

Occupation numbers and nuclear transition matrix elements of neutrinoless $\beta\beta$ decay within right-handed current mechanism

N. Das¹, Deepti Yadav¹, Yash Kaur Singh², R. Chandra^{2,*}, P. K. Rath¹ and P. K. Raina³

¹ Department of Physics, University of Lucknow, Lucknow, 226007, INDIA

² Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow - 226025, INDIA

³ Department of Physics, IIT Ropar, Nangal Road, Rupnagar, Punjab – 140001, INDIA

* email: ramesh.luphy@gmail.com

Introduction

Besides the standard mass mechanism, the neutrinoless double beta ($0\nu\beta\beta$) decay is also possible with the coexistence of right-handed $V+A$ and left-handed $V-A$ currents. Specifically, the light and heavy Majorana neutrino exchange involving left and right handed currents within the left-right symmetric model (LRSM) can provide sharp limits on effective neutrino mass as well as effective coupling parameters of right-handed currents. The limits on these parameters are extracted from the observed experimental half-life limits of $0\nu\beta\beta$ decay by calculating the appropriate nuclear transition matrix elements (NTMEs). The extraction of accurate limits on these parameters depends on the reliability of NTMEs which is quite a challenging task due to non observation of $0\nu\beta\beta$ decay. The reliability of wave functions used to calculate NTMEs of $0\nu\beta\beta$ decay is tested by reproducing the experimentally extracted NTMEs $M_{2\nu}$ of $2\nu\beta\beta$ decay and other observed nuclear spectroscopic properties. Over the past years, the experimental sub-shell occupation numbers of ^{100}Mo , ^{100}Ru , $^{128,130}\text{Te}$ and ^{130}Xe nuclei have already been made available [1,2]. The reproduction of occupation numbers in addition to other available spectroscopic properties can play a crucial role in improving the reliability of model wave functions used in the calculation of NTMEs.

In the present work, we study the electron emitting $0\nu\beta\beta$ decay mode of $^{94,96}\text{Zr}$, ^{100}Mo , ^{110}Pd , $^{128,130}\text{Te}$ and ^{150}Nd isotopes within mechanisms involving light Majorana neutrino mass and right-handed currents. The wave functions to calculate NTMEs are generated within projected Hartree-Fock-Bogoliubov

(PHFB) model by using single particle energies (SPEs) derived from Woods-Saxon potential and four different parametrizations of pairing plus multipolar effective two-body interaction adjusted to reproduce the available experimental sub-shell occupation numbers [3].

Formalism and Results

The inverse half-life of the $0\nu\beta\beta$ decay for $0^+\rightarrow 0^+$ transition is given by

$$[T_{1/2}^{0\nu}]^{-1} = \left(\frac{\langle m_\nu \rangle}{m_e} \right)^2 C_{mm} + \left(\frac{\langle m_\nu \rangle}{m_e} \right) \langle \lambda \rangle C_{m\lambda} + \left(\frac{\langle m_\nu \rangle}{m_e} \right) \langle \eta \rangle C_{m\eta} + \langle \lambda \rangle^2 C_{\lambda\lambda} + \langle \eta \rangle^2 C_{\eta\eta} + \langle \lambda \rangle \langle \eta \rangle C_{\lambda\eta} \quad (1)$$

where the nuclear structure factors C_{xy} are combinations of appropriate NTMEs $M^{(K)}$ and phase space factors. The $\langle m_\nu \rangle$, $\langle \lambda \rangle$ and $\langle \eta \rangle$ are the effective light Majorana neutrino mass, the effective weak coupling of right-handed leptonic current with right-handed hadronic current and the effective weak coupling of right-handed leptonic current with left-handed hadronic current, respectively.

The Hamiltonian of the pairing plus multipolar effective two-body interaction used in the present work is given as

$$H = H_{s.p.} + V(P) + V(QQ) + V(HH) \quad (2)$$

The NTMEs $M^{(K)}$ of $0\nu\beta\beta$ decay have been calculated with four parametrizations of pairing plus multipolar effective two-body interaction and three parametrizations of short range correlations (SRC). The details about these parametrizations and method to fix them have been given in ref. [3] and references there in.

The SPEs and strengths of pairing and multipolar interactions are adjusted to reproduce the experimentally available sub-shell occupation numbers [1,2] and excitation energies E_{2^+} of 2^+ states of ^{100}Mo , ^{100}Ru , $^{128,130}\text{Te}$ and ^{130}Xe isotopes. In the rest of nuclei, the SPEs are scaled accordingly to reproduce the excitation energies E_{2^+} of 2^+ states. Employing four sets of HFB intrinsic wave functions, the deformation parameters β_2 of the nuclei under consideration are calculated and presented in Table 1.

Table 1: Theoretically calculated β_2 values along with their experimental values.

Nuclei	e_{eff}	Theory	Exp. [4]
^{94}Zr	0.5	0.0996 ± 0.0316	0.090 ± 0.010
^{94}Mo	0.6	0.1600 ± 0.0010	0.1509 ± 0.0015
^{96}Zr	0.5	0.0840 ± 0.0020	0.080 ± 0.017
^{96}Mo	0.4	0.1749 ± 0.0019	0.1720 ± 0.0016
^{100}Mo	0.6	0.2452 ± 0.0005	0.2309 ± 0.0022
^{100}Ru	0.4	0.2206 ± 0.0027	0.2148 ± 0.0011
^{110}Pd	0.5	0.2453 ± 0.0092	0.257 ± 0.006
^{110}Cd	0.5	0.1848 ± 0.0065	0.1770 ± 0.0039
^{128}Te	0.6	0.1389 ± 0.0011	0.1363 ± 0.0011
^{128}Xe	0.5	0.1838 ± 0.0022	0.1836 ± 0.0049
^{130}Te	0.5	0.1106 ± 0.0065	0.1184 ± 0.0014
^{130}Xe	0.5	0.1686 ± 0.0061	0.169 ± 0.007
^{150}Nd	0.5	0.2811 ± 0.0009	0.2853 ± 0.0021
^{150}Sm	0.4	0.2240 ± 0.0036	0.1931 ± 0.0021

The reliability of wave functions has been further tested by calculating the average NTMEs $M_{2\nu}$ (Table 2) for the $0^+ \rightarrow 0^+$ transition of $2\nu\beta^-\beta^-$ decay and comparing them with the available experimental data [6].

Table 2: Theoretically calculated average NTMEs $M_{2\nu}$ along with experimental values [5].

Nuclei	$M_{2\nu}$ (Theo.)	$M_{2\nu}$ (Exp.)
^{94}Zr	-	0.091 ± 0.019
^{96}Zr	0.080 ± 0.004	0.068 ± 0.002
^{100}Mo	0.185 ± 0.005	0.159 ± 0.006
^{110}Pd	-	0.138 ± 0.019
^{128}Te	0.043 ± 0.003	0.052 ± 0.008
^{130}Te	0.0293 ± 0.0009	0.096 ± 0.007
^{150}Nd	0.055 ± 0.003	0.047 ± 0.004

Subsequently, nuclear structure factors C_{xy} are calculated. It is noticed that NTMEs $M^{(K)}$ calculated with wave functions having adjusted experimental occupation numbers are in general

reduced in comparison to those calculated without adjustment of occupation numbers. Using the average nuclear structure factors, on-axis limits on $\langle m_\nu \rangle$, $\langle \lambda \rangle$ and $\langle \eta \rangle$ are extracted from the observed half-life limits of $0\nu\beta^-\beta^-$ decay of $^{94,96}\text{Zr}$, ^{100}Mo , ^{110}Pd , $^{128,130}\text{Te}$ and ^{150}Nd isotopes and presented in Table 3.

Table 3: Extracted limits on $\langle m_\nu \rangle$, $\langle \lambda \rangle$ and $\langle \eta \rangle$ for $0\nu\beta^-\beta^-$ decay.

Nuclei	$\langle m_\nu \rangle$	$\langle \lambda \rangle$	$\langle \eta \rangle$
^{94}Zr	8.55×10^2	2.17×10^{-3}	1.11×10^{-5}
^{96}Zr	9.60	8.19×10^{-6}	1.28×10^{-7}
^{100}Mo	0.45	4.21×10^{-7}	6.41×10^{-9}
^{110}Pd	1.29×10^3	1.84×10^{-3}	1.78×10^{-5}
^{128}Te	3.95	1.28×10^{-5}	4.85×10^{-8}
^{130}Te	0.17	2.00×10^{-7}	2.53×10^{-9}
^{150}Nd	3.73	3.22×10^{-6}	6.04×10^{-8}

It is observed from Table 3 that the most stringent limits are obtained for ^{130}Te nuclei.

Conclusions

To summarize, we have calculated the sub-shell occupation numbers, yrast spectra, deformation parameter and $M_{2\nu}$ of potential nuclei for $0\nu\beta^-\beta^-$ decay within PHFB model. After getting an overall agreement between the calculated and observed properties, NTMEs $M^{(K)}$ of $0\nu\beta^-\beta^-$ decay within mechanisms involving light Majorana neutrino mass and right-handed currents have been calculated and limits on $\langle m_\nu \rangle$, $\langle \lambda \rangle$ and $\langle \eta \rangle$ are extracted. It is observed that NTMEs $M^{(K)}$ calculated with wave functions having adjusted experimental occupation numbers are in general reduced.

References

- [1] S. J. Freeman et al., Phys. Rev. C **96**, 054325 (2017).
- [2] B. P. Kay et al., Phys. Rev. C **57**, 011302 (R)(2013).
- [3] V. K. Nautiyal, R. Gautam, N. Das, R. Chandra, P. K. Raina and P. K. Rath, Eur. Phys. J. A **58**, 28 (2022).
- [4] S. Raman, C. W. Nestor Jr., and P. Tikkanen, At. Data Nucl. Data Tables **78**, 1 (2001).
- [5] A. S. Barabash, Universe **6**, 159 (2020).