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Abstract

Low scale supersymmetry (SUSY) is a compelling solution to the electroweak hierarchy prob-
lem. However, increasingly strong limits on the masses of superpartners, first from LEP and
now the LHC, mean that the simplest models require significant fine tuning. This thesis is
dedicated to the study of a possible alternative low energy superpartner spectrum, natural
SUSY, in which only superparticles directly involved in stabilising the electroweak scale are
light, alleviating collider limits and potentially reducing tuning.

After reviewing how low scale SUSY is motivated by the hierarchy problem, we build a
model of SUSY breaking and mediation that successfully generates a natural SUSY spectrum.
This also suppresses the first two generation fermion Yukawas, and leads to small parameters
in the hidden sector, which are required for successful SUSY breaking. A challenge in models
of natural SUSY is raising the physical Higgs mass to 125 GeV, and we study the possibility
that this could occur through the addition of a singlet to the theory. If stops are very
light, the coupling of the singlet to the Higgs needs to be so large that it becomes non-
perturbative before the scale of grand unification, raising the concern that precision gauge
coupling unification may be upset. However, we find that this is not necessarily the case.
Rather it is possible this could correct for the present ~ 3% discrepancy in the two-loop
minimal supersymmetric model’s unification prediction.

We then turn to the fine tuning in models of natural SUSY, emphasising that this should
be measured with respect to the theory’s ultraviolet (UV) parameters. We show that the
first two generation sfermions can be made relatively heavy, beyond LHC reach, without
introducing tuning. However, the gluino generates a significant tuning through the stops
during the renormalisation group flow. As a result, there is no fine tuning benefit in reducing
the stop masses below (50 — 75) % of the weak scale gluino mass, and we obtain strong lower
bounds on the tuning of theories compatible with collider limits. We also study theories with
Dirac gauginos, which have relatively low fine tuning even if the scale of mediation is high.
Finally, we consider the effect of relaxing a common assumption and allowing the hidden
SUSY breaking sector to modify the running of the visible sector soft masses. This may
plausibly occur in realistic models and could dramatically reduce the fine tuning of SUSY

theories.
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Chapter 1: Introduction and Motivation

1.1 The Standard Model, Electroweak Symmetry Breaking and the Hier-

archy Problem

The Standard Model (SM) of particle physics is a spectacularly successful theory of the
varieties and interactions of subatomic particles that is perfectly consistent with almost
every laboratory and collider experiment carried out to date, with the exception of neutrino
oscillations II]EI The electromagnetic, weak, and strong nuclear forces arise from the gauge
bosons of the gauge symmetry group of the theory, SU(3)s x SU(2);, x U(1)y, under which
the matter content is charged. Spontaneous symmetry breaking via a non-zero Higgs vacuum
expectation value (VEV) breaks SU(2); x U(1)y — U (1) giving masses to three of the
gauge bosouns in the electroweak (EW) sector. This also generates Dirac masses for the (chiral)
fermion matter apart from neutrinos. At low energy scales the strong nuclear interaction
runs into strong coupling, and quarks and gluons confine leading to hadrons which gain their
dominant masses from strong coupling effectsE]

However, despite all of its triumphs, the SM has a number of deficiencies. It cannot be a
valid description of Nature at energies above the Planck mass (Mp)) [4]. It also has a large
number of free parameters, including a complicated array of fermion masses and mixings
that is suggestive of some new structure [5], and there must exist mechanisms to generate
the required baryon asymmetry in the Universe and neutrino masses [6]. Further, the fermion
matter suggestively falls into SU(5) multiplets, which together with the apparent success of
gauge unification in minimal supersymmetric extensions suggests the gauge groups may unify
at some high scale |7]. Cosmological inflation is a very attractive solution to the horizon,
flatness and monopole problems of the Standard Cosmology and also requires the addition of
new states and scales [8,9]. Finally, the SM gives no explanation for the extreme smallness
of the CP violating coupling in the QCD sector, § < 1079 [10].

The classic example of how these shortcomings necessitate an extended theory with new
high scales arises from gravity. Gravity is perturbatively non-renormalisible, a perturbative

expansion of the Einstein-Hilbert interaction includes arbitrarily high powers of M#Pl. While

!The SM does requires extension to accommodate astrophysical and cosmological observations, most no-
tably dark matter and possibly dark energy too |2]. However, the state that constitutes dark matter does not
necessarily require any significant (or indeed any non-gravitational) couplings to the visible sector, and the
source and dynamics of dark energy is still very poorly understood.

2 Although pions only receive masses from QCD effects because of explicit chiral symmetry breaking from
non-zero explicit quark masses and the U (1)g,, charges [3].



such an expansion is predictive at low energies where all higher dimensional operators are
unimportant, at higher energies, £ 2 Mp, the theory has infinitely many important pa-
rameters, and hence has no predictive power [4]. Consequently, the gravitational sector must
either run into some as yet unknown strongly coupled fixed point (a proposed scenario known
as asymptotic safety) |11], or the theory is UV completed before Mp) is reached. Given a
dearth of evidence for the existence of a strongly coupled fixed point, the standard viewpoint
is to regard the Einstein-Hilbert action as only a low energy effective field theory arising out
of UV dynamics[]|

In light of the required additions to it, the modern perspective is to view the SM as
an effective field theory, valid up to some cutoff [14]. At the cutoff either new degrees of
freedom appear in addition to the SM states, or the SM states themselves may turn out
to be composite and the underlying degrees of freedom are revealed. In the later case, the
underlying degrees of freedom may be standard quantum field theory (QFT) states, as in
models of technicolour or extended objects in string theory models. In reality it is likely that
there are multiple such cutoffs, for example it may be that new states appear not far from
the weak scale, followed by additional states at the scale of a grand unified theory (GUT),
and a transition into a string theory at the string scale.

Since the SM is now simply an effective field theory, in addition to the usual renormalisible
operators, the low energy effective theory is expected to contain non-renormalisible operators
suppressed, parametrically, by powers of the cutoffs. For example, integrating out heavy right
handed neutrinos (or other appropriate matter content) leads to neutrino masses through the
operator [15]

2

Lo yXLLHH : (1.1)

where y is a coupling constant, L is the left handed lepton doublet, H is the Higgs scalar
doublet, and A is the mass scale of the right handed neutrinos. For models where there
is a cutoff near the weak scale, there are very strong constraints on the form of the higher
dimensional operators, and consequently on the underlying physics, from precision collider
observations. For example, flavour constraints require that, if new states and interactions
are introduced near the EW scale, the global flavour symmetries of the SM must remain

only broken by the SM Yukawa couplings [16]E| Additionally, precision EW constraints

31t appears challenging to find a UV completion that is a normal quantum field theory [12], however it is
believed that a string theory can provide a suitable completion [13].
4In fact, even this assumption is not sufficiently stringent if the new physics appears at sufficiently low



are very hard to accommodate in models where EW symmetry breaking arises from strong
dynamics [17,|1§].

However, once the SM is viewed as an effective field theory there is a ‘hierarchy problem’
of why the EW scale is so small compared to the other, higher, scales in the theory [19]. As
we will discuss shortly, in the SM the EW VEV is set by, and parametrically the same scale
as, the Higgs mass squared parameter. So, more precisely, the hierarchy problem boils down
to the question of why is the renormalised Higgs soft mass squared parameter, evaluated at
the scale p ~ TeV, so much smaller than the high scales in the theory?

This is a problem because the running Higgs mass squared parameter m,% (u) receives
contributions from any extension of the SM that is not very weakly coupled to the Higgs
sector (in a way that is not invariant under a shift of the Higgs field). For example, consider
the addition of a new heavy scalar to the theory, which couples to the Higgs through a term

in the Lagrangian at the UV cutoff of the theory
LD —mg 6> —mj, [h]* = X|g[* |h[* (1.2)

where ¢ is the new scalar, and h is the physical Higgs (no symmetry can forbid such a
coupling assuming the mass terms are present). As a result of running, a mass shift for the

Higgs is generated at one loop
Am?2 A2
omy = Z 2 og (U2V> , (1.3)

where Ayy is the UV cutoff of the theory [20]. There is also a contribution that is not
logarithmically enhanced arising as a threshold correction when the heavy scalar is integrated
out of the theory. Contributions of this form arise in GUT theories, giving an explicit
realisation of the hierarchy problem [19].

Similarly, some realisations of axion models, which provide a solution to the strong CP
problem, include an additional Dirac fermion that is vector-like under the SM gauge groups
and typically has a mass ~ 10! GeV [21,[22]. This gives a three-loop contribution to the
Higgs mass through gauge interactions that is numerically large (5m,21 ~ (107 GeV)2 if run-
ning begins at the Planck Scale). High scale UV completions where SM states are composite
(including string theories) also give large contributions, modified by a form factor that de-

pends on the composite dynamics |20].

scale.



The Higgs part of the SM effective Lagrangian is
L£L>—m?|h*=xlh*, (1.4)

where all parameters are evaluated at the weak scale. Consequently the Higgs obtains a

3
VEV, (h) =/ ;h and expanding fluctuations around this vacuum the physical Higgs mass
is mp = —m,%. For correct EW symmetry breaking the VEV must be 246 GeV, and the
physical Higgs mass is observed to be ~ 125 GeV. The Higgs mass squared parameter at a

low scale, which appears in Eq. (1.4)), can be written as
mj, (Apw) = mj, (Auv) + omj, (1.5)

where 5m,21 contains all of the contributions from running. Unless the SM is completed to a
theory without a hierarchy problem close to the EW scale, the large contributions to dm3;
from the high scales in the theory mean that a very high degree of cancellation between the
two terms in Eq. is required to obtain a low EW scale. For this to occur the parameters
that contribute to dm3 (Agw) (and m3 (Ayy) itself) must have precisely related values at
the UV boundary of the renormalisation group (RG) flow, referred to as a tuning of these
parameters.

The degree of tuning A; with respect to a parameter p can be quantified as the fractional
change in the EW scale (parametrised by the mass of the Z boson my) in response to a

fractional change in the parameter at the high scale |23}24]

p(Ayy) Om% dlogm?,
A, = =

— . 1.6
m%  Op(Auvy)  Ologp(Auv) (L.6)

For example, in the SM the tuning with respect to the UV value of the Higgs mass squared

is
A 1mj (Ayy)  16mj
™ TN m% Am%

(1.7)

Taking ém? ~ (1018 GeV)Q, as a reasonable estimate of the correction from new physics at
the Planck Scale, leads to a tuning of Ami ~ 1032,

Use of the measure Eq. implicitly assumes that the parameter is being varied around
a value which is not specially preferred in the underlying UV theory [25] (that is, the prior
for the parameter is not too far from flat under O (1) changes in its value). In this case A%_

gives an estimate of the probability that the required cancellation takes place for a randomly

chosen value of the parameter p.



In extensions of the SM with more complex Higgs sectors, such as supersymmetry, even
though the details of the Higgs sector are more involved the EW scale dependence on the

Higgs mass squared parameter(s) remains strong

om?
o )~ .

and consequently large contributions to the mass squared parameter again lead to tuning.

It should be noted that fine tuning is essentially an aesthetic problem. The contributions
to dm? arise from a variety of sources, all disconnected from each other, at vastly different
energy scales and, naively, with nothing to do with the physics that sets the UV parameters.
Consequently, there is no reason to expect any cancellation, and certainly not to the degree
that appears to be present in the SM. While, clearly, theories with greater fine tuning are less
appealing, there is no sharp upper limit on the tuning that may be regarded as acceptable,
and even the measure itself is only defined up to O (1) factorsﬂ

Importantly, the reason the Higgs mass squared operator receives large corrections is that
the SM has no additional symmetry in the limit that m}% — OE| As a result, the corrections
do not have to be proportional to the UV value of the Higgs mass squared. This is in
contrast to what would occur for a new Dirac fermion, with mass term mpt1). In the limit
mp — 0 there is an additional chiral symmetry acting to rotate the two Weyl components
of v independently. As a result, if mp was zero, the symmetry would result in no mass
term being generated during running. Further, if the mass is non-zero, the corrections to it
necessarily take the form dmp ~ mp log (%) Provided mp is small at the assumed UV
cutoff of the theory it therefore remains small during a finite period of running. A small
parameter that leads to an enhanced symmetry in the limit that it vanishes is known as
technically natural [26].

Apart from the Higgs mass squared (and the cosmological constant [27], which we do
not consider), all parameters in the SM are only logarithmically sensitive to higher scales in
the theory. As a result the corrections to these are comparatively small, and there is only a
hierarchy problem for the Higgs mass squared parameter.

Solutions to the hierarchy problem extend the SM so that no significant cancellations are

required to obtain a light EW scale (the EW scale is then said to be stabilised). Once this

5There is additional uncertainty surrounding the correct choice of the underlying UV parameters as we
discuss in Section @

5In the presence of high scales there is no conformal symmetry, and moreover conformal symmetry is
broken by loop effects, for example through the running of the coupling constants.




has been achieved, there remains a second question of why the EW scale is exponentially
separated from high scales at all (even though no tuning is required to keep it there dur-
ing the RG flow). However, it turns out that solutions to the tuning problem can usually
accommodate solutions to this fairly straightforwardly.

There are three proposed solutions to the hierarchy problem that are plausible; weak
scale supersymmetry, some form of strong dynamics, and theories in which gravity becomes
strongly coupled close to the weak scale. In this thesis we focus on supersymmetry, which
is a perturbative solution to the hierarchy problem, and delay a detailed description of this
until the next chapter. Here we simply note that the minimal versions of supersymmetry
that solve the hierarchy problem predict new states that would have already been observed
by particle colliders (first LEP and now the LHC), motivating more complex model building
and assessment of the fine tuning of theories.

The main alternative solution is some form of strong dynamics near the weak scale. In the
original form of such models, technicolour, an extra gauge group runs into strong coupling
and new fermions F' charged under this gauge group are postulated to form a condensate
<FF > # 0, generating masses for the W and Z bosons [28-30]. These models resemble QCD
in the SM, which itself breaks EW symmetry, albeit at a scale that is much too low for the
observed phenomenology. SM fermion masses can arise through additional gauge dynamics
however this requires more model building and it is complicated to obtain sufficiently large
masses, especially for the third generation fermions [31].

In technicolour models there is no fundamental scalar Higgs, and consequently, provided
the separation between the compositeness scale and the EW scale is natural, there is no
hierarchy problem. The scale of strong coupling is exponentially separated from high scales

-1
in the theory by Arg ~ e b0*(Auv) Ayy where a (Ayy) is the gauge coupling at a high scale

[ole

Dlogh = —bpa?. This explains the small size of

and the beta function coeflicient is defined as

the EW scale relative to Mpi, as well as stabilising it against radiative corrections. However,
despite being theoretically well motivated, the simplest examples of such theories are strongly
disfavoured since they give much too large contributions to EW precision observables that are
observed to agree to high accuracy with the SM predictions [32]. Further, additional assump-
tions and model building are required to avoid excessively large rates of highly constrained
processes such as flavour changing neutral currents [33|. Like supersymmetry, LHC limits

on new states forces the reintroduction of some tuning in the simplest models, and (unlike



supersymmetry) the observation of a boson with couplings close to those of a light SM Higgs
is very challenging to accommodate in technicolour models (attempts to accommodate such
a Higgs include, for example, [34]). While it may be possible to build more complex models
that simultaneously evade all these problems, such model building is complicated since it
involves strong dynamics that is very hard to calculate.

A similar class of theories, that are especially interesting due to the observation of a light
Higgs, are composite Higgs models [35-37]. In these, a Higgs like state arises as a pseudo-
Goldstone boson from some strong dynamics and appears in the effective field theory. SM
fermions are typically assumed to be partially composite allowing for their masses to be
generated. Similarly to technicolour, it is challenging to build explicit UV models with
calculable dynamics, and the absence of any observed new states at the LHC also provides
strong constraints and may necessitate the reintroduction of some tuning. Constraints from
flavour observables are typically weaker than in technicolour models but not entirely safe
[38,/39].

Another, dramatic, possibility is that gravitational interactions become strong near the
weak scale, due to the presence of an extra dimension with size not far from miz As a result,
the cutoff of the SM is lowered to close to the weak scale and the corrections to the Higgs
mass parameter are relatively small. In the original versions of these models the fundamental
Planck scale is low, and gravity only appears weak at large distances due to gravitational flux
‘leaking’ out into the extra dimensions while the SM fields are confined to a brane [40]. Later
versions employ a warped extra dimension that scales the effective Higgs VEV to close to
the EW scale [41]E| Again, these models are under pressure due to the lack of observation of
the new states close to the weak scale, and most realisations now include significant tuning,
and flavour observations are hard to accommodate.

A postulated alternative resolution to the hierarchy problem is that there are no new
scales with significant couplings to the SM that are not near the weak scale [43,/44]. If this
were the case there would be no large corrections to the Higgs mass squared parameter and
consequently no tuning. This not only requires all the shortcomings of the SM to be resolved
close to the weak scale (or in a way that is only very weakly coupled to the Higgs) but also
a smooth transition into quantum gravity without it counting as a high scale. Additionally,

in the absence of new dynamics the U(1) hypercharge runs into a Landau pole. The pole is

"It is thought that the later class of models are actually equivalent to some strongly coupled models through
the AdS/CFT duality [42].



far above the Planck scale and therefore not usually regarded as significant, however it does
mean that, even if quantum gravity resolves itself, the SM cannot be a UV complete theory
with no new scales. It is straightforward to show that any field theory effect that changes
the running sufficiently to avoid this counts as a new scale in the sense of the hierarchy
problem [45]. Consequently, this proposal still requires new matter charged under the SM
gauge groups close to the weak scale (or the transition to quantum gravity to effect the gauge
couplings in a very surprising way).

It is also possible that there is an anthropic solution to the hierarchy problem, if separate
universes scan over different UV parameters, and only those with a light EW scale are
suitable for developing life. However, there is no compelling reason to believe a light EW
scale is required for life [46], and there is no known mechanism by which an enormous
number of universes with differing parameters can be generatedﬁ A final problem with an
anthropic solution is that, while there are reasons to believe a landscape may prefer a high
supersymmetry breaking scale so that weak scale supersymmetry would not appear [48,49],
there is no convincing reason that technicolour would be disfavoured. All current prejudice
against a technicolour solution to the hierarchy problem is based on observations. A priori
there is no reason to think the ‘landscape’ of theories should prefer a very highly tuned Higgs
to the simple addition of an extra asymptotically free gauge group.

In the remainder of this thesis we study the viability of low scale supersymmetry as a
solution to the hierarchy problem, and the extent to which it is possible to realise models

with low fine tuning, in light of increasingly stringent limits from the LHC.

8While string theory certainly allows for the parameters of the theory to be altered by differing compactifi-
cations of the extra dimensions, there is as yet no convincing mechanism by which many disconnected regions
with differing compactificatons can actually, dynamically, occur (although there are proposals [47]).



Chapter 2: Supersymmetry

Supersymmetry is an extension of space-time symmetry that relates fermions and bosons,
and consequently to be realised in the real world requires an (approximate) doubling of the
particle content of the SM. To be compatible with the non-observation of superpartners it
must be a broken symmetry, and if (softly) broken in the visible sector close to the weak
scale can provide a solution to the hierarchy problem |19, 50|E| Additionally minimal models
lead to gauge unification [51,/52] and can contain viable dark matter (DM) candidates [53].
It has also been suggested that supersymmetry is a requirement of a consistent quantum
theory of gravity (see for example [54]). While this only necessitates supersymmetry at a
high scale, and certainly does not require it to have any connection to the weak scale or the
hierarchy problem, it is interesting that it is separately motivated. Even if not realised in the
real world, theories with supersymmetry are highly mathematically interesting and lead to
additional calculational power that allows for insights into phenomena such as confinement
that may be relevant to ordinary gauge theories [55]. In this chapter we briefly review the
theory and models relevant to this thesis (many more details, important results, and original

references are given, for example, in [56-58]).

2.1 The Supersymmetry Algebra

The symmetry structure of flat space-time is given by the Poincaré group, which contains
rotations, boosts, and translations. There are ten independent generators with commutation

relations given by
[Pua Pl/] =0,
[M;un P)\] =1 (nVAPu - nu)\PV) ) (2'1)
[M;un Mpa] =—1 (nupMyg - nquup - anMua + nVO'M/,Lp) )

where 7 is the Minkowski metric (with signature (+ — ——)), M,,, = —M,,, generates Lorentz
transformations, and P, generates translations. The Coleman-Mandula theorem [59] severely
constrains possible extensions to the Poincaré symmetry of space-time. Subject to mild

assumptions, it shows that any symmetry group of an S-matrix that contains the Poincaré

!Superficially it may seem highly artificial that so many ordinary particles have been discovered before
any superpartners to already discovered particles have been found, however the particles not yet observed are
exactly those that can gain large soft SUSY breaking masses in the limit where all symmetries of the SM are
unbroken. Therefore this is not a particularly surprising scenario.



group can be locally decomposed into a direct product of a symmetry group and the Poincaré

group, that is, the symmetries ‘factorise’ into internal and spacetime symmetries without

mixingﬂ In the SM, the internal group consists of the gauge symmetries of the theorem.
However, the Coleman-Mandula theorem implicitly assumes commuting charges. Super-

symmetry evades it by introducing anticommuting, spinorial, charges (that is, generators in

1
27

the representation ( 0) or (0, %) of the Lorentz group). Since the generators are not Lorentz
scalars, this is a non-trivial extension of space-time symmetry. Shortly afterwards, the Haag-
Lopuszanski-Sohnius theorem showed that spinorial charges are the maximal extension of
the space-time symmetry under a weaker set of assumptions than the Coleman-Mandula
theorem [60|E|

For the purposes of this work, we primarily consider N = 1 supersymmetry, which con-
tains one set of supersymmetry generators. Higher A theories are non-chiral in four dimen-
sions and therefore cannot describe the visible sector in models that are purely field theoretic
and contain only four dimensions. However, it is very plausible that they may be important
in models with additional extra dimensions where a chiral low-energy theory can be obtained
by the compactification of additional dimensions [61].

Assuming a generalised Jacobi identity, the supersymmetry algebra is almost entirely

fixed. The N' = 1 version has one Weyl conserved charge @, along with its conjugate Qg,

and is given by Eq. (2.1]) supplemented by

[P;u Qa] =0, [lea Qa] =1 (Uuu)g Q,B >

(2.2)
{Qa, @} =2(") 5 Pu {Qa:Qs} =0,

where « is a spinor index, 0., = ﬁ (UHUT, — a,,@) with o, the sigma matrices, and we use
two component notation. Mathematically, this is a graded Lie algebra. The commutator

of the SUSY generators with internal symmetry generators vanishes, with exception of the

generator of the R-symmetry that acts as Qqn — € Qq and Q& > e_i’\QL and satisfies

[Qaa R] = Qa )

(2.3)
QLR = -Qf .

The irreducible representations of the SUSY algebra consist of collections of particles

2A notable exception are conformal theories which have an enlarged symmetry group, and evade the
Coleman-Mandula theorem by not having a well defined S-matrix.

3Supersymmetry remains the maximum possible extension in the case of extended objects that arise in
string theories.

10



(multiplets), which are related by the action of the generators @, Q:ri and consequently have
spins differing by (multiples of) % It can be shown that representations contain the same
number of (on shell) bosonic and fermionic degrees of freedom, and since the operator P2
commutes with ), all states in the same multiplet have the same mass while supersymmetry
is unbroken (in flat space-time). Although it is possible to construct supersymmetric the-
ories directly by writing down a Lagrangian with suitable matter content and couplings, a
particularly convenient formulation is described in Section [2.2]

We work mostly in the framework of global (also known as rigid) supersymmetry, where
the parameter of the supersymmetry transformation does not depend on the space-time co-
ordinate. The extension to local transformations, supergravity (SUGRA), automatically in-
cludes general relativity. At energy scales much lower than the Planck mass, it may be hoped
that all effects of SUGRA are unimportant and rigid supersymmetry is a good description.
Such an assumption cannot be entirely accurate when studying supersymmetry breaking;
the mass of the gravitino (the spin % superpartner of the graviton) arises from eating the
massless goldstone fermion that appears when supersymmetry is broken and this is explicitly
a SUGRA effect [57]. Also, in some calculable string theory completions achieving moduli
heavy enough for acceptable cosmology requires significant SUSY breaking in the gravita-
tional sector of the theory, which typically has a large effect on the visible sector [62-64].
However, there may well be large regions of the string landscape where such behaviour is not
typical, and we usually adopt the common approach of assuming this high-scale physics does

not have a significant effect on physics at lower scales.

2.2 Superspace

Superspace is a construction that allows the particles that make up a representation of the
superalgebra to be assembled into a single object, a superfield. In order to combine bosons
and fermions into an object with consistent transformations under the Lorentz group, a new
two component spinor 6% and its conjugate 02 are introduced with components satisfying the
anticommutation relations {04,603} = 0 (consequently, 62 = 0 = 02;2 and the components of
these spinors are Grassmann variables).

A superfield is defined as a function of the space-time coordinates and the variables 6

and #. The power series expansion in a Grassmann variable necessarily terminates, and so
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a generic scalar superfield can be expanded

D (2,0) = ¢ (x) + 0y (z) + 07X (z) + 00M (z) + 0T0TN (z) + 05101V, (x) 24)
2.4
+ 006" \T +6T070p () + 60070 D (z) |

where 9, x, A, p are fermions, V is a vector and the other fields are scalars. Superfields with
Lorentz indices can also be constructed, but are not important for our purposes.
There is an explicit representation of the supersymmetry generators as differential oper-

ators on superspace, given by

Qu = —ida —ic" 0770, |

(2.5)
QL =id] +0°0).0,, .
It is also very useful to define covariant derivatives
Dg = 0o +i0™ 0170, .
of (2.6)
Dl = -0} —it°c%.0, |
which are constructed to anticommute with the SUSY generators
{Da,Qs} = {Da, Q1 } = {D}, 01} = {DL.@s} = 0. (2.7)

The action of an infinitesimal SUSY transformation on the general scalar multiplet can be
obtained from Eq. , and shows @ is a basis for a (reducible) representation of the SUSY
algebraﬁ The transformation of the #2612 component, D (z), is a total space-time derivative
0D = %(% (fa“)\T — pa”fT), where £ is the transformation parameter.

A phenomenologically important superfield, the chiral superfield, is obtained by imposing
the restriction DL(D = 0 (similarly, antichiral superfields are defined by D,® = 0). The co-
variant nature of the derivative ensures that the resulting superfield furnishes a representation

of SUSY. The expansion of the chiral superfield is most simply written as

D (y,0) = ¢ (y) + V204 (y) + 00F (y) , (2.8)

where y# = z# + ifo"0t, 1 is a chiral Weyl fermion, and ¢ is a scalar. From this it is
straightforward to obtain an expression for the components of the chiral superfield in (x, 0, 9T>
space. Like D (x) in the general scalar multiplet, the SUSY transformation of the scalar field

F (z) is a total derivative, 0F (x) = —v/2i9,¢ (z) o#¢T. Due to the chain rule, any product

4Non-linear realisations of supersymmetry also exist, but are not important for us.
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or sum of only chiral superfields is also a chiral superfield (likewise anti-chiral superfields,
but not combinations of chiral and anti-chiral superfields).

The second important multiplet is obtained by imposing the condition V' (:U,H,GT) =
%l (m,@, GT), on the (now renamed) general scalar multiplet, which is again a covariant
constraint. The resulting multiplet contains a vector field and allows for supersymmetric
gauge theories to be constructed. After fixing part of the supergauge symmetry (to be
defined below) leaving ordinary gauge transformations unfixed, the vector supermultiplet

can be expanded as
1
4 (:c 0, 9*) = 00”07 A, (z) + 020T\T (2) + 0720\ () + 5929”17 () , (2.9)

which contains a vector field A,, a gaugino A, and an auxiliary field D. This is known as
the Wess-Zumino gauge [65]. In this gauge, the definition of the vector supermultiplet’s
infinitesimal transformation under the supersymmetric version of a gauge transformations
takes the simple form

i

oV =i(A—AT) —5[(A+AT),V] : (2.10)

where, in the non-abelian case, the objects V and A are implicitly matrices, V = T} Va and
A =TjA, with T the generator of a representation of the gauge group’s Lie algebra, and
A, an arbitrary chiral superfield. It can be shown that the vector component transforms
appropriately to be a gauge field, and A\, and D transform in the adjoint. It is also useful to

define a chiral superfield
Wy =T W = —%DTDTe_QVDaeQV . (2.11)
This transforms covariantly under supergauge transformations
W — e 20,0 (2.12)
and can be evaluated in Wess-Zumino gauge as

i . abc c ta
Welwz = X+ 0aD = 5 (015"0), Fi, + 09 (a“ (9uX+ greabxe) ) . (2.13)

a pr
«a

where Fy, is the usual gauge field strength.

Under a gauge transformation, a chiral multiplet is defined to transform as

e NP (2.14)
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where A’ = t%Aa, with ¢, the generators of the representation of the gauge algebra that ®
is in, reproducing the correct transformations for the component fields under ordinary gauge
transformations.

These objects allow the construction of a generic N/ = 1 Lagrangian containing chiral
matter and gauge fields. In order that the action is invariant under the super-Poincaré
symmetry we require that the Lagrangian transforms as a Lorentz scalar density, and its
variation under the supersymmetry transformations is a space-time total derivative. Consider
an object

/d29d29TK P, ®f, Wa, WV,..) (2.15)

where K is an arbitrary real (to make the Lagrangian real) function of any of the multiplets
in the theory, known as the Kdhler potential. The integral over superspace picks out the D
component of the superfield K (fbi, @}L, ) (any product of superfields is also a superfield),
which is suitable for inclusion in a Lagrangianﬂ

Similarly the 62 component of a chiral superfield F' (x) also transforms as a total deriva-

tive, therefore the object

/dQHW(<I>Z-,<I>]-,...) +he. (2.16)

is suitable for inclusion in the Lagrangian. Importantly W, the superpotential, only depends
on chiral superfields (including the hermitian conjugate of any anti-chiral superfields) in order
that it is a chiral superfield itself. When the theory is written in terms of chiral fields it is a
holomorphic function of these.

Of course, the action must also be (super)gauge invariant, and contain the standard ki-
netic terms for the matter and gauge sectors. The superpotential can be made gauge invariant
provided that, for each term, the product of the gauge representations of the superfields con-
tains a singlet of the representation. It can be seen that a dimension two operator in the

Kéhler potential can be made invariant by the inclusion of the vector superfield in the form
/ a2 220" ot 20et"Vagp | (2.17)

which is invariant due to the exponentiated version of Eq. (2.10). As well as the kinetic
terms for the fermion and scalar in the chiral multiplet, this contains the couplings of the

gauge bosons and gauginos to the matter fields. More generally, the Kéhler potential can be

®Integration over superspace is reviewed in many places for example [56].
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made gauge invariant if it is defined as a function
K (@f, 2™V 0, ) (2.18)

and the product of the representations of the chiral multiplets in each term contains a singlet.
Kinetic terms for gauge fields and gauginos arise from the inclusion of the gauge invariant

term

1 ig%0
/d2.9 (4 - W) Tr (WiW,) + hec. , (2.19)

where 0y s is a CP violating phase. Commonly, the vector superfield is rescaled so that

the coefficient of the Tr (WW) term is {g— where 7 = 9’2’71‘4 + % is the holomorphic gauge

coupling. There is one more term that can be added to the Lagrangian for U(1) gauge groups,
1
§/d29 d20Tv = 5D (2.20)

known as the Fayet-Iliopoulos (FI) term, which is gauge and supersymmetry invariant (since
the D component is a gauge singlet for a U(1) group) [66]. Other objects that may be thought
to give further interactions, such as by allowing covariant derivatives in the superpotential
(for example, the object DDT® is automatically a chiral multiplet) can be shown to give no
new couplings. The expressions given so far lead to the most general interaction of chiral
and vector supermutipletsﬁ

In a renormalisible theory, the superpotential has dimensions [mass]?, the Kéhler poten-
tial [mass]?, and the coefficient of Tr (WW) is just the numerical factor defined above (the
multiplet V has mass dimension 0). In non-renormalisable theories, the superpotential and
Kéhler potential can include higher dimensional terms, and the gauge kinetic function can
be a function of the chiral multiplets.

Once the Lagrangian has been written down in superspace, it is straightforward to expand
the components to obtain the full set of interactions. Importantly, the highest component of
the chiral multiplets F' (z) and of the vector multiplets D (z) do not have kinetic terms. Con-
sequently they are non-dynamical and, since their equations of motion are purely algebraic,

can be integrated out of the theorym

5Tt is interesting that not only does supersymmetry demand relations between the coupling constants of
scalars and fermions, but actually forbids the existence of certain terms from the Lagrangian, for example a
theory with unbroken supersymmetry can never include a dipole operator @U””d}FHV [67].

"Though non-dynamical these fields play an important role in allowing supersymmetry to be realised off-
shell. For example, they lead to the theory having the same number of bosonic and fermionic degrees of
freedom off shell.
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Some Lagrangians are also invariant under an R-symmetry, which does not commute with
the SUSY generators, and instead satisfies Eq. . If this is a symmetry, terms in the
superpotential have R-charge +2 and in the Kéhler potential R-charge 0. The components
of a chiral multiplet, ¢, ¢ and F' have R-charges r$, r¢ — 1, and r¢ — 2 respectively. From

Eq. (2.19), gauge vectors necessarily have R-charge 0, gauginos +1, and D 0.

2.3 Non-renormalisation Theorems

A major advantage of supersymmetric theories, compared to general QFTs, is that their
quantum corrections are highly constrained. In particular, this allows for strong statements
to be made about the behaviour of supersymmetric theories under renormalisation, and
during strong coupling.

The first important result is that the superpotential is not perturbatively renormalised.
More precisely, the most general term that can be generated by loops can be written in the
form of an integral over d? #d26, and so interpreted as a correction to the Kéhler potential.
This was first proved using supergraph techniques [68], and later through a holomorphy
argument that we very briefly review following [69].

First, all coupling constants in the superpotential are promoted to chiral superfields with
scalar component expectation values equal to the coupling constants (known as spurions).
By integrating out heavy modes a Wilsonian effective action is obtained that describes the
interactions of the degrees of freedom in the theory with energies less than the cutoff. Pro-
vided SUSY is not spontaneously broken, this effective action is also supersymmetric, and
consequently can be written as a combination of an effective Kéahler potential and an effective
superpotentialﬁ

The effective superpotential is holomorphic in not only the dynamical chiral multiplets,
but also the spurion coupling multiplets. Additionally, in the limit that the expectation
values of the spurions (that is, the coupling constants) go to zero, the theory respects an
enlarged symmetry group. Regarding the coupling constants as spurions, this symmetry
is only spontaneously broken, and consequently constrains how the spurions and normal
multiplets may appear in the effective superpotential. Finally, the behaviour of the theory

in the limit that the coupling constants go to zero must match up to the tree-level action.

8The non-renormalisation theories apply only to the Wilsonian effective action, not the 1PI effective action,
which contains the effects of massless states that can introduce non-holomorphic interactions.
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Combined, these restrictions turn out to be severe enough to forbid any perturbative terms
in the effective superpotential beyond those that appear at tree level.

The Kéahler potential can receive perturbative corrections, both in the form of wavefunc-
tion renormalisation and the appearance of new terms. However, due to gauge invariance, the
combination ®1e29V'® has to renormalise to Z¢<I>T629V<I>. After canonically normalising the
kinetic terms for the chiral superfields, superpotential parameters are renormalised. However,
this renormalisation is only logarithmic and is proportional to the parameters themselves.
Additionally, non-perturbative effects can lead to new terms in the superpotential propor-
tional to (positive) powers of the dynamically generated scales of any gauge groups in the
theory. These are highly important in theories that run into strong coupling |70].

The running of gauge couplings in SUSY theories is also very constrained by holomorphy.
Consider super-QCD with gauge group SU(N) and F flavours of chiral multiplets in the

fundamental and anti-fundamental representations, and an action normalised as

1

LD
1671

/dQGTTr (WeW,,) , (2.21)

where 7 is the holomorphic gauge coupling. The real part of 7 contains #y-5; which couples to
a total derivative, and is therefore not perturbatively renormalised. The Wilsonian effective
gauge coupling must remain a holomorphic function of 7 (since it can be promoted to the
expectation of a chiral field), and consequently the beta function of the Wilsonian gauge
coupling must be a holomorphic function of 7. As a result the perturbative beta function
must simply be an imaginary constant, independent of 7. This arises from the one-loop dia-
grams, and no higher terms contribute in perturbation theory, although there are corrections
from non-perturbative effects. In particular, for an asymptotically free gauge theory, the
holomorphic coupling at a scale y is given by
A oo
7 (1) = 5—log (u) + Zlan (@i, A, ) A (2.22)
—

0y 1,
where b is the one-loop beta function coefficient, and the holomorphic scale A = |A|e e

with |A| the dimensionful scale associated to the gauge theory (the scale where the pertur-
bative gauge coupling prediction is infinite), ®; are the chiral superfields, and \; are Yukawa

couplings [71]. The beta function coefficient is given by

b=3T(Ad) - > T (r;) , (2.23)
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where i labels the chiral matter content of the theory, 7" (r;) is the Dynkin index of the repre-
sentation r; of the matter under the gauge group, and Ad denotes the adjoint representation.

The discussion so far however only applies to the holomorphic gauge coupling. To obtain
the physical gauge coupling, the kinetic terms of the vector and chiral multiplets must be
rescaled as V' = gV and @, = Z;fq)i respectively. However, rescaling the fermionic compo-
nents of these multiplets is anomalous and the physical gauge coupling g, is related to the

holomorphic coupling by

= () - % D tog ) - - T vog (21 (2.24)

;g ar 82 82
Consequently, the running of the physical gauge coupling is given by

g BT(A) — X, T(r) (1— )
o3 T (a0 £ . (2.25)

Bgp) =

This is the famous exact Novikov-Shifman-Vainshtein-Zakharov (NSVZ) beta function [72].
It disagrees with the holomorphic beta function at two loops, in contrast to the usual results
in gauge theories, since there is no analytic map between the two beta function (due to the
logarithms in Eq. )

Finally, we briefly note that though we have focused on N/ = 1 theories, theories with
more supersymmetry have even more constrained renormalisation properties. In A/ = 2
theories the beta function is only corrected perturbatively at one loop and the superpotential
is entirely fixed by the matter content of the theory [73]. Furthermore, N' = 4 super-Yang-

Mills is actually conformal [74].

2.4 The MSSM and Soft Breaking

The Minimal Supersymmetric extension of the SM (the MSSM), is attractive in its simplicity
[56]. The field content is given in Table and with the exception of the Higgs sector it is
obtained by simply promoting the chiral fermion content to chiral superfields and the gauge
bosons to vector superfields. Two Higgs doublets with conjugate gauge charges are needed to
cancel anomalies in the hypercharge and SU(2) sector as well as the Witten anomaly (which
demands an even number of fermion SU(2) doublets). Also, since H' can not appear in the
superpotential, a second doublet is required if both up- and down-type fermion mass terms

are to be generated through superpotential interactionsﬂ

9In extensions it is also possible to generate down-type fermion masses through Kéhler interactions, if the
cutoff of the theory is very low, however a second Higgs like doublet (or other EW charged matter content)
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’ | bosons fermions || SU(3) | SU(2) | U(1) |
g 9, g° Ad 1 0
w | W3 w3 1 Ad 0
B B, B 1 1 0
Qi (71& CZL)Z. (ur,dr), O 0 %

u; W uly; 0 =
Li | (m.é), | wew), L 0 | -
e T ehs 1 1 1
o, | (ahu) | (Bna) | 1 | o | 3
Hy | (H).Hy) | (B3 8;) | 1 o | -1

Table 2.1: The MSSM field content, multiplets above the double line are vector multiplets, and
below are chiral multiplets. Here the U(1) charge assignments are in the SM normalisation rather
than SU(5). O (O) denotes the fundamental (antifundamental) representation, Ad the adjoint, and
i =1,2,3 labels the generations.

The MSSM superpotential is given by

Wassm = H,uY,Q — HydYyQ — HyeY.L + pH,Hy | (2.26)

where Y,, Yy, and Y. are the 3 x 3 Yukawa matrices, and the relative minus sign is a
convention. The p parameter is unique in that it is dimensionful, but is still required to be
close to myz for EW symmetry breaking without fine tuningF_U]

The superpotential Eq. leads to the interactions between fermions and the Higgs
(and consequently fermion mass terms), as well as interactions between a fermion, a sfermion,
and a Higgsino as required by supersymmetry. Integrating out the auxiliary fields F' gives
4-scalar interactions proportional to Yukawa couplings squared, and also 3-scalar interactions
once the Higgses obtain VEVs. The p term leads to Higgs and Higgsino masses. The kinetic
terms take the form of Eq. , which include the couplings of the gauge bosons to
fermions, and also couplings of gauginos to a fermion and sfermion. D-terms from the vector
multiplets lead to 4-scalar interactions proportional to gauge couplings squared.

The W and Z gauge bosons get masses by ‘eating’ the Goldstone bosons once the two
Higgs doublets gain a VEV. This is a supersymmetric process so the associated gauginos also
acquire supersymmetry preserving masses through interactions with the Higgsinos, known
as the superhiggs effect. Neutrino masses are not included in the MSSM, however can be

generated through a variety of additional field content as in the SM [77].

is still required to cancel the anomalies [75}[76].
10Requiring this is one aspect of the second part of the hierarchy problem discussed in the introduction:
why the EW VEV happens to be small, even if this smallness is stable against radiative corrections.
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However, Eq. (2.26) is not the most general superpotential consistent with gauge sym-

metries. Extra superpotential terms of the form
W = OéijkLiLjEk + ﬂijkLinak + /L,iLiHu + 6“’%@]-& s (2'27)

are also allowed. These violate baryon and lepton number, which are accidental symmetries
of the SM. If present, such terms lead to proton decay that is much too fast compared to
current experimental limits even if the superpartners have masses close to the Planck scale
(the proton lifetime in the presence of such terms is tg ~ (%)4 10~ s, where my is the
typical squark mass, while the observed limit is t5 > 1039s) [56HE| The simplest way to
protect against proton decay is by imposing an additional Z symmetry, R-parity, under
which SM states have charge +1, and superpartners have charge —1, which forbids all of the
terms in Eq. E The consequences of R-parity are phenomenologically significant: the
lightest superpartner (LSP) is stable and so is a DM candidate; at colliders superparticles
are produced in pairs; and any superpartner produced at a collider decays to an odd number
of the LSP. There are also other symmetry structures that can prevent proton decay without
forbidding all of the terms in Eq. , which have differing phenomenology to R-parity
conserving models [79)].

Of course, the MSSM as so far described is not an accurate description of Nature; there
have been no observations of superpartners, and consequently SUSY must be spontaneously
broken. As we discuss in Section [2.7] this necessarily occurs in a new sector of the theory, and
is then mediated to the visible sector. The dominant SUSY breaking induced in the MSSM
is in the form of parameters with positive mass dimension (since SUSY breaking is assumed
to occur in a sector at a higher energy scale, and communicated via suppressed operators).
Such breaking is known as soft breaking, and the most general expression for the MSSM soft

terms is

1 = L
£5 = 5 (Migigi) +hee. - (HuﬂAuQ — HydA0 — HdEAeL) +he.
— 2@*mé@ —L*m2L —u'm2u — g*mgé —&'m2e (2.28)

— miy HyHy — mugHiHg — (0H,Hg + hec)

" Dimension-5 operators that are typically expected to arise suppressed by Mp) can also lead to too fast
proton decay, unless forbidden by a flavour symmetry in the UV theory [78|.

12Since all vertices have an even number of fermions, R-parity is equivalent to a matter parity symmetry
where states have charge (—1)3(B_L), and consequently is not truly an R-symmetry, though it can arise as
the remnant of one.
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where i represents any of the gauge groups, and the A and m% parameters are 3 X 3 ma-
trices in flavour space. Notably, the (Majorana) gaugino soft masses necessarily break any
R-symmetry in the theory, which has important implications for the mediation of SUSY
breaking.

Although the MSSM has an enormous number of physical parameters, in total 105 more
than the SM, they are highly constrained by flavour and CP observations [80,81]. For
example, there are very strong bounds from measurements of p — ey, K 0_x° mixing, and
b — s7v decays, as well as from D and B systems [82-85]. Further constraints on the CP-
violating parameters arise from limits on the neutron and electron dipole moments [86,87].
These constraints can be evaded if the soft masses are nearly universal and there are no new
phases in the gaugino sector, and if the A-terms are either small or close to proportional to the
associated Yukawa matrices. Alternatively, the sfermion masses may be close to being aligned
with the fermion Yukawa matrices, or (some of) the superpartners could have relatively large
masses suppressing the dangerous processes (or some combination of these possibilities) [56].

The RG equations for the SUSY preserving parameters in the MSSM can be calculated
perturbatively. Above the scale of the soft masses, the superpotential parameters renormalise

only due to the anomalous dimensions of the appropriate fields. For example

dy 9 13 ,

yt 16 2
a =yt (YHu + Q3 + Ya3) = 162 (6?4::% + Yy — 393 — 395 — 1591) ) (2.29)

using the one-loop expression for the anomalous dimensions, which in general is a matrix

given by
Y = 162 52/ Yimn — 29,Ca (1) 5j ) (2.30)
where 3" is the Yukawa coupling between the states labelled i, m, and n and C is the

quadratic Casimir.
At one loop, the Majorana gaugino soft masses renormalise as

dM; 1

a @bingi s (2'31)

where b; = {33/5,1,—3}. Since the coefficients b; are exactly the beta function coefficients

of the gauge coupling, the combination ];4_2" is a renormalisation group invariant. This is not

k3

surprising, the gaugino mass can be included as a 6% expectation value in the gauge coupling

spurion, and the two components renormalise together@

13More formally, an RG invariant can be constructed from the spurion that includes the physical gauge
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The one loop renormalisation of the third generation sfermions and Higgs are given by

expressions that take the form

dm?2 1 3 2

d—th 162 <Xt+Xb—93 | Ms[* — 6g5 | M,/ —*9%|M1‘ + ng>
o : (2.32)

TR <3Xt 665 1Ml - 791 Ll g%S) ’

where X; = 2|y, |* (quu + mé?, + m%3) +2|Ad?, Xy = 2]|p|? (m%{d + m2Q3 + m§3) +2| A%,
and S = Tr (m%{)ZY;) Terms including the, negligibly small, first two generation Yukawa
couplings have been dropped. At two loops the first two generation sfermion masses feed into
the stop and Higgs soft masses squared through gauge couplings, which can be a significant
effect as we study in Section

Since in the limit that the soft masses go to zero SUSY is restored, the RG corrections to
the Higgs soft mass squared parameter are proportional to the soft masses and consequently
small provided the soft masses are close to the EW scale. As long as the Higgs soft masses do
not receive any other large contributions by coupling strongly to sectors with broken SUSY,
the hierarchy problem is solved. This is in stark contrast to if the visible sector included
hard SUSY breaking interactions, for example by a shift in the quartic Higgs-Higgs-Stop-
Stop coupling Ay?, which would lead to corrections to the Higgs mass squared of typical size
dm7 ~ Ay} A v Where Ayy is the high scale that altered the quartic coupling.

Of course, there any many proposed extensions to the MSSM. Of primary interest to us
is the next-to-minimal supersymmetric SM (NMSSM), which involves extending the MSSM
with an additional singlet [90]. This has a modified Higgs sector compared to the MSSM,
described in Section 2.6

Another interesting extension are Dirac gauginos [76,91H96]. In these models, there
are R-symmetry preserving soft gaugino masses that arise through couplings to new chiral
multiplets in the adjoint of the gauge group. If the chiral superfields are labelled A1, Ao, A3
(in the adjoints of U(1), SU(2), and SU(3), respectively), the mass terms can be written in

terms of spurions M with non-zero # components (M) = 0%m; as
3 3
/ 0 S VEMPTE (Waids) O S —midiathia | (2.33)
i=1 i=1

where 1; is the fermion component of A;, and the index a labels the generators of the group.

coupling and gaugino mass, so that this relation is maintained at all orders in perturbation theory and during
strong coupling [88}89].
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The spurions M; could arise from a D-component of a new hidden sector which couples via a
non-renormalisible operator. The operator Eq. also leads to masses for the real scalar
components of A;, and modifies the D-term potentials for the visible sector gauge groups.
A particularly interesting property of theories where the dominant SUSY breaking gaug-
ino masses arise from terms of the form Eq. is that, unlike the MSSM, there is no
logarithmically divergent contribution to the sfermion masses from the gaugino masses [91].
Such a contribution is usually expected to turn on at the mediation scale, leading to a cor-
rection to the sfermion soft mass containing a large logarithm. However, in Dirac gaugino

models the only possible sfermion mass counterterm is

1
/ a'0 0% ZLqiq (2.34)

which vanishes in the limit that the cutoff A is taken to infinity. Consequently, there can be
no corrections to the sfermion masses sensitive to the UV cutoff of the theory and enhanced
by a large logarithm log (%) Instead, there are only finite contributions to the sfermion
masses, a point which will be important when we discuss the tuning of these theories in
Section This finiteness is due to an effective N' = 2 supersymmetry in the gauge sector
of the theory (an N = 2 vector multiplet consists of N' = 1 vector and chiral multiplet,
which is exactly the matter content in the gauge sector of these models) which constrains
the running of the theory even more than in A/ = 1 theories. Model building is however not
completely straightforward: generating scalar soft masses for the adjoint chiral multiplets is
challenging, and UV completions of SUSY breaking and mediation are complex [91]. Also,

gauge unification does not occur without additional states [94].

2.5 Unification

An encouraging feature of the MSSM is that, if the superpartners are near the weak scale,
it leads to successful SU(5) gauge unification at a scale Mgyt ~ 1016 GeV [51,/52]. This is
shown in Fig. where the gauge couplings in the SM and the MSSM are plotted (assuming
no additional matter charged under the SM gauge group). The calculation of gauge running
has been performed to two loops (including one-loop threshold effects) [97], although there is

significant model dependence from threshold corrections at the GUT scale [98HE| Agreement

M Threshold corrections are the non-logarithmically enhanced corrections to the parameters of the theory
that appear in an effective field theory as a result of integrating out heavy states from the full theory, see for
example [99].
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Figure 2.1: Running of gauge couplings in the SM and the MSSM with superpartners at 2 TeV,
assuming SU(5) normalisation of the hypercharge.

with precision unification is good, under the assumption that there is a relatively small
threshold correction at the GUT scale, Aag/as (Mg) ~ S%E

In the SM the normalisation of the hypercharge is unfixed, and statements about uni-
fication are meaningful only once a specific GUT group is chosen. Consequently, achieving
unification by adding extra matter, at an energy scale that is free to be fixed, for a partic-
ular U(1) normalisation is not difficult; three straight lines crossing at a point requires one
parameter to be adjusted. The reason that unification in the MSSM is interesting is that it
is automatically achieved in the minimal SUSY model, with the hypercharge normalisation
that arises from simple GUT models, and superparticles in the correct mass range to also be
relevant to the hierarchy problem, all of which are independently motivated.

While GUTs are an attractive possibility, they are not without problems. Since quarks
and leptons are now in the same gauge multiplets nucleon decay is automatically a possi-
bility. In SM GUTs any decays mediated through dimension-5 operators (generated after
additional heavy gauge bosons that appear in these models are integrated out) are too rapid
to be consistent with observation, and dimension-6 operators are also severely constrained
by proton decay. The situation is mildly improved in supersymmetry, since the GUT scale
is raised, reducing the decay rate. However, even if symmetries forbid these dangerous op-
erators at tree level, they are typically regenerated by exchange of the additional, coloured,

Higgsinos that appear in SUSY GUT models. Consequently, the limits are quite severe, and

1511 simple 4D SUSY GUTs there a threshold correction at the GUT scale from the additional Higgs triplets,
which goes in the wrong direction, requiring a larger opposite sign contribution from the GUT breaking sector
of the theory [100].
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(barring tuning in the flavour structure) typically rule out minimal SU(5) models [1]. It is
possible to build models with non-minimal Higgs sectors (either in SU(5) or SO (10)) that
evade current limits, or alternative constructions such as orbifold GUTS can also lead to
viable theories [101]. Obtaining sufficient mass splitting of the doublet and triplet Higgs
states is also problematic [102], and may be suggestive of some structure beyond pure 4D
field theory.

In GUT models the Yukawa couplings of the tau lepton and bottom quark are typically
expected to unify at the GUT scale, since both arise (in an SU(5) like model) from terms of
the form A\105 5y (where H labels the multiplet containing the Higgs). In minimal SO(10)
models the top Yukawa is also expected to unify with these two couplings at the high scale
since there is only one Yukawa term A1616 10g [103]. These relations can be satisfied
in some regions of SUSY parameter space [104407]@ The first two generation Yukawas
typically cannot unify, which naively is in contradiction with the requirement of a GUT,

however this requirement can be evaded by the introduction of flavour symmetries [108§].

2.6 The (N)MSSM Higgs Sector

The Higgs sector in the MSSM is more complicated than the SM due to the two Higgs
doublets, H, = (HY, H) and Hy = (Hd_, Hg) . The MSSM superpotential leads to terms
quadratic in the Higgs fields and the gauge D-terms lead to quartic scalar interactions. Using
gauge invariance, H,” can be taken to have zero VEV without loss of generality. From the
full form of the potential it can be shown that this leads to <Hd_> = 0 [56]. The scalar

potential, in terms of parameters evaluated at a low scale, then reduces to

v =% (9 +97) (\HS

- )

(2.35)
2 2
(1l + ) [HO| 4+ (1 + mbg) [HY| — (bHIH + c.c.) .
The conditions for Eq. (2.35) to give a stable EW symmetry breaking vacuum are
2b < 2 |ul* + mip, +miy
(2.36)

0> (Il +mip) (1 +mia) -
If these inequalities are satisfied, both H? and Hg gain VEVs, which for correct EW symmetry
breaking must satisfy (H)* + (H9)® = (174GeV)?, and the ratio of VEVs is defined as

16 As we discuss in Section [4| there are other effects that could modify these properties.
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tan 8 = (HY) / (HY). The minimum of the potential Eq. (2.35)) satisfies

2b
sin (208) = )
2 mip, +mi + 2|l
R 2 (237)
my = L =il o
1 —sin? (283)
which in the limit of large tan 8 reduces to
2
2

For the conditions Eq. to be satisfied requires m%{u %+ m%ld at the weak scale. This
can readily be achieved through radiative EW symmetry breaking, even if the two Higgs
have the same soft mass at the mediation scale. In this, the up-type Higgs mass squared
parameter is driven to negative values during running due to the large Yukawa coupling to
the stops [109][T7]

After the Goldstone bosons have been eaten, the remaining Higgs sector matter content
consists of two neutral CP-even scalars, a CP-odd neutral scalar, a charge +1 scalar and a
charge —1 scalar. In the limit of very heavy superpartners, the masses of all of these states,
except the lightest CP even scalar h°, can be arbitrarily large at tree level and the properties
of h? converge to those of the SM Higgs. However, the mass of h? is bounded by m at tree

level, and including the leading one-loop corrections is given by

3my m2 X? X?
2 02 2 t ¢ tfq_ A
mj, >~ m7 cos” 23 + 122 llog (m?) + m% (1 12777% ; (2.39)

where X; = A;—p/ tan 3 is the stop mixing parameter and m% = MM

M7, (the next corrections

can also be important, and are given in [110]). Generating the observed ~ 125GeV Higgs
mass in the MSSM is challenging without reasonably large stop masses (that lead to fine-
tuning), or very large A-terms [111]. This is one of the motivations for extended Higgs sectors
that we review shortly and study in Section [4

For correct EW symmetry breaking (without fine tuning in Eq. (2.37)) the MSSM re-
quires the supersymmetry preserving mass u to be close to the SUSY breaking mass /b
and the Higgs soft masses, this is known as the p problem. Solutions to this often involve
forbidding a bare p term, and allowing it to arise as a SUSY breaking effect. For example
the Giudice-Masiero mechanism [112] postulates the existence of a Kahler potential term

]\)/[(—;Hqu, which leads to a p term if X acquires a SUSY breaking F-term VEV. Assuming

'"This can be made more precise by analysing the eigenvalues of the RG equations.
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the dominant mediation to the SM is through Planck-suppressed operators the p term gen-
erated is parametrically the same size as the other soft masses. The p problem is typically
rather more severe in models of gauge mediation, and a further problem arises that even if
the correct size j parameter is generated, the b parameter then often has size ~ 16m%u? and
is unacceptably large. However, several solutions have been proposed, see for example [113].

An alternative, attractive, solution is to forbid the u parameter by a new symmetry
(often taken to be a Z3), but introduce a new singlet, .S, that has a superpotential coupling
ASH,H;+ kS3, and gains a weak scale VEV. This is the previously mentioned NMSSM [90].
The Higgs sector contains additional CP-even and CP-odd scalar and singlet fermion degrees
of freedom that mix with the neutral Higgs. An important effect is that there is an additional
contribution to the tree-level physical Higgs mass that arises from the F-term of the superfield

S. This modifies the tree level expression into

m%o ~ mQZ cos? 23 + A2 sin? 203, (2.40)

while the leading stop loop correction Eq. remains unchanged. There are also further
corrections proportional to g*, g2A?, g?x2, A4, k* that are typically less important [90]. As a
result of the additional contribution in Eq. it is possible to obtain a Higgs with a mass
of 125 GeV without heavy stops (this is studied in Section |4)).

There are a number of modifications to collider phenomenology in the NMSSM compared
to the MSSM as a result of the additional states. The NMSSM Higgs sector can allow new
Higgs to Higgs decay, both for charged and uncharged Higgses, that are potentially observable
at the LHC [114]. The neutralino sector is complicated by the fermionic component of
S, modifying production and decay channels, and potentially leading to displaced vertices
if there are small couplings between a bino like next to lightest supersymmetric partner
(NLSP) and a singlino like LSP [115,/116]. Additionally, there are NMSSM specific effects
on B physics |[117] and precision observables such as the anomalous magnetic moment of the
muon [118]. The phenomenology of (DM) candidates in the NMSSM can also differ from the
MSSM, especially if the LSP is mostly singlino like [118].

However, there are problems with the simplest implementations of these models. Often
couplings to heavy fields in the theory (for example during the mediation of SUSY breaking)
induce linear terms in the superpotential ~ €S or soft Lagrangian ~ &g (where S is the

scalar component of S). If these dimensionful parameters are large compared to the weak
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scale there is either no EW symmetry breaking or a fine-tuning problem. This is known as the
tadpole problem [119], and can be evaded if there are discrete symmetries in the theory [120].
Such symmetries can forbid all operators couplings heavy states to .S to a sufficiently high
order in perturbation theory that the induced tadpole terms are small compared to the EW
scale.

A second problem arises from the spontaneous breaking of the discrete symmetry (that
forbids a tree-level p term) in the early Universe. In particular, during EW symmetry break-
ing different regions in the Universe may have the same vacuum energy but different phases
of (Hy), (Hg), and (S). Such regions are separated by domain walls, which often dominate
the Universe’s energy density ruining the successful predictions of big bang nucleosynthesis
and leading to much too large anisotropies in the cosmic microwave background [121]. This
is known as the domain wall problem, and may be evaded by allowing small violations of the
discrete symmetry, for example by Planck-suppressed operators. The symmetry violating
operators shift the relative energy of the vacua slightly, avoiding domain walls. However,
care is required to avoid reintroducing a tadpole problem, and more complex models (for

example, involving gauged R-symmetries) may be necessary [122].

2.7 Supersymmetry Breaking

We now turn to the question of how to break SUSY in a hidden sector. This is a requirement
of models of gauge mediation, and some models of gravity mediation (for example, this
could be required in heterotic string theory completions). In supersymmetric theories the
energy operator can be written as H = % (QlQJ{ + QJ{Ql + QzQ; + Q;Qg). Since a SUSY
preserving vacuum state is annihilated by @, a vacuum is SUSY breaking if and only if it
has positive energy. The scalar part of the potential is V' ~ %F“‘FZ + %D“*D“7 and so if
F; = 0 and D* = 0 cannot be simultaneously satisfied for all ¢+ and a the vacuum breaks

SUSYE Despite SUSY being broken, the mass sum rule
Tr (mgcalars) —2Tr (m}ermions> =2 Z DaTI' (gta) ) (241)
a

is still satisfied at tree level in theories with only renormalisible operators (it can be modified
by loop corrections). The right-hand side is zero for any compact simple non-abelian group

(due to the trace over the generator), and also vanishes for U(1) theories without a mixed

18Tt can be shown that, in the absence of a Fayet-Iliopoulos term, if a theory has a solution to all F; = 0
there is necessarily a simultaneous solution to all D* = 0.
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gauge-gravity-gravity anomaly since this leads to the sum of charges vanishing (as is the case
for U(1) hypercharge). This is the reason SUSY cannot be broken by the visible sector in
simple models; some bosons would be too light for acceptable phenomenology@

An interesting quantity in supersymmetric theories is the Witten index |123]
Tr (-1)" =Y np (B) — np (B) | (2.42)
E

where np (E) (np (F)) are the number of bosonic (fermionic) states with energy E. Even
if SUSY is spontaneously broken, the action of the SUSY generators remains well defined
and therefore finite energy bosonic and fermionic states are paired up. However, zero-energy
states are annihilated by the SUSY generators and so can have a mismatch between bosonic
and fermionic degrees of freedom. Therefore the Witten index reduces to Tr (—1)" = ng (0)—
nr (0). Since a vacuum is supersymmetric if it has zero energy, a theory with a non-zero
index has at least one SUSY preserving vacuum. However, a theory having zero index does
not guarantee that there are no SUSY preserving vacua.

The Witten index is a topological quantity, independent of the values the parameters of
the theory take. This is because the only way it could change as parameters are adjusted
is if finite energy states moved to zero energy or vice versa. However, since finite energy
states are paired, this cannot actually change the value of the index@ It can be shown that
super-Yang-Mills (SYM) theories with massive vector-like matter have non-zero index and
consequently do not have a stable SUSY breaking vacua [123].

A simple superpotential that leads to F-term breaking is the O’Raifeartaigh model [124].

This is a theory with three chiral superfields and a superpotential given by
W = —k20; + m®yds + %@@% . (2.43)

The conditions F; = 0 and F, = 0 cannot be simultaneously satisfied, and if m? > yk the
minimum of the potential is at ¢o = ¢3 = 0 (where ¢; is the scalar component of ®;). ¢ is
not fixed at tree level, however as supersymmetry is broken there are now loop corrections
to its mass that lead to a stable SUSY breaking minimum at (¢1) = 0. There is a massless

fermion in the broken theory, the goldstino. The appearance of a massless goldstino is a

19\odels of (semi)-direct gauge mediation effectively break SUSY in a much more complex visible sector,
by adding a large number of additional heavier fields that allow the MSSM superpartners to all be heavier
than their partners.

20We neglect a number of subtleties around the calculation of the index including regularisation and be-
haviour of fields running away to infinity.
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general feature of spontaneous SUSY breaking, even if this occurs during strong coupling.
As mentioned previously, in SUGRA the goldstino is eaten by the gravitino and as a result,
the gravitino gains a mass mg/, = \/gijwli’l.

Alternatively, SUSY can be broken through a D-term. For example, a theory with U(1)
gauge group and FI term £ has a scalar potential

V=D €D+ gDY g
’ (2.44)
— D=¢(—9g) qid" i -
i
If the chiral superfields all have large positive masses, this leads to a D-term expectation
value (D) = ¢.

There are several conditions on whether a theory is expected to break supersymmetry.
Firstly, if a theory spontaneously breaks a global symmetry but has no (non-compact) flat
directions it breaks SUSY. This is because a chiral multiplet includes two scalars so if SUSY
was preserved there would be a second massless scalar in the same multiplet as the Goldstone
boson [125]. In practise this condition is not straightforward to use since finding if a global
symmetry is broken is typically as hard as directly calculating if SUSY is broken. However,
it can give an indication since t'Hooft’s anomaly matching criteria [26] (which constrains
the properties of theories as they pass through strong coupling) is only satisfied if global
symmetries are unbroken. If anomaly matching cannot be straightforwardly satisfied and the
theory has no run away directions it is plausible SUSY is broken. A second theory is that
(assuming the low-energy effective theory contains no gauge fields) a spontaneously broken
R symmetry generically leads to supersymmetry breaking [126]. If the superpotential has
either no symmetries or a global symmetry, the F-term equations have the same number
of unknowns as equations, so a solution generically exists. However, if the theory has an
R-symmetry that is spontaneously broken by a field ¢1, with R-charge ¢1, getting a VEV,
the superpotential can be written in terms of a new set of variables as

W=y f (Xi)

b; (2.45)

X; = (Z)({i/g” ,

where ¢ = 2,...,n, and n is the number of chiral multiplets in the theory. As a result, the
F-term equations take the form of n conditions on the function f (X;), which is a function

of n — 1 variables, and so generically cannot be simultaneously solved. Majorana gaugino
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masses are forbidden by an R-symmetry, and even though it is spontaneously broken this
can result in models having gaugino masses that are much smaller than the sfermion masses
leading to fine-tuning problems [127] (alternatively, if the mediation mechanism does not
respect the R-symmetry there is a danger it will lead to new SUSY preserving vacua [128]).
In a supergravity completion, the scalar potential is given by
K/M2 ij ‘W‘Q
V= efMo [ KRy — 30— |, (2.46)
Mg,

where K is the Kihler potential, K“* = §;0;, K, and the F-terms have been generalised to

F, = D;2W = oW+ (ij[fl) W [57). After supersymmetry breaking the first term gives a positive
contribution, and the superpotential must gain a vacuum expectation value (W) ~ M2 Mp, to
obtain an (almost) vanishing cosmological constant, where Mj is the SUSY breaking scale@
This superpotential expectation breaks any R-symmetry in the theory, and even if it arises in
a different sector to the SUSY breaking can feed into it through higher-dimensional operators
potentially modifying the SUSY-breaking dynamics.

In light of these considerations, the requirement that the SUSY-breaking vacuum is the
absolute minimum of the potential is often relaxed [129], and models with metastable SUSY
breaking vacua are phenomenologically acceptable provided they are sufficiently long lived.
These only require an accidental R-symmetry at some points in field space, and can evade
the problems above.

Although technically natural, the models so far require small mass scales and parameters
to be put in by hand. A better alternative is for spontaneous supersymmetry breaking to be
triggered by a hidden sector running into strong coupling at a scale exponentially separated
from other scales in the theory [130]. To study such models is challenging since it requires
an understanding of strong coupling. However, supersymmetry allows for new insights into
such regions, and some examples of SUSY-breaking sectors have been found, one of which is

reviewed in the next section.

2.8 Seiberg Duality and the ISS Model

As well as constraining the renormalisation properties of theories, supersymmetry also allows
for an increased understanding of the behaviour of theories during regions of strong coupling.

A famous example of this is the Seiberg-Witten theory [131], which gives an exact description

210f course, this requires an extraordinary level of tuning, which we do not even attempt to address.

31



of the massless low-energy degrees of freedom in A/ = 2 theories. Here we review a duality
in A/ = 1 theories, important for our later work, known as Seiberg duality [132]. This gives
detailed information on the low-energy behaviour of gauge theories, especially super-QCD
models.

Consider a SU (V) gauge theory with F flavours of vector-like fermions in the fundamental
and anti-fundamental representations. This has a large moduli space, and if the theory has
F > N a typical point in the moduli space breaks the gauge symmetry completely through
scalar VEVs. Generically, the low-energy theory contains 2NF — (N 2 1) light degrees of

freedom described by the gauge invariant baryons and meson superfields

M =3,
B =3"%" .. |

where additional constraint equations between these states ensure the correct number of
degrees of freedom. For F' > 3N it can be shown that the theory is not asymptotically free,
so is simply a low-energy effective theory [58]. For %N < F < 3N there is an interacting
conformal infra-red (IR) fixed point, while for N +1 < F < %N the theory runs into strong
coupling@ For F' < N there is a run away direction in the low-energy theory. This is because

the dynamically generated superpotential is

1
3N—F\ N—F
W ~ A ,
detM

(2.48)

which drives M — oo if FF < N [125]. The cases F' = N and F' = N + 1 are special, in the
former the theory is confining and quantum corrections to the classical constraint equations
push it away from the origin in field space (M = B = B = 0) so at least some of the global
symmetries are broken. In the later, the theory is confining, but the moduli space includes
the origin where all the global symmetries are unbroken [58].

Sieberg duality proposes that the deep IR behaviour of (certain classes of) N' = 1 gauge
theories are completely equivalent to the IR behaviour of different gauge theories (in con-

densed matter terminology, they are in the same universality class). In analogy with elec-

22Tt can be shown that in this region the theory cannot flow into an IR conformal fixed point, since such a
point would violate unitarity conditions.
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tromagnetic duality the two theories are referred to as the electric and magnetic theories,
respectively. In particular for sSQCD, if F' > N +1, there is a dual theory that isa SU (F — N)
gauge theory with matter content consisting of F flavours of ‘dual’ quarks ¢ and antiquark
¢ superfields transforming in the fundamental and antifundamental of SU (F' — N), and a
gauge singlet meson superfield (that can be thought of as the meson of the electric theory)

M, with mass dimension 2. The dual theory has a superpotential
1 ~
Wmag = XMeqq ) (249)

where A is parametrically related to the dimensionful scales of the UV and IR theories (but
not entirely fixed by holomorphy). This superpotential is essential for ensuring the degrees
of freedom in the two theories match up. If the electric theory has quark mass terms in the

form of a superpotential

F
Wer =Y miQ'Q; (2.50)

i=1

where the mass matrices have already been diagonalised, this maps into the dual theory as

a superpotential term

Wmag D) Zm'LMez . (251)
A

Rescaling the meson to mass dimension 1, and defining ;> = —mA, the superpotential of the

theory dual to an electric theory with universal quark masses is
Wmag = hqMgq — ]’LMQATI' (M) , (252)

where h is a coupling constant unfixed by holomorphy.
The behaviour of the magnetic theory is interesting. Assuming vanishing (or small com-

pared to A) quark masses in the electric theory, the beta function of the dual theory is
B(3) ~—3° B(F = N)—F)~—g*(2F = 3N) , (2.53)

where g is the gauge coupling of the dual theory. Consequently, in the region N+1 > F' > %N
the dual theory loses asymptotic freedom and has a trivial IR fixed point G2 = h? = 0, so in
the IR is a free theory of composite states. This means the dual theory is weakly coupled in
a regime where the original theory is strongly coupled and vice versa. For %N < F < 3N the
dual theory has an interacting IR fixed point at finite g2 and k2. In this parameter range the

duality is between two different theories with IR fixed points that describe the same physics.
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The case F' = N + 1 is subtle since there is no dual gauge group, however a careful analysis
shows that the duality still applies near the origin in field space.

Although the duality is a conjecture (even the existence of the fixed points is only certain
for F' = N (3 — €) where € is infinitesimal) it is supported by a large amount of evidence. One
consistency check is that the global anomalies match in the original and dual theories. Also,
the moduli spaces are the same dimension in both theories and the gauge invariant operators
match. Giving one flavour of quark a large mass in the original theory (reducing F' to F' — 1
in the effective theory) has the correct effect on the dual theory. Finally, taking the dual of
the dual theory maps the original theory onto itself as required [58].

Seiberg duality can be used to study a model of dynamical SUSY breaking, the Intriligator-
Seiberg-Shih (ISS) model [129]. This consists of SQCD in the region N +1 < F < 3N, with
quark masses m much smaller than the dynamical scale of the gauge group AE Below the
strong coupling, the theory is best described by its magnetic dual, which has superpotential
given by Eq. . The meson F-terms, F' M= hqtq) — h/ﬂég (1,7 are flavour indices and
a is a colour index), cannot simultaneously vanish since the rank of (jf‘qg is F' — N while the
rank of 55 is IV, and consequently SUSY is broken in this effective theory.

Actually, the theory has a SUSY preserving vacuum (as must be the case from the Witten
index) at large field values where the quark mass term is not a small perturbation of the
theory, and Seiberg duality is not accurate. However, it can be shown that a Coleman-
Weinberg potential lifts the tree-level flat directions near the origin in field space, resulting

in a metastable SUSY breaking vacua at

plp N
M=0 qg=j= . (2.54)

0
The induced SUSY breaking is given by V = 3, F/'F; = (F — N) h?u*, and can be under-
stood in terms of an approximate R-symmetry in the magnetic theory. The superpotential
Eq. is generic for a theory in which the superfields are charged under an R-symmetry
as [?] =2 and [¢] = [¢] = 0.
The decay rate of the metastable SUSY breaking vacua is parametrically T’ ~ e, where

6N—4F
Sp ~ (%) Y so the typical lifetime can be much longer than the age of the Universe for

suitable parameter choices. It has also been suggested that the early Universe may drive the

23Some masses much larger than A are also allowed since the corresponding states are simply integrated
out of the theory.
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system into the metastable vacuum [133]. Actually, the ISS model so far described is not
entirely satisfactory; although A is exponentially separated from other scales in the theory, the
small mass scale m is still put in by hand, defeating the object of dynamical SUSY breaking.

In Section [3] we study a refinement that generates a small mass scale automatically.

2.9 Supersymmetry Mediation

The SUSY-breaking sector must be connected to the visible sector to induce soft masses for
the visible sector superpartners. A simple way for this to occur is through gauge mediation. In
this, additional (relatively heavy) messenger fields are introduced that are charged under the
gauge groups of the SM and also coupled to the SUSY-breaking sector. The messenger fields
obtain SUSY-breaking mass splittings from their couplings to the SUSY-breaking sector, and
these induce visible sector gaugino masses at one loop and sfermion masses squared at two
loops. Typically the messenger fields are taken to be complete representations of SU(5) so
that gauge unification is preserved.

For example, suppose the theory contains n,, copies of chiral and anti-chiral messenger
superfields, ¥ and ¥¢ in the 5 and 5 of SU(5). These can couple to a gauge singlet in
the SUSY-breaking sector X (which could be a composite operator) that gains an F-term
expectation value and a scalar expectation value (X) = X+ Fx#?, through a superpotential

term

WD XUUC . (2.55)

If the messengers receive no other mass contributions, this leads to SUSY-preserving mass
terms for the messenger fermions, M mpess = Xo¥1°+h.c., and scalars X2 (|<;S|2 + ]gbC]Q). There
are also SUSY-breaking scalar masses squared from the term in the Lagrangian Fx ¢¢©+h.c.,
and so the scalar mass eigenstates have masses squared of X3 + Fxﬁ

The leading soft masses induced in the visible sector (in an expansion in the parameter

Fx

Mmess

) can be obtained through holomorphy [88,/89]. This is a good approximation if the
SUSY-breaking sector is not too close to the weak scale. Once the messengers have been

integrated out of the theory the gauge kinetic term can be written

Lo /d207 (X, 1) WOW, . (2.56)

24T the messengers receive a SUSY preserving mass from a different source, this can just be written in
combination with the SUSY-breaking masses from X through a spurion chiral superfield which couples as in
Eq. (2.55) and the analysis is unchanged.

35



Gaugino masses arise through a 62 term in 7, which is generated by 7’s dependence on X.

The leading dependence is given by

A= ;Taa;( o Fx . (2.57)
Since the Wilsonian holomorphic gauge coupling is
7(X,p) =7 (Ayv) + % log (AXU\/) + % log (;) , (2.58)
the gaugino soft masses are
My = 0‘4(:) Tom m: — (2.59)

Similarly, the leading sfermion soft masses can be obtained from the dependence of the chiral

multiplets’ wavefunction renormalisation on the spurion X, giving

mg,i_2< Ix )Qnmzajca(i) (Z‘;)Q : (2.60)

Mmess

where C, (i) is the quadratic Casimir of the representation of the sfermion ¢; for the group
labelled by a. Parametrically, the sfermion and gaugino soft masses are at the same scale,
however A-terms are very suppressed. This derivation shows that the the leading contribution
to the soft masses arises as a threshold effect when the messengers are integrated out at an
energy scale mpess-

Separately to the fact that Eq. (2.59)) is to leading order in mi‘ 2, it also misses higher-

order effects due to the fields in the theory not being canonically normalised. The physical

gaugino mass arises from the 62 component of the real gauge coupling defined by

T (Ad) T (r:)
R:S—i—ST—I—87T2log(S+ST)—zi:87r210g(Zi)+..., (2.61)
where S is defined as the chiral superfield appearing in the Lagrangian as

Lo /d29 %Swawa , (2.62)

and the ellipses represent two-loop corrections. This is exactly the extension of Eq. ([2.24])

to the case of superfields.

If required, the full expression for the soft masses to all orders in mljn “— can be obtained
by evaluating the loop diagrams that lead to the soft masses |134]. Again, it can be seen that
the masses are generated by momenta near the scale my,ess. It is also possible to calculate the

visible sector soft masses induced from a generic messenger mass matrix (expressions for this
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are given in Appendix |A.1|). For example, the messenger scalars can obtain SUSY-breaking

2
mass terms of the form ‘f/[—i’ #T¢ (where M, is some higher scale) from a Kéhler potential

XTx
M?

term U, If the soft masses are purely of this form there is an effective R-symmetry
in the messenger sector and consequently no gaugino masses are induced (in contrast any
possible R-symmetry is violated by a coupling of the form Eq. when X has an F-term
expectation value, and the messengers have SUSY preserving masses). If the messenger mass
matrix is such that its supertrace does not vanish, there is an additional contribution to
the sfermion masses from the so-called € scalars, which arise from evaluating loop integrals
of vectors in 4 — 2¢ dimensions (when regularising loop integrals by dimensional reduction).
Unlike the other contributions these corrections are logarithmically divergent ~ log (Ayv),
and occurs because (if SUSY is only spontaneously broken) the theory is completed to a
theory with vanishing mass supertrace at some higher scale [134].

A significant advantage of gauge mediation is that minimal models are entirely flavour

blind [56], and consequently dangerous flavour-violating operators in the visible sector are

avoided. Notably, models with messengers in complete GUT multiplets lead to gaugino

masses in the GUT unified patten % = % = %. The maximum number of SU(5) messen-
1 2 3

150

Mgyt
Mmess

ger multiplets is constrained to n,, < if unification is required to be perturbative.
log ( )

Alternatively, if mediation occurs through a new gauge group that has been Higgsed this can
be included in the analysis [135]. More generally, gauge mediation from a generic, possibly
strongly coupled breaking and mediating sector can be studied through the formalism intro-
duced in [136], although this is not necessary for our purposes. An interesting alternative
to the set up so far described is direct gauge mediation. In this the SUSY-breaking fields
have SM gauge charges, and mediation proceeds without requiring an additional messenger
sector [137].

Of course there are other mediation possibilities. In gravity mediation, the SUSY break-
ing sector is coupled to the MSSM through Planck scale physics (see for example [57,/61]).

Gaugino masses arise if the gauge kinetic function includes a non-renormalisible term

1 J
2 _ _Ja «
Lo /d 0 (92 SEX ) WoWoe | (2.63)

a
where f, is a constant (with mass dimension zero). Similarly, sfermion masses are gener-
ated through non-renormalisible operators in the Kéhler potential, and A-terms from the

superpotential. If the suppression of these operators is the Planck scale, all soft masses are
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comparable to the gravitino mass. However, in completions, the actual suppression of these
operators could be exponentially separated from the Planck scale, for example if there is an
exponentially large volume arising from a string compactification [64]. While gravity medi-
ation is very well motivated, the details of the breaking is explicitly dependent on the UV
completion. One problem that arises in many completions is obtaining soft terms that do
not lead to excessively large flavour changing currents and CP Violationﬂ

Another mediation mechanism is anomaly mediation, which is the combination of several
effects [138-142]. One source is that SUSY breaking leads to a positive vacuum energy
contribution, and so de Sitter spacetime. Therefore prior to SUSY breaking the theory must
begin in Anti-de Sitter (AdS) space [143]. However, in AdS the SUSY preserving masses
of multiplets are split. Once space-time is uplifted to flat space, these mass splittings are
generically preserved, but now break supersymmetry (the splittings depend on how far in
AdS the theory begins, which is fixed by how far SUSY breaking uplifts it). Another source
of anomaly mediation is linear couplings of fields charged under the SM gauge group to a
SUSY breaking spurion in the Kéhler potential. These feed into the real gauge coupling Eq.
, or equivalently can be shifted into the gauge coupling by an anomalous rotation in
field space. In string theories there are also further sources [144]. While anomaly mediation
is flavour blind and theoretically well motivated, minimal models lead to tachyonic sleptons,
and evading this requires extra model building.

Regardless of the mediation mechanism, having calculated the soft masses at the media-
tion scale (that is the messenger mass in gauge mediation, or the scale of the higher dimension
operators in gravity or anomaly mediation), in order to find the soft terms near the weak
scale the theory must be run down using the RG equations. Typically, these are taken to be
the MSSM equations given in Section (although we discuss an alternative in Section @

The RG flow leads to another mediation possibility. If the gaugino soft masses are gener-
ated at a high scale, then during RG flow they can induce soft masses in the sfermions that
are of comparable size if the running is from a relatively high scale |[145]. The initial condi-
tion of only gaugino soft masses most naturally arises from models with extra dimensions, or
models with multiple sets of gauge groups (so called deconstructed models that are closely

related to extra dimensional models).

25This arises because, although gravity couples universally at low scales, gravity mediation is sensitive to the
details of the UV theory, which also needs to explain the fermion mass structure and therefore is manifestly
not flavour universal.
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A significant difference between gauge and gravity mediation is the mass of the gravitino,
in gravity mediation this is parametrically the same size as the other soft masses in the
theory, while in models of gauge mediation the gravitino mass is usually much smaller and it
is the LSP. Consequently, in models of gauge mediation the gravitino is a (DM) candidate,
and requiring that it does not overclose the Universe can give stringent constraints on the
reheating temperature after inflation. More generally, even if it is not the DM, since the
gravitino couplings are suppressed by the Planck scale, it can have a significant effect on

cosmology [146/-148], for example if it decays during big bang nucleosynthesis.

2.10 Fine Tuning

We now return to the details of fine tuning, specifically in supersymmetric theories. In
principle, once a definition of fine tuning has been decided upon, the procedure of calculating
it is straightforward. Once a UV complete model (that leads to correct EW symmetry
breaking) is specified, the sensitivity of the EW scale is obtained by varying the fundamental
underlying parameters, and evaluating Eq. . This requires the UV complete theory to
be run down to the weak scale, so that radiative corrections to the parameters that appear
in the low-energy potential are included [24}149./150]. The overall tuning of the theory can
either be defined as max (A,), where A, is the tuning with respect to the parameter p, or as

In practice however this procedure is not straightforward. The running from the UV cutoff
depends on the complete underlying theory, including all the higher-dimensional operators,
which is usually unknown. This is because, although the effective theory at energies far below
the UV cutoff is insensitive to higher dimensional operators, it is not obvious how fast the
effects of these turn off and if they give any significant contributions before this happens.
Instead, what has to be done is take some particular boundary conditions at an assumed UV
cutoff of the RG flow. These can then be run down to the weak scale (using perturbative
RG equations), and it is hoped that the tuning obtained is a good approximation to the true
tuning of the theory.

The collider limits on Higgsinos are comparatively weak, and consequently p can be close

to the weak scale [56]. Therefore, provided the theory does not require a large value of p to

26The former choice runs the risk of allowing a more complex theory to ‘hide’ the true tuning of the theory
by introducing multiple new parameters, each of which are individually tuned to some extent. However, apart
from this caution, the two measures are usually comparable, and give similar results.
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obtain the correct EW VEV, the tuning from this parameter can be relatively small (from
Eq. ) The dominant tuning typically arises through the up-type Higgs soft mass and
the radiative corrections to it. For typical spectra compatible with collider limits, the most
important contributions arise from the stop masses, and the gluino which feeds into the Higgs
soft mass squared through the stop at two loops. We study this in detail in Section

The size of the radiative corrections depends on how long the theory is running, so
different theories with the same EW spectrum can have vastly different fine tuning if they
have different mediation scales. Consider the tuning induced by a stop with mass 1TeV.

This can be estimated as

m? 617 m
A;~ 2L 29 ( med) 2.64
t m?% 1672 o8 myg )’ (2:64)

(where the running of the stop soft mass has been neglected) |151]. If the mediation scale
is ~ 10 TeV the tuning is A; ~ 20, while if the mediation scale is 10'® GeV it is much larger
Ay~ 170.

Even theories with the same Lagrangian at the assumed UV cutoff of the RG flow can have
differing tuning if they arise out of different underlying models, with different fundamental
parameters that can be varied@ Equivalently, the fine tuning measure is not invariant
under redefinitions of the fundamental parameters of the theory. For example, in GUT
models gaugino masses are unified and the only parameter that can be changed is the unified
gaugino mass, while in other completions the gaugino masses can be varied independently,
giving a different tuning. Another example arises in a model where the first two generation
sfermion masses are all fixed equal at the UV boundary by the underlying theory. This can
lead to cancellations that would not be observed if they were independent. Assuming running
from the GUT scale at 10'® GeV, and tan 8 = 10, the dependence of the weak scale Higgs

mass on the first two generation sfermion masses (at the UV boundary) is [152]

—20mip, (mz) D 0.051mg, — 0.11m2, 4 0.051m2, — 0.052m7 5 + 0.053mp, + [2+— 1] .
(2.65)
If the first two generation sfermion masses squared are all fixed equal to a common UV
parameter m2, there is a cancellation in Eq. , and —28m 2 ~ —0.014m?2, less than

the tuning if all the soft masses were independent@ UV models that lead to such cancella-

2Tt is also possible to define another measure of fine tuning that does not allow for cancellations, and
typically gives an upper bound on the tuning of a model [150].

28The sensitivity of the weak scale to whatever effects set tan 3 = 10 also needs to be considered in any
complete model relying on this cancellation.
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tions are good candidates for theories for low fine tuning, provided they are independently
motivated and the relations between soft parameters have not simply been put in ‘by hand’.
Further, fine tuning calculations usually simply assume the running arises from the visible
sector beta functions, however in Section [f], we study the effects when this assumption is
relaxed (as may plausibly occur in realistic models).

Notably, the fine tuning only measures the sensitivity of the EW scale to the underlying
parameters. We make no attempt to quantify the likelihood that a particular type of theory
is actually realised, which would require a measure on ‘theory space’. For example, it is
very difficult to know the probability of a new gauge group, under which only the first
two generations are charged, actually existing. However, a highly convoluted theory, which
is exceptionally hard to realise from a sensible UV completion, is not compelling simply
because it has low fine tuning@

Another possible measure of the fine tuning of a theory is the tuning evaluated purely at

the EW scale [150,|152]. This starts from the (radiatively-corrected) EW potential

m72Z _ (m%{u + ZU) tan26+ m%{d + Zd 2 (2 66)
- 2 wy :
2 tan® 3 — 1

where ¥, (X4) are the loop corrections from to states that couple to the up-type (down-type)

Higgs, and all quantities are evaluated at the weak scale. The low scale tuning is then defined

) < 2

(2.67)

as

¥, tan? 3
tan? 3 — 1
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tan? 3 — 1
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tan? 3 — 1

m?,, tan? 3
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AEW = max <

Numerically, >, is usually dominated by the top squark loops, and is given by X, ~

3f2
1672

mt2 log <g§) (there are also extra terms due to stop mixing [153]), where @ is the scale
choice (usually optimised to Q% = mjzmz). This quantity does not take into account the
effects of running from a high scale and consequently misses the large logarithmically en-
hanced terms that can arise in the true tuning of the theorym However, it does give a lower

bound on the tuning that a theory with a particular EW spectrum can have.

29The distributions of vacua in SUGRA compactified from 10 to 4 dimensions actually seem to suggest low
energy SUSY itself may be disfavoured (by a stronger amount than a tuned Higgs is disfavoured in stable
compactifications with zero cosmological constant, under some assumed distribution of potentials [48]|49].
However, at present, the understanding of moduli stabilisation and the string landscape is not developed
enough to understand if this is representative of real string theory dynamics.

30To see the effect of this running the potential has to be written in terms of the high scale quantities

mi]u (Q) = m%—]u (AUV) + 6m§{u
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2.11 Low-Energy Spectra, Collider Detection, and Natural SUSY

While the (weak scale) mass spectrum of a theory depends on the details of the model and
parameters, there are some features that often appear in minimal models of both gauge
and gravity mediation [56]. Many conventional models of both gauge and gravity mediation
predict gaugino masses in the GUT unification pattern, although there are string theory
completions that do not have this property [63,64]. The sfermion masses are often assumed
to be universal at the mediation scale in gravity mediated models, while in minimal gauge
mediation models these depend on the representation of the gauge group that the sfermion
is in. Additionally, all generations of sfermions are often taken to have the same soft masses
(which, as discussed, helps to evade flavour constraints) [56].

The lightest states tend to be the neutralinos and right-handed sleptons (apart from
possibly the gravitino), while SU(2) charged states are somewhat heavier. The gluino is
typically relatively heavy, since ag is large at low energies. Coloured sfermions are usually
significantly heavier than other sfermions, in gauge mediation because they obtain larger
masses at the mediation scale and in minimal gravity mediation because they get a large
positive mass contribution from the gluino during running@

The possible signatures of supersymmetry at colliders, and the limits that arise from
negative search results at LEP, the Tevatron, and now the LHC are the topic of an enormous
body of work. The classic signatures of SUSY at hadron colliders are events with some
number of jets, some number of leptons and missing transverse energy. The missing energy
arises from the LSP escaping the detector (assuming R-parity, however the limits are not
actually relaxed significantly if the theory is R-parity violating). Of course, understanding
the SM backgrounds, which mostly arise from neutrino production and jet mismeasurement,
is vital to obtain limits (amongst many other studies, see for example [154H156]).

The strongest limits on superpartners are on gluinos and the first two generation sfermions.
Both are efficiently produced from the parton contribution of the protons by strong inter-
actions (unless sufficiently heavy that their production is kinematically suppressed). The
limits on the third generation sfermion masses are much weaker than those on the first two
generation sfermion masses, due to the small mixing between the first two generations and

the third generation [157].

31 An exception to this is if the universal scalar soft mass is much larger than the gaugino mass, in which
case the coloured sfermions can be lighter than other sfermions due to to a negative contribution to their
masses from each other during running.

42



In a simplified phenomenological model containing only the first two generation squarks
(with a universal mass), neutralinos and gluinos the limit on the squark masses (combined
from a variety of searches) is in the region of 1.7 TeV even if the gluino is in the region of
2TeV (the mass of the gluino affects the production rate, and consequently the mass limits
on sfermions). Similarly, no matter how heavy the squarks are, the limits on the gluino are
around ~ 1.4 TeV [158]. The limits can also be cast into the mSUGRA plane (mSUGRA is
a theory with unified gaugino masses and a common sfermion mass at a high scale). In this
case the limits on the squark masses are at least 2 TeV (demanding that the gauginos are not
so heavy that the LSP is a phenomenologically unacceptable stau).

Motivated by experimental constraints, it is interesting to consider more complicated
theories that lead to a low energy mass spectrum with the first two generation sfermions
somewhat heavy, while keeping third-generation squarks, especially stops, and electroweak
gauginos and Higgsinos light, the so called natural SUSY scenario [159,/160]. This allows
for experimental constraints to be weakened and since the first two generations couple only
relatively weakly to the Higgs, it may be hoped that such spectra do not lead to large fine
tuning. In this thesis we study the model building possibilities of natural SUSY spectra, and
the possibility that these reduce fine tuning.

In models of natural SUSY, the limits on gluinos are typically in the region of 1.3—1.4 TeV
but this depends strongly on the simplified model being considered [161,/162]. This typically
arise from the decays § — ttXo, § — btX+ and § — bbyo, which cannot be evaded unless y is
large (introducing significant tuning) [157].

Stops masses are typically limited to 2 400 — 700 GeV, however this is very dependent on
the model and the mass splittings in the spectrum [163H165]. Production is either through
gluinos or other squarks, or directly if all other strongly coupled superparticles are much
heavier. For sufficiently heavy stops a typical decay channel is ¢ — ¢y, where the final
states are on-shell and xp is the lightest neutralino. In this case the neutralino can lead to
large missing transverse energy signatures. If the stops are lighter the top has to be off-shell,
and the decay is directly £ — bWy, possibly leading to observable deviations in kinematic
variables. If the neutralino is very light and the stop is only slightly heavier than the top,
the neutralino carries off very little energy and the event is hard to distinguish from pair
production. Of course more sophisticated searches for light stops covering a range of spectra,

see for example [166], have been considered, and are being carried out.
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A wide range of theories of SUSY breaking and mediation that can lead to a natural
Spectrum have been proposed. An appealing feature of many models is the ability to link
the large third generation Yukawas in the SM to the smaller soft mass of the stop relative to
the other sfermions. In the original models, the first two generation sfermions are taken to be
charged under some new gauge symmetry that mediates additional SUSY breaking masses
to these states, but not the third generation sfermions, which gain soft masses either through
some other gauge mediation or gravity mediation [167,/168]. Similarly, there could also be
only one set of messenger states, but with additional flavour structure [135]. In the next
chapter we build a supersymmetric model that generates a natural SUSY spectrum, while
simultaneously explaining the suppressed first two generation sfermions in the SM, and the
appearance of mass parameters in a dynamical SUSY breaking sector.

Other possibilities for generating a natural SUSY spectrum include deconstructed models,
in which the SM gauge group is extended to GéM X G%M, where each of Géf/[ are the full
SM gauge group, and the third generation states are taken to be charged under a different
group to the other matter [169]. These models are closely related to other theories where
the third generation states are localised differently to the first two generations in an extra
dimension, also generating a natural spectrum [170]. It is also possible that a natural SUSY
spectrum could arise out of a combination of strong dynamics (in the form of a composite

Higgs model), and supersymmetry [171].
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Chapter 3: Building a Model of Natural SUSY

This chapter is based on [172], work done in collaboration with John March-Russell.

As discussed in the previous chapter, if softly-broken SUSY is to be a successful theory
of the weak-scale, solving the hierarchy problem, then it must meet a number of serious chal-
lenges. First, on the theoretical side, there is still significant uncertainty over the mechanism
of SUSY breaking and its mediation to the visible sector. From the perspective of the hierar-
chy problem the most attractive possibility, as first argued by Witten [130], is the dynamical
breaking of SUSY via dimensional transmutation and non-perturbative effects. Despite this
attractive feature, many models of dynamical supersymmetry breaking (DSB) still require
small parameters, or masses to be parametrically suppressed relative to other scales in the
theory. A particularly well known example is the, previously mentioned, ISS model [129]
where small parameters are required to ensure that (in the presence of the phenomenolog-
ically required R-symmetry breaking) a metastable vacuum is sufficiently long-lived to be
viable.

An appealing approach to deal with this is through so-called retrofitting [128], where
IR irrelevant operators generate small parameters which would otherwise be forbidden by
symmetries of the theory. In the case that the operators introduce a small amount of R-
symmetry breaking, this is not a surprising scenario: vanishing of the vacuum energy post
SUSY breaking requires the superpotential to have a R-symmetry violating expectation value,
which is transmitted through supergravity to produce the required operators.

Second, on the phenomenological side, there is increasing tension between the require-
ment that superpartners should be close to the EW scale to prevent the reintroduction of a
little hierarchy problem and negative results of collider searches first at LEP and now at the
LHC [1]. One possibility to weaken these experimental constraints is to have, as previously
mentioned, a natural SUSY spectra. Although there has been much phenomenological study
of this case (for example [151]) it is unclear how such spectra may be realised from a UV
theory in a way that maintains the successes of low-energy SUSY such as the gauge unifica-
tion prediction of sin? #,,(mz) and radiative EW symmetry breaking. The issue is again the
appearance of small parameters, in this case the ratio of third to first and second generation
sfermion masses. Of course, there is another well-known problem involving unexpectedly

small parameters: the SM fermion masses themselves which exhibit a large range of values.
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A very popular way of dealing with this, which again involves irrelevant operators generat-
ing terms that are forbidden at leading order by a new symmetry, is the Froggatt-Nielsen
mechanism [5].

Our aim in this chapter is to argue that these disparate cases may in fact be directly
related, with the same broken symmetry leading to small parameters in both the SUSY-
breaking and visible fermion/sfermion flavour sectors. In particular, we consider theories
where there is an additional underlying U(1) gauge symmetry broken at high scale. While
such symmetries may simply be regarded as a feature of an effective theory, they often
automatically appear in an underlying string theory model. This case is highly attractive
since these symmetries are naturally anomalous in the field-theory limit before a generalised
Green-Schwarz mechanism is included which typically leads the associated gauge bosons to
gain a large SUSY preserving mass [173]. Additionally, they can be linked to generation of the
visible sector fermion masses in brane stack models, whereby different generation fermions
are charged differently, as recently discussed in [174}/175].

The possible role of U(1) gauge symmetries in breaking and mediating SUSY has been
studied extensively and it has previously been proposed to generate flavour structure in
sfermion masses, see e.g., [167,/168, 1767187]E| Many previous models have proposed the
fields that break the U(1) can be directly involved in the SUSY breaking sector. While
this is an attractive prospect it leads to issues such as the dilaton necessarily gaining an
F-term that may dominate the mediation |[190]. An additional problem is if gaugino and
third generation soft masses are generated through gravity mediation it is very hard to avoid
dangerous flavour changing processes without making the first two squarks generations so
heavy as to drive the stops tachyonic during running [191] (this is discussed further in Section
5).

In contrast, in the models we consider, the U(1) vector multiplet receives a mass at a high
scale and only acts as an additional messenger interaction without being directly involved
with the SUSY-breaking. Importantly, since the SUSY breaking sector is charged under this
gauge symmetry, there is an additional contribution to the MSSM soft masses from a contact
interaction after integrating out the heavy vector multipletﬂ Then, as we will argue, if only

the first two generation sfermions are charged under the broken U(1), this can lead to first two

! Alternative UV models that could realise natural SUSY spectra have also been proposed [135,[188L[189).

2Operators generated by integrating out heavy gauge fields have previously been proposed as a viable
mechanism of mediating supersymmetry breaking |192/{193], and have been studied in the context of dynamical
SUSY breaking and gauge mediation with universally charged MSSM fields [194].
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generation sfermion soft masses a factor of a few larger than the gauge mediated soft masses,
and therefore the first two generation sfermions can be heavy enough to evade detection
and realise natural SUSY, but not so heavy as to drive the stop tachyonic through RG
running. However, with first two generation sfermions in the mass range of a few TeV, flavour
violation is not adequately suppressed unless there is a high degree of degeneracy between
these sfermions. Because of this we take the first two generations to be charged equally under
the U(1), so both broken U(1) mediation and the competing SM gauge mediation are flavour
universal, leading to flavour observables within current limits. Of course, a consequence of
this is that the observed hierarchies in first and second generation fermion masses and mixing
cannot be ‘explained’ by selection rules following from the breaking of U(1), and only the
hierarchy and mixing between the third generation and the lower generations is due to the
Froggatt-Nielsen mechanism. Our attitude here is that the flavour structure of the first two
generations is set by high-scale physics which is independent of SUSY-breaking dynamics.
As we will show this is allowed since, in our model there can be O(1) breaking of the flavour
symmetry of the lower generation fermions consistent with the fact that the sfermion partners
simultaneously possess an effective flavour symmetry that is only very weakly broken at loop
order by the tiny first and second generation Yukawas.

Turning to the organisation of this Section, in Section [3.I] we introduce the overall struc-
ture of our models and the basic mechanisms of SUSY breaking and mediation in a field
theory setting, illustrating the ideas first using a Polonyi model, and then a fully dynami-
cal ISS model. Following this in Section [3:2] we examine how such models may naturally
appear from an underlying string theory possessing anomalous U(1) gauge symmetries. In
Section we consider the low-energy spectrum of soft terms obtained, while in Section

we note some additional interesting phenomenological possibilities and discuss signatures.

3.1 Structure of Field Theory Implementation

We begin by discussing the implementation of our models in a low-energy field theory setting
using a Polonyi model as a straightforward example of the SUSY breaking sector. Following

this we implement a fully dynamical example, an ISS model.
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3.1.1 Low-Energy Polonyi Model

The underlying theory is specified by four sectors. At the highest scale a sector that breaks
the U(1), a DSB sector, a messenger sector, and the visible sector. All sectors involve fields

charged under the U(1) symmetry, and the superpotential takes the form
W = WU(I) + WDS + Wmess + insible ; (3'1)

with a UV cutoff at a scale M, and canonical Kéhler potential up to irrelevant operators
suppressed by powers of M. The sector W1y involves only fields S;, with U(1) charge i, and
spontaneously breaks the U(1) gauge symmetry through fields Sy; and S_; getting vacuum
expectation values (VEVs) v leading to a gauge boson mass mz = ¢g'v. Here ¢ is the U(1)
gauge coupling, and we assume that the scale of Wy (1) is sufficiently above the other sectors
that the VEVs of fields S are rigidly fixed. Hence, once this symmetry breaking occurs, the
fields S41 in the other sectors may be replaced by their expectation values v. This leads to
a small ratio in the theory we denote by € = Miﬂ

The DSB sector has fields charged under the U(1) symmetry and the superpotential
includes irrelevant operators generated at the cutoff of the theory with the form

Sn

AWpg = A

ODS ; (32)

where n and m are integers and Opg are operators involving the fields in this sector. Once
some of the S; obtain a VEV these couplings lead to small mass terms and parameters. In
particular, consider a very simple sector of Polonyi form with one field ® with charge +6
under the U(1) symmetry. After Si; gain their common VEV, the superpotential is
8%, 4,2
WDWQZGU@, (3.3)
leading to a SUSY-breaking F-term Fp = ¢*v?.
In the messenger sector there are fields, {1, 1°}, that form a vector-like pair under the

SM gauge groups which act as messengers of gauge mediation. They are charged under the

U(1) with couplings to the fields S and also to the DSB sector of the form

gpt s
Winess = Wwwc + i @ D8¢wc ’ (34)

*

3In a complete theory it is also necessary to explain the suppression of v relative to M,. However, since
the required suppression is only a factor of ~ 20 — 100 it is plausible it can arise without significant tuning
(for example due to a small coupling constant or loop factor).
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where O'pg is an operator in the SUSY-breaking sector that gains an F-term expectation
value (and is not typically the same operator as Opg in Eq. ), and n’ and m/ are integers.
We further assume they have a potential (either at tree or loop level) such that the SUSY-
breaking minimum remains either a stable or metastable state. Taking the combination ¢
to have charge —4 this sector includes a mass term and interactions with ® given by

W5 S+ Sy
M2 M (3.5)

= EOpye + Sopye
Due to the coupling between the field ® and the messengers, there will be gauge-mediated

soft masses roughly of size

o Feg a ;3
Meauge (47T> Mmess <47T> v (36)

692 is the effective F-term felt by the messenger fields due to its coupling to

where Fog = €
®. In order that these soft terms are close to the EW scale, for values of ¢ appropriate to
fermion masses, v and M, must be relatively close to the weak scale, hence this is very low
scale gauge mediation with messenger masses an inverse loop factor above the weak scale.
This is phenomenologically beneficial as it results in relatively little running and the first two
generations can be pushed heavier without leading to a tachyonic stop.

Finally the visible sector superpotential takes the form

S_\%i .
Wiisible = Cij < Ml) O ihle (3.7)

where 7, j are generation indices. The parameters ¢;;, which are not constrained by the U(1)
symmetry, are set by UV physics at (or above) the scale M, where the irrelevant operators
are generated, and may or may not satisfy other symmetry relations. After U(1) symmetry
breaking the effective Yukawa couplings relevant to IR physics which set the observed fermion
mass ratios and CKM mixings are

)\ij = qujcij . (3.8)

As is well known, the observed third-generation fermion masses and mixings have properties
which set them apart from the lower generations: not only is the top Yukawa coupling O(1)
(as can be those of the bottom and tau if tan 5 is large) in distinction to the suppressed
first and second generation couplings, but SU(5) SUSY unification predictions work well for

mp/m., while the remaining predictions fail badly. In addition, if the experimentally observed
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ratios of second generation to third generation fermion masses at a low scale are run to the
GUT scale, assuming weak scale SUSY, the resulting ratios and mixings m./m; =~ 1/300,
ms/my ~ 1/40, m,/m, ~ 1/17 and Vg, = 1/25 are well-described by a structure of Yukawa
couplings for the up and down quarks and leptons depending on a single small parameter

€ ~ 1/20 of the form

U~ , D ~ , E ~ , (3.9)

where here “x” and “xx” denote entries that are O(1) (respectively O(e)) or smaller, see

e.g. [195,[196]. This structure strongly suggests that some dynamics sets this pattern, such
as that following from a Froggatt-Nielsen mechanism [5], or from extra-dimensional orbifold-
GUT constructions [195-198|. This is particularly the case since, as far as we are aware,
there is no anthropic reason for the second-generation masses and Vg to take their observed
values. On the other hand the masses of the first generation quarks, as well as the mass
of the electron, do not fit so nicely with any simply dynamical mechanism depending on
only one small parameter, and are, in addition, (remarkably) in accord with the anthropic
“catastrophic boundaries” linking m,,, mq, me, with Aqcp and agy [199,200]. In particular,
this is the claim that small variations in the values of these parameters would lead to dramatic
changes in the physics of the Universe at much larger scales.

Because of this we now make the crucial assumption, different from many previous studies,
that the physics that sets the 2-3 inter-generational mass ratios and mixings is different than
that which sets the 1-2 ratios and mixings. Specifically our starting place is that second-third
generational physics is set by the U(1)-dependent factors €% while the first-second generation
physics is set by the ¢;;’s which are not determined by our broken gauged U(l)ﬁ

In detail, the up-like-Higgs and top-quark multiplets are uncharged under the U(1), such
that a superpotential term W O H,qrsu® is allowed, with an order 1 coefficient to match
observation. In contrast the first two generation fields of the same SM quantum numbers
are taken to be charged equally under the U(1), leading to mass terms that are suppressed

by equal powers of €. Since the U(1) symmetry is abelian the O(1) coefficients that dress

4The mixings and hierarchies between the lighter two generations may result from another broken Froggatt-
Nielsen flavour symmetry such as U(1) or SU(2) which is either not gauged, or does not interact with the
SUSY breaking sector, or, alternatively may instead be the result of landscape scanning of the coefficients ¢;;
subject to the strong anthropic constraints that they must obey. The important point for our work is that we
do not need to specify this physics as long as it is independent of (commutes with) our U(1) that interacts
with the DSB and similarly retrofits some if its couplings.
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these couplings possess no symmetry properties, and can lead to the observed mass splitting
of the first two generation visible sector fermions and the Cabbibo mixing structure, as we
discuss in Section (When investigating particular models, we will give explicit charge
assignments and show the textures generated in the visible fermion masses.)

For phenomenologically viable charge assignments, including only MSSM matter, the U(1)
symmetry would appear to have anomalies of the form U (1) x G%,,, and U (12 xU 1)y,
however these can be cancelled by the messenger fields (or other matter which is chiral under
the U(1) and vector-like under the visible sector groups). Choosing a GUT compatible U(1)
charge assignment for the visible sector allows these anomalies to be cancelled by matter in
complete GUT multiplets hence gauge unification is preservedﬂ

After U(1) symmetry breaking, as a result of integrating out the heavy U(1) gauge boson
there will be a Kahler contact operator [190], derived in Appendix between any two
fields charged under the U(1) symmetry. This is important for our phenomenology as it

leads to an extra coupling between the field which obtain an F-term, ®, and the first two

generation MSSM fields (and third generation down type quarks and leptons), Q1 2,

otoQ]
/d490ig2 M ) (3.10)
m
Z/

Here my is the mass of the heavy U(1) gauge boson, while ¢; ~ g1 2 depends on the U(1)
charges of the fields. Since myz = ¢g’v the dependence on ¢’ drops out leading to soft masses

for the first two generations

|Fy|?
’U2

mi = —c; : (3.11)

At the scale these interactions are generated, the coefficients ¢; depend only on the U(1) gauge
charges of the fields, and therefore can naturally be equal for the first two generations by a
discrete choice of the charges. During RG evolution down to the weak scale the dominant
running effects will be due to SM gauge interactions which are still universal. The only
deviations from universality are due to the first and second generation Yukawas and have
a negligible effect. Therefore, flavour changing currents are not generated in the visible
sector, which is crucial for acceptable spectra. In order that sfermions receive a positive

mass contribution, it must be assumed that ¢;2 < 0. In Appendix it is seen that this

°It is possible to arrange, either by choice of U(1) charges or by the geometric localisation of the messenger
fields, that less suppressed interactions between S and the visible sector are not generated upon integrating
out these states.
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can be easily realised in UV completions, simply if the fields ® and @12 have the same sign
charge. Since the exact properties of the underlying theory are unknown, we fix and overall
normalisation by setting ¢; = —g; for all states in the visible sector with U(1) charge ¢;. The
qualitative properties of the spectra obtained are not especially sensitive to this assumption.

Since the third generation up-type quarks are uncharged under the U(1) there are no
such terms generated for the stops through this type of interaction. Further, integrating
out the gauge multiplet will not generate terms of the form [ d*d f <<I>T, <I>) QJLZQ;; hence
these are suppressed relative to the Kéhler mass terms Eq. . Since the Higgs fields
are uncharged under this symmetry, the soft masses m%{d and m%lu are not large which is
beneficial in avoiding large fine tuning of the EW scale. An important assumption we are
making is that there is no additional field content in the UV theory that generates significant
Kaéhler couplings between ® and the top multiplet. In a realistic UV completion these will
appear at some level, however may naturally be expected to be suppressed by either M, or

Mp; and therefore be negligible compared to the other contributions.

In the model considered here the interaction Eq. (3.11]) generates masses

F 2
mi = —ci’ q;| =2 . (3.12)
v

There will be a similar coupling to the messenger fields,
40 o'P

Since the messenger mass is close to v/F, the SUSY breaking from this term can lead to
slight corrections to the gauge mediated masses induced in the visible sector compared to
the normal formula derived assuming analytic continuation. In Appendix we give the
general formula which we use in our later phenomenological analysis. While the exact form
of these corrections is complicated their effect is straightforward: both the next corrections
in % and those from SUSY breaking diagonal masses tend to increase the sfermion masses
relative to gaugino masses as they do not break R-symmetry.

The key phenomenological feature of our models is that the ordinary gauge mediated
contribution from messenger fields will compete with this Kéhler contribution to the first
two generations leading to a scenario where the first two generation sfermions become rel-
atively heavy, while the stop quarks stay light, realising a natural SUSY spectrum. These

contributions can give phenomenologically reasonable soft terms and natural spectra with
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appropriate choices of M, for € in the range suggested by the fermion mass hierarchy. In
Section we study the MSSM spectra for reasonable choices, however first we examine a

more sophisticated and UV complete model of SUSY breaking.

3.1.2 ISS Model of Supersymmetry Breaking and Mediation

While general features of these models can be realised in many examples we now consider
the ISS model [129] as an example of a fully dynamical SUSY breaking sector, which, once
including the suppression from retrofitted couplings, needs no small scales or couplings. In
particular this allows the very natural possibility of associating M, with the GUT scale. A
retrofitted model has previously been studied in [201], and here we consider a mediation to
the visible sector through the addition of messenger fields.

The theory is a simple modification of that described in Section [2.8] Consider supersym-
metric QCD with gauge group SU (N.) and Ny quarks, Q;, Q;, in the range N, + 1 < Ny <
3N.. The quarks have charge +n/2 and the messenger fields —n/2 under the U(1) which
is broken in a separate sector by two fields with charge +1, (Sy1) = v. The SU (N,) gauge
coupling is asymptotically free and the theory has a dynamical scale, A, above which the

superpotential is given by

1 oY) c 7 c
= MQiQ YY© + M” 1QzQ VY- . (3.14)

Mn 1
Below A the theory is given by the Seiberg dual which consists of magnetic degrees of

freedom: dual quarks ¢, ¢ and the (canonically normalised) meson of the electric theory

<I>g = QZTQJ with superpotential

/Un

*

" A
1+

e+ 3T (@)) e (3.15)

With this superpotential, neglecting the small coupling to the messenger fields, the F-terms

n

U
MP

of the meson field are given by Fy: = §;q' — mAég, where m =
J
As usual the differing ranks of the two contributions to Fg imply that not all F-terms can

vanish and therefore SUSY is broken in a metastable vacuum with ® gaining an F-term of

order Fg ~ ]\;’[Z/,\l ﬁ Since the mass term in the electric theory, ~ M”Tn,l, can naturally be much

smaller than A, the F-term can be suppressed away from other scales in the theory allowing

5This F-term depends on an O(1) coefficient, which is undetermined by holomorphy and therefore unknown.
However all the soft mass contributions will be seen to depend on Fg in the same way therefore this leads to
no alteration in the phenomenology.
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for small SUSY breaking soft terms to be generated in the visible sector after mediation.

Including the non-renormalisable couplings to messengers in the electric superpotential
explicitly breaks the R-symmetry of the magnetic theory (discussed in Section . Conse-
quently, this also potentially creates new SUSY preserving vacua. However, the R-breaking
is small so the metastable SUSY-breaking vacua can be long lived. This can be connected to
the requirement that the cosmological constant vanishes by making the sector that gives the
VEV (S) # 0 the same sector that gives a constant contribution to the supergravity scalar
potential.

Regarding the visible sector soft masses gauge mediation will give a contribution

a\ M 2AFy a) A?
Mgauge ™~ (471') *T ~ <47r> M (3.16)

which can be close to the EW scale without fine tuning, as a large hierarchy between A and

M, is natural. In addition as in the simple Polonyi model, integrating out the heavy U(1)
gauge boson leads to a Kéhler contact operator between ® and other U(1) charged fields. In
the electric theory this is given by
O + Of
/d40 ¢ig? <QQm2QQ> Ql]:/ISSMQMSSM : (3.17)
Z/

In the magnetic regime the Kéahler potential is given by

ofd
/d40 Cz92 QMSSMQMSSM (3-18)

This induces masses for the first two generations

F 2
mi = cz| d = —; 22N (3.19)

v2

As in the previous model, there will also be a coupling to the messenger fields:

/ d*o c, w V. (3.20)

The qualitative features of such a model are rather similar to that of the simple Polonyi
case. Some details differ, however. In particular since the soft terms are set by the dynamical
scale A which can be exponentially separated from M, (and in fact must be for reasonable

gauge mediated soft masses), the two scales v and M, can now be large.
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3.2 String Theory Implementation

Since with phenomenologically viable charge assignments the U(1) symmetry naturally pos-
sesses mixed anomalies with the SM gauge groups (at least at the level of triangle diagrams
involving chiral fermions, and before including the contribution from messenger fields), it
is tempting to associate it with the “anomalous” symmetries necessarily found in realistic
compactifications of string theories which are rendered consistent by the generalised Green-
Schwarz mechanism. While there are various possible stringy UV completions of our models
we focus on IIB theories as we now explainﬂ

In traditional heterotic string theory a U(1) with anomalies cancelled by the Green-
Schwarz mechanism necessarily obtains a large Fayet-Iliopoulos term & = gQME,l(FGS /1672
where dgg is the mixed U(1)-gravity? anomaly coefficient which must be non-zero (however
see [202]). Then the D-term contribution to the action is given by %({ +2s, 15K, ;)? where
S; are all fields charged under the U(1) (with charge j), and Kj is the derivative of the
Kahler potential with respect to S;. In order that this does not lead to excessively large
SUSY breaking at least one of the fields must gain a VEV, and this VEV is automatically as
large as the mass of the U(1) gauge boson. A theory of this type could in principle be used
to generate retrofitted models of the form discussed in the previous section if the irrelevant
operators appear in the effective field theory by integrating out matter of typical mass Mplﬂ
However for our particular case there are some problems with using this traditional heterotic
construction. In particular, the requirement of universal mixed anomalies (up to Kac-Moody
level factors) too-severely restricts our model-building freedom, while the form of the D-term
with non-zero FI term implies that only fields of either positive or negative charge will gain
VEVs, not both. Hence, we consider a slightly different scenario using an underlying I1B
string theory (such a IIB construction was recently used to implement a Froggatt-Nielsen
mechanism in [174,|175]), which leads to a similar but not identical structure to the models
of the previous section.

In Type IIB string theory, unlike in traditional heterotic theories, non-universal mixed
anomalies can be cancelled by massless twisted closed string modes which shift under an

anomalous transformation. In the process the U(1) gauge boson gains a mass through the

TOur summary of the appearance of such symmetries in string theory follows the discussion in [173] which
contains further details.
81n this case there is the beneficial feature that the ratio ﬁj};i

fermion mass hierarchies as has been noted by many authors.

~ 0.01 is automatically appropriate for the
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Stueckelberg mechanism. An important difference with the heterotic case is that, depending
on the underlying geometry, the Fayet-Illiopoulos term can be zero, allowing in the IIB case
the situation where no fields charged under the U(1) symmetry necessarily gain VEVs. Hence,
at the perturbative level, a global U(1) symmetry can survive in the low-energy theory below
the mass of the vector boson, this symmetry only being explicitly broken by non-perturbative
effects which can naturally be very small [173]. The charges of fields under the global U(1)
are identical to their charges under the gauged U(1). One further advantage of IIB models is
that by utilising intersecting brane stack constructions it is straightforward to build theories
such that only some generations are charged under the anomalous U(1).

With this UV completion, the structure of our models is as follows. At the string scale
M, = Msiring there is an anomalous U(1) gauge symmetry. Through the Stueckelberg
mechanism the associated gauge boson gains a mass my: leaving an (approximate, anomalous)
global symmetry. Integrating out this heavy state leads to Kéahler contact operators with
coefficients determined by the charges of the fields involved and the gauge boson mass.
Often it is assumed that the vector boson mass is given by gM,. However as shown in [203]
this relation can be modified in the case of asymmetric compactifications by ratios of volume
factors, which can be parametrically less than 1. We include these effects though a parameter
A and write my = AgM,.

At a lower energy scale the approximate global symmetry is broken by fields S; and
S_1 gaining common VEVs v with € = 7/- <1 (these VEVs slightly correct the vector
boson mass). As in the previous section, fields in the DSB sector and the visible sector have
U(1) charges such that global symmetry forbids some mass terms and parameters at leading
order, these terms being generated from irrelevant operators of the form Wpg D %ODS and
Weisible D %Ovisible, so suppressing couplings by powers of e.

The resulting soft term structure at the scale of SUSY breaking is similar to the field
theory case. There will be a universal gauge mediated contribution and also masses from
contact terms generated between fields in the SUSY breaking and visible sectors as a result
of integrating out the heavy gauge boson. In the present models myz = gAM,, which is of
slightly different parametric form compared to the field theory implementation, resulting in

a small shift in the relative size of the Kahler contribution. For example, in the ISS model,
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the Kéhler mass contribution to the first two generation sfermions Eq. (3.18]) is

Fy|? "2
m2 = —¢; [P = —¢ () . 3.21

One notable change in the phenomenology is that the scale of mediation is typically high.
As a consequence, there will be large logarithms when the soft masses are run to the weak
scale. In Section we will see that this can make it harder to obtain viable spectra
with large splitting between different generation sfermion masses. Additionally, one might
be legitimately concerned about whether the Kéhler contribution will dominate over other
generic contributions that may be expected to also couple the SUSY-breaking and visible
sectors with suppression by the string scale. If the two sectors are approximately sequestered,
with communication only occurring through the U(1) gauge multiplet and messenger fields,
the only extra contribution will be a small, generation universal, anomaly mediated soft
mass. This is the scenario we study in detail in Section [3.3] by taking the parameter A\ = 1.
However, the extent to which two sectors may be completely sequestered is still unclear (see
for example [204-206]). Alternatively A can be fairly small of order 0.01, slightly lowering
the scale of mediation. This will enhance the Kéhler and gauge mediated contributions

sufficiently that they can dominate over couplings suppressed by the string or Planck scaleﬂ

3.3 MSSM Spectra

Having discussed the main features of our models, in this section we study in some detail
the pattern of soft terms obtained in the MSSM sector. The spectra of soft masses in the
previous sections are valid at the energy scale where SUSY-breaking is mediated to the visible
sector. For the gauge and Kéhler contributions this is the mass of the messenger fields and
the SUSY breaking sector respectively.

To make any phenomenological predictions it is necessary to run the soft masses to the
weak scale. While doing this there will be two dominant and competing effects on the stop
masses [191]: 1) the non-zero gaugino masses will tend to pull the third generation soft
masses squared to larger values, as in gaugino mediated scenarios, and 2) the large first and
second generation masses from Kéahler mediation will push the third generation soft masses

squared towards negative values. In cases of very low scale mediation these effects have a

9In full string constructions it can sometimes be the case that the Kahler contribution is only one of a
number of similar sized universal contributions (at least between the first two generations) [186}/187]. We do
not consider such modifications here.
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reasonably small impact due to the small size of the logarithms, while in models with higher
scale mediation these effects can be significant and limiting of the low-energy spectra that
can be obtained. First we consider the field theory case, with low-scale SUSY breaking, using
the particular example of the Polonyi Model discussed in Section then we examine the

sting motivated case with the ISS model of Section [3.1.2

3.3.1 Polonyi Model

Recall, Fog = €%0%, mmess = €0, and a Kédhler mass contribution myx = €

v. The charge
assignment to MSSM fields is given by Table [3.1], therefore the SM fermion masses dictate

€ ~ 0.1, and hence to obtain a reasonable spectrum of soft terms requires M, ~ 108 GeV and

v~ 107 GeV.
[a Jue e[ L] d°]
generation 1 | 1 1111 H, | Hq
generation 2 | 1 1 (111 ’ 0 ‘ 0 ‘
generation3 | 0 | 0 | O | 0| O

Table 3.1: Charge assignments for low scale breaking

As discussed, the third generation superfields are uncharged and hence obtain Yukawas of
O (1), while mass terms for the first two generations have non-zero net U(1) charge therefore
are generated only once S_; gains a VEV. Due to the GUT-consistent structure of charges,
the lepton mass hierachy is parametrically the same as that of the down-type quarks, although

the two sets of coefficients are not equal. The resulting up- and down-like Yukawas are given

by
01162 61262 C13€ 0/1162 C/1262 6/136
U= cne® coe® coze | > D= cye? choe? chye | o (3.22)
/ / /
€31€  C32€ (33 C31€  C39€  C33

where ¢;; and c;j are coefficients which, as discussed, are not subject to any symmetry

structure. Before inclusion of these coefficients the U(1) charges lead to a mass spectrum of

SM fermions parametrically of the form

Mup ~ <Hu> < 62 62 1 > 5 Mdown ™~ <Hd> ( 62 62 1 ) ~ Miepton » (323)

o8



while the 2-3 block of the CKM matrix is of the correct form
Vokum ~ . (3.24)

As discussed in Section the mixings and mass-hierarchies involving the first generation
are not set by the broken U(1) but depend on the coefficients ¢;; and cj; for i or j € {1,2}
which depend upon independent physics. This physics might be an additional UV flavour
symmetry that is independent of SUSY-breaking dynamics, or it might be the result of a
random anarchic structure. For instance, if the O(1) coefficients ¢;; and c;j take random
values over a finite range, for example a flat distribution in [0, 1], the total 3 x 3 CKM
structure can easily be close to that observedm Additionally, these coefficients and level
repulsion in the eigenvalues of the mass matrices can account for the fairly large splitting
observed between the first two generation fermions. In any case, in our model, there is strong
alignment between the third generation sfermion and fermion mass eigenstates. Typically,
the first two generation fermion mass eigenstates contain at most a component of size € of
the third generation U(1) eigenstate, while the first two generation sfermion masses are equal
to high precision.

In order to study the spectrum of sfermion masses that may occur in such a theory it is
most interesting to fix the gauge mediated contribution to these masses so that the gluino is

around 1.5 TeV close to current limits. This fixes the combination

Mgauge ~ (Z‘?’) 3y ~ 108 GeV . (3.25)

T
Therefore the Kéahler contribution is given by

4
my ~ €~ <W> €Mgauge (3.26)

o3
which depends only on the value of the parameter e. In addition, we choose the number of
pairs of messenger fields n,, = 5. This increases the gauge mediated gluino mass, which is
proportional to n.,, relative to the stop mass which is proportional to ,/n,,, but is not so

large as to lead to a Landau pole for the SM gauge couplings below the GUT scaleH

0The required CP phase of the CKM matrix can arise from the values of the order one coefficients that
appear in the superpotential terms which generate the yukawa couplings.

"1n this model, anomaly cancellation requires additional matter charged under the U(1) and MSSM gauge
groups. We assume these fields have charges such that they do not couple strongly to the SUSY breaking sector,
and are not sufficiently numerous that they lead to a Landau pole. Alternatively, anomaly cancellation with
no extra matter is possible if there are fewer messenger fields present. The only effect of such a modification
is the gluino mass will be lowered towards that of the stop.
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In Fig. [3.1] (top) we plot the soft masses obtained at the scale v/F by allowing € to vary
while keeping the gauge mediated contribution fixed. As € increases the first two generations
obtain increasing masses from the Kéahler operator resulting in a natural SUSY spectrum. As
discussed we need to run the spectrum to the weak scale. The Kéhler contribution to the first
two generation soft masses turns on at a scale VF ~ e2v while gauge mediated contributions
to these and the gaugino and third generation soft masses begins at mmpess ~ €>v. Depending
on the charge assignments, and the particular value of ¢, it is possible that the sbottom or stop
may be driven tachyonic at some point in this energy regime. Such an event is not necessarily
problematic if these states run back to positive mass squared before the weak scale. Provided
mg (mz) > 15Ms (mz) the EW breaking vacuum is sufficiently meta-stable against decays to
a colour breaking vacuum compared to the lifetime of the Universe [207-209]. This relation
is typically satisfied for our modelsB

Below a scale mp 2 the first two generation sfermions are integrated out of the theory
and have no further effect on the third generation running, while the positive contribution
from the gluino persists until the gluino mass is reached. Additionally the gauginos and first
two generation sfermion masses also flow. We solve the RG equations numerically and plot
the mass spectrum at the weak scale in Fig. (bottom). As e increases the Kéhler mass
contribution increases and during running the stop and stau masses are driven smaller, until
at € ~ 0.2 the right-handed stau becomes tachyonic at the weak scale and the spectrum is
not phenomenologically viable.

The key point of our models is that for values of € motivated by the fermion mass hierarchy
the split between the first two generation soft masses and the third is sufficiently large to
realise natural SUSY, but not so large as so lead to tachyonic third generation states. The
NLSP (after the gravitino) is typically a stau, which is fairly light, and can modify cosmology
and certain collier signals as we will discus later. As a representative example of the full
spectra that may typically be obtained, we show the field content for ¢ = 0.10 under the
current assumptions in Fig. [3:2] This is a reasonable value in the middle of the plausible

range without fine tuning to the edge of the allowed region.

12The energy region where such states are tachyonic is fairly small hence there is little danger of reheating
after inflation into a colour breaking vacua, and even in this case it has been suggested that the EW vacua
may be favoured [210].
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Figure 3.1: The spectrum of superparticles before (top) and after (bottom) running to the weak scale
in the Polonyi model. F' and v have been fixed to give a gluino in the region of 1.3 TeV after running,
close to current LHC limits, while M, is varied changing e and therefore the relative importance of
the Kéhler interactions. For e > 0.22 the first two generation sfermions are so heavy that a stau is
driven tachyonic during running and the weak scale spectrum is not phenomenologically viable.
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Figure 3.2: A typical spectrum of superparticles after running to the weak scale in the Polonyi model.
F and v are fixed to give a gluino in the region of 1.3 TeV and as a representative example ¢ = 0.1.
There is a very light gravitino LSP and the right-handed stau is the NLSP.
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3.3.2 ISS Model

It is also interesting to see to what extent we can realise natural SUSY in the ISS model
at a relatively high scale. In this case we take the string motivated Kéahler contribution,
my ~ ML* To simplify the analysis we assume the parameter A = 1, and take the U(1)
charge assignment of Table This has the phenomenological benefit that it gives the
right-handed stau a large mass, preventing it running tachyonic, which would otherwise place

the strongest limit on the allowed values of €. Before inclusion of the ¢;; and ¢j; coefficients

[ar [w] e [ L[]
generation 1 | 1 1 1 1 1 H, | Hq
111 1] [0]o0]

0|1/2]1/2|1

generation 2 | 1

generation 3 | 0

Table 3.2: Charge assignments for high scale breaking

these give a mass pattern
Myp ~ <Hu> ( 62 62 1 ) ; Mdown ™~ <Hd> ( 62 62 € ) ~ Miepton ; (327)

while the third-second generation sub-block of the CKM matrix is again of the form (3.24)).
Reasonable splitting of the third generation leads to 0.007 < e < 0.05. This also gives a
CKM matrix of the correct form to leading order. Since the third generation down sector

masses are suppressed by a factor of €, tan 8 = g‘;; ~ %,6 ~ 1 assuming Yukawa coefficients

in the third generation are O(1). This may be phenomenologically favoured over the alter-
native of large tan g ~ %Z ~ 40 in enhancing the Higgs mass to 125 GeV in an NMSSM like
model (see [90] for a review). As the bottom Yukawas are small, even though the Kéhler mass
contribution will lead to multi-TeV scale bottom squarks these do not lead to fine tuning of
the EW scale.

Again we take there to be five pairs of messenger fields, and as well motivated by string
compactifications, M, = 10'® GeV. In order to obtain a gauge mediated contribution to
soft masses (and in particular the gaugino masses) of order TeV such that these are close to
current limits but not excluded requires A ~ 101°GeV. To obtain Kihler contributions to
the first two generation masses that are also a few TeV for reasonable values of €, we take the

charge, introduced in Section [3.1.2] n = 4. Of course, this is a particular choice which leads

13In this case we are choosing a U(1) charge structure that is not compatible with a traditional 4D GUT.
However it is compatible with an orbifold GUT structure, which can result from an underlying IIB D-brane
model, with split matter multiplets [197}/198]. Thus precision SUSY gauge-coupling unification can be main-
tained.
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Figure 3.3: The spectrum of superparticles before (top) and after (bottom) running to the weak scale
in the string motivated case. A and M, have been fixed to give a gluino in the region of 1TeV after
running, and e is allowed to vary.

to viable natural spectra, however as a discrete value it is plausible and not a fine tuning in
the sense of a continuous parameter. Such a choice also has the benefit of setting the mass
of the messengers and also the coefficient of Q;Q" in the electric ISS superpotential equal
to €3v ~ 108 GeV. Since this is much less than the strong coupling scale of the ISS theory
it is valid to use the Seiberg dual of this theory, and the SUSY breaking vacua obtained is
sufficiently long lived.

Unlike the field theory case, the gauge mediated contribution, mgauge ~ (Z‘—i) Z/\X/Ii’ is

independent of €. Therefore in studying the spectra we simply fix A and M, and allow € to
vary, which changes the Kihler mediated contribution my ~ €*A. Since the running occurs
over a long period it is important to use the full RG equations and our analysis is done using
SOFTSUSY [211]. The spectrum obtained before and after running is shown in Fig. 3.3

For choices of € ~ 0.02 a natural SUSY spectrum with light stops and heavy first two
generations is obtained, however the range of € that generates such a spectrum is smaller

than in the field theory case. There are two reasons for this, firstly, since SUSY is broken at
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a higher scale there is more running, therefore for a given stop mass the first two generations
cannot be as heavy as previously. This effect is unavoidable in any model of natural SUSY
that uses high scales as may be natural in string completions. Secondly, in this scenario
the Kéhler masses have a power law dependence on € while the gauge mediated contribution
has no such dependence, therefore relatively small changes in ¢ change the Kéhler masses
significantly. This may be regarded as a defect of the model, however our purpose is only to
demonstrate that natural SUSY spectra are possible in realistic completions.

As previously discussed, in order to obtain a vanishing cosmological constant, there must
be an R-symmetry breaking constant superpotential term generated by the theory. Depend-
ing on the particular dynamics, the sector that generates the VEV for the S fields may play

such a role.

3.4 Variations and Signatures

3.4.1 Variant Spectra

So far we have not addressed the p/B,, problem that is very commonly found in models of
gauge mediated SUSY breaking [212]. This may be solved using a mechanism completely
separate from the U(1) and generation of a natural SUSY spectrum, or alternatively, with
minor alternations to the charge structure could be solved automatically in our models.
Suppose the down-type Higgs has charge % under the U(1) symmetry. Then suitable choices
of the charges of the lepton and down-type superfields can still lead to viable fermion mass
patterns and natural soft mass spectra (for example one may shift the charge assignments
of all three generations of d° and L fields by —% from their values in Table . As a
consequence both the 1 and B, terms are forbidden at tree level, while the down type Higgs
obtains a significant Kéahler soft mass qud ~ (4TeV)? while m3; ~ (200 GeV)2. If the DSB
and messenger sectors additionally involve fields with charge :t% gaining VEVs or F-terms,
it is possible to generate u and B, and depending on the explicit model, these satisfy the
standard relation B, ~ 167212, However, this pattern of soft masses and parameters with
m%{d large now realises lopsided gauge mediation [213], at least as far as the Higgs sector of
the theory is concerned, and which leads to viable EW symmetry breaking without excessive
fine tuning.

While we have studied charge assignments such that the first two generation sfermions

gain large soft masses, there is an alternative option that can lead to natural SUSY spectra.
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If the top superfields are charged appropriately, it is possible the stops gain a negative mass
contribution from the Kéahler couplings pushing them to a lower mass than the first two
generation sfermion masses. Such charge assignments can also generate the fermion mass
hierarchy if the Higgs multiplets are charged under the U(1). In fact, even if the theory is
such that the stops have negative mass squared at the mediation scale it is possible, after
running, to obtain viable spectrum with non-tachyonic stops at the weak scale if the gluino
is sufficiently heavy. This was first raised as a possibility in [214] where it was suggested as a
mechanism for obtaining a spectrum with low fine tuning. In such a model the stop may be
expected to be tachyonic for a relatively large range of energies. Hence, even if the lifetime of
the EW breaking and colour-preserving vacuum is sufficiently long, there is a concern about
whether the Universe is likely to find itself in this metastable state after reheating. While we
have not investigated this scenario in detail, preliminary investigation demonstrates that it is
possible to obtain reasonably natural spectra consistent with LHC constraints. However, as
in the models we have focussed on, very light stops, possibly down to about 400GeV, require
some fine tuning of the parameters of the theory.

As an additional possibility, if we reject the requirement of naturalness, it is also easily
possible to generate a split [215}216] or mini-split spectrum within these models [217]. This
could occur if all the quark superfields have the same sign charge under the U(1), hence
all sfermions gain a large positive mass contribution from Ké&hler interactions. In order to
obtain a viable fermion mass spectrum this would require the Higgs fields to have the opposite
charge. In this case since the SUSY flavour problem is solved by decoupling, the U(1) could

also generate the texture in the first two generation fermion masses.

3.4.2 Collider Signals, Flavour and Higgs

The collider signals of the natural SUSY spectra typical of our models have been studied
extensively. Depending on the charge assignments, a bino or stau is generically the NLSP,
which for very low gravitino mass may decay in a typical detector distance while for larger
gravitino mass will escape the detector. Both cases lead to clear signals that can be studied
at the LHC. However, the relatively heavy gluino masses (mz > 1.5TeV) and especially
the almost decoupled first two generations, reduce production cross sections dramatically,
and spectra are typically well within current LHC limits such that a light stop is not ruled

out. As we have seen, a very light stop is hard to achieve, a more realistic model has been
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seen in Fig. [3.2l Since in this case the stop is not especially light (though still far below
current bounds for squark masses in generation universal models) such a spectrum will be
challenging to discover at the LHC until a large integrated luminosity has been accumulated.
Additionally, if R-parity is broken, spectra with a lighter gluino may be compatible with
LHC constraints, allowing lighter stops in our models [162]. More detailed analysis of the
expected signals and phenomenology can be found in for example [166,[218-224].

A common concern in SUSY theories is suppressing flavour changing effects to safe levels.
In our model these effects can be well within current limits. The ordinary gauge mediated
contribution is automatically flavour blind as normal. Additionally the Kéhler contribution
to the first two generation sfermions is universal. Therefore flavour changing effects occur
only due to the small mixing in the CKM matrix between the first two generations and
the third generation. More precisely, the first two fermion mass eigenstates include only a
component of the third generation U(1) eigenstate of size e. In order to produce a realistic
CKM matrix € must satisfy € ~ Vg ~ 0.04. Hence, the sfermion mass squared matrix
differs from diagonal in the first two generation sector at most by by elements like V'C%m%
There is also additional suppression of flavour changing effects due to the relatively large
masses of the first two generation sfermions. Utilising the expressions in [81] we find that
CP-conserving flavour changing effects are typically well within experimental limits. CP-
violating processes generally give stronger constraints; if the first two generation sfermions
are near their maximum allowed mass and e fairly small these can be within current limits
for O (1) phases in the soft terms. Alternatively, we can assume the UV theory is such that
these phases are small or zeroE

While it may be hoped that light stops allow a theory without excessive fine tuning
(we discuss this further in Section , it is not immediately obvious how to combine such a
spectrum with a lightest Higgs mass of 126 GeV as recently discovered by ATLAS and CMS,
since as discussed the tree level Higgs mass is bounded by mz at tree level. We discuss the

resolution to such a problem in an NMSSM like model in the next section.

3.4.3 Axions and Cosmology

In the string motivated case an approximate global symmetry is spontaneously broken and

there will be an axion present in the low energy theory, which will, because of the U (1) x

The counting of physical phases also depends on the mechanism that generates p and By, hence is model
dependent.
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GIQ\/ISSM anomaly, have couplings to the MSSM gauge multiplets. Therefore in the case of
relatively high scale mediation this state could even play the role of the QCD axion. This is
by no means necessary, however. For example, there may be couplings between the axion and
any hidden gauge groups, for instance in the DSB sector, depending on the particular anomaly
coefficients of the theory. Such anomalous couplings to a hidden gauge sector typically imply
that the axion-like states gains a large mass of order %, and therefore cannot be the
QCD axion. On the other hand this allows current astrophysical and direct search bounds
to be easily evaded even if f, ~ v < 10° GeV.

Further, depending on the mass and decay constant of the axion, as well as the initial mis-
alignment angle and thermal history of the Universe, this can provide a significant component
of the DM. In fact it may be highly beneficial to couple the QCD axion to the DSB sector:
typically overproduction of the axino and saxion, combined with gravitino limits, strongly
constrains the reheat temperature over a large parameter space [225]. However if there is a
significant coupling between the axion multiplet and the SUSY-breaking sector the axino and
saxion can gain large masses greatly relaxing these limits [226]. The presence of a light axion
degree of freedom coupling both to the DSB and visible sectors is similar to a scenario we
recently studied where the axion was the primary mediator of SUSY breaking [227], although
in the present models the axion multiplet does not typically gain a significant F-term.

Apart form the possibility of such an axion, the cosmology of the models are fairly similar
to that of normal gauge mediated models. One exception is when the U(1) charge assignments
are such that there is a light stau in the theory, in which case it is typically the NSLP after
running (see for example Fig. . This may be beneficial for cosmology; since a stau NLSP
leads to decay hadronically it can decay into the gravitino later than other NLSP candidates
without disrupting big bang nucleosynthesis. As a result a heavier gravitino is compatible
with observations, permitting a higher reheat temperature without gravitino overproduction
aiding inflation model building. More precisely, it has been suggested that F' in the region
VF ~ 1085710 GeV and thus mgg ~ 0.1 — 100 GeV (which is compatible with a GUT scale

value of M,) may permit reheat temperatures up to roughly 10° GeV [228].
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Chapter 4: Running Through Strong Coupling in
ASUSY

This chapter is based on [229], work done in collaboration with John March-Russell and

James Unwin .

As discussed in Section [2| the Higgs recently discovered by ATLAS and CMS [230,231]
with a mass around 125 GeV is potentially problematic for models of SUSY. Common ap-
proaches to raising the mass of the lightest Higgs state are through large loop corrections,
new contributions to the quartic Higgs coupling, or via level repulsion due to mixing between
the Higgs and a SM singlet state.

Probably the most studied possibility involves stop squarks significantly heavier than
the top quark leading to large contributions from the stop loops. In models with universal
sfermion masses, collider limits typically force the stop masses to be sufficiently heavy that
the requirement that my ~ 125 GeV can be achieved in the MSSM provided tan g is small.
However, in models of natural SUSY, the weak scale stop masses are often significantly
lighter than the universal limits in an attempt to reduce fine tuning. Specifically, it is
difficult to obtain my =~ 125 GeV with stop masses (m; < 1.5 TeV) in the MSSM unless
there is near-maximal mixing between ¢z, and tp [111,232,[233], requiring very large A-terms.
However, these are difficult to generate in models of gauge mediation, which are attractive
for minimising fine tuning since they can have a low mediation scale.

In this section we study the well-motivated approach of introducing a new source for the
quartic Higgs interaction via the superpotential term ASH,Hg, which involves a new SM
singlet state S, as found the Next-to-Minimal Supersymmetric Standard Model (NMSSM).
Including this as well as leading loop corrections leads to contributions to the mass of the
lightest SM-like Higgs state of the form Eq. EI

For sizeable A 2 0.6 the new NMSSM contribution provides the dominant correction to
the Higgs mass and one can obtain m; =~ 125 GeV whilst maintaining natural stop masses
and small stop mixing. Moreover, the NMSSM is far from an ad hoc solution, since it also

provides a solution to the p-problem of the MSSM [56]. It is notable that if the coupling

1For simplicity, and motivated by minimal constructions, we shall assume that t1 and %, are approximately
degenerate; our conclusions are not substantially altered upon relaxation of this assumption. Throughout we
shall consider only models in which A-term contributions are negligible.
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A 2 0.7 at the weak scale then it will run non-perturbative before the unification scale. It is
then natural to be concerned that such large values may result in undesirable side-effects on
precision gauge coupling unification. The aim of this chapter is to quantify the impact on
unification of A running through a period of strong coupling.

Experience with the running of the QED coupling through the QCD strong coupling
regime is indicative that non-perturbative dynamics in some sector of a theory is not necessar-
ily disastrous for the evolution of an independent gauge coupling, despite naive expectations
based upon cursory examination of the RGEs. In fact, the corrections to the QED coupling
apy generated during the region in which QCD is strongly coupled can be measured exper-
imentally, as well as estimated from semi-rigorous theoretical calculations, and is of order a
few percent [234]. Furthermore, arguments based on holomorphy [72}235-237] lead us to be-
lieve that the strong coupling in ASUSY should not damage gauge unification. In this section
we demonstrate that provided the coupling A remains non-perturbative for roughly less than
an order of magnitude in energy then this in fact can likely increase the precision of gauge
coupling unification, correcting the present 3% discrepancy in MSSM gauge unification [1]
due to the strong coupling constant running too fastE| While it is entirely possible that this
present deviation between the predicted as(myz) and the measured value may be resolved by
threshold corrections near the weak or GUT scale [245,246], there are well motivated cases
where these are naturally small [98,243]. We thus find it intriguing that ASUSY models may
not disturb, but even improve, unification.

This section is ordered as follows: in Section [£.I] we study how the Higgs mass depends
on the parameters tan 3, my and \g (the weak scale value of \) and determine the values of
these which result in a lightest SM-like Higgs boson at mj ~ 125 GeV. Further we identify
the parameter regions which result in A running non-perturbative before the unification scale
and discuss how the scale of strong coupling depends on these parameters. In Sections
and we demonstrate that running through a region in which A becomes non-perturbative
can improve the precision of unification. We also consider a possible link with the observed

hierarchy in up-type to down-type quark masses, especially, m;/my,.

2 Alternative suggestions to improved the precision of gauge coupling unification include [98]/238/{244].
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Figure 4.1: Left. The variation of the SM-like Higgs mass as a function of tan 3 for m; = 300 GeV
(solid curves) and my = 500 GeV (dashed curves) and different values of the starting (weak scale)
coupling A\ as indicated. The shaded region corresponds to the possible Higgs signal at 124-126 GeV.
Right. The relationship between tan 8 and \g which gives m; = 125 GeV for different stop masses.
For m7 < 500 GeV this requires Ag = 0.65 and A may run non-perturbative before Mgyr.

4.1 The 125 GeV Higgs in the NMSSM and ASUSY

To solve the u-problem of the MSSM the superpotential term pH,Hy is replacedﬂ in the
NMSSM by a trilinear interaction ASH, Hy involving a dynamical SM singlet chiral super-
field, S, and the p-term is reintroduced upon S acquiring a VEV. Possible mechanisms for
generating a VEV for S in the context of ASUSY are discussed in [247]. The introduction of

S leads to possible new terms in the superpotential

W = Wussm + ASH Hy + €S 4 1/ S% 4 k53 . (4.1)

Note that some additional symmetries must be imposed in order to remove the dangerous
tadpole term £S (unless the field S is composite with suitably low compositeness scale) and in
simplified scenarios it is often assumed that the cubic term xS? is also forbidden. Note that
if the trilinear term is allowed in the superpotential the RGEs imply that x quickly evolves
to small values at lower energies [247] and thus we shall neglect the cubic term henceforthﬁ

The leading corrections to the tree-level Higgs mass come from the F-term associated with
ASH, H; and the stop loops, as given in Eq. . Thus the physical mass of the lightest
SM-like Higgs scalar depends on tan 3, the couplings A and «, and the stop mass my. To give
an idea of the dependence we use Eq. ) to calculate the mass of the lightest SM-like
Higgs, following [248], as a function of tan  for differing values of m; and Ao, defined as the
value of the coupling \ at the weak scale[)| this is shown in Fig. (left) (see also [250]).

3In ASUSY an explicit jiH,Hy term is often added, which is taken to be a small PQ-breaking term.
4Sizeable k at the weak scale would result in A running faster, becoming non-perturbative at a lower scale.
5We have neglected two-loop contributions which generally change the Higgs mass by a few GeV. The results
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Observe that m;, = 125 GeV cannot be obtained for A\g = 0.6 in the case that m; < 500 GeV.

At low tan 3 increasing Ao in the NMSSM allows for smaller stop masses [248,251]. In
ASUSY models, where A\g ~ 2 is very large it may also reduce the EW tuning of the theory by
reducing the sensitivity of the Higgs potential to corrections to the Higgs soft masses [248].
In this case mixing between the singlet and the Higgs is actually used to lower myp, due
to level repulsion [248}252], allowing a larger value of Ay ~ 2 whilst obtaining the desired
Higgs mass (experimental constraints on models with large Ao have been discussed in [253]).
Alternatively, if the Higgs-singlet mixing is small then m; ~ 125 GeV can be obtained with
low stop masses and without stop mixing for somewhat smaller values of A\g. However,
with light stops and small mixing one requires A9 = 0.7 and the coupling will generally run
non-perturbative before the GUT scale[f]

In Fig. (left) the curves with A\g = 0.7,0.8 have two values of tan 8 which satisfy
my, = 125 GeV, the lower solution, however, requires tan /3 < 1 and such low values are
theoretically disfavoured as they result in the top Yukawa running non-perturbative before
the unification scale - in the NMSSM tan 8 2 1.5 is required in order to preserve perturbative
SM couplings up to the unification scale (by adding additional matter in 5+ 5 pairs one can
allow tan g 2 1 |247, 254|)E| Consequently, there is a definite relation between )¢ and tan 3
depending only on mg which we display in Fig. (4.1 (right). We observe that a Higgs in the
signal region can be obtained for a range of parameters, with, in many cases, A becoming
strongly coupled before the unification scale.

In Fig. we use the one-loop RGE evolution of A (see e.g. [90]) to study the parameter
dependence of the scale p at which A\ becomes strongly coupled, which we define as A(u) ~
Var (the results are insensitive to the exact definition). Judicious parameter choices, with
the inclusion of some mixing, can result in perturbativity of A up to the unification scale
for models with mz < 500 GeV. With small mixing, it can be seen from Fig. that for

my S 500 GeV (with our previously stated assumptions), the coupling A always runs non-

obtained agree well with calculations performed using the numerical code NMHDECAY [249|, which include further
radiative corrections beyond Eq. (2.40).

SFollowing Hall et al. [248|, we conservatively neglect singlet-Higgs mixing which would reduce the mass
of the lightest SM-like Higgs. As we are concerned here with the scenario in which the coupling X is large and
the stops are light, higher-order corrections to the Higgs mass involving stop loops are small. We consider
only models in which A-term contributions are negligible, corrections to the Higgs mass due to moderate stop
mixing dx compared to the correction ¢y due to ASH,H, is %‘ ~ % (taking X: ~ my). In models
of interest to us here A 2 0.7 and tan 8 is small, giving dx /dx < 0.2 and for larger values of A (~ 2) the dx
correction is further suppressed.

" Although models in which non-SM-singlet states such as the Higgs doublets or s are composite states
are of interest (see e.g. [255], in the non-SUSY case), in this work we consider the simplest case in which only
SM-singlet states are composite and have large interactions at some scale.
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Figure 4.2: Left. The strong coupling scale for A against Ay for various stop masses. Note (with our
assumptions) for my> < 500 GeV the coupling A runs non-perturbative before MguyT. We fix tan 8
such that m, = 125 GeV and tan 8 > 1.5. Right. Contour plot showing the dependence on tan 8
and mz-of the strong coupling scale for A, displaying contours for scales larger than 10% GeV only. We
fix Ao, the weak scale value of A, such that mj; = 125 GeV.

perturbative before the unification scale. Depending on the parameter choices this can occur
anywhere from 10° GeV to just below the unification scale. As noted previously, large \g
may reduce the fine-tuning, hence ASUSY provides a well-motivated scenario in which we
expect either new physics to appear before the non-perturbative scale, or the theory to run

through a strong coupling regime.

4.2 Running Through Strong Coupling

If A runs to strong coupling then there are two conceivable scenarios. The theory may remain
in a quasi-conformal strong coupling regime all the way to the GUT scale (which need only
be an order of magnitude higher in energy scale in some cases). Alternatively, after a brief
period of strong coupling the degrees of freedom may recombine such that the theory reverts
back to a weakly-coupled system with the IR fields composites of the UV degrees of freedom.
Examples of the first case occur in Randall-Sundrum-like models where the IR brane scale
is the strong coupling scale, while explicit realisations of the second scenario can arise, for
example, in [256] and the Fat Higgs models [237,257-261]. In both cases the period of
strong coupling will modify gauge coupling unification. As we shall see, however, it will not
necessarily destroy successful unification and in some cases can enhance the precision. From
the perspective of unification we are most interested in the case where the SM gauge coupling
B-function coefficients below and above the strong coupling regime are such as that the ratios

of differences Zi:lg; are unaltered, thus maintaining the success of SUSY unification at the

leading one-loop logarithmic level. An example of this case occurs when the singlet field S is
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composite but the Higgs fields are fundamental; such a model was constructed in [237]. We
will argue, self-consistently, that even though A becomes non-perturbative and S is replaced
by some more elementary degrees of freedom, SM gauge couplings remain perturbatively
small throughout the strong coupling region and the effect of this regime is of the form of a
threshold correction whose size can be estimated with not unreasonable assumptions.

To quantify the effect of the strong coupling period on gauge unification, consider a
theory where A becomes strongly coupled at a scale p_ and remains so until some higher
scale puy at which the theory UV completes to a more fundamental weakly-coupled theory.
The scenario in which the theory remains strongly coupled up to the GUT scale is simply a
special case for which p4 is identified with MguT. Recalling that the holomorphic Wilsonian
gauge kinetic function is renormalised only at one loop, the strongly-coupled sector modifies
the MSSM (-functions solely through the anomalous rescaling of matter fields needed to
canonically normalise the Kéhler potential. The effect on the running is encapsulated in the
NSVZ S-function for the gauge-coupling evolution in a supersymmetric Yang-Mills-matter

theory [72,235]:

dga 93
=% _ Jay 4.2
ﬁga dt 167T2 ( )

with t = In (Q/MguTt) and

_302(Ga) — > rTu(R) [1 — g

1 - &.0y(G,)

be = , (4.3)

where the index R labels all matter representations, T, (R) is the quadratic index of R, C2(G,)
is the quadratic Casimir of the group G, (normalised so that C2(SU(N)) = N and T5(O) =
%), and g are the matter field anomalous dimensions. The use of the supersymmetric -
function is justified as the non-perturbative scales we consider are much larger than the scale
of soft supersymmetry breaking of order TeV. In Eq. gq is the canonically normalised
‘physical” gauge coupling of the one particle irreducible (1PI) effective action, and not the

holomorphic coupling, a change which leads to the non-trivial denominator (see [236] for

g7§2 C3(Gy) is small as the SM gauge couplings

details). In the cases of interest the factor g

ga Will remain perturbative, hence the denominator may be approximated by 1 if we work
to one-loop order in SM gauge couplings in the mixed gauge coupling-yr terms (but non-
perturbative in A).

Outside of the strong coupling region the anomalous dimensions, vg, are loop suppressed
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and small for all fields, and the one-loop S-functions are those of the MSSM

bz(zO) == (302(Ga) - ZTa(R)> ) (4‘4)
R
while in the region of strong coupling b, picks up a new contribution due to non-SM-singlet
fields with large anomalous dimensions

AV ~ — N T (R)yg . (4.5)
R

In the NMSSM the only fields with SM gauge charges that are coupled directly to the
strongly interacting sector are H, and Hg, and therefore these fields alone pick-up significant
anomalous dimensions (of order one) at the point that the coupling A becomes large. However,
the large anomalous dimensions for the Higgs fields will feed into the Yukawa interactions
and, as a result, the top Yukawa may subsequently also develop a large anomalous dimension
depending on the size of the strong coupling region and the magnitude of vg,; we shall
discuss this in detail shortly.

We make the reasonable assumption that during the period of strong coupling, pu_ < u <
i+, the anomalous dimensions of H,, and Hy are not > 1 (this assumption will be quantified

shortly). Hence, calling g, the ‘unperturbed’ RGE gauge coupling trajectory, i.e. neglecting

corrections due to Abgsc), the RGEs for the gauge couplings can be approximated as
9a_ 0 4 Ap® 4 ASO)
/8911 — W(ba + Aba + Aba ) 3 (46)

where g, = gC(LO) + Ag, is the modified coupling trajectory and the effects of MSSM two-loop

diagrams, corrections due to Yukawa interactions and scheme conversion effects are included
as an additional perturbation Ab((lo) (which from numerical studies is known to be small in
practice, and which we later include). Writing the formal solution to Eq. as an integral
from the IR weak scale to the UV GUT scale we get

ga(mZ) dga tir badt
Ja e 4.7
/g i / < (4.7)

where g is the (normalised) unified coupling at the GUT scale and tig = mz/Mgur. The

o

two-loop MSSM and scheme conversion corrections, Abg”’, are small and therefore induce

small finite corrections Ago) to the final value of the gauge couplings at the UV scale. The
(0)

corrections Ay are independent of vg to leading order, and thus can be well-approximated

by constant numerical shifts derived from numerical solution of the usual two-loop MSSM
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RGEs. As the behaviour of b, is different in the region of strong coupling, the integration
should be partitioned thus

N

tr p,dt In b(o)dt ln( - ) (b((zO) —i—Aba)dt 1n( ) b(o)dt 1
/0 o /0 (MGUT) ozt /IH(MZZZB ezt /m(A;ZTT) ozt AEIO)
(4.8)

To parameterise the effects of the strong coupling, we approximate vz by a constant over
the entire region p_ < p < p4 and their usual perturbative value everywhere else. This, of
course, is not meant to be a realistic description of the behaviour of yg in the strong coupling
regime. Nevertheless, in a self consistent perturbative expansion in the SM gauge couplings,
the leading effect of the large anomalous dimensions is expressible purely as an integral of
> rTa(R)yr over the strong coupling regime, the sign and size of which we can parameterise

in terms of a constant over u_ < p < p4. Specifically, from Eq. (4.7) we then obtain

167> 167>
92(722) = g;r + [La+ 25+ 20 (4.9)
2
Lo =0 1n Méur , (4.10)
a mQZ

and we have used Eq. (4.5)) in defining

ASC = ST, (R)yrIn <Z;> . (4.11)

R

Only the Higgs sector is directly sensitive to the coupling A, thus we expect only A 75 0
and A(SC) = 0, up to small corrections. The sign of the corrections A$§ 3 s important to us.

In the perturbative A regime the Higgs anomalous dimensions are given at one-loop by

2X% 4+ 6h? — g7 — 393
2 t 1 2) >
32m ( ) (4.12)

(2)\2 +6h2+ 2k — g2 — 3g§) :

Y(Hq) = 32;2
where h;, for ¢ = t,b,7, are the SM Yukawa couplings. Then from definition Eq.
and since Ty o(H.,, Hy) > 0, both AYC(H,, Hy) < 0 and A5¢(H,, Hy) < 0. Outside of the
perturbative regime we cannot make a rigorous statement as the usual unitarity constraint on
the wavefunction renormalisation coefficient, 0 < Z < 1, implies only that (the A-dependent
pieces of) v(Hy, Hy) > 0 in perturbation theory. Nevertheless, a possibility, in the cases of
most interest to us, where the theory doesn’t UV complete to a quasi-superconformal model,

is that AJ¢ = A5® < 0 remains true. If the theory remains strongly coupled for roughly

an order of magnitude, the typical size of the deviation due to strong coupling is AS¢ ~ —5
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from Eq. , which is parametrically smaller than the standard size RGE-resummed
loop corrections Lo ~ 66 and L =~ 198. This allows us to perform expansions in the small
quantities A&S@/ L, to solve for the modified gauge coupling RG trajectories.

The Higgs anomalous dimensions vy, and g, feed directly into the RGE evolution of

the top and bottom Yukawas, respectively, which in the strongly coupled region, to leading

order, evolve according to

ah,
dt

dh
~ ~vg,ht, and ditb ~ yg,hy . (4.13)

So far our results have only depended upon the sum of the Higgs anomalous dimensions
(Ve + vm,), since T,(H,) = To(Hg). Whilst an extrapolation of Eq. (4.12)), which gives
the perturbative forms of vy, and vg,, would suggest that vg, ~ g, for large A, in the
non-perturbative regime these expressions are no longer reliable and this need not necessarily
be the case. From a top-down perspective it is natural that no two operators of the strongly
interacting theory not appearing in a single irreducible multiplet of the symmetry group of
the UV theory should have the same operator dimension, thus implying that vy, # vm, in
general. In fact any dynamical explanation of the MSSM flavour structure must violate a
naive extrapolation of the perturbative expression so that the anomalous dimension of the
bottom quark mass term (and first two generation fermion mass terms) is large while that
of the top remains small, for example as discussed in [262].

If h; is not to become non-perturbatively large itself (likely implying that us and/or Q3

are also composite states), we require that vg, < vm,, with yg, bounded above by

0.5
In (4+) /In(10) -

VH, S (4.14)

The difference (yy, — vH,) allows an interesting possibility, providing an explanation for the
hierarchy between up-like and down-like quark masses which does not rely on large tan 5, as
is usually assumed, but instead is due to the greater running of h; compared to he, starting
from a common value hy ~ hy ~ O(1) at the GUT scale. Specifically, if

(ver, — YmH,)In (M> ~4, (4.15)

Mt

then the observed small ratio my/m; is obtained without resort to tan 8 > 1. In fact if the
Higgs contribution due to ASH, Hy is to raise the Higgs mass to 125 GeV, then tan 8 < 10 is

required, as illustrated in Fig. so an independent explanation of the top to bottom mass
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hierarchy is necessary.
Alternatively, if vy, 2 0.5, then the top will also generally develop a sizeable anomalous
dimension shortly after the period of strong coupling begins. This provides an additional

contribution to ASC:

SC _ /‘2 _ _ ﬁ
AXC = > Tu(R)yr|In O(ps — o) | D Tul =] . (4.16)
R=H, ,Hy “— R=t,Q H

where p; is the scale at which the top Yukawa becomes non-perturbative. Note that in the
case that vy, ~ vm, we expect that the top Yukawa runs non-perturbative shortly after A,
and therefore p; ~ p— . Importantly, since T,(t,Q) > 0, and ~g, and 7, inherit the same
sign as v, (at least if the leading perturbative results for the sign of 75, and ~¢g, hold),
these corrections have the same sign as those due to vp, ,, and as we shall see shortly, this

only results in a slight deflection in the RGE trajectories of the gauge couplings.

4.3 Effects of Strong Coupling on SM Gauge Couplings at m

Taking the measured low-energy gauge parameters aem’M—S , my and sin® 6 as inputs

wlyig

allows a prediction for ag(mz ]MS From Eq. (4.9) these quantities can be expressed as

. 3 0 5 0 Oem MGUT S
sin” O = ¢ {1 - (b§ ) _ gbg )> S (mz) + AT (4.17)
3 8 a M
. B (0 0 8,0)) Qem GUT a
a, (myz) = p— [1 (bl + b, 3b3 ) 5 In (mZ ) + A%, (4.18)

where A®» and A% are corrections to the one-loop form due to two-loop SM corrections,
Yukawa interactions, scheme dependent effects and, now, also the effects of running through
a regime of strong coupling. To study the effect of the period of strong coupling on the SM
gauge couplings we write A, = ASLO) + ASC where ASJ) are the standard MSSM values which
are known (see e.g. [263,264]) to be (Ago), Ago), Ago)) ~ (11.6, 13.0, 7.0) and ASC is the
additional correction due to running through a period of strong coupling. The form of the

corrections is given by

aem 1 5
ASw — _ Al —2A
A <1+ ){1 3 2}’

(4.19)
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Figure 4.3: The plot shows the effect of ASC on the predicted values of as(m ) and sin? 6y for a range
of unification scales MguT. The start point of each curve indicates the MSSM value (i.e. AS¢ = 0) and
the arrows indicate the trajectories for increasing values of the quantity t = (yg, + v, ) In(py/u-),
showing 0 <t < 6. The default preferred scenario is shown by the solid lines which assume negligible
anomalous dimensions for the top states, a self-consistent assumption if g, is not too large (< 1).
In the case of large yp, the top Yukawa coupling runs to non-perturbative values leading to large
anomalous dimensions for the 3rd-generation states Q3 and ws. Assuming vy, =~ 79, # 0, the
trajectory will be deflected depending on the scale at which h; becomes non-perturbative, as shown
schematically by the heavy dashed lines as this scale is varied over the allowed range. The black dotted
lines show the preferred region as indicated by current experimental measurements [1] (including

errors): sin? 6, ’1\TS = 0.2313 £ 0.001 and as(mz) = 0.1184 £ 0.007.

Expanding the A, and using the numerical values for the MSSM corrections in order to assess

the impact of the corrections due to strong coupling gives

sw ~, Yem SC 9 ASC
A 5A5° - 3A5¢ + 30.2],

o o, L sC sc sC
A _?Q—W[SAg —3A7¢ - 3A5° —17.8].

(4.20)

The low-energy gauge parameters are well measured and there is a reasonable level of
agreement with the predictions of gauge coupling unification assuming the MSSM spectrum.
However, as stated previously there is a ~ 3% deviation between the predictions for ag(myz)
from MSSM unification and the measured values [1] of sin? 9w|M—S = 0.2313 £ 0.001 and
as(myz) = 0.1184 £+ 0.007. In Fig. we plot the low-energy observables as a function of
Mgut and the quantity (ymg, + vm,)In(p+/p—). The new corrections entering due to the
region of strong coupling have the right sign if, as expected, AEC < 0, and possibly even the
correct magnitude, to correct for the discrepancy in MSSM unification.

First we shall consider the scenario in which the anomalous dimension of the top is
negligible, as is the case if the anomalous dimension for 7, is small and it is primarily vz,

which is responsible for deviations in the evolution of the gauge couplings. In this situation
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it is straightforward to determine the parameter values of a strong coupling regime that gives

precision unification; using Eq. (4.19) and Eq. (4.17)) yields

em 1 M
sin? fyy ~ 5 4 & [ [545¢ - 3¢ +30.2] — (36 — 568 ) In <GUT) (4.21)

8 16w [2 myg

Recall, in the (N)MSSM the one-loop [-function coefficients are bgo) = 11, bgo) = 1 and

béo) = —3 and that aem = 1/127.9. Substituting sin? Oy ~ 0.2313 leads to

MGUT) 5 SC 3 SC
In{ —/—— ) ~33.53+ —A5~ — —AY" . 4.22
. ( My TE602 T pen! (4.22)

Similarly, from Eq. (4.20) and Eq. (4.18]) we obtain

3 11 M,
o (mz) = o+ [2 [8BASC — 3A5C — 3A5C —17.8] — (3b§0’ + 368 — gbg°>) In (GUTH :
em

and by comparison with Eq. (4.22)) we have

3
7

3

ASC o
2 28

1
as(myz) = 0.129 + 5.3 x 1072 x [ ASC — 4A§C] : (4.23)

Thus in order to obtain the observed value as(myz) ~ 0.118 it is required that
ASC ~ 8.3 —0.43A5C +1.71A3¢ . (4.24)

In the case that only the Higgs acquire large anomalous dimensions, we have AJC = AS¢

and Agc = 0 and hence the GUT scale can be expressed as a function of a single argument

ASC
Mgyt ~ myzexp (33.5 — 218> . (4.25)

The observed value of as(mz) ~ 0.118, given in Eq. (£.24)), is obtained for AJ® = ASC =
—6.5, which corresponds to a unification scale of Mgyt ~ 2.6 x 10'6 GeV. Note that the unifi-
cation scale is slightly raised compared to the standard MSSM prediction, slightly lengthening
the predicted proton lifetime arising from dimension six X and Y gauge boson exchange (see
e.g. [265-267]), as 7, x M% /aZyr (in addition, 1/aguT increases slightly in our scenario
from ~ 23.6 to ~ 23.8 for Mgyt = 2.6 x 106, further increasing the proton lifetime, though

this is a subdominant effect). Furthermore, since T (H“vd)’U(l) =1 we may write

AT ~ =2, +3m,) I () (4.26)

For example, in the case that uy/u_ =~ 10 to obtain AJ® = —6.5 we require an anomalous

dimension of (yg, +vm,) ~ 1.4, in accord with our expectation for the effective magnitude
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of the anomalous dimensions during a regime of strong coupling. If pui/pu_ ~ 2 then the
required anomalous dimension increases to (ym, + vm,) ~ 4.6, still within reasonable values.

It is likely, however, that if yg, log (Z—f) 2 0.5 then non-perturbative effects due to the top
also affect the evolution of the gauge couplings. The case where these effects turn on quickly
is shown as dashed curves in Fig. However, for an appropriate choice of Mgy it is clear
that precision unification can be achieved regardless of how quickly the non-perturbative
effects due to the top enter, provided the period of strong coupling is not too long. Of course
it would be false to claim that a period of strong coupling fixes the discrepancy between the
MSSM two-loop prediction of ag(myz) ~ 0.129 and the measured value, rather, our point is

that an epoch of strong coupling (with the theory UV completing in such a way that Zg:gi

remains unchanged) is not disastrous for precision unification and may even be advantageous.

Another interesting scenario which realises precision unification via running through
strong coupling is the case where the strong coupling region immediately precedes the GUT
scale and w4 is identified with this unification scale. In this scenario one need not be con-
cerned if the top Yukawa runs non-perturbative. Such strong coupling unification has been
previously argued to have advantages for stabilising the string dilaton and may also have in-
teresting consequences for the SUSY spectrum [268]. Note that, in Section we identified
the parameter regions in which this situation is realised, for example, from inspection of the
right panel of Fig. we observe that for 500 GeV stops and tan 8 ~ 3, then the strong
coupling window starts at p_ ~ 10 GeV, only an order of magnitude below the GUT scale.

Finally, since the motivation for ASUSY is predicated on the 125 GeV Higgs signal, it
is worth investigating if other aspects of Higgs phenomenology, particularly the production
cross-section and branching ratios, favour the ASUSY scenario. Currently, the branching
ratios seem roughly SM-like, however there is still significant room for deviations to be
observed in the future [269-272]. As ASUSY is a leading mechanism for raising the Higgs
mass in models with light stops, and strong coupling need not adversely affect precision gauge
coupling unification, new anomalies arising in the data certainly warrant dedicated studies

in the context of ASUSY.
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Chapter 5: Fine Tuning in Models of Natural SUSY

This chapter is based on [275).

While natural SUSY spectra provide hope for an EW sector without significant fine
tuning [162,/166,218-220,1222, 274-278|, as was quickly realised after their initial proposal
(and seen in chapter |3)) it is difficult to preserve such a spectrum during the RG flow to the
EW scale [177,191]. On one hand, the heavy first two generation sfermions tend to drive the
stops tachyonic, while on the other, a gluino above the current experimental limit will tend
to pull the stops to high masses.

Quantifying the fine tuning of a model is a useful tool to study the viability of particular
low-energy spectra [279]. This has been applied in a large number of studies of supersym-
metric models, for example to strongly constrain spectra with universal sfermion masses
[280-284], and has also been studied in the context of natural spectra [149,|151}285-H287].
In this section, we study the tuning associated with natural SUSY spectra in detail. First,
expressions for the fine tuning required to obtain stops significantly lighter than gluinos and
the first two generation sfermions are derived. We then extend previous approximate results
for the fine tuning of the EW scale introduced due to heavy gluinos and sfermions.

It is found that if there is a Majorana gluino with soft mass above 1.5 TeV there is no
fine tuning benefit to decreasing the stop masses below 1.5 TeV, if mediation is from close
to the GUT scale, due to the tuning from the gluino dominating. However, while there is
no benefit to reducing the stop mass, provided the stop is not too light (= 500 GeV) doing
so does not make the tuning of the theory worse and is not actively disfavoured. Similarly,
for low-scale mediation (from 10°GeV), and a Majorana gluino mass of 1.5TeV, the stop
can typically be as heavy as 1 TeV. Consequently, applying current experimental constraints,
barring surprising cancellations , there are strong lower bounds on the fine tuning of natural
SUSY theories, even though there are regions of parameter space where the LHC has not
excluded light stops. As a result, in the regions of lowest fine tuning in these theories, a
physical Higgs mass of 125 GeV can arise directly from stop-loop corrections if the theory has
large A-terms, or from an NMSSM structure without couplings running non-perturbative (as
studied in Section [4)).

As discussed in Section a theory’s fine tuning is measured with respect to the param-
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eters at an assumed UV boundary of the RG ﬂowE| In contrast, the weak scale parameters
have values which are strongly coupled together by the RG equations, and typically cannot
accurately quantify the tuning [150}288]. Of course, choosing the independent variables at
the UV boundary requires some assumptions about the mediation of SUSY-breaking, and
possible correlations between soft terms at this scale. We further assume there is no new
physics between the UV boundary and the weak scale that modifies the running (in Section
[6] we study the possibility that interactions with the SUSY breaking sector can violate this
assumption).

The independent variables are typically taken to be the gluino mass squared (the other
gauginos are less important and we do not assume a GUT structure), the stop mass squared
and the mass squared of the first two generation sfermions, which are assumed to be universal
based on strong flavour constraints [289|E| This choice is reasonable; a natural Spectrum is
often obtained by including several sources of SUSY breaking, and hence these masses may
be adjusted independently [167,|168,295-297]. Also, in both gravity mediation [298] and
the most general models of gauge mediation [136], the gauge fermion and sfermion masses
generated are independent.

Alternatively, both the gluino and stop masses at the UV renormalisation boundary may
both be generated through a single F-term, for example as in the model described in Section
In this case, varying the gluino mass will be correlated to varying the UV stop mass, and
so the F-term is the fundamental parameter. As we discuss later, this scenario makes the
tuning of natural SUSY spectra worse since increasing the F-term increases the weak scale
stop mass both directly though the UV stop mass, and through the increased running from a
more massive gluino. Another issue is whether the left- and right-handed stop masses should
be regarded as a single parameter, as occurs if both gain their soft masses through the same
mediation mechanism. This is the case in many models of natural SUSY, but is not required
in generic mediation models. We give results for both the case where these are independent,
and when they are not.

There are possible ways our arguments may be evaded. It might be that the mediation
mechanism gives a pattern of soft masses that happens to lead to cancellations in the RG

flow, so that the shift in the Higgs soft mass is smaller than expected (this is the case

"However the location of this boundary, and the set of independent parameters there, is only physically
meaningful once a complete UV theory, including all higher-dimensional operators, is specified.

*Though this assumption can be relaxed [2901294].

3In the model of Section [3| there is also a potential tuning from the parameter e, which we do not consider.
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for focus point spectra [299,[300] and as discussed around Eq. (2.65)). However, such a
mechanism would need to couple the stop, gluino, and first two generation sfermions in a
highly non-trivial way despite their soft masses coming from very different sources (typically
R-symmetry preserving SUSY breaking, R-symmetry breaking SUSY breaking and another
mediation mechanism). Therefore, this does not seem a strong assumptionﬁ We also assume
the Higgs potential is either that of the MSSM or the NMSSM with the parameter Ay not
very large at the weak scale. As mentioned in Section {4l if Ag = 1 the Higgs potential can
be significantly modified, and the sensitivity to the Higgs soft masses (and contributions to
these) could be reduced.

As discussed in Section [2.10, we make no attempt to quantify the probability, over the
‘theory space’ of SUSY breaking and mediation mechanisms, that the initial UV parameters
begin in the correct region to allow for a natural SUSY spectrum at the weak scale. Such a
starting point requires multiple forms of mediation which, a priori, could lead to a separation
between the gluino and sfermion masses that is far too large to give a viable natural SUSY
spectrum at the weak scale. Consequently, it is unclear how likely it is that a natural SUSY
spectra is actually realised (although models such as that studied in Section (3| have other
benefits, so may perhaps be relatively more common). However, it is unknown if the concept
of a ‘theory space’, let alone a measure on it, is well defined so we do not consider this issue
any further.

While the main focus of our work is on conventional Majorana gauginos, we also study
the EW fine tuning in a simple model of Dirac gauginos (described in Section [2.4). It is
found that in this model the tuning is independent of the mediation scale and comparable
to an MSSM theory with very low mediation scale. Consequently, this is a good option for
reducing fine tuning in models where the mediation scale is required to be high, for example
in string theory completions.

In Section [5.1] we discus the fine tuning of the UV parameters required to obtain a light
stop after running. Section [5.2] contains the main results on the tuning of the EW VEV,

while Section [5.3] contains our discussion of Dirac gauginos.

“In contrast focus point scenarios typically only involve one, simple, form of mediation to all MSSM fields,
hence can occur as a result of single numerical coincidence.
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5.1 Fine Tuning to Obtain a Light Stop

First, we consider the fine tuning of the gluino and first two generation soft masses required

to obtain a light stop at the weak scale. In analogy to the EW tuning, this is defined as

8logm% (mz) (5.1)

p:‘ dlogp

where p is one of M32, fn%z or mtg evaluated at the UV boundary, and ¢ is the stop state
which receives the greatest fine tuning. In this section we use the convention that soft terms
without their scale specified are evaluated at the UV boundary of the RG flow of the theory,
Ayv, which is parametrically the scale at which SUSY breaking is mediated.

The RG equations for the stops in the presence of heavy sfermions are well known [56,(191].
Since we are interested in the effect of the gluino and sfermion masses and these dominate

the RG equations, it is sufficient to include only these leading terms. The RG equation of

the stop soft mass is then given by

(;1 ZO‘Z CM2+— (Za )ﬁliQ , (5.2)
where C; is the Casimir of the stop state with respect to the gauge group labelled by i (and
aq is GUT normalised). We further assume the right-handed bottom sfermion and the staus
remain relatively light such that they do not have a significant effect on the running of the
stops, but not so light as to be driven tachyonic (giving these states relatively large masses
does not change the results dramatically). We take the heavy first two generations to have
a constant mass which is a reasonable approximation if they begin fairly heavy as in natural

spectraﬁ Following [191], at this level of approximation the RG flow can be solved exactly

to give
2 1 2
mf (mz) AUV Z C N 3 — 1 Mi
’L 7. UV
(1 +or log ( M;(m )) ) (5.3)
1 -
+ Z i (Auv) » Nov -1 Cim%,z ,
2r log (fnl,z(MZ)> i

where the gauge beta-function coefficients are defined as % (i) = —2% (and Eq. (5.3) is

SWe are interested in spectra where the stops are fairly light at the UV scale and remain relatively light
during running. Hence, the overall shift in their mass during running is < 500 GeV. The first two generation’s
dominant running is the same as the stops hence these run by a similar amount, which is negligible if they
start at O (10 TeV).
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Figure 5.1: The stop mass obtained at the weak scale as a function of the weak scale gluino and first
two generation sfermion masses, after running from the GUT scale at 10'® GeV assuming an initial
mass of 200 GeV. The lower cutoff is due to the gluino increasing the the first two generation sfermions
masses during running, while the upper cutoff is due to the stop running tachyonic above this line.

written in terms of the UV values of the gauge couplings)ﬂ The contribution from the first
two generation sfermion turns off at an energy scale /12 and the gaugino contribution is
present until the scale M;.

In Fig. [5.1] we plot the weak scale lightest stop mass as a function of the weak scale gluino
and first two generation sfermion masses, after numerically running from 10'6 GeV with a
UV stop mass of 200 GeV (using the full two loop RG equations). For a given gluino mass,
above a certain sfermion mass the stops run tachyonic and the theory is not viable. To obtain
the light stops needed for a natural SUSY spectrum requires M3 and 712 to be such that
the stop is in the thin strip close to this boundary. The relatively small effect of the gluino
increasing the mass of the first two generation sfermions during running leads to the lower
cutoff in this plot.

Now it is straightforward to write down the fine tuning with respect to the UV gaugino

and first two generation masses. There will be two contributions to the fine tuning, one

5Throughout this section we calculate weak scale parameters by solving one and two loop RG equations,
this is equivalent to an all order summation of the leading logarithms \ .
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directly from the dependence on ﬁlig, and the other from dependence inside the logarithm,

mi

52
miso 4C; 1
= —5 > —ai(Auy) -1

? Z h; 1+ 21 log (AUV> o (5.4)

2
+m12zca (Auvv) 1
m2 2 bi Auv . ’
1+ 5= log (fnl,z) «;

t 7

The second term from the variation of the logarithm is typically significantly smaller than
the first and slightly reduces the fine tuning. It appears because if the mass of the first
two generation sfermions increases then there will be slightly less running. Actually, to the
accuracy required we do not need to include this effect (but we retain the full dependence

for completeness). Similarly,

M} 2 !
YMf(mz) - _ﬁ%biicg ( 1 "~ log (%) ai)2 B
(5.5)
M? C; L
— 2 " —Qy b Ayv . 3
m; (1 + 5= log (Mi(mz)> a,)

The greatest fine tuning from the heavy sfermions will occur on the left-handed stop. Even
though the beta function coefficients bo and b3 have opposite signs, their overall contributions
to Eq. go in the same direction. The gluino couples equally to the left- and right-handed
stops, so the tuning with respect to its mass is equal for both.

Finally, there is also a tuning with respect to the initial stop masses. This can be eval-
uated as a perturbation to the RG trajectory obtained already. If the stop soft masses are

independent, a perturbation to the initial left handed soft mass, Am?2., will satisfy

Q3’

d 2y 2
(Am ) D 62 AmQ~3 , (5.6)

and will also feed into the right-handed stop and up-type Higgs mass since the RG includes

d 2 ?Jt

E(Am ) Ton Am L (5.7)
d 2 63/t2 2

gr (AmHu) D = Amcjs . (5.8)

At this level of approximation, the beta functions are linear in mtg, so the evolution of the

perturbation during running may be obtained by integrating the system of RG equations Eq.
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(5.6), Eq. (5.7), and Eq. (5.8) giving

1 m.< (3yf/471'2)

Mm%, (mz) = ¢ (5 + (&) Am, (Auv) (5.9)
1 Myss \ (38 /47%)

AmZ, (mz) = 3 <—1 + (/@) Am, (Auv) (5.10)

Similarly, a perturbation to the right-handed stop leads to

1 N\ (3y7/4m?)

Am’, (mz) = 3 (2 - (Tg\i) AmZ, (Auv) (5.11)
1 m ~ (3y3/47r2)

Am%3 (mz) = 8 <—1 + (A{?\i> Am12;3 (Avv) - (5.12)

The expressions Eq. (5.9) and Eq. (5.11]) are numerically largest, therefore the fine tunings

are approximately

mes (Auv) (5 1 fmgy (vi/4r?)
Ym2~ = 27 -4+ — ( ) , (513)
@ MG, (mz) \6 6 \Ayv
2 (A 0\ (397 /47)
y, ., = Mag(A0v) 1<mu3> T (5.14)
ws mi (mz) \ 3 \Auy 3

. . . mags (3y152/47r2)
If there is a small separation between the mediation scale and the weak scale ( Auv)

~Y
mé(Auv)

% as is the leading-order expectation. However if there
mQS(mZ)

1 and the fine tuning Y, > ~
g3

is a large separation between these scales then running proceeds for sufficiently long that the

back-reaction from a perturbation suppresses itself, reducing the tuning. For a mediation

scale of 1016 GeV,

msq\ (397 /477)
(Q3> YN0, (5.15)
Auv

so this can be a non-negligible effect. The tuning of the left-handed stop is greater since it
is less strongly damped by the RG flow.

In the case where these two stop masses are linked, the RG equations for the perturba-
tion are modified since the left-handed stop perturbation feeds into the right-handed stop

perturbation and vice versa. These are easily integrated to obtain

1 My (3y7 /4m®)

Ami, (mz) = 3 <(A$> +2 | AmZ (Auy) , (5.16)
1 mea (3y$/4w2)

AmZ (mz) = 5 <2 ( A{f}) +1) Am (Auy) - (5.17)

Therefore,
m2, (Ayv) mp \ (3vE/47°)
Vo, = 02 ((Atg) “) | (5.18)

g3 Z Uv
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Figure 5.2: The fine tuning required to obtain a stop mass of 200 GeV at the weak scale Left:With a

UV boundary of 10'6 GeV. Right: With a UV boundary of 10° GeV, as a function of the weak scale
gluino mass and the UV value of the first two generation sfermion masses.

As before, if Ayy is not too large, the damping is not significant and these expressions reduce

2 (A
to the leading order expectation Y, 2 ~ %;3% However, if Ayy is close to the GUT scale
3 O3

the difference can be significant.

To gauge the severity of these fine tunings, recall the approximate expression for the
tuning of the EW scale with respect to the stop soft mass Eq. . An mSUGRA spectrum
with sfermions and gluinos at 2500 GeV would have an EW tuning with respect to the stop
soft mass of AQ3 ~ 350 for Ayy = 10°GeV and AQ3 ~ 1500 for Ayy = 106 GeV. In
contrast, a natural spectra with m; = 200 GeV, ;2 ~ 10* GeV and Mz ~ 2500 GeV at the

weak scale, and Ayy = 10'6 GeV, has a tuning of the stop mass of

Yo ~80, Yyp~115, Yo ~15, Y ~20. (5.19)
t3 Q3

my 2

Meanwhile a theory with low-scale mediation, with Ayy = 10% GeV, has tuning

iz, ~20, Yap~50, Ve ~20, Yoo ~25. (5.20)

These agree with the variations evaluated numerically using the code SOFTSUSY [211] to
around 10% . The leading error is due to the back-reaction of a perturbation to m; on its
own RG group equation, however this level of accuracy is not required for our purposes.
Defining the overall fine tuning as Y = max ({YM??, Yﬁl?,z’ meg}), in Fig. we plot the
fine tuning required to obtain a weak scale stop of mass 200 GeV in the plane M3 (my), mi 2

for low and high scale mediation, assuming the two stop masses are not independent in the
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UV. This shows that it is possible to obtain a fairly light stop in the presence of a gluino
mass of around 2 TeV and first two generation sfermion masses at about 5 TeV with a tuning
of order 5 — 100 depending on the scale of mediation. While significant, this is is not large
compared to that found in the EW sector of typical SUSY models. Therefore theories with

a light stop are not automatically disfavoured by tuning arguments.

5.2 Electroweak Fine Tuning in Models of Natural SUSY

We now study whether a natural SUSY scenario, compatible with current limits, can lead to
an EW sector with low fine tuning. For simplicity, we assume the MSSM RG flow and that
tan 8 is fairly large, in which case the EW scale is given by Eq. .

Consider the dependence on the first two generation sfermion masses. Just integrating
the two-loop expression for the beta function of the up type Higgs mass, from SU(2) and

U(1) gauge interactions,

dm? 2 ~
TH“ D = (Z o? (1) C; (Hu)> iy, (5.21)

without considering the RG flow of the other parameters, gives a contribution enhanced
by a single logarithm. This leads to a relatively small tuning if ;2 is of order a few
TeV. However, the EW VEV has a strong dependence on the stop mass, which itself has a
significant dependence on miQ, and can lead to a significant tuning even though it is a higher
order effect.

To calculate the EW tuning with respect to the sfermions we study only the dominant
terms in the RG flow (rather than solving the full two-loop RG equations, which can only
be done numerically). The important terms are the coupling of the Higgs to the stop in
Eq. , and the dynamics of the stop, sfermion, gluino system solved in Eq. . This
neglects effects such as the Higgs back-reaction on its own mass and the stop and the RG
flow of the first two generation Sfermionsm

Under these assumptions, the shift in the Higgs soft mass due to a perturbation in the
UV value of the first two generation sfermion masses squared, including the direct 2-loop
contribution and the resummed contribution through the stops, can be calculated analytically.

The later is obtained from the change in the contribution from the stop to the Higgs soft

"We are also neglecting the running of \; (but the running of as is included). The results obtained
agree with numerical solutions of the RG with all significant two-loop contributions equations to within
approximately 10%.
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mass during RG flow when the stop-gluino-sfermion system (solved in Eq. (5.3))) is perturbed.

Integrating the RG equation leads to

tars
Amig (mz) sy = /t A, () [ars dt (5.22)
A
tus 0B,,2  (t) 0B,z (t)
B _"Hu " 2 M A 2 9
/tA am? (1) mj (t) + o (1) mi (t) dt (5.23)

where the first term is the contribution through the stop, and the second is the direct two-loop

contribution. The fine tuning is then given by (using Eq. (2.38]))

_ d, 2
dt (logm%)  2mi, 9 /tml 20 (dthu> 2 (1) M 135 (t) dt . (5.24)
t

= — 5 M; t — m
dt (log m%Q) my 9 (m%) A Omf (t) ¢ 8771%,2 (t) '?

Using Eqgs.(5.3]) and (5.21]), with a factor of two since the coupling occurs through both the

left- and right-handed stops, leads to
m 2 a /tm12 3m% 8CZ 1 ~ 92
A2 = —2F——7 ——— ) —y —1]m
i m% 9 (m% 2) ty 4m2v2cos (2) zl: 7b; 1+ %% (15 — 1) b2

2 azC (Hy) -
+ = dt
w2 (Z 14 locl log (;\1 )) myo

~ 2
p A 2
_ m1272LZ [ASC o (10g ( _ ) _ 2m log<
my 9 (mi2) ; 7b; mi2 o;b;

e ( 1 1)} B
— - mio,
. b; A )

mbi L+ 2m IOg (ﬁn,;(Jf\?/@Z)) &

As before, each term gives two contributions to the fine tuning.

(5.25)

2
3m;

where A = o> Lom TR

The largest is from the direct variation of the initial sfermion masses, while the second
contribution comes from varying the end point of the logarithm, and is smaller.

Intuitively, the first term consists of two tunings at different levels in the theory, the EW
VEV is tuned by the mass of the stop, which is itself tuned by the first two generations.
The overall tuning is effectively obtained by multiplying these together, and weighting by a
factor less than 1 to account for the gluino only generating a change in the stop mass after
some running has occurred. The second term (the two loop direct contribution) typically
gives a shift in the mass squared of around (10 — 50) % of the first term, and acts in the
opposite direction reducing the total fine tuning. This is because the direct contribution
decreases the Higgs mass squared, while the indirect contribution decreases the stop mass

squared resulting in a less negative Higgs mass squared. Since it is a higher loop effect, the
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indirect contribution is greatest when the mediation scale is highest.

For natural SUSY spectra, the shift in the Higgs mass directly from the gluino is com-
pletely negligible compared to the logarithm squared contribution that occurs through the
stop massﬂ Similarly to the previous calculation, this gives

my 0 (M)

Mg, 0 /%403 ! S| m2at
2

AM2 —
3 o (145525 (ta - 1))

(5.26)

b 2 ( A
M32A o 4 e log (m) A2
73 BN 2
M) b1 g ()
Next, we turn to the tuning with respect to the initial stop mass. Since the RG equation
governing the behaviour of a perturbation at the UV boundary of the stop mass may be

solved exactly (at one-loop order), as in Eq. (5.10), we can evaluate the shift in the low

energy Higgs soft mass directly. This leads to

1 M5\ (397/47)
2 — Q3 _ 2.
Amy, (mz) = 5 (( ) 1) amZ, (Auy) (5.27)
m2~ ms (3y2/4ﬂ_2)
A2 = Q23 9 (( @?») ' _1> Amgg (Auvv) , (5.28)
Q3 my 9 (m2Q~3) AUV

for the left-handed stop. The expression for the right-handed stop is given by

m2~ o _ (3y?/47r2)
A, =8 ( “3> — 1) AmZ, (Ayy) . 5.29
mi.d m2Z P (m?; ) ( AUV w3 ( UV) ( )

Alternatively, if we regard the UV masses of the left and right handed stops as one variable
a similar computation easily gives

2 _\ (3y2/4n?)
A2 = 2mt23 0 (mt?’) t — 1| Am% (Apv) . (5.30)
B Mz (mfs) Auy t3

If an MSSM Higgs sector is assumed, solving the same set of RG equations gives the tuning

from the Higgs soft mass at the UV boundary of the RG flow

m2 ) my (3y2 /4n?)
A, =—Hu “ 1| Am%, (Auy) . 31
R T (( T )T ) Ay, () (5.31)

Assuming tan 8 is moderately sized the tuning with respect to m%{d is negligible compared

to that from m%,. If the Higgs sector is more complicated, for example in the NMSSM,

the exact expression here will be modified however it is still expected to still take the form

8The NLL direct gluino contribution is two-loop order but only enhanced by a single logarithm compared
to the two-loop, contribution enhanced by two logarithms.
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2
Am%{ . < 2777%“, with the equality satisfied if Ayy ~ mp,, so there is very little running.

Finally, we consider the ;1 and B parameters (again assuming the MSSM Higgs sector).
These do not feed strongly into other soft masses during RG flow, and the tuning with respect

to them is given by

? (Auv) 9p* (mz)

my O (Auv)’

Bu(Auv) 0Bu(mz)
m%  0Bpu(Auv)

A, =2F

(5.32)

Ap, =2 (5.33)

For 1 = 400 GeV and Bpu = 200 GeV at the weak scale, solving the RG equations for these

terms numerically gives

A, ~ 40, (5.34)

Ap, ~ 10, (5.35)

for both high- and low-scale mediation. Since these values of y and By are allowed by
collider constraints, and it will turn out that the tunings are less than those from the stops,
gluinos, and sfermions, the tunings from these parameters may be neglected. Once these
parameters are fixed, the Higgs soft masses in the IR (and therefore after the RG flow at the
UV boundary) are fixed by Eq. E|

The overall EW fine tuning is defined as A = max ({Ap}). Initially, we focus on the
tuning introduced by the gluino mass, stop mass, and sfermion masses which are fairly
independent of the details of the Higgs sector. In contrast, the fine tuning from the Higgs
soft mass is dependent on both the p /By parameters, and whether the theory is the MSSM,
the NMSSM, or another extension (which may be needed to obtain the correct physical Higgs
mass in some regions of parameter space). Because of this, the fine tuning from m%{u in a
typical MSSM Higgs sector is studied separately at the end of this section. There it is seen
that the conclusions we draw about the overall tuning of the theory in this section are valid.

Considering the stop, gluino and sfermion soft masses, expanding the fine tuning expres-
sions Eqs., and in the parameter 1’32% log (%) and retaining only the leading
dependence recovers the expressions in previous papers [151]. However, since azg is fairly large
over all energy scales, and we are potentially interested in high-scale models which can have

large logarithms, we retain the full dependence (this can lead to a factor of two difference in

9An alternative but equivalent approach would be to fix the UV boundary stop soft masses at a relatively
small value in which case p and Bu would be determined by the same relation.
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Figure 5.3: The fine tuning in the EW sector as a function of the soft parameters, for low-scale
mediation with Ayy = 10° GeV (top) and high-scale mediation Ayy = 10*° GeV (bottom). The
plots are a function of the weak scale gluino mass since its running is fairly independent of the other
parameters in the theory. The other masses are the values at the mediation scale, which may run to
smaller or larger values when evolved to the weak scale.

some expressions). In Fig. the fine tuning is plotted as a result of the UV soft parameters
for low- and high-scale mediation, both for the cases where the stop masses are independent
in the UV and when they are not. When they are both set by one parameter the fine tuning
is worse since both feed into the up type Higgs mass simultaneously.

For a given UV stop mass a larger UV gluino or sfermion mass is never preferredm How-
ever, provided A m2 and Am%@ remain smaller than Amtg, increasing the gluino or sfermion
masses does not make the fine tuning worse (at least with the measure of fine tuning adopted

here). Consequently, collider bounds can be somewhat alleviated without introducing fine

10This does not necessarily hold for the weak scale stop mass though.
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Figure 5.4: Top: The UV stop (red) and sfermion masses (blue) that lead to the same fine tuning
of the EW scale as a gluino with weak scale mass of 2 TeV as a function of the mediation scale. We
show both the case where the left and right handed stops are independent parameters (solid lines)
and when they are fixed equal (dashed). Lowering the stop or sfermion masses below these masses
does not improve the fine tuning of the theory, and so this graph limits the extent to which a natural
SUSY theory is beneficial. Bottom: The fine tuning corresponding to a 2 TeV gluino as a function
of mediation scale. By construction, this is the same as the fine tuning generated by stops at the
masses in the top panel. If fine tuning better than 1% is imposed then the mediation scale is limited
to Ayv < 107 GeV.

tuning. It is interesting to ask what the values of m%, M2, and rh%z that saturates a given
fine tuning are. In particular, suppose we fix the gluino mass to be 2 TeV at the weak scale,
we wish to know the maximum UV masses the stop and first two generation sfermions may
have before they dominate the fine tuning. In Fig. we plot the UV masses of the stops
and first two generation sfermions for this scenario. If the gluino is at 2 TeV, there is no fine
tuning benefit to having UV stop masses below (1 — 1.5) TeV for GUT scale mediation, and
(0.5 —1) TeV for very low scale mediation. From Fig. (bottom), a gluino of this mass

94



2000

Fine F1ne.
Tuning Tuning
Feae
100l ~~ 650
\\
~\
% g ™
6] 0 N 600
: ~ N,
% 2 1000| AN
p= 125 =
& g 550
7 7]
100
500 |
s 500
1
0 I L L L I
10000 15000 4000 6000 8000 10000 12000

Sfermion Mass / GeV

Sfermion Mass / GeV

Figure 5.5: The EW fine tuning as a function of the weak scale sfermion and stop masses (assuming
the two stops are not independent) with a weak scale gluino mass of 2 TeV for Ayy = 10° GeV (left),
and Ayy = 10 GeV (right). The regions below the dashed black line have a tachyonic stop mass
at the UV boundary. Since sfermion masses larger than 3 TeV are not constrained by collider limits,
for low-scale mediation there is no improvement in fine tuning through decreasing the stops below
1.4TeV. For high scale mediation, especially if we demand the stop is not tachyonic at the UV
boundary, the majority of the region with the lowest fine tuning actually has a fairly heavy weak scale
stop of around 1.5 TeV.

forces the tuning of the EW scale to be at least 400, if running begins at the GUT scale. In
contrast, it is easily possible to separate the first two generation sfermions significantly from
the gluino and stops without increasing the fine tuning of the theory, which is beneficial for
collider limits.

Of course, the relevant quantities for collider physics are the weak scale masses, and
(unlike the gluino mass) the running of the stop soft masses depends on the the sfermions
and gluino masses. We plot the EW fine tuning as a function of the weak scale stop mass
and first two generation sfermion masses with the weak scale gluino mass fixed at 2 TeV, for
low- and high-scale mediation, in Fig. This is obtained by numerically solving the RG
equations between their UV boundary and the weak scale. It is assumed the two stops are
not independent, however this does not qualitatively affect the conclusions. In these plots,
due to the fixed gluino mass, the smallest possible EW fine tuning is around 60 and 400 for
low- and high-scale mediation, respectively (see also Fig.|5.4). The large areas of parameter
space with the lowest fine tuning in the centre of both plots have fine tuning dominated by
the gluino.

For low-scale mediation, there is no preference for the weak scale stop mass to be lighter

than about 1.5 TeV. For high-scale mediation, the largest region of parameter space with low

"The weak scale masses here are actually MS masses and not pole masses. There is an additional finite
correction to convert to the physical stop mass, but this is a small correction.
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Figure 5.6: The EW fine tuning, using the measure § = /Y A?, as a function of the weak scale
sfermion and stop masses (assuming the two stops are not independent) with a weak scale gluino
mass of 2TeV for Ayy = 10° GeV (left), and Ayy = 1016 GeV (right). The regions below the dashed
black line have a tachyonic stop mass at the UV boundary. As a result of the tuning introduced by
the sfermions using this measure, lighter sfermions which correspond to heavier weak scale stops are
favoured.

fine tuning actually has relatively large stop masses, around 1.5 TeV. In this case, heavy stop
masses are even further favoured if we demand the stop is non-tachyonic at the boundary.
This is a reasonable restriction since there is a danger such boundary conditions might lead
to deep colour breaking vacua in the early universeH As the sfermions tend to decrease the
stop mass squared during RG flow down in energy scale, the maximum weak scale stop mass
that results in a tachyonic stop in the UV is increased as the first two generation sfermions
are made heavier.

In Fig. p.5] contours of constant UV stop mass are approximately circle arcs concentric
with the tachyonic contour. The regions where the tuning contours take the same shape have
tuning dominated by the UV stop mass. On the far right side of the plot showing high scale
mediation, there is a region where the sfermion soft mass dominates the tuning, indicated
by the vertical contours. In the region where the stop is tachyonic at the UV boundary of
the RG flow, increasing the weak scale stop mass can actually improve the fine tuning. This
occurs since increasing the weak scale stop mass leads to a less tachyonic UV boundary stop
m?(Auyv)

—t~—=1 is smaller.

mZ(mz)

If instead an alternative definition of fine tuning, § = />, A?, is used, increasing the

mass, and as a result the ratio

gluino, first two generation sfermion, or stop soft masses at the UV boundary of the RG flow

12 Although the existence of colour charge breaking vacua is not necessarily problematic if the colour pre-
serving vacua is metastable on timescales longer than the age of the Universe [207,/208}210].
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Figure 5.7: The EW fine tuning up type Higgs soft mass at the UV boundary of the RG flow, as a
function of the weak scale sfermion and stop masses (assuming the two stops are not independent)
with a weak scale gluino mass of 2 TeV for Ayy = 10° GeV (left), and Ayy = 1016 GeV (right). The
regions below the dashed black line have a tachyonic Higgs mass at the UV boundary.

always increases the fine tuning. However, since § is still dominated by whichever tuning is
largest, the results are similar to those obtained previously. In Fig. we plot the tuning
as a function of the weak scale stop and first two generation sfermion masses, with the weak
scale gluino fixed at 2 TeV. The fine tuning from the sfermion masses actually results in the
regions with the smallest fine tuning having relatively large stop masses.

In the scenario where both the gluino and stop masses depend on the same F-term in the
theory, F? (or F) is the fundamental parameter that fine tuning should be measured with

respect to. Parametrically, the gluino mass is given by M3 ~ ML* and the stop mass also by

2 . .. . . .
tg ~ % where M, is the mediation scale. A 1% increase in F? generates a 1% increase
?

m
in both the gluino and stop masses squared. As a result the fine tuning is worse than if the
gluino and stop were independent variables.

Finally, we return to the tuning from the UV Higgs soft mass squared. Taking u =
400 GeV, in Fig. we plot this as a function of the weak scale stop and sfermion masses,
with the weak scale gluino fixed at 2TeV in exact analogy to Fig. 5.5 The fine tuning is
calculated by numerically running the IR soft Higgs mass which gives the correct EW scale,
to the UV boundary and evaluating Eq. E Clearly, the tuning from the Higgs soft
mass is not especially small. This is to be expected since the Higgs soft mass appears at tree

level in the EW VEV. However, in the regions of lowest fine tuning, the tuning from the Higgs

mass is typically slightly smaller than that from the other parameters. The plot also shows

13We assume vanishing A-terms although these may be important for generating the correct physical Higgs
mass in some theories, and if large modify the running slightly.
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that in the regions of lowest fine tuning the UV Higgs mass is not far near zero, and there are
large parts of parameter space with small fine tuning where the Higgs soft mass squared (at
the UV boundary of the RG flow) is positive. For low-scale mediation, the part of parameter
space with tuning less than 50 has |m%,| < (500 GeV)? at the UV boundary of the RG flow,
and for high-scale mediation the region with tuning less than 500 has |m3?,,| < (1000 GeV)z.
The regions with low fine tuning coincide closely with the regions where the other parameters
have low fine tuning, therefore the previous estimates of the fine tuning and favoured regions

can be valid even when the details of a Higgs sector are included.

5.3 Dirac Gauginos for Natural SUSY

In this section we consider extended theories with Dirac gluinos. As discussed in Section
these provide an effective way of shielding the stop from large corrections compared to the
usual Majorana case. In particular, there are no corrections to the stop mass from the gluino
enhanced by a large logarithm of the form log (m%;") The only contribution is a finite
piece generated below the scale where the heaviest part of the effective N' = 2 multiplet is
integrated out, which is typically the sgluon (the new scalar octet partner of the gluon), and
above the mass of the gluino [76,91-H96]. As a result these models are a very interesting
proposal for a SUSY model without large tuning.

We focus on a simple model, following [91,(95]. There is an additional U(1) gauge group
which obtains a D-term expectation value, and has field strength W’. This couples to the
visible sector N' = 2 gauge multiplet, which can be written in A/ = 1 notation as a vector

multiplet with field strength W, and a chiral multiplet A in the adjoint of the gauge group,

/ 420

where M, is the mediation scale. It can be shown that this operator also induces a mass

only through a term

VWG g
T WRA; (5.36)

*

for the real component of the sgluon, m?, of size M3 = 2M3, where M; is the Dirac gaugino
massE In this minimal model there is no direct coupling between the SUSY breaking sector

and the sfermions. Instead these are generated only by radiative corrections from the gauge

14 As discussed in [91], there actually exists another, independent, supersoft term coupling W’ and A which
gives a mass to the sgluon. For simplicity, we assume this operator is absent from the theory.
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sector as discussed in detail in [91]. The induced stop soft mass is given by

72
Am?=Y%" Ca’M21 (ﬂ”})

i

(5.37)

_ Goosllg log (4)

where we have included only the dominant gluino contribution. The up-type Higgs receives a
contribution to its mass from the stop which is only present in the running between the stop
soft mass and the scale at which this mass is generated. Since the stop mass is generated
only in the small energy range between the sgluon and gluino masses, it is a reasonable
approximation to assume it is tuned on instantaneously at the gluino massE Then the mass

shift in the up-type Higgs is given by

3N? M3
A (6m%{u) = —8—7rgmt2 log <m2> , (5.38)

which is clearly very suppressed relative to the MSSM case. Since the sgluon is heavier
than the gluino, the energy range during which the gluino mass feeds into the stop mass is
separated from that in which the stop mass feeds into the Higgs mass, hence there is no need
to carry out an integration over energies. The overall dependence of the Higgs mass on the

gluino mass is then given by

—3\2 M3
Am%]u = 87r2t mt2 log ( % >
my

(5.39)
= 1 4) 1 log (4) | .
) g(4)log | ——log(4)
Hence, the fine tuning is
~ M2 3)\2
Ay = 7337’;0?@3 log (4) log (C?’ag log (4))
3 my 2me w T (5.40)

In these theories the stop masses are not independent variables since both are generated
through the gaugino masses, and cannot be adjusted independently. Therefore we take the
gluino mass as the only independent variable. While, as previously discussed, using the
weak scale value is an approximation, it is sufficient since there is very little running in such

a theory. Further, since the running occurs over a very small range of energies the gauge

15This assumption leads to an error in the size of the logarithm in Eq. (5.37) of %log2 ~ (0.3, where the
factor of % is due to the finite energy range taken for the stop mass to be generated from the gluino mass.

Since the typical value of the logarithm is log (%) ~ 2.5 this is negligible at the accuracy to which we are
t

working.
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couplings can be taken to be constant to a good approximation.
The indirect fine tuning of the Higgs by the gluino through the stop mass, which was

found to be the dominant contribution in the Majorana case, still appears as a logarithm

M3 m;
] log [ —2% 5.41
og<m£) 0g<Mi) , (5.41)

which of course is much suppressed. Importantly, this is independent of the mediation scale,

squared, however now goes as

in effect the scale where a full N' = 2 spectrum appears is acting as a UV boundary of the
RG flow. This is a desirable alternative to a conventional model with a very low cutoff since
it is still compatible with a string theory completion [302], and avoids problematic higher
dimensional operators from a SUSY breaking and mediation sector which is not far separated
in energy scale from the weak scale. Dirac models may also appear naturally out of models
with spontaneous supersymmetry breaking [303].

Since we are dealing with logarithms of O (1), these terms now no longer necessarily
dominate over other non-logarithmic corrections. To obtain an accurate measure of fine
tuning these should be included. In particular, the non-enhanced terms are the reason that
it is not possible to make the fine tuning arbitrarily small for heavy superpartners by taking
m3 = Ms and M3 = m;. The threshold corrections from the gluino can be calculated
from [|103]. These, along with the other corrections lead to an order 10% difference to the
stop masses. Consequently, our results are reasonably accurate.

As the logarithms are small, it is necessary to check that the one-loop contribution of
the electroweakinos to the Higgs mass does not dominate the fine tuning. These give a

contribution to the Higgs mass

M. M2 ~2
smy = om, = 222 My <m22> 7 (5.42)
T Ms;

which leads to a tuning of the EW VEV with respect to the wino mass of approximately

- 2 200 0BG (109 () -1y (5.43)
Z
2

— 0.006222
my

Since the wino is typically significantly less massive than the gluino, this is only a small

contribution to the fine tuning.
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Figure 5.8: The EW fine tuning of the minimal Dirac model as a function of gluino and stop masses
(solid lines). Note that, in this model, the stop mass is a function of the gluino mass, hence these
are not independent variables. For comparison we also plot the fine tuning for the MSSM, obtained
in Section for the cases Ayy = 10° GeV, dashed lines, and for Ayy = 108 GeV, dotted lines. It
is seen that while the Dirac model gives comparable fine tuning to a very low scale MSSM model, it
quickly leads to an improvement in fine tuning as the UV boundary is increased.

In Fig. 5.8 we plot the fine tuning as a function of the gluino mass and also plot the stop
mass which is fixed by the gluino mass (solid lines).

By comparison with the expressions found in the previous section, we find the fine tuning
as a function of stop mass is comparable to an MSSM model with a very low cutoff of
Ayy = 10°GeV (with both stops masses fixed by one parameter). However, as the cutoff
Ayv is raised, Dirac gauginos quickly lead to a benefit in reducing the fine tuning. Hence, for
string models, a Dirac gluino provides a very strong option to retain as natural a spectrum
as possible, as well as being well motivated theoretically. Of course, a disadvantage of such
models is that the NV = 2 scalar partners spoil traditional SUSY gauge unification unless

other new states are also present, requiring more model building.
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Chapter 6: Hidden Sector Renormalisation and

Fine Tuning

This chapter is based on [304).

In this chapter we study the effect of relaxing the assumption, made in Section [5|and the
vast majority of the literature, that the RG equations are simply those of the (N)MSSM (or
more generally of the visible sector matter and couplings). In particular, we show that the EW
fine tuning of a SUSY theory can be substantially reduced through the effects of hidden sector
renormalisation, first studied in [262,305,306], and later expanded on in [307-315|. This is an
effect where the RG flow of MSSM scalar soft masses is modified by the details of the hidden
SUSY-breaking sector. If the SUSY-breaking sector runs through a region of strong coupling
close to a conformal fixed point, and the operator coupling the Higgs superfields to the SUSY
breaking spurion obtains a large anomalous dimension, it can efficiently suppress the Higgs
soft mass. This washes out the dependence of the EW scale on the superpartner masses and
as a result the fine tuning of phenomenologically viable theories can be significantly reduced.

More precisely, suppose the operator that generates the Higgs soft mass obtains a large
anomalous dimension between energy scales A1 and As. Then, approximating the anomalous
dimension, v, as a constant in this region, after the strong coupling region the Higgs soft
mass is given by

2 2 Ar)?
Mg (A1) ~ m, (A2) (AQ) . (6.1)
Any feed into the Higgs mass from superparticles above, or during, the strong coupling region
is strongly suppressed if the strong coupling regime lasts for a relatively long time. Provided
the strong coupling ends not far from the weak scale, there is little time for a dependence on
the superparticle masses to reemerge, and the fine tuning is reduced[]

Rather than attempting to study particular examples of strong dynamics explicitly, which
is both notoriously difficult and may not capture generic features of such sectors, we simply
parameterise the effect of the strong coupling region by assuming certain operators get large
anomalous dimensions in this region. Of course, the lack of an example of a theory combining

all the required elements is a significant deficiency of our present work. However, given that

1 The possibility that the Higgs mass operator may obtain a large anomalous dimension reducing fine tuning
in SUSY theories has previously been considered [316-319]. The main difference in the models we study, is
that the strong coupling and large anomalous dimensions arise directly in the SUSY breaking or mediation
sector, rather than some additional sector coupled to the Higgs.
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only a handful of models of dynamical supersymmetry breaking are known, and even fewer
are actually calculable, this is perhaps acceptable. Later we argue that it is possible that
sectors with the appropriate dynamics can exist and describe models which exhibit some of
the required features.

In the simplest implementations, all chiral multiplets are assumed to couple universally
to the hidden sector, and the soft mass operators obtain equal anomalous dimension during
the strong coupling period. Due to the universal couplings, the sfermion masses, as well as
the Higgs mass, are suppressed during the RG flow. Obtaining weak scale sfermion masses
in the region of several TeV requires them to be heavier than normal at the UV boundary
of the RG flow, and so the tuning with respect to these states is not reduced. If the hidden
sector is approximately supersymmetric during the strong coupling region, the gaugino mass
operator is protected from receiving a large anomalous dimension by non-renormalisation
theorems and holomorphy. Even if the sector is non-supersymmetric, it is quite plausible
that models exist where this operator does not obtain a large anomalous dimension since
it is distinguished from the operators that generate scalar soft masses, for example due to
its R-symmetry breaking nature. Therefore, the tuning with respect to gaugino masses is
substantially reduced. Due to large production cross sections and dramatic decay signals,
there are stringent collider limits on the gluino mass. A large gluino mass feeds strongly into
the Higgs mass through the stops during RG flow, so this is often the dominant tuning in
a theory [273,[320], and even these most basic models of hidden sector renormalisation can
be a substantial improvement over traditional theories. Of course, this improvement is only
present if the strong coupling region happens to end close to the gluino mass, so that the
gluino mass does not regenerate a shift in the stop masses. The reduction of tuning with
respect to the wino and bino are similarly dependent on this coincidence, but are typically
dominated by the gluino if these masses are assumed to unify at the UV boundary. Later, we
quantify how close these two scales must be so that there is an efficient reduction in tuning.

More complex models with extra interactions between the visible and hidden sector can
reduce the fine tuning with respect to the sfermion masses as well. For example, this can
occur in a theory where the Higgs has extra couplings to the SUSY-breaking sector. These
may cause the Higgs soft mass operator to gain a large anomalous dimension, while the
sfermion operators do not, reducing the dependence of the Higgs mass on the sfermions.

Since the sfermion couplings remain universal, strong constraints from flavour observables
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that are often challenging to accommodate in SUSY models are satisfied. An even more
exotic possibility is that the Higgs soft mass operator obtains an opposite sign anomalous
dimension to the sfermion mass operators. This leads to an enhancement of the sfermions
masses while the Higgs mass is still suppressed. Potentially, soft masses in the region of 10
TeV can be obtained without making the usual tuning of approximately 1% any worse.

As well as the SUSY particles’ soft masses, the fine tuning of the EW VEV depends on
the p and Bu parameters at tree level. To obtain low fine tuning, these must be relatively
small. Since the LHC is fairly insensitive to charginos, this is not an very severe constraint.
It does however open up the prospect that a future collider may discover light charginos,
with other superpartners potentially much heavier. A further attractive possibility for future
work would be to build a model where appropriately sized g and By terms are generated
through hidden sector renormalisation (as has been previously studied) while simultaneously
explaining why only the Higgs mass operator gains a large anomalous dimension. For the
majority of our study we consider traditional Majorana gauginos which feed into the sfermions
at all energy scales. Later we briefly comment on the interesting extension of the MSSM to
Dirac gauginos, which can reduce the gaugino fine tuning even further, although the tunings
with respect to the p parameter and initial Higgs soft mass are unchanged.

As discussed previously raising the physical Higgs mass to 125 GeV is not always straight-
forward in supersymmetric models. In the simplest versions of the models considered in this
work, all sfermion masses are close to universal at the weak scale. Consequently, collider lim-
its typically force the stops to be fairly heavy in the region of 1.5 TeV, and the physical Higgs
mass can be raised to the required value through the one loop correction Eq. . Notably,
this correction is cut off by the mass of the stops, not the UV boundary of the RG flow, since
it is the quartic Higgs coupling which is important. Therefore, the strong coupling region
(which is typically above the scale of the stops) does not alter the form of the correction to
the physical Higgs mass. In more complicated models, the stops may be significantly lighter
than the other sfermions, and the Higgs mass can be raised either through large A-terms
increasing the correction in Eq. , or by introducing an NMSSM structure as studied in
Section [l

Turning to the structure of this section, we begin in Section [6.1] by briefly reviewing
hidden sector renormalisation. In Section [6.2] we discuss the mechanism that reduces the fine

tuning, and carry out a full numerical study of the fine tuning in models with hidden sector
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renormalisation. Section [6.3] contains a discussion of the types of theory that can may lead

to the required dynamics and other model building possibilities.

6.1 Hidden Sector Renormalisation

The models we study are similar to those introduced in [305], with the crucial difference
that the region of strong coupling occurs close to the weak scale. Consider a SUSY breaking
sector with a spurion X, which receives an F-term, Fj, at the UV boundary of the RG flow.

The visible sector scalars and gauginos get mass through terms in the effective Lagrangian

XTx
M?

X
LD /d49 a; OlD,; + /dQGwnﬁWnaWﬁ‘ +he., (6.2)

where ®; represents the visible sector chiral superfields, W, is the gauge field strength (cor-
responding to the gauge group n), and M, is some high-energy scale in the theory. These
terms may be generated by integrating out messenger fields in models of gauge mediation or
interactions with other heavy states.

We consider both models where the hidden sector is approximately supersymmetric during
the strong coupling region and also models where SUSY is broken at this scale. If the hidden
sector is supersymmetric, the holomorphic coupling w,, is not renormalised perturbativelyﬂ
As a result, the physical gaugino mass only flows due to the wavefunction renormalisation
of X, along with the standard flow of the gauge coupling. Denoting the wavefunction renor-
malisation of X by Zx, and normalising such that Zx = 1 at the UV boundary of the RG

flow, the physical gaugino mass at a scale p is

F(p)
M,

M, (1) = g (1) wn, (6.3)

Fy
2% (w)

fields are canonically normalised. Its RG evolution is given by the NSVZ beta function,

where we have defined F' () = . Here, g (1) is the gauge coupling in a basis where all

_g° 3T (Ad) =Y, T (Ri) (1 — )
1672 1— £,7 (Ad)

B(g) = : (6.4)

where ¢ labels the matter fields in the theory, which are in the representation R;, and have
anomalous dimension ;, and T (R;) is the Dynkin index of the representation R;. This arises

as a combination of a one loop exact renormalisation of the holomorphic gauge coupling, and

2Non-perturbative renormalisation of holomorphic couplings is not forbidden by non-renormalisation the-
orems, and may be important in the strong coupling region. We assume that this does not lead to new
operators that generate soft masses in the visible sector.
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a rescaling anomaly from canonically normalising the fields in the theory.

In contrast, the non-holomorphic operator that leads to scalar masses is renormalised.
Crucially, this is separate, and in addition to, the wavefunction renormalisation of X. It is
this renormalisation that means that the dynamics of the hidden sector do not simply result
in a rescaling of all soft masses. Including the wavefunction renormalisation of X through

the rescaling of Fpy, the scalar masses are

F (p)?
mi = a; (1) AZ (6.5)
Here a; (u) is the renormalised coupling, which evolves according to
da; _ 1 .
dtl = %iti — Tp—3 zn: 8C,, (R;) gSw? + ..., (6.6)

where t = log i, and C), is the quadratic Casimir of the state ¢ with respect to the gauge
group n. 9; is the extra contribution to the anomalous dimension of the operator from hidden
sector effects beyond wavefunction normalisation of X, and three ellipses represents other
visible sector one-loop effects, for example those proportional to the Yukawa couplings, and
terms from higher loopsE|

If the theory is non-supersymmetric during the strong coupling region, consistently pack-
aging the fields of the theory into supermultiplets is no longer possible. Regardless, we will
see in Section that there are models where the operators that generate the visible sector
masses may continue to be renormalised below the scale v/F. Of course, the argument from
holomorphy protecting the gaugino mass does not hold in this case. However, even if SUSY
is broken, it seems plausible that there exist theories where the gaugino mass operator gains
a far smaller anomalous dimension than the scalar mass operators. This is because the gaug-
ino mass is an R-symmetry breaking operator and the interactions of a vector multiplet are
necessarily different to those of a chiral multiplet.

While it is possible to study the effects of a particular model of the hidden sector, similarly
to [315], we take an alternative approach and parameterise the impact of running through
a strong coupling regime. This is done by turning on large anomalous dimensions for some
operators in the energy region of strong coupling. Due to unitarity, physical operators have
positive total anomalous dimension at one loop [321], however this requirement does not

persist at higher orders and so does not apply during strong coupling. For simplicity, we

3For simplicity, we assume throughout that the SM states do not couple significantly to any hidden sector
operators other than X and X'X. The extension to more general cases is straightforward [306].
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also assume that Zx (u) = 1 at all energy scales, so that the physical F-term of X does
not flow. This does not alter the phenomenology of our models, since it is the coefficients
of the operators, a; and wy, which feed into each others RG, not the masses. Making this
assumption just means the RG flow of the soft masses is not rescaled relative to that of the

couplings.

6.2 Fine tuning in the Presence of a Strongly Coupled Hidden Sector

We now study the impact of hidden sector renormalisation on fine tuning, for simplicity
assuming tan 3 is fairly large. It is also convenient to study the low-scale fine tuning Agw,
defined in Section As discussed in Section and [150,/152], this gives a lower bound
on the fine tuning of a theory, avoiding assumptions about the UV completion of the low-
energy effective field theory. For example, correlations between soft parameters at the UV
cutoff of the theory could mean that a theory’s true fine tuning is much lower than a naive
estimate of the tuning based on high-scale parameters would suggest. Similarly, the models
we study in this paper are examples of theories where assuming the RG flow is just that of
the MSSM would lead to an overestimate of the high-scale tuning. Effectively, hidden sector
renormalisation can lower the tuning with respect to the high-scale parameters towards the
lower bound set by the tuning with respect to the weak-scale parameters.

Another fine tuning measure, which is interesting for the theories considered here, is the
the tuning with respect to the values of those parameters of the theory immediately after
exiting the strong coupling region that are assumed independent (as usual, it is necessary
to assume some particular boundary conditions since we have no knowledge of the higher
dimensional operators arising from the strong coupling region). Although this measure has
the potential to miss correlations occurring between parameters and effects from running
down to A1, we do not know the complete dynamics of any explicit models and can therefore
not properly calculate these effects anyway. Consequently, it gives a sensible estimate of a
lower bound on the model’s fine tuning. When we study particular spectra and RG flows it
will be seen that this measure is typically slightly smaller, but fairly close to the fine tuning
with respect to the UV parameters. Similarly to the low-scale tuning, our point is to show
that a period of strong coupling that does not last too long and could occur in reasonable
models can efficiently lower the high scale tuning to close to this value.

To obtain phenomenologically acceptable models with reduced fine tuning, the strong
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coupling region has to end not far from the weak scale (typically at a few TeV) so that a
perturbation to the Higgs soft mass is not regenerated before the superparticles are integrated
out of the theory. Additionally, the strong coupling must extend over at least roughly one
order of magnitude in energy scale, so that the Higgs soft mass is sufficiently suppressed.
This can occur if the RG flow passes very close to an interacting conformal fixed point.
Depending on the details of the models involved, the theory may be either supersymmetric
and non-supersymmetric during the strong coupling regime. If the SUSY-breaking sector
itself is responsible for the hidden sector renormalisation, the scale of mediation must be low,
however if it is the messenger sector that runs to strong coupling near the weak scale the
scale of mediation can be high. In Sector [6.3] we consider more model building issues and
discuss how the required features could be realised.

For our numerical studies, we assume that the sector that becomes strongly coupled is ei-
ther supersymmetric, or such that the gaugino mass operators do not obtain large anomalous
dimensions, so that the tuning with respect to the gaugino masses is reduced. To parame-
terise the behaviour of the visible sector in response to the hidden sector renormalisation, we

take

~ 1 ifA <p<Ag
Yj () = ; (6.7)
0 otherwise

where j labels the chiral multiplets whose soft mass operators obtain a large positive anoma-
lous dimension when the hidden sector is strongly coupled, between A; and As. We have
made the assumption that 4; > 0, in order that the RG flow decreases soft masses. This
parameterisation is well motivated since at conformal fixed points of supersymmetric theories
fields often have large anomalous dimensions, of order 1 [262}322].

The Higgs potential mass squared parameters receive a direct contribution at one loop
from the charginos and the bino, and a two-loop double logarithmically enhanced contribution
from the gluino through its effect on the stop. For GUT boundary conditions, the second
effect is much larger. As shown in Eq. , after running through strong coupling this
contribution is strongly suppressed. The stops contribute to the Higgs mass squared at one
loop through an interaction proportional to a Yukawa coupling, while the other sfermions
dominantly feed in through a two-loop coupling. While these contributions are suppressed by
the strong coupling, the sfermion soft masses are also suppressed so must be larger initially,

and there is no improvement in the fine tuning with respect to these parameters.
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Figure 6.1: Left: The RG flow of the soft masses squared in the theory described in the text, assuming
universal scalar soft masses at the UV boundary of the flow. The region of strong coupling is clearly
visible as an approximately exponential suppression of the scalar soft masses in the region of 10° GeV.
The Higgs soft mass runs to negative coupling, driven by the terms proportional to the top Yukawa
coupling in the RG equations, compatible with radiative EW symmetry breaking. Right: The weak
scale soft masses in the same theory. The gluino mass is far above LHC reach without being the
dominant tuning in the theory, and the sfermion masses are close to current limits.

To study these effects more carefully, we analyse the RG flow of the MSSM in the presence
of hidden sector renormalisation numerically. We include the full one-loop equations, and
the dominant two-loop effects. Initially, we consider a theory with high-scale mediation.
The effect of the hidden sector renormalisation is especially dramatic in this case, and the
results are very similar to the low-scale mediation case, except that models with low-scale
mediation have slightly less fine tuning. Further, we assume the soft mass operators of all
chiral multiplets in the theory get a large anomalous dimension in the strong coupling region.
This is completely flavour blind, and attractive in its simplicity. All the dynamics that leads to
the large anomalous dimensions can be generated in the hidden sector, without any additions
to the visible sector. Also, constraints on flavour changing current are automatically satisfied,
even though the strong coupling region is close to the weak scale and higher dimension
operators are not strongly suppressed.

Fig. (left) shows the running in a typical theory, under the assumption of universal soft
masses of 10 GeV at a mediation scale of 10'6 GeV, and universal gaugino masses of 1.4 TeV
(corresponding to a weak scale gluino mass of 4 TeV), characteristic of a GUT theory. The fine
tuning is not substantially altered if the initial soft masses fall into the pattern predicted by
minimal gauge mediation. The period of strong coupling is taken to be between 5 x 10° GeV
and 5 x 103 GeV and is clearly visible in its effect on the scalar soft masses, while the gluino
mass is unaffected. In Fig. (right), we show the mass spectrum obtained at the weak

scale. The sfermions are close to the current experimental bound and the gauginos are far
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Figure 6.2: Left: The perturbation induced in the stop soft mass, Amtg, in response to a perturbation
of the universal gaugino mass, AM?, at the UV boundary of the RG flow (taken to be 1016 GeV), as
a function of the energy scale during the RG flow. Right: The perturbation induced in the up type
Higgs mass, Am?%,,, in response to the same gaugino mass perturbation. The parameters are those
of the theory plotted in Fig. and described in the text.

above the regions that can be efficiently probed by the LHC. Since the scale of mediation is
high, the F-term is large, of order v/F ~ 100 GeV.

The fine tuning with respect to the initial universal gaugino mass squared is 15. This a
substantial improvement over the typical tuning from a 4 TeV weak scale gluino mass with a
mediation scale of 10'® GeV which is in the region of 600. Taking a lower mediation scale or
the region of strong coupling closer to the weak scale can lower the tuning obtained to 5. The
tuning from sfermions is of order 70 which is comparable to that in a model without strong
coupling and identical weak scale scalar masses. Assuming just an MSSM Higgs structure,
u is fixed by Eq. and induces a substantial tuning of roughly 70. One minor benefit
for the fine tuning with respect to sfermions in models with strong coupling is that heavy
gluinos slightly reduce production cross sections and consequently alleviate collider bounds
on sfermions. However, even with a decoupled gluino, the limits on universal sfermion masses
are in the region of 1.4 TeV, which is substantial.

We also plot the perturbation induced in the stop and Higgs soft masses as a result
of a perturbation to the universal gaugino mass at the high-scale in Fig. [6.2] Initially a
large perturbation in the stop soft mass is induced by the perturbation to the gluino mass
(this is identical to the start of the RG flow that would be followed if it was not for the
strong coupling). The strong coupling regime is clearly visible and heavily suppresses the
perturbation to the stop mass, followed by a short period where the correction is regenerated,
before the gluino is integrated out of the theory. The small near vertical drop is because
the gluino is now slightly heavier and integrated out of the theory earlier resulting in less

running. The Higgs mass (right panel), initially experiences a small positive perturbation as
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a result of the increased chargino and bino mass. After a short distance in energy scale this
is overwhelmed by the two-loop contribution due to the increased mass of the stop. Again,
the perturbation is strongly suppressed in the strong coupling region, and the regeneration
is negligible.

As discussed, an important assumption is that the strong coupling region must end fairly
close to the gluino mass so that a significant shift in the Higgs soft mass squared parameter
is not generated below this scale. To quantify this requirement, in Fig. [6.3] we plot the fine
tuning with respect to the unified gaugino mass at the UV boundary as a function of the
energy scale of the lower end of the strong coupling region, A;. The upper boundary of
strong coupling is set by the requirement that ﬁ—; = 100 is constant, so that the suppression
of soft parameters through Eq. is the same for all models. The gluino mass is 4 TeV,
and all other parameters of the theory as are for Fig. For Ay below 4TeV the gluino
is integrated out of the theory within the strong coupling region, and the fine tuning is
set by the feed in from the gluino to the Higgs from above the strong coupling region. Of
course, this contribution is suppressed by the strong coupling and so gives a much smaller
tuning than usual. When A; is greater than 4 TeV, the fine tuning increases as the gluino
regenerates a mass splitting at two-loop order. Efficient reduction of fine tuning requires a
fairly close coincidence in scales. However, not surprisingly, there is still a substantial benefit
over conventional models with high-scale mediation even if the strong coupling region ends
relatively far from the gluino mass.

It is also interesting to consider the low-scale fine tuning, and the tuning if the assumed
boundary of the RG flow was simply A1, described in Section 6.2l The gluino tuning assuming
the UV boundary is A is shown in Fig. It can be seen that this is comparable but slightly
less than the high-scale tuning of the theory. This shows that a reasonable period of strong
coupling, which might be realised in explicit models can efficiently wipe out almost all of the
contribution from the gluino above the strong coupling scale. The contribution to the fine
tuning evaluated at the EW scale from the gluino is negligible since it does not appear in the
one-loop potential. The wino and bino do contribute to this at one loop but assuming GUT
unification are sufficiently light that they do not lead to a significant tuning. The tuning
from the pu parameter is approximately the same (approximately 70) for all measures of fine
tuning, since it does not run by a large amount and is unaffected by the strong coupling

region. The high-scale sfermion fine tuning, which is not reduced by the strong coupling,
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Figure 6.3: The solid line shows the fine tuning with respect to the gluino mass (here assumed to be
independent of the other gaugino masses), as a function of the lower end of the strong coupling region,
A1, keeping the ratio % constant, in a theory with a weak scale gluino mass of 4 TeV and a mediation

scale of 10 GeV. As the strong coupling region is separated from the gluino mass the fine tuning
increases as a shift in the stop mass is regenerated below the strong coupling region. Below this scale
the tuning is solely as a result of the feed-in above the strong coupling scale, which is suppressed but
not completely eliminated. For comparison, the dashed line shows the tuning from a 4 TeV weak scale
gluino if the assumed UV boundary of the RG flow is A;.

is unsurprisingly much greater than other two measures of tuning, due to the size of the
logarithms involved.

There are extensions to the simplest models that reduce the tuning with respect to the
sfermion masses. Of course, the pay off for this is that the couplings between the visible sector
and hidden sector have to be more complicated. Consider a theory where the sfermions have
flavour universal couplings to the hidden sector spurion, through ordinary gauge mediation,
but the Higgs fields have additional couplings to the spurion. As a result the initial Higgs soft
masses are enhanced compared to normal gauge mediation. Further, assume the extra Higgs
couplings result in the Higgs soft mass operator gaining a large anomalous dimension during
the strong coupling period, whereas the other operators do not. Such a structure may be
obtained, for example, if the Higgs fields are charged under a new gauge symmetry which the
other visible sector fields are notﬁ Given that a complete theory must include a mechanism
to solve the p/By problems it is not implausible that the Higgs fields could have different
interactions with the hidden sector to the other chiral multiplets. Flavour observables are

still safe since the sfermion couplings are universal. The perturbation to the Higgs mass

40f course, such a symmetry must be strongly broken to allow the SM Yukawa couplings.
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from the sfermion masses is suppressed by the strong coupling, but the sfermion masses are
not themselves suppressed, reducing the fine tuning from this sector. The initial large Higgs
mass is actually useful in finding spectra where the up-type Higgs soft mass is close to zero
after running, reducing the required value of u from Eq. , and consequently the tuning
from this parameter.

In Fig. (left), we plot the running of a model with these features. The theory has
a low mediation scale of 10° GeV, and a strong coupling region between 2 x 10° GeV and
2 x 103GeV. V/F is approximately 10° GeV, just inside the strong coupling region. The
sfermion soft masses at the UV boundary of the RG flow are taken to fall into the standard
gauge mediation pattern. The weak scale masses are shown in Fig. ﬂ (right). The gluino
is at 2.5 TeV and the squarks are in the region of 1.55 TeV, very close to current limits. For
the initial parameters chosen, the Higgs mass squared just runs negative, with a weak scale
value of — (320 GeV)2, and g = 313GeV. The tuning with respect to the initial gaugino
mass squared is approximately 15, with respect to the initial sfermion approximately 20,
and that with respect to the initial Higgs mass, and also the initial value of u is also in
the region of 20. This is a substantial improvement over a low-scale gauge mediation model
without hidden sector renormalisation, which typically has a tuning of O (100) in each of
these parameters. The dependence of the sfermion fine tuning on the location of the lower
cutoff is parametrically similar to that of the gluino plotted in Fig. for a large reduction
in fine tuning compared to traditional models with low scale mediation these two scale must
be rather close.

For comparison, the tuning directly at the EW scale with respect to the 1.5 TeV stops
is approximately 10 [153]. Additionally, the tuning if the UV boundary of the RG flow is
taken to be Aj is approximately 15. Consequently, the strong coupling region successfully
lowers the high-scale tuning towards these lower bounds. This is perhaps not surprising since
the strong coupling region ends at 2 x 103 GeV, close to the weak scale, and the fairly low
mediation scale means there is little running before the strong coupling region begins. As a
result the high-scale tuning is close to the tuning from the scale A;, which itself is close to
the tuning evaluated at the EW scale. Again, the tuning of u is similar for all measures since
its running is only a fairly weak effect, and the gluino fine tuning measures have a similar
patten to the previous model.

As a entertaining alternative, it is possible that the anomalous dimension of the sfermion
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Figure 6.4: Left: The RG flow of the soft masses squared in the theory described in the text. Only
the Higgs mass squared operator gains a large anomalous dimension in the strong coupling region,
and is consequently suppressed. The mediation scale is low, and the sfermions mass ratio at the UV
boundary of the RG flow is that of standard gauge mediation. The gauginos masses fall into the GUT
pattern, but are assumed to be independent of the sfermion and Higgs masses. Right: The weak
scale soft masses in the same theory. The UV boundary parameters of the theory are such that the
sfermion masses are close to current LHC limits.

mass operators could actually become negative in the strong coupling regime. This would
lead to an enhancement of the sfermion masses during the strong coupling region, taking them
far out of LHC reach without introducing significant fine tuning. It could be that all the
sfermions receive enhanced masses, or alternatively just the first two generation sfermions
might be enhanced. The later could occur, for example, if these generations are charged
under an additional broken gauge group. It is possible such a structure could be linked to
the fermion mass hierarchy, in the style of the classic natural SUSY spectra [159, 160]E This
breaking of a gauged flavour group, could even trigger the supersymmetry breaking sector
to run into strong coupling, especially since the SU(2) structures which arise in the model
of [297] often appear in interesting candidates for conformal theoriesﬁ

Assuming all sfermion soft masses are enhanced, it is possible to obtain a model with
a weak scale gluino mass of 3 TeV, and sfermion masses in the region of 7TeV, with an
associated tunings of only 25 and 50 with respect to the sfermion and gluino masses respec-
tively. Overall, the tuning of the theory is comparable to the most natural traditional models
compatible with collider bounds, even though the scalars are very heavy with a spectrum
reminiscent of mini-split supersymmetry [217]. Additionally, as seen from Eq. , in the
models presented here, it is fairly straightforward to obtain a physical Higgs mass of 125 GeV

through radiative corrections from the fairly heavy stops.

®A similar mechanism for generating a natural SUSY spectrum has been studied in [319)].
SWe are grateful to Matthew McCullough for this observation.
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While we have studied hidden sectors with rather dramatic effects on the RG flow, it is
also plausible that the fine tuning may be reduced substantially even in a model where the
hidden sector does not become strongly coupled, or where the strong coupling does not occur
close to the EW scale. For example, a weakly coupled hidden sector could modify the visible
sector running in such a way that additional cancellations between the various contributions
to the Higgs soft mass appear. This is somewhat analogously to ‘focus point’ models [323],
and relies on the careful analysis of different tuning measures emphasised in [152]. It would

be interesting to find examples of theories where this could occur.

6.3 Model Building

We now discuss the possibilities for finding models with the features assumed in the previous
section. Finding and studying explicit examples of non-supersymmetric theories which pass
close to an interacting conformal fixed point is hard, however several examples are believed
to exist. In fact, these types of model have been studied extensively in the context of walking
technicolour [324}325], and it may even be easier to find supersymmetric theories with the
appropriate dynamics, for example [326]. Of course it would be highly beneficial to have
an example of a complete theory with all the required properties, however in this work we

simply argue that such theories may be plausibly realisedm

Low-Scale SUSY-Breaking

The simplest implementation of hidden sector renormalisation reducing fine tuning arises
in models with low-scale breaking and mediation. In such models, SUSY breaking occurs
at approximately the same scale as the strong coupling region, and there is the potential
to link these two events, for example running to strong coupling could trigger spontaneous
SUSY-breaking as happens in a number of known models.

Typically, due to loop factors that arise in the gauge mediation to the visible sector,
VF must be above the weak scale and the lower limit of the strong coupling region. The
hidden sector, and SUSY-breaking multiplet, can easily remain dynamical below this scale
if some fields in the hidden sector have masses suppressed by loop factors or small coupling
constants. For example, the dominant F-term in the theory can arise as an expectation value

of a scalar field which receives a mass only at loop order. Additionally SUSY breaking masses

"It may be possible to study explicit theories using the techniques of general gauge mediation (136].
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that appear in the hidden sector can be somewhat removed from +/F. If this is the case, the
scale of these masses may be close to the end of the strong coupling region. Consequently,
at least some of the interactions in the strong coupling region can remain approximately
supersymmetric, and results from holomorphy may remain accurate. Alternatively, there
may exist mediation mechanisms which do not lead to loop factors, so that v/F can be close
to the weak scale, and the hidden sector remains supersymmetric during strong coupling.
Conversely, the hidden sector may be non-supersymmetric for some or all of the strong
coupling region, which is not problematic but does require the extra assumption that the
anomalous dimensions of the gaugino mass operators are small.

In models with low-scale mediation, the RG flow of the SM gauge couplings is not nec-
essarily altered; the strong coupling region may only affect matter in the SUSY-breaking
sector, which is uncharged under the SM gauge groups. SUSY-breaking messengers, charged
under the SM gauge group, might not experience strong coupling depending on the dynamics
of their couplings to the hidden sector. Even if the RG flows are modified, gauge unification
can be maintained provided the matter content and couplings of the messenger sector are
GUT compatible.

To clarify some of these issues we consider the example of the ISS model, previously
described in Section Although we do not provide a full model (for example, a mediation
mechanism) or calculation of anomalous dimensions, this is a good candidate for a theory
which might remain strongly coupled for an extended energy range if the theory is close to the
edge of the ‘conformal window’, that is, F' is close to %N [326]. As usual, the UV description
consists of SQCD with massive quarks, of mass m, in the window N +1 < F' < %N . The
magnetic theory superpotential is of the form given in Eq. . Typical supersymmetric
and non-supersymmetric masses in the theory are ~ hu, while directions which are pseudo-
moduli (including the scalar components of the multiplets that obtain F-terms) only obtain
masses at one loop of size ~ h2p.

Since it is not fixed by the duality, we suppose the constant h happens to be small in
a particular theory. In this case the hierarchy of masses is as shown in Fig. and the
theory has a significant separation between the onset of the strong coupling region, the scale
of the F-terms in the theory and the masses of the fields, as might be expected to occur
if the theory is close to the conformal window. Supersymmetry breaking occurs somewhat

after the beginning of the strong coupling region. The masses of states in the sector are
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Figure 6.5: The mass scales in the ISS model, Figure 6.6: A schematic setup which could lead
which may (once a complete model, including to hidden sector renormalisation, near the weak
messenger sector, is specified) be a candidate scale, in a model with high-scale mediation. The
for a theory with low-scale mediation and sig- strong coupling region may be approximately
nificant hidden sector renormalisation. The pa- supersymmetric depending on the interactions
rameters are as defined in the text. between the sectors.

suppressed relative to the SUSY-breaking scale, and therefore the theory remains dynamical
until these masses are reached. Additionally, above the scale of the soft masses the theory
some interactions of the theory may remain approximately supersymmetric, even though
the energy scale is below v/F. Below the soft masses the theory is non-supersymmetric but
remains dynamical until the masses of the lightest states are reached. Consequently, although
we have certainly not analysed this theory properly, it is at least a reasonable candidate for

giving significant hidden sector renormalisation.

High-Scale SUSY-Breaking

It is also possible to build models with high-scale SUSY breaking and mediation. This case
is slightly different, since the SUSY-breaking sector, which is typically dynamical only for a
few orders of magnitude below v/F, cannot be the strong coupling sector. However, hidden
sector renormalisation can reduce fine tuning if the messenger sector of the theory is more
complicated than usual, and becomes strongly coupled near the weak scale. While the setups
involved may seem more contrived than the low-scale case, they are still interesting.
Suppose the theory is as shown in Fig.[6.6] The visible sector is coupled to the supersym-

metry breaking sector indirectly, through a sector with light states which themselves couple
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Figure 6.7: A diagram that can lead to visible sector gaugino masses in a model with high scale SUSY
breaking. The fields 11 2 and ¢; 2 are the fermions and scalars in the messenger chiral multiplets ¥ o
and have masses near the TeV scale. Even though the SUSY-breaking scale is high, the messenger
multiplets may remain approximately supersymmetric and dynamical until close to the weak scale.
Consequently hidden sector renormalisation can reduce the theory’s EW fine tuning. Visible sector
scalar soft masses squared are be generated through higher loop-order diagrams.

to the SUSY-breaking sector through heavy mediators. If the sector containing light states

becomes strongly coupled, the visible sector soft mass operators can still gain large anoma-

lous dimensions. The strong coupling sector is supersymmetric until a scale mi — which
can be close to the visible sector soft masses and the weak scale. Depending on the model,
the strong coupling region may or may not be supersymmetric. A particularly attractive
scenario is if the soft masses in the light messenger sector cause the sector to leave the strong
coupling regime, so that both are close to the weak scale in a correlated fashion. Depending
on the details of the particular model, the scale of mediation can be high (near the mass of
the heavier set of messengers), or low, around the mass of the lighter messengersﬁ In these
models the RG flow of the SM gauge couplings will be altered, since the messengers, which
are charged under the SM gauge groups, gain large anomalous dimensions which affect the
beta functions through Eq. ﬂ However, gauge unification can persist if the couplings
and matter content respect an underlying GUT structure.

For example, suppose a theory contains messenger chiral superfields, W1 and Vs, charged

under the SM gauge groups, with a supersymmetric Dirac mass, miyignt, of order 10 TeV,
LD /d20 mlight‘l’l‘lJZ . (68)

The SUSY-breaking sector is parameterised by a spurion X, which obtains an F-term (X) =

62F. Further, assume the theory contains heavy fields with typical masses of Mheavy, Which

8The former resembles ordinary gauge mediation, in which visible sector scalar soft masses are generated
at the messenger mass scale, despite coupling to the messengers through light gauginos and gauge bosons.

9This will also slightly modify the RG flow of the physical gaugino masses, but does not have a significant
effect on the fine tuning of the theory.
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couple the messengers to the SUSY-breaking sector for example through some new gauge

group, although we do not specify the interactions. These induce SUSY-breaking masses

F
Mheavy

of typical size in the messenger scalars. Soft masses are generated in the visible
sector, through diagrams of the form of Fig. [6.7] for gauginos and similar diagrams for the
scalar masses. Since the messenger multiplets have masses near the weak scale, they remain
dynamical down to low-energy scales. If their interactions are such that they run into a
strong coupling regime near the weak scale (for example, if they are charged under some

additional gauge group that becomes strongly coupled) the visible sector soft mass operators

can obtain a large anomalous dimensions, leading to hidden sector renormalisation.

Other model building possibilities

While we have focused on the benefit of hidden sector renormalisation for fine tuning, there
are also potential benefits for building models of SUSY-breaking. A very common issue
encountered in theories with dynamical SUSY-breaking is generating weak scale gaugino
masses which are not suppressed relative to sfermion masses, leading to unacceptably large
tuning if collider constraints are to be satisfied. Suppressed gaugino masses appear because
an R-symmetry is a necessary condition for SUSY to be spontaneously broken [126]. Such
an R-symmetry however forbids gaugino masses, and even if it is spontaneously broken it
is often not broken strongly enough. Alternatively, a metastable SUSY breaking vacua may
be obtained in a sector with an approximate R-symmetry. Even here, obtaining both a
sufficiently long lived vacua and heavy enough gauginos, makes model building challenging
[127]. The theories initially studied, with all chiral multiplets getting a large anomalous
dimension in the strong coupling region allows for scalars to start off heavy, yet end up
lighter than the gauginos at the weak scale, alleviating this problem without introducing fine
tuning.

Finally, if Dirac gauginos are combined with hidden sector renormalisation, in such a way
that the theory is in strong coupling for most of the energy region between the masses of
the sgauge and gauginos, there is a double suppression of the tuning. It is possible to obtain
gluino masses of order 10 TeV without any appreciable fine tuning. While it is remarkable
that there may be such little tuning from this sector of the theory, this does not greatly
improve the overall fine tuning of the theory. Even with the extended set-ups to reduce

sfermion fine tuning discussed in this section, the overall tuning of the theory is still typically
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20 due to the initial Higgs soft mass and p parameter required to obtain the correct EW
VEV.

There is an interesting additional feature in models with Dirac gauginos that may be
helpful with model building, the visible sector retains an R-symmetry. Suppose the theory
has an unusual mediation structure such that v/F is below the strong coupling scale. Then
the hidden sector passes close to a superconformal fixed point, and necessarily has an almost
exact R-symmetry [262,|327]. This can be identified with the R-symmetry in the visible

sector, allowing the anomalous dimensions of operators to be evaluated.
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Chapter 7: Concluding remarks

In this work we have studied the properties of so called natural SUSY theories, in which only
the third generation sfermions, charginos, and neutralinos are light. In Section [3] we built
a model of SUSY breaking and mediation that leads to a viable natural SUSY spectrum.
While many such models have previously been constructed, the model here has a number
of attractive features. In particular, we proposed that a single, spontaneously broken, U(1)
gauge symmetry may be responsible for suppressing both the first two generation Yukawa
couplings, and also, in a correlated manner, parameters in the dynamical SUSY breaking sec-
tor. In the dynamical SUSY-breaking sector, these small parameters are typically required
to introduce R-symmetry breaking in a controlled manner and obtain phenomenologically
viable meta-stable vacua. The heavy U(1) multiplet mediates a dominant contribution to
the first two generation MSSM sfermion soft masses, while gauge mediation provides a para-
metrically suppressed soft term contribution to the stop and most other states, so realising
a natural SUSY spectrum.

However, a Higgs boson as heavy as 125 GeV can be difficult to explain in natural SUSY
spectra, due to the relatively light stops. The NMSSM is an attractive framework for raising
the Higgs mass. We studied this in Section [4] and found that for very light stop masses,
Ao 2 0.7 is required to obtain the desired Higgs mass and for such large values of A at
the weak scale the coupling will generally become strongly coupled before unification. A
coupling becoming strongly coupled before unification raises the concern that successful gauge
coupling unification may be adversely affected. However, on the contrary, we argued that
gauge coupling unification could actually be improved given a short period of strong coupling.
In these advantageous cases, the strong coupling regime corresponds to a threshold effect of
sign and size expected to be of the right order to correct the current 3% discrepancy between
the two-loop MSSM prediction for as(mz) and its measured value. Moreover, we argued
that in scenarios where vy, < vm,, a period of strong coupling could also be beneficial for
t — b unification.

Given that the motivation for natural spectra is to obtain low EW fine tuning, it is
interesting to study the extent to which this can actually be realised. In Section 5] we carried
out a careful study of the fine tuning in such theories, improving previous approximation
expressions. We obtained lower bounds on the fine tuning of theories for a given gluino mass.

For models with high-scale mediation, if there is a Majorana gluino mass of 2 TeV the fine
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tuning is at least 400, and only constrains the UV stop mass to be below 1.5TeV. After
running to the weak scale, the stop mass can be up to 2 TeV without affected the fine tuning,
and the largest regions of parameter space with the lowest fine tuning have fairly heavy IR
stop masses of 1.5 TeV. Models with low scale mediation and a 2 TeV Majorana gluino have
a fine tuning of at least 50, and the UV stop mass is constrained to be below 500 GeV. After
running, the regions with the lowest fine tuning have IR stop masses up to 1.4 TeV.

Consequently, models compatible with LHC bounds can typically raise the Higgs mass
to 125 GeV in the regions where they have the lowest fine tuning, either through stop loop
corrections (with significant A-terms), or in NMSSM theories without couplings that run
non-perturbative. Additionally, in both high- and low-scale mediation models, the masses
of the first two generation sfermions may be made very large, far out of reach of the LHC,
without introducing additional fine tuning to the theory. We also discussed fine tuning
in models of Dirac gluinos. These are found to allow for spectra with moderate fine and
significant separation of the gluino and stops, comparable to MSSM theories with very low
scale mediation, even if the scale of mediation is high.

Finally in Section [6] we considered the effect of relaxing the usual assumption that the
RG flow of the soft masses is fixed by the visible sector matter and interactions. It was
found that the EW fine tuning can be significantly reduced by the effect of hidden sector
renormalisation in models where the SUSY breaking sector runs through an extended period
of strong coupling not far from the weak scale. In the simplest implementation, the fine
tuning with respect to the gluino mass may be reduced from order 1000 to order 10, however
there is no improvement in the tuning with respect to the sfermion masses. More complicated
models, where the Higgs has additional couplings to the SUSY breaking spurion, may reduce
the tuning with respect to all parameters of the theory to the region of 20. In this work we
simply parameterised the hidden sector through assumed values of anomalous dimensions,
and it is clearly an important challenge to build models of the hidden sector with appropriate

dynamics.

122



Appendix A: Appendix A
A.1 Source of the Contact Operator

In this appendix we provide a justification for the interactions Egs. - - ) that are
crucial to our model in Section[3] In the pure field theory case this is obtained by integrating
out the heavy gauge multiplet, as discussed in [190] directly leading to an effective term in
the Kéahler potential
U [ 1y i i
£o>-Y 288 [atg gliiglis, (A1)

— my

’J
where ¢; and ¢; are any fields charged under the gauge symmetry. Alternatively this can be
regarded as the vector multiplet gaining a D-term. In the Stueckelberg case, the interaction
can also be understood in this way, however it is interesting to also understand it directly
from the Lagrangian. For a vector multiplet V', which gains a mass M through interaction
with a Stueckelberg field S, and is coupled to hidden sector fields ® and MSSM fields @ this

is given by:
/ d*o (@Te%g% + QTe®9V Q + M? (v + = (s ST)> ) . (A.2)

In the limit that M is much greater than any other mass scale in the theory, V may be inte-
grated out by solving g—[‘f = 0 with solution V = —(g/2M?) ((H@T@ +q0Q"Q + (S — ST)/gM).

Inserting this back into the original Kéhler potential leads to

/ 446 ( g q‘l’quﬂ@QTQ) (A.3)

The bilinear dependence of these terms on the charges justifies the claim in the text that

2 contribution to sfermion masses arises and

for a suitable charge assignment a positive mass
also that a sign difference in the charge of @3 relative to Q12 can lead to mass terms of the
opposite sign. In the string context we expect M ~ gM, which results in the dependence on

the gauge coupling dropping outE] Finally, higher terms in the expansion occur, e.g.,
1, (924390
/ d*e <M4c1>T <I>Tc1>c1>QTQ) . (A.4)

Such terms, however, are harmless in the relevant parameter range for our discussion.

1The limit ¢ — O is obscured by these terms as the mass scale M ~ gM. is no longer large. In the leading
and sub-leading terms we have dropped a overall model-dependent coefficients.
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A.2 Gauge Mediated Contribution to Soft Masses

In Sections [2| and [3| an approximate expression for the gauge-mediated contribution to soft
masses was quoted. Here we give the precise formulae as used in our numerical studies and
figures in Section [3]

The two contributions, Eq. and Eq. in the Polonyi case, and Eq. and
Eq. in the ISS case, result in a messenger scalar mass matrix (assuming ¥ and ¥¢
have the same U(1) charge; the analysis is straightforwardly extended to other cases) of the

form

m12ness + m%( Feff v

£ (ot wl) e (A5)

Feyy m2 . + M3 e
where Mmupess 1S the supersymmetric mass of the multiplet, mg is the mass due to the Kéhler
interactions, and F,y is the effective F-term felt by messengers through the superpotential.
Hence, the messenger scalar mass eigenstates are given by % (ﬁf + \17‘3) with masses

m%,Q = (m%U sy + m%( + Foy f), while the messenger fermion masses are simply my = mgsysy .

Gaugino masses are generated through the normal diagrams of gauge mediation, and are given

(6% m2 m2 m2 m2
my; = 4—anm =" log| = |- |25 ]log|—=2]] . (A.6)
7r mi —mj my ms — mj my

which reduces to that commonly found through analytic continuation [89] in the limit F ;>

by

m%( and Forr < m%USY . However, for the values of parameters we are interested in, these
conditions are not satisfied and the full expression (A.6)) is required.
The contribution to sfermion masses from gauge mediation with these messenger masses

is given by

2
@
méauge = Z <47r> Cinm [g(m1,ma,mys) + h(my, ma, mys, Ayy)] . (A7)

i
Here C; is the quadratic Casimir of the scalar and
2

A
h (mi,ma, mys, Auy) = — (2m% +2m3 — 4mfc> log <7§2V> , (A.8)
f

while g(m1, mg, my) is the contribution from the normal diagrams of gauge mediation whose
lengthy explicit form is given in [134]. As also discussed in [134], the non-vanishing supertrace
of the messenger sector results in a negative contribution, described by h (m1, ma, my, Ayv).
due to the need to include a counterterm for e-scalar masses in dimensional reduction. The

scale Ayy is the mass at which additional states charged under the MSSM gauge group
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appear resulting in a vanishing supertrace. For our theories this is naturally Ayy = M,.
Due to their large mass these extra states do not contribute significantly to MSSM masses
as messengers of gauge mediation.

Unlike gaugino masses, sfermions gain significant masses from gauge mediation even when
the messenger masses are dominated by the diagonal Kéhler contribution. The reason for
this is clear: the Kéhler contribution is effectively a D-term mass and does not break an

R-symmetry, which protects gaugino masses but not sfermion masses.
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