional factor of 100, to get near
the standard amplifier limit for a several—ton bar: k g 3 X 10—20.

Comparison with fig. 1 shows that current detectors are more sensitive than the
cherished—belief upper limit: Nothing in our current views of physics or the Universe
forbids the Stanford detector to see many bursts per month. Moreover, current sensi—
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tivities are entering the realm of strongly aspherical supernovae anywhere in our
Galaxy.

In addition to the kilohertz-band detectors described in Table 1, there is at the
University of Tokyo [30] a project to construct a mechanically resonant antenna for
detecting periodic gravity waves from the Crab pulsar. The main goal is to reach a
sensitivity of h S 10’25 — corresponding to the most optimistic current estimates of
the Crab-pulsar wave strength. (The “best guess” current estimate is IL I: 3 X 1077.)
This project involves deep cooling of a massive antenna, and a long averaging of the
signal so as to reach a sensitivity to periodic sources far better than one can achieve
for burst sources.

4. Laser-interferometer detectors

Laser interferometers offer a design approach to Earth-based gravity—wave detection
(fig. 3a) which is very different from the bar design. It is likely that both designs
will be used in the long run — each proving superior to the other for gravity waves
of a specific temporal character. Laser systems have the advantage of being intrinsi—
cally broad band (Le, a laser system can operate over more than a decade of fre—
quencies all at once, thereby studying the detailed time structure h(t) of the gravity
wave). All current bar detectors are narrow band; and, although they can be made
broad band in principle, to do so will be difficult. Laser systems have the disadvantage
of being technologically more complex and more expensive than bars.

The first prototype laser system was constructed and operated in 1972 at Hughes
Research Laboratories, [31] with an rms sensitivity of h N 10‘14 for f r: 1 to 10 kHz.
Simultaneous with this demonstration experiment, a more sophisticated laser system
was under construction at MIT. [32] In 1975 vigorous laser—system efforts were ini-
tiated at Munich and Glasgow and in 1979 at Caltech-

The strategy of all these efforts is based on the hope that, once sophisticated
prototypes of modest length have been operated successfully, the sensitivity in
: A(L1 — L2)/Ll to gravity waves can be improved fairly rapidly by scaling up the
length L1 1: L2 of the arms, without making major changes in the instrumentation
by which the length difference L1 — L2 is monitored. For this reason, all effort thus
far has focussed on developing the monitoring instrumentation on prototype detec—
tors of modest arm length: 1 meter at MIT, 3 meters in Munich, 1 meter and 10 meters
in Glasgow. Much attention is paid to identifying all noise sources, understanding
them thoroughly, and devising ways to remove them which will work not just on the
current prototypes, but also on much larger future detectors.

The noise sources are so many and so varied, and the possible ways of removing
them are so numerous, that there is a “near infinity” of different possible detector
designs. Each group is pursuing a design rather different from the others (for example,
MIT and Munich are constructing Michelson interferometers in which a pencil beam
bounces many times off each mirror, making many discrete and independent spots on
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the mirror; Glasgow is constructing a Fabry-Perrot interferometer in which each arm
is excited as a giant, optically resonant cavity with just one spot on each mirror,
but with the photons still bouncing back and forth many times). Despite the numerous
differences in design, there is a great deal of overlap of technology and technique from
one laboratory to the next. Whenever experimenters from different laboratories meet
to discuss their progress, they learn unexpected, crucial things from each other. And, of
course, this is just as true of bar experimenters as it is of interferometer experimenters.

The Munich prototype [33, 34] has recently operated successfully at the photon
shot-noise limit A(L1 — L2) 5: 1/(Bl/f) [where i = (wavelength of light)/2-n:
11’ 1 X 10’5 cm; B = (number of bounces of light in interferometer) = 120; N
= (number of photons collected from 25 milliwatt beam during photon averaging time
of r = 3 X 10‘4 sec.) 2 3 X 1013], for gravity waves of frequency f :3 1/21: 2 2 kHz.
The corresponding gravity—wave sensitivity, h c: 1 X 10‘”, is comparable to that of
the first-generation bar detectors. The MIT and Glasgow [35] detectors are not far
from similar operation; and We can hope for rather rapid improvements over the
next few years.

The ultimate goal during the early and mid 1980’s is to construct detectors with
arm lengths L ~ 105 to 106 cm, with mirrors of high enough reflectivity to permit
B N 500 bounces, and with the most powerful continuous lasers now available
(several watts). Such detectors should be comparable in sensitivity to the best anti-
cipated second-generation bar detectors h z 3 X 10—20. Further improvements in the
longer run — using larger laser powers, higher mirror reflectivities, and Caves’
“squeezing of the vacuum” — might give sensitivities approaching the “standard
quantum limit” for a laser-interferometer detector:

A(L1 — L2) N (fiT/mlllz
L — L

SQL: h 2 g 1 X 10-22 (7)

[limit obtained by adjusting N in Eqs. (6) so that photon shot noise (6a) and photon
pressure noise (6a) are equal]. Here 1: is the photon averaging time, Which must not
exceed 1/2f with f N 100 Hz to 103 Hz the gravity-wave frequency; m z 104 g is
the mirror mass; and L z 105 cm to 106 cm is the arm length. This SQL, h S 1 X 1042,
is far smaller than the corresponding SQL for bar detectors, h N 10—19, because the
detector length L is so much bigger.

Of course, starry-eyed dreams induced by the smallness of this limit must be tem-
pered by the realities of current sensitivities (h ~ 10‘“) and 0f the enormous techno—
logical hurdles between here and there.

5. Doppler-tracking of spacecraft

Seismic noise is filtered away from bar and laser-interferometer detectors Without
much difficulty. However, at low gravity-wave frequencies (f S 1 Hz) such filtering
is exceedingly difficult if not impossible; and at these frequencies, fluctuating gravity
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gradients due to people, animals, automobiles, trucks, airplanes, also create pro—
hibitively large noise. To avoid these noises one must use detectors in space.

Doppler tracking of spacecraft is the most sensitive space technique now available.
Although its use for gravity-wave detection was proposed in the mid-1960’s, a serious
effort at using it was not initiated until after GR 8. In October 1977 and January 1978
the research group at JPL collected high-precision Doppler data from the Viking
spacecraft in orbit around Mars, and used those data to identify and characterize
the dominant noise sources in the present gravity-wave detection system. [36]
By far the dominant noise was due to fluctuations in the interplanetary plasma, which
cause fluctuations of dispersion in the “S—band” (N 2 X 109 Hz) radio tracking signal
and thereby cause spurious Doppler—shift fluctuations of magnitude Av/v : 3 X 10’13
to 3 X 10’14 on timescales 103 to 104 seconds.

The first attempt to actually detect gravity waves with the current Doppler track—
ing system was made this year at JPL using the Voyager spacecraft. [37, 38] The
Voyager data yielded an upper limit of k < 3 X 10’14 for bursts of characteristic
timescale 500 seconds, during a total tracking time of one day. They also yielded
an upper limit of [f><;S'h(f)]ll2 < 3X10‘14 on the spectral density 8,,(f) of any
stochastic background of gravity waves at frequencies 10‘4 Hz < f < 10‘2 Hz. For
comparison, from seismometer studies of the Earth’s vibrations, Joseph Weber [39]
in 1967 was able to place the limit [f X 18,,(f)]1"2 < 1 X 10’14 at the Earth’s quadru-
pole vibration frequency f : 3.1 X 10"1 Hz.

NASA now possesses the capability to track spacecrafts with ‘ ‘X-band” (~8
X 109 Hz) radio signals and to thereby reduce the fluctuations of plasma dispersion
by more than a factor 10. The Viking studies [36] suggest that no other noise sources
will prevent gravity—wave sensitivities from thereby improving by a factor 10; and
even if those studies are wrong and other noise sources (e.g., dispersion in the Earth’s
troposphere) are unexpectedly large, the improved system with 100 days of tracking
should at least be able to improve the sensitivity to a stochastic background by a
factor 10. [40] Although the “politics” of doing so are not yet fully settled, it seems
likely that NASA will fly the improved Doppler system on its Solar Polar spacecraft
in the mid 1980’s ; and the gravity community is pushing hard for the improved system
to be flown then also on a Galileo spacecraft or on a European Solar Polar spacecraft,
so that coincidence experiments can be performed, It is not impossible that this
system will detect gravity—wave bursts from supermassive black holes in galactic
nuclei at the Hubble distance, and that the first detections will be reported at the
GE. 11 conference.

In the long run, perhaps in the late 1980’s, NASA might fly a yet—more—sophis—
ticated Doppler system, with sensitivity h g 1016. This system, now being designed
at the Smithsonian Astrophysical Observatory by R. Vessot and colleagues, [41]
would involve carrying a very stable microwave oscillator (“clock”) on the space—
craft, and measuring Doppler shifts with reference to that clock as well as with
reference to the present ground—based clock. This system would have four indepen—
dent Doppler readouts: two one—way (Earth ~> spacecraft and spacecraft a Earth);
two round—trip (Earth a» spacecraft » Earth and spacecraft —> Earth —> space-
craft). The time correlations produced by a gravity wave in these four readouts



250 V. B. Braginsky (Moscow) and K. S. Thorne (Pasadena)

would differ markedly from the time correlations produced by the various noise
sources.

One key to further improvements in the Doppler system is the development of
new clocks with higher frequency stability. Vessot [41] has recently made substan-
tial improvements in the Hydrogen maser clock, pushing its level of frequency sta-
bility down to Ace/w I: 6 X 10‘1‘i for averaging times of 3000 seconds; and the pro-
spects for further improvement are excellent. Turneaure [42] at Stanford has achieved
Aw/wg 1.6 X 10'16 for averaging times of 200 seconds with a “superconducting
cavity stabilized oscillator” clock. And as remarkable as these stabilities may be,
they are still five orders of magnitude away from the ultimate quantum mechanical
limit for the stability of microwave-frequency clocks. [43] Thus, it is not ridiculous
to hope that Doppler-tracking sensitivities of h < 10—16 will ultimately be achieved.

It may well be that in the 1990’s experimenters will switch from radio tracking
to optical (laser) tracking for space-borne gravity wave detectors, and will have sev-
eral spacecrafts track each other, rather than tracking the spacecraft from Earth.
Preliminary theoretical analyses [44, 45] of such optically-linked systems suggest
that sensitivities h < 10‘21 might be achievable at all frequencies from f ~ 30 Hz
(where Earth-based detectors might start cutting off) to f ~ 10‘4 Hz (where strong
sources might start cutting off). Such a system could detect gravity waves from many
binary stars, and would likely see a wide variety of other sources as well. However,
before one can seriously propose instrument development for such a system, there
must be far more detailed feasibility studies than haVe yet been carried out; and
before such a system can fly there will have to be a long and challenging program
of instrument development.

6. Conclusion

The worldwide program to detect gravitational waves has become a major effort,
carried forward by the enthusiasm, energy, cleverness, and very hard work of more
than one hundred scientists (Table 2). This program has produced technical ideas
and inventions which are as intrinsically beautiful as exact solutions of Einstein’s
equations, and which may find extensive application elsewhere in Science and tech—
nology. And the effort might even reach its goal, during the 1980’s, of opening up the
gravity-wave window onto the Universe.
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Table 2. A partial list of scientists now working on the effort to detect gravitational
waves

I. BAR DETECTORS

Maryland: J. Weber, J. P. Richard, H.-J. Paik, aW' Davies, K. Krack,
G. Castellano, C. Cosmelli

Perth: D. Blair, J. Bryant, M. Buckingham, J. Davidson, J. Ferrierino,
C. Edwards, F. Van Rann,‘A. Mann, L. Mann, U. Veitch, R. James

Rome-CERN-Frascati: E. Amaldi, G. Pizzella, I. Modena, G. Pallotino,
F. Ricci, V. Ferrari, C. Cosmelli, S. Frasea, I. Bonifazi, F. Bordom', F. Fu-
ligni, V. Giovanardi

Rochester: D. Douglass, W. Johnson, M. Karim, M. Bocko, R. Marsden,
B. Muhlfelder, L. Narici, M. Cromar

Louisiana State University: W. Hamilton, J. Kadlec, G. Wang, I. Campisi,
G. Spetz, W. Oelfke

Moscow: V. Braginsky, V. Mitrofanov, V. Panov, V. Rudenko, V. Popelnuk,
E. Popov, A. Manukin

Stanford: W. Fairbank, R. Giffard, R. Taber, P. Michelson, E. Mapols,
C. Chun, M. McAshan

Bristol: P. Aplin

Tokyo: H. Hirakawa, K. Oide, K. Tsubono, M.—K. Fujimoto

Beijing: Qin R., Hu R., Jiang N., Liu Y., Tan 1)., Tian J., Wang G., Zhang R,
Zhao Z., Zheng L.

Guangzhou: Chen J., Guan T., Huang Q., Lee Y., Qiu Z., Yang X., Yu P.

II. LASER INTERFEROMETER DETECTORS

MIT: R. Weiss, P. Lindsay

Munich: H. Billing, K. Maischberger,qA. Riidiger, R. Schilling, L. Schnupp,
W. Winkler
Glasgow: R. Drever, J. Hough, G. Ford, I. Kerr, A. Munley, J. Pugh, N. Ro-
bertson, H. Ward

Callech: R. Drever, S. Whitcomb, S.-A. Lee, R. Spero, M. Hereld, E. Brooks

III. SPACECRAFT TRACKING

JPL: F. Estabrook, H. Wahlquist, R. Hellings

Upsala: A. J. Anderson

Pavia: B. Bertotti

Smithsonian: R. Vessot .

Marshall Spaceflight Center: R. Decher, C. Lundquist
JILA: P. Bender, J. Feller, J. Randall
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Experiments on Gravitational Waves with
Electromagnetic Detectors
L. P. Grishchuk (Moscow)

1. Introduction

The first efforts at detecting gravitational Waves involved the use of mechanical
systems like metal bars, crystals, etc. There is substantial recent progress, both theo—
retical and experimental, along this line, as we have learned from the lecture by
Braginsky and Thorne. In view of this, why are we interested in the interaction of
gravitational waves with electromagnetic fields or, more pragmatically, Why are We
concerned with electromagnetic detectors of gravitational waves? Is there anything
special in the interaction of gravitational waves with electromagnetic fields which
distinguishes it from interaction with mechanical systems? Yes, there is. Let us
mention two features. The first is the fact that the velocities of propagation of
electromagnetic and gravitational waves are equal. As a result of this many coherent
effects become possible. The sec0nd is that the kind of influence which a gravita—
tional wave exerts on a mechanical oscillator, such as a metal bar, is very different
from that exerted on an electromagnetic oscillator, such as a standing electromagnetic
wave in a cavity. In the first case the gravitational wave acts as an external force
While in the second case it exerts a parametric influence. This leads to important
differences between the interactions of the gravitational wave with the two oscilla-
tors on both the classical and quantum levels. These differences create a certain
hope that electromagnetic devices might become effective and fundamentally new
tools for investigating gravitational radiation.

2. The geometric optics approximation

Einstein was probably the first to invent electromagnetic detectors of gravitational
fields. He discussed the frequency shift and angular deviation of light rays in the
gravitational field of a heavy body, which are examples of electromagnetic probing
of gravity. It is clear that in the field of a gravitational wave one will encounter
similar effects though they will have some kind of periodic behaviour.

Let us consider a weak monochromatic gravitational wave [1, 2]
ds2:czdt2—dac2— (17a) dyz—(l +a)d22—|—2bdydz (1)

where
a:h+ sin [q(x°—x) +30], b:hrcos[q(x°—:c) +10].

In the limit of very high frequency the world line of a photon can be described by a
null geodesic. By solving the geodesic equation in the space time (1) it is easy to
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show that the photon experiences periodic deviations of frequency and of pro-
pagation direction along its trajectory. The maximal deviations occur when the
photon has propagated over a distance of the order of the gravitational wavelength
1 = 27c/q. Their orders of magnitude are Ace/w ~ h, All}. ~ k, where h = yhi + h:
is the dimensionless amplitude of the gravitational wave.

It is instructive to see how a photon gets frequency shifted with respect to the local
inertial frame of reference. Such a frame is the closest thing to the global inertial
cobrdinate system which is normally used in flat space—time. Let a local inertial
frame be constructed along the time-like geodesic a: = y = z = O. The frame is
valid in the vicinity of this line, for distances l< A. A nearby time—like geodesic
describes the motion of a neighbouring particle under the action of the “Newtonian”
gravitational potential guy/(:2 N h(l/2.)2 0f the gravitational wave. With respect to the
local inertial frame the particle moves along an elliptical trajectory with character-
istic velocity v/c ~ h(l/}.) [3, 4]. Suppose that a photon was emitted from the origin of
the local inertial frame. After travelling a distance I it acquires a frequency shift
(Aw/(”)3 ~ 99/92 ~ Isa/1.)? as measured with respect to this frame. If the frequency shift
is measured with respect to a freely moving neighbouring particle or, in particular,
if the photon is reflected by such a particle and returned, then the frequency shift
is determined by (Aw[(9)13 N 0/0 ~ h(l/1). In this case the main contribution to the fre-
quency shift is not of “gravitational” but rather of “Doppler” nature. This simple
example shows that in certain situations the photon’s frequency shift serves as a
sensing system for the motion in the field of a gravitational wave and not as an
“electromagnetic detector” of the wave. If the distance of travel I is of the order of it,
then the two contributions are of the same order of magnitude.

Measurement of the frequency shift as a tool for detecting gravitational radiation
was suggested in many works [5—8]. This effect lies at the foundation of a variety
of methods. Among them are Doppler tracking of spacecraft [9—12], laser interfero-
metry [13—14], angular anisotropy of the temperature of the cosmic microwave
background [15— 1'7], variation of the arrival time of signals from pulsars [18—20], etc.

In the field of a monochromatic gravitational wave the frequency shift can be
accumulated if the photon is forced to move along a specific trajectory again and
again. Some resonance condition between the frequency of the gravitational wave
and the frequency of the photon’s revolution needs to be satisfied. The first example
of this kind is a pair of photons in a circular waveguide [6]. Under the condition
9 : 211, where .Q is the frequency of the gravitational wave and v is the frequency
of the photon’s orbit, the frequency shift between two photons will linearly increase
with time Aw/w Nt. Another example is a set of freely “floating” mirrors re-
flecting a photon and returning it to the initial position [21]. In fact it is sufficient
to have only two freely moving mirrors properly oriented and separated by a distance
1 = 2/2 ['7]. After Q reflections the frequency shift reaches Ana/co ~ hQ.

Small deviations in the direction of propagation can also be accumulated if the
photon is reflected between two mirrors [7]. There will be systematic drift of the place
Where the photon hits a mirror. After Q reflections the position of this impact will
move by a distance of order Ax, where Ax/l N M).
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3. Maxwell’s equations in the field of a gravitational wave

The geometric optics approximation has a limited range of validity. If the space
occupied by the electromagnetic field is large and (or) the scale of variability of the
electromagnetic field is comparable with that of the gravitational wave, the full
set of Maxwell’s equations should be analyzed. In curved space—time the Maxwell
equations have the form

4 .
Fafl;fl = — E1“, Fafi,y —[— Fya,fi + Ffiy,a : 0_ (2)

The interaction of electromagnetic fields with gravitational waves was considered
in many works [22—28]. The first approaches to this problem were a little bit naive.
They did not take properly into account the boundary conditions, they did not ana—
lyse the most favorable configurations of the electromagnetic field, they unrealisti—
cally assumed that the boundaries are penetrable for electromagnetic radiation, they
ignored some of the resonant effects, and so on. However, two very important things
were learnt: gravitational waves can convert into electromagnetic radiation; and
conversion of the waves can be coherent, i.e. lasting for many periods of the waves.

To obtain an idea of how a gravitational wave can convert into an electromagnetic
one, let us consider a volume of space with characteristic dimension 1 occupied by a
constant magnetic field H. The gravitational wave enters this volume and, roughly
speaking, begins to displace the magnetic lines of force producing a variable electro—
magnetic field. This perturbation propagates with the gravitational wave at the
velocity of light. However, such a perturbation is nothing other than an elctromagnetic
wave. The amplitude of this wave is rising as the gravitational wave propagates
further and further. The transformation coefficient of the gravitational flux density
Wg into electromagnetic flux density We is

WE 9H2 7,;
k:—~ l2~——,

We 64 l

where rg is the gravitational radius of the total mass of the magnetic field in the
volume.

The opposite process, transformation of an electromagnetic wave into a gravita—
tional one, also takes place. The two waves are coupled via the constant magnetic
field and constitute a united physical system. The normal modes of this system re—
present combinations of electromagnetic and gravitational waves and can be called
“gravi-photons” [29, 30]. Despite the fact that only under very special physical
conditions can complete mutual conversion of the waves be achieved, this effect is
important for understanding more practical processes such as the interaction of
gravitational waves With electromagnetic fields in a cavity.

A rigorous treatment of the influence of a gravitational wave on the electromag—
netic field in an resonator With the boundary conditions properly taken into account
was started in [31], see also [32, 33]. By decomposing the electromagnetic field into
normal modes one can cast Eq. (2) into a Hamiltbnian form. If the magnetic field is

17 Proceedings GB, 9
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associated with the generalized coordinate q and the electric field with the generalized
momentum p, then Eq. (1) can be represented as [34]:

Here indices m, n denote the number of the modes. The coefficients Am”, 3",, Cm
describe the coupling of the electromagnetic field to the wave. They depend on the
shape of the resonator, its orientation, polarization of the Wave, etc. Eq. (3) can be
derived from a Hamiltonian. Among the systems described by (3) the one-mode
system has the simplest Hamiltonian

H = (1 + C(t)]p2 + éafll + 11(t))q2 + 3(5) g.

5
9

t

The last term describes the action of the external force and is only present if a con-
stant electromagnetic field exists in the resonator initially. The first two terms ex-
hibit the parametric action of the wave. They change the frequency and the “mass” of
the electromagnetic oscillator.

The resonant effects occur if wm i can = Q, where Q is the frequency of the gra—
vitational wave. The variations produced by the wave can be accumulated over the
time 1* ~ Q/w, where Q is the quality factor of the resonator. Three typical cases
should be mentioned. a) A constant field is present in the resonator initially (wfl = 0,
a)". = 9). Finally, the normal mode com will be excited. The total energy As in the
lowest mode is related to the total energy 8 of the field in the resonator by the formula
Ae/s ~ (hQ)2. b) A normal mode to is present initially (parametric amplifier, 9 = 20)).
Under certain phase conditions the energy of the mode or the phase of the oscillations
will be changed after time 13* by Ae/a N hQ or Aqv/qo N M). 0) Two normal modes are
excited initially (parametric convertor, com — can = .Q). The energy will be transferred
from one mode to the other according to the relation (As/5) ~ (M2)? An important
class of “tunable” detectors belongs to this case [35, 36].

It is worthwhile giving an estimate of the possible sensitivity of these electro-
magnetic detectors. Let the frequency of the gravitational wave be 52 m 109 rad/sec.
Half of the wavelength is 2/2 R8 102 cm, which determines the characteristic size of

the simplest detector of type a). For H m 105 Gauss and Q m 1012 one gets fairly
good sensitivity: h m 10—27, I m 10 erg/sec cmz. This sensitivity was derived at
the level of the so-called “standard quantum limit” (for definition, see [37, 38]).
Application of the ideas of “quantum nondemolition measurements” (see [38, 39]
and below) can substantially improve this sensitivity. Unfortunately periodic astro-
physical sources in this frequency band are not known. To observe the existing low fre-
quency astrophysical sources one should exploit type c) detectors whose sensitivity
is probably worse.



Experiments on Gravitational Waves with Electromagnetic Detectors 259

4. Laboratory gravitational wave experiment

An electromagnetic field can serve not only as a detector but also as an effective
source of gravitational radiation [40, 41]. Let us compare the performances of mecha—
nical and electromagnetic emitters. For the comparison to be fair we assume that
they radiate gravitational waves at the same frequencyQ = (21tc)/A and their perfor-
mances are compared at equal distance from the emitters. A model for a mechanical
emitter (m—emitter) is a piece of vibrating solid-state material and a model for an
electromagnetic emitter (e-emitter) is a standing electromagnetic wave in a cavity.
We start by considering elementary m— and e-emitters, which means that they
oscillate in the lowest normal mode and have sizes of order of the acoustic wave—
length }ls m (vs/0M and the electromagnetic wavelength 1,, m 11, respectively.

The characteristic amplitude h of the gravitational wave at the distance r is deter-
mined by

km N E i Tid.
04 7'

Suppose A is the amplitude of elastic vibration in the elementary m—emitter. Then the
stress tensor is of order of am Ngmv§(A//ls). As the result one obtains hm NFg/r(vS/c)2,
Where 7} is the gravitational radius of the variable part of the mass of the emitter:

Maggi
gm 2 'c 25

1

Similarly for the elementary e-emitter one obtains

hCN—g
T 7

Where
G 3

c

For moderate values of the parameters appearing in these relations the elementary
e-emitter is much more effective than the elementary m-emitter. For example, if
9m m 1 g/cm3, 96 m 10’18 g/cm", vs/c m 10’5, AMS R: 10—3, one obtains hm/he m 10’1“.
However, the volume of the elementary e-emitter, 1:, is much larger than the vo-
lume of the elementary m-emitter, 1:. The former can containN : (fire/As)3 m (c/vs)3 > 1
elementary m—emitters. One may ask for the efficiency of the m—emitter with the
same total volume, 2:, as the e—emitter. Here an advantage of the electromagnetic
sources manifests itself. Indeed, the e—emitter of this volume is automatically cohe—
rent, radiation from different parts of the volume does not interfere destructively.
While to achieve the coherence of N elementary m—emitters one must make them
specially phased. Suppose this was somehow realized. Then the amplitude of the
gravitational wave from such a source is hm m t. Hence,

hum N 9m (105)2' A N 0-111

h. 970 A. a."
17*
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So, after all, the efficiency of the emitters is determined by the magnitude of the
feasible variable stresses provided that the m-emitter is made coherent. One can,
probably, obtain electromagnetic stresses as large as the highest possible mechanical
variable stresses for normal materials by producing and maintaining electromagnetic
fields with feasible strength.

A complete proposal for emitting and detecting gravitational waves by electro-
magnetic resonators in laboratory conditions was suggested in [33]. The proposed
scheme takes into account the best geometrical factors, favourable orientation of the
resonators and so on. It was shown that the signal to noise ratio approaches unity
if the total volume of the system is V m 25 - 109 cm3, electromagnetic field strength
H m 3- 105 Gauss, quality factor of the resonator-detector Q m 7 - 1013. These
figures illustrate the enormous efforts which have to be undertaken in order to
perform this experiment, which is analogous to the Hertz experiment in electro-
dy'namics. However, it should be emphasized that the detectability condition in this
estimate was accepted at the level of the “standard quantum limit”. The experiment
may become more realistic if one is fortunate enough to apply “quantumlnon-
demolition” measurements.

5. Quantum theory of electromagnetic detectors and quantum

nondemoliticn measurements

To detect gravitational waves from realistic sources one will probably need such a
high sensitivity that the quantum properties of the (macroscopic) gravitational de—
tectors may become important.

Hamiltonian form of Maxwell’s equations, derived in Sect. 3, provides a basis
for the quantum theory of electromagnetic oscillators [34]. The simplified Hamil-
tonian for the one-mode system is

. 1 1H = E 152 +3 (02(1 +A{t))q2,

where p and q are operators which satisfy the usual commutation relations:

[a lib] = 0 = lg, Q], [Q 25] = 755.

This Hamiltonian manifestly describes perturbation of the frequency induced by a.

gravitational signal. (For different approaches to the problem see [42, 43]). Hamil—

tonians of that kind are well known in nonrelativistic quantum mechanics (see, for

example, [44]). The parametric nature of the perturbation results in different transi-

tion probabilities as compared with the case of a force acting on the quantum os-

cillator.
Let the oscillator be initially in the n-quantum state. The largest probabilities

of changing this state under the action of the external force are PM“ ~ mm + 1)
and P,,,,,_1 ~ hzn. For the case of the parametric influence the largest probabilities
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are Pm,1+2 ~ ham —)— 1) (n + 2), and PM,2 N h2n(n — 1). Suppose an experimenter
is able to detect a gravitational signal so weak that it causes a transition to one of the
nearest levels. Then, for large n, the minimal detectable his of order of hm-m N 1/1/77
in the first case and hmin ~1/92 in the second case. The different and more favourable
dependence of hmin on n gives a certain advantage to the electromagnetic detector
over the mechanical one.

All the classical formulae, expounded in Sect. 3, can certainly be obtained in a
straightforward quantum mechanical way. So, one may admit, indeed, that “some-
times quantum mechanics helps us to understand classical mechanics” [45].

In the attempt to reach the highest possible sensitivity one of the most intriguing
questions is the possibility of avoiding restrictions imposed by the quantum—mechani-
cal uncertainty principle. Measurements which do not pretend to know simultaneously
the precise values of noncommuting observables can have sensitivities better than
the “standard quantum limit”. To perform such a measurement one needs to know
the quantum nondemolition (QND) operators (observables). A Heisenberg picture
operator Z(t) which continuously depends on time is called a QND operator if it
satisfies the commutation relation

[ZUL Z(t')l : 0
for any 25 and t’ [46, 38]. QND operators for measuring force (QNDF operators) are
known [38, 47]. QND operators for measuring a parametric influence (QNDP opera—
tors) were introduced in [34]. One can distinguish QND operators of two classes.
The first class, which can be called a class of “simultaneous” QND operators,
is characterized by the demand that Z(t) is constructed from fit) and fit) taken at
the same moment of time. The second class can be called a class of “shifted” opera-
tors and is characterized by the use of p and q taken both at t and at previous mo-
ments of time t —— 1:, to construct Z(t).

It was explicitly shown that QNDP operators of both classes do exist [34]. For
measuring the operators (observables) of the first class one needs complete knowledge
of the time dependence of the gravitational signal. So this class of QNDP measure-
ments can be applied to detecting gravitational waves from double stars, in a labo-
ratory experiment, and so on. Observables of the second class are independent of
any a priori knowledge whatsoever about the time-structure of a gravitational
signal.

The existence of QNDP operators shows that, in principle, there is no limit to
precise measurement of the parametric influence on the quantum oscillator. Together
with other advantages mentioned above, this says that it is worthwhile constructing
and using electromagnetic detectors in gravitational wave experiments.

I am indebted to M. MacCallum for a critical reading of the manuscript.
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A Gravity-Wave Detector Using
Optical Cavity Sensingl)

R. W. P. Drever, G. M. Ford, J. HOugh, I. M. Kerr, A. J. Munley, J. R. Pugh,
N. A. Robertson, and H. Ward (Glasgow)

Most of the current experimental work on development of gravitational wave de—
tectors with optical sensing is based on use of Michelson interferometers to monitor
relative separations between test masses [1]. Multiple reflection mirror systems are
employed to cause the light beams to traverse the distance between the test masses
a large, but discrete, number of times and enhance displacement sensitivity. An
obvious practical difficulty with this arrangement is that for separations of the order
of a kilometre between the masses the size of the mirrors (and of the vacuum pipes)
required becomes large. A less obvious, but serious, problem is that incoherent
scattering at the mirrors can give rise to significant noise unless special precautions
are taken [2]. It is well known that for many purposes a Fabry—Perot cavity can
replace a Michelson interferometer, and the idea that a gravity wave detector might
be made using a Fabry—Perot cavity formed between mirrors attached to a pair of
free test masses is not new [3]. However there are very evident practical difficulties.
If one were to attempt to look for the change in transmission of the optical cavity
induced by the apparent motions of the end masses caused by the gravity wave the
light source used would require to have fractional frequency stability of the order
of the gravity wave amplitude — many orders better than that of present lasers.
The source requirements might be reduced by using a comparison between trans-
missions of two cavities with their axes perpendicular to one another. However with
optical cavities of length of order one kilometre, and of the high finesse desirable,
the width of the cavity transmission peaks would be so small that for efficient use
of the light the laser would have to possess exceptional stability and be locked to
the cavities with unusual precision.

Standard methods of locking lasers to stable cavities usually involve monitoring
the change of transmission of the cavity when the laser frequency changes and feeding
back a control signal to the laser. The bandwidth of such a control system is limited
by the bandwidth of the cavity, and would be quite inadequate for the present pur—
pose. We have therefore proposed a method of locking a laser to a cavity in which
a comparison is made between the phase of light from the laser with the phase of the
stored light within the cavity. In practice this may be done by phase modulating
the laser beam at a high radiofrequency, feeding the light to the cavity, and detect-
ing the light reflected back from the input mirror of the cavity. The output from the
photodetector passes through a phase sensitive detector referenced to the radio-

1) Abstract, submitted too late.
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frequency modulation source, and then is applied to a Pockels cell phase modulator
within the laser cavity itself, which provides a fine control of the laser frequency.
Analysis of this arrangement shows that the control signal obtained corresponds
to the phase difference between the light from the laser and the light emerging from
the cavity, so that the bandwidth of the feedback loop is not in any way limited by
the storage time of the cavity itself and it Seems practicable to lock the laser suffi-
ciently well for at least initial tests of an optical cavity gravity wave detector.

It may be noted that the laser locking system just deSCribed is a fairly close optical
analogue of a technique used to stabilise microwave oscillators, originated by R. V.
Pound in 1944.

The gravity wave detection system which we propose has many possible variants.
In one simple form there are two optical cavities perpendicular to one another,
with the mirrors attached to three suspended test masses. Light from an argon laser
passes through a beamsplitter into both of the cavities so formed.

The laser light is phase modulated, and the reflected light from one cavity is
used to stabilise the laser. A similar phase measuring arrangement is then used to
adjust the distance between the masses forming the second cavity so that this cavity
becomes locked to the laser. Gravity wave signals may then be looked for by examin-
ing the residual phase errors in the two control loops and the feedback forces or
displacements applied to the second cavity.

The above arrangement, although simple in concept, would not be expected to
give optimum signal to noise ratio. Better performance conld be obtained by making
the measurement of phase difference between the two cavities a direct optical one:
recombining the light emerging from the cavities at a second beamsplitter and pos-
sibly using high frequency differential phase modulation of the two beams before
recombining to remove low frequency laser amplitude noise. Again, a symmetrical
arrangement, in which the laser is locked to the mean of the two cavities, has ad-
vantages. Indeed there are many variants of the basic system which We have propOSed.

Precise matching of the phase response of the two cavities is important to reduce
the extremely high performance demanded of the laser locking system, and subsi-
diary control loops may be necessary to achieve this. In practice the complete system
is likely to become significantly more complex than a gravity wave detector based
on a Michelson interferometer.

In spite of the obvious difficulties and complexity of this proposed gravity wave
detector we have felt it worth investigating experimentally. As a first stage we have
used the laser stabilising system to phase lock an argon ion laser at Glasgow to a
10-metre optical cavity. Some parallel experiments have also been carried out in
collaboration with J. L. Hall and F. W. Kowalski at the Joint Institute for Labora-
tory Astrophysics, University of Colorado, to more precisely investigate the phase
locking performance of the stabilising scheme. Results so far are encouraging, but a
considerable amount of work will be necessary before it will be possible to assess the
real practicability of the scheme proposed as a gravitational wave detector.
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Some Supplements to Einstein-Documents
H. Melcher (Erfurt)

Preliminary remarks

In the series of International GR Conferences, a discussion group on “Historical
Aspects” was first established at GR9 in Jena. It found a lively response. The
extensive programme took more time than would normally have been available.

There were four lectures:

1. Lewis Pyenson (Montreal): Physical sense in relativity: Max Planck edits the
Annalen der Physik, 1906— 1918.

2. John Stachel (Princeton): Einstein’s struggle with general covariance, 1912— 1915.
3. Liviu Sofonea (Brasov): Some relativistic ideas in the prerelativistic physics.
4- Rainer Schimming (Leipzig): Historical sketch of gravitational waves.
Unfortunately all these contributions cannot be published in this volume.

The GR 9 Conference in Jena came at the end of the Einstein centenary: J. A. Whee-
ler introduced the congress with his lecture “Einstein’s second century”. The theme
of the following contribution was chosen with this in mind. It may also be understood
as gleanings at the end of a number of celebrations.

Einstein and the German Physical Society [1]

Until now Einstein’s work in the German Physical Society is rarely mentioned
in the Einstein literature — and only briefly. These activities have claimed a
considerable part of Einstein’s energies during his first 10 years in Berlin.

When Einstein came to Berlin in April 1914, he was already a “foreign member”
of the German Physical Society. In addition to many renowned physicists from Europe
and the rest of the world, institutes, factories, firms, libraries, and societies from
outside Germany were also members — for example the Physical Society (Lebedev
Society) in Moscow.

Einstein’s affiliation as a foreign member (Ziirich, Hofstr. 116), dated 7. 11. 1913,
was proposed by Max von Laue. After he moved to Berlin, Einstein’s name appeared
as a Berlin member of this society (first Wittelsbacherstr. 13, then from 1918 until
his emigration: Haberlandstr. 5).

The board of directors of the society was regularly elected in May. 011 8. 5. 1914
Einstein became a member (”Beisitzer“, assessor) of this board (chairman: Fritz
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Haber). He was re-elected as an assessor for a second annual term on 14. 5. 1915 (chair-
man: Max Planck). Albert Einstein was then elected chairman of the German Phy-
sical Society on 5. 5. 1916 and again on 11. 5. 1917. In this function he was followed
by Max Wien (10. 5. 1918) and Arnold Sommerfeld (31. 5. 1918). Einstein belonged
to the board of directors until 1925. He had had to work especially hard during the
complicated period after World War I, e.g. on working out a new statute and above
all reorganizing the physical journals.

The main source of information about the activities of Einstein as a member,
assessor and chairman of the German Physical Society is the journal of this society:
Verhandlungen der Deutschen Physikalischen Gesellschaft. Here one finds a piece
of history of physics, accurately handed down by Karl Scheel. His name is connected
for all time with physical literature.

Original minutes or other handwritten drawings or reports of colleagues, with
further details for the history of sciene about Einstein’s activities in the German Phy-
sical Society, are so far unknown.

One first finds Einstein’s name in 1909 in the journal of the society (p. 417), in
the programme of the 81. Versammlung Deutscher Naturforscher und Arzte in Salz-
burg. There Einstein gave his famous lecture on 21. 9. 1909: “On the development
of our views on the nature and constitution of radiation”. This lecture was published
in the journal of the German Physical Society and in the Physical Journal [2].
Einstein’s name appeared again four years later when his report “On the gravitational
problem” was announced for the 85. Versammlung Deutscher Naturforscher und
Arzte in Vienna (23. 9. 1913).

Before his membership in the German Physical Society Einstein’s name had also
appeared in its journal when his friend Paul Habicht delivered a lecture in the session
of the society on 15. 12. 1911 (chairman: Fritz Kurlbaum). The journal mentioned:
“Hr. Ing. Habicht demonstrated Einstein’s potential-multiplier”.

Einstein had stimulated the construction of this apparatus with his article in
1908 “A new electrostatic method for measuring small electrical charges”. There
he mentioned that it would be important to improve the sensitivity of electrostatic
methods for research in radioactivity [3]. Two years later Conrad and Paul Habicht
from Schaffhausen (Switzerland) published in the same journal the article “Elektro-
statischer Potentialmultiplikator nach A. Einstein“ [4]. Here they reported that they
had carried out the experiments together with Einstein in the university-laboratory
in Zurich and that they had applied for a patent for the construction. Unfortunately
it is not clear whether Einstein was named as a co-inventor. Nothing is known about
the correspondence with the patent office and if it was patented or not.

Einstein was actively interested in the development of this small electrostatic
machine (“elektrostatisches Maschinchen”) and wrote about it several times in
letters to his friend Michele Besso [5]. So he wrote from Prague (26. 11. 1911) that
Habicht had demonstrated his small machine to the Physical Society in Berlin with
“enormous success” and that it was superior to the string—electrometer. In another
letter from Prague on 4. 2. 1912 he wrote once more to Besso: “I have noted with
certainty the success he had in Berlin; the fellows almost stood there on their
heads”.
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In 1920 Walther Gerlach measured the contact potentials with such an apparatus
in Tiibingen [6]. It was still demonstrated in 1979 in an exhibition in honour to Ein—
stein, v. Laue, Hahn and Meitner [7]. This example carried a small plate: Paul Ha-
bicht, Schaffhausen, Potentialmultiplikator Typ 6 Nr. 18, Motor 1 /150 PS, Volt 2—6,
plombiert.

Einstein also wrote about this “Maschinchen” to Albert Gockel (3. 12. 1908).
It was his aim to proof the validity of the molecular theory (Brownian movement)
in the fields of electrostatics [8].

By the end of the year 1914 Einstein had already delivered three lectures to the
Physical Society. Altogether he gave 23 lectures, 11 in his two years as the chairman
of the society. Eighteen lectures were published, six of them in the journal of the
society, others in ,,Naturwissenschaften“, edited by Einstein’s friend, Arnold Ber-
liner, and others in the ,,Sitzungsberichte der PreuBischen Akademie der Wissen-
schaften“. There are also some articles by Einstein in the ,,Verhandlungen“ on sub-
jects which were not reported to the sessions of the society. The large number of
lectures given by Einstein to the Physical Society during the time of his membership
can scarcely be matched by any other member.

To the pioneer works that were reported to the German Physical Society belong
very important lectures which have a place of honours in its history. Usually the
sessions took place in the large lecture—theatre of the Physical Institute of the Uni-
versity (Am Reichstagsufer 7/8) [9]. Some of these outstanding lectures may be
mentioned: Hermann v. Helmholtz (23. 7. 1847) “On the conservation of force”;
Max Planck (14. 12. 1900) “On the theory of the law of energy-distribution in the
normal—spectrum”, which introduced the quantum theory.

The sessions of the society promoted knowledge about the laws of black radiation,
as here were discussed mainly the works, experiments and measurements of W. Wien,
O. Lummer, E. Pringsheim, H. Rubens, and F. Kurlbaum.

The famous experiments of J. Franck and G. Hertz, carried out in 1913 in the
Physical Institute of the University (Director: F. Rubens) were also reported before
the Physical Society.

Important chapters of the history of physics were written in Berlin. To the lectures
which were important in the history of the Physical Society and of physics belongs
the report of A. Einstein (19. 2. 1915) on the experiment carried out together with
W. J. de Haas, first showing the existence of Ampére’s molecular currents, later known
as the Einstein—de Haas—Effect.

Einstein and de Haas worked as guests in the Physikalisch-Technische Reichs—
anstalt (President: Emil Warburg). Later, after 1916, Einstein belonged to the
,,Kurat0rium“ of this institution. Einstein did not report in the sessions of the Prus—
sian Academy of Science on this gyromagnetic effect, found by him and de Haas,
however apart from the session of the Physical Society in Berlin in the Academy of
Science in Amsterdam.

Einstein wrote to Besso [10] (12. 2. 1915): “A wonderful experiment; it is a pity
you cannot see it. And how crafty nature is, if one wants to get at her experimentally.
I still get a passion for experimenting in my later days.”

Remarkable for his role as a teacher is the fact that Einstein demonstrated the
I

1 8 Proceedings GR 9
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gyromagnetic effect — shortly after finishing his general theory of relativity — as an
experiment for lecture halls [11].

When Einstein was chairman of the German Physical Society, the 60th birthday of
Max Planck (23. 4. 1918) has been celebrated. Einstein had prepared and led this
celebration. Besides the speeches of E. Warburg, M. v. Laue, and A. Sommerfeld
Einstein’s contribution “Motives of research” is an especially famous appreciation of
the scientific personality of Max Planck; his assessment belongs to the classic texts
of the theory and history of science [12].

On the occasion of the 70th birthday of Max Planck M. Born, A. Einstein, M. v.
Laue, and A. Sommerfeld signed a call (at the end of 1927) for the establishment of
a Max Planck medal [13]. On the day of Max Planck’s Golden Doctor Jubilee
(28. 6. 1929) Max Planck and Albert Einstein were awarded the first two medals.

Einstein led some sessions in Berlin too, which did not take place during his time
as a chairman, especially in 1918/1919. Einstein led his first session of the society on
19. 5. 1915; after his chairmanship he led the one on 14. 3. 1919 (his 40th birthday),
and his last session on 30. 7. 1920. Altogether he led 28 sessions. During the time of
his Serious illness (early in 1918) he was replaced by K. Scheel, H. Rubens and
E. Warburg.

By tradition new members were admitted into the Physical Society only on the
proposal of confirmed members. Albert Einstein proposed six persons for membership
(1917 and 1918): Stud. phil. Rudolf Jakob Humm (Berlin); Privat-Doz. Dr. Fritz
Noether (Karlsruhe); Dr. Wilhelm John (Berlin), Privat—Doz. Dr. Hans Thirring
(Wien), Mrs. Dr. Jetty Cohn (Ziirich) and Miss stud. math. Edith Einstein (Ziirich).

Rudolf Jakob Humm from Aarau studied in Gottingen and visited Albert Einstein
in Berlin in his bachelor-flat, asking Einstein to be introduced into the Physical
Society. This first meeting with Einstein Humm described in his diary; it is recorded
by Carl Seeh'g [14]. Later on Humm became a writer.

Fritz Noether was a brother of the famous Emmy Noether. He had to leave
Nazi-Germany and was a professor of mathematics and mechanics in Tomsk (USSR).

Hans Thirring is well knowu with his work in the field of the theory of general
relativity, particularly With the Thirring-Lense-effect. There were lifelong close rela—
tions between Einstein and Thirring.

Edith Einstein was a cousin of Albert Einstein. Her father, Jakob Einstein, was
his uncle. Edith and Albert spent their young days together in Munich. Later Edith
Einstein studied physics in Ziirich and corresponded with Albert Einstein on scien-
tific problems. She was married to the mathematician Reis and employed at a pri-
vate school in Zurich [15].

In her thesis “On the theory of the radiometer” Edith Einstein thanked Albert
Einstein for suggesting this work [16]. Einstein himself wrote an article about the
“Theory of the radiometer—forces” [17] without reference to the work of Edith.

When Edith Einstein and Jetty Cohn became members of the Physical Society
there were 304 members in Berlin and 459 foreign members, in each case including
7 women.

The sessions of the German Physical Societywere occasions for meeting colleagues, in—
dispensible for the development of science. Here Albert Einstein — for one example —
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met Niels Bohr the first time. At the session of the Physical Society in Berlin on
27. 4. 1920 Niels Bohr gave a lecture on the “series of spectra of the elements”-
At this session Leo Szilard — at this time a student — became a member of the
society. During their time in Berlin Szilard and Einstein received seven German
patents (Deutsche Reichspatente) and six foreign patents [18]. Both men remained
friends their entire lives.

As guests, further close friends of Einstein’s were reported in the Physical Society:
David Reichinstein (19. 10. 1924) in Prague and Rudolf Goldschmidt (18. 9. 1929) in
Berlin. Later on Einstein declined to endorse the manuscript of an Einstein biography
written by Reichinstein. In spite of his promise not to publish this manuscript,
Reichinstein later did so [19]. Together with Rudolf Goldschmidt Einstein received
a patent (Deutsches Reichspatent Nr. 590783) for an apparatus for people hard
of hearing [20].

Out of many well-known men Einstein met in the Physical Society Emil J. Gumbel
may be mentioned. He was proposed as a member of the society by Wilhelm West—
phal (24. 6. 1921). Gumbel spoke on 17. 2. 1922 (chairman H. Rubens) about “Sta—
tistical considerations on the measurements of H. Rubens on the radiation law”.
Gumbel also reported for the “Physikalische Berichte” from 1924, when he was in
Heidelberg. He is well known for his work on the theory of probabilities and sta-
tistics, and, as well, for his political commitment, which caused disciplinary actions,
reported in the journal ,,Die Menschenrechte“. Einstein was prepared to defend
Gumbel. Gumbel’s address in the list of members of the society was (1925): Moscow,
Marx-Engels—Institute.

The last list of members of the society was published in 1937. There one finds the
following names among others: V. Fock, J. Franck, Ph. Frank, G. Herzberg, P.
Kapitza, R. Ladenburg, C. Lanczos, I. Langmuir, O. Stern, E. Wigner.

Albert Einstein delivered his last lecture in the German Physical Society on
17. 7. 1931 in the Harnack House in Berlin-Dahlem, at a joint session With the German
Society for Technical Physics on the occasion of the death of Albert Abraham Michel—
son (19. 12. 1852A9. 5. 1931): “Commemorative address on Albert A. Michelson” [21].

Michelson was a member of the German Physical Society and had reported in the
session of 16. 6. 1911 “On the construction and the use of bending lattice”. Einstein
himself met Michelson the last time on 15. 1. 1931 at the California Institute of Tech—
nology [22].

In sum, it is clear that the activities of Albert Einstein in the German Physical
Society have required a considerable part of his working power during the hard years
of the First World War. His work and his place in this society would merit more
research and appreciation.

Einstein — school and education [23]

On these subjects Albert Einstein expressed his opinion frankly in more than 50 ar-
ticles, and essays, speeches, addresses, and messages, and in his famous autobio—
graphical sketch [24]. These ideas of Einstein had deserved more attention in the

18*
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Einstein centenary. Owing to his own shameful school experiences under the autho-
ritarian German state, with methods of drilling and doctrinal procedures in school—
life and his pleasant impressions of the Swiss Canton—school in Aarau Einstein had
given up his original idea. of studying engineering.

At the age of 151/2 Einstein did not pass the examination for entering the ETH
(Federal Institute of Technology, or Polytechnic) in Zurich. Such an examination
was no exception, but rather the rule for students coming to the ETH. Einstein at-
tended the Canton-school in Aarau for only one year to obtain the school leaving
certificate (Matura). Then he started his studies — one year younger than his
classmates — in section VIII: Teachers for mathematics and physics.

In 1912/ 13 Einstein himself trained teachers in this section VIII on the basis of
official printed programmes [25]. The director of this section was Einstein’s friend and
colleague during their studies: The mathematician Marcel Grossmann (1878—1936).

Albert Einstein was a born teacher who found a lot of joy in teaching. His methods
were perhaps somewhat unorthodox and unconventional; this he noticed especially
in his time as a private and temporary teacher. His pleasure in teaching was also
shown in the circle of his friends (e.g. the Olympia academy), to his assistants and
his coworkers, and occasionally to fellow-travellers too.

Einstein’s remarkable educational influences went beyond the scope of schools
and had been effective for the whole of human society. His care was always directed
towards the potentialities of the younger generation. He gave numerous lessons,
although he was not obliged to do so. Einstein himself stood firmly for teaching foreign
students, namely Jews from Eastern Europe at the former Friedrich-Wilhelms
University in Berlin. Together with the professor of medicine, L. Landau, he had
written a letter (19. 2. 1920) to Helfritz, Minister of Science, Arts and Education,

asking for courses in physics, mathematics, medicine, botany, history and oriental
languages. Einstein wanted these courses of instruction to be recognized as “officially
permitted” by the state, because they should be valid in foreign countries [26].

This intention was supi'iorted lieiievolently by the Minister of Education as Ein-
stein mentioned. For “about 2110 foreign yming neople froui Russia. Poland, Bulgaria,

Rmnania. and Lithuania, mostly Eastern Jews” the courses were hclri. Albert Ein-

stein lectured on "introduction to theoretical physics”, and professor James Franck

on "Experimental physics”. The lectures in mathematics were given by Prof. Issai

Schur (infinitesimal calculus), and Privat-Dozent Dr. Rademacher (geometry).

These courses of Einstein’s supplement the catalogue of his known teaching activi-

ties discovered up to now [27]. This supplementation was found after publication of

the work for the documentary volumes ,,Albert Einstein in Berlin 1913—1933“

[28].
On these t'fiiiI‘St‘S, for which no remrds exist in the archives of the Humboldt

University in Berlin. Einstein himself reported in a newspaper ”How I bet-attic a

Zionist" [29]. This article is: not listed in any bibliography and represents a further

supplement to my aildenda [30]. There is another source where Einstein mentioned

the organization of lectures by Jewish and non-Jewish colleagues for eastern Jews:
Banesh Hoffmann cited in Tel Aviv (GR 7) a part of a speech held by Einstein in
England (1921) [31] after having published the article in the Jiidische Rundschau.
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Albert Einstein himself felt obliged as a Jew to support the Zionist movement,
particularly with the foundation of the Hebrew University of Jerusalem. But at no
time did Einstein support chauvinistic aims and methods. In the article mentioned
above [29] he wrote: “Often antisemitism is a question of political calculus”. He also
pointed to the attitude of science in England towards his theory of relativity: “While
in general in Germany the judgement of my theory depends on the political position
of the newspapers, the attitude of English scientists has demonstrated that their
sense of objectivity is not to be blurred by political points of View.”

Einstein’s understanding of Zionism and his support for the Zionist movement
have developed into an increasingly essential element in his life. Undoubtedly it
is an important task to comprehend this inescapable side in its circumstances. Moreover
it remains to be investigated if there are differences between the definitions of Zio—
nism in Einstein’s publications and in present printings, that is, if a change of terms
possibly took place. Einstein himself professed, on the one hand, to be in the Zionist
movement, which he supported within certain limits. On the other hand, however,
Einstein’s attitude was characterized as if it followed a PLO-book [32]: “Outstanding
Jewish thinkers (including Einstein, Cohen, Rosenwald and Magnes) recognized the
racial restrictiveness, the narrow—minded, chauvinistic, isolationist, and super-
nationalistic elements of Zionism and Warned of their consequences. Their criticism
is extremely valuable for us, because not all of them were anti—Zionists: Rosenwald
really is an outspoken anti—Zionist, but Magnes was Zionist and Einstein and Cohen
were more non—Zionists than anti-Zionists”.

Einstein’s feelings of belonging to the Jewish people first awoke when he.was in
Berlin. So he wrote to the ,,Zentralverein deutscher Staatsbiirger jiidischen Glaubens“
(Central Union of German Citizens of the Jewish Faith): “I am not a German citizen
. . . I am a Jew and I enjoy belonging to the Jewish people, although I do not think
about it in terms of the elect” [33]. In this source not mentioned in a bibliography
until now, one can obviously recognize a change in application of the term “race”,
too.

Einstein’s public activities were decisively determined by'his remarkable interest
in social and educational problems. He attached great significance to the educational
factor in social development. Often he lamented over the passivity and cowardice
of academicians, “Denkmenschen” (intellectuals) as he called them. He strongly
believed in power of reason and thought that the voice of a rational man cannot die
away Without being heard. With that and with his lifelong commitment to peaceful
and humanistic aims, the teacher and educator Albert Einstein is still effective for
the future.

Einstein — cultural and intellectual life

Posterity regards the extraordinary creative life of Albert Einstein, so rich in ideas,
with great admiration. His excellent scientific reputation was already established in
the history of science years before his arrival in Berlin (April 1914). Here in Berlin
Albert Einstein increasingly became an immense symbol in public, mainly in the
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intellectual, life. In comparison to the presentation of his purely scientific works and
results his non-scientific activities have been relatively ignored.

Einstein’s nature was like that of an artist or prophet. His love of the arts was
ethically accented and art made him happy. Occasionally he entered a neighbouring
field from motives of art. Einstein — himself a physicist — embodied certain traits
and qualities of an artist in the highest sense. The first bust of Einstein was created
by Kurt Harald Isenstein (1923) and set up in the Astrophysical Institute (Einstein-
tower) [34] at Potsdam in 1929.

Einstein’s great love of music and his own violin-playing are well known. His
,,Lina“ — as he called his violin — accompanied him on many travels. Less known is
the fact that Einstein himself wrote by hand an opinion of a violin constructed by
the violin—manufacturer Erich Kielow (Potsdam). This piece seems to be the last
thing Einstein wrote in Caputh on 6. 12. 32 — his luggage was ready for transport,
as Mrs. Margarete Kielow reports, to whom Einstein in person gave his manuscript
about the violin in his summer-house [35].

Here is the original German text and in translation: ,,Ich hatte heute Gelegenheit,
eine von Herrn Erich Kielow hergestellte Geige zu probieren und mit einer anderen
vortrefflichen modernen Geige zu vergleichen. Die Geige des Herrn Kielow ist zweifel-
los eine der schonsten Geigen, die ich in der Hand gehabt habe. Sie spricht leicht an,
hat einen groBen runden und ausgeglichenen Ton. Es ist fraglos, daB solche Kunst
des Geigenbaues Forderung verdient; das Stadium muB doch endlich iiberwunden
werden, in dem man denkt, daB cine vortreffliche Geige alt sein miisse“. — (Today
I had the opportunity to test a violin constructed by Mr. Erich Kielow and to com-
pare it with another excellent modern one. Without any doubt the violin of Mr.
Kielow is one of the most beautiful violins I have ever held in my hands. It responds
to a gentle touch, and has a large round and balanced sound. Beyond all question,
such an art of violin construction deserves encouragement; the attitude of thinking
that an excellent violin has to be old must be overcome at last.)

From these handwritten sentences by Einstein one can feel his joy and his art of
formulation. Again there appears clearly his practice of calling in question the customs
of thinking and traditional conceptions: Why must only old violins be good?

We are grateful to Miss Dukas, Albert Einstein’s secretary for 27 years, and to
his former coworker Banesh Hoffmann for giving new glimpses in the Einstein Ar-
chive. In this book by Dukas and Hoffmann one finds the physicist Einstein’s own
words on artistic matters. So he said in 1952 about Faraday — with regard to the
present time: “This man loved mysterious Nature as a lover loves his distant be—
loved. In his day there did not yet exist the dull specialization that stares with self-
conceit through hornrimmed glasses and destroys poetry . . .” [36].

On request, to say something about the close connection between arts and sciences,
Einstein summarized his ideas (1921) in an aphorism: “What Artistic and Scientific
Experience Have in Common: Where the world ceases to be the scene of our per-
sonal hopes and Wishes, where we face it as free beings admiring, asking, and observ-
ing, there we enter the realm of Art and Science. If What is seen and experienced
is portrayed in the language of logic, we are engaged in science. If it is communicated
through forms whose connections are not accessible to the conscious mind but are
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intuitively recognized as valuable, then we are engaged in art. Common to both is
the loving devotion to that which transcends personal concerns and volition” [37].

Obviously events of all kinds to do with Albert Einstein were frequently material
for the newspapers. Einstein’s nameshone from advertising pillars in calls and appeals.
His name even appeared on a theatre placard, showing his close connection to art
and artists. In honour of the deceased great actor Albert Steinriick, the play “The
Marquis of Keith” (Frank Wedekind) was staged with many stars on 28. 3. 1929,
at 11 p.m., that is, after the end of the usual theatrical performances, in the Schau—
spielhaus Am Gendarmenmarkt (today: Place of the Academy). The commemorative
address was given by Heinrich Mann.

Among the 86 popular actors — many of whom were banished several years later
because of their Jewish origin — one finds sonorous names like Max Hansen, Elisa-
beth Bergner, Fritzi Massary, Fritz Kortner, Eduard von Winterstein, Hans Albers,
Ernst Deutsch, Kurt Goetz, Marlene Dietrich, Asta Nielsen, Henny Porten etc.

Albert Einstein is named On this theatre placard in the “Honour Committee” of
this extraordinary theatrical performance [38]. Other members in this Committee
included Max Reinhardt, Max Liebermann, the Minister of Culture, Prof. Dr. Becker,
the Lord Mayor of Berlin, B63, and the President of the Reichstag, Paul Lobe.

In a less known and easily overlooked document Einstein, the internationalist,
referred to a current phenomenon of that time, to nationalism, in a serious scientific
journal. His often expressed opinion about famous men and women of science and
the arts gave well—founded contributions on questions of the history of science-
Once he was requested by his friend Arnold Berliner, editor of ,,Naturwissenschaften“,
to write his opinion on Arago’s commemorative address about Thomas Young.
Einstein’s communication concluded with the words: “Not without a certain mali—
cious joy have I noticed, as a child of our generation, while reading Arago’s speech,
that the men of science already in earlier times were not at all free of the weakness
of nationalistic narrow-mindedness; therefore We needn’t feel today like exiles from
paradise. But I hope that this consolation will not give us full satisfaction” [39].

One receives a lucid and vivid impression of Einstein’s personality, of his con-
ceptions, of his method of thinking and of his power of colourful prose expression
from his many prefaces and forewords, which are still not fully compiled in biblio—
graphies. Not only has he here articulated critical judgments as hardly any other
scholar has a always again worthwhile reading — but also he was not faint—hearted
and sparing with self—critical utterances in his self—descriptions and self-assessments-

In his foreword, already written in 1942, to Philipp Frank’s book that appeared
in 1979 as a reprint of the first edition (1949) in the German language, one recognizes
Einstein’s critical attitude, writing that biographies “had seldom attracted or
captivated” him. About autobiographies he even said that “their origins are usually
thanks to the self—love or feelings of negative characters against their fellow—beings”.
In his typical and constantly refreshing remarks he wrote that “temperament and
external circumstances” had lent to his “life something of a coloured exterior —
superficially considered". He asked the question whether “one must devote a bio—
graphy at all to such a life, directed to recognizing and comprehending” [40].

It seems that he himself is giving a hint as to such peculiarities as orderliness and
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thoroughness: In his review of Elsbach’s book “Kant und Einstein” — only recently
listed in the bibliography [41] Einstein wrote in his unconventional manner: “Els-
bach’s book marks itself out by the clear and clean way that its ideas are formed, by
its honesty and thoroughness, the last even a little bit too much”.

Einstein’s intellectual achievement extended beyond physics and, in its versatility
and profundity, attached many fields; philosophy also received especially many
stimuli through his pioneering knowledge. The philosopher Hans Reichenbach once
said: “Einstein’s work contains more philosophy than some philosophical systems”.

The conception “Copernican Revolution” is firmly established in the history of
culture and thought; and in the same manner will be marked ,,Einstein’s Revolution“

because he developed cosmology into a branch of physics and gave foundations of
the theoretical physics in the 20th century.

Einstein —— peace and humanism

The great humanist Albert Einstein recognized the dominance of three great forces
playing a negative role in human lives: stupidity, fear and greed. His achievements
were directed against these three evils throughout his life. Abhorrence of violence
and war induced him to stand for peace, democracy and the progress of mankind,
and to raise his voice — always, however, preserving his own independence. He saw
clearly that education for peace and humanism is a front-line task in a progressive
educational policy.

In November 1914 Albert Einstein was a co-founder of the pacifist organization

,,Bund Neues Vaterland“ (League of the new fatherland), which aimed to fight

against jingoism; it was forbidden in 1916. Ninety-one men famous in public and

scientific affairs wrote to the former Chancellor, von Bethmann Hollweg, on 27. 7. 1915,

among them Albert Einstein. In their statement they affirm “the principle that the

annexation or incorporation of politically independent or traditionally independent

people is to be rejected”. They also rejected means “which would indirectly lead us

finally to annexation” [42].
Einstein’s pacifism was not pacifism as an end in itself,but in its essence a cour-

ageous anti—fascism with many dangers for body and life. This was also true for many

of his. ecu—fighters. among them for Emil J. Gumbel, and for the philosopher and
mathematician Bertrand Russell, under hard pressure in England. Russell’s book

“Political ideals." {1922} was translated and introduced by E. J. Gumbel. Albert

Einstein wrote in the preface — recently listed in the bibliography [43] with spirit

and accuracy: “Not a tottering professor speaking to us. who balances the one thing

with another, but one of the decidedly straightforward individuals, standing there

independent of the times in which they are more or less accidentally born”.

This opinion by the younger Einstein of Russell was true also of himself all his

life. The striving for independence of thought and action is SO marked for Albert
Einstein himself and his oft-made characterizations of outstanding persons as
“independent individuals” coincides with his own endeavours.
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Einstein’s conceptions of morals, ethics and justice and his fearlessness in pursuing
humanity, right and truth are still as relevant as at any time before. His human work
for peace shows ways and possibilities for the peace of mankind; as his friend and
trustee, Prof. Dr. Otto Nathan, gives us insights, lively and true to originals, in
Einstein’s writings, speeches and letters [44].

Einstein fought with great devotion for total disarmament and for the abolition
of war in general. Militarism, armament and war were for Einstein not compatible
with the dignity of people. The most prominent physicist of his time fought tirelessly
against war and took part in all essential actions for peace.

Just recently a “Call of the Jewish League for Peace” became known after finishing
work on the documentary book ,,Albert Einstein in Berlin, 1913—1933“ [45], only
briefly mentioned in this volume. Albert Einstein was a member of the presidium of
the Jewish League for Peace. Besides Einstein other members were the rabbi Leo
Baeck, G. Simon, H. Stern and C. Wassermann as the chairman. In this call
of the Jewish League for Peace, also signed by Albert Einstein (1929), we read:
“Catholic and Protestant organizations for peace all over the world have invited
Jewish groups to get together with them into working associations for peace. With
this suggestion, which our community cannot evade comes the inner motive for co-
operating in the world historical task of our time... The Jewish League for Peace
would like to cooperate with sister—communities in other states and hopes that
similar organizations will arise in many countries of culture.. . Let us unite all our
efforts in order to transpose into life everything today which was dreamed of and
fought for by our ancestors” [46].

Mahatma Ghandi was highly esteemed and admired by Albert Einstein because
of his work for the liberation of India and his demonstration of What sacrifices
people are able to suffer if they oppose an apparently unlimited material power. Ein—
stein commended this example and the “way of non—cooperation in Ghandi’s
sense” e.g. at the time of McCarthy’s methods of inquisition (1953) [47]. At this
time he composed a preface for a book by Gene Sharp “Ghandi VVields the W’eapon
of Moral Power” which appeared in 1960; it is still not compiled in bibliographies
[48].

Albert Einstein’s last years Were more than ever filled with sorrow over the future
of mankind whose further existence is continually threatened by armament and the
danger of war. He was incessantly an admonisher of and conscience for the world
because “the thinking of the future must make wars impossible”. In his clear articu-
lation, he claimed in 1953 “Mere praise of peace is easy but not effective. What is
needed is active participation against war and against everything that leads to
it” [49]. Rightly and prophetically he said: “The true problem is lying in the hearts
of the people”.

Otto Nathan’s meritorious book on Einstein’s monumental Work for peace [50]
was wonderft supplemented by Helen Dukas and Banesh Hoffmann’s book “New
glimpses from the Einstein Archive” [51]. In it an epigrain of Einstein is printed,
which was deposited in a capsule in 1936: “Dear Posterity, If you have not become
more just, more peaceful, and generally more rational than we are (or were) ~ why
then, the Devil take you.

19 Proceedings GR 9
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Having, With all respect, given utterance to this pious Wish, I am (or was) Yours,
Albert Einstein” [52].

If at any time this capsule is found, the readers will know: This only Albert Ein-
stein could say so strikingly.
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Physical Sense in Relativity:
Max Planck Edits the Annalen der Physik, 1906—1 918
L. Pyenson (Montreal)

1. Introduction

The center of gravity for a scientific discipline lies in its periodical press. Disciplinary
journals control the quality and direction of research, define acceptable limits to
scientific debates, provide a measure for individual achievement, and confer status
on trusted advisers. In the case of the strongest journals in a discipline, the editorial
hand is firm and the editor’s vision, conservative. For these reasons, over the past
six or seven generations scientists have often felt called to create new journals that
could respond to the needs of one or another emerging specialty. Journals devoted
to physical chemistry, colloidal chemistry, applied mathematics, number theory,
astrophysics, and even general relativity have in this way come into being.

Since disciplines keep a close rein on publishing, it comes as no surprise that some
revolutionary scientific ideas appear in print beyond the reach of disciplinary
approbation or censure. Forums for authors with major restructurings to propose
have included general scientific journals, the proceedings of learned corporations,
popular magazines, and privately printed monographs. At various points in their
careers these were the favored publication outlets for Charles Darwin, Oliver
Heaviside, Sigmund Freud, Alfred Wegener, and Enrico Fermi. The historian of
science is especially interested, then, in situations when an established, disciplinary
journal accommodates a theory that fundamentally reorients scientific discourse.
In such cases journal editors shape how the innovation is received. Asensitive editor
can insure that an otherwise unsettling theory is quickly absorbed into the fabric of
existing knowledge [1].

In this essay I consider how during the years 1906— 1918 the editor of the most
prestigious physics jOurnal in the world evaluated incoming manuscripts treating Albert
Einstein’s theories of relativity. The journal was the Annalcn der Physik, the principal
publishing outlet for Einstein’s own early scientific work. The editor was Max Planck,
professor at the University of Berlin and Germany’s most distinguished theoretical
physicist. In writing to his coeditor Wilhelm Wien, Planck expressed opinions about
the work of a large number of his scientist contemporaries who sought to contri—
bute to Einstein’s formulations. Planck emerges from this correspondence as a
cautious, conservative physicist vitally interested in extending the “revolutionary”
theories of relativity [2]. Planck sought to have the theories of relativity accepted
because they resolved longstanding problems in classical physics. The principle of
relativity, Planck noted in 1910, “removes from the [previously existing] physical
world picture the nonessential components brought in only by the circumstance of
human perception and habits, and so it purges physics of anthropomorphic impuri—
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ties originating in the individual nature of the physicist” [3]. By Winnowing manu—
scripts submitted to the Annalen and by encouraging work that seemed promising,
Planck hoped to soften the “hard struggles” that he knew the theories would have
to face [4].

Because this story turns on the character of one scientific journal, I begin by
tracing the development of the Annalen der Physik from its foundation in the eight-
eenth century to the beginning of the twentieth. After considering the circumstances
surrounding Planck’s and Wien’s editorial charge, I elaborate on Planck’s vision of
theoretical physics, especially the theories of relativity, as this vision is revealed in
his editorial judgments. A central feature of Planck’s approach to relativity involved
mistrust of mathematical formalism. He believed that the laws of physics transcended
the language, mathematics, in which they were expressed. For Planck in the period
around 1910, the formal elegance of a physical proposition mattered less than the
extent to Which it could be used to treat related problems. “The measure of the worth
of a new physical hypothesis,” he wrote, “lies not in its vivid expression but in its
ability to perform well.” In his view performance was related to experimental verifi-
cation: “All physical questions are decided not by aesthetic points of view but by
experiments” [5].

2. The Annalen

Beginning with the end of the nineteenth century, the Anmlen def Phys'lk has
traced its ancestry to the efforts of Friedrich Albrecht Carl Gren, a late eighteenth-
century professor of physics and chemistry at the University of Halle. Like many
of his physical scientist contemporaries, Gren rose through the early stages of a phar-
macy career and received a medical doctorate before turning all his interests to phy-
sical sciences. Inspired by the chemical journal of his teacher Lorenz von Crell, in
1790 thirty—year-old Professor Gren brought into being the Journal der Pkg/silo, a
periodical publication for “mathematical and chemical branches of natural science.”
Within four years the journal began a new series, the Ncues Journal der Physik,
again under Gren’s watchful eye. Gren used both journals as vehicles to promote
his views in favor of the phlogiston theory of chemical combustion [6].

Upon Gren’s death in 1798 his editorial responsibilities fell to Ludwig W'ilhelm
Gilbert. The same as Gren, Gilbert as a child lost his father. Gren’s mother sent him
to study at the progressive Philanthropinum, a school in Dessau where the influential
pedagogue Johann Bernhard Basedow lectured. Gilbert went on to hear physical
sciences at the University of Halle and came under the spell of Gren, nine years his
senior. Docent and ausserordentlicher Professor in 1795, Gilbert took over direction
of Gren’s Journal upon his mentor’s death in 1798. Scientific editing for Gilbert was
by no means a single-minded life’s focus. During his early years as editor he wrote
a three-volume travel guide for Germany. That he was eager to begin editing three
years before he received Gren’s chair suggests that he received either direct compen-
sation or scholarly renown for his labors. He called his journal the Anmlen der Physik
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[7]. During Gilbert’s stewardship, the Annalen appeared irregularly and published
eclectically.

Gilbert’s successor was the distinguished bibliographer Johann Christian Poggen—
dorff. Like Gren apprenticed to an apothecary and like both Gren and Gilbert having
as a youth lost his father, young Poggendorff arrived in Berlin to study chemistry.
He soon made a mark as a talented electrical experimentalist. Having thought of
running a scientific journal, upon Gilbert’s death in 1824 twenty—siX—year—old Poggen-
dorff presented himself to the publisher, the firm of Johannes Ambrosius Barth, as
the next man in charge. His candidacy accepted and his services presumably rewarded
by the press, Poggendorff changed the journal’s title to the Annalen def Physik and
Ohemz'e. Only six years after assuming his charge did Poggendorff receive a professo—
rial title from Prussia. After a decade of editing, Poggendorff was awarded an hono-
rary Dr, phil. and came to be employed as associate professor of physics at the Uni-
versity of Berlin. With Poggendorff’s genius for organization, the journal issued
160 volumes in fifty-two years, most of the articles conforming to the editor’s em-
piricist inclinations [8].

By the time that Poggendorff died in 1877, the physical sciences in Germany
had been transformed, and the role of a scientific editor had come to require a new
kind of talent, support, and organization. Poggendorff’s successor, Gustav Heinrich
Wiedemann, belonged to the first generation of physicists, in the modern sense of
the word. Son of a Berlin merchant who died when Wiedemann was a boy, the future
physicist passed through Gymnasium in Berlin. Introduced to physical science by
an uncle, Wiedemann then went on to receive in 1847 a doctorate in physics at the
University of Berlin. His physics education came in the private laboratory of his
experimentalist and empiricist professor, Gustav Magnus, who discouraged his
students from pursuing mathematical physics. As a result, Wiedemann studied the
works of Simeon—Denis Poisson on his own. Privatdocent at Berlin in 1850, he married
a daughter of the chemist Eilhard Mitscherlich’s the next year- After twenty years
of professorial appointments in physics at Basle, Brunswick, and Karlsruhe, in 1871
he obtained at the University of Leipzig the first German chair in physical chemistry.When Poggendorff died in 1877, the publisher of the Anmlen approached Wiede-
mann to become editor [9].

Under Wiedemann’s direction the journal emerged as the leading forum for ori—
ginal physics publications in a country that was soon to lead the world in this disci-pline. The transformation occured because Wiedemann encouraged original contri—
butions and increased the nu mbcr of theoretical papers. At the same time, the change
related to a new administ re five 2:- rrangement. With Wiedemann’s ascension the BerlinPhysical Society undertook in r.:ontributo to the costs of publication, and it delegated
Germany’s most distinguished physicist, Hermann von Helmholtz, as its factotumin the editorial office. Beginning in 1877 the title page of the Annalen specified this
organization, Helmholtz’s name appearing in type smaller than that used for theeditor, Wiedemann. Helmholtz’s death in 1893 resulted in the aging Wiedemann’sasking his own physicist son Eilhard to become coeditor. Finding a replacement for
the overseer Helmholtz took several years. The new representative of the BerlinPhysical Society (from 1898 the German Physical Society) appeared on the title page
20*
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in 1895. He was Max Planck, recently appointed professor in theoretical physics
at the University of Berlin.

Gustav Wliedemann died in 1899. The coeditor son, an otherwise undistinguished
physicist at the University of Erlangen, did not feel up to the task of carrying on
in the absence of his father and mentor. By this time it should have been evident to
German physicists that the Anmlen had grown beyond the point where one physi-
cist could edit it. Such a realization did not surface in either Berlin or Leipzig; the
press and no doubt the Physical Society sought out the most promising, established
young physicist to continue Wiedemann’s work, still under Planck’s watchful eye.
Perhaps to prevent regional jealousies from emerging, the journal fell into the hands
of Paul Drude, recently appointed professor of theoretical physics at the University
of Leipzig. In an attempt to distribute responsibility for the journal over a broader
segment of the German physical community, Drude had behind him a Kuraton'um,
or council, of five professors of physics: experimentalists Friedrich Kohlrausch,
Georg Quincke, Emil Warburg, and Wilhelm Conrad Rontgen, and theoretician

Planck. The title of the journal changed to emphasize its status as an organ of physi-
cists: it became, once more, simply the Annalen der Physik.

Drude was a natural choice as editor. Son of a physician, in 1887 he received a
doctorate for a dissertation on theoretical crystallography directed by physicist
Woldemar Voigt at the University of Gottingen [10]. Drude worked as Voigt’s assis-
tant until 1894, when he was called to become associate professor of physics at the
University of Leipzig. In 1900 he went as successor to renovate and direct the
moribund physics institute at the University of Giessen. His institute there was a
small one, attracting fewer doctoral students in physics than nearly any other German
university, and his budget was commensurate with the institute’s low popularity.
The position carried few administrative responsibilities [11]. By the time that he
went to Giessen, Drude had accumulated a remarkably long and varied list of pub-

lications. He was at his finest when he interpreted and extended Maxwell’s electro-
dynamics, as elaborated by Heinrich Hertz. Drude belonged to a tradition exemplary
in the work of Helmholtz and Hertz, Where theoreticians were also expected to be
at home with experimental physics. The marriage of theory and experiment in
Drude’s published work was more harmonious than that found in the research of
any of his distinguished young contemporaries, including Philipp Lenard, Wilhelm

Wien, and EmilWiechert. Having by around 1900 published scores of papers, mono-

graphs and textbooks, Drude was seen as the inheritor of Helmholtz’s and Hertz’s

mantle. It was entirely natural that he have been called to direct the journal that had

published most of his work. To edit a voluminous and prestigious review, direct a
small institute and continue to produce first-rate research was a difficult task, even

for someone with Drude’s talents. All physicists in Germany looked to Drude’s rising

star.
When in 1905 Emil VVarburg resigned from the University of Berlin to become the

third president of the Imperial Institute of Physics and Technology, his position,
the most prized chair of physics in Germany, went to Drude. Over the preceding ten
years Warburg had set a breathtaking record as institute director. He issued about
eight doctoral dissertations a year, more than any other German professor of physics
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His students published more than students at any other physics institute, some 220
publications between 1895 and 1905. By the middle 1920s around one-third of his
students from this period held professorships [12]. Going from physics at Giessen to
physics at Berlin would have implied great changes in one’s style of research, teaching,
and administration, even without the additional burden of editing the A mmlen.
Drude did not make the transition. His personal research and writing slowed. He
was overwhelmed.

Drude called out in anguish to his friend Wilhelm Wien at Wiirzburg, asking that
Wien change places with him. A country boy who liked living in an uncongested city,
Wien blanched at the thought of directing the Berlin institute, for it, constructed on
piles driven into the banks of the Spree and wit-h a high tension electrical cable
running underneath, was entirely unsuited for delicate physical measurements.
Finding no honorable way out, and not communicating his desperation to colleagues
at Berlin, Drude committed suicide. It was only one year after he had arrived in the
imperial city. The shock rippled through the world of physics. Weeks after Drude
shot himself, Max Levin, a post—doctoral student at Gettingen, wrote about the event
to Ernest Rutherford, professor at McGill University in Montreal. He understated
that Drude “was somewhat overworked, but a satisfactory explanation has not been
found” [13].

3. Plank and Wien take charge

It was under these circumstances, then, that Max Planck stepped forward to be—
come editor of the Annalen. To share editorial responsibilities he asked Wilhelm
Wien, then professor of physics at the University of Wiirzburg in the south German
state of Bavaria. As was the case with Drude, Wien’s appointment provided visible
evidence that the Berlin Physical Society sought to represent all German physicists,
those in and beyond Prussia. Wien. is best known today for work in synthesizing
experimental research which led to the quantum theory of radiation, but his activity
spanned all of physics. He was an early and vocal supporter of the electromagnetic
view of nature and an elaborator of the electron theory. Like Planck, Wien became
an immediate supporter of Einstein’s special theory of relativity. Different from
Planck, in the 1920s Wien appeared in the company of the anti—Semitic, anti—rela—
tivity physicists Johannes Stark and Philipp Lenard [14].

ln a letter to Wien written in 1906, Planck proposed how the new Annalm would
be managed. The Berlin theoretical physicist wanted both his and lVien’s name to
appear side by side on the journal’s title page, as was the case for the ttschrift
ffir physikulischc Cit-emit), edited by Wilhelm Ostwald and Jacobus Henricus van’t
Hoff. Wien would handle the day-to—day matters associated with the journal, al—
though when a manuscript was to be rejected or revised, Planck had to be consulted.
Beginning his association with the most prestigious physics journal in the world,
Wien asked Planck about the proportion of manuscripts that had been rejected by
Drude’s editorial hand. Planck could not supply precise figures, but he estimated
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that only 5% to 10% of submissions had been returned to authors [15]. With hind-
sight this remarkable statistic helps to explain the appearance in the Annalen of a
consistent quantity of dull, unoriginal, and insignificant articles. Although under
Planck’s and Wien’s direction the rejection rate seems to have risen (an educated
guess would place it at around 15% or 20% in 1914:), no clearer indication than this
can be provided of the extent to which physics publication in Wilhelmian Germany
was available to almost any determined and flexible author.

Planck closed his letter with the hope that Wien would soon receive word from
Friedrich Althoff, the powerful civil servant who supervised professorial appoint-
ments at all institutions of higher learning in Prussia [16]. As he clarified two days
later, Planck had in mind that Wien comes to Berlin as Drude’s successor, a posi-
tion that Wien found attractive. Wien, who did receive but declined the call,
worried about the enormous responsibilities entailed by such a position, in conjunc-
tion with editing the Annalen. Planck assured Wien that Drude had had the possibil—
ity of diminishing his work load, but that he had made no move to do so [17]. Though
we lack the letters that Wien wrote to Planck, it is clear that the younger man at
Wiirzburg consistently deferred to his senior colleague. To the extent that he wanted
to be involved with it, Planck controlled the Annale'n. Holding the journal firmly in
rein, Max Planck shepherded colleagues toward the new physics of the tWentieth
century.

The public Planck projects an image of a distant, superior sage. Even in the few
instances when he reflected on his life, as in his scientific autobiography, personal
remarks were with rare exceptions foregone. In corresponding with his coeditor Wien,
recipient of the 1911 Nobel prize in physics (Planck would receive it only seven
years later), Planck allowed a bit of his private side to show. Planck enjoyed writing
letters. As his own research slowed because of advancing age and administrative
commitments, his scientific correspondence swelled, and he found the circumstance
“enormously stimulating and invigorating” [18]. Business documents, Planck’s
letters to his near-peer telegraphed succinct judgments about manuscripts by authors
knocking on the door of the Annalen. To Wien Planck expressed himself in a way that
he could never allow in a publication. “Completely without value nothing new
. . . contradictions” are evaluations that issue from Planck’s pen. One is struck by how
these comments on the substance of manuscripts are distinguished in Planck’s
letters from his evaluation of personality and character. Planck divorced the business
of physics in the Annalen from personal questions, insofar as he was able. Even to
his coeditor of some twenty years, Wilhelm Wien, Planck neVer entirely warmed up.
The two always addressed each other as ,,Sie“.

From this brief description of Planck’s temperament it follows that he would
have gone to great lengths to keep caustic polemics from appearing in his journal.
A controversy in the Annalen was not a pleasant affair. A regular contributor, Ein-
stein, wrote in 1910 to his young colleague, Paul Hertz, that he wanted to speak with
Hertz about the latter’s recent publication (probably on the mechanical foundation
of thermodynamics) rather than address a reply for publication. “A quarrel in the
Annalen”, Einstein wrote to Hertz, “is not a laughing matter” [19]. We can see the
extent to which Planck strove to avoid controversy on a personal level from Planck’s
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advice to Wien, in 1906, that the Annalen reject a manuscript of Carl Wilhelm Max
Koppe’s on the concept of relative motion and the Foucault pendulum. The manuscript
represented an attempt by Koppe, a fifty-three—year—old professor at the Andreas
Realgymnasium in Berlin and a long—time contributor to the proceedings of the Ber—
lin mathematical society and to the Zeitschrift far physz‘ka/lischen and chemischen
Unterricht, to join a debate in the pages of the Physikalische Zeitschrift over an article
on the same subject by Polish physicist Alfred Denizot [20]. In Planck’s View,
Koppe’s article would be “superfluous” for Annalen. At the same time, Planck feared
that if published it could give rise to a fearsome controversy. Denizot had previously
had a manuscript rejected by the Annalen, and Planck no doubt felt that Denizot
would have reason to claim persecution at the hands of the journal [21]. Apprised
of Planck’s feeling that his manuscript contributed nothing new, Koppe replied
that he really wanted to have the paper appear in the Annalen. Planck wrote to Wien
that a way out would be to accept Koppe’s paper on the condition that he rewrite it
to exclude mention of Denizot’s work [22]. Koppe dropped the matter and sent a ver—
sion of his article to the Physikalz'sche Zeitschrift, where it appeared immediately [23].

The odyssey of a manuscript submitted in 1906 on the principle of relativity and
electromagnetism, written by Alfred Heinrich Bucherer, indicates how Planck and
Wien processed articles through their journal. Bucherer was an unusual German
physicist who, after having studied at several universities in the United States, re—
turned at an advanced age to take a doctorate at the University of Berlin. In a series
of short communications and in an elementary textbook, Bucherer sought around
1905 to contribute to the exciting and mathematically elaborate discussion on the
electron theory. He worked apparently oblivious of recent, sophisticated publications
by Karl Schwarzschild, Paul Hertz, and Arnold Sommerfeld [24]. Planck carefully
scrutinized Bucherer’s submission. It was a mess. The coeditor of the Annalen found
that according to Bucherer’s interpretation of the principle of relativity, a moving
current of air would impart its velocity to a light wave, a result in contradiction with
Fizeau’s classic experiment. Even worse, Bucherer did not seem aware that Max—
well’s equations held for any uniformly moving system. Because Bucherer was a
privatdocent and had worked on Kaufmann’s experiments, Planck was in favor of
leniency. He urged a revision rather than outright rejection. Generosity was especially
indicated, Planck noted to Wien, because Drude had previously rejected a paper of
Bucherer’s on thermoelectric fluids [25]. Bucherer, however, refused to make changes
in his paper, and he asked for a collective opinion by the curators of the Annarlen [26].
The matter passed to Planck and Wien’s “overseers”. They opted to support the
editors, and wrote to Bucherer about their decision. Bucherer replied that he would
not entertain a compromise, as Planck had advocated. Planck hoped, with this
response, that the matter would die, and that Bucherer would not in the future come
to the Annalen [27]. Bucherer’s thoughts went no farther than a preliminary paper
published previously in the Physikalische Zeitschrift [28]. A number of years later
Bucherer claimed to have verified the Lorentz theory of electrons by measurements of
Becquerel rays, to the uninformed delight of mathematician Hermann Minkowski
and the unbridled skepticism of experimentalist Alfred Bestelmeyer [29].

Historian Stanley Goldberg has shown how elaboration and verification of special
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relativity remained foremost in Planck’s mind during the years before 1910 [30].
Planck emerged as one of the very first physicists to extend Einstein’s work, and
between 1905 and 1914 he was the principal or supplementary adviser for more than
a dozen doctoral dissertations that were based at least in part on Einstein’s special
theory of relativity [31]. When Einstein’s paper appeared in print, Planck had already
expressed interest in the limits of the mechanical explanation of electrical phenomena,
for in 1905 he was principal adviser of a dissertation by Hans VVitte on precisely this
subject [32]. In the wake of Einstein’s work, Planck encouraged his student Kurd
von Mosengeil to pursue a theoretical investigation of relativistic thermodynamics.
In 1906 Planck saw Mosengeil’s dissertation through press and revised the text for the
Annalen after the premature death of his student [33].

Planck by no means limited himself to theoretical studies. One of his charges was
Erich Hupka, officially working under the direction of experimentalist Heinrich
Rubens. From the acknowledgment in his dissertation it is clear that theoretician
Max Planck provided much guidance for Hupka’s attempts in 1908 and 1909 to
measure the change in electron mass with electron velocity. Other experimentalists
had attempted to obtain such precise measurements, but none of the results were
unambiguous. Hupka wanted to provide a definitive decision between the predic—
tions of Max Abraham’s theory of the rigid electron and the predictions of the L0-
rentz-Einstein theory (which Hupka called, along with many others of the day, not
,,Relativitatstheorie“ but ,,Relativtheorie“ — “relative theory” instead of “relati-
vity theory”). Hupka worked with cathode—rays, then established to consist of elec-
trons moving at velocities approaching that of light. Negatively charged cathode—
rays were deflected by a magnetic field, the amount of deflection depending only
on the apparent electron mass. The young physicist could establish the kinetic energy
of electrons emitted from a cathode in a vacuum tube, and he could calculate, for a
given magnetic field strength, deflections of the cathode-rays according to Max
Abraham’s theory and the relativity theory. His observed deflections fitted the
latter [34].

When he published his dissertation in monograph form and as an article in the
prestigious Annalen devr Physik, Hupka found himself at the center of a sharp contro-
versy with Wilhelm Heil, who had just finished a dissertation under Planck’s direc-
tion which critically examined Walter Kaufmann’s measurements of the change in
electron mass with electron velocity for beta rays [35]. Taking into account the relia-
bility of the data, Heil concluded that experimental evidence did not provide a
conclusive decision among the three competing electron theories: those of Bucherer,
Abraham, and the ,,Relativtheorie“. Planck had the two doctoral candidates working
in ignorance of each other. According to a letter that Planck wrote to W’ilhelm Wien,
at the time that Heil finished the young researcher did not know of Hupka’s work
[36]. Heil wrote a sharp critique of Hupka’s dissertation and sent it to Planck for
publication in the Annarlm. Planck naturally felt that Heil’s subject was “very im-
portant”, but he urged Heil to moderate his language. Planck informed Hupka about
the impending publication. He worked with both researchers to eliminate personal
remarks from their position papers [37]. Their public discussions resolved little.
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4. The gatekeepers

Planck’s attitude toward mathematics and especially how he distinguished mathe-
matical formalism from physical reasoning is clearly revealed in his editorial corre—
spondence with Wien. The Berlin theoretician, of course, was the very model of a
physicist brahmin. A university professor like his father, Planck grew up in an
atmosphere redolent with the responsibilities and prerogatives of professorial station.
His interests turned almost exclusively toward abstractlearning, many steps removed
from direct contact with the world of practical activity. Planck’s research reflects in
physics the widespread desideratum 0f nineteenth-century German, neoclassically-
inspired learning, where one was expected to elaborate on the world in “general”
terms. Culture was to be allgcmem, general, rather than fachlr'ch or realistisch, specia—
lized or practical. Generality implied a primary emphasis on linguistic skills, in philo—
logy and in natural sciences [38].

Though a master of mathematical methods, Planck passionately sought to express
the fundamental laws of the universe in words. From the fundamental laws, he
believed, could be constructed what he and others called a worldpicture of physical
reality. It would be as a vast landscape, not unlike those projected by nineteenth—
century, German, neoclassical artists, wherein all parts of physics stood in harmony
with each other. When words failed him and he held only mathematical formulas e
as seems to have been the ease in 1900 upon his first formulation of the quantum
theory of radiation — he was unable to draw unambiguous conclusions [39]. Planck
had little patience with mathematically pretentious glosses on the principle of
relativity. Into such a category fell about half of the relativity manuscripts that
passed across his desk. His thoughts on Several submissiOns are especially illuminat—
ing in this regard.

In 1908 Emil Kohl, associate professor of physics at the University of Vienna,
submitted a two—part manuscript that developed a new theory of electrodynamics
and critiqued the Michelson experiment. Kohl assumed that electricity was a conti—
nuous fluid distributed throughout space. He came to the same results as those
obtained by Lorentz, Planck noted, but only after having made special hypotheses
abOut the ether. Planck urged Wien to ask Kohl to limit his observations to the
Michelson experiment- The outcome was as he requested [40]. In rejecting a later
manuscript of Kohl’s that set out a theory of electrons, Planck emphasized that
among all Kohl’s many equations he had not found “a single one in which a new
relationship between measurable quantities is provided” [4]]. Kohl is the phy—
sicist who in 1911 was edged out by Einstein for a chair at the German university
in Prague [42]. In a similar class was a manuscript of Anton Weber’s on special rela—
tivity. In Planck’s view it did not have “enough physical results to be accepted by
the Annalen.” It would make only “ballast” for the journal [43]. Weber, a professor
of physics and mathematics at the Royal Bavarian Lyzeum in Dillingen, was only
able to make his thoughts public in a note published in the Physikalische Zeitschmfft
[44].

Planck considered as “entirely worthless” two long manuscripts submitted in 1911
by Emil Arnold Budde on the Klinkerfues and Michelson experiments to detect
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motion relative to the ether. Sixty-nine—year-old Budde directed the Charlottenburg
factory of the firm Siemens 8: Halske; he had published extensively in the Annalen
and had in 1888 directed the abstracting journal Fortschn'tte der Physik. Budde wrote
in the style of an engineer. Planck found that Budde was completely ignorant of
the literature and that his attempted critiques of the two experiments were embar-
rassingly bad. His work contained “no original thought that is not already found in the
scientific literature, and done better there” [45]. Both of Budde’s papers, rejected by
Planck, appeared in the Physikalische Zeitschrift. In his paper on the Michelson
experiment, Budde criticized Max von Laue’s textbook of 1911 on the special theory
of relativity. Laue replied to Budde’s accusations with devastating effect [46].

On a manuscript of F. Griinbaum’s which was ultimately rejected, Planck com-
mented in 1911 that it was “correct, but it includes nothing really new and its phy—
sical interest is only very indirect.” The paper duplicated a lecture that applied
mathematician Hans von Mangoldt had published in the Zeitschn'ft of the German
Engineer’s Association and reprinted in the Physikalische Zeitschrifl [47]. Planck was
not clear if or how Griinbaum used Mangoldt’s work, and whether he supplied
anything more than mathematical formulas to Mangoldt’s physical content, Griin-
baum’s article appeared shortly thereafter in the Physikwlische Zeitschrift [48].

To judge from its contents the biweekly Pkysikalische Zeitschrift, controlled by
Gettingen physicists and in this period edited variously by Emil Bose, Friedrich
Kruger, Hans Busch, Max Born, and Heinrich Theodor Simon, was often desperately
short for copy. Publishing both notes and long-winded analyses, the journal became
a dumping ground for work rejected by Planck and Wien. Even so, some manuscripts
declined by the Annalen did not find their way into the more catholic journal, pre-
sumably because the treatments were obviously derivative or out of fashion. One
such case was a long manuscript elaborating Vilhelm Bjerknes’s hydrodynamical
analogue for electromagnetism, submitted in 1912 by a certain H. Rudolph. In 1910
Rudolph had published a small book purporting to unite the principle of relativity,
Planck’s quantum of radiation, and gravitation in a mechanical picture of the world
[49]. Planck would not have Rudolph’s elaboration of this theory. Bjerknes’s mecha—
nical theory had appeared in the Anmlen, along with a rejoinder by Hans Witte,
but “direct and definitive rejection” was Planck’s advice for Rudolph’s manuscript,
a text that failed to distinguish between force and pressure and one that remained
confused about the physical meaning of differential quotients [50].

The preceding papers were all written by unimportant authors Whose work was
far from original. Not all submissions were so easily weighed. In 1910 Planck re-
luctantly acceded to a manuscript by Waldemar Sergius von Ignatowsky on the notion
of a relativistic rigid body. Ignatowsky in fact met with Planck and told Planck that
Wien was not happy with his manuscript. Planck commented on Ignatowsky’s
confusion over Einstein’s notion of signal velocity, but in the end decided to accept
Ignatowsky’s paper [51]. Planck had to handle Ignatowsky with care, because
Ignatowsky and Eugen Jahnke — both aging privatdocents at the Berlin Institute
of Technology — had proposed to create a journal specializing in theoretical physics,
a competitor for many articles that would otherwise be sent to the Anmlen. Planck
approached the project, which did not bear fruit, with circumspection. To Wien he
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confided that it might be “quite a good idea’7 to take some theoretical work out of the
Annao’en, but he dreaded the consequent emergence of “a sharp division between
theoretical and experimental research.” He believed that theory had always to be
grounded in experimental reality [52].

It appears from Planck’s correspondence with Wien that the most perplexing sub—
missions on relativity were those invoking complicated mathematical machinery to
elaborate formal, working hypotheses. Planck especially believed that the Annalen
had to adopt a clear policy with respect to submissions dealing with the principle
of relativity. Manuscripts that focused on the formulation of definitions — as was
the case in the recent spate of literature on the relativistic rigid body — had to be
referred to mathematical journals or to the more accommodating journal Physikalische
Zeitschrift [53]. Planck urged that a 1913 manuscript by the twenty—three-year—old
Polish physicist Felix Joachim de Wisniewski be declined. “The author defines every
last thing in a formal way and assumes that behind it all these definitions have a
physical meaning. But nothing new comes from it.” Wisniewski’s gravitational theory
might have had some strong points, but in Planck’s view there were “too few solid,
deciding factors for a completely informed gravitational theory.” At this time
Planck believed that even Einstein’s theory was not necessarily in the right direction,
and it would have to be tested during the upcoming solar eclipse of 1914 [54]. In
two previous papers published in the Anmlen, Wisniewski had begun to elaborate a
new gravitational theory, but Planck decided that the journal did not have to con-
tinue to support Wiéniewski’s tedious and pedestrian mathematical speculations
[55]. A second communication on the quantum theory, submitted by Wisniewski
in 1914, also received definitive rejection by Planck [56].

For Planck, mathematical exposition had to be clear as well as relevant to physical
concerns. In 1913 he accepted one short paper from Jun Ishiwara [57], a Japanese
theoretical physicist who had studied extensively in Europe, but later that year
Planck convinced Wien to reject another of Ishiwara’s papers on electrodynamics.
The second treatment contained serious mathematical infelicities, such as defining
one quantity Without further comment as a “Quasisinnevektor”. In the expositions,
as in other publications of Ishiwara’s, the author was not always clear and the text
would have to be rewritten completely. Planck did not want to hurt Ishiwara’s
feelings. He suggested to Wien that in rejecting the manuscript one could say that
it was not publishable in the present form. In any event, Ishiwara had already
published the result in a Japanese journal. In all probability Ishiwara sent the rejected
manuscript to the Physikalische Zeitschrift, where it appeared in 1914 [58].

The above extracts tend to present Planck as a stern gatekeeper. In reality he
encouraged work that he thought promising, even if it did not issue from the pens
of his students. He followed Walther Ritz’s emission theory of radiation with great
interest, even though he did not believe in it [59]. In 1908 Planck advised Wien
to accept a paper that the young Viennese physicist Philipp Frank had submitted,
where Frank shOWed how the Lorentz transformation could reduce to a Galilean
transformation and applied the principle of relativity t0 Hertz’s equations for mov-
ing bodies. Planck was in favor of the paper even though he remained unclear about
the distinction between Einsteinian and Hertzian relativity as elaborated by Frank
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[60]. He felt that his journal was fortunate to have Breslau Oberlehrer Ferencz
Jiittner’s “quite interesting” research on kinetic molecular theory and relativity.
Planck urged Wien not to cut the manuscript of one of Jiittner’s two papers [61].
The senior editor in Berlin urged that a paper on gravitational theory by Finnish
physicist Gunnar Nordstrom be accepted even though it did not offer “fundamental”
insights. Nordstrom was a talented man who had previously not appeared in the
Anmlen, and Planck wanted to encourage Nordstrom’s work. He was especially
glad that in Nordstrom’s paper the foreigner retained the constancy of the velocity
of light, a principle that Einstein and Abraham had recently dropped. The Annalen
had to be hospitable, in Planck’s view, to promising first communications [62].

After the covariant field equations of general relativity emerged late in 1915,
Planck found the Annalen besieged by authors wanting to contribute to the topic. In
March 1916 Einstein sent the Annalen a long article setting out the definitive form
of general relativity [63], but many others who knocked at Planck’s door with texts
elaborating the theory were far removed from centers of power and prestige in the
discipline. Einstein gave the wide-ranging engineering professor at Berlin Hans
Reissner “many explanations and criticisms,” and so helped him complete a paper on
the self—gravitation of an electrical field [64]. The young Viennese theoretician Fried-
rich Kottler elaborated in 1916 the principle of equivalence in a short paper printed
without much editorial deliberation [65]. Both Reissner and Kottler had previously
published on relativity and gravitation. Planck also argued in 1916 that two manu—
scripts by the Norwegian physicist Thorstein Gunnar VVereide be accepted, even
though as a foreigner and, according to Planck, an “autodidact,” VVereide proceeded
in an unorthodox manner and wrote with many spelling mistakes. VVereide had
published, the previous year, a monograph in English which summarized many of
his ideas [66]. One of the papers that Wereide sent Planck, on energy exchange be-
tween ether and matter, borrowed from Niels Bohr’s atomic theory. Planck urged that
it be published because in such a new field standards were different from those in
older fields. The manuscript had been rejected by the Physikalische Zeitschrift,
Planck noted, and that journal’s poor judgment was a boon for the Annalee [67].

Among the many manuscripts sent to the journal, which elaborated general
relativity came one from Konigsberg Oberlehrer Ernst Reichenbacher, according to
Planck a “basically cultured theoretician,” who attacked the general problem of the
connection between electricity and gravitation. Reichenbacher limited his study
to a two-dimensional field which he then expanded to the fourdimensiOnal world
of Hermann Minkowski. Planck was sympathetic with Reichenbacher’s approach,
but he was not overly sanguine about its future. “The value of such a theory,”

Planck felt, lay in “what it finally delivers.” The payoff, in Planck’s view, lay in
“simplicity and intuitiveness [Einfa/chkeit and Anschaulichkeit] and above all in
whether it has such characteristic consequences that can be tested by experiment.”
Reichenbacher’s theory failed on both counts. Planck found especially perplexing
a law of Reichenb‘acher’s where the radius of curvature of a negative electron was
enormously larger than the electron radius. In general Planck felt that the theory
was not terribly new if one was familiar with the theory of conformal mappings in
two planes. In Planck’s view the manuscript was not yet ready for publication. The
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first, mathematical part had to be clarified; the second, physical part had to deal
with the theories of Gustav Mie, David Hilbert, and Einstein [68]. Reichenbacher’s
manuscript went back to him. Three months later a revision arrived on Planck’s
desk. Planck was uncertain to which of Einstein’s papers Reichenbacher appealed.
He urged that Reichenbacher speak with Einstein and so resolve their differences.
The meeting was amicable [69]. Reichenbacher’s paper appeared in 1917 as the first
attempt at a unified field theory in the wake of Einstein’s covariant field equations.

Near the end of the war, the problem of mathematical expositions came to weigh
heavily on Planck’s shoulders. When in 1917 Hermann Weyl sent the Annalen.
his first attempt at a unified field theory, Planck wrote to Wien that Weyl stood
at the very “height of research of his time.” Although he observed that Weyl did
not cite all the literature and mentioned nothing about experimental verification
of the theory, Planck noted with approval that Weyl based his work firmly on Ein—
stein’s “general gravitational theory.” Studies like Weyl’s Were, in Planck’s view,
of clear value, but a larger problem remained. Weyl’s paper depended heavily on
mathematical machinery from non-Euclidean geometry, and Planck would have
preferred to see more weight attached to physical reasoning and discussion. He did
not want to decide in general the extent to which studies like Weyl’s belonged in the
Annulen, although he Offered that possibly “non~Euclidean geometry, as such, se-
parated from physical tasks, will be treated better in mathematical journals as has
been the case until now” ['70].

5. Plank the editor

Scientific editing calls many kinds of people. In pursuing riches some pander to
public tastes. Others seek a special outlet for a particular kind of wisdom or a learned
corporation. All scientific editors purport to instruct; their enterprise is an educatio—
nal one. So it is with Max Planck, an exemplary teacher. In addition to helping to
produce a many doctoral dissertations on the theories of relativity, he corresponded
with Wien about the submissions of as many as a score of additional authors writing
on relativity. The Anmlcn der Physik was controlled by robust and young researchers
at the height of their abilities. No different from other people, physicists mature in
their positions, but this circumstance is no reason to burden editors with the image
of exhausted thinkers. The editors of the Annalen der Physiic continued educational
and scientific activity at the same time that they processed the work of their collea-
gues. The most valuable commodity at their disposal, time, went to imposing their
prejudices on the visible and permanent residue of their discipline—learned publica—
tions.

Although Planck was wary in approaching mathematical formalism, he remained
in awe of talented mathematician colleagues. He wrote to Wien in 1912 that Hilbert’s
radiation theory was quite interesting from the point of view of formalism and general
applicability, but that it brought no new physical understanding. “For all that,”
Planck offered, “it is to be welcomed when the mathematicians begin to beinterested
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in physical problems” [71]. Planck was not alone in his opinion about the role of
mathematics in physics. His coeditor colleague Wilhelm Wien approached mathema-
tics in a similar way. Wien wrote to David Hilbert in 1909 about his sadness at the
death of mathematician Hermann Minkowski, whose last papers on relativity theory,
“in which he went entirely into physical points,” were of great interest [72]. Like
Wien, Albert Einstein would have been sensitive to Planck’s strictures. Tensor
analysis came to him as a method of last resort. “You have absolutely no idea,”
Einstein Wrote to physicist Paul Hertz in 1916, “What I went through as a mathe-
matical ignoramus until I arrived in this harbor” [73]. The widely travelled young
Paul Ehrenfest, later Einstein’s close friend, shared this View of mathematics.
Ehrenfest wrote to Paul Hertz around 1906 about how he had taught himself higher
mathematics, and so his education had many holes: “Often quite elementary mathe-
matical methods are essentially unknown to me.” In another letter to Hertz from
this period, Ehrenfest emphasized that a surprising majority of the talented physi-
cists and mathematicians whom he had met considered “mathematics a ‘veritable
devil’ — naturally a man-eating one.” Ehrenfest added: “I calculate with this fleeting
intimation instinctively, and I have the conviction that you must have quite often
[experienced] the same sentiment” [74].

The attitude of these physicists toward the role of mathematics in formulating
physical laws stands in sharp contrast to that of younger theoretical physicists in
the period after the first world war. “Physical sense” was for the younger men increa-
singly seen to be of less importance than the requirement that a theory be clothed in
elegant mathematics. Writing to Wolfgang Pauli about Pauli’s long essay on the
theories of relativity, the septuagenarian mathematician Felix Klein reported the
belief of his mathematician colleague David Hilbert, “that one cOuld explain the
essence of nature by mere mathematical reflection” [75]. Hilbert’s attitude came to
permeate physics in the 1920s. Unfamiliar mathematical expressions replaced classical
physical notions, and theorists like Werner Heisenberg, Wolfgang Pauli, and Paul
Adrian Maurice Dirac imputed new physical meaning to sophisticated mathematical
expressions. Niels Bohr convinced physicists to accept a new, indeterminist episte-
mology that could accommodate the success of formal methods in quantum mechanics.
Those sharing an older vision, however, hesitated to accept the new point of view
and, with a few exceptions, refrained from contributing to the structure of the new
world picture.

In view of his persistent belief in many features of the late nineteenth-century
“physical world picture,” Planck appears as a sympathetic figure striding across two
epochs. He consistently pointed the way to the new physics of relativity and quanta;
in this regard his pedagogical and epistolary activities were as valuable as his original
scientific communications. At the same time he resisted abandoning beliefs about
physical reasoning and the use of mathematical tools which he had acquired when
in the nineteenth century he wrestled with the foundations of thermodynamics.
Especially in his role as editor of the Annalen der Physik, Planck acted as Moses for
twentieth—century physicists. He guided and disciplined his colleagues through
nearly twenty years of bewildering revelations, but he never touched the soil of the
promised land.
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Short version of the program

SUNDAY (13. 7. 30)
9.00:

20.00:

Evening :

Registration of participants opens
Place: University Tower
E. Schmutzer unveils a bust of Einstein by the sculptor Jo Jastram
Place: Foyer of Lecture theatre 1/House 1, Max—Wien—Platz 1 (for
invited guests only)
Informal get-together in the University Tower

MONDAY (14. 7.80)

Scientific Program

10.00— 10.30:

10.30fi11.15:

11.15—42.00:

Opening Session
(with accompanying persons)

Welcoming address by the Rector of Friedrich Schiller University,
Jena
Prof. Dr. 30. med. Dr. med. h. c. F. Bolck
Welcoming address in the name of IUPAP by the President of the
National Physics Committee of the GDR
Prof. Dr. 80. nat. J. Auth
(Humboldt University, Berlin)
Opening of the Conference by the President of the International
Society for General Relativity and Gravitation '
Prof. Dr. rer. nat. Dr. rer. nat. h. c. P. G. Bergmann
(Syracuse University, New York)

Opening Lectures

J. A. Wheeler (Austin):
Einstein’s second century
E. Schmutzer (Jena):
Prospects for Relativistic Physics
Place: Volkshaus
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14.00— 14.45:

14.50~15.30:

15.35—16.10:

16.45— 17.30:

17.35— 18.20:

20.00:

Plenary lectures

Chairman: W. B. Bonnor (London)

D. Kramer and H. Stephani (Jena):
Exact solutions ‘of Einstein’s field equations (read by D. Kramer)

I. Robinson (Dallas):
Complex methods in General Relativity

R. A. d’Inverno (Southampton):
Computer methods in General Relativity

J. E. Marsden (Berkeley):
Initial value problems and dynamics of gravitational fields

J. Ehlers (Munich):
Equation of motion, gravitational radiation and corresponding
approximative methods
Place: Lecture theatre 1/House 1

Meeting of the International Committee on General Relativity and
Gravitation
Place: Cafe in the University Tower

Non-scz'entifie Program

15.00—17.00: Guided tour of the University Main Building
Guide: H. Holzel (Jena)
(free of charge)

20.30—22.00: Physics experiments for entertainment
Demonstrator: H.-D. Jahnig (Jena)
Place: Lecture theatre l/House 1
(free of charge)

TUESDAY (15. 7. 80)

Scientific Program

9.00—9.30:

9.35—1020:

Plenary lectures

Chairman: I. Novikov (Moscow)

R. S. Ward (Dublin):
Present state of the twistor program
H.-J. Seifert (Hamburg):
Basic theory of black holes, singularities and topology
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10.55—11.40:

11.45—12.30:

14.00— 14.45:

14.50—15.35:

15.40—16.25:

17.00—17.40:

Non—scientz'fic

10.00— 12.00:

14.00—17.30:

15.00—20.00:

17.00—18.30:

20.30:

R. Sunyaev (Moscow):
Compact objects under astrophysical aspects
(read by Ya. B. Zeldovich) ‘

Ya. B. Zeldovich (Moscow):
Theoretical and empirical situation in cosmology
Place: Lecture theatre 1/House 1

Chairman: D. Ivanenko (Moscow)

R. D. Reasenberg and I. I. Shapiro (Cambridge/MA)
Terrestrial and planetary experiments, time and length standards
(read by R. D. Reasenberg):

G. W. Gibbons (Cambridge/UK):
Quantization about classical background metrics
P. van Nieuwenhuizen (Stony Brook):
Gauge quantum theories of gravitation
S. Ferrara (Frascati):
Supergravity
Place: Lecture theatre 1/House 1

Program

Guided tour of the places and objects of interest in the town and
Within the University (Goethehaus, Schillerhaus, Collegienhof, Bota—
nical Garden, Hanfried-Monument)
Guide: H. Holzel (Jena)
(free of charge)
Trip to Cospeda to the museum and terrain of the Battle of Jena and
Auerstedt (1806)
Guide: S. Schmidt (Jena)
Exhibition of instruments manufactured by Kombinat VEB Carl
Zeiss (primarily for scientists)
Place: Opposite the main entrance of the University Tower (Verhand—
lungszentrum)
(free of charge)
(Repeat without guide on 16. 7. and 17. 7. from 9.00—15.00)

\

Lecture on “Socialist economic policy — as an example Kombinat
VEB Carl Zeiss Jena”
Chairman: W- Matthies
Concert given by the Jena Philharmonic Orchestra and Singakademie
Choir
Conductors: G. Blumhagen and S. Nordmann
Place: Volkshaus
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WEDNESDAY (16. 7.80)

Scientific Program

9.00— 10.30 :

9.00— 10.30:

9.00— 10.30:

11.00— 12.30:

11.00— 12.30:

11.00— 12.30:

Discussion groups

Exact solutions of Einstein’s field equation
Leading moderator: H. Stephani (Jena)
Place: Lecture theatre Al/House 4
Terrestrial and planetary experiments, time and length standards
Leading moderator: R. D. Reasenberg (Cambridge/MA)
Place: Lecture theatre 1/House 1
Astrophysics of compact objects
Leading moderator: B. Carter (Meudon)
Place: Lecture theatre 4/H0use 2
Equation of motion, gravitational radiation and corresponding appro-
ximative methods
Leading moderator: P. Havas (Philadelphia)
Place: Lecture theatre Al/House 4
Complex methods in General Relativity
Leading moderator: I. Robinson (Dallas)
Place: Lecture theatre A4/H0use 4
Continuous signal antennae, and Doppler spacecraft ranging for gra-
vity wave detection
Leading moderator: J. Weber (Maryland)
Place: Lecture theatre 1/House 1

Nart-scientific Program

10.00— 12.00:

10.00— 12.30:

13.30:
13.45:

20.30:

Guided tour of places and objects of interest in the town and Within
the University
(repeat of previous day’s tour)
Excursion to the Karl Schwarzschild Observatory, Tautenburg
(mainly for scientists)
Guide: 8. Marx (Tautenburg)
Visit to Buchenwald Memorial and Weimar
Excursion to Weimar (only)
A choice of musical entertainment
(free of charge)
1. Quartet of the Akademische Orchestervereinigung

Place: Collegienhof, Kollegiengasse
(in the event of bad weather: Rehearsal Hall of Philharmonic,
August—Bebel-Str. 4)
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2. Concert with the Jena Philharmonic Madrigal Group
Conductor: G. Blumhagen (Jena)
Place: Auditorium of the University Main Building

3. Old Time Memory Jazz Band
Leader: G. Mlynski (Jena)
Place: ,,Rosenkeller“
Students’ Club, Johannisstrafie 13

THURSDAY (17. 7. 80)

Scientific Program

9.00— 10.30:

9.00— 10.30:

9.00% 10.30:

11.00—12.30:

11.00—12.30:

11.00—12.30:

14.00— 15.30:

14.00— 15.30:

14.00 — 15.30:

16.001 17.30:

Discussion groups

Initial value problems and dynamics of gravitational fields
Leading moderator: Y. Choquet—Bruhat (Paris)
Place: Lecture theatre l/House 1
Parametric transducers for gravity wave antennae
Leading moderator: D. Blair (Western Australia)
Place: Lecture theatre 4/House 2
Historical aspects of the Theory of Relativity
Leading moderator: H. Melcher (Erfurt)
Place: Lecture theatre A1/House 4
Twisters and other approaches to space—time structure
Leading moderator: R. Penrose (Oxford)
Place: Lecture theatre 4/H0use 2
Laser experiments on gravitational waves
Leading moderator: R. W. P. Drever (Glasgow)
Place: Lecture theatre 1/H0use 1

Computer methods in General Relativity
Leading moderator: R. A. d’Inverno (Southampton)
Place: Lecture theatre Al/House 4
Quantization about classical background metrics
Leading moderator: P. C. W. Davies (London)
Place: Lecture theatre 1/House 1
Relativistic thermodynamics and statistics
Leading moderator: G. Neugebauer (Jena)
Place: Lecture theatre 4/House 2
Resonant detectors for gravitational waves (Weber bars)
Leading moderator: D. H. Douglass (Rochester)
Place: Lecture theatre A l/House 4
Classical gauge type theories of gravity
Leading moderator: F. Hehl (Cologne)
Place: Lecture theatre 4/House 2
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16.00—17.30: Black holes, singularities and topology
Leading moderator: J. Stewart (Cambridge/U.K.)
Place: Lecture theatre 1/House 1

16.00— 17.30: Quantum non-demolition detectors
Leading moderators: V. B. Braginsky (Moscow) and C. Caves (Pasa-
dena)
Place: Lecture theatre A1/House 4

[Non-scientific Program

9.00—11.00: Various guided tours (free of charge)
1. Phyletic Museum (museum of human descent)

Guide: H.-O. Vent (Jena)
2. Museum of Optics

Guide: F. Rossi (Jena)
3. Karl Liebknecht Memorial

Guide: H. Holzel (Jena)
4. Ernst Haeckel House

Guide: E. Krausse (Jena)
5. Zeiss Planetarium

Part 1: Through Time and Space in the Planetarium
Speaker: L. Meier (Jena)
Part 2: The Heavens of the Relativists
Concept: J. Dorschner, J. Giirtler, J. Rose (Jena)

6. Bus tour of Neulobeda
Guides: G. Schulz, City Architect of Jena and M. Berg (Jena)

1000— 12.30: Excursion to the Karl Schwarzschild Observatory, Tautenburg
(mainly for scientists)
Guide: S. Marx (Tautenburg)

12.30— 15.00: Excursion to the Karl Schwarzschild Observatory, Tautenburg
(Group 1, mainly for accompanying persons)
Guide: S. Marx (Tautenburg)

15.00—17.30: Excursion to the Karl Schwarzschild Observatory, Tautenburg
(Group 2, mainly for accompanying persons)
Guide: S. Marx (Tautenburg)

12.30—18.00: Excursion to GroBkochberg House with a concert in the historic
amateur theatre

20.00—1.00: Social evening for all:
,,Thiiringer Schlachtfest“ (banquet)
Place: Mensa (Refectory)/Philosophenweg 2O
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FRIDAY (18. 7. 80)

Scientific Program

9.00—9.40:

9.45—10.15:

10.50— 11.50:

11.55—12.35:

14.00— 15.30:

14.00—- 15.30:

14.00—15.30:

16.00 :

20.30:

Plenary lectures

Chairman: F. Bopp (Munich)

A. Trautman (Warsaw):
The Einstein-Cartan theory

D. R. Brill (College Park) and P.—S. Jang (Syracuse, N.Y.):
Positive energy program
(read by D. Brill)

V. B. Braginsky (Moscow) and K. S. Thorne (Pasadena):
Present state of the experiments on gravitational Waves

L. P. Grishchuk (Moscow) :
Experiments on gravitational waves with electromagnetic detectors
Place: Lecture theatre 1/House 1

Discussion groups

Supergravity, renormalization program
Leading moderator: P. van Nieuwenhuizen (Stony Brook)
Place: Lecture theatre 1/H0use 1

Cosmology
Leading moderator: I. Novikov (Moscow)
Place: Lecture theatre 4/H0use 2

Alternative classical theories of gravitation; Mach’s principle
Leading moderator: N. Rosen (Haifa)
Place: Lecture theatre Al/House 1

General Meeting of the Society
Place: Lecture theatre 1/House 1

Meeting of the International Committee on General Relativity and
Gravitation
Place: Cafe in the University Tower

Norb-scientific Program

9.00—18.00:

19.00—20.00:

Excursion to the Dornburg Houses and to Naumburg, including a
visit to the Cathedral and a walk round the Town

Excursion to Eisenach (visits to Bach Museum, Luther House, Wart-
burg Castle) and back to Jena through the Thuringian Forest via
Oberhof
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SATURDAY (19. 7. 80)

Day of departure

POST CONFERENCE TOURS

Tour I: Jena—Potsdam—Berlin (capital of GDR)

Potsdam :
Berlin :

Duration :

Visit to Cacilienhof and the Palace and Park of Sanssouci
Bus tour of the city
Visit to the Pergamon museum and the Television Tower
Saturday 9.00 until Monday 9.00

Accommodation: both nights in Berlin

Tour II: Jena—Wernigerode (Harz)—Magdeburg—Berlin (capital of GDR)

Wernigerode :
Berlin :

Duration :

Walk round the town and visit to the Feudal museum
Bus tour of the city
Visit to the Pergamon museum
saturday 9.00 until Monday 9.00

Accommodation: Magdeburg and Berlin

Tour III: Jena—MeiBen—Dresden—Berlin (capital of GDR)

MeiBen :
Dresden :

Berlin :

Duration :

Visit to the pottery demonstration workshop and china display hall
Bus tour of the city
Visit to the Zwinger Art Gallery
Bus tour of the city
Visit to the Pergamon museum
Saturday 9.00 until Monday 14.00

Accommodation: Dresden and Berlin



Distribution of the participants per country

Algeria 1 —|— 2 Japan 8 + 2
Argentina 1 Republic of Korea 2
Australia 13 + 2 Mexico 6 + 1
Austria 12 + 2 Netherlands 1
Belgium 4 New Zealand 2
Berlin-West 10 Kenya 1
Brazil 1 Nigeria 1
Bulgaria 5 Norway 4 + 4
Canada 26 + 4 Philippines 1
Chile 4 Poland 22 + 2

China 2 Portugal 1 + 1

CSSR’ 11 + 1 Rumania 10 + 1
Denmark 1 + 1 Spain 16 + 2

Egypt 1 + 1 Sri Lanka 1
Finland 3 Sweden 11 —|— 1
France 21 + 4 .

GDR (DDR) 112 + 7 SWItzerland 6 + 3

ERG (BRD) 38 + 11 Taiwan 1

Greece 3 + 3 Turkey 2
Hong-Kong 1 United Kingdom 50 —|— 8
Hungary 7 + 1 USA 69 + 10
Iceland 1 USSR, 38 _|_ 5

India 10 + 1 Venezuela 1
Iran 1 Vietnam 1
Ireland 5 + 2
Israel 4
Italy 35 + 9 589 —|— 89

Yugoslavia 1

The figures after the plus Sign indicate the accompanying persons. This list shows
that 589 + 89 2 678 persons from 51 countries (Berlin-West and Hong-Kong
included) took part in GR9 as fully admitted participants. Furthermore, 150 persons
from the GDR were admitted only for the scientific program. This means the total
number of 828 participants.
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These 57 grants (accomodation, meals, conference fees) have been awarded to all
participants who applied for them on time (31/1/80). A few grants were split up in‘
order to satisfy all Wishes.



GR 9-poem by N. V. Mitskievich (Moscow)

Ein theoretisch-physikalischer Schiller-Traum

Ach, aus Schwerkrafts tiefsten Griinden,
die das kalte Denken drfickt,
konnt’ ich doch Effekte finden —
ach, Wie ffihlt’ ich mich_beg1iickt!
Dort erblick’ ich Widerscheine,
ewig jung und ewig fein!
Hialtt’ ich Fliigelpaar’ alleine,
kénnt’ ich bald am Ursprung sein.

Harmonien hor’ ich klingen,
Tone siiBer Theorie;
und die Kongruenzen bringen
mir News Functions schon und friih.
Strenge Lésungen dort erglfihen,
winkend zWischen Gleichungsschar’.
Theoretiker sich bemfihen
zu verstehen sie ganz und gar.

Ach, Wie schon muB sich’s ergehen
dort in Newman’s Himmelsraum.
Und Lichtkugeln auf den Hohen —
0, Wie lab’n sie meinen Traum !
Doch mich wehrt der Kflling-Vektor,
der ergrimmt lichtfihnlich Wird;
Schwarze Locher scheinen echter,
Singularitéit verwirrt.

Ein’ MutmaBung fiihl’ ich schwanken,
aber Formalismus fehlt . . .
Frisch hinein und Ohne Wanken !
Ihre Segel sind beseelt.
Du muBt glauben, du muBt wagen,
denn die Gotter leih’n kein Pfand.
Nur Begeisterung kann tragen
dich ins schéne Wahrheitsland.

(Moscow, July 11, 1980)



A Theoretical Physicist’s Schiller-Dream

0, out of gravity’s deepest grounds
which cold thought keenly presses down
could I but the effects discover —
with what joy would my soul resound !
Forever young, forever new
reflected in the mirror’s view.
0, if only wings were mine,
to the source I’d fly in a twinkle of time.
Harmonies do I hear ringing
sweetly melodies of theories singing;
and News Functions early and bright
bring new congruences to my sight.
There Wink between equations’ masses
exact solutions — a subtle glow passes.
Theoreticians try hard as they should
they understand so Well and good.

0 it must be quite angelic
there in Newman’s heavenly space!
A ball of brightness from on high
nourishes fully my dreaming place.
But now the Killing vector fierce
turned light-like—angrily nears;
Aweful and real the black holes are —
singularity confuses so far.

Assumptions wander through my mind —
but no formalism of that kind I
Dare without a drop of doubt
let fly its sail, 0 soul, about.
You must have faith and you must dare,
else will the Gods refuse your pawns.
Courage, enthusiasm will carry you there
Sweet Land of Truth — to you be borne.

(Moscow, July 11, 1980)
(translated by Alice Honig
and Anita Ehlers)


