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Nontrivial Bianchi identities with local magnetic sources are solved by recognizing that gauge potentials
are sections rather than globally defined functions, but properly accounting for the source degrees of
freedom requires a modification of the field strength. Following work by Teitelboim and by Cariglia and
Lechner, we extend Dirac’s string formalism for monopoles to D-branes in type IIA and IIB string theory.
We give novel derivations of brane-induced Chern-Simons terms in the supergravity actions, including a
prescription for integrating over potentials in the presence of magnetic sources. We give a noncovariant
formulation of the IIB theory, keeping only the independent degrees of freedom of the self-dual 4-form
potential. Finally, it is well known that D8-branes source the mass parameter of IIA supergravity; we show
that the additional couplings of the massive IIA supergravity, including on other D-brane worldvolumes,

are a consequence of the corresponding Dirac branes.
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I. INTRODUCTION

In modern mathematical treatments, we recognize the
vector potential of a gauge theory not as a globally defined
function but as the section of a gauge fiber bundle [1,2]. In
somewhat more pedestrian terms, the vector potential can
be defined as different vector-valued functions in different
coordinate patches of spacetime as long as the distinct
vector potentials are related by a gauge transformation
on the overlap of the coordinate patches (we will refer to
this as “gauge patching” of the vector potential). Gauge
patching allows the description, for example, of a constant
magnetic field strength on a torus (the distinct patches
cover different unit cells) or the field of a magnetic
monopole (where the Bianchi identity dF, # 0 can have
no globally defined solution). Analogs of both these
examples for higher-rank form potentials are important
in string theory as harmonic background flux in compacti-
fications and higher-dimensional D-branes (and NS5-
branes) that carry magnetic charges for the fundamental
potentials. The coupling between the magnetic current and
the potential is implicit in the patching and does not appear
in the action for the magnetic charge.

An alternative that displays the coupling of magnetic
sources explicitly is to double the number of gauge degrees

“a.frey @uwinnipeg.ca

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010,/2020, 102(4)/046017(19)

046017-1

of freedom by introducing dual field strengths and corre-
sponding potentials. In this so-called “democratic” formal-
ism, the magnetic sources enter in the equations of motion
(EOM) for the dual potentials [3]." The extra degrees
of freedom are then removed by enforcing duality con-
ditions Fp_,_, = +*F ., at the level of the EOM. In the
democratic formalism, the action for magnetic charges
includes the same current-potential coupling as for electric
charges, so the EOM of the magnetic charges includes the
dual field strengths. Nontrivial Bianchi identities are
enforced by the duality conditions. As a result, democratic
formalisms still require gauge patching around magnetic
sources.

Because the gauge transformations in the transition
regions between gauge patches are part of the definition
of the potentials and also depend on the dynamical mag-
netic currents, the gauge potentials are not independent
degrees of freedom—they have a hidden dependence on
the magnetic brane degrees of freedom which should
be considered explicit in the language of calculus of
variations. In quantum mechanical language, we need to
separate the brane and gauge degrees of freedom to serve as
integration variables in the path integral.

Interestingly, Dirac [6] provided a solution in his early
work on magnetic monopoles,2 which Teitelboim [9],

'Including auxiliary fields to enforce duality constraints, the
ITIA and IIB supergravities are given in a democratic formalism in
[4,5] respectively.

In fact, for monopoles, [7,8] showed that Dirac’s formalism is
equivalent to defining potentials as sections in part by showing
that some gauge transformations move the Dirac string.

Published by the American Physical Society


https://orcid.org/0000-0002-3274-7438
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.046017&domain=pdf&date_stamp=2020-08-27
https://doi.org/10.1103/PhysRevD.102.046017
https://doi.org/10.1103/PhysRevD.102.046017
https://doi.org/10.1103/PhysRevD.102.046017
https://doi.org/10.1103/PhysRevD.102.046017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ANDREW R. FREY

PHYS. REV. D 102, 046017 (2020)

Bandos ef al. [10], and Lechner and co-workers [11-17]
extended to magnetic p-branes. The key idea is as follows:
Consider a field strength F 42 satisfying Bianchi identity
dF p+2 = P*jp-,—3 with f a sign convention. Any con-
served current can be written as *jp_,_3 = dxJp_ p_2,3 SO
a field strength defined as F,,, =dC,,\ + f*xJp_p2
satisfies the Bianchi identity; in this way, the magnetic
coupling appears in the action. There is actually one
additional subtlety when the branes fill all noncompact
dimensions; xjp_,_3 = d*Jp_,_, on a compact manifold
is inconsistent when there is net local charge, so we must
define instead *jp_,_3 — *j;)_p_3 =dxJp_p_n, Where
jg_p_3 is some specified reference current (see [18] for
details in the case of magnetic monopoles). Now, C,,; is
patched around the reference current, so dynamics of
Jp-p—3 do not affect the potential. The alert reader may
note that a Gauss law constraint means that the net charge
must vanish on a compact manifold, but in string theory
charge may dissolve in background flux, so the net charge
of local objects need not vanish. Reference currents are
necessary to account for this fact.

There are a variety of choices for the form J for a given
magnetically charged p-brane with worldvolume M
and current j,,. As described by [9], we can consider a
“Dirac (p + 1)-brane” with worldvolume N of boundary
ON = M — M*. Then J , the current of the Dirac brane,
satisfies d*J v = *(j g — jare)- As we will see below, both
the brane and Dirac brane currents are delta-function
supported. A less singular option for J used by [13-17]
is given by the Chern kernel [19,20], which diverges only
as a power law near the current j,,. In the following, we
will mostly remain agnostic about the nature of J, as our
results are independent of this choice, but we will often use
the language of Dirac branes to be concrete and refer to J as
the Dirac brane current as shorthand. It is also worth noting
that, even fixing to Dirac branes or Chern kernels, J is
arbitrary up to its coderivative, but the field strength F is
invariant.

Our goal is to extend this formalism to D-branes in the
ITA and IIB string theories, writing these theories in terms
of Ramond-Ramond (RR) potentials C,,; for p < 3. While
[17] have already considered (arbitrary intersections of) D-
branes in the IIB theory by means of an anomaly argument,
we present a new derivation via duality from the democratic
formulation. In fact, [17] found several new brane-induced
terms in the IIB supergravity action, beyond the standard
coupling between currents and potentials, i.e., the Wess-
Zumino (WZ) action for the D-branes. One set of new terms
couples the Dirac brane currents of magnetic branes to those
of electric branes; [21] first identified the analogous term in
Maxwell electrodynamics. These terms are related to charge

3Assuming there are no harmonic forms on the full non-
compact spacetime.

quantization. Further, [17] found a correction to the bulk
Chern-Simons (CS) term involving Dirac brane currents. We
will emphasize how these terms are required for consistency
of the EOM and for gauge invariance. A key point in this
story is that D-brane currents are not conserved due to the
WZ couplings, but CS terms in the EOM and Bianchi
identities cancel the anomaly via an inflow argument
[22,23]; we give a detailed accounting of the anomaly
inflow in a general theory similar to that of the RR forms.
The necessity of reference currents also forces us to explain
what it means to integrate over a gauge-patched potential.
The plan of this paper is as follows. In Sec. II, we
demonstrate the anomaly inflow argument of [22,23] for a
class of theories of form potentials which includes the RR
potentials of both type II supergravities. We pay particular
attention to how the inflow argument requires specific
relations between various conventional coefficients in the
EOM and Bianchi identity and confirm the consistency of
the Dirac brane current with the inflow. Then we consider
an action principle for the generalized theory of Sec. II and
introduce the modified CS term in Sec. III through a novel
derivation. In Sec. IV, preliminary to our discussion of the
supergravity actions, we find a prescription for integrating
potentials that are gauge patched around magnetic sources,
focusing on RR potentials in the 10D supergravities. We
then give a novel derivation of the new terms in the type IIB
supergravity action that were first described in [17] in
Sec. V. We also eliminate redundant degrees of freedom in
the self-dual 4-form potential, leading to a noncovariant
action for the RR fields and discuss gauge invariance.
Finally, in Sec. VI, we derive the IIA supergravity action
including the Romans mass term [24] and D-branes for the
first time. It has long been known that D8-branes source the
Romans mass, and we show for the first time how the
corresponding Dirac 9-brane currents reproduce the addi-
tional couplings of the massive ITA supergravity. We also
propose that additional WZ couplings on D-branes in the
massive theory [25,26] are a consequence of the Dirac
brane currents and conjecture the presence of other new
WZ couplings on type IIA D-branes. We conclude with a
brief discussion of future directions and give our conven-
tions and some auxiliary results in the appendixes. A
forthcoming companion paper [27] will demonstrate how
Dirac’s formalism separates the brane and gauge degrees of
freedom in a form useful for dimensional reduction.

II. CURRENTS AND ANOMALY INFLOW

In this section, we describe general brane currents and
when they are not conserved. We then see how anomaly
inflow determines the coefficients of several terms in the
EOM and Bianchi identities and verify that the inflow
mechanism is always consistent with the Dirac brane
formalism. Finally, we apply our results to the 10D type
II supergravity theories, making explicit the allowed, self-
consistent sign conventions.
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A. Currents and anomalies

Mathematically speaking, currents are dual vectors to
differential forms (see [28] for a review), which includes
form integration over submanifolds of the appropriate
dimensionality. In this respect, the WZ action of a p-brane
is the sum of n-currents acting on n-form potentials:

p+1
SWZ = Z FMFH’Q;P) (Cerl—q)
q=0

:ﬂp/M (:ié[cpﬂ—q] A ggp) = Hp /M[C} A G,
(1)

where M, ., is the worldvolume, G, are a series of
worldvolume g-forms defined on the brane, and u, is
the p-brane charge. These may be defined to include
pullbacks of spacetime forms. After the second equality,
we have defined C and Q(l’> as formal sums over the various
rank forms [we will suppress the superscript (p) on G when
the dimensionality or type of brane is clear from context].

Of course, the WZ action (1) only describes a brane’s
electric couplings to the gauge fields. This is sufficient in a
democratic formulation but potentials of all ranks do not
exist when only independent degrees of freedom are
included. As a result, a spacetime description of currents
is crucial. Since any dual vector I',, is uniquely identified
with a differential form j, by the inner product

Trg(Cy) = /Cn A *jmg (2)

with the integration over spacetime, we can identify the
Jjm.g as the brane currents. Then the EOM and Bianchi
identity

dxF, = (-1)PP"1%j, . +--- and

dFP+2 = ﬁp*jD—p—.’a 4 (3)

give the electric and magnetic couplings, where f3,, is a sign
chosen by convention.* The current Jpr1=221J Myigir Gy
with the sum over all branes. (On the flip side, all the
currents of the same brane can be written as a formal
sum ja =, jmg,-)

“The sign on the current in the EOM is determined by the
canonical action

" | .
S:/de\/—g§ [—§|Fp+2|2+cp+l'fp+l}
P

1. = .
:/Z(—l)p(u_mH |:§Fp+2 A*F o+ (=1)PCpiy A *.]p+l:|-
P

)

Naively, the current for a (p + g)-brane with worldvo-
lume form gq is

Jig" ()

= Hpiq /
M

where X* are the embedding coordinates. This may be
modified in topologically nontrivial situations, such as
when the brane in question is actually the nontransversal
intersection of two other branes. Nontransversal intersec-
tions are the focus of [16,17,29]. As our goal is to
emphasize writing the action in terms of independent
degrees of freedom, we base our results on the naive
current (5); the adaptation to nontransversal intersections
follows from [17].

The anomalies we consider are local in nature, so they
must cancel pointwise. While related, we emphasize that
these anomalies are separate from global anomalies that
forbid certain brane configurations, such as the Freed-
Witten anomaly [30] or the magnetic D-brane Gauss law
constraint that H5 integrate to zero over the worldvolume
(see [31,32]). From the perspective of the WZ action (1),
they arise from a gauge variation 6C = dA. Integrating the
pullback by parts yields a term from the brane boundary

and one from &g. In some cases, these can cancel between
branes; for example, a D1-brane can end on a D3-brane,
providing a magnetic source for the D3-brane gauge field.
The two anomalous terms cancel in the summed current j2.5

However, if Ezg contains the pullback of a spacetime form,
the cancellation must be by inflow associated with a
modified gauge transformation 6C as occurs in string
theory.

From a spacetime point of view, we can consider the
divergence of the brane current

aXﬂl A - &Xﬂpﬂ A gq5D(x’ X), (5)

ptq=1

(*d*jM‘g)”l'“/‘p

= (_1)(p+1)<D—p)ﬂp+q

X / V,[6° (x, X)dX? A dX* A ---dX* NG,
M
_ (_1)D(P+1)+1Iup+q//\4&1[6D(X’X)&7XM1 A dXPe A gq]
+(_1)D(P+1)+pﬂp+q/ axm A ... dXHe A&QqéD(x,X).
M

(6)

In an arbitrary Lorentzian metric, 5°(x, X) is the biscalar
distribution, and the covariant derivative acts with respect

In fact, this configuration can also be described as a Blon
solution of the D3-brane theory, in which case there is manifestly
no anomaly.
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to the spacetime position x, but the derivative switches to
the partial with respect to X as described in [33]. We
therefore see that the brane currents are not conserved:

dxjmg = (1) % Jopig = (=1)P*jrag: (7)

where j is a p-form current for the boundary of the
worldvolume. Henceforth in this paper, we will assume
that the boundary contributions cancel with some of the
worldvolume cig contributions, so we will ignore those
terms from here out, returning to them in the companion
paper [27].

Consider then a single brane (i.e., 9IM = 0) with dG
a pullback of a nontrivial spacetime form H, ;. We
will find that the anomalies cancel when &gq =
> MpgrlHr1]G,-r, where H,., is prototypically the
field strength of a potential that does not couple to the
branes, and 7, , . is some proportionality constant. Then,
using (A2),

*jM,[H,.H]gW = *(j/\/l,gq,, : Hr+1)
= (—1)(r+1)(D—r—1>1r.1rJrl A *jM,Qq,,- (8)

We will find that # is independent of the rank ¢ of the
worldvolume forms, so the anomaly for the total brane
current is conveniently written as

d*jp+1 = Z(_l)r(D_r)np,rHr+l A *jp+r+1' (9)

r

B. Anomaly inflow

We consider a set of potentials C,,,; (the RR potentials
in string theory) and corresponding gauge-invariant field
strengths F p+2, With an additional set of field strengths
H,. | = dB, assumed closed with pullbacks [H, | that
appear in dG for some branes (with this coupling, those
branes carry an electric current for B,, but H,, | remains
closed). The classical anomaly discussed in the previous
section then appears in the current whenever H, | # 0,
whether it is a topologically nontrivial flux or due to
another brane source. It is a simple generalization to add an
extra index to C or B to have more than one potential at
each rank. Our discussion of the inflow is similar to
comments by [22] for M-theory and is implicit in [17]
for 1IB string theory; [23] gives a worldvolume argument
for string theory. We are not aware of a discussion in this
full class of theories.

The general EOM for C,,; (to first order in F »42) has
the structure

D—-p-3
d*Fp+2 = (_I)D_p_l*ij + Z [ap.r(*Fp+r+2) A Hr+l
r=0

+ dp.rFD—p—r—2 A Hr+1 ’ (10)

where a, & are constants. Meanwhile, the Bianchi identity is

ptl1

de+2 = ﬁp*jD—p—3 + Zﬁp.rﬁp—r+2 ANH,.
r=0

(11)

B, is asign convention, which can be chosen independently

for each field strength. For now, we treat the a, @, f3, ﬁ as
independent constants, though there are relations among
them in a Lagrangian formulation of the theory; other
conditions following from gauge invariance are discussed
in Appendix B. The @ terms follow from CS terms in the
action, while the a and ﬁ terms arise from terms in the field
strength. To distinguish them from CS terms, we will refer
to the a and /3 terms as “transgression” terms. Theories with
this structure include of course the type II supergravities
and also the dimensionally reduced theory of gravity and
form potentials on a torus, for example.

Current (non)conservation is related to the integrability
conditions obtained by taking the exterior derivative of the
EOM and Bianchi identity. For the EOM, we have

d*ijrl = Z[_<_1)rap,r + (_I)D_pdp,rﬁD—p—r—4]

r

X *]p+r+l A Hr+l’

(12)

leaving off terms that are independent of the brane
currents.® In other words, we see that the derivatives of
the CS and transgression terms localize on the currents as
needed for an anomaly inflow. Comparing to Eq. (9), we
find

D+(p+1)(r+1) o (13)
since the anomaly must cancel when only one H,
background is nonvanishing. In fact, this holds for any
case where only one brane contributes to the current, so we
see that 7 is independent of the worldvolume form rank.

Similarly, the Bianchi identity yields

’/Ip,r:_(_l) p,r_<_l)pr&p,rﬂD—p—r—4

d*jD—p—3 = _ﬁpZBp,rﬂp—r*jD—p+r—3 N Hr+1‘ (14)
r

Cancellation of the anomaly then requires

Np—p—4,r = (_l)r(D_p)+p[}p[}p—r[}p,r-

(15)

Again, we see that 7 is independent of g.

C. Dirac brane currents

We will now see how Dirac brane currents in the field
strengths fit into the Bianchi identities using the constraint
(15). Our discussion extends similar results in [17].

®These must vanish separately. We discuss how this occurs and
the relation to gauge invariance in Appendix B.
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To start, we need to consider how to extend the
worldvolume form G from the brane worldvolume to the
Dirac brane or, in the case J represents a Chern kernel,
the entire spacetime. The key point is to choose the
reference brane worldvolume M* homotopic to M (so
N is continuous for a Dirac brane). The extension of G
depends on its form. For D-branes, we will be concerned
primarily with the case that G = G([B,].dA,), where A, is
the worldvolume gauge field. In this case, we continue to
take B, as given by the spacetime Neveu-Schwarz—Neveu-
Schwarz (NSNS) form (pulled back to A as appropriate).
For the gauge field, we choose a fixed A} on M* and an
extension A, to \" or spacetime that pulls back to A; on M
and A} on M*. Then the Dirac brane current takes the form
of (5) with G promoted to the extension G and X* replaced
by the embedding coordinates Y* of A/. For a Chern kernel
of a (p + g)-brane, xJg = (—1)P*D+) (% ])G [a similar
formula holds for Dirac brane currents when G is the
pullback of a spacetime form by virtue of (A2)].

Since the Dirac brane contribution to the field strength is
given by the Dirac brane’s current, Eq. (7) applies in the
form

dxJ g = (=1)P % (japg = jpmeg) = (DP*I 6
(16)

Therefore, to cancel the dynamical current j,_, 3 =
> My p.,G, (summed over all branes) in the Bianchi

identity (11), we should define

Fpin=dCpp+ (=1)PB,xJp_,»
p+1

+ Zﬂp.rcp—ﬂrl A HrJrlv (17)
r=0
where the Dirac brane current is a sum over the corre-
sponding Dirac branes

Ipopa = (D, o (18)

and C, includes the potential for the reference current for
worldvolumes M*. Then the current for the Dirac brane
associated with a given physical brane can be written as a
formal sum Jy =3, (=1)%/ g, -

With this definition for the total Dirac brane current, the
divergence (16) and condition (15) give

d*JD—p—2 = (_I)D*(jD—p—3 - j*D_p—3) _ﬂpZ(_])q+(r+1)(p_r_l)ﬂ~p,rﬁp—rHr+l N *JN_qur

= (_I)D*(jD—p—3 - jB—p—3) +ﬁpZﬁp,rﬂp—r*JD—p+r—2 A Hr+l' (19)

Since €, contains the potential for the reference current,

de—FZ = ﬂp*jD—p—3 + Z/}p,r (dcp—r-H + Z/}p—r,fcp—r—)f’-kl A Hf—H + ﬁp—r*JD—p+r—2> A Hr+1
r 2

= ﬂp*jD—p—?) + Zﬁp,rﬁp—H»Z A Hr+1-
r

In other words, the coderivative of the Dirac brane current
is precisely consistent with the appearance of Dirac brane
currents in the transgression term.

D. Type II supergravity conventions

We can now apply our results to set limits on possible sign
conventions in the 10D type II supergravities. Some of the
restrictions we find below (such as the alternating of signs in
the duality conditions for the democratic formulation) appear
implicitly in the literature (see for example the discussion of
conventions in Appendix A of [34]), but we are not aware of
an explicit derivation from first principles.

While the D-brane WZ action identifies

G o A A(4n*d'Ry)
A(4r*dRy)

(20)

[
where F = 2z’ F, + 5[B,], A is the A-roof genus, and Ry,
Ry are the tangent and normal bundle curvatures, we will
not consider the « corrections, instead restricting to
G =expF. See [17] for more on & corrections in the
IIB theory. Both type II supergravities in this approxima-
tion have a single background field strength H; = dB, and,
following from the above, a common sign choice n =7, ,
appearing in F for all p. Here, we will also follow the
typical choice of setting all / b2 = f, a single sign choice
for the transgression terms in each theory.

Starting with the IIB theory with only potentials C,,  for
p < 3, the EOM and Bianchi identities are

d*Fl = *j() +a_1*F3 AN H3,
dFy = B_*js.
dxFy = xj, + (ayxFs + @, Fs) A Hj,
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dFy = pi*js + PF, A Hs,
d*FS = *j4+d3F3 /\H3,
dFs = pyxjs + pF5 A Hj. (22)

The appearance of both transgression and CS terms for the
F5 EOM is due to the self-duality condition on Fs. The
constraint (13) tells us immediately that n = —a_; =
-3, = —ay — &, 3. Meanwhile, the Bianchi identities
are consistent with (15) for 5= —p_5f = —pifp.
Finally, the transgression terms in the EOM and Bianchi
identity are related through variation of the Lagrangian,
leading to Eq. (B13), which implies a_; = —f and 5 = f.
All told, there are two independent sign choices,  and f;,
with the signs in the Bianchi identities alternat-

ing 3 = —f) = ;.
The type IIA supergravity (including a possible mass
term) has

dxFo=0,  dFy=p_o%jo,

dxFy = —xj +agxFy ANHy, dFy=poxj;+pEy A H;,

dxFy=%j,+@Fy AHs, dFy=pyxjs+pF, A Hj.
(23)

As in the IIB case, we find #n=ay=—-&p, and
np = Pp_»Po = Pof,. Derivation of the transgression terms
from the action gives also ay = —f, which tells us that
n=—p and fy = —p_, = —f,. There are once again two
independent sign choices, with the others determined.

In either supergravity, the democratic formulation has

dxF iy = (=1)P "' sjy g +apxFyq A Ha,

dﬁp+2 = :Bp*j7—p +ﬂ~ﬁp A H3 (24)

for-2<p<8 (Fp<0 = (). By comparison to the Bianchi
identities above, the duality relations must be xFp_,_, =
Fp pF p+2 (in IIA and IIB respectively) for p <3; in
particular, C, satisfies the self-duality relation *Fs =
p1Fs. Since the coefficients , alternate signs in each
theory, so do the duality relations. Since the D-brane charge
(vs antibrane) is determined by the WZ coupling to C,,; in
the democratic formulation, these alternating signs mean
that Dp-branes with p > 3 enter the Bianchi identities with
alternating signs as well. The signs can only be chosen the
same if the transgression coefficients Bp are distinct for
the different £, . Finally, since the Bianchi identities for
the higher-rank field strengths have the same form, we have
BoBy2 = —1 (ie., alternating signs) for all p.

III. BRANE-MODIFIED CHERN-SIMONS
ACTION

Chern-Simons terms are familiar from the actions of both
10D type II supergravities and the 11D supergravity. We
emphasize here that the presence of D-branes necessarily
modifies those CS terms; by extension (through duality,
etc.), M-branes in 11D and NS5-branes in 10D must also
modify them. The CS term modifications were first pointed
out by [17]; here we give a new, simple, physically
motivated derivation in the theory of the previous section,
which we can apply to the 10D supergravities later.

The action

1 1. -
S = W/Z(_l)p(D—p)ﬂ |:§FP+2 A*F,.
0 P
F (1P Cpn A vl + e 25)

with Chern-Simons terms

1 .
SCS = FZ/[},p,rcerl A FD—p—r—2
KO p.r

+ fp,r(*JD—p—2> A CD—p—r—3] A Hr+1 (26)

reproduces the C,,; EOM (10), assuming that the field
strength is defined by Eq. (17) with the Dirac brane current
(18). ¥p.r» 7p,r are some set of constants related to the EOM
coefficients @, .. We have ignored kinetic terms for the
closed field strengths H,,; as well as the gravitational
sector. The canonical coupling between the potential
and electric current in (25) determines the sign of the
source term in (10), and it also gives the WZ action for all
the branes (i.e., there is no need for an additional WZ action
on the branes) up to a factor of the gravitational coupling
2K%, which can be accommodated by rescaling the brane
charges.

We discuss the invariance of this action and the field
strength (17) under the gauge transformations of C,; in
the absence of brane sources in Appendix B, arriving at
constraints (B5) and (B12), which also guarantee that the
Bianchi identity and EOM depend only on F -2 rather than
Cpi1 (in the absence of currents). We also find the
relationships (B13) between the EOM coefficients «,, ,,
@, , and ﬁp,,, ¥p.r in the Appendix.

While the y,, terms in S¢g are familiar from, for
example, the 10D supergravities, the 7, , terms require
some explanation. Without them, the Dirac brane currents
are absent from the field strengths in the @, , terms of the
EOM. That would leave the EOM dependent on the Dirac
brane worldvolumes N including the arbitrary reference
branes M?*, which would clearly be inconsistent (in fact,

046017-6



DIRAC BRANES FOR DIRICHLET BRANES: SUPERGRAVITY ...

PHYS. REV. D 102, 046017 (2020)

that would be a violation of gauge invariance in the
magnetic context). So we consider

oScs
6Cp+l

= Zyp.rFD—p—r—Z A Hr+l
+ Z(_1)p(D_p_r>7/D—p—r—4,r(FD—p—r—Z

- (_1)DﬂD—p—r—4*Jp+r+2
+ (_1)(p+1><D_p_r)770—p—r—4,r(*Jp+r+4)) A Hr+1

(27)

assuming the coefficients obey (B12). Therefore, we
require 7,, = (=1)P~7f,y,, to ensure that the EOM are
written only in terms of the field strengths.

We will later derive these and other new brane-induced
terms for the type II supergravities.

IV. INTEGRATING PATCHED POTENTIALS

It is not immediately clear what it means to integrate over
a quantity including a potential with gauge patching
because the potential is not single valued in the overlap
of coordinate patches: Either gauge is physically accept-
able. As a result, many authors, including [17,29,35] have
suggested writing potential-current couplings in terms of
the gauge-invariant field strength. However, if we attempt
to write an action following that approach without the
explicit appearance of the potentials, the EOM will contain
the arbitrary reference currents j, ., (for electric sources).
Consider, for example, the action (25) above with the
replacement  C,,y(*j,.1) = (=1)?F,1(*J,42). Even
ignoring transgression terms by setting H,. ; — 0, the
variation of this term is 6C, ; A *(j,41 = jy, ). Here
we give what is to our knowledge the first description of
how to carry out spacetime integrals including gauge-
patched potentials.

The key idea is already present in [2], who gave a
prescription for integrating the vector potential of Maxwell
theory along a charged particle worldline in the presence of
a monopole. In sketch form our new prescription for
integration against other forms over spacetime is as
follows: Pick an arbitrary division where the integrated
potential switches from one gauge to another. Then design
the integral to be invariant under changes of the division, a
choice closely related to gauge invariance. Since we are
integrating over spacetime, we also have to exclude the
locus of magnetic charge, where the potential is undefined.

For simplicity, we work with RR potentials in string
theory. Specifically, we consider a set of potentials C,, | for
p either even or odd (as in the IIA or IIB supergravity
respectively). Written as a formal sum of forms, the gauge-
invariant field strengths are F = dC + JCH; and the gauge
transformations are 6C = dy — fyH;, where /3 is a single

sign choice. Depending on the application, the formal
sum C could include p = —1 to 8 as in a democratic
formulation of the supergravity or only a subset (e.g.,
p =0, 2 in type IIA supergravity). Taking p = 0, H; = 0,
our prescription also applies to standard electrodynamics.
The field strengths do not include Dirac branes, and
the Bianchi identities are dF = (Bj*) + SFH;, where
(Bi*) = >_, BpJy.1 With B, a distinct sign choice for each
potential. Our results apply to any gauge-patched potential,
meaning j* could represent dynamical currents, but we will
take j* to be fixed reference currents. It is worth recalling
that a high-dimension brane with a worldvolume gauge
field or in the presence of nonvanishing B, contributes to
lower-rank currents, so j;, ., may include currents smeared

over worldvolumes with dimension greater than p + 1.

To define the spacetime integral [ CK, where K is
another formal sum of forms, we note that the potentials
C are undefined on the collection of branes that contribute
to j*. Contrast this to electric charges where potentials
simply diverge; for the example of a magnetic monopole,
none of the coordinate patches with well-defined potentials
covers the monopole location. Therefore, rather than
integrating over all of spacetime, we excise a small tube
around the worldvolume of each magnetically charged
brane with boundary P. After integrating, we will take the
volume of the excluded tube to vanish, so it becomes
measure zero. In the presence of multiple magnetic brane
sources, P has multiple components.

Now consider the overlap region of two gauge patches
(multiple gauge patches are a straightforward extension,
assuming the configuration is simple enough) of potentials
C* around some magnetic source. On the overlap region,
the two potentials are related by the gauge transformation
Ct = C +d¢ —pCH;. We choose a codimension-one
surface Q in the overlap region such that the spacetime
volume QF on either side of Q is within the coordinate
patch where C* is valid respectively. This is just a partition
of spacetime into regions where each potential is used. Note
that Q will generically intersect the boundary surface P. In
the example of a monopole, this is just related to the fact
that the region where each potential is valid is given by a
range of polar angle. Figure 1 sketches the various surfaces

FIG. 1. Sketch of integration region with magnetic current j*.
Shaded region inside P is excluded; Q,Q’ are possible separa-
tions of two gauge patches.
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for a current j*. Quantities integrated over Q or P are
assumed to be pulled back to the appropriate submanifold.
We now define the spacetime integral as

/C/\KE/ C*/\K+/ C“/\K:I:/C/\K,
* - Q

(28)

where the sign on the Q integral depends on the orienta-
tion of the integration measure. We will choose the positive
sign below and take care to account for signs due to the
orientation.

This is sensible provided that the integral is unchanged
under changes of the arbitrary dividing surface Q. Consider
then changing @ — Q'. The change in the integral is

/Q(C——CJF)/\K—F/C/\K—/C/\K
Q Q Q

= Q/C/\ [(—I)PdK+ﬁH3/\K]—/_C/\K, (29)
Q P

where |, QQ/ indicates the region with boundary Q' — Q — P

(that is, the region between Q and Q' in Fig. 1) and P is the
region on P between its intersections with Q, Q'. This will
vanish provided dK + (—1)” BHLK = 0’ and either K has
no delta-function-like singularity (so the P integral van-
ishes as P shrinks) or {K = 0 (for example, due to the
legs of each form). It is not a coincidence that dK +
(=1)?BH;K = 0 is the same condition for the integral (28)
to be gauge invariant under gauge transformations y that are
globally defined over the integration region and vanish on
the boundary at infinity and P.

Maxwell electrodynamics provides some simple exam-
ples. Consider a static monopole of charge ¢ at the
origin. Then the simplest form for P is a sphere of radius
e around the origin. With the typical choices AT =
g(£1 —cosO)dgp, Q is any surface that intersects P in
the limit € — 0 and does not intersect the z-axis. A simple
choice for Q is the xy-plane with transition function
¢ = 2g¢. This prescription for integration also works for
harmonic flux with no magnetic sources on a compact
manifold. For example, we can consider a constant mag-
netic field on a square T2, which we can describe by vector
potential A; = Bydx in the first unit cell 0 < x, y < 2zR.
To make the potential periodic in y, we must work in a
different gauge in each unit cell given by 2zRn <y <
2zR(n + 1) with gauge transition function { = —27RBx,
but of course each gauge is valid over the entire covering
space. To integrate over the first unit cell, we choose any

"Note that p is either even or odd for all potentials, so the same
condition holds for all terms in the formal sum.

curve Q that runs from x = 0 to x = 2zR within the unit
cell. A simple choice for Q is the x-axis.

Integration by parts requires some care but is sensible for
formal sums K = dk + (—1)?}H;k. We start by integrating
by parts in QF separately to find

/C/\K:(—I)P/F/\k

+ /Q [EAK+(-1)P(CT=C) Ak

_(_1)p/73+c+/\k—(—1)1’/c_/\k,
(30)

where P* = P n QF. Note that the integrals over P* are
signed based on the orientation of the integration measure.
The integral over Q is simply a surface term —(—1)”{k over
P, which combines with the P* integrals. We have

/C/\K—(—I)P{/F/\k—/PC/\k]. (31)

The first integral on the right-hand side is over the same
region as the original integral, i.e., all spacetime exterior to
‘P, but it can extend to all spacetime since F is globally
defined (assuming k is globally defined).

It is tempting to think that the P integral in Eq. (31)
vanishes as P shrinks. However, because C does not have a
well-defined limit at the location of j*, that is not always
the case. There are three cases of special interest. First,
suppose that k = xJ is given by a Dirac brane current
with boundary at other locations (so J “passes through” P).
As a given component of P shrinks, the pullback of C
approaches the potential of the magnetic source in P, which
reverses orientation compared to the xJ on either side of P.
As a second case, suppose k = xJ is the Dirac brane
current emanating from the brane source inside P. Then J
is aligned along the worldvolume M* and the radial
direction inside P, so xJ has the same components as C
on P as P shrinks, and the integral again vanishes. Finally,
suppose that k = dx 4 (—1)?fH;k. Since P has no boun-
dary, integration by parts gives

(—I)P/PC/\k:/PF/\K. (32)

Assuming « is sufficiently smooth inside PP, we can replace
the latter by the integral of (dF)k over the excluded region
inside P in the limit as P shrinks. Then, we can replace dF
using the Bianchi identity and keep only the delta-function-
like term S« j*. After careful accounting of signs,

/C/\K:(—I)P/F/\k—l—/(ﬁ*j*)/\lc, (33)
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where both integrals on the right-hand side are taken over
all spacetime.

In the above, we have ignored possible complications
from brane intersections or overlaps of three or more gauge
patches in a nontrivial configuration. Taking care with these
will potentially reproduce the modifications [17] noted are
necessary for nontransversal intersections.

Finally, we note that a variation of the potential C can
include a variation of the gauge transition function ¢, but it
need not. In particular, if C* — C* + 8C for a globally
defined variation oC, the variation of the integral is well
defined over all of spacetime. No special prescription is
needed for the integration.

V. TYPE IIB SUPERGRAVITY

We now turn to the main result of this paper, the type II
supergravity actions in the presence of D-branes, starting
with the IIB case. We start by reminding the reader of the
bosonic IIB action in the absence of D-branes and using the
result of Sec. III to find the modification to the CS term.
Then we provide a novel derivation of this term and other
new terms involving Dirac brane currents by dualizing the
democratic formulation of the IIB supergravity. Keeping
10D covariance and a self-dual 5-form field strength, we
find agreement with [17], modulo terms involving anoma-
lies on brane intersections and o’ corrections, which we do
not consider. We also give a new analysis of gauge
invariance for this action. Finally, we separate the 4-form
potential and 5-form field strength into electric and
magnetic components and write a noncovariant action with
D-brane contributions in terms of the independent degrees
of freedom only.

A. Action and modified CS terms

The gauge-invariant field strengths of the type IIB
supergravity are

Fy =dCy+ p_*Jo. Fy = dCy + BCoH; + 1 +J7,
Fs=dC, + Cy A Hy + B3*Js. (34)

using the convention that all transgression terms have the
same sign f. Recall that f; = —f; = f_;. Excluding local
sources, the action of the bosonic sector is

1
SIIB:—2 d"x —ge‘2¢[R+4(8¢)2]
2K5
+1 F “2H, A xH +1FA F
) A€ 3 3 T A kI
21<(2) 2 2
1. - 1. .
+5F3/\*F3+1F5/\*F5

| - -
+§ﬁ3ﬁC4/\F3/\H3 . (35)

The coefficient of the CS term is determined by the results
of Sec. I D and Eq. (B13). Note that the F'5 kinetic term is
halved because it is self-dual and contains duplicate
degrees of freedom.

As in Sec. III, we can add D-brane currents to (35) by
adding Dirac brane currents to the field strengths and
shifting the action by

1
S S —
B — Su + 22 /

1
+=Cy A xjy —
5 &4 *J4

Co A xjo+ Co A )

%/}(*JS) ACyAHs|.  (36)

Here, j, is a scalar current associated with D(—1)-
instantons, and the last term, the CS term modification,
includes the Dirac 4-brane current as required to make the
EOM gauge invariant. The coupling to C, has a factor of
1/2 due to the 5-form self-duality. We also note that the
relationship (B13) between coefficients of the action and
EOM implies that we can replace

g/ [f3Cs A F3 A Hy — (%J5) A Cy A Hi)
N _g/ [65C2 A Fs A Hy+ (%J7) ACy ANH3] (37)

in the action to generate the same EOM for the RR gauge
fields. (We will see below that there are actually other terms
also.) Integration by parts to make this replacement (up to
surface terms) follows along the lines of Sec. IV with a
slight modification to account for the fact that both
potentials C,, C, are patched. The integral on the boundary
‘P vanishes, and the replacement (37) holds with both forms
of the CS term following the prescription of Sec. IV for
integration.

Finally, we note that the action is sometimes written with
an additional CS term (see for example [36])

1 /1
— —Bz VAN C2 VAN dBZ AN dC2 (38)
21('% 4

In the absence of branes, this term is a total derivative
and does not contribute to the EOM. Even in the presence
of D5-branes, it can be written as the integral of
d(C3d(B,)?) following the integration prescription given
above. However, with both D5- and NS5-branes, this term
seems to be nonvanishing. Understanding its completion in
the presence of all sources and whether it remains topo-
logical is a task we leave to the future.

B. Dualization from democratic formulation

The EOM given in (24) for the RR potentials of type 1IB
supergravity in the democratic formulation are given by the
(pseudo)action
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- ~ 1. ~ 1. -
SHBA,dem —F]A*F1+ZF3/\*F3+ZF5/\*F5

1/1
2k3

4

1. - 1. -
+ZF7 A *F7 +ZF9 A *Fg

1 . ,
+§COA*]O+§C2A*]2

1 o1 1 .
+§C4/\*]4+§C6/\*16+§C8 N *Jg

(39)

(dropping the Finstein-Hilbert and dilaton and B, kinetic
terms for convenience) with the field strengths given by
Eq. (34) and

F;=dCg+ pCy A Hy + PsxJ5,
ﬁgZdC8+ﬁ~C6/\H3 +ﬁ7*J1. (40)

These also reproduce the Bianchi identities in (24).8 The
EOM must be supplemented by duality relations
between the higher- and lower-rank field strengths. If
we instead enforce the definitions (40) with Lagrange
multipliers and identify those Lagrange multipliers with
the lower-rank field strengths, we can generate an
equivalent action for only the lower-rank potentials.
As in Sec. IV, the terms with potentials are over
spacetime with the reference currents removed, but
other terms can be integrated over the entire spacetime
since they are smooth at the reference currents and the
punctures are zero measure.

Now we turn to removing the extra degrees of
freedom from the action (39). Start by adding Lagrange
multipliers

1
Sup = 53
1B 22 /

2

2

1 1 -
S1B.dem = STIB.dem +2—1<(2)/§ (A1 A (Fg—dCy

_BCG AN Hz—pyxJ ;)
+ 23 A (F7=dCs—fCy A Hy — BsxJ3)]  (41)

and treat F 7.9 as independent degrees of freedom. The F 79
EOM give 1, = *Fy, 13 = xF;. Meanwhile, varying Cgg
gives EOM
dA; = *Jg, diy = *jo +PH3 A Ay (42)

These are consistent with A, =f_F, and A; = p,F;
recalling that f_; = —f;. Imposing these identifications
is equivalent to imposing the duality relations of the
democratic formulation.

The action is linear in Cg g, so it may seem that imposing
the EOM (42) eliminates them. However, there are non-
trivial surface terms of the form

_%/P(CS/\FI_C6/\F3)

p . .
= ?3 (B7Co A *ji = PsCy A *j3)

1 " "
—5 [ (€onsis+Caneis) #3)

from integrating (41) by parts. [In the language of Sec. IV,
we have taken C=Cy;+ C¢+Cg and K =di +
(dA3 — BH3Ay) — BH33, so P surrounds Jo.2.4-] Note that
the electric reference currents jg , are not excised from the
integrals over C,, (though excised higher-dimensional
reference branes may carry these currents). At this point,
the action has become

1. - 1. - 1. - 1 1
= F /\*F1+§F3 N xF3 +ZF5 A xFs +§C0A*(jo+j3)+—C2A*(j2+j§)

2

1 1~ - 1. 1.
+*C4/\*j4+§ﬂ3ﬂC4/\F3/\H3—§F1/\*JI—EF:;/\*JS . (44)

Finally, the last two terms split into terms involving the potentials and those involving only Dirac brane currents. The
former integrate by parts using Eq. (19) in IIB supergravity form

dxd 0 =*(jpp1 = Jpi1) _B*Jp+4 N Hj (45)

(surface terms on P vanish by reasoning given in Sec. IV), leaving current terms and a remainder involving *J5. All

together, we have

1 1. . 1. - 1. . 1
SIIB:W/ [_Fl /\*F1+§F3/\*F3+ZF5/\*F5+CO/\*j0+C2/\*j2+§C4/\*j4
0

2

| - 1~ 1 1
+§ﬂ3ﬂC4 A F3 A\ H3 —EﬂCZ AN (*Js) AN H3 +§ﬁ3*]1 A *Jg —§ﬁ3*‘,3 AN *J7 . (46)

*Note that we are not considering type I supergravity, so we do not include a D9-brane current, but it is a straightforward

generalization since C;, does not have a dual potential.
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Some comments on the action (46) are in order. First, we
note the factor of 1/2 on the C, — j, coupling. It is well
known that the D3-brane charge must be reduced by half
for the gauge EOM to work out correctly for the self-dual
5-form (see [37] for example). In fact, we made that choice
for the same reason in Eq. (36). Here we see that it is a
consequence of dualization from the democratic action,
where all the potential-current couplings are halved.
Second, we note the appearance of the usual CS term
and also the Dirac brane modification, both of which are a
consequence of transgression terms in the field strength and
in the divergence of the Dirac brane current. Finally, there
are two new terms involving Dirac brane currents for
electrically and magnetically charged branes. These terms
were also found by [17] for IIB supergravity and by [21] for
monopoles in electrodynamics. In the monopole case, [21]
showed that these terms are topological (do not contribute
to the classical EOM) but are related to charge quantization.
However, in the type II supergravities, the Dirac brane
currents depend not just on the brane positions but also the
brane gauge fields and B,, so they may not be purely
topological (in either IIA or IIB supergravity). In our
discussion of the ITA supergravity, we will see that these
terms can have physical importance even in the classical
theory; specifically, they will reproduce one of the CS
terms of the massive IIA theory. Further discussion of the
contribution of (xJ)2-type terms to classical EOM will
appear in [27].

C. Gauge invariance

We have now provided two novel derivations of the
modified CS term (and also found J?-type terms when
starting with the democratic action). As it has not been
discussed previously in the literature, it is important to
understand invariance of Syp from (46) under gauge
transformations of the RR potentials, particularly because
the CS terms are not invariant on their own in the presence
of branes, in contrast to the usual presentation in the
absence of branes. The gauge transformations take the form
8C = dy — fyH, for globally defined forms X p- Since the
integrals including the potentials C have boundary at
infinity and P, the y, should vanish on P.

Before considering the final action (46), it is worth
commenting on the gauge invariance of (39). The variation
of the action is

1 1 . ~ .
55:7}((2)/5% A (dxjy = PH3 A *j4)

+ 23 A (d*jy — BH3 A *jg)
+ x5 A (dxjo — BH3 A *jg) + x7 A dxjgl.  (47)

This vanishes by virtue of Eq. (9) with the identifica-
tion n = f.

On the other hand, the variation of the potential-
current couplings in (46) cannot all cancel. Fortunately,
in the presence of branes, the CS terms are also not
gauge invariant on their own. The variation of the action is

1 1
oS = — A dxj —y3 A dxj
2’%/[)(1 *J2+2)(3 *J4

1~ .
—Eﬁ)n N H3 A *jy

| - - 1~
+§ﬁ3ﬂ)(3 A dF3 N Hj —Eﬂ)m N dxJs N Hj

- 1
+ﬁ)(3/\*j6/\H3<5—%>} =0. (48)

The reference current = j; does not appear because it lies in
the removed punctures, and surface terms on P vanish
because the y,, vanish on P. Note that the CS term with the
Dirac brane current is necessary for invariance under
transformations of C,.

D. Noncovariant formulation for
independent degrees of freedom

To complete the action, [17] used auxiliary variables
with the Pasti-Sorokin-Tonin (PST) formalism [38,39] to
enforce the self-duality condition and maintain 10D
covariance.” Here, we determine the action for indepen-
dent degrees of freedom only, breaking 10D covariance
and some of the C, gauge invariance. Making the choice
of degrees of freedom correctly can be useful in
determining the effective theory of a dimensional reduc-
tion; lack of 10D covariance is not necessarily a
disadvantage.

First, we need to identify independent degrees of free-
dom in F'5, which we do by separating its components into
two sets, “electric” components F gl), which we treat as

independent, and “magnetic” components F 22)

F gz) = fxF gl). The next task is to divide the potential also

that satisfy

into electric and magnetic components Cgl'z) . In some

cases, it is possible to make a clean division such that C§1,2)

contribute only to F g1.2) respectively. This is true, for

example, of the nonvanishing components of C, for the
Kihler moduli of Calabi-Yau compactifications even in the
presence of background flux and warping [42-44].
However, it is not true in general. What is possible is to
choose a set of magnetic components ng)

appear in F g”, while the complementary set of electric

that does not

°Sen [40,41] has developed an alternate formalism also using
auxiliary fields to describe self-dual field strengths.
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components Cftl) appears in both F 21,2)' If we ignore gauge

invariance, the numbers of components in these sets are
different.

To proceed, we fix our spacetime coordinates, includ-
ing a spatial coordinate ¥ (with gz =0 for u # X for
simplicity; we consider only the case where we can do
s0). Then we label any form with a leg along ¥ with (2)
and any form without a leg on ¥ with (1). A prototype
coordinate for ¥ is a spatial direction in a Minkowski
factor of a (possibly warped) product metric. This choice

|

for F 21’2) follows [37], for example. For notational
convenience, we define d = did; and @ = d —d. Then

Fél) — dcgl) + p(Cy A Hy) +ﬂ3*]gz>,
FY =acy +acy) +B(Cy A H)P + pyxdi). (49)

To find the noncovariant action, we start with action (46)
and project Fs, (C,Hs), Js, and C, onto electric and
magnetic components as above. Adding in a Lagrange
multiplier, the relevant part of the action is

1 1. - 1 - - 1 1 ~ N
| N Y T = DNV LRR Y DM EVY CIPNENS

=52
2Kg

(2

i i 1 1 1 i §
+ BBC A (Fy A HS) _E/Mg” A(Cy A H3) - 5/3*19 A (Co A Hy) 455 A (F —acl? —acl)

— B(Cy A H3)? —ﬁ?a*fgl)) .

Note that a wedge product A(!?)
previous subsection, finding A5 = *F gz) from the F gz)

(50)

B chooses the (2,1) components of form B. We can now follow the same procedure as in the
EOM, and the duality relation A5 = S F gl) plus Cff) EOM yield

aF) = B(Fy A Hy)D + ywjt?, (51)

which is the Bianchi identity following from (49). It is also the part of the covariant Bianchi identity with no legs along X.

There are two remaining finer points in the derivation. First, we assume that Cftl

(1) 2

)

is not patched on the surface surrounding

Ja * even though it appears in F 5. Second, we note that the projection of the relation (45) onto the magnetic components

involves both Dirac brane currents:

d*]él) + c?*]éz) = *(j‘(‘l)

In the end, we find

| - - Py
S / { .. _|_§Fgl) A *Fgl) + Cgl) A *jgl) +§ﬁ3ﬂcé(ll)

)
2Kg

— i) = B(xd7 A Hy) ), (52)

3 . 1. N
A (Fy A HS) — §ﬂ3ﬁF§” A(Cy A HS) - 5ﬁ3F§” A dctl

1 1 1 - 1
—Eﬁ*ng) A(Cy A H3) — Eﬁq&” A (xJ7 A Hj) = Ecg” A dx? + §ﬂ3*ng) AP (53)

Interestingly, the noncovariant action seems to mix the two
forms for the CS term equated in (37). There are two
entirely new terms.

To validate the action (53), we can check that it gives
the correct equations of motion for the potentials. The

Cg” EOM follows after some substitution; to write the
EOM in terms of field strengths only, we must rewrite

dﬁC&l) in terms of Fgl) and recall that (F;H;)®? =
a[(CyH3)?] + d[(C,H5)M]. After some cancellation,

ax ) 4 pydF) = w1 + Bf(Fs A Hy)@. (54)

I

Using the duality relation, this is also the part of the
covariant EOM with one leg along ¥, as expected. The C,
EOM is slightly more subtle, as we must move the
projection from 6C,H; to other factors in wedge products
to get the full variation. In particular, the second CS term
contains (§C,H )V (C,H3) = —6C,(CyH3)?) Hy. To com-
bine this with other terms to make the gauge-invariant
Fgl), we must notice that 0 = C,H} = (C,H3)VH; +
(C,H3)? H;. Further, we must notice that the variation
of BCVEHy—FVacl) yields f(d - d)C\ Hy =
ﬁdC£1>H3, also required to write the EOM in terms of
F gl). We see that
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dxFy = xjy — P A Hy = B3 A Hy.  (55)
Again, that is exactly as expected from the decomposition
of the usual C, EOM.

As an alternate derivation, the action (53) is in principle
equivalent to the action in Sec. 5.3 of [17] with the auxiliary
scalar of the PST formalism gauge fixed to a specific form. The
remaining PST gauge symmetries (discussed for IIB super-
gravity in [45]) eliminate the components C 42 !0 The
companion paper [27] will emphasize applications where it
is important to consider only independent degrees of freedom,
and (53) will play a role there. This derivation highlights the
origin of the new terms in the covariant formulation.

VI. TYPE ITIA SUPERGRAVITY

In this section, we give the type IIA supergravity action
with D-brane sources for the first time. We will first derive
|

SIIA,dem =

21('% 4

1 . 1 . 1 . 1 . 1 .
+§C1 A *Jy +§C3 A *]J3 +§C5 A *]s +§C7 N *J7 +§C9 A g

and field strengths defined by

Fo=m+ p_oxJy,

FQ = dC] +ﬂ~mB2 +/BO*J8’

- ~ m

Fy=dC;+ fCy N Hj +EB% + farxJs.

- ~ m

F6 = dC5 +ﬁC3 A\ H3 +§ﬂB% +ﬂ4*.’4,
m
41
. ~ m
Fig=dCy+ pC7 N H; +§/33§ + PsxJy.

Fy =dCy + Cs A Hy +— B3 + BexJs,

(57)

Some of the field strength definitions (57) require an
explanation. First, consistent with the possible presence
of D8-branes, we include the F;, and F, field strengths,
and we include a “bare” mass parameter m obeying dm =
B_o* ji5. This and the choice to add m exp(BB,) to F ensure

|

the action from the democratic formulation, in which the
brane-current couplings, i.e., the brane WZ terms, are
known, following the same techniques as used for the
IIB theory. We address gauge invariance under the RR
gauge transformations and verify that the action we obtain
is consistent with the constraints discussed in Sec. III. We
then discuss the well-known relation between D8-branes
and the massive IIA supergravity in light of our new action.
We will examine the role that Dirac brane currents play in
generating the couplings of the massive IIA theory,
including terms proportional to the mass parameter in
D-brane WZ actions.

A. Action, gauge invariance, and EOM

As for the IIB theory, we start with a democratic
(pseudo)action (for the RR sector)

1 1. . 1. - 1. . 1. - 1. . 1. -
/|:—F0/\*F0+ZF2/\*F2+ZF4/\ *F4+ZF6/\*F6+ZF8 /\*FS +ZF10/\*F10

(56)

|
that the Bianchi identities of (23) are satisfied. These
choices are consistent with the massive IIA supergravity
[24]. Second, although F,, automatically has a trivial
Bianchi identity simply by index counting, we include
a transgression term consistent with the gauge trans-
formation of Cq that leaves the D8-brane WZ action
invariant. We also include a O-rank Dirac brane current
though there is not a D(—2)-brane or associated j_; current.
Instead, we recall that each Dp-brane has a series of
currents jag, j . Fs Jm,r2 2, -+ and Dirac brane currents
InIn 7 I 72 20 o - s the rank-0 Dirac brane current from
this series contributes to J,, even though there is not a
corresponding D-brane current. To our knowledge, this is
the first appearance of this current in the literature.

From this point, derivation of the action for the lower-

rank potentials follows the same steps as in Sec. V B.
We find

1 1. - 1. - 1. - | -
SHA:_Z—K-Z/ |:—F0/\*F0+§F2/\*F2+§F4/\*F4+Cl/\*j1+C3/\*j3+§ﬂ0ﬂC3/\F4/\H3
0

2

m o~ 1~ 1
+Zﬁ0ﬂC3 /\B% /\H3—§ﬁC3 A *J6 /\H3 —5

1 /m 5 m 1. m
+§ <§ﬁ33+ﬂ0*14) A (EﬂoB%—*Jé) +§Fo A (5,5,30334‘*]0)]-

m _
53‘21 —ﬂo*b) A (mpPoB, + *Jg)

"®We thank D. Sorokin for this and other provocative comments regarding this subsection.
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As in the IIB theory, we find a modified CS term and
couplings between Dirac brane currents of electrically
charged and magnetically charged D-branes. The last term
is also of this type, but F, could also in principle include
the mass parameter.

It is worth noting that we recover the action of the pure
massive IIA supergravity (i.e., with no D-branes) for
Jpt1:-Jpy2 = 0 [24] (or see also [3]). The meaning of
the mixing between Dirac brane currents and m exp(ﬁBz)
will become clear below.

Once again, the modified CS term has precisely the
correct coefficients to ensure that the EOM can be
written in terms of the gauge-invariant field strengths.
Of course, this fact is related to gauge invariance of
the action. If we take gauge transformations 6C; = dy,,

8Csy = dyy — ProHs,
1 .
oS _—2/ xo(d*jy + pxj3 A Hj)
2Kg

| B 1.
+}{2 A (d*j3 +§ﬁoﬁdF4 AH3—§ﬂd*J6 /\H3>:|
(59)

Equation (9) implies that the y, terms cancel; the y, terms
also require the Bianchi identity and the divergence of the
Dirac brane current. The gauge invariance in fact ensures
that the integral over the potentials C;, C; is well defined.

B. The massive ITA theory from Dirac branes

It is well known [46,47] that D8-branes are a source for
the mass parameter of the Romans massive supergravity,
which is quantized in units of the D8-brane charge [48]. As
a review, since DS8-branes are codimension one, m 1is
piecewise constant and jumps by one unit of D8-brane
charge at the position of each D8-brane, for example on a
S'/Z, orientifold. We conjecture that, in fact, the currents
of the associated Dirac 9-branes describe all the additional
couplings of the massive IIA theory, whether described as a
pure supergravity or as the massless IIA theory in the
presence of D8-branes and O8-planes. Here, we present
evidence in favor of this conjecture, point out some
remaining questions, and illuminate consequences.

Start by considering the Bianchi identity dF, = % j, on
the interval transverse to a set of parallel D8-branes. If we
define Fy=m + p_,*Jy9, where m is the bare mass
parameter, we see that m jumps by +ug at the location
of each reference brane but is otherwise constant.
Meanwhile, dxJ;y = *(jg — j§), so *Jyy is also a step
function equal to £ug between the physical and reference
branes. On the S'/Z, orientifold, m = 0 if half of the
reference D8-branes are coincident with each OS8-plane.
Alternately, we can generate the massive supergravity by
considering the massless IIA theory on a circle. Then
imagine an instantonic process in which a D8/D8-brane

pair appears transverse to the circle, and then the brane and
antibrane move in opposite directions around the circle
before reannihilating. This process leaves behind a closed
Dirac 9-brane extending around the entire circle and
filling spacetime (there is a reference brane/antibrane pair
at the point of initial pair creation, which has no net
effect).!’ In both these cases, Fy = —pByNug for integer N,
or *JIO = —ﬁoﬁo.

Since the Dirac 9-brane fills spacetime, it is natural to
treat the WZ couplings on its currents as part of the bulk
action. Ignoring any worldvolume gauge fields, the Dirac
brane currents are given by

. F
*Jg = —PonFoBa, *Jo = _ﬁ_oz °B3,
ﬂo’?FO ﬂOFO
*14:—TB%, *JQZ_WBE‘"
ﬂoﬂFO 5
Jo=— B3. 60

As a result, the field strengths become (with = —f from
the anomaly inflow)

- -~ - ~ 1~
F2:dC1+ﬁF0B2, F4:dC3 +ﬂC1/\H3 +§F032,

(61)

standard for the massive supergravity. In terms of these
field strengths, the action (58) in the absence of D-branes
becomes

1 1. - 1. - 1. ~
Sta = ——= —FoAN*xFog+=Fy AN xFy+=-F4 AN xF
1A 2K(2)/{2 o A*lo S Fa AXEY FSE4 A Ky

| 1 .
+§ﬁ0ﬁc3 A dCs N Hj +§ﬂoﬁF0C3 A B3 A Hj
1 ~
+ @ﬂoﬁF%Bi]. (62)

This precisely matches the action for Romans massive
supergravity given above (there, Fy — m). In particular, if
we consider the 10D spacetime as the boundary of an 11D
spacetime, the last three terms together are (ff3/2)FH;
integrated in 11D, as expected. So we see that the action for
pure massive IIA supergravity follows from Dirac brane
currents. If we include both a bare mass parameter m and
the Dirac branes (as is necessary generically in the presence
of D8-branes), we have *J,y = —f,(Fy,—m), which
adjusts the coefficients in Eq. (60). With this change, the
field strength definitions (61) still hold, and the mixed
terms in the action (58) are unchanged in terms of the
physical F,.

"Reference [48] also suggests this brane nucleation process as
a way to generate the bare mass parameter .
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As a short aside, the last term in (62) is the sum of the
(xJ)?-type terms. Therefore, these terms have physical
consequences even in the classical theory. They are not
purely topological.

The interpretation of the mass parameter as the conse-
quence of Dirac brane currents raises a question about
gauge transformations in the massive IIA theory. Since the
field strengths (61) contain the potential B,, they are gauge
invariant only if the RR potentials also transform under the
B, gauge transformations. This still seems to be the case
when F, arises from D8-instantons as above. However, in
the case where D8-branes are present, the Dirac brane
currents depend on , the extension of the gauge-invariant
D8-brane field strength. In that case, the B, gauge trans-
formation is compensated by a corresponding transforma-
tion of A;. When F is a mix of bare mass parameter m and
*J o in the presence of D8-branes, it seems that the gauge
transformation of C would depend only on m, not the
physical flux F,.

Additional terms in the WZ action arise for D-branes in
backgrounds with F o # 0, which [25,26] demonstrated for
type IIA D-branes via T duality. These take the form

u .
Swzjb::(;7§%t771[;[Fdab+1v (63)

where @, is the Chern-Simons form defined by
dw,,, = (dA,)P*?/2. We argue that these terms follow
naturally from the Dirac brane current J, and see that these

and other related WZ terms appear for all the IIA D-branes.
This Dirac brane current for a D(2n — 2)-brane is

Jo=JIn Fr/m
/42”_2(2ﬂa’)f/ 5= —£510
——— [ d A By 0 Y
A=) Jy @ap-1 A [By] (x.Y)

(ra) . )
B _; bﬂ'(l’l — Lﬂ)' [JM’(”Z”’I[BZ]”% B ]M*‘w;f—l[BZ]’kf

+ (l’l - f)JNv(DZI’—] [H3][Bo]"~! + *d*JN@zf—l [Bz]"ff]'
(64)

The first term, when substituted into the last term of
the action (58), is equivalent to a contribution Sy,
[Folwas_i[By]" to the D-brane’s WZ action, where the
¢ = n term reproduces (63). The remaining terms are a
similar coupling on the reference brane, a Dirac brane
coupling involving H; flux, and (after integration by parts)
a contact term between the Dirac brane and any D8-brane.'?

While we presented (64) in terms of a Dirac brane, using the
Chern kernel gives the same contributions with the latter two
terms extended over spacetime.

This observation suggests that the additional WZ terms
(63) are actually properly interpreted as Dirac brane
couplings and should include additional couplings to Bj.
They reduce to (63) in the absence of H; flux and D8-
branes; the additional term on the reference brane does not
contribute to the D-brane gauge field EOM because the
reference potential is fixed. Furthermore, (64) immediately
implies that all type IIA D-branes have such couplings. So
the action (58) leads to a prediction for D-branes in massive
ITA backgrounds. However, there is a puzzle. The FyxJ,
term in the action is multiplied by a factor of 1/2, so we
have actually found half of the WZ term suggested by T
duality. A possible resolution is to note that this term is
analogous to the integration by parts of C, i1%j, 1,
suggesting that we should include an extra Fy*J,/2 or
perhaps mxJ,/2 (since the bare mass parameter depends
on reference D8-branes) already in action (56). The
difficulty, of course, is that adding this term to (58) spoils
agreement with the known action for the massive IIA
theory. Alternately, there could be a subtlety in the
derivation of these WZ terms by T duality in [25,26].
Specifically, it may be that any IIB background dual to an
allowed brane in the massive IIA theory involves an
orientifold, and the T duality rules in the presence of
orientifolds can introduce factors of 2 in bulk fields in
comparison to T duality without orientifolds. This could
change the weight of the new WZ terms. Resolving this
puzzle is a question for the future.

VII. DISCUSSION AND FUTURE DIRECTIONS

We gave a brief introduction to the description of
D-brane WZ actions as they appear in the bulk supergravity
action through D-brane and Dirac brane currents. We
initially went through an anomaly inflow argument in
terms of the nonconservation of D-brane currents and
CS and transgression terms in the EOM and Bianchi
identities for the RR fields (for a generalized version of
the 10D type II supergravities). This discussion made
explicit several points that are implicit in the literature,
including the allowed sign conventions for the type II
supergravity actions—assuming there is a common sign
choice for transgression terms in the field strengths, there is
one independent choice of sign on a magnetic current in the
Bianchi identities. We then showed that reproducing the
EOM in terms of gauge-invariant field strengths requires a
brane-induced modification to CS terms in the action for
the RR gauge fields. Inclusion of ' corrections in the brane
currents, such as the A-roof genus terms, is explained
implicitly in [17], but an explicit description may be
interesting.

Our main concern was to give actions for the IIB and ITA
supergravities with D-brane sources. As a preliminary, we
explained how to integrate over gauge-patched RR-sector
potentials (or with similar gauge transformations). A
critical feature is the excision of the reference magnetic
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currents (around which the potentials are patched), which
leads to new surface terms. We left any subtleties surround-
ing brane intersections to the future, and these may be
important in reproducing additional anomaly terms found
in [17].

Up to those higher o corrections and brane intersection
terms, we then reproduced the results of [17] for the action
of 1IB supergravity with D-branes by dualizing the dem-
ocratic formulation of the theory. We uncovered the same
brane-induced modification to the CS term as well as
couplings between Dirac brane currents. We also showed
that both the standard CS term and the brane-induced term
are necessary for invariance of the action under gauge
transformations of the RR potentials. With an eye toward
dimensional reduction and other applications where
accounting for degrees of freedom is important, we further
dualized the action, keeping only half the degrees of
freedom of the self-dual 4-form potential.

Finally, we presented the action of IIA supergravity with
D-branes, including the Romans mass parameter. This has a
similarly modified CS term as the IIB supergravity along
with current-current couplings for Dirac brane currents,
though the latter are mixed with additional terms including
the mass parameter. We then demonstrated how Dirac brane
currents carried by a Dirac 9-brane reproduce the entire
action of the massive IIA theory without D-branes. In fact,
Dirac brane currents associated with other D-branes repro-
duce the form of additional WZ couplings on those branes
in the massive theory, which had been found by T duality
[25,26]. However, these results raise some questions: In the
Romans supergravity, RR potentials transform under the
NSNS gauge transformations, but should the Dirac brane
worldvolume potentials absorb those gauge transforma-
tions instead? And what is the origin of the factor of 2
difference between the new WZ couplings in massive
supergravity as deduced from the Dirac brane currents as
opposed to T duality?

As we discussed in the Introduction, Dirac’s formalism
separates the brane and gauge field degrees of freedom.
Identifying the correct degrees of freedom is a critical task
in a number of applications, including determining the
effective field theory of a dimensional reduction, for
example. (In fact, [44] used a variation on Dirac’s formal-
ism to address the effective field theory of D3-branes in
flux compactifications.) We will return to this issue in a
forthcoming companion paper [27], compiling useful for-
mulas for the dimensional reduction of branes and fluxes.
The companion paper will also describe several magnetic
brane configurations, including examples of smoothly
distributed magnetic monopole charge in electrodynamics
and branes ending on branes in string theory.

Looking further afield, other types of magnetic couplings
and magnetically charged branes in string theory are targets
for this analysis. First, a stack of D-branes carries a non-
Abelian gauge theory, so extending our results to non-

Abelian worldvolume F, and to include noncommuting
worldvolume positions, which appear in the CS action of
[49], is an important task. Further, Lechner and co-workers
[13—-16] and Bandos et al. [10] have considered type ITA
NS5-branes and M2- and M5-branes, and type IIB NS5-
branes would be a logical next step. An important issue, as
we noted, is understanding the supergravity action in the
presence of both D-branes and NS5-branes, particularly the
“extra” CS term sometimes included in the IIB supergravity
action and which is topological except in the presence of
both D5- and NS5-branes. We also now know of numerous
types of exotic branes in string theory (along with KK
monopoles), many of which also presumably have asso-
ciated Dirac brane currents. How do these affect any
effective gravitational and gauge action? We leave these
intriguing questions to the future.
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APPENDIX A: CONVENTIONS

We follow the conventions of [50] for forms, in particular
taking €y..p = ++/|g| and

Vit vy A

vpvpt

(*Ap)m~-/4n_p = Heﬂl“'ﬂn—p (A1)

This leads to *xA, = (—1)?’=P)™5A in a space of
signature s (= 0 Euclidean, = 1 Lorentzian). Other useful
identities include

(_1)q(D—q)+s

*(Ap A *Bq)”]...ﬂqﬁ) = p, l‘l"'/‘q—p”l“"’PAU]myp
_ D—q)+s
= (_1)41( ")“(Bq 'Ap)ﬂ]--wq,,)’
(*d*Ap)u,»-w,,_] = (_1)p(D—p+1)+s+1vyAW]'__”[H_

(A2)

At times we will consider formal sums of forms of different
ranks and products of such sums; integrating over a
manifold of some particular dimension picks out only
the form of that rank. We will suppress explicit wedge signs
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for formulas in text or sub/superscripts for notational
convenience.

We typically use capital letters to denote the embedding
coordinates of branes, taking X for physical branes and Y
for Dirac branes. Exterior derivatives without accents are
spacetime derivatives, hatted exterior derivatives are along
physical branes, and barred exterior derivatives are along
Dirac branes. We denote the pullback of a spacetime form
to a brane worldvolume with square brackets, so

1 N
= _Am-~~;4,,dX”] N

dXH»
p!

A (A3)

]

(and similarly for Dirac branes). It is worth noting
that [dA] = d|A] because partial derivatives of the form
O"XH/QEN - - Q&% commute.

When integrating forms, we must specify an orientation
for the integration measure in order to determine all signs.
In particular, we choose a worldvolume coordinate trans-
verse to the worldvolume boundary as the last coordinate in
the integration measure. Thus, the integral over a (p + 1)-

brane M is
/ c?Apz(—l)P/ A,.
M oM

APPENDIX B: GAUGE INVARIANCE OF THE
EXTENDED THEORY WITHOUT BRANES

In this Appendix, we will determine an action principle for
the general gauge theory of forms discussed in Secs. I A
and III including relationships between the constants that
appear in the EOM (10) and Bianchi identities (11). We will
be forced to consider the gauge invariance of the potentials
Cp.1; this is of course related to our discussion of monopole
branes and the Dirac brane formalism, but we consider here
the situation with no brane sources and globally defined
gauge transformations (not gauge patching).

We start with the action

S = /Z[(_l p(D=p)+1

+ Zyp,rcp+l A FD—p—r—Z A Hr+1:|
P

(A4)

1. -
EF}HZ A *Fp+2
(B1)

where the sums run over the values of p, r corresponding to
extant field strengths and potentials. The latter sum is the
Chern-Simons action. The field strength is defined

p+2 de—H + Zﬂpr p—r+1 A Hr-&-l’ <B2)

H,. | = dB, are another set of exact field strengths whose
kinetic terms we ignore here. f3, . and y,, . are constants,

which we take to vanish for values of p, r where the
corresponding potentials and field strengths do not exist.

Gauge invariance places constraints on these constants.
Consider first gauge invariance of the field strength F 12
with gauge transformations

8C,iy =dN, = Bp Ny AH,.y. (B3)

Then

5Fp+2 = _Z/}p.rﬁp—r,ll\p—r—l A Hl+1 A Hr+1 (B4)
rl

with some cancellation occurring as is familiar in ten-
dimensional supergravity; the remaining terms vanish in
that case because there is only one additional field strength
Hj. In general, these terms cannot be canceled by extend-
ing the gauge transformations (B3). Instead, these terms
must cancel among themselves. In the sum, each form
combination A,,_,_;H, 1 H,, appears twice, leading to the
constraint

Bp,rﬁp—r,l + (_1>(r+1 Y+ :B Iﬂp Lr —

We can also see this constraint in the requirement that the
Bianchi identity be written in terms of gauge-invariant
variables. Differentiating (B2), we have

(BS)

de+2 Zﬂp rdcp r1 A Hr+1

- Z/}p,er—r-&-Z NH,
-

- Z[}p,r/;p—r,lcp—r—l-&-l N Hl+1 A Hr+1' (B6)

rl

The additional undesired terms are precisely those given in
(B4) with the substitution A,_,_; = C,_,_;,1, so they also
vanish when (B5) is satisfied. Additionally, the integrability
condition coming from the exterior derivative of the
Bianchi identity is

0= Zﬁp,rdﬁp—r+2 NHp
7

= Zﬁp.rﬁp—nlﬁp—r—l+2 A HZ-H A Hr+lv (B7)
r.l

which is again satisfied whenever (B5) is satisfied.
The gauge variation of the action (B1) under (B3) is

—/Zypr

p.r.l
+(_1)(l+1)(D_p_r)ﬂ~p,lAp—l A FD—p—r—2]

NHp oy NHp

ﬁDpr—4lA /\FDpr—IZ

(B8)
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If we shift the sum over p in the second term, the gauge
variation vanishes if

0= (_l)pyp,rﬁD—p—r—4,l + (_1)p+<r+1)(1+1)yp,IBD—p—l—4,r
+ (—1)<l+1)(D_p_r_l)}’p+z,rﬁp+z,1

+ (_1)<r+1)<D_p_r_l)yp+r,lﬂ~p+r,r (Bg)

including the fact that the double sum over r, [ duplicates
terms. Meanwhile, the EOM is

d*Fp+2 = _Z(_l>D+r<p+1)ﬁ~p+r,r(*ﬁp+r+2> NH,p

+ Z«_DPD?’W + (-D)P Py )

X FD—p—r—Z A Hr+l (BlO)

if

0= Z[(—1)D_H_pl_l}’D—p—r—1—4,rﬁp+z,1

rl
- 7/D—p—r—4,rﬁ~D—p—r—4,l] CD—p—r—l—3 A HH—I A Hr+1
(B11)

(so the EOM is in terms of the gauge-invariant field
strength). As usual, we can rewrite (B11) to account for

duplication in the sum and rename p <> D —p—r—1[1—4
for comparison to (B9). For consistency, we find

(_l)pyp.rBD—p—r—4,l + (_1)(l+1)(D_p_r_l)yp+l.rﬁp+l.l =0.
(BI12)

We also see that the coefficients in the EOM as defined in
(10) relate to the coefficients in the action as follows:

a,, = (_1)D+r(p+l)+lﬁp+r’r’

a,, = (-1)Py,, + (=)Pey, 4, (BI3)

(f F ;1 2—p) is self-dual, its kinetic term is halved, so a,, ,
takes half the value given above. Meanwhile, &, , for self-
dual F p+2=p/2 1s doubled for the same reason.) The

integrability condition from the exterior derivative of the
EOM (10) is

0= E {ap,rap+r.l*Fp+r+l+2 + (ap,rdp+r,l
rl

+ dp,rﬁD—p—r—él,l)FD—p—r—l—Z} A Hl+l A Hr+l' (B14)

It is straightforward (but somewhat tedious) to show that
this is satisfied as long as (B5) and (B12) are satisfied for
coefficients (B13).
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