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Abstract

We review our recent studies on a number of BFKL related projects in QCD and N = 4 SYM which were done with
the use of advanced Monte Carlo techniques. We discuss briefly the new setup of our code as a Monte Carlo tool that
produces theoretical predictions ready to be directly compared against experimental data in order to perform a number
of important phenomenological studies at the LHC.
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1. Introduction

The term “small-x physics” in the title refers to
the study of scattering amplitudes when the colliding
center-of-mass energy squared, s, is very large. Loga-
rithms in energy are then enhanced and need to be re-
summed to all orders in the strong coupling αs. This
is done by solving the Balitsky-Fadin-Kuraev-Lipatov
equation at leading (LO) [1] and next-to-leading loga-
rithmic (NLO) accuracy [2].

Indeed, the BFKL resummation framework has been
used to study the properties of scattering amplitudes
in Quantum Chromodynamics (QCD) and N = 4
supersymmetric Yang-Mills (SYM) theory in certain
kinematic regions, namely, in multi-Regge (MRK) and
quasi-multi-Regge kinematics. Physical observables
such as hadron structure functions at small values of
Bjorken x in deep inelastic scattering or inclusive di-
jet production with a significant rapidity separation at
the Large Hadron Collider (LHC) are characteristic
cases [3, 4, 5, 6, 3, 7, 8, 9] where the BFKL approach is
suitable.

Apart from a rich phenomenology list, the BFKL
framework presents an interesting connection to more
formal theoretical works. Actually, it was in a gen-

eralized leading logarithmic approximation, where the
Bartels-Kwiecinski-Praszalowicz (BKP) equation was
proposed [10, 11] and found to have a hidden integra-
bility [12, 13, 14, 15, 16, 17, 18, 19, 20]. Moreover,
corrections to the Bern-Dixon-Smirnov (BDS) iterative
ansatz [21] were found in MRK and within the BFKL
formalism in [22, 23]. These corrections have been un-
derstood as part of the finite remainder to the amplitude
which corresponds to the anomalous contribution of a
conformal Ward identity [24, 25, 26, 27, 28, 29, 30].

In the next Section, we present the iterative solution
of the BFKL equation and some of our previous results.
We spare all technical details for which we refer the
reader to the original publications [31, 32]. One should
mention that a key idea to work within the BFKL frame-
work is the kT factorization scheme [33, 34, 35].

2. Discussion

The BFKL equation is an elegant mathematical con-
struction, it is not easy to solve though. At present, ana-
lytic solutions are known for the LO kernel in QCD and
the NLO kernel in N = 4 SYM.

Nevertheless, it is possible to solve the BFKL equa-
tion iteratively, in a numerical fashion, by applying
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Monte Carlo integration techniques. The physics en-
coded in the BFKL equation can be “visualized” in a
graphic way by using reggeized gluons, ordinary glu-
ons and effective vertices that involve the former two
(Fig. 1). This is a picture that also makes clearer the
numerical iterative solution.
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Figure 1: Two projectiles collide and produce two hard jets (Q2 is a
hard scale so that we can use perturbation theory) and n gluons flying
in the s-channel: gluon-1, gluon-2,...,gluon-n, with corresponding ra-
pidities y1, y2,...,yn. In the t-channel, a reggeized gluon is exchanged.
The cyan-blue blobs are the so-called Lipatov effective vertices.

What Fig. 1 implies is that to calculate the process
depicted, one has to take into account all possible dia-
grams which differ in the number of the t-channel emit-
ted gluons. In other words, one must solve the BFKL
equation and obtain the gluon Green’s function (GGF)
H(q1, q2; q; Y). q1 and q2 in Fig. 1 are the momenta of
the reggeized gluons above gluon-1 and below gluon-
n respectively, whereas q is the momentum transfer. Y
is the rapidity span from gluon-1 to gluon-n. In princi-
ple, one needs to consider an infinite sum of terms: the
1st one with no gluon emission (n = 0), the 2nd one
with one gluon emission (n = 1), the 3rd one with two
gluon emission, etc. Every term is an integral over the
emitted gluon momenta and their individual rapidities.
Depending on Y, one can truncate the sum to a finite N
(max n=N) in order to have a “numerically acceptable”
result.

The qualitative description above can be cast in for-
mal mathematical language thus yielding the iterative
BFKL equation:
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We have chosen to present here the (LO) BFKL equa-
tion in a form that is valid for any color representation,
setting cR = 1 gives the usual color singlet case. A mass
parameter λ is also used to regularize the phase space in-
tegral of the “real emission” sector. The dependence on
λ cancels out.

As indicated previously, an interesting question is to
study the convergence of the sum defining the function
H in Eq. (1). For a fixed value of Y and the coupling
ᾱs, we expect that only a finite number of terms in the
sum is needed to reach a good accuracy for the gluon
Green’s function. This is shown in Fig. 2 (forward case)
and Fig. 3 (non-zero momentum transfer).

Figure 2: Distribution in the contributions to the LO BFKL gluon
Green function with a fixed number of iterations of the kernel, plotted
for different values of the center-of-mass energy, a fixed ᾱs = 0.2 and
momentum transfer q = 0.

In Figs. 2 and 3, one can see the contribution to the
gluon Greens function by each term of the sum in Eq. 1.
It is evident that the larger the Y, the more emissions
need to be considered. Roughly speaking, the area be-
low the red (Y=2), green (Y=4) and blue (Y=6) lines
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Figure 3: Distribution in the contributions to the LO BFKL gluon
Green function with a fixed number of iterations of the kernel, plotted
for different values of the center-of-mass energy, a fixed ᾱs = 0.2 and
momentum transfer q = 5.

gives the value of the gluon Greens function. In Fig.
2, for zero momentum transfer, q=0, and in Fig. 3, for
momentum transfer q=5 GeV.

At present, our C++ Monte Carlo implementa-
tion [36] covers the LO and NLO kernels in N=4 SYM
and in QCD, for zero and non-zero momentum transfer
in both the color singlet and color octet representations.
Up till now, we have mainly used our code to perform
studies on the properties of the gluon Green’s function.
This first stage, allowed us to experiment with different
code optimization techniques. We are now ready to pro-
ceed to a number of phenomenological studies for the
LHC. We expect to release our first results in the near
future.
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