

ηn Scattering Length from the $\gamma d \rightarrow p\eta n$ Reaction at $E_\gamma \sim 0.9$ GeV

Takatsugu ISHIKAWA¹, Hiroyuki FUJIOKA², Yuki HONDA¹, Tomoaki HOTTA³, Yosuke INOUE¹, Kenta ITAHASHI⁴, Hiroki KANDA⁵, Hideyuki KAWAI⁶, Kazushige MAEDA⁵, Manabu MIYABE¹, Seiya MIYATA⁷, Yuji MATSUMURA¹, Norihito MURAMATSU¹, Hiroaki OHNISHI⁴, Kyoichiro OZAWA⁸, Mizuki SASAGAWA¹, Hajime SHIMIZU¹, Ken'ichiro SHIRAISHI¹, Makoto TABATA⁶, Atsushi O TOKIYASU¹, and Yusuke TSUCHIKAWA⁹

¹Research Center for Electron Photon Science, Tohoku University, Sendai 982-0826, Japan

²Department of Physics, Kyoto University, Kyoto 606-8502, Japan

³Research Center for Nuclear Physics, Osaka University, Ibaraki 567-0047, Japan

⁴RIKEN Nishina Center, Wako 351-0198, Japan

⁵Department of Physics, Tohoku University, Sendai 980-8578, Japan

⁶Department of Physics, Chiba University, Chiba 263-8522, Japan

⁷Department of Physics, University of Tokyo, Tokyo 113-0033, Japan

⁸Institute of Particle and Nuclear Studies, KEK, Tsukuba 305-0801, Japan

⁹Department of Physics, Nagoya University, Nagoya 464-8602, Japan

E-mail: ishikawa@lns.tohoku.ac.jp

(Received September 28, 2016)

We plan to conduct a new experiment for the $\gamma d \rightarrow p\eta n$ reaction using the FOREST detector at the Research Center for Electron Photon Science, Tohoku University, Japan. The main objective is to determine the low-energy η -neutron scattering parameters. The photon beam with energies around 930 MeV can give the recoilless condition of η mesons by detecting the protons at 0° . The effects of the η -neutron final-state interaction must be enhanced due to the small relative momentum between an η meson and a residual neutron. In this contribution, the planned FOREST experiment is presented.

KEYWORDS: η - n interaction, recoilless condition, final state interaction, ...

1. Introduction

The interaction properties between a meson and a nucleon are fundamental and important in the non-perturbative QCD phenomenon. Among the two-body dynamics of the meson-nucleon systems, the interaction between the η meson and the nucleon (N) is not well known although it has been found to be attractive [1]. Neither direct η - N scattering experiments nor X -ray measurements from η -mesic atoms can be performed because the η meson is neutral and unstable. The η - N scattering length $a_{\eta N}$ has been extracted using coupled-channel analyses [2–5] from the differential and total cross sections for the $\pi N \rightarrow \eta N$ and $\gamma N \rightarrow \eta N$ reactions together with the $\pi N \rightarrow \pi N$ scattering and $\gamma N \rightarrow \pi N$ photoproduction reactions. Although the imaginary part of $a_{\eta N}$ is found to be ~ 0.26 fm for different analyses, its real part is scattered in a wide range from 0.4 to 1.1 fm. Fig. 1 shows the summary of the obtained imaginary and real parts of $a_{\eta N}$. The values are taken from Ref. [6]. The existence of the exotic η -mesic nuclei can highly depend on the value of the real part of $a_{\eta N}$ [7]. It should be noted that all the values are obtained indirectly from the theoretical analyses. Therefore, a direct $a_{\eta N}$ measurement has been desired from the experiment itself.