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Abstract
This article investigates the influence of theGeneralizedUncertainty Principle (GUP) on the emission
ofHawking quanta in a rotating linear dilaton black hole spacetime. The study proposes aGUP-
reinforced black hole thermal emissionmodel that takes into account the quantum tunneling process
withGUP effects. The result obtained for the corrected temperature suggests that temperature of the
GUP-reinforcedHawking radiation decreases with the increasingGUPparameter and gets higher
values with the increasingmass of the black hole. The study also discusses the implications of these
findings on the corrected entropy and hence the information loss paradox, and the potential for
experimental verification ofGUP effects in astrophysical observations. Overall, this work highlights
the significant role of GUP in the thermal emission of non-asymptotically flat stationary black holes
and can shed light on the intricate interplay between quantumgravity and astrophysics.

1. Introduction

Black holes [1] are intriguing objects that are of great interest to physicists due to their unique properties and
their potential for shedding light on fundamental questions in physics, such as the nature of spacetime and the
behavior ofmatter under extreme conditions. The studies on black hole thermodynamics [2] have long been a
subject of fascination and debate among physicists. One of the key phenomena in thisfield isHawking radiation,
which describes the emission of particles by black holes due to quantum effects. Despite its groundbreaking
implications for the understanding of the nature of spacetime,Hawking radiation [3] remains one of themost
challenging andmysterious aspects of black hole physics. Because the precisemechanismunderlyingHawking
radiation is still a subject of active research andmany open questions are on the agenda of the current literature.

GUP [4–7] is amodificationof theHeisenberg uncertainty principle that arises from the interplay between
quantummechanics andgravity.GUPpredicts that there is a fundamental limit to the precisionwithwhich certain
pairs of observables, such as position andmomentum, canbemeasured. In recent years, there has been growing
interest in the role ofGUP in thedynamics of black holes (see for example [8–13]). The implications ofGUPeffects
on thedynamics of black holesmodify the emissionofHawking radiation (for a topical review, the reader is referred
to [14] and references therein). GUPhas been shown tomodify the entropy of black holes and to play a role in
resolving the information loss paradox [15–17], which is one of themost challenging problems in theoretical
physics. The information loss paradox suggests that the quantummechanical information contained in amatter
that falls into a black hole is lost forever, leading to a violation of unitarity and a breakdownof the lawsof quantum
mechanics [18].However,GUPeffects canpotentially resolve this paradox by leading to corrections to the black
hole entropy that dependson thePlanck length,which is the fundamental length scale of quantumgravity [19].

Among the notable studies about theGUP, [20] discusses an investigation into the quantum tunneling of
massless particles through the quantumhorizon of a Schwarzschild black hole. This study takes into account
quantumgravity effects with the incorporation of natural cutoffs, including aminimal length,minimal
momentum, andmaximalmomentum through aGUP. The research focuses on potential correlations between
emitted particles to address the information loss problem. The role of these natural cutoffs in influencing the
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tunneling rate through the quantumhorizon is also explored.Moreover, [21] explores the implications of the
GUPonHawking radiation and the final stages of black hole evaporation. By integrating theGUP into the
quantum tunneling process based on the null-geodesicmethod, correlations emerge between the tunneling
probabilities of differentmodes in the black hole radiation spectrum. This leads to the encoding of quantum
information inHawking radiation, allowing for potential non-thermal GUP correlations to recover the
information. And [22] compares the tunneling rates from the two horizons and highlights the significant impact
of the quintessencefield on the thermodynamics and behavior of the black hole. Quantumcorrections due to the
quintessencefield influence the horizon locations and prevent the singularity’s approach, ultimately leaving
behind a Planck scale remnant with quintessence content.

Rotating linear dilaton black holes (RLDBHs) [23–25] are a type of black hole solution in theoretical physics
that have garnered attention in recent years due to their potential to shed light on some of themost fundamental
questions in astrophysics and cosmology [26, 27]. In this study, wefirst re-explore the physical properties of
RLDBHs, which are spinning on their axis. In addition to themass and spin, the RLDBHs are also characterized
by the background charge.One of the intriguing properties of the RLDBHs is their potential connection to dark
matter [28–30].Meanwhile, the darkmatter [31] is a hypothetical formofmatter that is thought tomake up a
significant portion of the totalmatter in theUniverse, butwhich does not interact with light and thus cannot be
directly observed.On the other hand, dilaton is a scalarfield that arises in string theory is thought to permeate all
of space and play a role in the formation of black holes [32].Moreover, recent studies have suggested that the
dilatonfieldmay be related to darkmatter and for this reason, as stated above, the RLDBHs could be a potential
candidate for explaining some of the properties of darkmatter. It is alsoworth noting that the dilaton field could
interact with darkmatter particles in such away as to give rise to a force that affects themotion of stars and
galaxies, leading to the observed effects of darkmatter like the rotational speeds of galaxies, which aremuch
higher thanwhat can be accounted for by visiblematter alone [33, 34].

The structure of this work is as follows. In the current section (1), we review some basic information about
theHawking radiation, GUP analysis, RLDBH spacetime, and its fundamental properties. In section (2), we
introduce themetric of non-asymptotically flat (NAF)RLDBH spacetime and analyse its some physical features.
In section (3), we employ the Parikh-Wilczek’s quantum tunnelingmethod [35] for the RLDBHmetric and
showhow theHawking temperature of the RLDBH is computed. In the sequel, we study theGUP corrected
temperature and entropy of the RLDBH in section (4). Finally, we draw our conclusions in section (5).

Throughout the paper, unless stated otherwise, we use the geometrized (natural) unitsG= c= ÿ= kB= 1
and (+,− ,− ,− )metric signature.

2. Physical properties of RLDBH

This section provides a concise overview of the spacetime of RLDBH spacetime, whichwasfirst described byCl ́e
ment et al [23]. The theory of EMDA (Einstein-Maxwell-Dilaton-Axion) gravity can be considered as a
truncated formof the bosonic portion ofD= 4,N= 4 supergravity [36]. The EMDAgravity theory’s action can
be expressed as follows [23]:
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wheref and  represent the dilaton and the axion (pseudoscalar)fields, respectively. stands for the Ricci
scalar, F and F̃ denote the electromagnetic field strengths of the abelian vector fieldA and its dual, respectively.
In addition to the static black hole solution of the EMDA theory (1), [23] also provides an explicitmetric of the
RLDBH spacetimewithout the need for theNUT charge [37]:
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whereΔ= r2− 2Mr+ a2 and the other background fields are given by
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inwhich ( )c q= + -r a cos2 2 2 1 .Meanwhile, the physical parameters a and r0 denote the rotation and
background charge of the spacetime, respectively. In fact,metric (2)was derived from theKerrmetric by using a
particular solution-generating technique [23]. However, themetric represented by equation (2) differs in two
ways: its behavior as r approaches infinity is notflat, but the spacetimemetric is nothing but the static linear
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dilatonmetric. Its behavior near r= 0 is also distinct from that of theKerrmetric. In the case of the Kerrmetric,
a disk exists at r= 0 throughwhich themetric can be extended to negative r. Conversely, in equation (2), r= 0 is
a timelike line singularity. As a result, the Penrose diagrams of equation (2) are identical for all three cases
(a2<M2, a2=M2, and a2>M2), but are distinct from those of theKerr spacetime. Instead, they resemble the
Penrose diagrams of the Reissner-Nordström spacetime, where the charge is replaced by the angularmomentum
(or the rotation) parameter a.

Now,wewant to summarize the thermodynamics features of the RLDBH. First of all, it should be noted that
M appeared in the solution is no longer the ADMmass. To obtain the first law of black holemechanics, the
relevant thermodynamics quantities can be calculated by using themass computation of Brown andYork [38]
who formulated themass forNAF spacetimes. The quasilocalmass

~
M [39] of the RLDBH is associatedwith the

mass parameterM as follows

( )=~
M

M

2
, 6

and the angularmomentum J is given by

( )=J
ar

2
. 70

The statisticalHawking temperatureTRLDBH, the Bekenstein-Hawking entropy SRLDBH, and the angular velocity
ΩRLDBH of the RLDBHare given by [40]

( )k
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where =  -r M M a2 2 are the locations of the outer (event)horizon and the inner horizon, respectively.
With the thermodynamical quantities given above, one can check that the first law of black holemechanics holds
for the RLDBH:

( )= + W~
dM T dS dJ. 11RLDBH RLDBH RLDBH

It should be noted that the electric charge:

( )=Q
r

2
, 120

does not appear in the above thermodynamics relation. The differentiations seen in equation (11) are performed
by keepingQ as afixed value, which is a characteristic feature of linear dilaton backgrounds. Namely, the electric
chargeQ is nothing but the background charge (a reader can refer to [23] formore information).Moreover, the
extremality condition is given byM= a and the entropy [41] at extremality reads

( ) ( )p= =S T r a0 . 13RLDBH 0

As can be seen from above, for extremal black holes, the event horizon area is at itsminimum, implying that
the entropy associatedwith these black holes is alsominimized. Thus, the entropy of an extremal black hole is
typicallymuch smaller than that of a non-extremal black hole (10).

3.Hawking radiation of RLDBHvia quantum tunneling process

In the context of black hole physics, the event horizon is the boundary beyondwhich nothing, not even light, can
escape. According to quantummechanics, particles can exhibit wave-like behavior and have a certain
probability of crossing energy barriers that would be classically forbidden. This phenomenon is known as
quantum tunneling. On the other hand, theWKB (Wentzel-Kramers-Brillouin) [42] approximation is a
semiclassicalmethod that allows us to calculate the tunneling probability of a particle through a barrier. It is
based on the assumption that the particle’s wave function can be approximated as a rapidly oscillatingwave in
some regions and a slowly varyingwave in others.

The tunneling rate of an s-wave from inside to outside the black hole horizon in the framework of theWKB
approximation1 is given by [43]

( ) ( )G = G -exp 2 Im , 140 

1
Details about themethodology used in this section can be found in [58].
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inwhich  is the action of the tunneling particle andΓ0 denotes the normalization factor. Since a black
hole’s radiation conforms to the law of Boltzmann distribution in a classical sense, i.e. as a blackbody radiation, it
is possible to describe the rate at which the energetic particles are emitted from the horizon of a black hole as
follows:

( ) ( )bG = G -exp , 150 

where b =
T

1 is the inverse temperature (T) and is known as the Boltzmann constant [3]. After that, the
imaginary part of a tunneling particle’s action in terms of an s-wave can be estimated as [10, 11]:

( )
( )

( )

( )

( )

ò ò ò= = ¢
- -

p dr dp drIm Im Im , 16
r M

r M

r
r M

r M p

r
0h

h

h

h r


 

where rh is the distance from the black hole’s center (rh(M)= r+ and ( )- < +r M rh  ),M stands for the original
overallmass of the black hole, while -M  denotes the resultantmass of the black hole subsequent to the
emission of radiation caused by the particle with energy  being tunneled away. By employingHamilton’s
equations ofmotion, we arrive at the following outcome:
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It is worth noting that themajority of the radiation spectrum is often held by zero-mass particles since black
holes typically have very lowHawking temperatures [43]. A tunneling particle with negligiblemass travels along
a radial path characterized by a null geodesic in the context of an s-wave.

The genericmetric expression of the RLDBH spacetime (2) can be redefined as follows
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It is reasonable to assume that the radiation emanating from a spinning black holemaintains spherical
symmetry for an observer at spatial infinity. This enables us to continue describing the process of tunneling for
rotating black holes using the s-wave approximation.However, as a particle tunnels through the event horizon
of a rotating black hole, it will come into interactionwith the black hole’s spin and become influenced by it. In
such a scenario, a tunneled particle will consequently displaymotion in theψ directionwith a non-zero rate of
change, denoted as dψ≠ 0. To counteract thismotion, we can adopt a reference frame that rotates alongwith
the black hole’s horizon over time. For this purpose, we employ a rotational coordinate transformation:

( )y y= ¢ + W t, 26h

whereΩh represents the rotational speed of the event horizon of a spinning black hole:

( )W = y

yy =

g

g
. 27h

t

r rh

Fromhere on, we set rh= r+ to represent the event horizon of the RLDBH.Observers at the horizon in a co-
rotating reference systemwillfind that the black hole’s angular velocity, denoted asΩh, is zero:Ωh(rh)= 0. This is
because they are unable to detect the black hole’s revolution due to their proximity to the event horizon. In such
a co-rotating reference system, a particle will not experience a pulling effect caused by the spinning of the black
hole. This is because the tunneling of a particle occurs at the horizon spontaneously. As a result, the particle
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undergoing tunneling does not display anymotion in the degrees of freedom represented by y¢. Therefore, it is
reasonable to assume y¢ =d 0, indicating that there is no change in the y¢ coordinate as the particle tunnels
through the horizon.

On the other hand, to examineHawking radiation in a quantum tunneling framework, let us reconsider the
RLDBHmetric given in equation (20) in the co-rotating reference system and set θ= 0.Whence,metric (20)
becomes
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q=ds
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On the horizon, grr is singular, andwe have to remove that coordinate singularity. For this purpose, we pass
to the Painlevè coordinate system [44]:
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As is well-known, in the case of null geodesics, i.e. ds2= 0, we obtain
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After substituting equations (32) in (19), the imaginary part of the tunneling particle’s action becomes
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By simultaneouslymultiplying the numerator and denominator of the integrandwith 2− χ, one gets
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For themetric of a four-dimensional rotating black hole, because grr is singular on the horizon, generally, we can
write grr in the following form
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which is a function regular on the horizon. By substituting equations (36) into (35), wefind out
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In equation (38), the parameter rh currently represents a pole of the expression being integrated. By
introducing a slight imaginary component to the variable r and allowing the integration path to encircle the pole
along a semicircular route, one can compute the integral of dr. This process leads to the following outcome:
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One can reasonably infer that the energy  of the tunneling particle is significantly smaller than the total
massM of the black hole, specifically  M . As a result, in equation (39), the expressionwithin the integral can
be approximated to a constant. Consequently, we arrive at the following outcome:
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Since ( ( ) ( )) r g r, 0tt
rr around the event horizon (rh), we can expand them as follows
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where ‘K’ seen in equations (41) and (42) present the high order terms of ( )-r rh and ‘′’ symbol denotes the
derivative with respect to r. From equation (42), we get
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Inserting equations (41) and (42) into (40) andmaking some arrangements, one can compute the near-
horizon formof the action
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Using equation (44) in the tunneling rate expression (14), which can be cast in the formof equation (15) that
includes the Boltzmann constant, we get
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Aftermatching equations (45) and (44), one can derive the surface gravity:
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which yields the surface temperature of the RLDBH:
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Equation (47) has been computed from the quantum tunneling approach.However, by using the timelike
Killing vectors [43], the surface gravity of the RLDBH spacetime can be computed as follows
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Referring to laws of black hole thermodynamics [45], it is well-known that at the event horizon, ( )k rh remains
constant. Thus, one can evaluate it at an arbitrary angle θ0. By substituting equations (41) and (42) into (48), we
obtain

( )
( ) ( )

( )k =
¢ -

r
r z r

2
. 49h

tt h h
1

Aftermaking a quick comparison between equations (46)with (49), it can be easily seen that the surface gravities
obtained are equal to each other.On the other hand, as is well-known, ( )k rh is a constant on the horizon.
Therefore, the explicit result for the surface gravity of the RLDBHobtained from equation (49) should not
depend on the parameter θ. Namely, the surface gravity and theHawking temperature expressed in
equations (46) and (47), respectively, will not be affected by the parameter θ.

4.GUP-corrected temperature and entropy of RLDBH

GUP is an extension ofHeisenberg’s uncertainty principle, which takes into account quantumgravity effects
[13, 46]. It suggests the existence of aminimumobservable length, leading tomodifications in the uncertainty
relations between position andmomentum. In recent years, researchers have been exploring the implications of
theGUPon various physical phenomena, including black hole thermodynamics. Specifically, they have
investigated how theGUP corrections affect the entropy of charged and/or rotating black holes. Based on this
point, in this section of our paper, wewill examine the effects of theGUPon the entropy of RLDBH. To this end,
let us consider the Lense-Thirring effect, which is a discernible gyroscopic precession [47] and can be obtained
by the dragging coordinate transformation (26) that yields the followingmetric:
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TheKlein–Gordon equation (KGE)withGUP for a scalar fieldΨ takes the following form (see [14, 48, 49]
and references therein for the details):
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wheremp andαGUP denote themass of the scalar particle and theGUPparameter, respectively. The semi-
classicalWKB approximationmethod can be applied to solve the generalized KGE (51) [50]. To this end, one can
use the following ansatz:

⎛
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where S(t, r, θ,ψ) denotes the outlawed action of tunnelling. To account for the symmetries ofmetric (50), we
canmake use of the followingHamilton-Jacobi ansatz [51] for the action:

( ) ( ) ( ) ( )q y q y= - + + + +S t r Et W r K j C, , , , 53

whereC is a complex constant, E stands for the energy, and j denotes the angularmomentumof the particle [52].
By substituting action equations (53) into (52), one obtains (in the leading order of ÿ):
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Thus, the radial part (by disregarding the higher order parts ofαGUP) yields the following integral solution:
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inwhich, recall that,Δ= r2− 2Mr+ a2. Afterward, the contour can be deformed to calculate the integral
encircling the singularity at rh. This provides the opportunity to attain the following expression:
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Consequently, theHawking temperature of the RLDBHcan be determinedwith the assistance of theGUP as
follows
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Regarding to the above expression, whenαGUP approaches zero, theGUP-modifiedHawking temperature
reverts the temperature back to the originalHawking temperature (8). As can be seen fromfigure 1, as themass
of black holes increases, theGUP effect (αGUP) becomesmore pronounced and exhibits performance in the
direction of reducing theHawking temperature.

According to quantumphysics textbooks, the conventionalHeisenberg uncertainty principle (ΔxΔp� 1)
and its saturated counterpart, asmentioned in [53, 54], are derivedwhen theGUP effect is not existed
(αGUP= 0):

( )zD x 1, 58

where ζ represents the energy of quantum-scale particle. On the other hand, by taking account of theGUP, the
quantumgravity corrected (QGC) energy is given by [55]
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By refering theworks of Anacleto et al [53, 54], the quantum tunnelling rate for a quantumparticle with ζQGC is
given by

⎡
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whereTQGC represents theQGC temperature and it reads

⎡
⎣⎢

⎤
⎦⎥( )

( )a a
= -

D
+

D
+

-

T T
x x

1
2

... . 61QGC H
GUP GUP

2

2

1

In the light of the current investigations [53, 54], we can attribute the change in x, denoted asΔx, to
p
Ah inwhich

Ah represents the area of the event horizon. Therefore, by applying thefirst law of black hole thermodynamics,
theGUP corrected entropy can be calculated as follows:
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bywhich SGUP
RLDBHwas given in equation (10). At this stage, wewould like to provide information about the

significance of themodified entropy. As is well-known, the entropy of a black hole is directly related to the
number ofmicrostates that correspond to a givenmacroscopic configuration. The information loss paradox
comes into play becauseHawking radiation appears to be thermal and lacks specific correlations to the
information that fell into the black hole [15, 56]. This raises questions aboutwhether the information about the
initial state of thematter that formed the black hole is truly lost or whether it can somehowbe encoded in the
radiation. This contradicts the principles of quantummechanics, which dictate that informationmust always be
conserved. By incorporating theGUP into the calculation of black hole entropy, the corrected entropy provides a
modified description of themicrostates available to a black hole. Thismodification helps address the
information paradox by suggesting that black holesmay retain some remnants or traces of the information they
have absorbed (see for example [15, 57]). It is clearly evident infigure 2 that entropy decreases with the increasing
αGUP parameter in comparison to a samemassive RLDBH.On the other hand, the decrease in entropy increases

Figure 1.TGUP
RLDBH versusM plots for variousαGUP values. The plots are governed by equation (57). The physical parameters are chosen

as a = 5,mGUP = 0.01, and r0 = 1.
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the likelihood of information leakage from the black hole. This finding for the RLDBH further supports our
previous study [57], which is about the static linear dilaton black hole (SLDBH) [57] had also shown us that the
quantumgravity effects play a crucial role in the presence of a nonzero statistical correlation and in resolving the
information paradox for the SLDBH. In short, the physical importance of theGUP-corrected entropy lies in its
potential role in reconciling the behavior of black holes with the principles of quantummechanics. It presents a
potential solution to the information paradox and adds to our comprehension of the underlying characteristics
of spacetime and gravity on a quantum scale.

5. Conclusion

This paper has examined the quantum thermodynamics of the RLDBH. The study has focused on twomain
objectives: (1) determining theHawking temperature of the RLDBHby employing the null-geodesic tunneling
technique proposed by Parikh andWilczek [35], and (2) calculating themodified temperature and entropy of
the RLDBHassociatedwith theGUP. To accomplish these objectives, we implemented the utilization of
dragging coordinate systems.Within this particular type of coordinate framework, the spacetime of a rotating
black hole in four dimensions has been compressed into a three-dimensional cross-section [58]. In order to
maintain the inherent topology of spacetime, a coordinate system thatmoves in tandemwith the event horizon
is utilized. This approach effectively eradicates the impact of the angular parameter (ψ) of a tunneling particle.
The results obtained have shownus that the temperature of RLDBH’s emitted thermal radiation, as determined
through the quantum tunneling approach, is in agreement with the statistical Hawking temperature (8). Thus,
we have effectively demonstrated the complete separation of theKGE coupledwith theGUP in the context of a
massive scalarfield propagationwithin the geometry of the RLDBH. This separation has been realized through
the utilization of theHamilton-Jacobimethod.Our attention then pivots to the framework of quantum
tunneling, wherewe have accurately computed theHawking temperature, asmodified by theGUP, for the
RLDBH, as denoted by equation (57).Moreover, leveraging the entropy derived from theGUP, as presented in
section 4, we have also obtained theHawking temperature for theQGC scenario, which has been expressed by
equation (61). Notably, both temperatures converge to the standardHawking temperature (8)when theGUP
effect is no longer applicable (i.e.αGUP= 0). Similarly, as shown infigure 2, it was indicated that the SGUPRLDBH

decreases with the increasingαGUP parameter compared to an equallymassive RLDBH,which implies an
increased likelihood of obtainingmore information from the respective black hole, referring to our previous
study [57] on the SLDBH.Overall, we have shown thatGUPhas ameasurable influence onHawking radiation,
which could potentially leave subtle signatures in the energy spectrumor other characteristics of the radiation.

Figure 2. SGUP
RLDBH versusM plots for variousαGUP values. The plots are governed by equation (62). The physical parameters are chosen

as a = 5 and r0 = 1.
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Future space-based observatories, such as the planned Laser Interferometer Space Antenna (LISA) [59, 60]
mission,may provide opportunities to study black holes and their radiation inmore detail, potentially enabling
the detection ofGUP effects.

In our future research, we intend to broaden the investigation of theGUP-modified thermal radiations from
particles with various spin- { }=s 0, , 1, , 21

2

3

2
to encompass some particular black holes, utilizing the

frameworks of both the rainbow [61, 62] and bumblebee [63] gravity theories. These theories arise from the
realmof quantumgravity and introduce deformations in spacetime as well as violations of the Lorentz
symmetry. By delving into these effects, our goal is to uncover new insights that enhance our understanding of
quantumgravity theory and shed light on the implications they have for the phenomenon of Lorentz symmetry
breaking.We shall also plan to focus on a comprehensive exploration of the potential correlations between two
particles emitted from the RLDBH. In particular, by inspiring from thework of [64], which investigated the
information loss problemof static linear dilaton BH,we aim to investigate the intricate concepts ofmutual
information processes and the remnant of RLDBHas potential sources for shedding light on the perplexing issue
of information loss. This line of inquirywill be a central component of our research agenda in the near future, as
we strive to contributemeaningful insights to the broader scientific community’s understanding of this complex
phenomenon.
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