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Abstract

Low scale supersymmetry (SUSY) is a compelling solution to the electroweak hierarchy prob-

lem. However, increasingly strong limits on the masses of superpartners, first from LEP and

now the LHC, mean that the simplest models require significant fine tuning. This thesis is

dedicated to the study of a possible alternative low energy superpartner spectrum, natural

SUSY, in which only superparticles directly involved in stabilising the electroweak scale are

light, alleviating collider limits and potentially reducing tuning.

After reviewing how low scale SUSY is motivated by the hierarchy problem, we build a

model of SUSY breaking and mediation that successfully generates a natural SUSY spectrum.

This also suppresses the first two generation fermion Yukawas, and leads to small parameters

in the hidden sector, which are required for successful SUSY breaking. A challenge in models

of natural SUSY is raising the physical Higgs mass to 125 GeV, and we study the possibility

that this could occur through the addition of a singlet to the theory. If stops are very

light, the coupling of the singlet to the Higgs needs to be so large that it becomes non-

perturbative before the scale of grand unification, raising the concern that precision gauge

coupling unification may be upset. However, we find that this is not necessarily the case.

Rather it is possible this could correct for the present ∼ 3% discrepancy in the two-loop

minimal supersymmetric model’s unification prediction.

We then turn to the fine tuning in models of natural SUSY, emphasising that this should

be measured with respect to the theory’s ultraviolet (UV) parameters. We show that the

first two generation sfermions can be made relatively heavy, beyond LHC reach, without

introducing tuning. However, the gluino generates a significant tuning through the stops

during the renormalisation group flow. As a result, there is no fine tuning benefit in reducing

the stop masses below (50− 75) % of the weak scale gluino mass, and we obtain strong lower

bounds on the tuning of theories compatible with collider limits. We also study theories with

Dirac gauginos, which have relatively low fine tuning even if the scale of mediation is high.

Finally, we consider the effect of relaxing a common assumption and allowing the hidden

SUSY breaking sector to modify the running of the visible sector soft masses. This may

plausibly occur in realistic models and could dramatically reduce the fine tuning of SUSY

theories.
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Chapter 1: Introduction and Motivation

1.1 The Standard Model, Electroweak Symmetry Breaking and the Hier-

archy Problem

The Standard Model (SM) of particle physics is a spectacularly successful theory of the

varieties and interactions of subatomic particles that is perfectly consistent with almost

every laboratory and collider experiment carried out to date, with the exception of neutrino

oscillations [1].1 The electromagnetic, weak, and strong nuclear forces arise from the gauge

bosons of the gauge symmetry group of the theory, SU(3)C × SU(2)L × U(1)Y, under which

the matter content is charged. Spontaneous symmetry breaking via a non-zero Higgs vacuum

expectation value (VEV) breaks SU(2)L × U(1)Y → U (1)EM giving masses to three of the

gauge bosons in the electroweak (EW) sector. This also generates Dirac masses for the (chiral)

fermion matter apart from neutrinos. At low energy scales the strong nuclear interaction

runs into strong coupling, and quarks and gluons confine leading to hadrons which gain their

dominant masses from strong coupling effects.2

However, despite all of its triumphs, the SM has a number of deficiencies. It cannot be a

valid description of Nature at energies above the Planck mass (MPl) [4]. It also has a large

number of free parameters, including a complicated array of fermion masses and mixings

that is suggestive of some new structure [5], and there must exist mechanisms to generate

the required baryon asymmetry in the Universe and neutrino masses [6]. Further, the fermion

matter suggestively falls into SU(5) multiplets, which together with the apparent success of

gauge unification in minimal supersymmetric extensions suggests the gauge groups may unify

at some high scale [7]. Cosmological inflation is a very attractive solution to the horizon,

flatness and monopole problems of the Standard Cosmology and also requires the addition of

new states and scales [8, 9]. Finally, the SM gives no explanation for the extreme smallness

of the CP violating coupling in the QCD sector, θ . 10−9 [10].

The classic example of how these shortcomings necessitate an extended theory with new

high scales arises from gravity. Gravity is perturbatively non-renormalisible, a perturbative

expansion of the Einstein-Hilbert interaction includes arbitrarily high powers of 1
MPl

. While

1The SM does requires extension to accommodate astrophysical and cosmological observations, most no-
tably dark matter and possibly dark energy too [2]. However, the state that constitutes dark matter does not
necessarily require any significant (or indeed any non-gravitational) couplings to the visible sector, and the
source and dynamics of dark energy is still very poorly understood.

2Although pions only receive masses from QCD effects because of explicit chiral symmetry breaking from
non-zero explicit quark masses and the U (1)EM charges [3].
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such an expansion is predictive at low energies where all higher dimensional operators are

unimportant, at higher energies, E & MPl, the theory has infinitely many important pa-

rameters, and hence has no predictive power [4]. Consequently, the gravitational sector must

either run into some as yet unknown strongly coupled fixed point (a proposed scenario known

as asymptotic safety) [11], or the theory is UV completed before MPl is reached. Given a

dearth of evidence for the existence of a strongly coupled fixed point, the standard viewpoint

is to regard the Einstein-Hilbert action as only a low energy effective field theory arising out

of UV dynamics.3

In light of the required additions to it, the modern perspective is to view the SM as

an effective field theory, valid up to some cutoff [14]. At the cutoff either new degrees of

freedom appear in addition to the SM states, or the SM states themselves may turn out

to be composite and the underlying degrees of freedom are revealed. In the later case, the

underlying degrees of freedom may be standard quantum field theory (QFT) states, as in

models of technicolour or extended objects in string theory models. In reality it is likely that

there are multiple such cutoffs, for example it may be that new states appear not far from

the weak scale, followed by additional states at the scale of a grand unified theory (GUT),

and a transition into a string theory at the string scale.

Since the SM is now simply an effective field theory, in addition to the usual renormalisible

operators, the low energy effective theory is expected to contain non-renormalisible operators

suppressed, parametrically, by powers of the cutoffs. For example, integrating out heavy right

handed neutrinos (or other appropriate matter content) leads to neutrino masses through the

operator [15]

L ⊃ y2

Λ LLHH , (1.1)

where y is a coupling constant, L is the left handed lepton doublet, H is the Higgs scalar

doublet, and Λ is the mass scale of the right handed neutrinos. For models where there

is a cutoff near the weak scale, there are very strong constraints on the form of the higher

dimensional operators, and consequently on the underlying physics, from precision collider

observations. For example, flavour constraints require that, if new states and interactions

are introduced near the EW scale, the global flavour symmetries of the SM must remain

only broken by the SM Yukawa couplings [16].4 Additionally, precision EW constraints
3It appears challenging to find a UV completion that is a normal quantum field theory [12], however it is

believed that a string theory can provide a suitable completion [13].
4In fact, even this assumption is not sufficiently stringent if the new physics appears at sufficiently low
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are very hard to accommodate in models where EW symmetry breaking arises from strong

dynamics [17,18].

However, once the SM is viewed as an effective field theory there is a ‘hierarchy problem’

of why the EW scale is so small compared to the other, higher, scales in the theory [19]. As

we will discuss shortly, in the SM the EW VEV is set by, and parametrically the same scale

as, the Higgs mass squared parameter. So, more precisely, the hierarchy problem boils down

to the question of why is the renormalised Higgs soft mass squared parameter, evaluated at

the scale µ ∼ TeV, so much smaller than the high scales in the theory?

This is a problem because the running Higgs mass squared parameter m2
h (µ) receives

contributions from any extension of the SM that is not very weakly coupled to the Higgs

sector (in a way that is not invariant under a shift of the Higgs field). For example, consider

the addition of a new heavy scalar to the theory, which couples to the Higgs through a term

in the Lagrangian at the UV cutoff of the theory

L ⊃ −m2
φ |φ|

2 −m2
h |h|

2 − λ |φ|2 |h|2 , (1.2)

where φ is the new scalar, and h is the physical Higgs (no symmetry can forbid such a

coupling assuming the mass terms are present). As a result of running, a mass shift for the

Higgs is generated at one loop

δm2
h =

λm2
φ

16π2 log
(

Λ2
UV
m2
φ

)
, (1.3)

where ΛUV is the UV cutoff of the theory [20]. There is also a contribution that is not

logarithmically enhanced arising as a threshold correction when the heavy scalar is integrated

out of the theory. Contributions of this form arise in GUT theories, giving an explicit

realisation of the hierarchy problem [19].

Similarly, some realisations of axion models, which provide a solution to the strong CP

problem, include an additional Dirac fermion that is vector-like under the SM gauge groups

and typically has a mass ∼ 1011 GeV [21, 22]. This gives a three-loop contribution to the

Higgs mass through gauge interactions that is numerically large (δm2
h ∼

(
107 GeV

)2 if run-

ning begins at the Planck Scale). High scale UV completions where SM states are composite

(including string theories) also give large contributions, modified by a form factor that de-

pends on the composite dynamics [20].

scale.
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The Higgs part of the SM effective Lagrangian is

L ⊃ −m2
h |h|

2 − λ |h|4 , (1.4)

where all parameters are evaluated at the weak scale. Consequently the Higgs obtains a

VEV, 〈h〉 =
√
−m2

h
2λ and expanding fluctuations around this vacuum the physical Higgs mass

is mh =
√
−m2

h. For correct EW symmetry breaking the VEV must be 246 GeV, and the

physical Higgs mass is observed to be ∼ 125 GeV. The Higgs mass squared parameter at a

low scale, which appears in Eq. (1.4), can be written as

m2
h (ΛEW) = m2

h (ΛUV) + δm2
h , (1.5)

where δm2
h contains all of the contributions from running. Unless the SM is completed to a

theory without a hierarchy problem close to the EW scale, the large contributions to δm2
h

from the high scales in the theory mean that a very high degree of cancellation between the

two terms in Eq. (1.5) is required to obtain a low EW scale. For this to occur the parameters

that contribute to δm2
h (ΛEW) (and m2

h (ΛUV) itself) must have precisely related values at

the UV boundary of the renormalisation group (RG) flow, referred to as a tuning of these

parameters.

The degree of tuning ∆i with respect to a parameter p can be quantified as the fractional

change in the EW scale (parametrised by the mass of the Z boson mZ) in response to a

fractional change in the parameter at the high scale [23,24]

∆p = p (ΛUV)
m2
Z

∂m2
Z

∂p (ΛUV) = ∂ logm2
Z

∂ log p (ΛUV) . (1.6)

For example, in the SM the tuning with respect to the UV value of the Higgs mass squared

is

∆m2
h
∼ 1
λ

m2
h (ΛUV)
m2
Z

∼ 1
λ

δm2
h

m2
Z

. (1.7)

Taking δm2 ∼
(
1018 GeV

)2, as a reasonable estimate of the correction from new physics at

the Planck Scale, leads to a tuning of ∆m2
h
∼ 1032.

Use of the measure Eq. (1.6) implicitly assumes that the parameter is being varied around

a value which is not specially preferred in the underlying UV theory [25] (that is, the prior

for the parameter is not too far from flat under O (1) changes in its value). In this case 1
∆i

gives an estimate of the probability that the required cancellation takes place for a randomly

chosen value of the parameter p.
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In extensions of the SM with more complex Higgs sectors, such as supersymmetry, even

though the details of the Higgs sector are more involved the EW scale dependence on the

Higgs mass squared parameter(s) remains strong

∂m2
Z

∂m2
h (mZ)

∼ 1 , (1.8)

and consequently large contributions to the mass squared parameter again lead to tuning.

It should be noted that fine tuning is essentially an aesthetic problem. The contributions

to δm2 arise from a variety of sources, all disconnected from each other, at vastly different

energy scales and, naively, with nothing to do with the physics that sets the UV parameters.

Consequently, there is no reason to expect any cancellation, and certainly not to the degree

that appears to be present in the SM. While, clearly, theories with greater fine tuning are less

appealing, there is no sharp upper limit on the tuning that may be regarded as acceptable,

and even the measure itself is only defined up to O (1) factors.5

Importantly, the reason the Higgs mass squared operator receives large corrections is that

the SM has no additional symmetry in the limit that m2
h → 0.6 As a result, the corrections

do not have to be proportional to the UV value of the Higgs mass squared. This is in

contrast to what would occur for a new Dirac fermion, with mass term mDψψ. In the limit

mD → 0 there is an additional chiral symmetry acting to rotate the two Weyl components

of ψ independently. As a result, if mD was zero, the symmetry would result in no mass

term being generated during running. Further, if the mass is non-zero, the corrections to it

necessarily take the form δmD ∼ mD log
(

ΛUV
mD

)
. Provided mD is small at the assumed UV

cutoff of the theory it therefore remains small during a finite period of running. A small

parameter that leads to an enhanced symmetry in the limit that it vanishes is known as

technically natural [26].

Apart from the Higgs mass squared (and the cosmological constant [27], which we do

not consider), all parameters in the SM are only logarithmically sensitive to higher scales in

the theory. As a result the corrections to these are comparatively small, and there is only a

hierarchy problem for the Higgs mass squared parameter.

Solutions to the hierarchy problem extend the SM so that no significant cancellations are

required to obtain a light EW scale (the EW scale is then said to be stabilised). Once this
5There is additional uncertainty surrounding the correct choice of the underlying UV parameters as we

discuss in Section 2.10.
6In the presence of high scales there is no conformal symmetry, and moreover conformal symmetry is

broken by loop effects, for example through the running of the coupling constants.
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has been achieved, there remains a second question of why the EW scale is exponentially

separated from high scales at all (even though no tuning is required to keep it there dur-

ing the RG flow). However, it turns out that solutions to the tuning problem can usually

accommodate solutions to this fairly straightforwardly.

There are three proposed solutions to the hierarchy problem that are plausible; weak

scale supersymmetry, some form of strong dynamics, and theories in which gravity becomes

strongly coupled close to the weak scale. In this thesis we focus on supersymmetry, which

is a perturbative solution to the hierarchy problem, and delay a detailed description of this

until the next chapter. Here we simply note that the minimal versions of supersymmetry

that solve the hierarchy problem predict new states that would have already been observed

by particle colliders (first LEP and now the LHC), motivating more complex model building

and assessment of the fine tuning of theories.

The main alternative solution is some form of strong dynamics near the weak scale. In the

original form of such models, technicolour, an extra gauge group runs into strong coupling

and new fermions F charged under this gauge group are postulated to form a condensate〈
FF

〉
6= 0, generating masses for the W and Z bosons [28–30]. These models resemble QCD

in the SM, which itself breaks EW symmetry, albeit at a scale that is much too low for the

observed phenomenology. SM fermion masses can arise through additional gauge dynamics

however this requires more model building and it is complicated to obtain sufficiently large

masses, especially for the third generation fermions [31].

In technicolour models there is no fundamental scalar Higgs, and consequently, provided

the separation between the compositeness scale and the EW scale is natural, there is no

hierarchy problem. The scale of strong coupling is exponentially separated from high scales

in the theory by ΛTC ∼ e
− 1
b0α(ΛUV) ΛUV where α (ΛUV) is the gauge coupling at a high scale

and the beta function coefficient is defined as ∂α
∂ logµ = −b0α2. This explains the small size of

the EW scale relative to MPl, as well as stabilising it against radiative corrections. However,

despite being theoretically well motivated, the simplest examples of such theories are strongly

disfavoured since they give much too large contributions to EW precision observables that are

observed to agree to high accuracy with the SM predictions [32]. Further, additional assump-

tions and model building are required to avoid excessively large rates of highly constrained

processes such as flavour changing neutral currents [33]. Like supersymmetry, LHC limits

on new states forces the reintroduction of some tuning in the simplest models, and (unlike
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supersymmetry) the observation of a boson with couplings close to those of a light SM Higgs

is very challenging to accommodate in technicolour models (attempts to accommodate such

a Higgs include, for example, [34]). While it may be possible to build more complex models

that simultaneously evade all these problems, such model building is complicated since it

involves strong dynamics that is very hard to calculate.

A similar class of theories, that are especially interesting due to the observation of a light

Higgs, are composite Higgs models [35–37]. In these, a Higgs like state arises as a pseudo-

Goldstone boson from some strong dynamics and appears in the effective field theory. SM

fermions are typically assumed to be partially composite allowing for their masses to be

generated. Similarly to technicolour, it is challenging to build explicit UV models with

calculable dynamics, and the absence of any observed new states at the LHC also provides

strong constraints and may necessitate the reintroduction of some tuning. Constraints from

flavour observables are typically weaker than in technicolour models but not entirely safe

[38,39].

Another, dramatic, possibility is that gravitational interactions become strong near the

weak scale, due to the presence of an extra dimension with size not far from 1
mZ

. As a result,

the cutoff of the SM is lowered to close to the weak scale and the corrections to the Higgs

mass parameter are relatively small. In the original versions of these models the fundamental

Planck scale is low, and gravity only appears weak at large distances due to gravitational flux

‘leaking’ out into the extra dimensions while the SM fields are confined to a brane [40]. Later

versions employ a warped extra dimension that scales the effective Higgs VEV to close to

the EW scale [41].7 Again, these models are under pressure due to the lack of observation of

the new states close to the weak scale, and most realisations now include significant tuning,

and flavour observations are hard to accommodate.

A postulated alternative resolution to the hierarchy problem is that there are no new

scales with significant couplings to the SM that are not near the weak scale [43, 44]. If this

were the case there would be no large corrections to the Higgs mass squared parameter and

consequently no tuning. This not only requires all the shortcomings of the SM to be resolved

close to the weak scale (or in a way that is only very weakly coupled to the Higgs) but also

a smooth transition into quantum gravity without it counting as a high scale. Additionally,

in the absence of new dynamics the U(1) hypercharge runs into a Landau pole. The pole is
7It is thought that the later class of models are actually equivalent to some strongly coupled models through

the AdS/CFT duality [42].
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far above the Planck scale and therefore not usually regarded as significant, however it does

mean that, even if quantum gravity resolves itself, the SM cannot be a UV complete theory

with no new scales. It is straightforward to show that any field theory effect that changes

the running sufficiently to avoid this counts as a new scale in the sense of the hierarchy

problem [45]. Consequently, this proposal still requires new matter charged under the SM

gauge groups close to the weak scale (or the transition to quantum gravity to effect the gauge

couplings in a very surprising way).

It is also possible that there is an anthropic solution to the hierarchy problem, if separate

universes scan over different UV parameters, and only those with a light EW scale are

suitable for developing life. However, there is no compelling reason to believe a light EW

scale is required for life [46], and there is no known mechanism by which an enormous

number of universes with differing parameters can be generated.8 A final problem with an

anthropic solution is that, while there are reasons to believe a landscape may prefer a high

supersymmetry breaking scale so that weak scale supersymmetry would not appear [48, 49],

there is no convincing reason that technicolour would be disfavoured. All current prejudice

against a technicolour solution to the hierarchy problem is based on observations. A priori

there is no reason to think the ‘landscape’ of theories should prefer a very highly tuned Higgs

to the simple addition of an extra asymptotically free gauge group.

In the remainder of this thesis we study the viability of low scale supersymmetry as a

solution to the hierarchy problem, and the extent to which it is possible to realise models

with low fine tuning, in light of increasingly stringent limits from the LHC.

8While string theory certainly allows for the parameters of the theory to be altered by differing compactifi-
cations of the extra dimensions, there is as yet no convincing mechanism by which many disconnected regions
with differing compactificatons can actually, dynamically, occur (although there are proposals [47]).
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Chapter 2: Supersymmetry

Supersymmetry is an extension of space-time symmetry that relates fermions and bosons,

and consequently to be realised in the real world requires an (approximate) doubling of the

particle content of the SM. To be compatible with the non-observation of superpartners it

must be a broken symmetry, and if (softly) broken in the visible sector close to the weak

scale can provide a solution to the hierarchy problem [19,50].1 Additionally minimal models

lead to gauge unification [51, 52] and can contain viable dark matter (DM) candidates [53].

It has also been suggested that supersymmetry is a requirement of a consistent quantum

theory of gravity (see for example [54]). While this only necessitates supersymmetry at a

high scale, and certainly does not require it to have any connection to the weak scale or the

hierarchy problem, it is interesting that it is separately motivated. Even if not realised in the

real world, theories with supersymmetry are highly mathematically interesting and lead to

additional calculational power that allows for insights into phenomena such as confinement

that may be relevant to ordinary gauge theories [55]. In this chapter we briefly review the

theory and models relevant to this thesis (many more details, important results, and original

references are given, for example, in [56–58]).

2.1 The Supersymmetry Algebra

The symmetry structure of flat space-time is given by the Poincaré group, which contains

rotations, boosts, and translations. There are ten independent generators with commutation

relations given by

[Pµ, Pν ] = 0,

[Mµν , Pλ] = i (ηνλPµ − ηµλPν) ,

[Mµν ,Mρσ] = −i (ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ) ,

(2.1)

where η is the Minkowski metric (with signature (+−−−)), Mµν = −Mνµ generates Lorentz

transformations, and Pµ generates translations. The Coleman-Mandula theorem [59] severely

constrains possible extensions to the Poincaré symmetry of space-time. Subject to mild

assumptions, it shows that any symmetry group of an S-matrix that contains the Poincaré
1Superficially it may seem highly artificial that so many ordinary particles have been discovered before

any superpartners to already discovered particles have been found, however the particles not yet observed are
exactly those that can gain large soft SUSY breaking masses in the limit where all symmetries of the SM are
unbroken. Therefore this is not a particularly surprising scenario.
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group can be locally decomposed into a direct product of a symmetry group and the Poincaré

group, that is, the symmetries ‘factorise’ into internal and spacetime symmetries without

mixing.2 In the SM, the internal group consists of the gauge symmetries of the theorem.

However, the Coleman-Mandula theorem implicitly assumes commuting charges. Super-

symmetry evades it by introducing anticommuting, spinorial, charges (that is, generators in

the representation
(

1
2 , 0
)

or
(
0, 1

2

)
of the Lorentz group). Since the generators are not Lorentz

scalars, this is a non-trivial extension of space-time symmetry. Shortly afterwards, the Haag-

Lopuszanski-Sohnius theorem showed that spinorial charges are the maximal extension of

the space-time symmetry under a weaker set of assumptions than the Coleman-Mandula

theorem [60].3

For the purposes of this work, we primarily consider N = 1 supersymmetry, which con-

tains one set of supersymmetry generators. Higher N theories are non-chiral in four dimen-

sions and therefore cannot describe the visible sector in models that are purely field theoretic

and contain only four dimensions. However, it is very plausible that they may be important

in models with additional extra dimensions where a chiral low-energy theory can be obtained

by the compactification of additional dimensions [61].

Assuming a generalised Jacobi identity, the supersymmetry algebra is almost entirely

fixed. The N = 1 version has one Weyl conserved charge Qα along with its conjugate Q†α̇,

and is given by Eq. (2.1) supplemented by

[Pµ, Qα] = 0 , [Mµν , Qα] = i (σµν)βαQβ ,{
Qα, Q

†
β̇

}
= 2 (σµ)αβ̇ Pµ , {Qα, Qβ} = 0 ,

(2.2)

where α is a spinor index, σµν = i
4 (σµσν − σνσµ) with σµ the sigma matrices, and we use

two component notation. Mathematically, this is a graded Lie algebra. The commutator

of the SUSY generators with internal symmetry generators vanishes, with exception of the

generator of the R-symmetry that acts as Qα 7→ eiλQα and Q†α̇ 7→ e−iλQ†α̇ and satisfies

[Qα, R] = Qα ,[
Q†α̇, R

]
= −Q†α̇ .

(2.3)

The irreducible representations of the SUSY algebra consist of collections of particles
2A notable exception are conformal theories which have an enlarged symmetry group, and evade the

Coleman-Mandula theorem by not having a well defined S-matrix.
3Supersymmetry remains the maximum possible extension in the case of extended objects that arise in

string theories.
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(multiplets), which are related by the action of the generators Qα, Q†α̇ and consequently have

spins differing by (multiples of) 1
2 . It can be shown that representations contain the same

number of (on shell) bosonic and fermionic degrees of freedom, and since the operator P 2

commutes with Qα all states in the same multiplet have the same mass while supersymmetry

is unbroken (in flat space-time). Although it is possible to construct supersymmetric the-

ories directly by writing down a Lagrangian with suitable matter content and couplings, a

particularly convenient formulation is described in Section 2.2.

We work mostly in the framework of global (also known as rigid) supersymmetry, where

the parameter of the supersymmetry transformation does not depend on the space-time co-

ordinate. The extension to local transformations, supergravity (SUGRA), automatically in-

cludes general relativity. At energy scales much lower than the Planck mass, it may be hoped

that all effects of SUGRA are unimportant and rigid supersymmetry is a good description.

Such an assumption cannot be entirely accurate when studying supersymmetry breaking;

the mass of the gravitino (the spin 3
2 superpartner of the graviton) arises from eating the

massless goldstone fermion that appears when supersymmetry is broken and this is explicitly

a SUGRA effect [57]. Also, in some calculable string theory completions achieving moduli

heavy enough for acceptable cosmology requires significant SUSY breaking in the gravita-

tional sector of the theory, which typically has a large effect on the visible sector [62–64].

However, there may well be large regions of the string landscape where such behaviour is not

typical, and we usually adopt the common approach of assuming this high-scale physics does

not have a significant effect on physics at lower scales.

2.2 Superspace

Superspace is a construction that allows the particles that make up a representation of the

superalgebra to be assembled into a single object, a superfield. In order to combine bosons

and fermions into an object with consistent transformations under the Lorentz group, a new

two component spinor θα and its conjugate θ†α̇ are introduced with components satisfying the

anticommutation relations {θα, θβ} = 0 (consequently, θ2
α = 0 = θ†2

β̇
and the components of

these spinors are Grassmann variables).

A superfield is defined as a function of the space-time coordinates and the variables θ

and θ†. The power series expansion in a Grassmann variable necessarily terminates, and so

11



a generic scalar superfield can be expanded

Φ (x, θ) = φ (x) + θψ (x) + θ†χ† (x) + θθM (x) + θ†θ†N (x) + θσµθ†Vµ (x)

+ θθθ†λ† + θ†θ†θρ (x) + θθθ†θ†D (x) ,

(2.4)

where ψ, χ, λ, ρ are fermions, V is a vector and the other fields are scalars. Superfields with

Lorentz indices can also be constructed, but are not important for our purposes.

There is an explicit representation of the supersymmetry generators as differential oper-

ators on superspace, given by

Qα = −i∂α − iσµαβ̇θ
†β̇∂µ ,

Q†α̇ = i∂†α̇ + θβσµβα̇∂µ .

(2.5)

It is also very useful to define covariant derivatives

Dα = ∂α + iσµ
αβ̇
θ†β̇∂µ ,

D†α̇ = −∂†α̇ − iθβσ
µ
βα̇∂µ ,

(2.6)

which are constructed to anticommute with the SUSY generators

{Dα, Qβ} =
{
Dα, Q

†
β̇

}
=
{
D†α, Q

†
β̇

}
=
{
D†α̇, Qβ

}
= 0 . (2.7)

The action of an infinitesimal SUSY transformation on the general scalar multiplet can be

obtained from Eq. (2.5), and shows Φ is a basis for a (reducible) representation of the SUSY

algebra.4 The transformation of the θ2θ†2 component, D (x), is a total space-time derivative

δD = i
2∂µ

(
ξσµλ† − ρσµξ†

)
, where ξ is the transformation parameter.

A phenomenologically important superfield, the chiral superfield, is obtained by imposing

the restriction D†α̇Φ = 0 (similarly, antichiral superfields are defined by DαΦ = 0). The co-

variant nature of the derivative ensures that the resulting superfield furnishes a representation

of SUSY. The expansion of the chiral superfield is most simply written as

Φ (y, θ) = φ (y) +
√

2θψ (y) + θθF (y) , (2.8)

where yµ = xµ + iθσµθ†, ψ is a chiral Weyl fermion, and φ is a scalar. From this it is

straightforward to obtain an expression for the components of the chiral superfield in
(
x, θ, θ†

)
space. Like D (x) in the general scalar multiplet, the SUSY transformation of the scalar field

F (x) is a total derivative, δF (x) = −
√

2i∂µψ (x)σµξ†. Due to the chain rule, any product
4Non-linear realisations of supersymmetry also exist, but are not important for us.
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or sum of only chiral superfields is also a chiral superfield (likewise anti-chiral superfields,

but not combinations of chiral and anti-chiral superfields).

The second important multiplet is obtained by imposing the condition V
(
x, θ, θ†

)
=

V †
(
x, θ, θ†

)
, on the (now renamed) general scalar multiplet, which is again a covariant

constraint. The resulting multiplet contains a vector field and allows for supersymmetric

gauge theories to be constructed. After fixing part of the supergauge symmetry (to be

defined below) leaving ordinary gauge transformations unfixed, the vector supermultiplet

can be expanded as

V
(
x, θ, θ†

)
= θσµθ†Aµ (x) + θ2θ†λ† (x) + θ†2θλ (x) + 1

2θ
2θ†2D (x) , (2.9)

which contains a vector field Aµ, a gaugino λ, and an auxiliary field D. This is known as

the Wess-Zumino gauge [65]. In this gauge, the definition of the vector supermultiplet’s

infinitesimal transformation under the supersymmetric version of a gauge transformations

takes the simple form

δV = i
(
Λ− Λ†

)
− i

2
[(

Λ + Λ†
)
, V
]
, (2.10)

where, in the non-abelian case, the objects V and Λ are implicitly matrices, V = T aijVa and

Λ = T aijΛa with T a the generator of a representation of the gauge group’s Lie algebra, and

Λa an arbitrary chiral superfield. It can be shown that the vector component transforms

appropriately to be a gauge field, and λα and D transform in the adjoint. It is also useful to

define a chiral superfield

Wα = T aW a
α = −1

8D
†D†e−2VDαe

2V . (2.11)

This transforms covariantly under supergauge transformations

Wα 7→ e−2iΛWαe
2iΛ , (2.12)

and can be evaluated in Wess-Zumino gauge as

W a
α |WZ = λaα + θαD

a − i

2 (σµσνθ)α F
a
µν + iθθ

(
σµ
(
∂µλ+ gfabcAbµλ

c
)†a)

α
, (2.13)

where F aµν is the usual gauge field strength.

Under a gauge transformation, a chiral multiplet is defined to transform as

Φ 7→ e−2iΛ′Φ , (2.14)
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where Λ′ = taijΛa, with ta the generators of the representation of the gauge algebra that Φ

is in, reproducing the correct transformations for the component fields under ordinary gauge

transformations.

These objects allow the construction of a generic N = 1 Lagrangian containing chiral

matter and gauge fields. In order that the action is invariant under the super-Poincaré

symmetry we require that the Lagrangian transforms as a Lorentz scalar density, and its

variation under the supersymmetry transformations is a space-time total derivative. Consider

an object ∫
d2θ d2θ†K

(
Φi,Φ†i ,Wα,W

†
α̇V, ...

)
, (2.15)

where K is an arbitrary real (to make the Lagrangian real) function of any of the multiplets

in the theory, known as the Kähler potential. The integral over superspace picks out the D

component of the superfield K
(
Φi,Φ†i , ...

)
(any product of superfields is also a superfield),

which is suitable for inclusion in a Lagrangian.5

Similarly the θ2 component of a chiral superfield F (x) also transforms as a total deriva-

tive, therefore the object ∫
d2θW (Φi,Φj , ...) + h.c. , (2.16)

is suitable for inclusion in the Lagrangian. Importantly W , the superpotential, only depends

on chiral superfields (including the hermitian conjugate of any anti-chiral superfields) in order

that it is a chiral superfield itself. When the theory is written in terms of chiral fields it is a

holomorphic function of these.

Of course, the action must also be (super)gauge invariant, and contain the standard ki-

netic terms for the matter and gauge sectors. The superpotential can be made gauge invariant

provided that, for each term, the product of the gauge representations of the superfields con-

tains a singlet of the representation. It can be seen that a dimension two operator in the

Kähler potential can be made invariant by the inclusion of the vector superfield in the form

∫
d2 θd2θ†Φ†e2gataVaΦ , (2.17)

which is invariant due to the exponentiated version of Eq. (2.10). As well as the kinetic

terms for the fermion and scalar in the chiral multiplet, this contains the couplings of the

gauge bosons and gauginos to the matter fields. More generally, the Kähler potential can be
5Integration over superspace is reviewed in many places for example [56].
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made gauge invariant if it is defined as a function

K
(
Φ†, e2gaTaV aΦ, ...

)
, (2.18)

and the product of the representations of the chiral multiplets in each term contains a singlet.

Kinetic terms for gauge fields and gauginos arise from the inclusion of the gauge invariant

term ∫
d2θ

(
1
4 −

ig2
aθYM
32π2

)
Tr (W a

αWα) + h.c. , (2.19)

where θYM is a CP violating phase. Commonly, the vector superfield is rescaled so that

the coefficient of the Tr (WW ) term is τ
16πi where τ = θYM

2π + 4πi
g2 is the holomorphic gauge

coupling. There is one more term that can be added to the Lagrangian for U(1) gauge groups,

ξ

∫
d2θ d2θ† V = 1

2ξD , (2.20)

known as the Fayet-Iliopoulos (FI) term, which is gauge and supersymmetry invariant (since

the D component is a gauge singlet for a U(1) group) [66]. Other objects that may be thought

to give further interactions, such as by allowing covariant derivatives in the superpotential

(for example, the object DD†Φ is automatically a chiral multiplet) can be shown to give no

new couplings. The expressions given so far lead to the most general interaction of chiral

and vector supermutiplets.6

In a renormalisible theory, the superpotential has dimensions [mass]3, the Kähler poten-

tial [mass]2, and the coefficient of Tr (WW ) is just the numerical factor defined above (the

multiplet V has mass dimension 0). In non-renormalisable theories, the superpotential and

Kähler potential can include higher dimensional terms, and the gauge kinetic function can

be a function of the chiral multiplets.

Once the Lagrangian has been written down in superspace, it is straightforward to expand

the components to obtain the full set of interactions. Importantly, the highest component of

the chiral multiplets F (x) and of the vector multiplets D (x) do not have kinetic terms. Con-

sequently they are non-dynamical and, since their equations of motion are purely algebraic,

can be integrated out of the theory.7

6It is interesting that not only does supersymmetry demand relations between the coupling constants of
scalars and fermions, but actually forbids the existence of certain terms from the Lagrangian, for example a
theory with unbroken supersymmetry can never include a dipole operator ψσµνψFµν [67].

7Though non-dynamical these fields play an important role in allowing supersymmetry to be realised off-
shell. For example, they lead to the theory having the same number of bosonic and fermionic degrees of
freedom off shell.
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Some Lagrangians are also invariant under an R-symmetry, which does not commute with

the SUSY generators, and instead satisfies Eq. (2.3). If this is a symmetry, terms in the

superpotential have R-charge +2 and in the Kähler potential R-charge 0. The components

of a chiral multiplet, φ, ψ and F have R-charges rΦ, rΦ − 1, and rΦ − 2 respectively. From

Eq. (2.19), gauge vectors necessarily have R-charge 0, gauginos +1, and D 0.

2.3 Non-renormalisation Theorems

A major advantage of supersymmetric theories, compared to general QFTs, is that their

quantum corrections are highly constrained. In particular, this allows for strong statements

to be made about the behaviour of supersymmetric theories under renormalisation, and

during strong coupling.

The first important result is that the superpotential is not perturbatively renormalised.

More precisely, the most general term that can be generated by loops can be written in the

form of an integral over d2 θd2θ†, and so interpreted as a correction to the Kähler potential.

This was first proved using supergraph techniques [68], and later through a holomorphy

argument that we very briefly review following [69].

First, all coupling constants in the superpotential are promoted to chiral superfields with

scalar component expectation values equal to the coupling constants (known as spurions).

By integrating out heavy modes a Wilsonian effective action is obtained that describes the

interactions of the degrees of freedom in the theory with energies less than the cutoff. Pro-

vided SUSY is not spontaneously broken, this effective action is also supersymmetric, and

consequently can be written as a combination of an effective Kähler potential and an effective

superpotential.8

The effective superpotential is holomorphic in not only the dynamical chiral multiplets,

but also the spurion coupling multiplets. Additionally, in the limit that the expectation

values of the spurions (that is, the coupling constants) go to zero, the theory respects an

enlarged symmetry group. Regarding the coupling constants as spurions, this symmetry

is only spontaneously broken, and consequently constrains how the spurions and normal

multiplets may appear in the effective superpotential. Finally, the behaviour of the theory

in the limit that the coupling constants go to zero must match up to the tree-level action.
8The non-renormalisation theories apply only to the Wilsonian effective action, not the 1PI effective action,

which contains the effects of massless states that can introduce non-holomorphic interactions.
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Combined, these restrictions turn out to be severe enough to forbid any perturbative terms

in the effective superpotential beyond those that appear at tree level.

The Kähler potential can receive perturbative corrections, both in the form of wavefunc-

tion renormalisation and the appearance of new terms. However, due to gauge invariance, the

combination Φ†e2gV Φ has to renormalise to ZφΦ†e2gV Φ. After canonically normalising the

kinetic terms for the chiral superfields, superpotential parameters are renormalised. However,

this renormalisation is only logarithmic and is proportional to the parameters themselves.

Additionally, non-perturbative effects can lead to new terms in the superpotential propor-

tional to (positive) powers of the dynamically generated scales of any gauge groups in the

theory. These are highly important in theories that run into strong coupling [70].

The running of gauge couplings in SUSY theories is also very constrained by holomorphy.

Consider super-QCD with gauge group SU (N) and F flavours of chiral multiplets in the

fundamental and anti-fundamental representations, and an action normalised as

L ⊃ 1
16πi

∫
d2θ τ Tr (WαWα) , (2.21)

where τ is the holomorphic gauge coupling. The real part of τ contains θYM which couples to

a total derivative, and is therefore not perturbatively renormalised. The Wilsonian effective

gauge coupling must remain a holomorphic function of τ (since it can be promoted to the

expectation of a chiral field), and consequently the beta function of the Wilsonian gauge

coupling must be a holomorphic function of τ . As a result the perturbative beta function

must simply be an imaginary constant, independent of τ . This arises from the one-loop dia-

grams, and no higher terms contribute in perturbation theory, although there are corrections

from non-perturbative effects. In particular, for an asymptotically free gauge theory, the

holomorphic coupling at a scale µ is given by

τ (µ) = b

2πi log
(Λ
µ

)
+
∞∑
c=1

an (Φi, λ, µ) Λbc , (2.22)

where b is the one-loop beta function coefficient, and the holomorphic scale Λ = |Λ| e
iθYM
b

with |Λ| the dimensionful scale associated to the gauge theory (the scale where the pertur-

bative gauge coupling prediction is infinite), Φi are the chiral superfields, and λi are Yukawa

couplings [71]. The beta function coefficient is given by

b = 3T (Ad)−
∑
i

T (ri) , (2.23)
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where i labels the chiral matter content of the theory, T (ri) is the Dynkin index of the repre-

sentation ri of the matter under the gauge group, and Ad denotes the adjoint representation.

The discussion so far however only applies to the holomorphic gauge coupling. To obtain

the physical gauge coupling, the kinetic terms of the vector and chiral multiplets must be

rescaled as V ′ = gV and Φ′i = Z
1/2
Φi Φi respectively. However, rescaling the fermionic compo-

nents of these multiplets is anomalous and the physical gauge coupling gp is related to the

holomorphic coupling by

1
g2
p

= Im
(
τ

4π

)
− 2T (Ad)

8π2 log (gp)−
∑
i

T (ri)
8π2 log (Zi) . (2.24)

Consequently, the running of the physical gauge coupling is given by

β (gp) = − g3

16π2
3T (Ad)−

∑
i T (ri) (1− γi)

1− T (Ad) g2

8π2

. (2.25)

This is the famous exact Novikov-Shifman-Vainshtein-Zakharov (NSVZ) beta function [72].

It disagrees with the holomorphic beta function at two loops, in contrast to the usual results

in gauge theories, since there is no analytic map between the two beta function (due to the

logarithms in Eq. (2.24)).

Finally, we briefly note that though we have focused on N = 1 theories, theories with

more supersymmetry have even more constrained renormalisation properties. In N = 2

theories the beta function is only corrected perturbatively at one loop and the superpotential

is entirely fixed by the matter content of the theory [73]. Furthermore, N = 4 super-Yang-

Mills is actually conformal [74].

2.4 The MSSM and Soft Breaking

The Minimal Supersymmetric extension of the SM (the MSSM), is attractive in its simplicity

[56]. The field content is given in Table 2.1, and with the exception of the Higgs sector it is

obtained by simply promoting the chiral fermion content to chiral superfields and the gauge

bosons to vector superfields. Two Higgs doublets with conjugate gauge charges are needed to

cancel anomalies in the hypercharge and SU(2) sector as well as the Witten anomaly (which

demands an even number of fermion SU(2) doublets). Also, since H† can not appear in the

superpotential, a second doublet is required if both up- and down-type fermion mass terms

are to be generated through superpotential interactions.9
9In extensions it is also possible to generate down-type fermion masses through Kähler interactions, if the

cutoff of the theory is very low, however a second Higgs like doublet (or other EW charged matter content)
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bosons fermions SU(3) SU(2) U(1)
g gaµ g̃a Ad 1 0
W W±,3µ W̃±,3 1 Ad 0
B Bµ B̃ 1 1 0
Qi

(
ũL, d̃L

)
i

(uL, dL)i � � 1
6

ui ũ∗Ri u†Ri � 1 −2
3

di d̃∗Ri d†Ri � 1 1
3

Li (ν̃L, ẽL)i (ν, eL)i 1 � −1
2

ei ẽ∗Ri e†Ri 1 1 1
Hu

(
H+
u , H

0
u

) (
H̃+
u , H̃

0
u

)
1 � 1

2

Hd

(
H0
d , H

−
d

) (
H̃0
d , H̃

−
d

)
1 � −1

2

Table 2.1: The MSSM field content, multiplets above the double line are vector multiplets, and
below are chiral multiplets. Here the U(1) charge assignments are in the SM normalisation rather
than SU(5). � (�) denotes the fundamental (antifundamental) representation, Ad the adjoint, and
i = 1, 2, 3 labels the generations.

The MSSM superpotential is given by

WMSSM = HuuYuQ−HddYdQ−HdeYeL+ µHuHd , (2.26)

where Yu, Yd, and Ye are the 3 × 3 Yukawa matrices, and the relative minus sign is a

convention. The µ parameter is unique in that it is dimensionful, but is still required to be

close to mZ for EW symmetry breaking without fine tuning.10

The superpotential Eq. (2.26) leads to the interactions between fermions and the Higgs

(and consequently fermion mass terms), as well as interactions between a fermion, a sfermion,

and a Higgsino as required by supersymmetry. Integrating out the auxiliary fields F gives

4-scalar interactions proportional to Yukawa couplings squared, and also 3-scalar interactions

once the Higgses obtain VEVs. The µ term leads to Higgs and Higgsino masses. The kinetic

terms take the form of Eq. (2.17), which include the couplings of the gauge bosons to

fermions, and also couplings of gauginos to a fermion and sfermion. D-terms from the vector

multiplets lead to 4-scalar interactions proportional to gauge couplings squared.

The W and Z gauge bosons get masses by ‘eating’ the Goldstone bosons once the two

Higgs doublets gain a VEV. This is a supersymmetric process so the associated gauginos also

acquire supersymmetry preserving masses through interactions with the Higgsinos, known

as the superhiggs effect. Neutrino masses are not included in the MSSM, however can be

generated through a variety of additional field content as in the SM [77].

is still required to cancel the anomalies [75,76].
10Requiring this is one aspect of the second part of the hierarchy problem discussed in the introduction:

why the EW VEV happens to be small, even if this smallness is stable against radiative corrections.
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However, Eq. (2.26) is not the most general superpotential consistent with gauge sym-

metries. Extra superpotential terms of the form

W = αijkLiLjek + βijkLiQjdk + µ′iLiHu + δijkuidjdk , (2.27)

are also allowed. These violate baryon and lepton number, which are accidental symmetries

of the SM. If present, such terms lead to proton decay that is much too fast compared to

current experimental limits even if the superpartners have masses close to the Planck scale

(the proton lifetime in the presence of such terms is td ∼
( mq̃

TeV
)4 10−11 s, where mq̃ is the

typical squark mass, while the observed limit is td & 1039 s) [56].11 The simplest way to

protect against proton decay is by imposing an additional Z2 symmetry, R-parity, under

which SM states have charge +1, and superpartners have charge −1, which forbids all of the

terms in Eq. (2.27).12 The consequences of R-parity are phenomenologically significant: the

lightest superpartner (LSP) is stable and so is a DM candidate; at colliders superparticles

are produced in pairs; and any superpartner produced at a collider decays to an odd number

of the LSP. There are also other symmetry structures that can prevent proton decay without

forbidding all of the terms in Eq. (2.27), which have differing phenomenology to R-parity

conserving models [79].

Of course, the MSSM as so far described is not an accurate description of Nature; there

have been no observations of superpartners, and consequently SUSY must be spontaneously

broken. As we discuss in Section 2.7, this necessarily occurs in a new sector of the theory, and

is then mediated to the visible sector. The dominant SUSY breaking induced in the MSSM

is in the form of parameters with positive mass dimension (since SUSY breaking is assumed

to occur in a sector at a higher energy scale, and communicated via suppressed operators).

Such breaking is known as soft breaking, and the most general expression for the MSSM soft

terms is

L ⊃− 1
2 (Mig̃ig̃i) + h.c.−

(
HuũAuQ̃−Hdd̃AdQ̃−HdẽAeL̃

)
+ h.c.

− 2Q̃∗m2
QQ̃− L̃∗m2

LL̃− ũ
∗
m2
uũ− d̃

∗
m2
d
d̃− ẽ∗m2

e ẽ

−m2
HuH

∗
uHu −mHdH

∗
dHd − (bHuHd + h.c.) ,

(2.28)

11Dimension-5 operators that are typically expected to arise suppressed by MPl can also lead to too fast
proton decay, unless forbidden by a flavour symmetry in the UV theory [78].

12Since all vertices have an even number of fermions, R-parity is equivalent to a matter parity symmetry
where states have charge (−1)3(B−L), and consequently is not truly an R-symmetry, though it can arise as
the remnant of one.

20



where i represents any of the gauge groups, and the A and m2
f parameters are 3 × 3 ma-

trices in flavour space. Notably, the (Majorana) gaugino soft masses necessarily break any

R-symmetry in the theory, which has important implications for the mediation of SUSY

breaking.

Although the MSSM has an enormous number of physical parameters, in total 105 more

than the SM, they are highly constrained by flavour and CP observations [80, 81]. For

example, there are very strong bounds from measurements of µ → eγ, K0-K0 mixing, and

b → sγ decays, as well as from D and B systems [82–85]. Further constraints on the CP-

violating parameters arise from limits on the neutron and electron dipole moments [86, 87].

These constraints can be evaded if the soft masses are nearly universal and there are no new

phases in the gaugino sector, and if the A-terms are either small or close to proportional to the

associated Yukawa matrices. Alternatively, the sfermion masses may be close to being aligned

with the fermion Yukawa matrices, or (some of) the superpartners could have relatively large

masses suppressing the dangerous processes (or some combination of these possibilities) [56].

The RG equations for the SUSY preserving parameters in the MSSM can be calculated

perturbatively. Above the scale of the soft masses, the superpotential parameters renormalise

only due to the anomalous dimensions of the appropriate fields. For example

dyt
dt = yt (γHu + γQ3 + γu3) = yt

16π2

(
6y∗t yt + y∗byb −

16
3 g

2
3 − 3g2

2 −
13
15g

2
1

)
, (2.29)

using the one-loop expression for the anomalous dimensions, which in general is a matrix

given by

γij = 1
16π2

(1
2y

imny∗jmn − 2g2
aCa (i) δij

)
, (2.30)

where yimn is the Yukawa coupling between the states labelled i, m, and n and C is the

quadratic Casimir.

At one loop, the Majorana gaugino soft masses renormalise as

dMi

dt = 1
8π2 big

2
iMi , (2.31)

where bi = {33/5, 1,−3}. Since the coefficients bi are exactly the beta function coefficients

of the gauge coupling, the combination Mi

g2
i

is a renormalisation group invariant. This is not

surprising, the gaugino mass can be included as a θ2 expectation value in the gauge coupling

spurion, and the two components renormalise together.13

13More formally, an RG invariant can be constructed from the spurion that includes the physical gauge
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The one loop renormalisation of the third generation sfermions and Higgs are given by

expressions that take the form

dm2
Q

dt = 1
16π2

(
Xt +Xb −

32
3 g

2
3 |M3|2 − 6g2

2 |M2|2 −
2
15g

2
1 |M1|2 + 1

5g
2
1S

)
,

dm2
Hu

dt = 1
16π2

(
3Xt − 6g2

2 |M2|2 −
6
5g

2
1 |M1|2 −

3
5g

2
1S

)
,

(2.32)

where Xt = 2 |yt|2
(
m2
Hu +m2

Q3 +m2
u3

)
+ 2 |At|2, Xb = 2 |yb|2

(
m2
Hd +m2

Q3 +m2
d3

)
+ 2 |Ab|2,

and S = Tr
(
m2

ΦiYi
)
. Terms including the, negligibly small, first two generation Yukawa

couplings have been dropped. At two loops the first two generation sfermion masses feed into

the stop and Higgs soft masses squared through gauge couplings, which can be a significant

effect as we study in Section 5.

Since in the limit that the soft masses go to zero SUSY is restored, the RG corrections to

the Higgs soft mass squared parameter are proportional to the soft masses and consequently

small provided the soft masses are close to the EW scale. As long as the Higgs soft masses do

not receive any other large contributions by coupling strongly to sectors with broken SUSY,

the hierarchy problem is solved. This is in stark contrast to if the visible sector included

hard SUSY breaking interactions, for example by a shift in the quartic Higgs-Higgs-Stop-

Stop coupling ∆y2
t , which would lead to corrections to the Higgs mass squared of typical size

δm2
h ∼ ∆y2

tΛ2
UV where ΛUV is the high scale that altered the quartic coupling.

Of course, there any many proposed extensions to the MSSM. Of primary interest to us

is the next-to-minimal supersymmetric SM (NMSSM), which involves extending the MSSM

with an additional singlet [90]. This has a modified Higgs sector compared to the MSSM,

described in Section 2.6.

Another interesting extension are Dirac gauginos [76, 91–96]. In these models, there

are R-symmetry preserving soft gaugino masses that arise through couplings to new chiral

multiplets in the adjoint of the gauge group. If the chiral superfields are labelled A1, A2, A3

(in the adjoints of U(1), SU(2), and SU(3), respectively), the mass terms can be written in

terms of spurions Mα
i with non-zero θ components 〈Mα

i 〉 = θαmi as

∫
d2θ

3∑
i=1

√
2Mα

i Tr (WαiAi) ⊃
3∑
i=1
−miλiaψia , (2.33)

where ψi is the fermion component of Ai, and the index a labels the generators of the group.

coupling and gaugino mass, so that this relation is maintained at all orders in perturbation theory and during
strong coupling [88,89].
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The spurions Mi could arise from a D-component of a new hidden sector which couples via a

non-renormalisible operator. The operator Eq. (2.33) also leads to masses for the real scalar

components of Ai, and modifies the D-term potentials for the visible sector gauge groups.

A particularly interesting property of theories where the dominant SUSY breaking gaug-

ino masses arise from terms of the form Eq. (2.33) is that, unlike the MSSM, there is no

logarithmically divergent contribution to the sfermion masses from the gaugino masses [91].

Such a contribution is usually expected to turn on at the mediation scale, leading to a cor-

rection to the sfermion soft mass containing a large logarithm. However, in Dirac gaugino

models the only possible sfermion mass counterterm is

∫
d4θ θ2θ†2

m4
i

Λ2 Q
†Q , (2.34)

which vanishes in the limit that the cutoff Λ is taken to infinity. Consequently, there can be

no corrections to the sfermion masses sensitive to the UV cutoff of the theory and enhanced

by a large logarithm log
(

ΛUV
mZ

)
. Instead, there are only finite contributions to the sfermion

masses, a point which will be important when we discuss the tuning of these theories in

Section 5.3. This finiteness is due to an effective N = 2 supersymmetry in the gauge sector

of the theory (an N = 2 vector multiplet consists of N = 1 vector and chiral multiplet,

which is exactly the matter content in the gauge sector of these models) which constrains

the running of the theory even more than in N = 1 theories. Model building is however not

completely straightforward: generating scalar soft masses for the adjoint chiral multiplets is

challenging, and UV completions of SUSY breaking and mediation are complex [91]. Also,

gauge unification does not occur without additional states [94].

2.5 Unification

An encouraging feature of the MSSM is that, if the superpartners are near the weak scale,

it leads to successful SU(5) gauge unification at a scale MGUT ∼ 1016 GeV [51, 52]. This is

shown in Fig. 2.1, where the gauge couplings in the SM and the MSSM are plotted (assuming

no additional matter charged under the SM gauge group). The calculation of gauge running

has been performed to two loops (including one-loop threshold effects) [97], although there is

significant model dependence from threshold corrections at the GUT scale [98].14 Agreement
14Threshold corrections are the non-logarithmically enhanced corrections to the parameters of the theory

that appear in an effective field theory as a result of integrating out heavy states from the full theory, see for
example [99].
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Figure 2.1: Running of gauge couplings in the SM and the MSSM with superpartners at 2 TeV,
assuming SU(5) normalisation of the hypercharge.

with precision unification is good, under the assumption that there is a relatively small

threshold correction at the GUT scale, ∆α3/α3 (MG) ∼ 3%.15

In the SM the normalisation of the hypercharge is unfixed, and statements about uni-

fication are meaningful only once a specific GUT group is chosen. Consequently, achieving

unification by adding extra matter, at an energy scale that is free to be fixed, for a partic-

ular U(1) normalisation is not difficult; three straight lines crossing at a point requires one

parameter to be adjusted. The reason that unification in the MSSM is interesting is that it

is automatically achieved in the minimal SUSY model, with the hypercharge normalisation

that arises from simple GUT models, and superparticles in the correct mass range to also be

relevant to the hierarchy problem, all of which are independently motivated.

While GUTs are an attractive possibility, they are not without problems. Since quarks

and leptons are now in the same gauge multiplets nucleon decay is automatically a possi-

bility. In SM GUTs any decays mediated through dimension-5 operators (generated after

additional heavy gauge bosons that appear in these models are integrated out) are too rapid

to be consistent with observation, and dimension-6 operators are also severely constrained

by proton decay. The situation is mildly improved in supersymmetry, since the GUT scale

is raised, reducing the decay rate. However, even if symmetries forbid these dangerous op-

erators at tree level, they are typically regenerated by exchange of the additional, coloured,

Higgsinos that appear in SUSY GUT models. Consequently, the limits are quite severe, and
15In simple 4D SUSY GUTs there a threshold correction at the GUT scale from the additional Higgs triplets,

which goes in the wrong direction, requiring a larger opposite sign contribution from the GUT breaking sector
of the theory [100].
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(barring tuning in the flavour structure) typically rule out minimal SU(5) models [1]. It is

possible to build models with non-minimal Higgs sectors (either in SU(5) or SO (10)) that

evade current limits, or alternative constructions such as orbifold GUTS can also lead to

viable theories [101]. Obtaining sufficient mass splitting of the doublet and triplet Higgs

states is also problematic [102], and may be suggestive of some structure beyond pure 4D

field theory.

In GUT models the Yukawa couplings of the tau lepton and bottom quark are typically

expected to unify at the GUT scale, since both arise (in an SU(5) like model) from terms of

the form λ10 5 5H (where H labels the multiplet containing the Higgs). In minimal SO(10)

models the top Yukawa is also expected to unify with these two couplings at the high scale

since there is only one Yukawa term λ16 16 10H [103]. These relations can be satisfied

in some regions of SUSY parameter space [104–107].16 The first two generation Yukawas

typically cannot unify, which naively is in contradiction with the requirement of a GUT,

however this requirement can be evaded by the introduction of flavour symmetries [108].

2.6 The (N)MSSM Higgs Sector

The Higgs sector in the MSSM is more complicated than the SM due to the two Higgs

doublets, Hu =
(
H0
u, H

+
u

)
and Hd =

(
H−d , H

0
d

)
. The MSSM superpotential leads to terms

quadratic in the Higgs fields and the gauge D-terms lead to quartic scalar interactions. Using

gauge invariance, H+
u can be taken to have zero VEV without loss of generality. From the

full form of the potential it can be shown that this leads to
〈
H−d

〉
= 0 [56]. The scalar

potential, in terms of parameters evaluated at a low scale, then reduces to

V =1
8
(
g2 + g′2

)(∣∣∣H0
u

∣∣∣2 +
∣∣∣H+

u

∣∣∣2 − ∣∣∣H0
d

∣∣∣2)
+
(
|µ|2 +m2

Hu

) ∣∣∣H0
u

∣∣∣2 +
(
|µ|2 +m2

Hd

) ∣∣∣H0
d

∣∣∣2 − (bH0
uH

0
d + c.c.

)
.

(2.35)

The conditions for Eq. (2.35) to give a stable EW symmetry breaking vacuum are

2b < 2 |µ|2 +m2
Hu +m2

Hd ,

b2 >
(
|µ|2 +m2

Hu

) (
|µ|2 +m2

Hd

)
.

(2.36)

If these inequalities are satisfied, bothH0
u andH0

d gain VEVs, which for correct EW symmetry

breaking must satisfy
〈
H0
u

〉2 +
〈
H0
d

〉2 = (174 GeV)2, and the ratio of VEVs is defined as
16As we discuss in Section 4 there are other effects that could modify these properties.
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tan β =
〈
H0
u

〉
/
〈
H0
d

〉
. The minimum of the potential Eq. (2.35) satisfies

sin (2β) = 2b
m2
Hu +m2

Hd + 2 |µ|2
,

m2
Z =

∣∣m2
Hd −m2

Hu

∣∣√
1− sin2 (2β)

−m2
Hu −m2

Hd − 2 |µ|2 ,
(2.37)

which in the limit of large tan β reduces to

m2
Z = −2

(
m2
Hu + |µ|2

)
+ 2

tan2 β

(
m2
Hd −m2

Hu

)
+O

(
1/ tan4 β

)
. (2.38)

For the conditions Eq. (2.36) to be satisfied requires m2
Hu 6= m2

Hd at the weak scale. This

can readily be achieved through radiative EW symmetry breaking, even if the two Higgs

have the same soft mass at the mediation scale. In this, the up-type Higgs mass squared

parameter is driven to negative values during running due to the large Yukawa coupling to

the stops [109].17

After the Goldstone bosons have been eaten, the remaining Higgs sector matter content

consists of two neutral CP-even scalars, a CP-odd neutral scalar, a charge +1 scalar and a

charge −1 scalar. In the limit of very heavy superpartners, the masses of all of these states,

except the lightest CP even scalar h0, can be arbitrarily large at tree level and the properties

of h0 converge to those of the SM Higgs. However, the mass of h0 is bounded by mZ at tree

level, and including the leading one-loop corrections is given by

m2
h ' m2

Z cos2 2β + 3m4
t

4π2v2

[
log

(
m2
t̃

m2
t

)
+ X2

t

m2
t̃

(
1− X2

t

12m2
t̃

)]
, (2.39)

whereXt = At−µ/ tan β is the stop mixing parameter andm2
t̃

= m
t̃1mt̃2 (the next corrections

can also be important, and are given in [110]). Generating the observed ∼ 125 GeV Higgs

mass in the MSSM is challenging without reasonably large stop masses (that lead to fine-

tuning), or very large A-terms [111]. This is one of the motivations for extended Higgs sectors

that we review shortly and study in Section 4.

For correct EW symmetry breaking (without fine tuning in Eq. (2.37)) the MSSM re-

quires the supersymmetry preserving mass µ to be close to the SUSY breaking mass
√
b

and the Higgs soft masses, this is known as the µ problem. Solutions to this often involve

forbidding a bare µ term, and allowing it to arise as a SUSY breaking effect. For example

the Giudice-Masiero mechanism [112] postulates the existence of a Kähler potential term
X†

MPl
HuHd, which leads to a µ term if X acquires a SUSY breaking F-term VEV. Assuming

17This can be made more precise by analysing the eigenvalues of the RG equations.
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the dominant mediation to the SM is through Planck-suppressed operators the µ term gen-

erated is parametrically the same size as the other soft masses. The µ problem is typically

rather more severe in models of gauge mediation, and a further problem arises that even if

the correct size µ parameter is generated, the b parameter then often has size ∼ 16π2µ2 and

is unacceptably large. However, several solutions have been proposed, see for example [113].

An alternative, attractive, solution is to forbid the µ parameter by a new symmetry

(often taken to be a Z3), but introduce a new singlet, S, that has a superpotential coupling

λSHuHd+κS3, and gains a weak scale VEV. This is the previously mentioned NMSSM [90].

The Higgs sector contains additional CP-even and CP-odd scalar and singlet fermion degrees

of freedom that mix with the neutral Higgs. An important effect is that there is an additional

contribution to the tree-level physical Higgs mass that arises from the F-term of the superfield

S. This modifies the tree level expression into

m2
h0 ' m2

Z cos2 2β + λ2 sin2 2β , (2.40)

while the leading stop loop correction Eq. (2.39) remains unchanged. There are also further

corrections proportional to g4, g2λ2, g2κ2, λ4, κ4 that are typically less important [90]. As a

result of the additional contribution in Eq. (2.40) it is possible to obtain a Higgs with a mass

of 125 GeV without heavy stops (this is studied in Section 4).

There are a number of modifications to collider phenomenology in the NMSSM compared

to the MSSM as a result of the additional states. The NMSSM Higgs sector can allow new

Higgs to Higgs decay, both for charged and uncharged Higgses, that are potentially observable

at the LHC [114]. The neutralino sector is complicated by the fermionic component of

S, modifying production and decay channels, and potentially leading to displaced vertices

if there are small couplings between a bino like next to lightest supersymmetric partner

(NLSP) and a singlino like LSP [115, 116]. Additionally, there are NMSSM specific effects

on B physics [117] and precision observables such as the anomalous magnetic moment of the

muon [118]. The phenomenology of (DM) candidates in the NMSSM can also differ from the

MSSM, especially if the LSP is mostly singlino like [118].

However, there are problems with the simplest implementations of these models. Often

couplings to heavy fields in the theory (for example during the mediation of SUSY breaking)

induce linear terms in the superpotential ∼ ξS or soft Lagrangian ∼ ξSS̃ (where S̃ is the

scalar component of S). If these dimensionful parameters are large compared to the weak
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scale there is either no EW symmetry breaking or a fine-tuning problem. This is known as the

tadpole problem [119], and can be evaded if there are discrete symmetries in the theory [120].

Such symmetries can forbid all operators couplings heavy states to S to a sufficiently high

order in perturbation theory that the induced tadpole terms are small compared to the EW

scale.

A second problem arises from the spontaneous breaking of the discrete symmetry (that

forbids a tree-level µ term) in the early Universe. In particular, during EW symmetry break-

ing different regions in the Universe may have the same vacuum energy but different phases

of 〈Hu〉, 〈Hd〉, and 〈S〉. Such regions are separated by domain walls, which often dominate

the Universe’s energy density ruining the successful predictions of big bang nucleosynthesis

and leading to much too large anisotropies in the cosmic microwave background [121]. This

is known as the domain wall problem, and may be evaded by allowing small violations of the

discrete symmetry, for example by Planck-suppressed operators. The symmetry violating

operators shift the relative energy of the vacua slightly, avoiding domain walls. However,

care is required to avoid reintroducing a tadpole problem, and more complex models (for

example, involving gauged R-symmetries) may be necessary [122].

2.7 Supersymmetry Breaking

We now turn to the question of how to break SUSY in a hidden sector. This is a requirement

of models of gauge mediation, and some models of gravity mediation (for example, this

could be required in heterotic string theory completions). In supersymmetric theories the

energy operator can be written as H = 1
4

(
Q1Q

†
1 +Q†1Q1 +Q2Q

†
2 +Q†2Q2

)
. Since a SUSY

preserving vacuum state is annihilated by Qα, a vacuum is SUSY breaking if and only if it

has positive energy. The scalar part of the potential is V ∼ 1
2F

i∗Fi + g2

2 D
a∗Da, and so if

Fi = 0 and Da = 0 cannot be simultaneously satisfied for all i and a the vacuum breaks

SUSY.18 Despite SUSY being broken, the mass sum rule

Tr
(
m2
scalars

)
− 2Tr

(
m2
fermions

)
= 2

∑
a

DaTr (gta) , (2.41)

is still satisfied at tree level in theories with only renormalisible operators (it can be modified

by loop corrections). The right-hand side is zero for any compact simple non-abelian group

(due to the trace over the generator), and also vanishes for U(1) theories without a mixed
18It can be shown that, in the absence of a Fayet-Iliopoulos term, if a theory has a solution to all Fi = 0

there is necessarily a simultaneous solution to all Da = 0.
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gauge-gravity-gravity anomaly since this leads to the sum of charges vanishing (as is the case

for U(1) hypercharge). This is the reason SUSY cannot be broken by the visible sector in

simple models; some bosons would be too light for acceptable phenomenology.19

An interesting quantity in supersymmetric theories is the Witten index [123]

Tr (−1)F =
∑
E

nB (E)− nF (E) , (2.42)

where nB (E) (nF (E)) are the number of bosonic (fermionic) states with energy E. Even

if SUSY is spontaneously broken, the action of the SUSY generators remains well defined

and therefore finite energy bosonic and fermionic states are paired up. However, zero-energy

states are annihilated by the SUSY generators and so can have a mismatch between bosonic

and fermionic degrees of freedom. Therefore the Witten index reduces to Tr (−1)F = nB (0)−

nF (0). Since a vacuum is supersymmetric if it has zero energy, a theory with a non-zero

index has at least one SUSY preserving vacuum. However, a theory having zero index does

not guarantee that there are no SUSY preserving vacua.

The Witten index is a topological quantity, independent of the values the parameters of

the theory take. This is because the only way it could change as parameters are adjusted

is if finite energy states moved to zero energy or vice versa. However, since finite energy

states are paired, this cannot actually change the value of the index.20 It can be shown that

super-Yang-Mills (SYM) theories with massive vector-like matter have non-zero index and

consequently do not have a stable SUSY breaking vacua [123].

A simple superpotential that leads to F-term breaking is the O’Raifeartaigh model [124].

This is a theory with three chiral superfields and a superpotential given by

W = −k2Φ1 +mΦ2Φ3 + y

2Φ1Φ2
3 . (2.43)

The conditions F1 = 0 and F2 = 0 cannot be simultaneously satisfied, and if m2 > yk the

minimum of the potential is at φ2 = φ3 = 0 (where φi is the scalar component of Φi). φ1 is

not fixed at tree level, however as supersymmetry is broken there are now loop corrections

to its mass that lead to a stable SUSY breaking minimum at 〈φ1〉 = 0. There is a massless

fermion in the broken theory, the goldstino. The appearance of a massless goldstino is a
19Models of (semi)-direct gauge mediation effectively break SUSY in a much more complex visible sector,

by adding a large number of additional heavier fields that allow the MSSM superpartners to all be heavier
than their partners.

20We neglect a number of subtleties around the calculation of the index including regularisation and be-
haviour of fields running away to infinity.
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general feature of spontaneous SUSY breaking, even if this occurs during strong coupling.

As mentioned previously, in SUGRA the goldstino is eaten by the gravitino and as a result,

the gravitino gains a mass m3/2 = F√
3MPl

.

Alternatively, SUSY can be broken through a D-term. For example, a theory with U(1)

gauge group and FI term ξ has a scalar potential

V = 1
2D

2 − ξD + gD
∑
i

qiφ
i∗φi ,

=⇒ D = ξ − g
∑
i

qiφ
i∗φi .

(2.44)

If the chiral superfields all have large positive masses, this leads to a D-term expectation

value 〈D〉 = ξ.

There are several conditions on whether a theory is expected to break supersymmetry.

Firstly, if a theory spontaneously breaks a global symmetry but has no (non-compact) flat

directions it breaks SUSY. This is because a chiral multiplet includes two scalars so if SUSY

was preserved there would be a second massless scalar in the same multiplet as the Goldstone

boson [125]. In practise this condition is not straightforward to use since finding if a global

symmetry is broken is typically as hard as directly calculating if SUSY is broken. However,

it can give an indication since t’Hooft’s anomaly matching criteria [26] (which constrains

the properties of theories as they pass through strong coupling) is only satisfied if global

symmetries are unbroken. If anomaly matching cannot be straightforwardly satisfied and the

theory has no run away directions it is plausible SUSY is broken. A second theory is that

(assuming the low-energy effective theory contains no gauge fields) a spontaneously broken

R symmetry generically leads to supersymmetry breaking [126]. If the superpotential has

either no symmetries or a global symmetry, the F-term equations have the same number

of unknowns as equations, so a solution generically exists. However, if the theory has an

R-symmetry that is spontaneously broken by a field φ1, with R-charge q1, getting a VEV,

the superpotential can be written in terms of a new set of variables as

W = φ
2/qn
1 f (Xi) ,

Xi = φi

φ
qi/gn
1

,
(2.45)

where i = 2, ..., n, and n is the number of chiral multiplets in the theory. As a result, the

F-term equations take the form of n conditions on the function f (Xi), which is a function

of n − 1 variables, and so generically cannot be simultaneously solved. Majorana gaugino
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masses are forbidden by an R-symmetry, and even though it is spontaneously broken this

can result in models having gaugino masses that are much smaller than the sfermion masses

leading to fine-tuning problems [127] (alternatively, if the mediation mechanism does not

respect the R-symmetry there is a danger it will lead to new SUSY preserving vacua [128]).

In a supergravity completion, the scalar potential is given by

V = eK/M
2
Pl

(
Kij∗FiFj∗ − 3 |W |

2

M2
Pl

)
, (2.46)

where K is the Kähler potential, Kij∗ = ∂i∂j∗K, and the F-terms have been generalised to

Fi = DiW ≡ ∂iW+ (∂iK)
MPl

W [57]. After supersymmetry breaking the first term gives a positive

contribution, and the superpotential must gain a vacuum expectation value 〈W 〉 ∼M2
sMPl to

obtain an (almost) vanishing cosmological constant, where Ms is the SUSY breaking scale.21

This superpotential expectation breaks any R-symmetry in the theory, and even if it arises in

a different sector to the SUSY breaking can feed into it through higher-dimensional operators

potentially modifying the SUSY-breaking dynamics.

In light of these considerations, the requirement that the SUSY-breaking vacuum is the

absolute minimum of the potential is often relaxed [129], and models with metastable SUSY

breaking vacua are phenomenologically acceptable provided they are sufficiently long lived.

These only require an accidental R-symmetry at some points in field space, and can evade

the problems above.

Although technically natural, the models so far require small mass scales and parameters

to be put in by hand. A better alternative is for spontaneous supersymmetry breaking to be

triggered by a hidden sector running into strong coupling at a scale exponentially separated

from other scales in the theory [130]. To study such models is challenging since it requires

an understanding of strong coupling. However, supersymmetry allows for new insights into

such regions, and some examples of SUSY-breaking sectors have been found, one of which is

reviewed in the next section.

2.8 Seiberg Duality and the ISS Model

As well as constraining the renormalisation properties of theories, supersymmetry also allows

for an increased understanding of the behaviour of theories during regions of strong coupling.

A famous example of this is the Seiberg-Witten theory [131], which gives an exact description
21Of course, this requires an extraordinary level of tuning, which we do not even attempt to address.
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of the massless low-energy degrees of freedom in N = 2 theories. Here we review a duality

in N = 1 theories, important for our later work, known as Seiberg duality [132]. This gives

detailed information on the low-energy behaviour of gauge theories, especially super-QCD

models.

Consider a SU (N) gauge theory with F flavours of vector-like fermions in the fundamental

and anti-fundamental representations. This has a large moduli space, and if the theory has

F > N a typical point in the moduli space breaks the gauge symmetry completely through

scalar VEVs. Generically, the low-energy theory contains 2NF −
(
N2 − 1

)
light degrees of

freedom described by the gauge invariant baryons and meson superfields

M j
i = ΦjnΦni ,

Bij... = ΦniΦmj ...ε
nm... ,

B
ij... = ΦniΦmj

...εnm... ,

(2.47)

where additional constraint equations between these states ensure the correct number of

degrees of freedom. For F ≥ 3N it can be shown that the theory is not asymptotically free,

so is simply a low-energy effective theory [58]. For 3
2N < F < 3N there is an interacting

conformal infra-red (IR) fixed point, while for N + 1 < F ≤ 3
2N the theory runs into strong

coupling.22 For F < N there is a run away direction in the low-energy theory. This is because

the dynamically generated superpotential is

W ∼
(

Λ3N−F

detM

) 1
N−F

,

V ∼
∣∣∣∣∂W∂M

∣∣∣∣2 ∼ |M | −2N
N−F ,

(2.48)

which drives M → ∞ if F < N [125]. The cases F = N and F = N + 1 are special, in the

former the theory is confining and quantum corrections to the classical constraint equations

push it away from the origin in field space (M = B = B = 0) so at least some of the global

symmetries are broken. In the later, the theory is confining, but the moduli space includes

the origin where all the global symmetries are unbroken [58].

Sieberg duality proposes that the deep IR behaviour of (certain classes of) N = 1 gauge

theories are completely equivalent to the IR behaviour of different gauge theories (in con-

densed matter terminology, they are in the same universality class). In analogy with elec-
22It can be shown that in this region the theory cannot flow into an IR conformal fixed point, since such a

point would violate unitarity conditions.
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tromagnetic duality the two theories are referred to as the electric and magnetic theories,

respectively. In particular for sQCD, if F > N+1, there is a dual theory that is a SU (F −N)

gauge theory with matter content consisting of F flavours of ‘dual’ quarks q and antiquark

q̃ superfields transforming in the fundamental and antifundamental of SU (F −N), and a

gauge singlet meson superfield (that can be thought of as the meson of the electric theory)

Me with mass dimension 2. The dual theory has a superpotential

Wmag = 1
Λ̂
Meqq̃ , (2.49)

where Λ̂ is parametrically related to the dimensionful scales of the UV and IR theories (but

not entirely fixed by holomorphy). This superpotential is essential for ensuring the degrees

of freedom in the two theories match up. If the electric theory has quark mass terms in the

form of a superpotential

Wel =
F∑
i=1

miQ
iQi , (2.50)

where the mass matrices have already been diagonalised, this maps into the dual theory as

a superpotential term

Wmag ⊃
∑
i

miMe
i
i . (2.51)

Rescaling the meson to mass dimension 1, and defining µ2 = −mΛ̂, the superpotential of the

theory dual to an electric theory with universal quark masses is

Wmag = hq̃Mq − hµ2ΛTr (M) , (2.52)

where h is a coupling constant unfixed by holomorphy.

The behaviour of the magnetic theory is interesting. Assuming vanishing (or small com-

pared to Λ) quark masses in the electric theory, the beta function of the dual theory is

β (g̃) ∼ −g̃3 (3 (F −N)− F ) ∼ −g̃3 (2F − 3N) , (2.53)

where g̃ is the gauge coupling of the dual theory. Consequently, in the region N+1 > F ≥ 3
2N

the dual theory loses asymptotic freedom and has a trivial IR fixed point g̃2 = h2 = 0, so in

the IR is a free theory of composite states. This means the dual theory is weakly coupled in

a regime where the original theory is strongly coupled and vice versa. For 3
2N < F < 3N the

dual theory has an interacting IR fixed point at finite g̃2 and h2. In this parameter range the

duality is between two different theories with IR fixed points that describe the same physics.
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The case F = N + 1 is subtle since there is no dual gauge group, however a careful analysis

shows that the duality still applies near the origin in field space.

Although the duality is a conjecture (even the existence of the fixed points is only certain

for F = N (3− ε) where ε is infinitesimal) it is supported by a large amount of evidence. One

consistency check is that the global anomalies match in the original and dual theories. Also,

the moduli spaces are the same dimension in both theories and the gauge invariant operators

match. Giving one flavour of quark a large mass in the original theory (reducing F to F − 1

in the effective theory) has the correct effect on the dual theory. Finally, taking the dual of

the dual theory maps the original theory onto itself as required [58].

Seiberg duality can be used to study a model of dynamical SUSY breaking, the Intriligator-

Seiberg-Shih (ISS) model [129]. This consists of SQCD in the region N + 1 < F < 3
2N , with

quark masses m much smaller than the dynamical scale of the gauge group Λ.23 Below the

strong coupling, the theory is best described by its magnetic dual, which has superpotential

given by Eq. (2.52). The meson F-terms, F
Mj
i

= hq̃ai q
j
a − hµ2δji (i, j are flavour indices and

a is a colour index), cannot simultaneously vanish since the rank of q̃ai qja is F −N while the

rank of δji is N , and consequently SUSY is broken in this effective theory.

Actually, the theory has a SUSY preserving vacuum (as must be the case from the Witten

index) at large field values where the quark mass term is not a small perturbation of the

theory, and Seiberg duality is not accurate. However, it can be shown that a Coleman-

Weinberg potential lifts the tree-level flat directions near the origin in field space, resulting

in a metastable SUSY breaking vacua at

M = 0, q = q̃ =

 µ1F−N

0

 . (2.54)

The induced SUSY breaking is given by V =
∑
i F
∗
i Fi = (F −N)h2µ4, and can be under-

stood in terms of an approximate R-symmetry in the magnetic theory. The superpotential

Eq. (2.52) is generic for a theory in which the superfields are charged under an R-symmetry

as [Φ] = 2 and [q] = [q̃] = 0.

The decay rate of the metastable SUSY breaking vacua is parametrically Γ ∼ e−Sb , where

Sb ∼
(

Λ
m

) 6N−4F
N , so the typical lifetime can be much longer than the age of the Universe for

suitable parameter choices. It has also been suggested that the early Universe may drive the
23Some masses much larger than Λ are also allowed since the corresponding states are simply integrated

out of the theory.
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system into the metastable vacuum [133]. Actually, the ISS model so far described is not

entirely satisfactory; although Λ is exponentially separated from other scales in the theory, the

small mass scale m is still put in by hand, defeating the object of dynamical SUSY breaking.

In Section 3, we study a refinement that generates a small mass scale automatically.

2.9 Supersymmetry Mediation

The SUSY-breaking sector must be connected to the visible sector to induce soft masses for

the visible sector superpartners. A simple way for this to occur is through gauge mediation. In

this, additional (relatively heavy) messenger fields are introduced that are charged under the

gauge groups of the SM and also coupled to the SUSY-breaking sector. The messenger fields

obtain SUSY-breaking mass splittings from their couplings to the SUSY-breaking sector, and

these induce visible sector gaugino masses at one loop and sfermion masses squared at two

loops. Typically the messenger fields are taken to be complete representations of SU(5) so

that gauge unification is preserved.

For example, suppose the theory contains nm copies of chiral and anti-chiral messenger

superfields, Ψ and Ψc, in the 5 and 5 of SU(5). These can couple to a gauge singlet in

the SUSY-breaking sector X (which could be a composite operator) that gains an F-term

expectation value and a scalar expectation value 〈X〉 = X0 +FXθ
2, through a superpotential

term

W ⊃ XΨΨc . (2.55)

If the messengers receive no other mass contributions, this leads to SUSY-preserving mass

terms for the messenger fermions, mmess = X0ψψ
c+h.c., and scalars X2

0

(
|φ|2 + |φc|2

)
. There

are also SUSY-breaking scalar masses squared from the term in the Lagrangian FXφφc+h.c.,

and so the scalar mass eigenstates have masses squared of X2
0 ± FX .24

The leading soft masses induced in the visible sector (in an expansion in the parameter
FX
mmess

) can be obtained through holomorphy [88, 89]. This is a good approximation if the

SUSY-breaking sector is not too close to the weak scale. Once the messengers have been

integrated out of the theory the gauge kinetic term can be written

L ⊃
∫

d2θ τ (X,µ)WαWα . (2.56)

24If the messengers receive a SUSY preserving mass from a different source, this can just be written in
combination with the SUSY-breaking masses from X through a spurion chiral superfield which couples as in
Eq. (2.55) and the analysis is unchanged.

35



Gaugino masses arise through a θ2 term in τ , which is generated by τ ’s dependence on X.

The leading dependence is given by

Mλ = i

2τ
∂τ

∂X

∣∣∣∣
X=M

FX . (2.57)

Since the Wilsonian holomorphic gauge coupling is

τ (X,µ) = τ (ΛUV) + ib0
2π log

(
X

ΛUV

)
+ ib1

2π log
(
µ

X

)
, (2.58)

the gaugino soft masses are

Mλ = α (µ)
4π nm

F

mmess
. (2.59)

Similarly, the leading sfermion soft masses can be obtained from the dependence of the chiral

multiplets’ wavefunction renormalisation on the spurion X, giving

m2
φi = 2

(
FX
mmess

)2
nm

∑
a

Ca (i)
(
αa
4π

)2
, (2.60)

where Ca (i) is the quadratic Casimir of the representation of the sfermion φi for the group

labelled by a. Parametrically, the sfermion and gaugino soft masses are at the same scale,

however A-terms are very suppressed. This derivation shows that the the leading contribution

to the soft masses arises as a threshold effect when the messengers are integrated out at an

energy scale mmess.

Separately to the fact that Eq. (2.59) is to leading order in FX
mmess

, it also misses higher-

order effects due to the fields in the theory not being canonically normalised. The physical

gaugino mass arises from the θ2 component of the real gauge coupling defined by

R = S + S† + T (Ad)
8π2 log

(
S + S†

)
−
∑
i

T (ri)
8π2 log (Zi) + ... , (2.61)

where S is defined as the chiral superfield appearing in the Lagrangian as

L ⊃
∫

d2θ
1
2SW

αWα , (2.62)

and the ellipses represent two-loop corrections. This is exactly the extension of Eq. (2.24)

to the case of superfields.

If required, the full expression for the soft masses to all orders in FX
mmess

can be obtained

by evaluating the loop diagrams that lead to the soft masses [134]. Again, it can be seen that

the masses are generated by momenta near the scale mmess. It is also possible to calculate the

visible sector soft masses induced from a generic messenger mass matrix (expressions for this
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are given in Appendix A.1). For example, the messenger scalars can obtain SUSY-breaking

mass terms of the form
∣∣∣FXM∗ ∣∣∣2 φ†φ (where M∗ is some higher scale) from a Kähler potential

term X†X
M2
∗

Ψ†Ψ. If the soft masses are purely of this form there is an effective R-symmetry

in the messenger sector and consequently no gaugino masses are induced (in contrast any

possible R-symmetry is violated by a coupling of the form Eq. (2.55) when X has an F-term

expectation value, and the messengers have SUSY preserving masses). If the messenger mass

matrix is such that its supertrace does not vanish, there is an additional contribution to

the sfermion masses from the so-called ε scalars, which arise from evaluating loop integrals

of vectors in 4− 2ε dimensions (when regularising loop integrals by dimensional reduction).

Unlike the other contributions these corrections are logarithmically divergent ∼ log (ΛUV),

and occurs because (if SUSY is only spontaneously broken) the theory is completed to a

theory with vanishing mass supertrace at some higher scale [134].

A significant advantage of gauge mediation is that minimal models are entirely flavour

blind [56], and consequently dangerous flavour-violating operators in the visible sector are

avoided. Notably, models with messengers in complete GUT multiplets lead to gaugino

masses in the GUT unified patten M1
g2
1

= M2
g2
2

= M3
g2
3

. The maximum number of SU(5) messen-

ger multiplets is constrained to nm < 150
log
(
MGUT
mmess

) if unification is required to be perturbative.

Alternatively, if mediation occurs through a new gauge group that has been Higgsed this can

be included in the analysis [135]. More generally, gauge mediation from a generic, possibly

strongly coupled breaking and mediating sector can be studied through the formalism intro-

duced in [136], although this is not necessary for our purposes. An interesting alternative

to the set up so far described is direct gauge mediation. In this the SUSY-breaking fields

have SM gauge charges, and mediation proceeds without requiring an additional messenger

sector [137].

Of course there are other mediation possibilities. In gravity mediation, the SUSY break-

ing sector is coupled to the MSSM through Planck scale physics (see for example [57, 61]).

Gaugino masses arise if the gauge kinetic function includes a non-renormalisible term

L ⊃
∫

d2θ

( 1
g2
a

− fa
MPl

X + ...

)
Wα
aWaα , (2.63)

where fa is a constant (with mass dimension zero). Similarly, sfermion masses are gener-

ated through non-renormalisible operators in the Kähler potential, and A-terms from the

superpotential. If the suppression of these operators is the Planck scale, all soft masses are
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comparable to the gravitino mass. However, in completions, the actual suppression of these

operators could be exponentially separated from the Planck scale, for example if there is an

exponentially large volume arising from a string compactification [64]. While gravity medi-

ation is very well motivated, the details of the breaking is explicitly dependent on the UV

completion. One problem that arises in many completions is obtaining soft terms that do

not lead to excessively large flavour changing currents and CP violation.25

Another mediation mechanism is anomaly mediation, which is the combination of several

effects [138–142]. One source is that SUSY breaking leads to a positive vacuum energy

contribution, and so de Sitter spacetime. Therefore prior to SUSY breaking the theory must

begin in Anti-de Sitter (AdS) space [143]. However, in AdS the SUSY preserving masses

of multiplets are split. Once space-time is uplifted to flat space, these mass splittings are

generically preserved, but now break supersymmetry (the splittings depend on how far in

AdS the theory begins, which is fixed by how far SUSY breaking uplifts it). Another source

of anomaly mediation is linear couplings of fields charged under the SM gauge group to a

SUSY breaking spurion in the Kähler potential. These feed into the real gauge coupling Eq.

(2.61), or equivalently can be shifted into the gauge coupling by an anomalous rotation in

field space. In string theories there are also further sources [144]. While anomaly mediation

is flavour blind and theoretically well motivated, minimal models lead to tachyonic sleptons,

and evading this requires extra model building.

Regardless of the mediation mechanism, having calculated the soft masses at the media-

tion scale (that is the messenger mass in gauge mediation, or the scale of the higher dimension

operators in gravity or anomaly mediation), in order to find the soft terms near the weak

scale the theory must be run down using the RG equations. Typically, these are taken to be

the MSSM equations given in Section 2.4 (although we discuss an alternative in Section 6).

The RG flow leads to another mediation possibility. If the gaugino soft masses are gener-

ated at a high scale, then during RG flow they can induce soft masses in the sfermions that

are of comparable size if the running is from a relatively high scale [145]. The initial condi-

tion of only gaugino soft masses most naturally arises from models with extra dimensions, or

models with multiple sets of gauge groups (so called deconstructed models that are closely

related to extra dimensional models).
25This arises because, although gravity couples universally at low scales, gravity mediation is sensitive to the

details of the UV theory, which also needs to explain the fermion mass structure and therefore is manifestly
not flavour universal.
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A significant difference between gauge and gravity mediation is the mass of the gravitino,

in gravity mediation this is parametrically the same size as the other soft masses in the

theory, while in models of gauge mediation the gravitino mass is usually much smaller and it

is the LSP. Consequently, in models of gauge mediation the gravitino is a (DM) candidate,

and requiring that it does not overclose the Universe can give stringent constraints on the

reheating temperature after inflation. More generally, even if it is not the DM, since the

gravitino couplings are suppressed by the Planck scale, it can have a significant effect on

cosmology [146–148], for example if it decays during big bang nucleosynthesis.

2.10 Fine Tuning

We now return to the details of fine tuning, specifically in supersymmetric theories. In

principle, once a definition of fine tuning has been decided upon, the procedure of calculating

it is straightforward. Once a UV complete model (that leads to correct EW symmetry

breaking) is specified, the sensitivity of the EW scale is obtained by varying the fundamental

underlying parameters, and evaluating Eq. (1.6). This requires the UV complete theory to

be run down to the weak scale, so that radiative corrections to the parameters that appear

in the low-energy potential are included [24, 149, 150]. The overall tuning of the theory can

either be defined as max (∆p), where ∆p is the tuning with respect to the parameter p, or as√∑
p ∆2

p.26

In practice however this procedure is not straightforward. The running from the UV cutoff

depends on the complete underlying theory, including all the higher-dimensional operators,

which is usually unknown. This is because, although the effective theory at energies far below

the UV cutoff is insensitive to higher dimensional operators, it is not obvious how fast the

effects of these turn off and if they give any significant contributions before this happens.

Instead, what has to be done is take some particular boundary conditions at an assumed UV

cutoff of the RG flow. These can then be run down to the weak scale (using perturbative

RG equations), and it is hoped that the tuning obtained is a good approximation to the true

tuning of the theory.

The collider limits on Higgsinos are comparatively weak, and consequently µ can be close

to the weak scale [56]. Therefore, provided the theory does not require a large value of µ to
26The former choice runs the risk of allowing a more complex theory to ‘hide’ the true tuning of the theory

by introducing multiple new parameters, each of which are individually tuned to some extent. However, apart
from this caution, the two measures are usually comparable, and give similar results.
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obtain the correct EW VEV, the tuning from this parameter can be relatively small (from

Eq. (2.38)). The dominant tuning typically arises through the up-type Higgs soft mass and

the radiative corrections to it. For typical spectra compatible with collider limits, the most

important contributions arise from the stop masses, and the gluino which feeds into the Higgs

soft mass squared through the stop at two loops. We study this in detail in Section 5.

The size of the radiative corrections depends on how long the theory is running, so

different theories with the same EW spectrum can have vastly different fine tuning if they

have different mediation scales. Consider the tuning induced by a stop with mass 1 TeV.

This can be estimated as

∆t̃ ∼ 2
m2
t̃

m2
Z

6y2
t

16π2 log
(
mmed
mZ

)
, (2.64)

(where the running of the stop soft mass has been neglected) [151]. If the mediation scale

is ∼ 10 TeV the tuning is ∆t̃ ∼ 20, while if the mediation scale is 1018 GeV it is much larger

∆t̃ ∼ 170.

Even theories with the same Lagrangian at the assumed UV cutoff of the RG flow can have

differing tuning if they arise out of different underlying models, with different fundamental

parameters that can be varied.27 Equivalently, the fine tuning measure is not invariant

under redefinitions of the fundamental parameters of the theory. For example, in GUT

models gaugino masses are unified and the only parameter that can be changed is the unified

gaugino mass, while in other completions the gaugino masses can be varied independently,

giving a different tuning. Another example arises in a model where the first two generation

sfermion masses are all fixed equal at the UV boundary by the underlying theory. This can

lead to cancellations that would not be observed if they were independent. Assuming running

from the GUT scale at 1016 GeV, and tan β = 10, the dependence of the weak scale Higgs

mass on the first two generation sfermion masses (at the UV boundary) is [152]

−2δm2
Hu (mZ) ⊃ 0.051m2

Q2 − 0.11m2
u2 + 0.051m2

d2 − 0.052m2
L2 + 0.053m2

E2 + [2 7→ 1] .

(2.65)

If the first two generation sfermion masses squared are all fixed equal to a common UV

parameter m2
s, there is a cancellation in Eq. (2.65), and −2δmHu2 ∼ −0.014m2

s, less than

the tuning if all the soft masses were independent.28 UV models that lead to such cancella-
27It is also possible to define another measure of fine tuning that does not allow for cancellations, and

typically gives an upper bound on the tuning of a model [150].
28The sensitivity of the weak scale to whatever effects set tan β = 10 also needs to be considered in any

complete model relying on this cancellation.
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tions are good candidates for theories for low fine tuning, provided they are independently

motivated and the relations between soft parameters have not simply been put in ‘by hand’.

Further, fine tuning calculations usually simply assume the running arises from the visible

sector beta functions, however in Section 6, we study the effects when this assumption is

relaxed (as may plausibly occur in realistic models).

Notably, the fine tuning only measures the sensitivity of the EW scale to the underlying

parameters. We make no attempt to quantify the likelihood that a particular type of theory

is actually realised, which would require a measure on ‘theory space’. For example, it is

very difficult to know the probability of a new gauge group, under which only the first

two generations are charged, actually existing. However, a highly convoluted theory, which

is exceptionally hard to realise from a sensible UV completion, is not compelling simply

because it has low fine tuning.29

Another possible measure of the fine tuning of a theory is the tuning evaluated purely at

the EW scale [150,152]. This starts from the (radiatively-corrected) EW potential

m2
Z

2 = −
(
m2
Hu + Σu

)
tan2 β +m2

Hd + Σd

tan2 β − 1
− µ2 , (2.66)

where Σu (Σd) are the loop corrections from to states that couple to the up-type (down-type)

Higgs, and all quantities are evaluated at the weak scale. The low scale tuning is then defined

as

∆EW = max
(∣∣∣∣∣m2

Hu tan2 β

tan2 β − 1

∣∣∣∣∣ ,
∣∣∣∣∣ Σu tan2 β

tan2 β − 1

∣∣∣∣∣ ,
∣∣∣∣∣ m2

Hd

tan2 β − 1

∣∣∣∣∣ ,
∣∣∣∣ Σd

tan2 β − 1

∣∣∣∣ , ∣∣∣−µ2
∣∣∣)× 2

m2
Z

.

(2.67)

Numerically, Σu is usually dominated by the top squark loops, and is given by Σu ∼
3f2
t

16π2m
2
t̃

log
(
m2
t̃

Q2

)
(there are also extra terms due to stop mixing [153]), where Q is the scale

choice (usually optimised to Q2 = mt̃1mt̃2). This quantity does not take into account the

effects of running from a high scale and consequently misses the large logarithmically en-

hanced terms that can arise in the true tuning of the theory.30 However, it does give a lower

bound on the tuning that a theory with a particular EW spectrum can have.
29The distributions of vacua in SUGRA compactified from 10 to 4 dimensions actually seem to suggest low

energy SUSY itself may be disfavoured (by a stronger amount than a tuned Higgs is disfavoured in stable
compactifications with zero cosmological constant, under some assumed distribution of potentials [48, 49].
However, at present, the understanding of moduli stabilisation and the string landscape is not developed
enough to understand if this is representative of real string theory dynamics.

30To see the effect of this running the potential has to be written in terms of the high scale quantities
m2
Hu (Q) = m2

Hu (ΛUV) + δm2
Hu
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2.11 Low-Energy Spectra, Collider Detection, and Natural SUSY

While the (weak scale) mass spectrum of a theory depends on the details of the model and

parameters, there are some features that often appear in minimal models of both gauge

and gravity mediation [56]. Many conventional models of both gauge and gravity mediation

predict gaugino masses in the GUT unification pattern, although there are string theory

completions that do not have this property [63, 64]. The sfermion masses are often assumed

to be universal at the mediation scale in gravity mediated models, while in minimal gauge

mediation models these depend on the representation of the gauge group that the sfermion

is in. Additionally, all generations of sfermions are often taken to have the same soft masses

(which, as discussed, helps to evade flavour constraints) [56].

The lightest states tend to be the neutralinos and right-handed sleptons (apart from

possibly the gravitino), while SU(2) charged states are somewhat heavier. The gluino is

typically relatively heavy, since α3 is large at low energies. Coloured sfermions are usually

significantly heavier than other sfermions, in gauge mediation because they obtain larger

masses at the mediation scale and in minimal gravity mediation because they get a large

positive mass contribution from the gluino during running.31

The possible signatures of supersymmetry at colliders, and the limits that arise from

negative search results at LEP, the Tevatron, and now the LHC are the topic of an enormous

body of work. The classic signatures of SUSY at hadron colliders are events with some

number of jets, some number of leptons and missing transverse energy. The missing energy

arises from the LSP escaping the detector (assuming R-parity, however the limits are not

actually relaxed significantly if the theory is R-parity violating). Of course, understanding

the SM backgrounds, which mostly arise from neutrino production and jet mismeasurement,

is vital to obtain limits (amongst many other studies, see for example [154–156]).

The strongest limits on superpartners are on gluinos and the first two generation sfermions.

Both are efficiently produced from the parton contribution of the protons by strong inter-

actions (unless sufficiently heavy that their production is kinematically suppressed). The

limits on the third generation sfermion masses are much weaker than those on the first two

generation sfermion masses, due to the small mixing between the first two generations and

the third generation [157].
31An exception to this is if the universal scalar soft mass is much larger than the gaugino mass, in which

case the coloured sfermions can be lighter than other sfermions due to to a negative contribution to their
masses from each other during running.
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In a simplified phenomenological model containing only the first two generation squarks

(with a universal mass), neutralinos and gluinos the limit on the squark masses (combined

from a variety of searches) is in the region of 1.7 TeV even if the gluino is in the region of

2 TeV (the mass of the gluino affects the production rate, and consequently the mass limits

on sfermions). Similarly, no matter how heavy the squarks are, the limits on the gluino are

around ∼ 1.4 TeV [158]. The limits can also be cast into the mSUGRA plane (mSUGRA is

a theory with unified gaugino masses and a common sfermion mass at a high scale). In this

case the limits on the squark masses are at least 2 TeV (demanding that the gauginos are not

so heavy that the LSP is a phenomenologically unacceptable stau).

Motivated by experimental constraints, it is interesting to consider more complicated

theories that lead to a low energy mass spectrum with the first two generation sfermions

somewhat heavy, while keeping third-generation squarks, especially stops, and electroweak

gauginos and Higgsinos light, the so called natural SUSY scenario [159, 160]. This allows

for experimental constraints to be weakened and since the first two generations couple only

relatively weakly to the Higgs, it may be hoped that such spectra do not lead to large fine

tuning. In this thesis we study the model building possibilities of natural SUSY spectra, and

the possibility that these reduce fine tuning.

In models of natural SUSY, the limits on gluinos are typically in the region of 1.3−1.4 TeV

but this depends strongly on the simplified model being considered [161,162]. This typically

arise from the decays g̃ → ttχ̃0, g̃ → btχ̃+ and g̃ → bbχ̃0, which cannot be evaded unless µ is

large (introducing significant tuning) [157].

Stops masses are typically limited to & 400−700 GeV, however this is very dependent on

the model and the mass splittings in the spectrum [163–165]. Production is either through

gluinos or other squarks, or directly if all other strongly coupled superparticles are much

heavier. For sufficiently heavy stops a typical decay channel is t̃ → tχ̃0, where the final

states are on-shell and χ̃0 is the lightest neutralino. In this case the neutralino can lead to

large missing transverse energy signatures. If the stops are lighter the top has to be off-shell,

and the decay is directly t̃→ bW+χ̃0, possibly leading to observable deviations in kinematic

variables. If the neutralino is very light and the stop is only slightly heavier than the top,

the neutralino carries off very little energy and the event is hard to distinguish from pair

production. Of course more sophisticated searches for light stops covering a range of spectra,

see for example [166], have been considered, and are being carried out.
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A wide range of theories of SUSY breaking and mediation that can lead to a natural

Spectrum have been proposed. An appealing feature of many models is the ability to link

the large third generation Yukawas in the SM to the smaller soft mass of the stop relative to

the other sfermions. In the original models, the first two generation sfermions are taken to be

charged under some new gauge symmetry that mediates additional SUSY breaking masses

to these states, but not the third generation sfermions, which gain soft masses either through

some other gauge mediation or gravity mediation [167, 168]. Similarly, there could also be

only one set of messenger states, but with additional flavour structure [135]. In the next

chapter we build a supersymmetric model that generates a natural SUSY spectrum, while

simultaneously explaining the suppressed first two generation sfermions in the SM, and the

appearance of mass parameters in a dynamical SUSY breaking sector.

Other possibilities for generating a natural SUSY spectrum include deconstructed models,

in which the SM gauge group is extended to G1
SM × G2

SM, where each of G1,2
SM are the full

SM gauge group, and the third generation states are taken to be charged under a different

group to the other matter [169]. These models are closely related to other theories where

the third generation states are localised differently to the first two generations in an extra

dimension, also generating a natural spectrum [170]. It is also possible that a natural SUSY

spectrum could arise out of a combination of strong dynamics (in the form of a composite

Higgs model), and supersymmetry [171].
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Chapter 3: Building a Model of Natural SUSY

This chapter is based on [172], work done in collaboration with John March-Russell.

As discussed in the previous chapter, if softly-broken SUSY is to be a successful theory

of the weak-scale, solving the hierarchy problem, then it must meet a number of serious chal-

lenges. First, on the theoretical side, there is still significant uncertainty over the mechanism

of SUSY breaking and its mediation to the visible sector. From the perspective of the hierar-

chy problem the most attractive possibility, as first argued by Witten [130], is the dynamical

breaking of SUSY via dimensional transmutation and non-perturbative effects. Despite this

attractive feature, many models of dynamical supersymmetry breaking (DSB) still require

small parameters, or masses to be parametrically suppressed relative to other scales in the

theory. A particularly well known example is the, previously mentioned, ISS model [129]

where small parameters are required to ensure that (in the presence of the phenomenolog-

ically required R-symmetry breaking) a metastable vacuum is sufficiently long-lived to be

viable.

An appealing approach to deal with this is through so-called retrofitting [128], where

IR irrelevant operators generate small parameters which would otherwise be forbidden by

symmetries of the theory. In the case that the operators introduce a small amount of R-

symmetry breaking, this is not a surprising scenario: vanishing of the vacuum energy post

SUSY breaking requires the superpotential to have a R-symmetry violating expectation value,

which is transmitted through supergravity to produce the required operators.

Second, on the phenomenological side, there is increasing tension between the require-

ment that superpartners should be close to the EW scale to prevent the reintroduction of a

little hierarchy problem and negative results of collider searches first at LEP and now at the

LHC [1]. One possibility to weaken these experimental constraints is to have, as previously

mentioned, a natural SUSY spectra. Although there has been much phenomenological study

of this case (for example [151]) it is unclear how such spectra may be realised from a UV

theory in a way that maintains the successes of low-energy SUSY such as the gauge unifica-

tion prediction of sin2 θw(mZ) and radiative EW symmetry breaking. The issue is again the

appearance of small parameters, in this case the ratio of third to first and second generation

sfermion masses. Of course, there is another well-known problem involving unexpectedly

small parameters: the SM fermion masses themselves which exhibit a large range of values.
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A very popular way of dealing with this, which again involves irrelevant operators generat-

ing terms that are forbidden at leading order by a new symmetry, is the Froggatt-Nielsen

mechanism [5].

Our aim in this chapter is to argue that these disparate cases may in fact be directly

related, with the same broken symmetry leading to small parameters in both the SUSY-

breaking and visible fermion/sfermion flavour sectors. In particular, we consider theories

where there is an additional underlying U(1) gauge symmetry broken at high scale. While

such symmetries may simply be regarded as a feature of an effective theory, they often

automatically appear in an underlying string theory model. This case is highly attractive

since these symmetries are naturally anomalous in the field-theory limit before a generalised

Green-Schwarz mechanism is included which typically leads the associated gauge bosons to

gain a large SUSY preserving mass [173]. Additionally, they can be linked to generation of the

visible sector fermion masses in brane stack models, whereby different generation fermions

are charged differently, as recently discussed in [174,175].

The possible role of U(1) gauge symmetries in breaking and mediating SUSY has been

studied extensively and it has previously been proposed to generate flavour structure in

sfermion masses, see e.g., [167, 168, 176–187].1 Many previous models have proposed the

fields that break the U(1) can be directly involved in the SUSY breaking sector. While

this is an attractive prospect it leads to issues such as the dilaton necessarily gaining an

F-term that may dominate the mediation [190]. An additional problem is if gaugino and

third generation soft masses are generated through gravity mediation it is very hard to avoid

dangerous flavour changing processes without making the first two squarks generations so

heavy as to drive the stops tachyonic during running [191] (this is discussed further in Section

5).

In contrast, in the models we consider, the U(1) vector multiplet receives a mass at a high

scale and only acts as an additional messenger interaction without being directly involved

with the SUSY-breaking. Importantly, since the SUSY breaking sector is charged under this

gauge symmetry, there is an additional contribution to the MSSM soft masses from a contact

interaction after integrating out the heavy vector multiplet.2 Then, as we will argue, if only

the first two generation sfermions are charged under the broken U(1), this can lead to first two
1Alternative UV models that could realise natural SUSY spectra have also been proposed [135,188,189].
2Operators generated by integrating out heavy gauge fields have previously been proposed as a viable

mechanism of mediating supersymmetry breaking [192,193], and have been studied in the context of dynamical
SUSY breaking and gauge mediation with universally charged MSSM fields [194].
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generation sfermion soft masses a factor of a few larger than the gauge mediated soft masses,

and therefore the first two generation sfermions can be heavy enough to evade detection

and realise natural SUSY, but not so heavy as to drive the stop tachyonic through RG

running. However, with first two generation sfermions in the mass range of a few TeV, flavour

violation is not adequately suppressed unless there is a high degree of degeneracy between

these sfermions. Because of this we take the first two generations to be charged equally under

the U(1), so both broken U(1) mediation and the competing SM gauge mediation are flavour

universal, leading to flavour observables within current limits. Of course, a consequence of

this is that the observed hierarchies in first and second generation fermion masses and mixing

cannot be ‘explained’ by selection rules following from the breaking of U(1), and only the

hierarchy and mixing between the third generation and the lower generations is due to the

Froggatt-Nielsen mechanism. Our attitude here is that the flavour structure of the first two

generations is set by high-scale physics which is independent of SUSY-breaking dynamics.

As we will show this is allowed since, in our model there can be O(1) breaking of the flavour

symmetry of the lower generation fermions consistent with the fact that the sfermion partners

simultaneously possess an effective flavour symmetry that is only very weakly broken at loop

order by the tiny first and second generation Yukawas.

Turning to the organisation of this Section, in Section 3.1 we introduce the overall struc-

ture of our models and the basic mechanisms of SUSY breaking and mediation in a field

theory setting, illustrating the ideas first using a Polonyi model, and then a fully dynami-

cal ISS model. Following this in Section 3.2, we examine how such models may naturally

appear from an underlying string theory possessing anomalous U(1) gauge symmetries. In

Section 3.3 we consider the low-energy spectrum of soft terms obtained, while in Section 3.4

we note some additional interesting phenomenological possibilities and discuss signatures.

3.1 Structure of Field Theory Implementation

We begin by discussing the implementation of our models in a low-energy field theory setting

using a Polonyi model as a straightforward example of the SUSY breaking sector. Following

this we implement a fully dynamical example, an ISS model.

47



3.1.1 Low-Energy Polonyi Model

The underlying theory is specified by four sectors. At the highest scale a sector that breaks

the U(1), a DSB sector, a messenger sector, and the visible sector. All sectors involve fields

charged under the U(1) symmetry, and the superpotential takes the form

W = WU(1) +WDS +Wmess +Wvisible , (3.1)

with a UV cutoff at a scale M∗ and canonical Kähler potential up to irrelevant operators

suppressed by powers of M∗. The sector WU(1) involves only fields Si, with U(1) charge i, and

spontaneously breaks the U(1) gauge symmetry through fields S+1 and S−1 getting vacuum

expectation values (VEVs) v leading to a gauge boson mass mZ′ = g′v. Here g′ is the U(1)

gauge coupling, and we assume that the scale of WU(1) is sufficiently above the other sectors

that the VEVs of fields S are rigidly fixed. Hence, once this symmetry breaking occurs, the

fields S±1 in the other sectors may be replaced by their expectation values v. This leads to

a small ratio in the theory we denote by ε = v
M∗

.3

The DSB sector has fields charged under the U(1) symmetry and the superpotential

includes irrelevant operators generated at the cutoff of the theory with the form

∆WDS = Sn

Mm
∗
ODS , (3.2)

where n and m are integers and ODS are operators involving the fields in this sector. Once

some of the Si obtain a VEV these couplings lead to small mass terms and parameters. In

particular, consider a very simple sector of Polonyi form with one field Φ with charge +6

under the U(1) symmetry. After S±1 gain their common VEV, the superpotential is

W ⊃
S6
−1
M4
∗

Φ = ε4v2Φ , (3.3)

leading to a SUSY-breaking F-term FΦ = ε4v2.

In the messenger sector there are fields, {ψ,ψc}, that form a vector-like pair under the

SM gauge groups which act as messengers of gauge mediation. They are charged under the

U(1) with couplings to the fields S and also to the DSB sector of the form

Wmess = Sp+1

Mp
∗
ψψc + Sn

′

Mm′
∗
O′DSψψ

c , (3.4)

3In a complete theory it is also necessary to explain the suppression of v relative to M∗. However, since
the required suppression is only a factor of ∼ 20 − 100 it is plausible it can arise without significant tuning
(for example due to a small coupling constant or loop factor).
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where O′DS is an operator in the SUSY-breaking sector that gains an F-term expectation

value (and is not typically the same operator as ODS in Eq. (3.2)), and n′ and m′ are integers.

We further assume they have a potential (either at tree or loop level) such that the SUSY-

breaking minimum remains either a stable or metastable state. Taking the combination ψψc

to have charge −4 this sector includes a mass term and interactions with Φ given by

W ⊃
S2
−1
M2
∗

Φψψc + S3
1

M4
∗
ψψc

= ε2Φψψc + ε3vψψc .

(3.5)

Due to the coupling between the field Φ and the messengers, there will be gauge-mediated

soft masses roughly of size

mgauge ∼
(
α

4π

)
Feff
mmess

∼
(
α

4π

)
ε3v , (3.6)

where Feff = ε6v2 is the effective F-term felt by the messenger fields due to its coupling to

Φ. In order that these soft terms are close to the EW scale, for values of ε appropriate to

fermion masses, v and M∗ must be relatively close to the weak scale, hence this is very low

scale gauge mediation with messenger masses an inverse loop factor above the weak scale.

This is phenomenologically beneficial as it results in relatively little running and the first two

generations can be pushed heavier without leading to a tachyonic stop.

Finally the visible sector superpotential takes the form

Wvisible = cij

(
S−1
M∗

)qij
Oijvisible , (3.7)

where i, j are generation indices. The parameters cij , which are not constrained by the U(1)

symmetry, are set by UV physics at (or above) the scale M∗ where the irrelevant operators

are generated, and may or may not satisfy other symmetry relations. After U(1) symmetry

breaking the effective Yukawa couplings relevant to IR physics which set the observed fermion

mass ratios and CKM mixings are

λij = εqijcij . (3.8)

As is well known, the observed third-generation fermion masses and mixings have properties

which set them apart from the lower generations: not only is the top Yukawa coupling O(1)

(as can be those of the bottom and tau if tan β is large) in distinction to the suppressed

first and second generation couplings, but SU(5) SUSY unification predictions work well for

mb/mτ , while the remaining predictions fail badly. In addition, if the experimentally observed
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ratios of second generation to third generation fermion masses at a low scale are run to the

GUT scale, assuming weak scale SUSY, the resulting ratios and mixings mc/mt ≈ 1/300,

ms/mb ≈ 1/40, mµ/mτ ≈ 1/17 and Vcb ≈ 1/25 are well-described by a structure of Yukawa

couplings for the up and down quarks and leptons depending on a single small parameter

ε ∼ 1/20 of the form

U '

 ε2 ε

ε 1

 , D '

 ε ∗

∗∗ 1

 , E '

 ε ∗

∗∗ 1

 , (3.9)

where here “∗” and “∗∗” denote entries that are O(1) (respectively O(ε)) or smaller, see

e.g. [195, 196]. This structure strongly suggests that some dynamics sets this pattern, such

as that following from a Froggatt-Nielsen mechanism [5], or from extra-dimensional orbifold-

GUT constructions [195–198]. This is particularly the case since, as far as we are aware,

there is no anthropic reason for the second-generation masses and Vcb to take their observed

values. On the other hand the masses of the first generation quarks, as well as the mass

of the electron, do not fit so nicely with any simply dynamical mechanism depending on

only one small parameter, and are, in addition, (remarkably) in accord with the anthropic

“catastrophic boundaries” linking mu, md, me, with λQCD and αEM [199,200]. In particular,

this is the claim that small variations in the values of these parameters would lead to dramatic

changes in the physics of the Universe at much larger scales.

Because of this we now make the crucial assumption, different from many previous studies,

that the physics that sets the 2-3 inter-generational mass ratios and mixings is different than

that which sets the 1-2 ratios and mixings. Specifically our starting place is that second-third

generational physics is set by the U(1)-dependent factors εqij while the first-second generation

physics is set by the cij ’s which are not determined by our broken gauged U(1).4

In detail, the up-like-Higgs and top-quark multiplets are uncharged under the U(1), such

that a superpotential term W ⊃ HuqL3u
c is allowed, with an order 1 coefficient to match

observation. In contrast the first two generation fields of the same SM quantum numbers

are taken to be charged equally under the U(1), leading to mass terms that are suppressed

by equal powers of ε. Since the U(1) symmetry is abelian the O(1) coefficients that dress
4The mixings and hierarchies between the lighter two generations may result from another broken Froggatt-

Nielsen flavour symmetry such as U(1) or SU(2) which is either not gauged, or does not interact with the
SUSY breaking sector, or, alternatively may instead be the result of landscape scanning of the coefficients cij
subject to the strong anthropic constraints that they must obey. The important point for our work is that we
do not need to specify this physics as long as it is independent of (commutes with) our U(1) that interacts
with the DSB and similarly retrofits some if its couplings.
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these couplings possess no symmetry properties, and can lead to the observed mass splitting

of the first two generation visible sector fermions and the Cabbibo mixing structure, as we

discuss in Section 3.3. (When investigating particular models, we will give explicit charge

assignments and show the textures generated in the visible fermion masses.)

For phenomenologically viable charge assignments, including only MSSM matter, the U(1)

symmetry would appear to have anomalies of the form U (1) × G2
visible and U (1)2 × U (1)Y,

however these can be cancelled by the messenger fields (or other matter which is chiral under

the U(1) and vector-like under the visible sector groups). Choosing a GUT compatible U(1)

charge assignment for the visible sector allows these anomalies to be cancelled by matter in

complete GUT multiplets hence gauge unification is preserved.5

After U(1) symmetry breaking, as a result of integrating out the heavy U(1) gauge boson

there will be a Kähler contact operator [190], derived in Appendix A.1, between any two

fields charged under the U(1) symmetry. This is important for our phenomenology as it

leads to an extra coupling between the field which obtain an F-term, Φ, and the first two

generation MSSM fields (and third generation down type quarks and leptons), Q1,2,

∫
d4θ cig

2

Φ†ΦQ†1,2Q1,2

m2
Z′

 . (3.10)

Here mZ′ is the mass of the heavy U(1) gauge boson, while ci ∼ qΦq1,2 depends on the U(1)

charges of the fields. Since mZ′ = g′v the dependence on g′ drops out leading to soft masses

for the first two generations

m2
K = −ci

|FΦ|2

v2 . (3.11)

At the scale these interactions are generated, the coefficients ci depend only on the U(1) gauge

charges of the fields, and therefore can naturally be equal for the first two generations by a

discrete choice of the charges. During RG evolution down to the weak scale the dominant

running effects will be due to SM gauge interactions which are still universal. The only

deviations from universality are due to the first and second generation Yukawas and have

a negligible effect. Therefore, flavour changing currents are not generated in the visible

sector, which is crucial for acceptable spectra. In order that sfermions receive a positive

mass contribution, it must be assumed that c1,2 < 0 . In Appendix A.1 it is seen that this
5It is possible to arrange, either by choice of U(1) charges or by the geometric localisation of the messenger

fields, that less suppressed interactions between S and the visible sector are not generated upon integrating
out these states.
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can be easily realised in UV completions, simply if the fields Φ and Q1,2 have the same sign

charge. Since the exact properties of the underlying theory are unknown, we fix and overall

normalisation by setting ci = −qi for all states in the visible sector with U(1) charge qi. The

qualitative properties of the spectra obtained are not especially sensitive to this assumption.

Since the third generation up-type quarks are uncharged under the U(1) there are no

such terms generated for the stops through this type of interaction. Further, integrating

out the gauge multiplet will not generate terms of the form
∫
d4θ f

(
Φ†,Φ

)
Q†1,2Q3 hence

these are suppressed relative to the Kähler mass terms Eq. (3.11). Since the Higgs fields

are uncharged under this symmetry, the soft masses m2
Hd

and m2
Hu

are not large which is

beneficial in avoiding large fine tuning of the EW scale. An important assumption we are

making is that there is no additional field content in the UV theory that generates significant

Kähler couplings between Φ and the top multiplet. In a realistic UV completion these will

appear at some level, however may naturally be expected to be suppressed by either M∗ or

MPl and therefore be negligible compared to the other contributions.

In the model considered here the interaction Eq. (3.11) generates masses

m2
K = −ci

|FΦ|2

v2 = ε8v2 . (3.12)

There will be a similar coupling to the messenger fields,

∫
d4θ ci

Φ†Φ
v2 ψ†ψ . (3.13)

Since the messenger mass is close to
√
F , the SUSY breaking from this term can lead to

slight corrections to the gauge mediated masses induced in the visible sector compared to

the normal formula derived assuming analytic continuation. In Appendix A.2 we give the

general formula which we use in our later phenomenological analysis. While the exact form

of these corrections is complicated their effect is straightforward: both the next corrections

in F
m and those from SUSY breaking diagonal masses tend to increase the sfermion masses

relative to gaugino masses as they do not break R-symmetry.

The key phenomenological feature of our models is that the ordinary gauge mediated

contribution from messenger fields will compete with this Kähler contribution to the first

two generations leading to a scenario where the first two generation sfermions become rel-

atively heavy, while the stop quarks stay light, realising a natural SUSY spectrum. These

contributions can give phenomenologically reasonable soft terms and natural spectra with
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appropriate choices of M∗ for ε in the range suggested by the fermion mass hierarchy. In

Section 3.3 we study the MSSM spectra for reasonable choices, however first we examine a

more sophisticated and UV complete model of SUSY breaking.

3.1.2 ISS Model of Supersymmetry Breaking and Mediation

While general features of these models can be realised in many examples we now consider

the ISS model [129] as an example of a fully dynamical SUSY breaking sector, which, once

including the suppression from retrofitted couplings, needs no small scales or couplings. In

particular this allows the very natural possibility of associating M∗ with the GUT scale. A

retrofitted model has previously been studied in [201], and here we consider a mediation to

the visible sector through the addition of messenger fields.

The theory is a simple modification of that described in Section 2.8. Consider supersym-

metric QCD with gauge group SU (Nc) and Nf quarks, Qi, Q̃i, in the range Nc + 1 ≤ Nf <

3
2Nc. The quarks have charge +n/2 and the messenger fields −n/2 under the U(1) which

is broken in a separate sector by two fields with charge ±1, 〈S±1〉 = v. The SU (Nc) gauge

coupling is asymptotically free and the theory has a dynamical scale, Λ, above which the

superpotential is given by

W = 1
M∗

QiQ̃
iψψc +

Sn−1
Mn−1
∗

QiQ̃
i + Sn1

Mn−1
∗

ψψc . (3.14)

Below Λ the theory is given by the Seiberg dual which consists of magnetic degrees of

freedom: dual quarks q, q̃ and the (canonically normalised) meson of the electric theory

Φj
i = QiQ̃

j

Λ with superpotential

W = Φj
i q
iq̃j + vn

Mn−1
∗

ΛTr (Φ) +
(

vn

Mn−1
∗

+ Λ
M∗

Tr (Φ)
)
ψψc . (3.15)

With this superpotential, neglecting the small coupling to the messenger fields, the F-terms

of the meson field are given by FΦij
= q̃jq

i −mΛδij , where m = vn

Mn−1
∗

.

As usual the differing ranks of the two contributions to FΦ imply that not all F-terms can

vanish and therefore SUSY is broken in a metastable vacuum with Φ gaining an F-term of

order FΦ ∼ vnΛ
Mn−1
∗

.6 Since the mass term in the electric theory, ∼ vn

Mn−1
∗

, can naturally be much

smaller than Λ, the F-term can be suppressed away from other scales in the theory allowing
6This F-term depends on anO(1) coefficient, which is undetermined by holomorphy and therefore unknown.

However all the soft mass contributions will be seen to depend on FΦ in the same way therefore this leads to
no alteration in the phenomenology.
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for small SUSY breaking soft terms to be generated in the visible sector after mediation.

Including the non-renormalisable couplings to messengers in the electric superpotential

explicitly breaks the R-symmetry of the magnetic theory (discussed in Section 2). Conse-

quently, this also potentially creates new SUSY preserving vacua. However, the R-breaking

is small so the metastable SUSY-breaking vacua can be long lived. This can be connected to

the requirement that the cosmological constant vanishes by making the sector that gives the

VEV 〈S〉 6= 0 the same sector that gives a constant contribution to the supergravity scalar

potential.

Regarding the visible sector soft masses gauge mediation will give a contribution

mgauge ∼
(
α

4π

)
Mn−2
∗ ΛFΦ
vn

∼
(
α

4π

) Λ2

M∗
, (3.16)

which can be close to the EW scale without fine tuning, as a large hierarchy between Λ and

M∗ is natural. In addition as in the simple Polonyi model, integrating out the heavy U(1)

gauge boson leads to a Kähler contact operator between Φ and other U(1) charged fields. In

the electric theory this is given by

∫
d4θ cig

2
(
Q̃†Q̃+Q†Q

m2
Z′

)
Q†MSSMQMSSM . (3.17)

In the magnetic regime the Kähler potential is given by

∫
d4θ cig

2 Φ†Φ
m2
Z′
Q†MSSMQMSSM . (3.18)

This induces masses for the first two generations

m2
K = −ci

|FΦ|2

v2 = −ciε2n−2Λ2 . (3.19)

As in the previous model, there will also be a coupling to the messenger fields:

∫
d4θ ci

Φ†Φ
v2 ψ†ψ . (3.20)

The qualitative features of such a model are rather similar to that of the simple Polonyi

case. Some details differ, however. In particular since the soft terms are set by the dynamical

scale Λ which can be exponentially separated from M∗ (and in fact must be for reasonable

gauge mediated soft masses), the two scales v and M∗ can now be large.
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3.2 String Theory Implementation

Since with phenomenologically viable charge assignments the U(1) symmetry naturally pos-

sesses mixed anomalies with the SM gauge groups (at least at the level of triangle diagrams

involving chiral fermions, and before including the contribution from messenger fields), it

is tempting to associate it with the “anomalous” symmetries necessarily found in realistic

compactifications of string theories which are rendered consistent by the generalised Green-

Schwarz mechanism. While there are various possible stringy UV completions of our models

we focus on IIB theories as we now explain.7

In traditional heterotic string theory a U(1) with anomalies cancelled by the Green-

Schwarz mechanism necessarily obtains a large Fayet-Iliopoulos term ξ = g2M2
PlδGS/16π2

where δGS is the mixed U(1)-gravity2 anomaly coefficient which must be non-zero (however

see [202]). Then the D-term contribution to the action is given by g2

2 (ξ+
∑
Sj jSjKj)2 where

Sj are all fields charged under the U(1) (with charge j), and Kj is the derivative of the

Kähler potential with respect to Sj . In order that this does not lead to excessively large

SUSY breaking at least one of the fields must gain a VEV, and this VEV is automatically as

large as the mass of the U(1) gauge boson. A theory of this type could in principle be used

to generate retrofitted models of the form discussed in the previous section if the irrelevant

operators appear in the effective field theory by integrating out matter of typical mass MPl.8

However for our particular case there are some problems with using this traditional heterotic

construction. In particular, the requirement of universal mixed anomalies (up to Kac-Moody

level factors) too-severely restricts our model-building freedom, while the form of the D-term

with non-zero FI term implies that only fields of either positive or negative charge will gain

VEVs, not both. Hence, we consider a slightly different scenario using an underlying IIB

string theory (such a IIB construction was recently used to implement a Froggatt-Nielsen

mechanism in [174, 175]), which leads to a similar but not identical structure to the models

of the previous section.

In Type IIB string theory, unlike in traditional heterotic theories, non-universal mixed

anomalies can be cancelled by massless twisted closed string modes which shift under an

anomalous transformation. In the process the U(1) gauge boson gains a mass through the
7Our summary of the appearance of such symmetries in string theory follows the discussion in [173] which

contains further details.
8In this case there is the beneficial feature that the ratio 〈Si〉

MPl
∼ 0.01 is automatically appropriate for the

fermion mass hierarchies as has been noted by many authors.
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Stueckelberg mechanism. An important difference with the heterotic case is that, depending

on the underlying geometry, the Fayet-Illiopoulos term can be zero, allowing in the IIB case

the situation where no fields charged under the U(1) symmetry necessarily gain VEVs. Hence,

at the perturbative level, a global U(1) symmetry can survive in the low-energy theory below

the mass of the vector boson, this symmetry only being explicitly broken by non-perturbative

effects which can naturally be very small [173]. The charges of fields under the global U(1)

are identical to their charges under the gauged U(1). One further advantage of IIB models is

that by utilising intersecting brane stack constructions it is straightforward to build theories

such that only some generations are charged under the anomalous U(1).

With this UV completion, the structure of our models is as follows. At the string scale

M∗ = Mstring there is an anomalous U(1) gauge symmetry. Through the Stueckelberg

mechanism the associated gauge boson gains a massmZ′ leaving an (approximate, anomalous)

global symmetry. Integrating out this heavy state leads to Kähler contact operators with

coefficients determined by the charges of the fields involved and the gauge boson mass.

Often it is assumed that the vector boson mass is given by gM∗. However as shown in [203]

this relation can be modified in the case of asymmetric compactifications by ratios of volume

factors, which can be parametrically less than 1. We include these effects though a parameter

λ and write mZ′ = λgM∗.

At a lower energy scale the approximate global symmetry is broken by fields S1 and

S−1 gaining common VEVs v with ε = v
M∗
� 1 (these VEVs slightly correct the vector

boson mass). As in the previous section, fields in the DSB sector and the visible sector have

U(1) charges such that global symmetry forbids some mass terms and parameters at leading

order, these terms being generated from irrelevant operators of the form WDS ⊃ Sn

Mm
∗
ODS and

Wvisible ⊃ Sp

Mp
∗
Ovisible, so suppressing couplings by powers of ε.

The resulting soft term structure at the scale of SUSY breaking is similar to the field

theory case. There will be a universal gauge mediated contribution and also masses from

contact terms generated between fields in the SUSY breaking and visible sectors as a result

of integrating out the heavy gauge boson. In the present models mZ′ = gλM∗, which is of

slightly different parametric form compared to the field theory implementation, resulting in

a small shift in the relative size of the Kähler contribution. For example, in the ISS model,
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the Kähler mass contribution to the first two generation sfermions Eq. (3.18) is

m2
K = −ci

|FΦ|2

(λM∗)2 = −ci
(
εnΛ
λ

)2
. (3.21)

One notable change in the phenomenology is that the scale of mediation is typically high.

As a consequence, there will be large logarithms when the soft masses are run to the weak

scale. In Section 3.3 we will see that this can make it harder to obtain viable spectra

with large splitting between different generation sfermion masses. Additionally, one might

be legitimately concerned about whether the Kähler contribution will dominate over other

generic contributions that may be expected to also couple the SUSY-breaking and visible

sectors with suppression by the string scale. If the two sectors are approximately sequestered,

with communication only occurring through the U(1) gauge multiplet and messenger fields,

the only extra contribution will be a small, generation universal, anomaly mediated soft

mass. This is the scenario we study in detail in Section 3.3, by taking the parameter λ = 1.

However, the extent to which two sectors may be completely sequestered is still unclear (see

for example [204–206]). Alternatively λ can be fairly small of order 0.01, slightly lowering

the scale of mediation. This will enhance the Kähler and gauge mediated contributions

sufficiently that they can dominate over couplings suppressed by the string or Planck scale.9

3.3 MSSM Spectra

Having discussed the main features of our models, in this section we study in some detail

the pattern of soft terms obtained in the MSSM sector. The spectra of soft masses in the

previous sections are valid at the energy scale where SUSY-breaking is mediated to the visible

sector. For the gauge and Kähler contributions this is the mass of the messenger fields and

the SUSY breaking sector respectively.

To make any phenomenological predictions it is necessary to run the soft masses to the

weak scale. While doing this there will be two dominant and competing effects on the stop

masses [191]: 1) the non-zero gaugino masses will tend to pull the third generation soft

masses squared to larger values, as in gaugino mediated scenarios, and 2) the large first and

second generation masses from Kähler mediation will push the third generation soft masses

squared towards negative values. In cases of very low scale mediation these effects have a
9In full string constructions it can sometimes be the case that the Kähler contribution is only one of a

number of similar sized universal contributions (at least between the first two generations) [186, 187]. We do
not consider such modifications here.
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reasonably small impact due to the small size of the logarithms, while in models with higher

scale mediation these effects can be significant and limiting of the low-energy spectra that

can be obtained. First we consider the field theory case, with low-scale SUSY breaking, using

the particular example of the Polonyi Model discussed in Section 3.1.1, then we examine the

sting motivated case with the ISS model of Section 3.1.2.

3.3.1 Polonyi Model

Recall, Feff = ε6v2, mmess = ε3v, and a Kähler mass contribution mK = ε4v. The charge

assignment to MSSM fields is given by Table 3.1, therefore the SM fermion masses dictate

ε ∼ 0.1, and hence to obtain a reasonable spectrum of soft terms requires M∗ ∼ 108 GeV and

v ∼ 107 GeV.

qL uc ec L dc

generation 1 1 1 1 1 1
generation 2 1 1 1 1 1
generation 3 0 0 0 0 0

Hu Hd

0 0

Table 3.1: Charge assignments for low scale breaking

As discussed, the third generation superfields are uncharged and hence obtain Yukawas of

O (1), while mass terms for the first two generations have non-zero net U(1) charge therefore

are generated only once S−1 gains a VEV. Due to the GUT-consistent structure of charges,

the lepton mass hierachy is parametrically the same as that of the down-type quarks, although

the two sets of coefficients are not equal. The resulting up- and down-like Yukawas are given

by

U =


c11ε

2 c12ε
2 c13ε

c21ε
2 c22ε

2 c23ε

c31ε c32ε c33

 , D =


c′11ε

2 c′12ε
2 c′13ε

c′21ε
2 c′22ε

2 c′23ε

c′31ε c′32ε c′33

 , (3.22)

where cij and c′ij are coefficients which, as discussed, are not subject to any symmetry

structure. Before inclusion of these coefficients the U(1) charges lead to a mass spectrum of

SM fermions parametrically of the form

mup ∼ 〈Hu〉
(
ε2 ε2 1

)
, mdown ∼ 〈Hd〉

(
ε2 ε2 1

)
∼ mlepton , (3.23)

58



while the 2-3 block of the CKM matrix is of the correct form

VCKM ∼

 1 ε

ε 1

 . (3.24)

As discussed in Section 3.1 the mixings and mass-hierarchies involving the first generation

are not set by the broken U(1) but depend on the coefficients cij and c′ij for i or j ∈ {1, 2}

which depend upon independent physics. This physics might be an additional UV flavour

symmetry that is independent of SUSY-breaking dynamics, or it might be the result of a

random anarchic structure. For instance, if the O(1) coefficients cij and c′ij take random

values over a finite range, for example a flat distribution in [0, 1], the total 3 × 3 CKM

structure can easily be close to that observed.10 Additionally, these coefficients and level

repulsion in the eigenvalues of the mass matrices can account for the fairly large splitting

observed between the first two generation fermions. In any case, in our model, there is strong

alignment between the third generation sfermion and fermion mass eigenstates. Typically,

the first two generation fermion mass eigenstates contain at most a component of size ε of

the third generation U(1) eigenstate, while the first two generation sfermion masses are equal

to high precision.

In order to study the spectrum of sfermion masses that may occur in such a theory it is

most interesting to fix the gauge mediated contribution to these masses so that the gluino is

around 1.5 TeV close to current limits. This fixes the combination

mgauge ∼
(
α3
4π

)
ε3v ∼ 103 GeV . (3.25)

Therefore the Kähler contribution is given by

mK ∼ ε4v ∼
(4π
α3

)
εmgauge , (3.26)

which depends only on the value of the parameter ε. In addition, we choose the number of

pairs of messenger fields nm = 5. This increases the gauge mediated gluino mass, which is

proportional to nm, relative to the stop mass which is proportional to √nm, but is not so

large as to lead to a Landau pole for the SM gauge couplings below the GUT scale.11

10The required CP phase of the CKM matrix can arise from the values of the order one coefficients that
appear in the superpotential terms which generate the yukawa couplings.

11In this model, anomaly cancellation requires additional matter charged under the U(1) and MSSM gauge
groups. We assume these fields have charges such that they do not couple strongly to the SUSY breaking sector,
and are not sufficiently numerous that they lead to a Landau pole. Alternatively, anomaly cancellation with
no extra matter is possible if there are fewer messenger fields present. The only effect of such a modification
is the gluino mass will be lowered towards that of the stop.
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In Fig. 3.1 (top) we plot the soft masses obtained at the scale
√
F by allowing ε to vary

while keeping the gauge mediated contribution fixed. As ε increases the first two generations

obtain increasing masses from the Kähler operator resulting in a natural SUSY spectrum. As

discussed we need to run the spectrum to the weak scale. The Kähler contribution to the first

two generation soft masses turns on at a scale
√
F ∼ ε2v while gauge mediated contributions

to these and the gaugino and third generation soft masses begins at mmess ∼ ε3v. Depending

on the charge assignments, and the particular value of ε, it is possible that the sbottom or stop

may be driven tachyonic at some point in this energy regime. Such an event is not necessarily

problematic if these states run back to positive mass squared before the weak scale. Provided

mt̃ (mZ) > 1
10M3 (mZ) the EW breaking vacuum is sufficiently meta-stable against decays to

a colour breaking vacuum compared to the lifetime of the Universe [207–209]. This relation

is typically satisfied for our models.12

Below a scale m1,2 the first two generation sfermions are integrated out of the theory

and have no further effect on the third generation running, while the positive contribution

from the gluino persists until the gluino mass is reached. Additionally the gauginos and first

two generation sfermion masses also flow. We solve the RG equations numerically and plot

the mass spectrum at the weak scale in Fig. 3.1 (bottom). As ε increases the Kähler mass

contribution increases and during running the stop and stau masses are driven smaller, until

at ε ∼ 0.2 the right-handed stau becomes tachyonic at the weak scale and the spectrum is

not phenomenologically viable.

The key point of our models is that for values of ε motivated by the fermion mass hierarchy

the split between the first two generation soft masses and the third is sufficiently large to

realise natural SUSY, but not so large as so lead to tachyonic third generation states. The

NLSP (after the gravitino) is typically a stau, which is fairly light, and can modify cosmology

and certain collier signals as we will discus later. As a representative example of the full

spectra that may typically be obtained, we show the field content for ε = 0.10 under the

current assumptions in Fig. 3.2. This is a reasonable value in the middle of the plausible

range without fine tuning to the edge of the allowed region.
12The energy region where such states are tachyonic is fairly small hence there is little danger of reheating

after inflation into a colour breaking vacua, and even in this case it has been suggested that the EW vacua
may be favoured [210].
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Figure 3.1: The spectrum of superparticles before (top) and after (bottom) running to the weak scale
in the Polonyi model. F and v have been fixed to give a gluino in the region of 1.3 TeV after running,
close to current LHC limits, while M∗ is varied changing ε and therefore the relative importance of
the Kähler interactions. For ε > 0.22 the first two generation sfermions are so heavy that a stau is
driven tachyonic during running and the weak scale spectrum is not phenomenologically viable.
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Figure 3.2: A typical spectrum of superparticles after running to the weak scale in the Polonyi model.
F and v are fixed to give a gluino in the region of 1.3 TeV and as a representative example ε = 0.1.
There is a very light gravitino LSP and the right-handed stau is the NLSP.
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3.3.2 ISS Model

It is also interesting to see to what extent we can realise natural SUSY in the ISS model

at a relatively high scale. In this case we take the string motivated Kähler contribution,

mK ∼ F
M∗

. To simplify the analysis we assume the parameter λ = 1, and take the U(1)

charge assignment of Table 3.2.13 This has the phenomenological benefit that it gives the

right-handed stau a large mass, preventing it running tachyonic, which would otherwise place

the strongest limit on the allowed values of ε. Before inclusion of the cij and c′ij coefficients

qL uc ec L dc

generation 1 1 1 1 1 1
generation 2 1 1 1 1 1
generation 3 0 0 1/2 1/2 1

Hu Hd

0 0

Table 3.2: Charge assignments for high scale breaking

these give a mass pattern

mup ∼ 〈Hu〉
(
ε2 ε2 1

)
, mdown ∼ 〈Hd〉

(
ε2 ε2 ε

)
∼ mlepton , (3.27)

while the third-second generation sub-block of the CKM matrix is again of the form (3.24).

Reasonable splitting of the third generation leads to 0.007 . ε . 0.05. This also gives a

CKM matrix of the correct form to leading order. Since the third generation down sector

masses are suppressed by a factor of ε, tan β = 〈Hu〉
〈Hd〉 ∼

mt
mb
ε ∼ 1 assuming Yukawa coefficients

in the third generation are O(1). This may be phenomenologically favoured over the alter-

native of large tan β ∼ mt
mb
∼ 40 in enhancing the Higgs mass to 125 GeV in an NMSSM like

model (see [90] for a review). As the bottom Yukawas are small, even though the Kähler mass

contribution will lead to multi-TeV scale bottom squarks these do not lead to fine tuning of

the EW scale.

Again we take there to be five pairs of messenger fields, and as well motivated by string

compactifications, M∗ = 1016 GeV. In order to obtain a gauge mediated contribution to

soft masses (and in particular the gaugino masses) of order TeV such that these are close to

current limits but not excluded requires Λ ∼ 1010GeV. To obtain Kähler contributions to

the first two generation masses that are also a few TeV for reasonable values of ε, we take the

charge, introduced in Section 3.1.2, n = 4. Of course, this is a particular choice which leads
13In this case we are choosing a U(1) charge structure that is not compatible with a traditional 4D GUT.

However it is compatible with an orbifold GUT structure, which can result from an underlying IIB D-brane
model, with split matter multiplets [197,198]. Thus precision SUSY gauge-coupling unification can be main-
tained.
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Figure 3.3: The spectrum of superparticles before (top) and after (bottom) running to the weak scale
in the string motivated case. Λ and M∗ have been fixed to give a gluino in the region of 1TeV after
running, and ε is allowed to vary.

to viable natural spectra, however as a discrete value it is plausible and not a fine tuning in

the sense of a continuous parameter. Such a choice also has the benefit of setting the mass

of the messengers and also the coefficient of QiQ̃i in the electric ISS superpotential equal

to ε3v ∼ 108 GeV. Since this is much less than the strong coupling scale of the ISS theory

it is valid to use the Seiberg dual of this theory, and the SUSY breaking vacua obtained is

sufficiently long lived.

Unlike the field theory case, the gauge mediated contribution, mgauge ∼
(α3

4π
) Λ2

M∗
, is

independent of ε. Therefore in studying the spectra we simply fix Λ and M∗ and allow ε to

vary, which changes the Kähler mediated contribution mK ∼ ε4Λ. Since the running occurs

over a long period it is important to use the full RG equations and our analysis is done using

SOFTSUSY [211]. The spectrum obtained before and after running is shown in Fig. 3.3.

For choices of ε ' 0.02 a natural SUSY spectrum with light stops and heavy first two

generations is obtained, however the range of ε that generates such a spectrum is smaller

than in the field theory case. There are two reasons for this, firstly, since SUSY is broken at
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a higher scale there is more running, therefore for a given stop mass the first two generations

cannot be as heavy as previously. This effect is unavoidable in any model of natural SUSY

that uses high scales as may be natural in string completions. Secondly, in this scenario

the Kähler masses have a power law dependence on ε while the gauge mediated contribution

has no such dependence, therefore relatively small changes in ε change the Kähler masses

significantly. This may be regarded as a defect of the model, however our purpose is only to

demonstrate that natural SUSY spectra are possible in realistic completions.

As previously discussed, in order to obtain a vanishing cosmological constant, there must

be an R-symmetry breaking constant superpotential term generated by the theory. Depend-

ing on the particular dynamics, the sector that generates the VEV for the S fields may play

such a role.

3.4 Variations and Signatures

3.4.1 Variant Spectra

So far we have not addressed the µ/Bµ problem that is very commonly found in models of

gauge mediated SUSY breaking [212]. This may be solved using a mechanism completely

separate from the U(1) and generation of a natural SUSY spectrum, or alternatively, with

minor alternations to the charge structure could be solved automatically in our models.

Suppose the down-type Higgs has charge 1
2 under the U(1) symmetry. Then suitable choices

of the charges of the lepton and down-type superfields can still lead to viable fermion mass

patterns and natural soft mass spectra (for example one may shift the charge assignments

of all three generations of dc and L fields by −1
2 from their values in Table 3.2). As a

consequence both the µ and Bµ terms are forbidden at tree level, while the down type Higgs

obtains a significant Kähler soft mass m2
Hd
∼ (4 TeV)2 while m2

Hu
∼ (200 GeV)2. If the DSB

and messenger sectors additionally involve fields with charge ±1
2 gaining VEVs or F-terms,

it is possible to generate µ and Bµ, and depending on the explicit model, these satisfy the

standard relation Bµ ∼ 16π2µ2. However, this pattern of soft masses and parameters with

m2
Hd

large now realises lopsided gauge mediation [213], at least as far as the Higgs sector of

the theory is concerned, and which leads to viable EW symmetry breaking without excessive

fine tuning.

While we have studied charge assignments such that the first two generation sfermions

gain large soft masses, there is an alternative option that can lead to natural SUSY spectra.
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If the top superfields are charged appropriately, it is possible the stops gain a negative mass

contribution from the Kähler couplings pushing them to a lower mass than the first two

generation sfermion masses. Such charge assignments can also generate the fermion mass

hierarchy if the Higgs multiplets are charged under the U(1). In fact, even if the theory is

such that the stops have negative mass squared at the mediation scale it is possible, after

running, to obtain viable spectrum with non-tachyonic stops at the weak scale if the gluino

is sufficiently heavy. This was first raised as a possibility in [214] where it was suggested as a

mechanism for obtaining a spectrum with low fine tuning. In such a model the stop may be

expected to be tachyonic for a relatively large range of energies. Hence, even if the lifetime of

the EW breaking and colour-preserving vacuum is sufficiently long, there is a concern about

whether the Universe is likely to find itself in this metastable state after reheating. While we

have not investigated this scenario in detail, preliminary investigation demonstrates that it is

possible to obtain reasonably natural spectra consistent with LHC constraints. However, as

in the models we have focussed on, very light stops, possibly down to about 400GeV, require

some fine tuning of the parameters of the theory.

As an additional possibility, if we reject the requirement of naturalness, it is also easily

possible to generate a split [215,216] or mini-split spectrum within these models [217]. This

could occur if all the quark superfields have the same sign charge under the U(1), hence

all sfermions gain a large positive mass contribution from Kähler interactions. In order to

obtain a viable fermion mass spectrum this would require the Higgs fields to have the opposite

charge. In this case since the SUSY flavour problem is solved by decoupling, the U(1) could

also generate the texture in the first two generation fermion masses.

3.4.2 Collider Signals, Flavour and Higgs

The collider signals of the natural SUSY spectra typical of our models have been studied

extensively. Depending on the charge assignments, a bino or stau is generically the NLSP,

which for very low gravitino mass may decay in a typical detector distance while for larger

gravitino mass will escape the detector. Both cases lead to clear signals that can be studied

at the LHC. However, the relatively heavy gluino masses (mg̃ > 1.5 TeV) and especially

the almost decoupled first two generations, reduce production cross sections dramatically,

and spectra are typically well within current LHC limits such that a light stop is not ruled

out. As we have seen, a very light stop is hard to achieve, a more realistic model has been
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seen in Fig. 3.2. Since in this case the stop is not especially light (though still far below

current bounds for squark masses in generation universal models) such a spectrum will be

challenging to discover at the LHC until a large integrated luminosity has been accumulated.

Additionally, if R-parity is broken, spectra with a lighter gluino may be compatible with

LHC constraints, allowing lighter stops in our models [162]. More detailed analysis of the

expected signals and phenomenology can be found in for example [166,218–224].

A common concern in SUSY theories is suppressing flavour changing effects to safe levels.

In our model these effects can be well within current limits. The ordinary gauge mediated

contribution is automatically flavour blind as normal. Additionally the Kähler contribution

to the first two generation sfermions is universal. Therefore flavour changing effects occur

only due to the small mixing in the CKM matrix between the first two generations and

the third generation. More precisely, the first two fermion mass eigenstates include only a

component of the third generation U(1) eigenstate of size ε. In order to produce a realistic

CKM matrix ε must satisfy ε ∼ Vcb ∼ 0.04. Hence, the sfermion mass squared matrix

differs from diagonal in the first two generation sector at most by by elements like V 2
cbm

2
t̃
.

There is also additional suppression of flavour changing effects due to the relatively large

masses of the first two generation sfermions. Utilising the expressions in [81] we find that

CP-conserving flavour changing effects are typically well within experimental limits. CP-

violating processes generally give stronger constraints; if the first two generation sfermions

are near their maximum allowed mass and ε fairly small these can be within current limits

for O (1) phases in the soft terms. Alternatively, we can assume the UV theory is such that

these phases are small or zero.14

While it may be hoped that light stops allow a theory without excessive fine tuning

(we discuss this further in Section 5), it is not immediately obvious how to combine such a

spectrum with a lightest Higgs mass of 126 GeV as recently discovered by ATLAS and CMS,

since as discussed the tree level Higgs mass is bounded by mZ at tree level. We discuss the

resolution to such a problem in an NMSSM like model in the next section.

3.4.3 Axions and Cosmology

In the string motivated case an approximate global symmetry is spontaneously broken and

there will be an axion present in the low energy theory, which will, because of the U (1) ×
14The counting of physical phases also depends on the mechanism that generates µ and Bµ, hence is model

dependent.
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G2
MSSM anomaly, have couplings to the MSSM gauge multiplets. Therefore in the case of

relatively high scale mediation this state could even play the role of the QCD axion. This is

by no means necessary, however. For example, there may be couplings between the axion and

any hidden gauge groups, for instance in the DSB sector, depending on the particular anomaly

coefficients of the theory. Such anomalous couplings to a hidden gauge sector typically imply

that the axion-like states gains a large mass of order Λ2
hidden
fa

, and therefore cannot be the

QCD axion. On the other hand this allows current astrophysical and direct search bounds

to be easily evaded even if fa ∼ v � 109 GeV.

Further, depending on the mass and decay constant of the axion, as well as the initial mis-

alignment angle and thermal history of the Universe, this can provide a significant component

of the DM. In fact it may be highly beneficial to couple the QCD axion to the DSB sector:

typically overproduction of the axino and saxion, combined with gravitino limits, strongly

constrains the reheat temperature over a large parameter space [225]. However if there is a

significant coupling between the axion multiplet and the SUSY-breaking sector the axino and

saxion can gain large masses greatly relaxing these limits [226]. The presence of a light axion

degree of freedom coupling both to the DSB and visible sectors is similar to a scenario we

recently studied where the axion was the primary mediator of SUSY breaking [227], although

in the present models the axion multiplet does not typically gain a significant F-term.

Apart form the possibility of such an axion, the cosmology of the models are fairly similar

to that of normal gauge mediated models. One exception is when the U(1) charge assignments

are such that there is a light stau in the theory, in which case it is typically the NSLP after

running (see for example Fig. 3.2). This may be beneficial for cosmology; since a stau NLSP

leads to decay hadronically it can decay into the gravitino later than other NLSP candidates

without disrupting big bang nucleosynthesis. As a result a heavier gravitino is compatible

with observations, permitting a higher reheat temperature without gravitino overproduction

aiding inflation model building. More precisely, it has been suggested that F in the region
√
F ∼ 108.5−10 GeV and thus m3/2 ∼ 0.1 − 100 GeV (which is compatible with a GUT scale

value of M∗) may permit reheat temperatures up to roughly 109 GeV [228].
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Chapter 4: Running Through Strong Coupling in

λSUSY

This chapter is based on [229], work done in collaboration with John March-Russell and

James Unwin .

As discussed in Section 2, the Higgs recently discovered by ATLAS and CMS [230, 231]

with a mass around 125 GeV is potentially problematic for models of SUSY. Common ap-

proaches to raising the mass of the lightest Higgs state are through large loop corrections,

new contributions to the quartic Higgs coupling, or via level repulsion due to mixing between

the Higgs and a SM singlet state.

Probably the most studied possibility involves stop squarks significantly heavier than

the top quark leading to large contributions from the stop loops. In models with universal

sfermion masses, collider limits typically force the stop masses to be sufficiently heavy that

the requirement that mh ≈ 125 GeV can be achieved in the MSSM provided tan β is small.

However, in models of natural SUSY, the weak scale stop masses are often significantly

lighter than the universal limits in an attempt to reduce fine tuning. Specifically, it is

difficult to obtain mh ≈ 125 GeV with stop masses (m
t̃
. 1.5 TeV) in the MSSM unless

there is near-maximal mixing between t̃L and t̃R [111,232,233], requiring very large A-terms.

However, these are difficult to generate in models of gauge mediation, which are attractive

for minimising fine tuning since they can have a low mediation scale.

In this section we study the well-motivated approach of introducing a new source for the

quartic Higgs interaction via the superpotential term λSHuHd, which involves a new SM

singlet state S, as found the Next-to-Minimal Supersymmetric Standard Model (NMSSM).

Including this as well as leading loop corrections leads to contributions to the mass of the

lightest SM-like Higgs state of the form Eq. (2.40).1

For sizeable λ & 0.6 the new NMSSM contribution provides the dominant correction to

the Higgs mass and one can obtain mh ≈ 125 GeV whilst maintaining natural stop masses

and small stop mixing. Moreover, the NMSSM is far from an ad hoc solution, since it also

provides a solution to the µ-problem of the MSSM [56]. It is notable that if the coupling
1For simplicity, and motivated by minimal constructions, we shall assume that t̃1 and t̃2 are approximately

degenerate; our conclusions are not substantially altered upon relaxation of this assumption. Throughout we
shall consider only models in which A-term contributions are negligible.
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λ & 0.7 at the weak scale then it will run non-perturbative before the unification scale. It is

then natural to be concerned that such large values may result in undesirable side-effects on

precision gauge coupling unification. The aim of this chapter is to quantify the impact on

unification of λ running through a period of strong coupling.

Experience with the running of the QED coupling through the QCD strong coupling

regime is indicative that non-perturbative dynamics in some sector of a theory is not necessar-

ily disastrous for the evolution of an independent gauge coupling, despite naive expectations

based upon cursory examination of the RGEs. In fact, the corrections to the QED coupling

αEM generated during the region in which QCD is strongly coupled can be measured exper-

imentally, as well as estimated from semi-rigorous theoretical calculations, and is of order a

few percent [234]. Furthermore, arguments based on holomorphy [72,235–237] lead us to be-

lieve that the strong coupling in λSUSY should not damage gauge unification. In this section

we demonstrate that provided the coupling λ remains non-perturbative for roughly less than

an order of magnitude in energy then this in fact can likely increase the precision of gauge

coupling unification, correcting the present 3% discrepancy in MSSM gauge unification [1]

due to the strong coupling constant running too fast.2 While it is entirely possible that this

present deviation between the predicted αs(mZ) and the measured value may be resolved by

threshold corrections near the weak or GUT scale [245, 246], there are well motivated cases

where these are naturally small [98,243]. We thus find it intriguing that λSUSY models may

not disturb, but even improve, unification.

This section is ordered as follows: in Section 4.1 we study how the Higgs mass depends

on the parameters tan β, m
t̃

and λ0 (the weak scale value of λ) and determine the values of

these which result in a lightest SM-like Higgs boson at mh ≈ 125 GeV. Further we identify

the parameter regions which result in λ running non-perturbative before the unification scale

and discuss how the scale of strong coupling depends on these parameters. In Sections 4.2

and 4.3 we demonstrate that running through a region in which λ becomes non-perturbative

can improve the precision of unification. We also consider a possible link with the observed

hierarchy in up-type to down-type quark masses, especially, mt/mb.
2Alternative suggestions to improved the precision of gauge coupling unification include [98,238–244].
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Figure 4.1: Left. The variation of the SM-like Higgs mass as a function of tan β for m
t̃

= 300 GeV
(solid curves) and m

t̃
= 500 GeV (dashed curves) and different values of the starting (weak scale)

coupling λ0 as indicated. The shaded region corresponds to the possible Higgs signal at 124-126 GeV.
Right. The relationship between tan β and λ0 which gives mh = 125 GeV for different stop masses.
For m

t̃
. 500 GeV this requires λ0 & 0.65 and λ may run non-perturbative before MGUT.

4.1 The 125 GeV Higgs in the NMSSM and λSUSY

To solve the µ-problem of the MSSM the superpotential term µHuHd is replaced3 in the

NMSSM by a trilinear interaction λSHuHd involving a dynamical SM singlet chiral super-

field, S, and the µ-term is reintroduced upon S acquiring a VEV. Possible mechanisms for

generating a VEV for S in the context of λSUSY are discussed in [247]. The introduction of

S leads to possible new terms in the superpotential

W =WMSSM + λSHuHd + ξS + µ′S2 + κS3 . (4.1)

Note that some additional symmetries must be imposed in order to remove the dangerous

tadpole term ξS (unless the field S is composite with suitably low compositeness scale) and in

simplified scenarios it is often assumed that the cubic term κS3 is also forbidden. Note that

if the trilinear term is allowed in the superpotential the RGEs imply that κ quickly evolves

to small values at lower energies [247] and thus we shall neglect the cubic term henceforth.4

The leading corrections to the tree-level Higgs mass come from the F-term associated with

λSHuHd and the stop loops, as given in Eq. (2.40). Thus the physical mass of the lightest

SM-like Higgs scalar depends on tan β, the couplings λ and κ, and the stop mass m
t̃
. To give

an idea of the dependence we use Eq. (2.40)) to calculate the mass of the lightest SM-like

Higgs, following [248], as a function of tan β for differing values of mt̃ and λ0, defined as the

value of the coupling λ at the weak scale,5 this is shown in Fig. 4.1 (left) (see also [250]).
3In λSUSY an explicit µ̂HuHd term is often added, which is taken to be a small PQ-breaking term.
4Sizeable κ at the weak scale would result in λ running faster, becoming non-perturbative at a lower scale.
5We have neglected two-loop contributions which generally change the Higgs mass by a few GeV. The results
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Observe that mh = 125 GeV cannot be obtained for λ0 = 0.6 in the case that mt̃ . 500 GeV.

At low tan β increasing λ0 in the NMSSM allows for smaller stop masses [248, 251]. In

λSUSY models, where λ0 ∼ 2 is very large it may also reduce the EW tuning of the theory by

reducing the sensitivity of the Higgs potential to corrections to the Higgs soft masses [248].

In this case mixing between the singlet and the Higgs is actually used to lower mh, due

to level repulsion [248, 252], allowing a larger value of λ0 ∼ 2 whilst obtaining the desired

Higgs mass (experimental constraints on models with large λ0 have been discussed in [253]).

Alternatively, if the Higgs-singlet mixing is small then mh ≈ 125 GeV can be obtained with

low stop masses and without stop mixing for somewhat smaller values of λ0. However,

with light stops and small mixing one requires λ0 & 0.7 and the coupling will generally run

non-perturbative before the GUT scale.6

In Fig. 4.1 (left) the curves with λ0 = 0.7, 0.8 have two values of tan β which satisfy

mh = 125 GeV, the lower solution, however, requires tan β < 1 and such low values are

theoretically disfavoured as they result in the top Yukawa running non-perturbative before

the unification scale - in the NMSSM tan β & 1.5 is required in order to preserve perturbative

SM couplings up to the unification scale (by adding additional matter in 5 + 5 pairs one can

allow tan β & 1 [247, 254]).7 Consequently, there is a definite relation between λ0 and tan β

depending only on m
t̃

which we display in Fig. 4.1 (right). We observe that a Higgs in the

signal region can be obtained for a range of parameters, with, in many cases, λ becoming

strongly coupled before the unification scale.

In Fig. 4.2 we use the one-loop RGE evolution of λ (see e.g. [90]) to study the parameter

dependence of the scale µ at which λ becomes strongly coupled, which we define as λ(µ) ∼
√

4π (the results are insensitive to the exact definition). Judicious parameter choices, with

the inclusion of some mixing, can result in perturbativity of λ up to the unification scale

for models with m
t̃
. 500 GeV. With small mixing, it can be seen from Fig. 4.2 that for

m
t̃
. 500 GeV (with our previously stated assumptions), the coupling λ always runs non-

obtained agree well with calculations performed using the numerical code NMHDECAY [249], which include further
radiative corrections beyond Eq. (2.40).

6Following Hall et al. [248], we conservatively neglect singlet-Higgs mixing which would reduce the mass
of the lightest SM-like Higgs. As we are concerned here with the scenario in which the coupling λ is large and
the stops are light, higher-order corrections to the Higgs mass involving stop loops are small. We consider
only models in which A-term contributions are negligible, corrections to the Higgs mass due to moderate stop
mixing δX compared to the correction δλ due to λSHuHd is δX

δλ
∼ 0.068

λ2 sin2 2β (taking Xt ' mt̃). In models
of interest to us here λ & 0.7 and tan β is small, giving δX/δλ . 0.2 and for larger values of λ (' 2) the δX
correction is further suppressed.

7Although models in which non-SM-singlet states such as the Higgs doublets or u3 are composite states
are of interest (see e.g. [255], in the non-SUSY case), in this work we consider the simplest case in which only
SM-singlet states are composite and have large interactions at some scale.
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Figure 4.2: Left. The strong coupling scale for λ against λ0 for various stop masses. Note (with our
assumptions) for m

t̃
. 500 GeV the coupling λ runs non-perturbative before MGUT. We fix tan β

such that mh = 125 GeV and tan β > 1.5. Right. Contour plot showing the dependence on tan β
and m

t̃
of the strong coupling scale for λ, displaying contours for scales larger than 106 GeV only. We

fix λ0, the weak scale value of λ, such that mh = 125 GeV.

perturbative before the unification scale. Depending on the parameter choices this can occur

anywhere from 105 GeV to just below the unification scale. As noted previously, large λ0

may reduce the fine-tuning, hence λSUSY provides a well-motivated scenario in which we

expect either new physics to appear before the non-perturbative scale, or the theory to run

through a strong coupling regime.

4.2 Running Through Strong Coupling

If λ runs to strong coupling then there are two conceivable scenarios. The theory may remain

in a quasi-conformal strong coupling regime all the way to the GUT scale (which need only

be an order of magnitude higher in energy scale in some cases). Alternatively, after a brief

period of strong coupling the degrees of freedom may recombine such that the theory reverts

back to a weakly-coupled system with the IR fields composites of the UV degrees of freedom.

Examples of the first case occur in Randall-Sundrum-like models where the IR brane scale

is the strong coupling scale, while explicit realisations of the second scenario can arise, for

example, in [256] and the Fat Higgs models [237, 257–261]. In both cases the period of

strong coupling will modify gauge coupling unification. As we shall see, however, it will not

necessarily destroy successful unification and in some cases can enhance the precision. From

the perspective of unification we are most interested in the case where the SM gauge coupling

β-function coefficients below and above the strong coupling regime are such as that the ratios

of differences b2−b3
b1−b2 are unaltered, thus maintaining the success of SUSY unification at the

leading one-loop logarithmic level. An example of this case occurs when the singlet field S is
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composite but the Higgs fields are fundamental; such a model was constructed in [237]. We

will argue, self-consistently, that even though λ becomes non-perturbative and S is replaced

by some more elementary degrees of freedom, SM gauge couplings remain perturbatively

small throughout the strong coupling region and the effect of this regime is of the form of a

threshold correction whose size can be estimated with not unreasonable assumptions.

To quantify the effect of the strong coupling period on gauge unification, consider a

theory where λ becomes strongly coupled at a scale µ− and remains so until some higher

scale µ+ at which the theory UV completes to a more fundamental weakly-coupled theory.

The scenario in which the theory remains strongly coupled up to the GUT scale is simply a

special case for which µ+ is identified with MGUT. Recalling that the holomorphic Wilsonian

gauge kinetic function is renormalised only at one loop, the strongly-coupled sector modifies

the MSSM β-functions solely through the anomalous rescaling of matter fields needed to

canonically normalise the Kähler potential. The effect on the running is encapsulated in the

NSVZ β-function for the gauge-coupling evolution in a supersymmetric Yang-Mills-matter

theory [72,235]:

βga ≡
dga
dt = g3

a

16π2 ba , (4.2)

with t = ln (Q/MGUT) and

ba = −3C2(Ga)−
∑
R Ta(R) [1− γR]

1− g2
a

8π2C2(Ga)
, (4.3)

where the index R labels all matter representations, Ta(R) is the quadratic index of R, C2(Ga)

is the quadratic Casimir of the group Ga (normalised so that C2(SU(N)) = N and T2(�) =
1
2), and γR are the matter field anomalous dimensions. The use of the supersymmetric β-

function is justified as the non-perturbative scales we consider are much larger than the scale

of soft supersymmetry breaking of order TeV. In Eq. (4.2) ga is the canonically normalised

‘physical’ gauge coupling of the one particle irreducible (1PI) effective action, and not the

holomorphic coupling, a change which leads to the non-trivial denominator (see [236] for

details). In the cases of interest the factor g2
a

8π2C2(Ga) is small as the SM gauge couplings

ga will remain perturbative, hence the denominator may be approximated by 1 if we work

to one-loop order in SM gauge couplings in the mixed gauge coupling-γR terms (but non-

perturbative in λ).

Outside of the strong coupling region the anomalous dimensions, γR, are loop suppressed
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and small for all fields, and the one-loop β-functions are those of the MSSM

b(0)
a ' −

(
3C2(Ga)−

∑
R

Ta(R)
)
, (4.4)

while in the region of strong coupling ba picks up a new contribution due to non-SM-singlet

fields with large anomalous dimensions

∆b(SC)
a ' −

∑
R

Ta(R)γR . (4.5)

In the NMSSM the only fields with SM gauge charges that are coupled directly to the

strongly interacting sector are Hu and Hd, and therefore these fields alone pick-up significant

anomalous dimensions (of order one) at the point that the coupling λ becomes large. However,

the large anomalous dimensions for the Higgs fields will feed into the Yukawa interactions

and, as a result, the top Yukawa may subsequently also develop a large anomalous dimension

depending on the size of the strong coupling region and the magnitude of γHu ; we shall

discuss this in detail shortly.

We make the reasonable assumption that during the period of strong coupling, µ− < µ <

µ+, the anomalous dimensions of Hu and Hd are not� 1 (this assumption will be quantified

shortly). Hence, calling ga the ‘unperturbed’ RGE gauge coupling trajectory, i.e. neglecting

corrections due to ∆b(SC)
a , the RGEs for the gauge couplings can be approximated as

βga = g3
a

16π2 (b(0)
a + ∆b(0)

a + ∆b(SC)
a ) , (4.6)

where ga = g
(0)
a + ∆ga is the modified coupling trajectory and the effects of MSSM two-loop

diagrams, corrections due to Yukawa interactions and scheme conversion effects are included

as an additional perturbation ∆b(0)
a (which from numerical studies is known to be small in

practice, and which we later include). Writing the formal solution to Eq. (4.2) as an integral

from the IR weak scale to the UV GUT scale we get

∫ ga(mZ)

g

dga
g3
a

=
∫ tIR

0

badt
16π2 , (4.7)

where g is the (normalised) unified coupling at the GUT scale and tIR = mZ/MGUT. The

two-loop MSSM and scheme conversion corrections, ∆b(0)
a , are small and therefore induce

small finite corrections ∆(0)
a to the final value of the gauge couplings at the UV scale. The

corrections ∆(0)
a are independent of γR to leading order, and thus can be well-approximated

by constant numerical shifts derived from numerical solution of the usual two-loop MSSM
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RGEs. As the behaviour of ba is different in the region of strong coupling, the integration

should be partitioned thus

∫ tIR

0

badt
16π2 =

∫ ln
(

µ+
MGUT

)
0

b
(0)
a dt
16π2 +

∫ ln
(

µ−
MGUT

)
ln
(

µ+
MGUT

) (b(0)
a + ∆ba)dt

16π2 +
∫ ln

(
mZ

MGUT

)
ln
(

µ−
MGUT

) b
(0)
a dt
16π2 + 1

2∆(0)
a .

(4.8)

To parameterise the effects of the strong coupling, we approximate γR by a constant over

the entire region µ− < µ < µ+ and their usual perturbative value everywhere else. This, of

course, is not meant to be a realistic description of the behaviour of γR in the strong coupling

regime. Nevertheless, in a self consistent perturbative expansion in the SM gauge couplings,

the leading effect of the large anomalous dimensions is expressible purely as an integral of∑
R Ta(R)γR over the strong coupling regime, the sign and size of which we can parameterise

in terms of a constant over µ− < µ < µ+. Specifically, from Eq. (4.7) we then obtain

16π2

g2
a(mZ) = 16π2

g2 +
[
La + ∆SC

a + ∆(0)
a

]
, (4.9)

La = b(0)
a ln

(
M2

GUT
m2
Z

)
, (4.10)

and we have used Eq. (4.5) in defining

∆SC
a ≡ −

∑
R

Ta(R)γR ln
(
µ2

+
µ2
−

)
. (4.11)

Only the Higgs sector is directly sensitive to the coupling λ, thus we expect only ∆(SC)
1,2 6= 0

and ∆(SC)
3 = 0, up to small corrections. The sign of the corrections ∆SC

1,2 is important to us.

In the perturbative λ regime the Higgs anomalous dimensions are given at one-loop by

γ(Hu) = 1
32π2

(
2λ2 + 6h2

t − g2
1 − 3g2

2

)
,

γ(Hd) = 1
32π2

(
2λ2 + 6h2

b + 2h2
τ − g2

1 − 3g2
2

)
,

(4.12)

where hi, for i = t, b, τ , are the SM Yukawa couplings. Then from definition Eq. (4.11)

and since T1,2(Hu, Hd) > 0, both ∆SC
1 (Hu, Hd) ≤ 0 and ∆SC

2 (Hu, Hd) ≤ 0. Outside of the

perturbative regime we cannot make a rigorous statement as the usual unitarity constraint on

the wavefunction renormalisation coefficient, 0 ≤ Z ≤ 1, implies only that (the λ-dependent

pieces of) γ(Hu, Hd) ≥ 0 in perturbation theory. Nevertheless, a possibility, in the cases of

most interest to us, where the theory doesn’t UV complete to a quasi-superconformal model,

is that ∆SC
1 = ∆SC

2 ≤ 0 remains true. If the theory remains strongly coupled for roughly

an order of magnitude, the typical size of the deviation due to strong coupling is ∆SC
a ∼ −5
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from Eq. (4.11), which is parametrically smaller than the standard size RGE-resummed

loop corrections L2 ≈ 66 and L1 ≈ 198. This allows us to perform expansions in the small

quantities ∆(SC)
a /La to solve for the modified gauge coupling RG trajectories.

The Higgs anomalous dimensions γHu and γHd feed directly into the RGE evolution of

the top and bottom Yukawas, respectively, which in the strongly coupled region, to leading

order, evolve according to

dht
dt ' γHuht , and dhb

dt ' γHdhb . (4.13)

So far our results have only depended upon the sum of the Higgs anomalous dimensions

(γHu + γHd), since Ta(Hu) = Ta(Hd). Whilst an extrapolation of Eq. (4.12), which gives

the perturbative forms of γHu and γHd , would suggest that γHu ' γHd for large λ, in the

non-perturbative regime these expressions are no longer reliable and this need not necessarily

be the case. From a top-down perspective it is natural that no two operators of the strongly

interacting theory not appearing in a single irreducible multiplet of the symmetry group of

the UV theory should have the same operator dimension, thus implying that γHu 6= γHd in

general. In fact any dynamical explanation of the MSSM flavour structure must violate a

näıve extrapolation of the perturbative expression so that the anomalous dimension of the

bottom quark mass term (and first two generation fermion mass terms) is large while that

of the top remains small, for example as discussed in [262].

If ht is not to become non-perturbatively large itself (likely implying that u3 and/or Q3

are also composite states), we require that γHu < γHd , with γHu bounded above by

γHu .
0.5

ln
(
µ+
µ−

)
/ ln(10)

. (4.14)

The difference (γHu − γHd) allows an interesting possibility, providing an explanation for the

hierarchy between up-like and down-like quark masses which does not rely on large tan β, as

is usually assumed, but instead is due to the greater running of hb compared to ht, starting

from a common value hb ' ht ' O(1) at the GUT scale. Specifically, if

(γHu − γHd)ln
(
µ−
µ+

)
∼ 4 , (4.15)

then the observed small ratio mb/mt is obtained without resort to tan β � 1. In fact if the

Higgs contribution due to λSHuHd is to raise the Higgs mass to 125 GeV, then tan β . 10 is

required, as illustrated in Fig. 4.1, so an independent explanation of the top to bottom mass
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hierarchy is necessary.

Alternatively, if γHu & 0.5, then the top will also generally develop a sizeable anomalous

dimension shortly after the period of strong coupling begins. This provides an additional

contribution to ∆SC
a :

∆SC
a ≡ −

 ∑
R=Hu,Hd

Ta(R)γR

 ln
(
µ2

+
µ2
−

)
− θ(µ+ − µt)

 ∑
R=t,Q

Ta(R)γR

 ln
(
µ2

+
µ2
t

)
, (4.16)

where µt is the scale at which the top Yukawa becomes non-perturbative. Note that in the

case that γHu ' γHd we expect that the top Yukawa runs non-perturbative shortly after λ,

and therefore µt ' µ− . Importantly, since Ta(t, Q) > 0, and γu3 and γQ3 inherit the same

sign as γHu (at least if the leading perturbative results for the sign of γu3 and γQ3 hold),

these corrections have the same sign as those due to γHu,d , and as we shall see shortly, this

only results in a slight deflection in the RGE trajectories of the gauge couplings.

4.3 Effects of Strong Coupling on SM Gauge Couplings at mZ

Taking the measured low-energy gauge parameters αem
∣∣
MS , mZ and sin2 θw

∣∣
MS as inputs

allows a prediction for αS(mZ)
∣∣
MS . From Eq. (4.9) these quantities can be expressed as

sin2 θW = 3
8

[
1−

(
b
(0)
1 −

5
3b

(0)
2

)
αem
2π ln

(
MGUT
mZ

)]
+ ∆sw , (4.17)

α−1
s (mZ) = 3

8αem

[
1−

(
b
(0)
1 + b

(0)
2 −

8
3b

(0)
3

)
αem
2π ln

(
MGUT
mZ

)]
+ ∆αs , (4.18)

where ∆sw and ∆αs are corrections to the one-loop form due to two-loop SM corrections,

Yukawa interactions, scheme dependent effects and, now, also the effects of running through

a regime of strong coupling. To study the effect of the period of strong coupling on the SM

gauge couplings we write ∆a = ∆(0)
a + ∆SC

a where ∆(0)
a are the standard MSSM values which

are known (see e.g. [263, 264]) to be (∆(0)
1 , ∆(0)

2 , ∆(0)
3 ) ' (11.6, 13.0, 7.0) and ∆SC

a is the

additional correction due to running through a period of strong coupling. The form of the

corrections is given by

∆sw = −αem
4π

(
1

1 + 5
3

)[
∆1 −

5
3∆2

]
,

∆αs = − 1
4π

(
1

1 + 5
3

)[
∆1 + ∆2 −

(
1 + 5

3

)
∆3

]
.

(4.19)
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Figure 4.3: The plot shows the effect of ∆SC
a on the predicted values of αs(mZ) and sin2 θW for a range

of unification scales MGUT. The start point of each curve indicates the MSSM value (i.e. ∆SC
a = 0) and

the arrows indicate the trajectories for increasing values of the quantity t ≡ (γHu
+ γHd

)ln(µ+/µ−),
showing 0 ≤ t ≤ 6. The default preferred scenario is shown by the solid lines which assume negligible
anomalous dimensions for the top states, a self-consistent assumption if γHu is not too large (. 1).
In the case of large γHu the top Yukawa coupling runs to non-perturbative values leading to large
anomalous dimensions for the 3rd-generation states Q3 and u3. Assuming γu3 ' γQ3 6= 0, the
trajectory will be deflected depending on the scale at which ht becomes non-perturbative, as shown
schematically by the heavy dashed lines as this scale is varied over the allowed range. The black dotted
lines show the preferred region as indicated by current experimental measurements [1] (including
errors): sin2 θw

∣∣
MS = 0.2313± 0.001 and αs(mZ) = 0.1184± 0.007.

Expanding the ∆a and using the numerical values for the MSSM corrections in order to assess

the impact of the corrections due to strong coupling gives

∆sw ' αem
32π

[
5∆SC

2 − 3∆SC
1 + 30.2

]
,

∆αs ' 1
32π

[
8∆SC

3 − 3∆SC
1 − 3∆SC

2 − 17.8
]
.

(4.20)

The low-energy gauge parameters are well measured and there is a reasonable level of

agreement with the predictions of gauge coupling unification assuming the MSSM spectrum.

However, as stated previously there is a ∼ 3% deviation between the predictions for αs(mZ)

from MSSM unification and the measured values [1] of sin2 θw
∣∣
MS = 0.2313 ± 0.001 and

αs(mZ) = 0.1184 ± 0.007. In Fig. 4.3 we plot the low-energy observables as a function of

MGUT and the quantity (γHu + γHd)ln(µ+/µ−). The new corrections entering due to the

region of strong coupling have the right sign if, as expected, ∆SC
a ≤ 0, and possibly even the

correct magnitude, to correct for the discrepancy in MSSM unification.

First we shall consider the scenario in which the anomalous dimension of the top is

negligible, as is the case if the anomalous dimension for γHu is small and it is primarily γHd

which is responsible for deviations in the evolution of the gauge couplings. In this situation
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it is straightforward to determine the parameter values of a strong coupling regime that gives

precision unification; using Eq. (4.19) and Eq. (4.17) yields

sin2 θW '
3
8 + αem

16π

[1
2
[
5∆SC

2 − 3∆SC
1 + 30.2

]
−
(
3b(0)

1 − 5b(0)
2

)
ln
(
MGUT
mZ

)]
. (4.21)

Recall, in the (N)MSSM the one-loop β-function coefficients are b
(0)
1 = 11, b(0)

2 = 1 and

b
(0)
3 = −3 and that αem = 1/127.9. Substituting sin2 θW ' 0.2313 leads to

ln
(
MGUT
mZ

)
' 33.53 + 5

56∆SC
2 −

3
56∆SC

1 . (4.22)

Similarly, from Eq. (4.20) and Eq. (4.18) we obtain

α−1
s (mZ) ' 3

8αem
+ 1

16π

[
1
2
[
8∆SC

3 − 3∆SC
1 − 3∆SC

2 − 17.8
]
−
(

3b(0)
1 + 3b(0)

2 − 8b(0)
3

)
ln
(
MGUT

mZ

)]
,

and by comparison with Eq. (4.22) we have

αs(mZ) ≈ 0.129 + 5.3× 10−3 ×
[3

7∆SC
2 −

3
28∆SC

1 −
1
4∆SC

3

]
. (4.23)

Thus in order to obtain the observed value αs(mZ) ≈ 0.118 it is required that

∆SC
3 ≈ 8.3− 0.43∆SC

1 + 1.71∆SC
2 . (4.24)

In the case that only the Higgs acquire large anomalous dimensions, we have ∆SC
1 = ∆SC

2

and ∆SC
3 = 0 and hence the GUT scale can be expressed as a function of a single argument

MGUT ∼ mZ exp
(

33.5− ∆SC
1

28

)
. (4.25)

The observed value of αs(mZ) ≈ 0.118, given in Eq. (4.24), is obtained for ∆SC
1 = ∆SC

2 =

−6.5, which corresponds to a unification scale of MGUT ≈ 2.6×1016 GeV. Note that the unifi-

cation scale is slightly raised compared to the standard MSSM prediction, slightly lengthening

the predicted proton lifetime arising from dimension six X and Y gauge boson exchange (see

e.g. [265–267]), as τp ∝ M4
X/α

2
GUT (in addition, 1/αGUT increases slightly in our scenario

from ∼ 23.6 to ∼ 23.8 for MGUT = 2.6× 1016, further increasing the proton lifetime, though

this is a subdominant effect). Furthermore, since T (Hu,d)
∣∣
U(1) = 1 we may write

∆SC
1 ∼ −2(γHu + γHd) ln

(
µ+
µ−

)
. (4.26)

For example, in the case that µ+/µ− ' 10 to obtain ∆SC
1 = −6.5 we require an anomalous

dimension of (γHu + γHd) ∼ 1.4, in accord with our expectation for the effective magnitude
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of the anomalous dimensions during a regime of strong coupling. If µ+/µ− ∼ 2 then the

required anomalous dimension increases to (γHu + γHd) ∼ 4.6, still within reasonable values.

It is likely, however, that if γHu log
(
µ+
µ−

)
& 0.5 then non-perturbative effects due to the top

also affect the evolution of the gauge couplings. The case where these effects turn on quickly

is shown as dashed curves in Fig. 4.3. However, for an appropriate choice of MGUT it is clear

that precision unification can be achieved regardless of how quickly the non-perturbative

effects due to the top enter, provided the period of strong coupling is not too long. Of course

it would be false to claim that a period of strong coupling fixes the discrepancy between the

MSSM two-loop prediction of αs(mZ) ∼ 0.129 and the measured value, rather, our point is

that an epoch of strong coupling (with the theory UV completing in such a way that b3−b2
b2−b1

remains unchanged) is not disastrous for precision unification and may even be advantageous.

Another interesting scenario which realises precision unification via running through

strong coupling is the case where the strong coupling region immediately precedes the GUT

scale and µ+ is identified with this unification scale. In this scenario one need not be con-

cerned if the top Yukawa runs non-perturbative. Such strong coupling unification has been

previously argued to have advantages for stabilising the string dilaton and may also have in-

teresting consequences for the SUSY spectrum [268]. Note that, in Section 4.1 we identified

the parameter regions in which this situation is realised, for example, from inspection of the

right panel of Fig. 4.2 we observe that for 500 GeV stops and tan β ' 3, then the strong

coupling window starts at µ− ∼ 1015 GeV, only an order of magnitude below the GUT scale.

Finally, since the motivation for λSUSY is predicated on the 125 GeV Higgs signal, it

is worth investigating if other aspects of Higgs phenomenology, particularly the production

cross-section and branching ratios, favour the λSUSY scenario. Currently, the branching

ratios seem roughly SM-like, however there is still significant room for deviations to be

observed in the future [269–272]. As λSUSY is a leading mechanism for raising the Higgs

mass in models with light stops, and strong coupling need not adversely affect precision gauge

coupling unification, new anomalies arising in the data certainly warrant dedicated studies

in the context of λSUSY.
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Chapter 5: Fine Tuning in Models of Natural SUSY

This chapter is based on [273].

While natural SUSY spectra provide hope for an EW sector without significant fine

tuning [162, 166, 218–220, 222, 274–278], as was quickly realised after their initial proposal

(and seen in chapter 3) it is difficult to preserve such a spectrum during the RG flow to the

EW scale [177,191]. On one hand, the heavy first two generation sfermions tend to drive the

stops tachyonic, while on the other, a gluino above the current experimental limit will tend

to pull the stops to high masses.

Quantifying the fine tuning of a model is a useful tool to study the viability of particular

low-energy spectra [279]. This has been applied in a large number of studies of supersym-

metric models, for example to strongly constrain spectra with universal sfermion masses

[280–284], and has also been studied in the context of natural spectra [149, 151, 285–287].

In this section, we study the tuning associated with natural SUSY spectra in detail. First,

expressions for the fine tuning required to obtain stops significantly lighter than gluinos and

the first two generation sfermions are derived. We then extend previous approximate results

for the fine tuning of the EW scale introduced due to heavy gluinos and sfermions.

It is found that if there is a Majorana gluino with soft mass above 1.5 TeV there is no

fine tuning benefit to decreasing the stop masses below 1.5 TeV, if mediation is from close

to the GUT scale, due to the tuning from the gluino dominating. However, while there is

no benefit to reducing the stop mass, provided the stop is not too light (& 500 GeV) doing

so does not make the tuning of the theory worse and is not actively disfavoured. Similarly,

for low-scale mediation (from 106 GeV), and a Majorana gluino mass of 1.5 TeV, the stop

can typically be as heavy as 1 TeV. Consequently, applying current experimental constraints,

barring surprising cancellations , there are strong lower bounds on the fine tuning of natural

SUSY theories, even though there are regions of parameter space where the LHC has not

excluded light stops. As a result, in the regions of lowest fine tuning in these theories, a

physical Higgs mass of 125 GeV can arise directly from stop-loop corrections if the theory has

large A-terms, or from an NMSSM structure without couplings running non-perturbative (as

studied in Section 4).

As discussed in Section 2.10, a theory’s fine tuning is measured with respect to the param-
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eters at an assumed UV boundary of the RG flow.1 In contrast, the weak scale parameters

have values which are strongly coupled together by the RG equations, and typically cannot

accurately quantify the tuning [150, 288]. Of course, choosing the independent variables at

the UV boundary requires some assumptions about the mediation of SUSY-breaking, and

possible correlations between soft terms at this scale. We further assume there is no new

physics between the UV boundary and the weak scale that modifies the running (in Section

6 we study the possibility that interactions with the SUSY breaking sector can violate this

assumption).

The independent variables are typically taken to be the gluino mass squared (the other

gauginos are less important and we do not assume a GUT structure), the stop mass squared

and the mass squared of the first two generation sfermions, which are assumed to be universal

based on strong flavour constraints [289].2 This choice is reasonable; a natural Spectrum is

often obtained by including several sources of SUSY breaking, and hence these masses may

be adjusted independently [167, 168, 295–297]. Also, in both gravity mediation [298] and

the most general models of gauge mediation [136], the gauge fermion and sfermion masses

generated are independent.

Alternatively, both the gluino and stop masses at the UV renormalisation boundary may

both be generated through a single F-term, for example as in the model described in Section

3.3 In this case, varying the gluino mass will be correlated to varying the UV stop mass, and

so the F-term is the fundamental parameter. As we discuss later, this scenario makes the

tuning of natural SUSY spectra worse since increasing the F-term increases the weak scale

stop mass both directly though the UV stop mass, and through the increased running from a

more massive gluino. Another issue is whether the left- and right-handed stop masses should

be regarded as a single parameter, as occurs if both gain their soft masses through the same

mediation mechanism. This is the case in many models of natural SUSY, but is not required

in generic mediation models. We give results for both the case where these are independent,

and when they are not.

There are possible ways our arguments may be evaded. It might be that the mediation

mechanism gives a pattern of soft masses that happens to lead to cancellations in the RG

flow, so that the shift in the Higgs soft mass is smaller than expected (this is the case
1However the location of this boundary, and the set of independent parameters there, is only physically

meaningful once a complete UV theory, including all higher-dimensional operators, is specified.
2Though this assumption can be relaxed [290–294].
3In the model of Section 3, there is also a potential tuning from the parameter ε, which we do not consider.
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for focus point spectra [299, 300] and as discussed around Eq. (2.65)). However, such a

mechanism would need to couple the stop, gluino, and first two generation sfermions in a

highly non-trivial way despite their soft masses coming from very different sources (typically

R-symmetry preserving SUSY breaking, R-symmetry breaking SUSY breaking and another

mediation mechanism). Therefore, this does not seem a strong assumption.4 We also assume

the Higgs potential is either that of the MSSM or the NMSSM with the parameter λ0 not

very large at the weak scale. As mentioned in Section 4, if λ0 & 1 the Higgs potential can

be significantly modified, and the sensitivity to the Higgs soft masses (and contributions to

these) could be reduced.

As discussed in Section 2.10, we make no attempt to quantify the probability, over the

‘theory space’ of SUSY breaking and mediation mechanisms, that the initial UV parameters

begin in the correct region to allow for a natural SUSY spectrum at the weak scale. Such a

starting point requires multiple forms of mediation which, a priori, could lead to a separation

between the gluino and sfermion masses that is far too large to give a viable natural SUSY

spectrum at the weak scale. Consequently, it is unclear how likely it is that a natural SUSY

spectra is actually realised (although models such as that studied in Section 3 have other

benefits, so may perhaps be relatively more common). However, it is unknown if the concept

of a ‘theory space’, let alone a measure on it, is well defined so we do not consider this issue

any further.

While the main focus of our work is on conventional Majorana gauginos, we also study

the EW fine tuning in a simple model of Dirac gauginos (described in Section 2.4). It is

found that in this model the tuning is independent of the mediation scale and comparable

to an MSSM theory with very low mediation scale. Consequently, this is a good option for

reducing fine tuning in models where the mediation scale is required to be high, for example

in string theory completions.

In Section 5.1 we discus the fine tuning of the UV parameters required to obtain a light

stop after running. Section 5.2 contains the main results on the tuning of the EW VEV,

while Section 5.3 contains our discussion of Dirac gauginos.
4In contrast focus point scenarios typically only involve one, simple, form of mediation to all MSSM fields,

hence can occur as a result of single numerical coincidence.
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5.1 Fine Tuning to Obtain a Light Stop

First, we consider the fine tuning of the gluino and first two generation soft masses required

to obtain a light stop at the weak scale. In analogy to the EW tuning, this is defined as

Yp =
∣∣∣∣∂ logm2

t̃
(mZ)

∂ log p

∣∣∣∣ , (5.1)

where p is one of M2
3 , m̃2

1,2 or m2
t̃

evaluated at the UV boundary, and t̃ is the stop state

which receives the greatest fine tuning. In this section we use the convention that soft terms

without their scale specified are evaluated at the UV boundary of the RG flow of the theory,

ΛUV, which is parametrically the scale at which SUSY breaking is mediated.

The RG equations for the stops in the presence of heavy sfermions are well known [56,191].

Since we are interested in the effect of the gluino and sfermion masses and these dominate

the RG equations, it is sufficient to include only these leading terms. The RG equation of

the stop soft mass is then given by

d
dtm

2
t̃ = − 8

4π
∑
i

αi (t)CiM2
i + 2

π2

(∑
i

α2
i (t)Ci

)
m̃2

1,2 , (5.2)

where Ci is the Casimir of the stop state with respect to the gauge group labelled by i (and

α1 is GUT normalised). We further assume the right-handed bottom sfermion and the staus

remain relatively light such that they do not have a significant effect on the running of the

stops, but not so light as to be driven tachyonic (giving these states relatively large masses

does not change the results dramatically). We take the heavy first two generations to have

a constant mass which is a reasonable approximation if they begin fairly heavy as in natural

spectra.5 Following [191], at this level of approximation the RG flow can be solved exactly

to give

m2
t̃ (mZ) =m2

t̃ (ΛUV)−
∑
i

2
bi
Ci

 1(
1 + bi

2π log
(

ΛUV
Mi(mZ)

)
αi
)2 − 1

M2
i

+
∑
i

4
πbi

αi (ΛUV)

 1
1 + bi

2π log
(

ΛUV
m̃1,2(mZ)

)
αi
− 1

Cim̃2
1,2 ,

(5.3)

where the gauge beta-function coefficients are defined as d
dt

(
1
αi

)
= − bi

2π (and Eq. (5.3) is

5We are interested in spectra where the stops are fairly light at the UV scale and remain relatively light
during running. Hence, the overall shift in their mass during running is . 500 GeV. The first two generation’s
dominant running is the same as the stops hence these run by a similar amount, which is negligible if they
start at O (10 TeV).
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Figure 5.1: The stop mass obtained at the weak scale as a function of the weak scale gluino and first
two generation sfermion masses, after running from the GUT scale at 1016 GeV assuming an initial
mass of 200 GeV. The lower cutoff is due to the gluino increasing the the first two generation sfermions
masses during running, while the upper cutoff is due to the stop running tachyonic above this line.

written in terms of the UV values of the gauge couplings).6 The contribution from the first

two generation sfermion turns off at an energy scale m̃1,2 and the gaugino contribution is

present until the scale Mi.

In Fig. 5.1 we plot the weak scale lightest stop mass as a function of the weak scale gluino

and first two generation sfermion masses, after numerically running from 1016 GeV with a

UV stop mass of 200 GeV (using the full two loop RG equations). For a given gluino mass,

above a certain sfermion mass the stops run tachyonic and the theory is not viable. To obtain

the light stops needed for a natural SUSY spectrum requires M3 and m̃1,2 to be such that

the stop is in the thin strip close to this boundary. The relatively small effect of the gluino

increasing the mass of the first two generation sfermions during running leads to the lower

cutoff in this plot.

Now it is straightforward to write down the fine tuning with respect to the UV gaugino

and first two generation masses. There will be two contributions to the fine tuning, one
6Throughout this section we calculate weak scale parameters by solving one and two loop RG equations,

this is equivalent to an all order summation of the leading logarithms [301].
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directly from the dependence on m̃2
1,2, and the other from dependence inside the logarithm,

Ym̃2
1,2

=
m̃2

1,2
m2
t̃

∂m2
t̃

∂m̃2
1,2

=
m̃2

1,2
m2
t̃

∑
i

4Ci
πbi

αi (ΛUV)

 1
1 + bi

2π log
(

ΛUV
m̃1,2

)
αi
− 1


+
m̃2

1,2
m2
t̃

∑
i

Ciα
2
i (ΛUV)
π2

 1
1 + bi

2π log
(

ΛUV
m̃1,2

)
αi

2

.

(5.4)

The second term from the variation of the logarithm is typically significantly smaller than

the first and slightly reduces the fine tuning. It appears because if the mass of the first

two generation sfermions increases then there will be slightly less running. Actually, to the

accuracy required we do not need to include this effect (but we retain the full dependence

for completeness). Similarly,

YM2
i (mZ) = −M

2
i

m2
t̃

2
bi
Ci

 1(
1 + bi

2π log
(

ΛUV
Mi(mZ)

)
αi
)2 − 1



− M2
i

m2
t̃

Ci
π
αi

1(
1 + bi

2π log
(

ΛUV
Mi(mZ)

)
αi
)3 .

(5.5)

The greatest fine tuning from the heavy sfermions will occur on the left-handed stop. Even

though the beta function coefficients b2 and b3 have opposite signs, their overall contributions

to Eq. (5.4) go in the same direction. The gluino couples equally to the left- and right-handed

stops, so the tuning with respect to its mass is equal for both.

Finally, there is also a tuning with respect to the initial stop masses. This can be eval-

uated as a perturbation to the RG trajectory obtained already. If the stop soft masses are

independent, a perturbation to the initial left handed soft mass, ∆m2
Q̃3, will satisfy

d
dt
(
∆m2

Q̃3

)
⊃ 2y2

t

16π2 ∆m2
Q̃3 , (5.6)

and will also feed into the right-handed stop and up-type Higgs mass since the RG includes

d
dt
(
∆m2

ũ3

)
⊃ 4y2

t

16π2 ∆m2
Q̃3, (5.7)

d
dt
(
∆m2

Hu

)
⊃ 6y2

t

16π2 ∆m2
Q̃3 . (5.8)

At this level of approximation, the beta functions are linear in m2
t̃
, so the evolution of the

perturbation during running may be obtained by integrating the system of RG equations Eq.
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(5.6), Eq. (5.7), and Eq. (5.8) giving

∆m2
Q̃3 (mZ) = 1

6

(
5 +

(mQ̃3
ΛUV

)(3y2
t /4π2))

∆m2
Q̃3 (ΛUV) , (5.9)

∆m2
ũ3 (mZ) = 1

3

(
−1 +

(mQ̃3
ΛUV

)(3y2
t /4π2))

∆m2
Q̃3 (ΛUV) . (5.10)

Similarly, a perturbation to the right-handed stop leads to

∆m2
ũ3 (mZ) = 1

3

(
2 +

(
mũ3
ΛUV

)(3y2
t /4π2))

∆m2
ũ3 (ΛUV) , (5.11)

∆m2
Q̃3 (mZ) = 1

6

(
−1 +

(
mũ3
ΛUV

)(3y2
t /4π2))

∆m2
ũ3 (ΛUV) . (5.12)

The expressions Eq. (5.9) and Eq. (5.11) are numerically largest, therefore the fine tunings

are approximately

Ym2
Q̃3

=
m2
Q̃3 (ΛUV)

m2
Q̃3 (mZ)

(
5
6 + 1

6

(mQ̃3
ΛUV

)(3y2
t /4π2))

, (5.13)

Ym2
ũ3

=
m2
ũ3 (ΛUV)

m2
ũ3 (mZ)

(
1
3

(
mũ3
ΛUV

)(3y2
t /4π2)

+ 2
3

)
. (5.14)

If there is a small separation between the mediation scale and the weak scale
(
mQ̃3
ΛUV

)(3y2
t /4π2)

∼

1 and the fine tuning Ym2
Q̃3
∼

m2
Q̃3

(ΛUV)
m2
Q̃3

(mZ) as is the leading-order expectation. However if there

is a large separation between these scales then running proceeds for sufficiently long that the

back-reaction from a perturbation suppresses itself, reducing the tuning. For a mediation

scale of 1016 GeV, (mQ̃3
ΛUV

)(3y2
t /4π2)

∼ 0.1 , (5.15)

so this can be a non-negligible effect. The tuning of the left-handed stop is greater since it

is less strongly damped by the RG flow.

In the case where these two stop masses are linked, the RG equations for the perturba-

tion are modified since the left-handed stop perturbation feeds into the right-handed stop

perturbation and vice versa. These are easily integrated to obtain

∆m2
Q̃3 (mZ) = 1

3

((
mt̃3
ΛUV

)(3y2
t /4π2)

+ 2
)

∆m2
t̃3 (ΛUV) , (5.16)

∆m2
ũ3 (mZ) = 1

3

(
2
(
mt̃3
ΛUV

)(3y2
t /4π2)

+ 1
)

∆m2
t̃3 (ΛUV) . (5.17)

Therefore,

Ym2
t̃3

=
m2
t̃3 (ΛUV)

m2
Q̃3 (mZ)

((
mt̃3
ΛUV

)(3y2
t /4π2)

+ 1
)
. (5.18)
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Figure 5.2: The fine tuning required to obtain a stop mass of 200 GeV at the weak scale Left:With a
UV boundary of 1016 GeV. Right: With a UV boundary of 106 GeV, as a function of the weak scale
gluino mass and the UV value of the first two generation sfermion masses.

As before, if ΛUV is not too large, the damping is not significant and these expressions reduce

to the leading order expectation Ym2
t̃3
∼ m2

t̃3(ΛUV)
m2
Q̃3

(mZ) . However, if ΛUV is close to the GUT scale

the difference can be significant.

To gauge the severity of these fine tunings, recall the approximate expression for the

tuning of the EW scale with respect to the stop soft mass Eq. (2.64). An mSUGRA spectrum

with sfermions and gluinos at 2500 GeV would have an EW tuning with respect to the stop

soft mass of ∆Q̃3 ∼ 350 for ΛUV = 106 GeV and ∆Q̃3 ∼ 1500 for ΛUV = 1016 GeV. In

contrast, a natural spectra with mt̃ = 200 GeV, m̃1,2 ∼ 104 GeV and M3 ∼ 2500 GeV at the

weak scale, and ΛUV = 1016 GeV, has a tuning of the stop mass of

Ym̃2
1,2
∼ 80 , YM2

3
∼ 115 , Ym2

t̃3
∼ 15 , Ym2

Q̃3
∼ 20 . (5.19)

Meanwhile a theory with low-scale mediation, with ΛUV = 106 GeV, has tuning

Ym̃2
1,2
∼ 20 , YM2

3
∼ 50 , Ym2

t̃3
∼ 20 , Ym2

Q̃3
∼ 25 . (5.20)

These agree with the variations evaluated numerically using the code SOFTSUSY [211] to

around 10% . The leading error is due to the back-reaction of a perturbation to mt̃ on its

own RG group equation, however this level of accuracy is not required for our purposes.

Defining the overall fine tuning as Y = max
(
{YM2

3
, Ym̃2

1,2
, Ym2

t3
}
)
, in Fig. 5.2 we plot the

fine tuning required to obtain a weak scale stop of mass 200 GeV in the plane M3 (mZ), m̃1,2

for low and high scale mediation, assuming the two stop masses are not independent in the
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UV. This shows that it is possible to obtain a fairly light stop in the presence of a gluino

mass of around 2 TeV and first two generation sfermion masses at about 5 TeV with a tuning

of order 5 − 100 depending on the scale of mediation. While significant, this is is not large

compared to that found in the EW sector of typical SUSY models. Therefore theories with

a light stop are not automatically disfavoured by tuning arguments.

5.2 Electroweak Fine Tuning in Models of Natural SUSY

We now study whether a natural SUSY scenario, compatible with current limits, can lead to

an EW sector with low fine tuning. For simplicity, we assume the MSSM RG flow and that

tan β is fairly large, in which case the EW scale is given by Eq. (2.38).

Consider the dependence on the first two generation sfermion masses. Just integrating

the two-loop expression for the beta function of the up type Higgs mass, from SU(2) and

U(1) gauge interactions,

dm2
Hu

dt ⊃ 2
π2

(∑
i

α2
i (t)Ci (Hu)

)
m̃2

1,2 , (5.21)

without considering the RG flow of the other parameters, gives a contribution enhanced

by a single logarithm. This leads to a relatively small tuning if m̃1,2 is of order a few

TeV. However, the EW VEV has a strong dependence on the stop mass, which itself has a

significant dependence on m̃2
1,2, and can lead to a significant tuning even though it is a higher

order effect.

To calculate the EW tuning with respect to the sfermions we study only the dominant

terms in the RG flow (rather than solving the full two-loop RG equations, which can only

be done numerically). The important terms are the coupling of the Higgs to the stop in

Eq. (2.32), and the dynamics of the stop, sfermion, gluino system solved in Eq. (5.3). This

neglects effects such as the Higgs back-reaction on its own mass and the stop and the RG

flow of the first two generation sfermions.7

Under these assumptions, the shift in the Higgs soft mass due to a perturbation in the

UV value of the first two generation sfermion masses squared, including the direct 2-loop

contribution and the resummed contribution through the stops, can be calculated analytically.

The later is obtained from the change in the contribution from the stop to the Higgs soft
7We are also neglecting the running of λt (but the running of αs is included). The results obtained

agree with numerical solutions of the RG with all significant two-loop contributions equations to within
approximately 10%.
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mass during RG flow when the stop-gluino-sfermion system (solved in Eq. (5.3)) is perturbed.

Integrating the RG equation leads to

∆m2
Hu (mZ) |M3 =

∫ tM3

tΛ

∆βm2
Hu

(t) |M3 dt (5.22)

=
∫ tM3

tΛ

∂βm2
Hu

(t)
∂m2

t̃
(t)

∆m2
t̃ (t) +

∂βm2
Hu

(t)
∂m̃2

1,2 (t)
∆m̃2

1,2 (t) dt , (5.23)

where the first term is the contribution through the stop, and the second is the direct two-loop

contribution. The fine tuning is then given by (using Eq. (2.38))

dt
(
logm2

Z

)
dt
(
log m̃2

1,2

) =
2m̃2

1,2
m2
Z

∂

∂
(
m̃2

1,2

) ∫ tm1,2

tΛ

∂
(
d
dtm

2
Hu

)
∂m2

t̃
(t)

m2
t̃ (t) +

∂
(
d
dtm

2
Hu

)
∂m̃2

1,2 (t)
m̃2

1,2 (t) dt . (5.24)

Using Eqs.(5.3) and (5.21), with a factor of two since the coupling occurs through both the

left- and right-handed stops, leads to

∆m̃2
1,2

=
m̃2

1,2
m2
Z

∂

∂
(
m̃2

1,2

) ∫ tm12

tΛ

3m2
t

4π2v2 cos (2β)
∑
i

8Ci
πbi

αi

(
1

1 + biαi
2π (tΛ − t)

− 1
)
m̃2

1,2

+ 2
π2

∑ α2
iCi (Hu)

1 + biαi
2π log

(
ΛUV
m̃1,2

)
 m̃2

1,2 dt

=
m̃2

1,2
m2
Z

∂

∂
(
m̃2

1,2

)∑
i

[
A

8Ci
πbi

αi

(
log

(
Λ
m̃1,2

)
− 2π
αibi

log
(

1 + biαi
2π log

(
Λ
m̃1,2

)))

+4Ci
πbi

αi

 1
1 + bi

2π log
(

ΛUV
m̃1,2(mZ)

)
αi
− 1

 m̃2
1,2 ,

(5.25)

where A = 3m2
t

4π2v2 cos(2β) . As before, each term gives two contributions to the fine tuning.

The largest is from the direct variation of the initial sfermion masses, while the second

contribution comes from varying the end point of the logarithm, and is smaller.

Intuitively, the first term consists of two tunings at different levels in the theory, the EW

VEV is tuned by the mass of the stop, which is itself tuned by the first two generations.

The overall tuning is effectively obtained by multiplying these together, and weighting by a

factor less than 1 to account for the gluino only generating a change in the stop mass after

some running has occurred. The second term (the two loop direct contribution) typically

gives a shift in the mass squared of around (10− 50) % of the first term, and acts in the

opposite direction reducing the total fine tuning. This is because the direct contribution

decreases the Higgs mass squared, while the indirect contribution decreases the stop mass

squared resulting in a less negative Higgs mass squared. Since it is a higher loop effect, the
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indirect contribution is greatest when the mediation scale is highest.

For natural SUSY spectra, the shift in the Higgs mass directly from the gluino is com-

pletely negligible compared to the logarithm squared contribution that occurs through the

stop mass.8 Similarly to the previous calculation, this gives

∆M2
3

= M2
3

m2
Z

A
∂

∂
(
M2

3
) ∫ tM3

tΛ

4
b3
C3

 1(
1 + b3α3

2π (tΛ − t)
)2 − 1

M2
3 dt

= M2
3

m2
Z

A
∂

∂
(
M2

3
) 4
b3
C3

b3α3
2π log2

(
Λ
M3

)
1 + b3α3

2π log
(

Λ
M3

)M2
3 .

(5.26)

Next, we turn to the tuning with respect to the initial stop mass. Since the RG equation

governing the behaviour of a perturbation at the UV boundary of the stop mass may be

solved exactly (at one-loop order), as in Eq. (5.10), we can evaluate the shift in the low

energy Higgs soft mass directly. This leads to

∆m2
Hu (mZ) = 1

2

((mQ̃3
ΛUV

)(3y2
t /4π2)

− 1
)

∆m2
Q̃3 (ΛUV) , (5.27)

∆m2
Q̃3

=
m2
Q̃3

m2
Z

∂

∂
(
m2
Q̃3

) ((mQ̃3
ΛUV

)(3y2
t /4π2)

− 1
)

∆m2
Q̃3 (ΛUV) , (5.28)

for the left-handed stop. The expression for the right-handed stop is given by

∆m2
ũ3

=
m2
ũ3

m2
Z

∂

∂
(
m2
ũ3

) ((mũ3
ΛUV

)(3y2
t /4π2)

− 1
)

∆m2
ũ3 (ΛUV) . (5.29)

Alternatively, if we regard the UV masses of the left and right handed stops as one variable

a similar computation easily gives

∆m2
t̃3

= 2
m2
t̃3

m2
Z

∂

∂
(
m2
t̃3

) (( mt̃3
ΛUV

)(3y2
t /4π2)

− 1
)

∆m2
t̃3 (ΛUV) . (5.30)

If an MSSM Higgs sector is assumed, solving the same set of RG equations gives the tuning

from the Higgs soft mass at the UV boundary of the RG flow

∆m2
Hu

= m2
Hu

m2
Z

∂

∂
(
m2
Hu

) ((mHu

ΛUV

)(3y2
t /4π2)

+ 1
)

∆m2
Hu (ΛUV) . (5.31)

Assuming tan β is moderately sized the tuning with respect to m2
Hd is negligible compared

to that from m2
Hu. If the Higgs sector is more complicated, for example in the NMSSM,

the exact expression here will be modified however it is still expected to still take the form
8The NLL direct gluino contribution is two-loop order but only enhanced by a single logarithm compared

to the two-loop, contribution enhanced by two logarithms.
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∆m2
Hu
. 2m

2
Hu

m2
Z

, with the equality satisfied if ΛUV ∼ mHu so there is very little running.

Finally, we consider the µ and Bµ parameters (again assuming the MSSM Higgs sector).

These do not feed strongly into other soft masses during RG flow, and the tuning with respect

to them is given by

∆µ2 = 2µ
2 (ΛUV)
m2
Z

∂µ2 (mZ)
∂µ2 (ΛUV) , (5.32)

∆Bµ = 2Bµ (ΛUV)
m2
Z

∂Bµ (mZ)
∂Bµ (ΛUV) . (5.33)

For µ = 400 GeV and Bµ = 200 GeV at the weak scale, solving the RG equations for these

terms numerically gives

∆µ2 ∼ 40 , (5.34)

∆Bµ ∼ 10 , (5.35)

for both high- and low-scale mediation. Since these values of µ and Bµ are allowed by

collider constraints, and it will turn out that the tunings are less than those from the stops,

gluinos, and sfermions, the tunings from these parameters may be neglected. Once these

parameters are fixed, the Higgs soft masses in the IR (and therefore after the RG flow at the

UV boundary) are fixed by Eq. (2.38).9

The overall EW fine tuning is defined as ∆ = max ({∆p}). Initially, we focus on the

tuning introduced by the gluino mass, stop mass, and sfermion masses which are fairly

independent of the details of the Higgs sector. In contrast, the fine tuning from the Higgs

soft mass is dependent on both the µ/Bµ parameters, and whether the theory is the MSSM,

the NMSSM, or another extension (which may be needed to obtain the correct physical Higgs

mass in some regions of parameter space). Because of this, the fine tuning from m2
Hu in a

typical MSSM Higgs sector is studied separately at the end of this section. There it is seen

that the conclusions we draw about the overall tuning of the theory in this section are valid.

Considering the stop, gluino and sfermion soft masses, expanding the fine tuning expres-

sions Eqs.(5.25), and (5.26) in the parameter b3α3
2π log

(
ΛUV
mZ

)
and retaining only the leading

dependence recovers the expressions in previous papers [151]. However, since α3 is fairly large

over all energy scales, and we are potentially interested in high-scale models which can have

large logarithms, we retain the full dependence (this can lead to a factor of two difference in
9An alternative but equivalent approach would be to fix the UV boundary stop soft masses at a relatively

small value in which case µ and Bµ would be determined by the same relation.
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Figure 5.3: The fine tuning in the EW sector as a function of the soft parameters, for low-scale
mediation with ΛUV = 106 GeV (top) and high-scale mediation ΛUV = 1016 GeV (bottom). The
plots are a function of the weak scale gluino mass since its running is fairly independent of the other
parameters in the theory. The other masses are the values at the mediation scale, which may run to
smaller or larger values when evolved to the weak scale.

some expressions). In Fig. 5.3 the fine tuning is plotted as a result of the UV soft parameters

for low- and high-scale mediation, both for the cases where the stop masses are independent

in the UV and when they are not. When they are both set by one parameter the fine tuning

is worse since both feed into the up type Higgs mass simultaneously.

For a given UV stop mass a larger UV gluino or sfermion mass is never preferred.10 How-

ever, provided ∆M2
3

and ∆m̃2
1,2

remain smaller than ∆m2
t̃
, increasing the gluino or sfermion

masses does not make the fine tuning worse (at least with the measure of fine tuning adopted

here). Consequently, collider bounds can be somewhat alleviated without introducing fine
10This does not necessarily hold for the weak scale stop mass though.
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Figure 5.4: Top: The UV stop (red) and sfermion masses (blue) that lead to the same fine tuning
of the EW scale as a gluino with weak scale mass of 2 TeV as a function of the mediation scale. We
show both the case where the left and right handed stops are independent parameters (solid lines)
and when they are fixed equal (dashed). Lowering the stop or sfermion masses below these masses
does not improve the fine tuning of the theory, and so this graph limits the extent to which a natural
SUSY theory is beneficial. Bottom: The fine tuning corresponding to a 2 TeV gluino as a function
of mediation scale. By construction, this is the same as the fine tuning generated by stops at the
masses in the top panel. If fine tuning better than 1% is imposed then the mediation scale is limited
to ΛUV < 107 GeV.

tuning. It is interesting to ask what the values of m2
t̃
, M2

3 , and m̃2
1,2 that saturates a given

fine tuning are. In particular, suppose we fix the gluino mass to be 2 TeV at the weak scale,

we wish to know the maximum UV masses the stop and first two generation sfermions may

have before they dominate the fine tuning. In Fig. 5.4 we plot the UV masses of the stops

and first two generation sfermions for this scenario. If the gluino is at 2 TeV, there is no fine

tuning benefit to having UV stop masses below (1− 1.5) TeV for GUT scale mediation, and

(0.5− 1) TeV for very low scale mediation. From Fig. 5.4 (bottom), a gluino of this mass
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Figure 5.5: The EW fine tuning as a function of the weak scale sfermion and stop masses (assuming
the two stops are not independent) with a weak scale gluino mass of 2 TeV for ΛUV = 106 GeV (left),
and ΛUV = 1016 GeV (right). The regions below the dashed black line have a tachyonic stop mass
at the UV boundary. Since sfermion masses larger than 3 TeV are not constrained by collider limits,
for low-scale mediation there is no improvement in fine tuning through decreasing the stops below
1.4 TeV. For high scale mediation, especially if we demand the stop is not tachyonic at the UV
boundary, the majority of the region with the lowest fine tuning actually has a fairly heavy weak scale
stop of around 1.5 TeV.

forces the tuning of the EW scale to be at least 400, if running begins at the GUT scale. In

contrast, it is easily possible to separate the first two generation sfermions significantly from

the gluino and stops without increasing the fine tuning of the theory, which is beneficial for

collider limits.

Of course, the relevant quantities for collider physics are the weak scale masses, and

(unlike the gluino mass) the running of the stop soft masses depends on the the sfermions

and gluino masses. We plot the EW fine tuning as a function of the weak scale stop mass

and first two generation sfermion masses with the weak scale gluino mass fixed at 2 TeV, for

low- and high-scale mediation, in Fig. 5.5.11 This is obtained by numerically solving the RG

equations between their UV boundary and the weak scale. It is assumed the two stops are

not independent, however this does not qualitatively affect the conclusions. In these plots,

due to the fixed gluino mass, the smallest possible EW fine tuning is around 60 and 400 for

low- and high-scale mediation, respectively (see also Fig. 5.4). The large areas of parameter

space with the lowest fine tuning in the centre of both plots have fine tuning dominated by

the gluino.

For low-scale mediation, there is no preference for the weak scale stop mass to be lighter

than about 1.5 TeV. For high-scale mediation, the largest region of parameter space with low
11The weak scale masses here are actually MS masses and not pole masses. There is an additional finite

correction to convert to the physical stop mass, but this is a small correction.
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Figure 5.6: The EW fine tuning, using the measure δ =
√∑

∆2
i , as a function of the weak scale

sfermion and stop masses (assuming the two stops are not independent) with a weak scale gluino
mass of 2 TeV for ΛUV = 106 GeV (left), and ΛUV = 1016 GeV (right). The regions below the dashed
black line have a tachyonic stop mass at the UV boundary. As a result of the tuning introduced by
the sfermions using this measure, lighter sfermions which correspond to heavier weak scale stops are
favoured.

fine tuning actually has relatively large stop masses, around 1.5 TeV. In this case, heavy stop

masses are even further favoured if we demand the stop is non-tachyonic at the boundary.

This is a reasonable restriction since there is a danger such boundary conditions might lead

to deep colour breaking vacua in the early universe.12 As the sfermions tend to decrease the

stop mass squared during RG flow down in energy scale, the maximum weak scale stop mass

that results in a tachyonic stop in the UV is increased as the first two generation sfermions

are made heavier.

In Fig. 5.5 contours of constant UV stop mass are approximately circle arcs concentric

with the tachyonic contour. The regions where the tuning contours take the same shape have

tuning dominated by the UV stop mass. On the far right side of the plot showing high scale

mediation, there is a region where the sfermion soft mass dominates the tuning, indicated

by the vertical contours. In the region where the stop is tachyonic at the UV boundary of

the RG flow, increasing the weak scale stop mass can actually improve the fine tuning. This

occurs since increasing the weak scale stop mass leads to a less tachyonic UV boundary stop

mass, and as a result the ratio
∣∣∣∣m2

t̃
(ΛUV)

m2
t̃
(mZ)

∣∣∣∣ is smaller.

If instead an alternative definition of fine tuning, δ =
√∑

i ∆2
i , is used, increasing the

gluino, first two generation sfermion, or stop soft masses at the UV boundary of the RG flow
12Although the existence of colour charge breaking vacua is not necessarily problematic if the colour pre-

serving vacua is metastable on timescales longer than the age of the Universe [207,208,210].
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Figure 5.7: The EW fine tuning up type Higgs soft mass at the UV boundary of the RG flow, as a
function of the weak scale sfermion and stop masses (assuming the two stops are not independent)
with a weak scale gluino mass of 2 TeV for ΛUV = 106 GeV (left), and ΛUV = 1016 GeV (right). The
regions below the dashed black line have a tachyonic Higgs mass at the UV boundary.

always increases the fine tuning. However, since δ is still dominated by whichever tuning is

largest, the results are similar to those obtained previously. In Fig. 5.6 we plot the tuning

as a function of the weak scale stop and first two generation sfermion masses, with the weak

scale gluino fixed at 2 TeV. The fine tuning from the sfermion masses actually results in the

regions with the smallest fine tuning having relatively large stop masses.

In the scenario where both the gluino and stop masses depend on the same F-term in the

theory, F 2 (or F ) is the fundamental parameter that fine tuning should be measured with

respect to. Parametrically, the gluino mass is given by M3 ∼ F
M∗

and the stop mass also by

m2
t̃
∼ F 2

M2
∗

where M∗ is the mediation scale. A 1% increase in F 2 generates a 1% increase

in both the gluino and stop masses squared. As a result the fine tuning is worse than if the

gluino and stop were independent variables.

Finally, we return to the tuning from the UV Higgs soft mass squared. Taking µ =

400 GeV, in Fig. 5.7 we plot this as a function of the weak scale stop and sfermion masses,

with the weak scale gluino fixed at 2 TeV in exact analogy to Fig. 5.5. The fine tuning is

calculated by numerically running the IR soft Higgs mass which gives the correct EW scale,

to the UV boundary and evaluating Eq. (5.31).13 Clearly, the tuning from the Higgs soft

mass is not especially small. This is to be expected since the Higgs soft mass appears at tree

level in the EW VEV. However, in the regions of lowest fine tuning, the tuning from the Higgs

mass is typically slightly smaller than that from the other parameters. The plot also shows
13We assume vanishing A-terms although these may be important for generating the correct physical Higgs

mass in some theories, and if large modify the running slightly.
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that in the regions of lowest fine tuning the UV Higgs mass is not far near zero, and there are

large parts of parameter space with small fine tuning where the Higgs soft mass squared (at

the UV boundary of the RG flow) is positive. For low-scale mediation, the part of parameter

space with tuning less than 50 has
∣∣m2

Hu

∣∣ . (500 GeV)2 at the UV boundary of the RG flow,

and for high-scale mediation the region with tuning less than 500 has
∣∣m2

Hu

∣∣ . (1000 GeV)2.

The regions with low fine tuning coincide closely with the regions where the other parameters

have low fine tuning, therefore the previous estimates of the fine tuning and favoured regions

can be valid even when the details of a Higgs sector are included.

5.3 Dirac Gauginos for Natural SUSY

In this section we consider extended theories with Dirac gluinos. As discussed in Section 2.4

these provide an effective way of shielding the stop from large corrections compared to the

usual Majorana case. In particular, there are no corrections to the stop mass from the gluino

enhanced by a large logarithm of the form log
(
mmed
mZ

)
. The only contribution is a finite

piece generated below the scale where the heaviest part of the effective N = 2 multiplet is

integrated out, which is typically the sgluon (the new scalar octet partner of the gluon), and

above the mass of the gluino [76, 91–96]. As a result these models are a very interesting

proposal for a SUSY model without large tuning.

We focus on a simple model, following [91, 95]. There is an additional U(1) gauge group

which obtains a D-term expectation value, and has field strength W ′. This couples to the

visible sector N = 2 gauge multiplet, which can be written in N = 1 notation as a vector

multiplet with field strength W , and a chiral multiplet A in the adjoint of the gauge group,

only through a term ∫
d2θ

√
2W ′α
M∗

Wα
j Aj , (5.36)

where M∗ is the mediation scale. It can be shown that this operator also induces a mass

for the real component of the sgluon, m̃2
i , of size m̃3 = 2M3, where Mi is the Dirac gaugino

mass.14 In this minimal model there is no direct coupling between the SUSY breaking sector

and the sfermions. Instead these are generated only by radiative corrections from the gauge
14As discussed in [91], there actually exists another, independent, supersoft term coupling W ′ and A which

gives a mass to the sgluon. For simplicity, we assume this operator is absent from the theory.
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sector as discussed in detail in [91]. The induced stop soft mass is given by

∆m2
t̃ =

∑
i

Ciαi
π

M2
i log

(
m̃2
i

M2
i

)

= C3α3M
2
3

π
log (4) ,

(5.37)

where we have included only the dominant gluino contribution. The up-type Higgs receives a

contribution to its mass from the stop which is only present in the running between the stop

soft mass and the scale at which this mass is generated. Since the stop mass is generated

only in the small energy range between the sgluon and gluino masses, it is a reasonable

approximation to assume it is tuned on instantaneously at the gluino mass.15 Then the mass

shift in the up-type Higgs is given by

∆
(
δm2

Hu

)
= −3λ2

t

8π2m
2
t̃ log

(
M2

3
m2
t̃

)
, (5.38)

which is clearly very suppressed relative to the MSSM case. Since the sgluon is heavier

than the gluino, the energy range during which the gluino mass feeds into the stop mass is

separated from that in which the stop mass feeds into the Higgs mass, hence there is no need

to carry out an integration over energies. The overall dependence of the Higgs mass on the

gluino mass is then given by

∆m2
Hu = −3λ2

t

8π2 m2
t̃ log

(
M2

3
m2
t̃

)

= 3λ2
t

8π2
C3α3M

2
3

π
log (4) log

(
C3α3
π

log (4)
)
.

(5.39)

Hence, the fine tuning is

∆̃M2
3

= M2
3

m2
Z

3λ2
t

2π2
C3α3
π

log (4) log
(
C3α3
π

log (4)
)

' 0.0282M
2
3

m2
Z

.

(5.40)

In these theories the stop masses are not independent variables since both are generated

through the gaugino masses, and cannot be adjusted independently. Therefore we take the

gluino mass as the only independent variable. While, as previously discussed, using the

weak scale value is an approximation, it is sufficient since there is very little running in such

a theory. Further, since the running occurs over a very small range of energies the gauge
15This assumption leads to an error in the size of the logarithm in Eq. (5.37) of 1

2 log 2 ' 0.3, where the
factor of 1

2 is due to the finite energy range taken for the stop mass to be generated from the gluino mass.
Since the typical value of the logarithm is log

(
M3
mt̃

)
' 2.5 this is negligible at the accuracy to which we are

working.
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couplings can be taken to be constant to a good approximation.

The indirect fine tuning of the Higgs by the gluino through the stop mass, which was

found to be the dominant contribution in the Majorana case, still appears as a logarithm

squared, however now goes as

log
(
M3
mt̃

)
log

(
m̃i

Mi

)
, (5.41)

which of course is much suppressed. Importantly, this is independent of the mediation scale,

in effect the scale where a full N = 2 spectrum appears is acting as a UV boundary of the

RG flow. This is a desirable alternative to a conventional model with a very low cutoff since

it is still compatible with a string theory completion [302], and avoids problematic higher

dimensional operators from a SUSY breaking and mediation sector which is not far separated

in energy scale from the weak scale. Dirac models may also appear naturally out of models

with spontaneous supersymmetry breaking [303].

Since we are dealing with logarithms of O (1), these terms now no longer necessarily

dominate over other non-logarithmic corrections. To obtain an accurate measure of fine

tuning these should be included. In particular, the non-enhanced terms are the reason that

it is not possible to make the fine tuning arbitrarily small for heavy superpartners by taking

m̃3 = M3 and M3 = mt̃. The threshold corrections from the gluino can be calculated

from [103]. These, along with the other corrections lead to an order 10% difference to the

stop masses. Consequently, our results are reasonably accurate.

As the logarithms are small, it is necessary to check that the one-loop contribution of

the electroweakinos to the Higgs mass does not dominate the fine tuning. These give a

contribution to the Higgs mass

δm2
Hu = δm2

Hd = α2 (M2)C2M
2
2

π
log

(
m̃2

2
M2

2

)
, (5.42)

which leads to a tuning of the EW VEV with respect to the wino mass of approximately

∆M2 = M2
2

m2
Z

2α2 (M2)C2
π

(
log

(
m̃2

2
M2

2

)
− 1

)

= M2
2

m2
Z

2α2 (M2)C2
π

(log (4)− 1)

= 0.0062M
2
2

m2
Z

.

(5.43)

Since the wino is typically significantly less massive than the gluino, this is only a small

contribution to the fine tuning.
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Figure 5.8: The EW fine tuning of the minimal Dirac model as a function of gluino and stop masses
(solid lines). Note that, in this model, the stop mass is a function of the gluino mass, hence these
are not independent variables. For comparison we also plot the fine tuning for the MSSM, obtained
in Section 5.2, for the cases ΛUV = 105 GeV, dashed lines, and for ΛUV = 106 GeV, dotted lines. It
is seen that while the Dirac model gives comparable fine tuning to a very low scale MSSM model, it
quickly leads to an improvement in fine tuning as the UV boundary is increased.

In Fig. 5.8 we plot the fine tuning as a function of the gluino mass and also plot the stop

mass which is fixed by the gluino mass (solid lines).

By comparison with the expressions found in the previous section, we find the fine tuning

as a function of stop mass is comparable to an MSSM model with a very low cutoff of

ΛUV = 105 GeV (with both stops masses fixed by one parameter). However, as the cutoff

ΛUV is raised, Dirac gauginos quickly lead to a benefit in reducing the fine tuning. Hence, for

string models, a Dirac gluino provides a very strong option to retain as natural a spectrum

as possible, as well as being well motivated theoretically. Of course, a disadvantage of such

models is that the N = 2 scalar partners spoil traditional SUSY gauge unification unless

other new states are also present, requiring more model building.
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Chapter 6: Hidden Sector Renormalisation and

Fine Tuning

This chapter is based on [304].

In this chapter we study the effect of relaxing the assumption, made in Section 5 and the

vast majority of the literature, that the RG equations are simply those of the (N)MSSM (or

more generally of the visible sector matter and couplings). In particular, we show that the EW

fine tuning of a SUSY theory can be substantially reduced through the effects of hidden sector

renormalisation, first studied in [262,305,306], and later expanded on in [307–315]. This is an

effect where the RG flow of MSSM scalar soft masses is modified by the details of the hidden

SUSY-breaking sector. If the SUSY-breaking sector runs through a region of strong coupling

close to a conformal fixed point, and the operator coupling the Higgs superfields to the SUSY

breaking spurion obtains a large anomalous dimension, it can efficiently suppress the Higgs

soft mass. This washes out the dependence of the EW scale on the superpartner masses and

as a result the fine tuning of phenomenologically viable theories can be significantly reduced.

More precisely, suppose the operator that generates the Higgs soft mass obtains a large

anomalous dimension between energy scales Λ1 and Λ2. Then, approximating the anomalous

dimension, γ, as a constant in this region, after the strong coupling region the Higgs soft

mass is given by

m2
Hu (Λ1) ≈ m2

Hu (Λ2)
(Λ1

Λ2

)γ
. (6.1)

Any feed into the Higgs mass from superparticles above, or during, the strong coupling region

is strongly suppressed if the strong coupling regime lasts for a relatively long time. Provided

the strong coupling ends not far from the weak scale, there is little time for a dependence on

the superparticle masses to reemerge, and the fine tuning is reduced.1

Rather than attempting to study particular examples of strong dynamics explicitly, which

is both notoriously difficult and may not capture generic features of such sectors, we simply

parameterise the effect of the strong coupling region by assuming certain operators get large

anomalous dimensions in this region. Of course, the lack of an example of a theory combining

all the required elements is a significant deficiency of our present work. However, given that
1The possibility that the Higgs mass operator may obtain a large anomalous dimension reducing fine tuning

in SUSY theories has previously been considered [316–319]. The main difference in the models we study, is
that the strong coupling and large anomalous dimensions arise directly in the SUSY breaking or mediation
sector, rather than some additional sector coupled to the Higgs.
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only a handful of models of dynamical supersymmetry breaking are known, and even fewer

are actually calculable, this is perhaps acceptable. Later we argue that it is possible that

sectors with the appropriate dynamics can exist and describe models which exhibit some of

the required features.

In the simplest implementations, all chiral multiplets are assumed to couple universally

to the hidden sector, and the soft mass operators obtain equal anomalous dimension during

the strong coupling period. Due to the universal couplings, the sfermion masses, as well as

the Higgs mass, are suppressed during the RG flow. Obtaining weak scale sfermion masses

in the region of several TeV requires them to be heavier than normal at the UV boundary

of the RG flow, and so the tuning with respect to these states is not reduced. If the hidden

sector is approximately supersymmetric during the strong coupling region, the gaugino mass

operator is protected from receiving a large anomalous dimension by non-renormalisation

theorems and holomorphy. Even if the sector is non-supersymmetric, it is quite plausible

that models exist where this operator does not obtain a large anomalous dimension since

it is distinguished from the operators that generate scalar soft masses, for example due to

its R-symmetry breaking nature. Therefore, the tuning with respect to gaugino masses is

substantially reduced. Due to large production cross sections and dramatic decay signals,

there are stringent collider limits on the gluino mass. A large gluino mass feeds strongly into

the Higgs mass through the stops during RG flow, so this is often the dominant tuning in

a theory [273, 320], and even these most basic models of hidden sector renormalisation can

be a substantial improvement over traditional theories. Of course, this improvement is only

present if the strong coupling region happens to end close to the gluino mass, so that the

gluino mass does not regenerate a shift in the stop masses. The reduction of tuning with

respect to the wino and bino are similarly dependent on this coincidence, but are typically

dominated by the gluino if these masses are assumed to unify at the UV boundary. Later, we

quantify how close these two scales must be so that there is an efficient reduction in tuning.

More complex models with extra interactions between the visible and hidden sector can

reduce the fine tuning with respect to the sfermion masses as well. For example, this can

occur in a theory where the Higgs has extra couplings to the SUSY-breaking sector. These

may cause the Higgs soft mass operator to gain a large anomalous dimension, while the

sfermion operators do not, reducing the dependence of the Higgs mass on the sfermions.

Since the sfermion couplings remain universal, strong constraints from flavour observables
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that are often challenging to accommodate in SUSY models are satisfied. An even more

exotic possibility is that the Higgs soft mass operator obtains an opposite sign anomalous

dimension to the sfermion mass operators. This leads to an enhancement of the sfermions

masses while the Higgs mass is still suppressed. Potentially, soft masses in the region of 10

TeV can be obtained without making the usual tuning of approximately 1% any worse.

As well as the SUSY particles’ soft masses, the fine tuning of the EW VEV depends on

the µ and Bµ parameters at tree level. To obtain low fine tuning, these must be relatively

small. Since the LHC is fairly insensitive to charginos, this is not an very severe constraint.

It does however open up the prospect that a future collider may discover light charginos,

with other superpartners potentially much heavier. A further attractive possibility for future

work would be to build a model where appropriately sized µ and Bµ terms are generated

through hidden sector renormalisation (as has been previously studied) while simultaneously

explaining why only the Higgs mass operator gains a large anomalous dimension. For the

majority of our study we consider traditional Majorana gauginos which feed into the sfermions

at all energy scales. Later we briefly comment on the interesting extension of the MSSM to

Dirac gauginos, which can reduce the gaugino fine tuning even further, although the tunings

with respect to the µ parameter and initial Higgs soft mass are unchanged.

As discussed previously raising the physical Higgs mass to 125 GeV is not always straight-

forward in supersymmetric models. In the simplest versions of the models considered in this

work, all sfermion masses are close to universal at the weak scale. Consequently, collider lim-

its typically force the stops to be fairly heavy in the region of 1.5 TeV, and the physical Higgs

mass can be raised to the required value through the one loop correction Eq. (2.39). Notably,

this correction is cut off by the mass of the stops, not the UV boundary of the RG flow, since

it is the quartic Higgs coupling which is important. Therefore, the strong coupling region

(which is typically above the scale of the stops) does not alter the form of the correction to

the physical Higgs mass. In more complicated models, the stops may be significantly lighter

than the other sfermions, and the Higgs mass can be raised either through large A-terms

increasing the correction in Eq. (2.39), or by introducing an NMSSM structure as studied in

Section 4.

Turning to the structure of this section, we begin in Section 6.1 by briefly reviewing

hidden sector renormalisation. In Section 6.2 we discuss the mechanism that reduces the fine

tuning, and carry out a full numerical study of the fine tuning in models with hidden sector
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renormalisation. Section 6.3 contains a discussion of the types of theory that can may lead

to the required dynamics and other model building possibilities.

6.1 Hidden Sector Renormalisation

The models we study are similar to those introduced in [305], with the crucial difference

that the region of strong coupling occurs close to the weak scale. Consider a SUSY breaking

sector with a spurion X, which receives an F-term, F0, at the UV boundary of the RG flow.

The visible sector scalars and gauginos get mass through terms in the effective Lagrangian

L ⊃
∫

d4θ ai
X†X

M2
∗

Φ†iΦi +
∫

d2θ wn
X

M∗
WnαW

α
n + h.c. , (6.2)

where Φi represents the visible sector chiral superfields, Wn is the gauge field strength (cor-

responding to the gauge group n), and M∗ is some high-energy scale in the theory. These

terms may be generated by integrating out messenger fields in models of gauge mediation or

interactions with other heavy states.

We consider both models where the hidden sector is approximately supersymmetric during

the strong coupling region and also models where SUSY is broken at this scale. If the hidden

sector is supersymmetric, the holomorphic coupling wn is not renormalised perturbatively.2

As a result, the physical gaugino mass only flows due to the wavefunction renormalisation

of X, along with the standard flow of the gauge coupling. Denoting the wavefunction renor-

malisation of X by ZX , and normalising such that ZX = 1 at the UV boundary of the RG

flow, the physical gaugino mass at a scale µ is

Mn (µ) = g2
n (µ)wn

F (µ)
M∗

. (6.3)

where we have defined F (µ) = F0
Z

1/2
X (µ)

. Here, g (µ) is the gauge coupling in a basis where all

fields are canonically normalised. Its RG evolution is given by the NSVZ beta function,

β (g) = − g3

16π2
3T (Ad)−

∑
i T (Ri) (1− γi)

1− g2

8π2T (Ad)
, (6.4)

where i labels the matter fields in the theory, which are in the representation Ri, and have

anomalous dimension γi, and T (Ri) is the Dynkin index of the representation Ri. This arises

as a combination of a one loop exact renormalisation of the holomorphic gauge coupling, and
2Non-perturbative renormalisation of holomorphic couplings is not forbidden by non-renormalisation the-

orems, and may be important in the strong coupling region. We assume that this does not lead to new
operators that generate soft masses in the visible sector.
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a rescaling anomaly from canonically normalising the fields in the theory.

In contrast, the non-holomorphic operator that leads to scalar masses is renormalised.

Crucially, this is separate, and in addition to, the wavefunction renormalisation of X. It is

this renormalisation that means that the dynamics of the hidden sector do not simply result

in a rescaling of all soft masses. Including the wavefunction renormalisation of X through

the rescaling of F0, the scalar masses are

m2
i = ai (µ) F (µ)2

M2
∗

. (6.5)

Here ai (µ) is the renormalised coupling, which evolves according to

dai
dt = γ̃iai −

1
16π2

∑
n

8Cn (Ri) g6
nw

2
n + ... , (6.6)

where t = logµ, and Cn is the quadratic Casimir of the state i with respect to the gauge

group n. γ̃i is the extra contribution to the anomalous dimension of the operator from hidden

sector effects beyond wavefunction normalisation of X, and three ellipses represents other

visible sector one-loop effects, for example those proportional to the Yukawa couplings, and

terms from higher loops.3

If the theory is non-supersymmetric during the strong coupling region, consistently pack-

aging the fields of the theory into supermultiplets is no longer possible. Regardless, we will

see in Section 6.3 that there are models where the operators that generate the visible sector

masses may continue to be renormalised below the scale
√
F . Of course, the argument from

holomorphy protecting the gaugino mass does not hold in this case. However, even if SUSY

is broken, it seems plausible that there exist theories where the gaugino mass operator gains

a far smaller anomalous dimension than the scalar mass operators. This is because the gaug-

ino mass is an R-symmetry breaking operator and the interactions of a vector multiplet are

necessarily different to those of a chiral multiplet.

While it is possible to study the effects of a particular model of the hidden sector, similarly

to [315], we take an alternative approach and parameterise the impact of running through

a strong coupling regime. This is done by turning on large anomalous dimensions for some

operators in the energy region of strong coupling. Due to unitarity, physical operators have

positive total anomalous dimension at one loop [321], however this requirement does not

persist at higher orders and so does not apply during strong coupling. For simplicity, we
3For simplicity, we assume throughout that the SM states do not couple significantly to any hidden sector

operators other than X and X†X. The extension to more general cases is straightforward [306].
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also assume that ZX (µ) = 1 at all energy scales, so that the physical F-term of X does

not flow. This does not alter the phenomenology of our models, since it is the coefficients

of the operators, ai and wn, which feed into each others RG, not the masses. Making this

assumption just means the RG flow of the soft masses is not rescaled relative to that of the

couplings.

6.2 Fine tuning in the Presence of a Strongly Coupled Hidden Sector

We now study the impact of hidden sector renormalisation on fine tuning, for simplicity

assuming tan β is fairly large. It is also convenient to study the low-scale fine tuning ∆EW,

defined in Section 2.10. As discussed in Section 2.10 and [150,152], this gives a lower bound

on the fine tuning of a theory, avoiding assumptions about the UV completion of the low-

energy effective field theory. For example, correlations between soft parameters at the UV

cutoff of the theory could mean that a theory’s true fine tuning is much lower than a naive

estimate of the tuning based on high-scale parameters would suggest. Similarly, the models

we study in this paper are examples of theories where assuming the RG flow is just that of

the MSSM would lead to an overestimate of the high-scale tuning. Effectively, hidden sector

renormalisation can lower the tuning with respect to the high-scale parameters towards the

lower bound set by the tuning with respect to the weak-scale parameters.

Another fine tuning measure, which is interesting for the theories considered here, is the

the tuning with respect to the values of those parameters of the theory immediately after

exiting the strong coupling region that are assumed independent (as usual, it is necessary

to assume some particular boundary conditions since we have no knowledge of the higher

dimensional operators arising from the strong coupling region). Although this measure has

the potential to miss correlations occurring between parameters and effects from running

down to Λ1, we do not know the complete dynamics of any explicit models and can therefore

not properly calculate these effects anyway. Consequently, it gives a sensible estimate of a

lower bound on the model’s fine tuning. When we study particular spectra and RG flows it

will be seen that this measure is typically slightly smaller, but fairly close to the fine tuning

with respect to the UV parameters. Similarly to the low-scale tuning, our point is to show

that a period of strong coupling that does not last too long and could occur in reasonable

models can efficiently lower the high scale tuning to close to this value.

To obtain phenomenologically acceptable models with reduced fine tuning, the strong
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coupling region has to end not far from the weak scale (typically at a few TeV) so that a

perturbation to the Higgs soft mass is not regenerated before the superparticles are integrated

out of the theory. Additionally, the strong coupling must extend over at least roughly one

order of magnitude in energy scale, so that the Higgs soft mass is sufficiently suppressed.

This can occur if the RG flow passes very close to an interacting conformal fixed point.

Depending on the details of the models involved, the theory may be either supersymmetric

and non-supersymmetric during the strong coupling regime. If the SUSY-breaking sector

itself is responsible for the hidden sector renormalisation, the scale of mediation must be low,

however if it is the messenger sector that runs to strong coupling near the weak scale the

scale of mediation can be high. In Sector 6.3, we consider more model building issues and

discuss how the required features could be realised.

For our numerical studies, we assume that the sector that becomes strongly coupled is ei-

ther supersymmetric, or such that the gaugino mass operators do not obtain large anomalous

dimensions, so that the tuning with respect to the gaugino masses is reduced. To parame-

terise the behaviour of the visible sector in response to the hidden sector renormalisation, we

take

γ̃j (µ) =


1 if Λ1 < µ < Λ2

0 otherwise
, (6.7)

where j labels the chiral multiplets whose soft mass operators obtain a large positive anoma-

lous dimension when the hidden sector is strongly coupled, between Λ1 and Λ2. We have

made the assumption that γ̃j > 0, in order that the RG flow decreases soft masses. This

parameterisation is well motivated since at conformal fixed points of supersymmetric theories

fields often have large anomalous dimensions, of order 1 [262,322].

The Higgs potential mass squared parameters receive a direct contribution at one loop

from the charginos and the bino, and a two-loop double logarithmically enhanced contribution

from the gluino through its effect on the stop. For GUT boundary conditions, the second

effect is much larger. As shown in Eq. (6.1), after running through strong coupling this

contribution is strongly suppressed. The stops contribute to the Higgs mass squared at one

loop through an interaction proportional to a Yukawa coupling, while the other sfermions

dominantly feed in through a two-loop coupling. While these contributions are suppressed by

the strong coupling, the sfermion soft masses are also suppressed so must be larger initially,

and there is no improvement in the fine tuning with respect to these parameters.
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Figure 6.1: Left: The RG flow of the soft masses squared in the theory described in the text, assuming
universal scalar soft masses at the UV boundary of the flow. The region of strong coupling is clearly
visible as an approximately exponential suppression of the scalar soft masses in the region of 105 GeV.
The Higgs soft mass runs to negative coupling, driven by the terms proportional to the top Yukawa
coupling in the RG equations, compatible with radiative EW symmetry breaking. Right: The weak
scale soft masses in the same theory. The gluino mass is far above LHC reach without being the
dominant tuning in the theory, and the sfermion masses are close to current limits.

To study these effects more carefully, we analyse the RG flow of the MSSM in the presence

of hidden sector renormalisation numerically. We include the full one-loop equations, and

the dominant two-loop effects. Initially, we consider a theory with high-scale mediation.

The effect of the hidden sector renormalisation is especially dramatic in this case, and the

results are very similar to the low-scale mediation case, except that models with low-scale

mediation have slightly less fine tuning. Further, we assume the soft mass operators of all

chiral multiplets in the theory get a large anomalous dimension in the strong coupling region.

This is completely flavour blind, and attractive in its simplicity. All the dynamics that leads to

the large anomalous dimensions can be generated in the hidden sector, without any additions

to the visible sector. Also, constraints on flavour changing current are automatically satisfied,

even though the strong coupling region is close to the weak scale and higher dimension

operators are not strongly suppressed.

Fig. 6.1 (left) shows the running in a typical theory, under the assumption of universal soft

masses of 104 GeV at a mediation scale of 1016 GeV, and universal gaugino masses of 1.4 TeV

(corresponding to a weak scale gluino mass of 4 TeV), characteristic of a GUT theory. The fine

tuning is not substantially altered if the initial soft masses fall into the pattern predicted by

minimal gauge mediation. The period of strong coupling is taken to be between 5× 105 GeV

and 5× 103 GeV and is clearly visible in its effect on the scalar soft masses, while the gluino

mass is unaffected. In Fig. 6.1 (right), we show the mass spectrum obtained at the weak

scale. The sfermions are close to the current experimental bound and the gauginos are far
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Figure 6.2: Left: The perturbation induced in the stop soft mass, ∆m2
t̃
, in response to a perturbation

of the universal gaugino mass, ∆M2, at the UV boundary of the RG flow (taken to be 1016 GeV), as
a function of the energy scale during the RG flow. Right: The perturbation induced in the up type
Higgs mass, ∆m2

Hu, in response to the same gaugino mass perturbation. The parameters are those
of the theory plotted in Fig. 6.1 and described in the text.

above the regions that can be efficiently probed by the LHC. Since the scale of mediation is

high, the F-term is large, of order
√
F ∼ 1010 GeV.

The fine tuning with respect to the initial universal gaugino mass squared is 15. This a

substantial improvement over the typical tuning from a 4 TeV weak scale gluino mass with a

mediation scale of 1016 GeV which is in the region of 600. Taking a lower mediation scale or

the region of strong coupling closer to the weak scale can lower the tuning obtained to 5. The

tuning from sfermions is of order 70 which is comparable to that in a model without strong

coupling and identical weak scale scalar masses. Assuming just an MSSM Higgs structure,

µ is fixed by Eq. (2.38) and induces a substantial tuning of roughly 70. One minor benefit

for the fine tuning with respect to sfermions in models with strong coupling is that heavy

gluinos slightly reduce production cross sections and consequently alleviate collider bounds

on sfermions. However, even with a decoupled gluino, the limits on universal sfermion masses

are in the region of 1.4 TeV, which is substantial.

We also plot the perturbation induced in the stop and Higgs soft masses as a result

of a perturbation to the universal gaugino mass at the high-scale in Fig. 6.2. Initially a

large perturbation in the stop soft mass is induced by the perturbation to the gluino mass

(this is identical to the start of the RG flow that would be followed if it was not for the

strong coupling). The strong coupling regime is clearly visible and heavily suppresses the

perturbation to the stop mass, followed by a short period where the correction is regenerated,

before the gluino is integrated out of the theory. The small near vertical drop is because

the gluino is now slightly heavier and integrated out of the theory earlier resulting in less

running. The Higgs mass (right panel), initially experiences a small positive perturbation as
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a result of the increased chargino and bino mass. After a short distance in energy scale this

is overwhelmed by the two-loop contribution due to the increased mass of the stop. Again,

the perturbation is strongly suppressed in the strong coupling region, and the regeneration

is negligible.

As discussed, an important assumption is that the strong coupling region must end fairly

close to the gluino mass so that a significant shift in the Higgs soft mass squared parameter

is not generated below this scale. To quantify this requirement, in Fig. 6.3 we plot the fine

tuning with respect to the unified gaugino mass at the UV boundary as a function of the

energy scale of the lower end of the strong coupling region, Λ1. The upper boundary of

strong coupling is set by the requirement that Λ1
Λ2

= 100 is constant, so that the suppression

of soft parameters through Eq. (6.1) is the same for all models. The gluino mass is 4 TeV,

and all other parameters of the theory as are for Fig. 6.1. For Λ1 below 4 TeV the gluino

is integrated out of the theory within the strong coupling region, and the fine tuning is

set by the feed in from the gluino to the Higgs from above the strong coupling region. Of

course, this contribution is suppressed by the strong coupling and so gives a much smaller

tuning than usual. When Λ1 is greater than 4 TeV, the fine tuning increases as the gluino

regenerates a mass splitting at two-loop order. Efficient reduction of fine tuning requires a

fairly close coincidence in scales. However, not surprisingly, there is still a substantial benefit

over conventional models with high-scale mediation even if the strong coupling region ends

relatively far from the gluino mass.

It is also interesting to consider the low-scale fine tuning, and the tuning if the assumed

boundary of the RG flow was simply Λ1, described in Section 6.2. The gluino tuning assuming

the UV boundary is Λ1 is shown in Fig. 6.3. It can be seen that this is comparable but slightly

less than the high-scale tuning of the theory. This shows that a reasonable period of strong

coupling, which might be realised in explicit models can efficiently wipe out almost all of the

contribution from the gluino above the strong coupling scale. The contribution to the fine

tuning evaluated at the EW scale from the gluino is negligible since it does not appear in the

one-loop potential. The wino and bino do contribute to this at one loop but assuming GUT

unification are sufficiently light that they do not lead to a significant tuning. The tuning

from the µ parameter is approximately the same (approximately 70) for all measures of fine

tuning, since it does not run by a large amount and is unaffected by the strong coupling

region. The high-scale sfermion fine tuning, which is not reduced by the strong coupling,
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Figure 6.3: The solid line shows the fine tuning with respect to the gluino mass (here assumed to be
independent of the other gaugino masses), as a function of the lower end of the strong coupling region,
Λ1, keeping the ratio Λ1

Λ2
constant, in a theory with a weak scale gluino mass of 4 TeV and a mediation

scale of 1016 GeV. As the strong coupling region is separated from the gluino mass the fine tuning
increases as a shift in the stop mass is regenerated below the strong coupling region. Below this scale
the tuning is solely as a result of the feed-in above the strong coupling scale, which is suppressed but
not completely eliminated. For comparison, the dashed line shows the tuning from a 4 TeV weak scale
gluino if the assumed UV boundary of the RG flow is Λ1.

is unsurprisingly much greater than other two measures of tuning, due to the size of the

logarithms involved.

There are extensions to the simplest models that reduce the tuning with respect to the

sfermion masses. Of course, the pay off for this is that the couplings between the visible sector

and hidden sector have to be more complicated. Consider a theory where the sfermions have

flavour universal couplings to the hidden sector spurion, through ordinary gauge mediation,

but the Higgs fields have additional couplings to the spurion. As a result the initial Higgs soft

masses are enhanced compared to normal gauge mediation. Further, assume the extra Higgs

couplings result in the Higgs soft mass operator gaining a large anomalous dimension during

the strong coupling period, whereas the other operators do not. Such a structure may be

obtained, for example, if the Higgs fields are charged under a new gauge symmetry which the

other visible sector fields are not.4 Given that a complete theory must include a mechanism

to solve the µ/Bµ problems it is not implausible that the Higgs fields could have different

interactions with the hidden sector to the other chiral multiplets. Flavour observables are

still safe since the sfermion couplings are universal. The perturbation to the Higgs mass
4Of course, such a symmetry must be strongly broken to allow the SM Yukawa couplings.
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from the sfermion masses is suppressed by the strong coupling, but the sfermion masses are

not themselves suppressed, reducing the fine tuning from this sector. The initial large Higgs

mass is actually useful in finding spectra where the up-type Higgs soft mass is close to zero

after running, reducing the required value of µ from Eq. (2.38), and consequently the tuning

from this parameter.

In Fig. 6.4 (left), we plot the running of a model with these features. The theory has

a low mediation scale of 106 GeV, and a strong coupling region between 2 × 105 GeV and

2 × 103 GeV.
√
F is approximately 105 GeV, just inside the strong coupling region. The

sfermion soft masses at the UV boundary of the RG flow are taken to fall into the standard

gauge mediation pattern. The weak scale masses are shown in Fig. 6.4 (right). The gluino

is at 2.5 TeV and the squarks are in the region of 1.55 TeV, very close to current limits. For

the initial parameters chosen, the Higgs mass squared just runs negative, with a weak scale

value of − (320 GeV)2, and µ = 313 GeV. The tuning with respect to the initial gaugino

mass squared is approximately 15, with respect to the initial sfermion approximately 20,

and that with respect to the initial Higgs mass, and also the initial value of µ is also in

the region of 20. This is a substantial improvement over a low-scale gauge mediation model

without hidden sector renormalisation, which typically has a tuning of O (100) in each of

these parameters. The dependence of the sfermion fine tuning on the location of the lower

cutoff is parametrically similar to that of the gluino plotted in Fig. 6.3, for a large reduction

in fine tuning compared to traditional models with low scale mediation these two scale must

be rather close.

For comparison, the tuning directly at the EW scale with respect to the 1.5 TeV stops

is approximately 10 [153]. Additionally, the tuning if the UV boundary of the RG flow is

taken to be Λ1 is approximately 15. Consequently, the strong coupling region successfully

lowers the high-scale tuning towards these lower bounds. This is perhaps not surprising since

the strong coupling region ends at 2 × 103 GeV, close to the weak scale, and the fairly low

mediation scale means there is little running before the strong coupling region begins. As a

result the high-scale tuning is close to the tuning from the scale Λ1, which itself is close to

the tuning evaluated at the EW scale. Again, the tuning of µ is similar for all measures since

its running is only a fairly weak effect, and the gluino fine tuning measures have a similar

patten to the previous model.

As a entertaining alternative, it is possible that the anomalous dimension of the sfermion
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Figure 6.4: Left: The RG flow of the soft masses squared in the theory described in the text. Only
the Higgs mass squared operator gains a large anomalous dimension in the strong coupling region,
and is consequently suppressed. The mediation scale is low, and the sfermions mass ratio at the UV
boundary of the RG flow is that of standard gauge mediation. The gauginos masses fall into the GUT
pattern, but are assumed to be independent of the sfermion and Higgs masses. Right: The weak
scale soft masses in the same theory. The UV boundary parameters of the theory are such that the
sfermion masses are close to current LHC limits.

mass operators could actually become negative in the strong coupling regime. This would

lead to an enhancement of the sfermion masses during the strong coupling region, taking them

far out of LHC reach without introducing significant fine tuning. It could be that all the

sfermions receive enhanced masses, or alternatively just the first two generation sfermions

might be enhanced. The later could occur, for example, if these generations are charged

under an additional broken gauge group. It is possible such a structure could be linked to

the fermion mass hierarchy, in the style of the classic natural SUSY spectra [159,160].5 This

breaking of a gauged flavour group, could even trigger the supersymmetry breaking sector

to run into strong coupling, especially since the SU(2) structures which arise in the model

of [297] often appear in interesting candidates for conformal theories.6

Assuming all sfermion soft masses are enhanced, it is possible to obtain a model with

a weak scale gluino mass of 3 TeV, and sfermion masses in the region of 7 TeV, with an

associated tunings of only 25 and 50 with respect to the sfermion and gluino masses respec-

tively. Overall, the tuning of the theory is comparable to the most natural traditional models

compatible with collider bounds, even though the scalars are very heavy with a spectrum

reminiscent of mini-split supersymmetry [217]. Additionally, as seen from Eq. (2.39), in the

models presented here, it is fairly straightforward to obtain a physical Higgs mass of 125 GeV

through radiative corrections from the fairly heavy stops.
5A similar mechanism for generating a natural SUSY spectrum has been studied in [319].
6We are grateful to Matthew McCullough for this observation.
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While we have studied hidden sectors with rather dramatic effects on the RG flow, it is

also plausible that the fine tuning may be reduced substantially even in a model where the

hidden sector does not become strongly coupled, or where the strong coupling does not occur

close to the EW scale. For example, a weakly coupled hidden sector could modify the visible

sector running in such a way that additional cancellations between the various contributions

to the Higgs soft mass appear. This is somewhat analogously to ‘focus point’ models [323],

and relies on the careful analysis of different tuning measures emphasised in [152]. It would

be interesting to find examples of theories where this could occur.

6.3 Model Building

We now discuss the possibilities for finding models with the features assumed in the previous

section. Finding and studying explicit examples of non-supersymmetric theories which pass

close to an interacting conformal fixed point is hard, however several examples are believed

to exist. In fact, these types of model have been studied extensively in the context of walking

technicolour [324, 325], and it may even be easier to find supersymmetric theories with the

appropriate dynamics, for example [326]. Of course it would be highly beneficial to have

an example of a complete theory with all the required properties, however in this work we

simply argue that such theories may be plausibly realised.7

Low-Scale SUSY-Breaking

The simplest implementation of hidden sector renormalisation reducing fine tuning arises

in models with low-scale breaking and mediation. In such models, SUSY breaking occurs

at approximately the same scale as the strong coupling region, and there is the potential

to link these two events, for example running to strong coupling could trigger spontaneous

SUSY-breaking as happens in a number of known models.

Typically, due to loop factors that arise in the gauge mediation to the visible sector,
√
F must be above the weak scale and the lower limit of the strong coupling region. The

hidden sector, and SUSY-breaking multiplet, can easily remain dynamical below this scale

if some fields in the hidden sector have masses suppressed by loop factors or small coupling

constants. For example, the dominant F-term in the theory can arise as an expectation value

of a scalar field which receives a mass only at loop order. Additionally SUSY breaking masses
7It may be possible to study explicit theories using the techniques of general gauge mediation [136].
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that appear in the hidden sector can be somewhat removed from
√
F . If this is the case, the

scale of these masses may be close to the end of the strong coupling region. Consequently,

at least some of the interactions in the strong coupling region can remain approximately

supersymmetric, and results from holomorphy may remain accurate. Alternatively, there

may exist mediation mechanisms which do not lead to loop factors, so that
√
F can be close

to the weak scale, and the hidden sector remains supersymmetric during strong coupling.

Conversely, the hidden sector may be non-supersymmetric for some or all of the strong

coupling region, which is not problematic but does require the extra assumption that the

anomalous dimensions of the gaugino mass operators are small.

In models with low-scale mediation, the RG flow of the SM gauge couplings is not nec-

essarily altered; the strong coupling region may only affect matter in the SUSY-breaking

sector, which is uncharged under the SM gauge groups. SUSY-breaking messengers, charged

under the SM gauge group, might not experience strong coupling depending on the dynamics

of their couplings to the hidden sector. Even if the RG flows are modified, gauge unification

can be maintained provided the matter content and couplings of the messenger sector are

GUT compatible.

To clarify some of these issues we consider the example of the ISS model, previously

described in Section 2.8. Although we do not provide a full model (for example, a mediation

mechanism) or calculation of anomalous dimensions, this is a good candidate for a theory

which might remain strongly coupled for an extended energy range if the theory is close to the

edge of the ‘conformal window’, that is, F is close to 3
2N [326]. As usual, the UV description

consists of SQCD with massive quarks, of mass m, in the window N + 1 ≤ F < 3
2N . The

magnetic theory superpotential is of the form given in Eq. (2.52). Typical supersymmetric

and non-supersymmetric masses in the theory are ∼ hµ, while directions which are pseudo-

moduli (including the scalar components of the multiplets that obtain F-terms) only obtain

masses at one loop of size ∼ h2µ.

Since it is not fixed by the duality, we suppose the constant h happens to be small in

a particular theory. In this case the hierarchy of masses is as shown in Fig. 6.5, and the

theory has a significant separation between the onset of the strong coupling region, the scale

of the F-terms in the theory and the masses of the fields, as might be expected to occur

if the theory is close to the conformal window. Supersymmetry breaking occurs somewhat

after the beginning of the strong coupling region. The masses of states in the sector are
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F-terms
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Figure 6.5: The mass scales in the ISS model,
which may (once a complete model, including
messenger sector, is specified) be a candidate
for a theory with low-scale mediation and sig-
nificant hidden sector renormalisation. The pa-
rameters are as defined in the text.

Strongly 
Coupled 
Sector

Visible 
Sector

Heavy Mediators

SUSY 
Breaking

Figure 6.6: A schematic setup which could lead
to hidden sector renormalisation, near the weak
scale, in a model with high-scale mediation. The
strong coupling region may be approximately
supersymmetric depending on the interactions
between the sectors.

suppressed relative to the SUSY-breaking scale, and therefore the theory remains dynamical

until these masses are reached. Additionally, above the scale of the soft masses the theory

some interactions of the theory may remain approximately supersymmetric, even though

the energy scale is below
√
F . Below the soft masses the theory is non-supersymmetric but

remains dynamical until the masses of the lightest states are reached. Consequently, although

we have certainly not analysed this theory properly, it is at least a reasonable candidate for

giving significant hidden sector renormalisation.

High-Scale SUSY-Breaking

It is also possible to build models with high-scale SUSY breaking and mediation. This case

is slightly different, since the SUSY-breaking sector, which is typically dynamical only for a

few orders of magnitude below
√
F , cannot be the strong coupling sector. However, hidden

sector renormalisation can reduce fine tuning if the messenger sector of the theory is more

complicated than usual, and becomes strongly coupled near the weak scale. While the setups

involved may seem more contrived than the low-scale case, they are still interesting.

Suppose the theory is as shown in Fig. 6.6. The visible sector is coupled to the supersym-

metry breaking sector indirectly, through a sector with light states which themselves couple
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ψ1 ψ2

φ1 φ2

mheavy

〈X〉

Figure 6.7: A diagram that can lead to visible sector gaugino masses in a model with high scale SUSY
breaking. The fields ψ1,2 and φ1,2 are the fermions and scalars in the messenger chiral multiplets Ψ1,2
and have masses near the TeV scale. Even though the SUSY-breaking scale is high, the messenger
multiplets may remain approximately supersymmetric and dynamical until close to the weak scale.
Consequently hidden sector renormalisation can reduce the theory’s EW fine tuning. Visible sector
scalar soft masses squared are be generated through higher loop-order diagrams.

to the SUSY-breaking sector through heavy mediators. If the sector containing light states

becomes strongly coupled, the visible sector soft mass operators can still gain large anoma-

lous dimensions. The strong coupling sector is supersymmetric until a scale F
mmed

, which

can be close to the visible sector soft masses and the weak scale. Depending on the model,

the strong coupling region may or may not be supersymmetric. A particularly attractive

scenario is if the soft masses in the light messenger sector cause the sector to leave the strong

coupling regime, so that both are close to the weak scale in a correlated fashion. Depending

on the details of the particular model, the scale of mediation can be high (near the mass of

the heavier set of messengers), or low, around the mass of the lighter messengers.8 In these

models the RG flow of the SM gauge couplings will be altered, since the messengers, which

are charged under the SM gauge groups, gain large anomalous dimensions which affect the

beta functions through Eq. (6.4).9 However, gauge unification can persist if the couplings

and matter content respect an underlying GUT structure.

For example, suppose a theory contains messenger chiral superfields, Ψ1 and Ψ2, charged

under the SM gauge groups, with a supersymmetric Dirac mass, mlight, of order 10 TeV,

L ⊃
∫

d2θmlightΨ1Ψ2 . (6.8)

The SUSY-breaking sector is parameterised by a spurion X, which obtains an F-term 〈X〉 =

θ2F . Further, assume the theory contains heavy fields with typical masses of mheavy, which
8The former resembles ordinary gauge mediation, in which visible sector scalar soft masses are generated

at the messenger mass scale, despite coupling to the messengers through light gauginos and gauge bosons.
9This will also slightly modify the RG flow of the physical gaugino masses, but does not have a significant

effect on the fine tuning of the theory.
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couple the messengers to the SUSY-breaking sector for example through some new gauge

group, although we do not specify the interactions. These induce SUSY-breaking masses

of typical size F
mheavy

in the messenger scalars. Soft masses are generated in the visible

sector, through diagrams of the form of Fig. 6.7 for gauginos and similar diagrams for the

scalar masses. Since the messenger multiplets have masses near the weak scale, they remain

dynamical down to low-energy scales. If their interactions are such that they run into a

strong coupling regime near the weak scale (for example, if they are charged under some

additional gauge group that becomes strongly coupled) the visible sector soft mass operators

can obtain a large anomalous dimensions, leading to hidden sector renormalisation.

Other model building possibilities

While we have focused on the benefit of hidden sector renormalisation for fine tuning, there

are also potential benefits for building models of SUSY-breaking. A very common issue

encountered in theories with dynamical SUSY-breaking is generating weak scale gaugino

masses which are not suppressed relative to sfermion masses, leading to unacceptably large

tuning if collider constraints are to be satisfied. Suppressed gaugino masses appear because

an R-symmetry is a necessary condition for SUSY to be spontaneously broken [126]. Such

an R-symmetry however forbids gaugino masses, and even if it is spontaneously broken it

is often not broken strongly enough. Alternatively, a metastable SUSY breaking vacua may

be obtained in a sector with an approximate R-symmetry. Even here, obtaining both a

sufficiently long lived vacua and heavy enough gauginos, makes model building challenging

[127]. The theories initially studied, with all chiral multiplets getting a large anomalous

dimension in the strong coupling region allows for scalars to start off heavy, yet end up

lighter than the gauginos at the weak scale, alleviating this problem without introducing fine

tuning.

Finally, if Dirac gauginos are combined with hidden sector renormalisation, in such a way

that the theory is in strong coupling for most of the energy region between the masses of

the sgauge and gauginos, there is a double suppression of the tuning. It is possible to obtain

gluino masses of order 10 TeV without any appreciable fine tuning. While it is remarkable

that there may be such little tuning from this sector of the theory, this does not greatly

improve the overall fine tuning of the theory. Even with the extended set-ups to reduce

sfermion fine tuning discussed in this section, the overall tuning of the theory is still typically
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20 due to the initial Higgs soft mass and µ parameter required to obtain the correct EW

VEV.

There is an interesting additional feature in models with Dirac gauginos that may be

helpful with model building, the visible sector retains an R-symmetry. Suppose the theory

has an unusual mediation structure such that
√
F is below the strong coupling scale. Then

the hidden sector passes close to a superconformal fixed point, and necessarily has an almost

exact R-symmetry [262, 327]. This can be identified with the R-symmetry in the visible

sector, allowing the anomalous dimensions of operators to be evaluated.
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Chapter 7: Concluding remarks

In this work we have studied the properties of so called natural SUSY theories, in which only

the third generation sfermions, charginos, and neutralinos are light. In Section 3, we built

a model of SUSY breaking and mediation that leads to a viable natural SUSY spectrum.

While many such models have previously been constructed, the model here has a number

of attractive features. In particular, we proposed that a single, spontaneously broken, U(1)

gauge symmetry may be responsible for suppressing both the first two generation Yukawa

couplings, and also, in a correlated manner, parameters in the dynamical SUSY breaking sec-

tor. In the dynamical SUSY-breaking sector, these small parameters are typically required

to introduce R-symmetry breaking in a controlled manner and obtain phenomenologically

viable meta-stable vacua. The heavy U(1) multiplet mediates a dominant contribution to

the first two generation MSSM sfermion soft masses, while gauge mediation provides a para-

metrically suppressed soft term contribution to the stop and most other states, so realising

a natural SUSY spectrum.

However, a Higgs boson as heavy as 125 GeV can be difficult to explain in natural SUSY

spectra, due to the relatively light stops. The NMSSM is an attractive framework for raising

the Higgs mass. We studied this in Section 4, and found that for very light stop masses,

λ0 & 0.7 is required to obtain the desired Higgs mass and for such large values of λ at

the weak scale the coupling will generally become strongly coupled before unification. A

coupling becoming strongly coupled before unification raises the concern that successful gauge

coupling unification may be adversely affected. However, on the contrary, we argued that

gauge coupling unification could actually be improved given a short period of strong coupling.

In these advantageous cases, the strong coupling regime corresponds to a threshold effect of

sign and size expected to be of the right order to correct the current 3% discrepancy between

the two-loop MSSM prediction for αs(mZ) and its measured value. Moreover, we argued

that in scenarios where γHu < γHd , a period of strong coupling could also be beneficial for

t− b unification.

Given that the motivation for natural spectra is to obtain low EW fine tuning, it is

interesting to study the extent to which this can actually be realised. In Section 5, we carried

out a careful study of the fine tuning in such theories, improving previous approximation

expressions. We obtained lower bounds on the fine tuning of theories for a given gluino mass.

For models with high-scale mediation, if there is a Majorana gluino mass of 2 TeV the fine
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tuning is at least 400, and only constrains the UV stop mass to be below 1.5 TeV. After

running to the weak scale, the stop mass can be up to 2 TeV without affected the fine tuning,

and the largest regions of parameter space with the lowest fine tuning have fairly heavy IR

stop masses of 1.5 TeV. Models with low scale mediation and a 2 TeV Majorana gluino have

a fine tuning of at least 50, and the UV stop mass is constrained to be below 500 GeV. After

running, the regions with the lowest fine tuning have IR stop masses up to 1.4 TeV.

Consequently, models compatible with LHC bounds can typically raise the Higgs mass

to 125 GeV in the regions where they have the lowest fine tuning, either through stop loop

corrections (with significant A-terms), or in NMSSM theories without couplings that run

non-perturbative. Additionally, in both high- and low-scale mediation models, the masses

of the first two generation sfermions may be made very large, far out of reach of the LHC,

without introducing additional fine tuning to the theory. We also discussed fine tuning

in models of Dirac gluinos. These are found to allow for spectra with moderate fine and

significant separation of the gluino and stops, comparable to MSSM theories with very low

scale mediation, even if the scale of mediation is high.

Finally in Section 6, we considered the effect of relaxing the usual assumption that the

RG flow of the soft masses is fixed by the visible sector matter and interactions. It was

found that the EW fine tuning can be significantly reduced by the effect of hidden sector

renormalisation in models where the SUSY breaking sector runs through an extended period

of strong coupling not far from the weak scale. In the simplest implementation, the fine

tuning with respect to the gluino mass may be reduced from order 1000 to order 10, however

there is no improvement in the tuning with respect to the sfermion masses. More complicated

models, where the Higgs has additional couplings to the SUSY breaking spurion, may reduce

the tuning with respect to all parameters of the theory to the region of 20. In this work we

simply parameterised the hidden sector through assumed values of anomalous dimensions,

and it is clearly an important challenge to build models of the hidden sector with appropriate

dynamics.
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Appendix A: Appendix A

A.1 Source of the Contact Operator

In this appendix we provide a justification for the interactions Eqs.(3.10) (3.18) that are

crucial to our model in Section 3. In the pure field theory case this is obtained by integrating

out the heavy gauge multiplet, as discussed in [190] directly leading to an effective term in

the Kähler potential

L ⊃ −
∑
i,j

g2qiqj
m2
Z′

∫
d4θ φ†iφiφ

†jφj , (A.1)

where φi and φj are any fields charged under the gauge symmetry. Alternatively this can be

regarded as the vector multiplet gaining a D-term. In the Stueckelberg case, the interaction

can also be understood in this way, however it is interesting to also understand it directly

from the Lagrangian. For a vector multiplet V , which gains a mass M through interaction

with a Stueckelberg field S, and is coupled to hidden sector fields Φ and MSSM fields Q this

is given by:

∫
d4θ

(
Φ†eqΦgV Φ +Q†eqQgVQ+M2

(
V + 1

M

(
S − S†

))2
)
. (A.2)

In the limit that M is much greater than any other mass scale in the theory, V may be inte-

grated out by solving ∂K
∂V = 0 with solution V = −(g/2M2)

(
qΦΦ†Φ + qQQ

†Q+ (S − S†)/gM
)
.

Inserting this back into the original Kähler potential leads to

∫
d4θ

(
−g

2qΦqQ
M2 Φ†ΦQ†Q

)
. (A.3)

The bilinear dependence of these terms on the charges justifies the claim in the text that

for a suitable charge assignment a positive mass2 contribution to sfermion masses arises and

also that a sign difference in the charge of Q3 relative to Q1,2 can lead to mass terms of the

opposite sign. In the string context we expect M ∼ gM∗ which results in the dependence on

the gauge coupling dropping out.1 Finally, higher terms in the expansion occur, e.g.,

∫
d4θ

(
g2q2

ΦqQ
M4 Φ†Φ†ΦΦQ†Q

)
. (A.4)

Such terms, however, are harmless in the relevant parameter range for our discussion.
1The limit g → 0 is obscured by these terms as the mass scale M ∼ gM∗ is no longer large. In the leading

and sub-leading terms we have dropped a overall model-dependent coefficients.
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A.2 Gauge Mediated Contribution to Soft Masses

In Sections 2 and 3 an approximate expression for the gauge-mediated contribution to soft

masses was quoted. Here we give the precise formulae as used in our numerical studies and

figures in Section 3.

The two contributions, Eq. (3.5) and Eq. (3.10) in the Polonyi case, and Eq. (3.15) and

Eq. (3.18) in the ISS case, result in a messenger scalar mass matrix (assuming Ψ and Ψc

have the same U(1) charge; the analysis is straightforwardly extended to other cases) of the

form

L ⊃
(

Ψ̃† Ψ̃c†
) m2

mess +m2
K Feff

Feff m2
mess +m2

K


 Ψ̃

Ψ̃c

 , (A.5)

where mmess is the supersymmetric mass of the multiplet, mK is the mass due to the Kähler

interactions, and Feff is the effective F-term felt by messengers through the superpotential.

Hence, the messenger scalar mass eigenstates are given by 1√
2

(
Ψ̃± Ψ̃c

)
with masses

m2
1,2 =

(
m2
SUSY +m2

K ± Feff
)
, while the messenger fermion masses are simply mf = mSUSY .

Gaugino masses are generated through the normal diagrams of gauge mediation, and are given

by

mλi = αi
4πnmmf

((
m2

1
m2

1 −m2
f

)
log

(
m2

1
m2
f

)
−
(

m2
2

m2
2 −m2

f

)
log

(
m2

2
m2
f

))
, (A.6)

which reduces to that commonly found through analytic continuation [89] in the limit Feff �

m2
K and Feff � m2

SUSY . However, for the values of parameters we are interested in, these

conditions are not satisfied and the full expression (A.6) is required.

The contribution to sfermion masses from gauge mediation with these messenger masses

is given by

m2
gauge =

∑
i

(
αi
4π

)2
Ci nm

[
g(m1,m2,mf ) + h(m1,m2,mf ,ΛUV)

]
. (A.7)

Here Ci is the quadratic Casimir of the scalar and

h (m1,m2,mf ,ΛUV) = −
(
2m2

1 + 2m2
2 − 4m2

f

)
log

(
Λ2

UV
m2
f

)
, (A.8)

while g(m1,m2,mf ) is the contribution from the normal diagrams of gauge mediation whose

lengthy explicit form is given in [134]. As also discussed in [134], the non-vanishing supertrace

of the messenger sector results in a negative contribution, described by h (m1,m2,mf ,ΛUV).

due to the need to include a counterterm for ε-scalar masses in dimensional reduction. The

scale ΛUV is the mass at which additional states charged under the MSSM gauge group
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appear resulting in a vanishing supertrace. For our theories this is naturally ΛUV = M∗.

Due to their large mass these extra states do not contribute significantly to MSSM masses

as messengers of gauge mediation.

Unlike gaugino masses, sfermions gain significant masses from gauge mediation even when

the messenger masses are dominated by the diagonal Kähler contribution. The reason for

this is clear: the Kähler contribution is effectively a D-term mass and does not break an

R-symmetry, which protects gaugino masses but not sfermion masses.
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