
 

Dirac branes for Dirichlet branes: Supergravity actions

Andrew R. Frey *

Department of Physics and Winnipeg Institute for Theoretical Physics, University of Winnipeg,
515 Portage Avenue, Winnipeg, Manitoba R3B 2E9, Canada

(Received 26 May 2020; accepted 5 August 2020; published 27 August 2020)

Nontrivial Bianchi identities with local magnetic sources are solved by recognizing that gauge potentials
are sections rather than globally defined functions, but properly accounting for the source degrees of
freedom requires a modification of the field strength. Following work by Teitelboim and by Cariglia and
Lechner, we extend Dirac’s string formalism for monopoles to D-branes in type IIA and IIB string theory.
We give novel derivations of brane-induced Chern-Simons terms in the supergravity actions, including a
prescription for integrating over potentials in the presence of magnetic sources. We give a noncovariant
formulation of the IIB theory, keeping only the independent degrees of freedom of the self-dual 4-form
potential. Finally, it is well known that D8-branes source the mass parameter of IIA supergravity; we show
that the additional couplings of the massive IIA supergravity, including on other D-brane worldvolumes,
are a consequence of the corresponding Dirac branes.
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I. INTRODUCTION

In modern mathematical treatments, we recognize the
vector potential of a gauge theory not as a globally defined
function but as the section of a gauge fiber bundle [1,2]. In
somewhat more pedestrian terms, the vector potential can
be defined as different vector-valued functions in different
coordinate patches of spacetime as long as the distinct
vector potentials are related by a gauge transformation
on the overlap of the coordinate patches (we will refer to
this as “gauge patching” of the vector potential). Gauge
patching allows the description, for example, of a constant
magnetic field strength on a torus (the distinct patches
cover different unit cells) or the field of a magnetic
monopole (where the Bianchi identity dF2 ≠ 0 can have
no globally defined solution). Analogs of both these
examples for higher-rank form potentials are important
in string theory as harmonic background flux in compacti-
fications and higher-dimensional D-branes (and NS5-
branes) that carry magnetic charges for the fundamental
potentials. The coupling between the magnetic current and
the potential is implicit in the patching and does not appear
in the action for the magnetic charge.
An alternative that displays the coupling of magnetic

sources explicitly is to double the number of gauge degrees

of freedom by introducing dual field strengths and corre-
sponding potentials. In this so-called “democratic” formal-
ism, the magnetic sources enter in the equations of motion
(EOM) for the dual potentials [3].1 The extra degrees
of freedom are then removed by enforcing duality con-
ditions FD−p−2 ¼ �⋆Fpþ2 at the level of the EOM. In the
democratic formalism, the action for magnetic charges
includes the same current-potential coupling as for electric
charges, so the EOM of the magnetic charges includes the
dual field strengths. Nontrivial Bianchi identities are
enforced by the duality conditions. As a result, democratic
formalisms still require gauge patching around magnetic
sources.
Because the gauge transformations in the transition

regions between gauge patches are part of the definition
of the potentials and also depend on the dynamical mag-
netic currents, the gauge potentials are not independent
degrees of freedom—they have a hidden dependence on
the magnetic brane degrees of freedom which should
be considered explicit in the language of calculus of
variations. In quantum mechanical language, we need to
separate the brane and gauge degrees of freedom to serve as
integration variables in the path integral.
Interestingly, Dirac [6] provided a solution in his early

work on magnetic monopoles,2 which Teitelboim [9],
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1Including auxiliary fields to enforce duality constraints, the
IIA and IIB supergravities are given in a democratic formalism in
[4,5] respectively.

2In fact, for monopoles, [7,8] showed that Dirac’s formalism is
equivalent to defining potentials as sections in part by showing
that some gauge transformations move the Dirac string.
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Bandos et al. [10], and Lechner and co-workers [11–17]
extended to magnetic p-branes. The key idea is as follows:
Consider a field strength F̃pþ2 satisfying Bianchi identity
dF̃pþ2 ¼ β⋆jD−p−3 with β a sign convention. Any con-
served current can be written as ⋆jD−p−3 ¼ d⋆JD−p−2,

3 so
a field strength defined as F̃pþ2 ≡ dCpþ1 þ β⋆JD−p−2
satisfies the Bianchi identity; in this way, the magnetic
coupling appears in the action. There is actually one
additional subtlety when the branes fill all noncompact
dimensions; ⋆jD−p−3 ¼ d⋆JD−p−2 on a compact manifold
is inconsistent when there is net local charge, so we must
define instead ⋆jD−p−3 − ⋆j�D−p−3 ¼ d⋆JD−p−2, where
j�D−p−3 is some specified reference current (see [18] for
details in the case of magnetic monopoles). Now, Cpþ1 is
patched around the reference current, so dynamics of
jD−p−3 do not affect the potential. The alert reader may
note that a Gauss law constraint means that the net charge
must vanish on a compact manifold, but in string theory
charge may dissolve in background flux, so the net charge
of local objects need not vanish. Reference currents are
necessary to account for this fact.
There are a variety of choices for the form J for a given

magnetically charged p-brane with worldvolume M
and current jM. As described by [9], we can consider a
“Dirac (pþ 1)-brane” with worldvolume N of boundary
∂N ¼ M −M�. Then JN , the current of the Dirac brane,
satisfies d⋆JN ¼ ⋆ðjM − jM�Þ. As we will see below, both
the brane and Dirac brane currents are delta-function
supported. A less singular option for J used by [13–17]
is given by the Chern kernel [19,20], which diverges only
as a power law near the current jM. In the following, we
will mostly remain agnostic about the nature of J, as our
results are independent of this choice, but we will often use
the language of Dirac branes to be concrete and refer to J as
the Dirac brane current as shorthand. It is also worth noting
that, even fixing to Dirac branes or Chern kernels, J is
arbitrary up to its coderivative, but the field strength F̃ is
invariant.
Our goal is to extend this formalism to D-branes in the

IIA and IIB string theories, writing these theories in terms
of Ramond-Ramond (RR) potentials Cpþ1 for p ≤ 3. While
[17] have already considered (arbitrary intersections of) D-
branes in the IIB theory by means of an anomaly argument,
we present a new derivation via duality from the democratic
formulation. In fact, [17] found several new brane-induced
terms in the IIB supergravity action, beyond the standard
coupling between currents and potentials, i.e., the Wess-
Zumino (WZ) action for the D-branes. One set of new terms
couples the Dirac brane currents of magnetic branes to those
of electric branes; [21] first identified the analogous term in
Maxwell electrodynamics. These terms are related to charge

quantization. Further, [17] found a correction to the bulk
Chern-Simons (CS) term involving Dirac brane currents. We
will emphasize how these terms are required for consistency
of the EOM and for gauge invariance. A key point in this
story is that D-brane currents are not conserved due to the
WZ couplings, but CS terms in the EOM and Bianchi
identities cancel the anomaly via an inflow argument
[22,23]; we give a detailed accounting of the anomaly
inflow in a general theory similar to that of the RR forms.
The necessity of reference currents also forces us to explain
what it means to integrate over a gauge-patched potential.
The plan of this paper is as follows. In Sec. II, we

demonstrate the anomaly inflow argument of [22,23] for a
class of theories of form potentials which includes the RR
potentials of both type II supergravities. We pay particular
attention to how the inflow argument requires specific
relations between various conventional coefficients in the
EOM and Bianchi identity and confirm the consistency of
the Dirac brane current with the inflow. Then we consider
an action principle for the generalized theory of Sec. II and
introduce the modified CS term in Sec. III through a novel
derivation. In Sec. IV, preliminary to our discussion of the
supergravity actions, we find a prescription for integrating
potentials that are gauge patched around magnetic sources,
focusing on RR potentials in the 10D supergravities. We
then give a novel derivation of the new terms in the type IIB
supergravity action that were first described in [17] in
Sec. V. We also eliminate redundant degrees of freedom in
the self-dual 4-form potential, leading to a noncovariant
action for the RR fields and discuss gauge invariance.
Finally, in Sec. VI, we derive the IIA supergravity action
including the Romans mass term [24] and D-branes for the
first time. It has long been known that D8-branes source the
Romans mass, and we show for the first time how the
corresponding Dirac 9-brane currents reproduce the addi-
tional couplings of the massive IIA supergravity. We also
propose that additional WZ couplings on D-branes in the
massive theory [25,26] are a consequence of the Dirac
brane currents and conjecture the presence of other new
WZ couplings on type IIA D-branes. We conclude with a
brief discussion of future directions and give our conven-
tions and some auxiliary results in the appendixes. A
forthcoming companion paper [27] will demonstrate how
Dirac’s formalism separates the brane and gauge degrees of
freedom in a form useful for dimensional reduction.

II. CURRENTS AND ANOMALY INFLOW

In this section, we describe general brane currents and
when they are not conserved. We then see how anomaly
inflow determines the coefficients of several terms in the
EOM and Bianchi identities and verify that the inflow
mechanism is always consistent with the Dirac brane
formalism. Finally, we apply our results to the 10D type
II supergravity theories, making explicit the allowed, self-
consistent sign conventions.

3Assuming there are no harmonic forms on the full non-
compact spacetime.
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A. Currents and anomalies

Mathematically speaking, currents are dual vectors to
differential forms (see [28] for a review), which includes
form integration over submanifolds of the appropriate
dimensionality. In this respect, the WZ action of a p-brane
is the sum of n-currents acting on n-form potentials:

SWZ ¼
Xpþ1

q¼0

ΓMpþ1;G
ðpÞ
q
ðCpþ1−qÞ

¼ μp

Z
M

�Xpþ1

q¼0

½Cpþ1−q� ∧ GðpÞ
q

�
¼ μp

Z
M
½C� ∧ GðpÞ;

ð1Þ
where Mpþ1 is the worldvolume, Gq are a series of
worldvolume q-forms defined on the brane, and μp is
the p-brane charge. These may be defined to include
pullbacks of spacetime forms. After the second equality,
we have defined C and GðpÞ as formal sums over the various
rank forms [we will suppress the superscript (p) on G when
the dimensionality or type of brane is clear from context].
Of course, the WZ action (1) only describes a brane’s

electric couplings to the gauge fields. This is sufficient in a
democratic formulation but potentials of all ranks do not
exist when only independent degrees of freedom are
included. As a result, a spacetime description of currents
is crucial. Since any dual vector Γn is uniquely identified
with a differential form jn by the inner product

ΓM;GðCnÞ≡
Z

Cn ∧ ⋆jM;G ð2Þ

with the integration over spacetime, we can identify the
jM;G as the brane currents. Then the EOM and Bianchi
identity

d⋆F̃pþ2 ¼ ð−1ÞD−p−1⋆jpþ1 þ � � � and

dF̃pþ2 ¼ βp⋆jD−p−3 þ � � � ð3Þ
give the electric and magnetic couplings, where βp is a sign
chosen by convention.4 The current jpþ1 ¼

P
jMpþqþ1;Gq

with the sum over all branes. (On the flip side, all the
currents of the same brane can be written as a formal
sum jM ¼ P

q jM;Gq
.)

Naively, the current for a (pþ q)-brane with worldvo-
lume form Gq is

j
μ1���μpþ1

M;G ðxÞ

¼ μpþq

Z
Mpþq¼1

d̂Xμ1 ∧ � � � d̂Xμpþ1 ∧ Gqδ
Dðx; XÞ; ð5Þ

where Xμ are the embedding coordinates. This may be
modified in topologically nontrivial situations, such as
when the brane in question is actually the nontransversal
intersection of two other branes. Nontransversal intersec-
tions are the focus of [16,17,29]. As our goal is to
emphasize writing the action in terms of independent
degrees of freedom, we base our results on the naive
current (5); the adaptation to nontransversal intersections
follows from [17].
The anomalies we consider are local in nature, so they

must cancel pointwise. While related, we emphasize that
these anomalies are separate from global anomalies that
forbid certain brane configurations, such as the Freed-
Witten anomaly [30] or the magnetic D-brane Gauss law
constraint that H3 integrate to zero over the worldvolume
(see [31,32]). From the perspective of the WZ action (1),
they arise from a gauge variation δC ¼ dλ. Integrating the
pullback by parts yields a term from the brane boundary
and one from d̂G. In some cases, these can cancel between
branes; for example, a D1-brane can end on a D3-brane,
providing a magnetic source for the D3-brane gauge field.
The two anomalous terms cancel in the summed current j2.

5

However, if d̂G contains the pullback of a spacetime form,
the cancellation must be by inflow associated with a
modified gauge transformation δC as occurs in string
theory.
From a spacetime point of view, we can consider the

divergence of the brane current

ð⋆d⋆jM;GÞμ1���μp
¼ ð−1Þðpþ1ÞðD−pÞμpþq

×
Z
M

∇ν½δDðx;XÞd̂Xν ∧ d̂Xμ1 ∧ � � � d̂Xμp ∧ Gq�

¼ ð−1ÞDðpþ1Þþ1μpþq

Z
M

d̂½δDðx;XÞd̂Xμ1 ∧ � � � d̂Xμp ∧ Gq�

þ ð−1ÞDðpþ1Þþpμpþq

Z
M

d̂Xμ1 ∧ � � � d̂Xμp ∧ d̂Gqδ
Dðx;XÞ:

ð6Þ

In an arbitrary Lorentzian metric, δDðx; XÞ is the biscalar
distribution, and the covariant derivative acts with respect

4The sign on the current in the EOM is determined by the
canonical action

S¼
Z

dDx
ffiffiffiffiffiffi
−g

p X
p

�
−
1

2
jF̃pþ2j2þCpþ1 ·jpþ1

�

¼
Z X

p

ð−1ÞpðD−pÞþ1

�
1

2
F̃pþ2∧⋆F̃pþ2þð−1ÞDCpþ1∧⋆jpþ1

�
:

ð4Þ
5In fact, this configuration can also be described as a BIon

solution of the D3-brane theory, in which case there is manifestly
no anomaly.
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to the spacetime position x, but the derivative switches to
the partial with respect to X as described in [33]. We
therefore see that the brane currents are not conserved:

d⋆jM;G ¼ ð−1ÞDþq⋆|̃∂M;G − ð−1ÞD⋆jM;d̂G; ð7Þ
where |̃ is a p-form current for the boundary of the
worldvolume. Henceforth in this paper, we will assume
that the boundary contributions cancel with some of the
worldvolume d̂G contributions, so we will ignore those
terms from here out, returning to them in the companion
paper [27].
Consider then a single brane (i.e., ∂M ¼ 0) with d̂G

a pullback of a nontrivial spacetime form Hrþ1. We
will find that the anomalies cancel when d̂Gq ¼P

r ηp;q;r½Hrþ1�Gq−r, where Hrþ1 is prototypically the
field strength of a potential that does not couple to the
branes, and ηp;q;r is some proportionality constant. Then,
using (A2),

⋆jM;½Hrþ1�Gq−r
¼ ⋆ðjM;Gq−r

·Hrþ1Þ
¼ ð−1Þðrþ1ÞðD−r−1ÞHrþ1 ∧ ⋆jM;Gq−r

: ð8Þ
We will find that η is independent of the rank q of the
worldvolume forms, so the anomaly for the total brane
current is conveniently written as

d⋆jpþ1 ¼
X
r

ð−1ÞrðD−rÞηp;rHrþ1 ∧ ⋆jpþrþ1: ð9Þ

B. Anomaly inflow

We consider a set of potentials Cpþ1 (the RR potentials
in string theory) and corresponding gauge-invariant field
strengths F̃pþ2, with an additional set of field strengths
Hrþ1 ¼ dBr assumed closed with pullbacks ½Hrþ1� that
appear in d̂G for some branes (with this coupling, those
branes carry an electric current for Br, but Hrþ1 remains
closed). The classical anomaly discussed in the previous
section then appears in the current whenever Hrþ1 ≠ 0,
whether it is a topologically nontrivial flux or due to
another brane source. It is a simple generalization to add an
extra index to C or B to have more than one potential at
each rank. Our discussion of the inflow is similar to
comments by [22] for M-theory and is implicit in [17]
for IIB string theory; [23] gives a worldvolume argument
for string theory. We are not aware of a discussion in this
full class of theories.
The general EOM for Cpþ1 (to first order in F̃pþ2) has

the structure

d⋆F̃pþ2 ¼ ð−1ÞD−p−1⋆jpþ1 þ
XD−p−3

r¼0

½αp;rð⋆F̃pþrþ2Þ ∧Hrþ1

þ α̃p;rF̃D−p−r−2 ∧Hrþ1�; ð10Þ

where α; α̃ are constants. Meanwhile, the Bianchi identity is

dF̃pþ2 ¼ βp⋆jD−p−3 þ
Xpþ1

r¼0

β̃p;rF̃p−rþ2 ∧ Hrþ1; ð11Þ

βp is a sign convention, which can be chosen independently
for each field strength. For now, we treat the α; α̃; β; β̃ as
independent constants, though there are relations among
them in a Lagrangian formulation of the theory; other
conditions following from gauge invariance are discussed
in Appendix B. The α̃ terms follow from CS terms in the
action, while the α and β̃ terms arise from terms in the field
strength. To distinguish them from CS terms, we will refer
to the α and β̃ terms as “transgression” terms. Theories with
this structure include of course the type II supergravities
and also the dimensionally reduced theory of gravity and
form potentials on a torus, for example.
Current (non)conservation is related to the integrability

conditions obtained by taking the exterior derivative of the
EOM and Bianchi identity. For the EOM, we have

d⋆jpþ1 ¼
X
r

½−ð−1Þrαp;r þ ð−1ÞD−pα̃p;rβD−p−r−4�

× ⋆jpþrþ1 ∧ Hrþ1; ð12Þ
leaving off terms that are independent of the brane
currents.6 In other words, we see that the derivatives of
the CS and transgression terms localize on the currents as
needed for an anomaly inflow. Comparing to Eq. (9), we
find

ηp;r ¼−ð−1ÞDþðpþ1Þðrþ1Þαp;r− ð−1Þprα̃p;rβD−p−r−4 ð13Þ

since the anomaly must cancel when only one Hrþ1

background is nonvanishing. In fact, this holds for any
case where only one brane contributes to the current, so we
see that η is independent of the worldvolume form rank.
Similarly, the Bianchi identity yields

d⋆jD−p−3 ¼ −βp
X
r

β̃p;rβp−r⋆jD−pþr−3 ∧ Hrþ1: ð14Þ

Cancellation of the anomaly then requires

ηD−p−4;r ¼ ð−1ÞrðD−pÞþpβpβp−rβ̃p;r: ð15Þ

Again, we see that η is independent of q.

C. Dirac brane currents

We will now see how Dirac brane currents in the field
strengths fit into the Bianchi identities using the constraint
(15). Our discussion extends similar results in [17].

6These must vanish separately. We discuss how this occurs and
the relation to gauge invariance in Appendix B.
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To start, we need to consider how to extend the
worldvolume form G from the brane worldvolume to the
Dirac brane or, in the case J represents a Chern kernel,
the entire spacetime. The key point is to choose the
reference brane worldvolume M� homotopic to M (so
N is continuous for a Dirac brane). The extension of G
depends on its form. For D-branes, we will be concerned
primarily with the case that G ¼ Gð½B2�; d̂A1Þ, where A1 is
the worldvolume gauge field. In this case, we continue to
take B2 as given by the spacetime Neveu-Schwarz–Neveu-
Schwarz (NSNS) form (pulled back to N as appropriate).
For the gauge field, we choose a fixed A�

1 on M� and an
extension Ā1 toN or spacetime that pulls back to A1 onM
and A�

1 onM
�. Then the Dirac brane current takes the form

of (5) with G promoted to the extension Ḡ and Xμ replaced
by the embedding coordinates Yμ ofN . For a Chern kernel
of a (pþ q)-brane, ⋆JḠ ≡ ð−1Þðpþ1Þðqþ1Þð⋆JÞḠ [a similar
formula holds for Dirac brane currents when Ḡ is the
pullback of a spacetime form by virtue of (A2)].
Since the Dirac brane contribution to the field strength is

given by the Dirac brane’s current, Eq. (7) applies in the
form

d⋆JN ;Ḡ ¼ ð−1ÞDþq⋆ðjM;G − jM�;GÞ − ð−1ÞD⋆JN ;d̄ Ḡ:

ð16Þ
Therefore, to cancel the dynamical current jD−p−3 ¼P

jMD−pþq−1;Gq
(summed over all branes) in the Bianchi

identity (11), we should define

F̃pþ2 ¼ dCpþ1 þ ð−1ÞDβp⋆JD−p−2

þ
Xpþ1

r¼0

β̃p;rCp−rþ1 ∧ Hrþ1; ð17Þ

where the Dirac brane current is a sum over the corre-
sponding Dirac branes

JD−p−2 ¼
X

ð−1ÞqJN D−pþq−2;Ḡq
ð18Þ

and Cpþ1 includes the potential for the reference current for
worldvolumes M�. Then the current for the Dirac brane
associated with a given physical brane can be written as a
formal sum JN ¼ P

qð−1ÞqJN ;Ḡq
.

With this definition for the total Dirac brane current, the
divergence (16) and condition (15) give

d⋆JD−p−2 ¼ ð−1ÞD⋆ðjD−p−3 − j�D−p−3Þ − βp
X
q;r

ð−1Þqþðrþ1Þðp−r−1Þβ̃p;rβp−rHrþ1 ∧ ⋆JN ;Ḡq−r

¼ ð−1ÞD⋆ðjD−p−3 − j�D−p−3Þ þ βp
X
r

β̃p;rβp−r⋆JD−pþr−2 ∧ Hrþ1: ð19Þ

Since Cpþ1 contains the potential for the reference current,

dF̃pþ2 ¼ βp⋆jD−p−3 þ
X
r

β̃p;r

�
dCp−rþ1 þ

X
l

β̃p−r;lCp−r−lþ1 ∧ Hlþ1 þ βp−r⋆JD−pþr−2

�
∧ Hrþ1

¼ βp⋆jD−p−3 þ
X
r

β̃p;rF̃p−rþ2 ∧ Hrþ1: ð20Þ

In other words, the coderivative of the Dirac brane current
is precisely consistent with the appearance of Dirac brane
currents in the transgression term.

D. Type II supergravity conventions

We can now apply our results to set limits on possible sign
conventions in the 10D type II supergravities. Some of the
restrictions we find below (such as the alternating of signs in
the duality conditions for the democratic formulation) appear
implicitly in the literature (see for example the discussion of
conventions in Appendix A of [34]), but we are not aware of
an explicit derivation from first principles.
While the D-brane WZ action identifies

G ¼ eF ∧
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Âð4π2α0RTÞ
Âð4π2α0RNÞ

s
; ð21Þ

where F ¼ 2πα0F2 þ η½B2�, Â is the A-roof genus, and RT ,
RN are the tangent and normal bundle curvatures, we will
not consider the α0 corrections, instead restricting to
G ¼ expF . See [17] for more on α0 corrections in the
IIB theory. Both type II supergravities in this approxima-
tion have a single background field strengthH3 ¼ dB2 and,
following from the above, a common sign choice η ¼ ηp;2
appearing in F for all p. Here, we will also follow the
typical choice of setting all β̃p;2 ≡ β̃, a single sign choice
for the transgression terms in each theory.
Starting with the IIB theory with only potentialsCpþ1 for

p ≤ 3, the EOM and Bianchi identities are

d⋆F̃1 ¼ ⋆j0 þ α−1⋆F̃3 ∧ H3;

dF̃1 ¼ β−1⋆j8;
d⋆F̃3 ¼ ⋆j2 þ ðα1⋆F̃5 þ α̃1F̃5Þ ∧ H3;
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dF̃3 ¼ β1⋆j6 þ β̃F̃1 ∧ H3;

d⋆F̃5 ¼ ⋆j4 þ α̃3F̃3 ∧ H3;

dF̃5 ¼ β3⋆j4 þ β̃F̃3 ∧ H3: ð22Þ

The appearance of both transgression and CS terms for the
F̃3 EOM is due to the self-duality condition on F̃5. The
constraint (13) tells us immediately that η ¼ −α−1 ¼
−α̃3β1 ¼ −α1 − α̃1β3. Meanwhile, the Bianchi identities
are consistent with (15) for η ¼ −β−1β1β̃ ¼ −β1β3β̃.
Finally, the transgression terms in the EOM and Bianchi
identity are related through variation of the Lagrangian,
leading to Eq. (B13), which implies α−1 ¼ −β̃ and η ¼ β̃.
All told, there are two independent sign choices, β̃ and β3,
with the signs in the Bianchi identities alternat-
ing β3 ¼ −β1 ¼ β−1.
The type IIA supergravity (including a possible mass

term) has

d⋆F̃0 ¼ 0; dF̃0 ¼ β−2⋆j9;
d⋆F̃2 ¼ −⋆j1 þ α0⋆F̃4 ∧H3; dF̃2 ¼ β0⋆j7 þ β̃F̃0 ∧H3;

d⋆F̃4 ¼ ⋆j4 þ α̃2F̃4 ∧H3; dF̃4 ¼ β2⋆j5 þ βF̃2 ∧H3:

ð23Þ

As in the IIB case, we find η ¼ α0 ¼ −α̃2β2 and
ηβ̃ ¼ β−2β0 ¼ β0β2. Derivation of the transgression terms
from the action gives also α0 ¼ −β̃, which tells us that
η ¼ −β̃ and β0 ¼ −β−2 ¼ −β2. There are once again two
independent sign choices, with the others determined.
In either supergravity, the democratic formulation has

d⋆F̃pþ2 ¼ ð−1Þpþ1⋆jpþ1 þ αp⋆F̃pþ4 ∧ H3;

dF̃pþ2 ¼ βp⋆j7−p þ β̃F̃p ∧ H3 ð24Þ

for −2 ≤ p ≤ 8 (F̃p<0 ≡ 0). By comparison to the Bianchi
identities above, the duality relations must be ⋆F̃D−p−2 ¼
∓βpF̃pþ2 (in IIA and IIB respectively) for p ≤ 3; in
particular, C4 satisfies the self-duality relation ⋆F̃5 ¼
β3F̃5. Since the coefficients βp alternate signs in each
theory, so do the duality relations. Since the D-brane charge
(vs antibrane) is determined by the WZ coupling to Cpþ1 in
the democratic formulation, these alternating signs mean
that Dp-branes with p ≥ 3 enter the Bianchi identities with
alternating signs as well. The signs can only be chosen the
same if the transgression coefficients β̃p are distinct for
the different F̃pþ2. Finally, since the Bianchi identities for
the higher-rank field strengths have the same form, we have
βpβpþ2 ¼ −1 (i.e., alternating signs) for all p.

III. BRANE-MODIFIED CHERN-SIMONS
ACTION

Chern-Simons terms are familiar from the actions of both
10D type II supergravities and the 11D supergravity. We
emphasize here that the presence of D-branes necessarily
modifies those CS terms; by extension (through duality,
etc.), M-branes in 11D and NS5-branes in 10D must also
modify them. The CS term modifications were first pointed
out by [17]; here we give a new, simple, physically
motivated derivation in the theory of the previous section,
which we can apply to the 10D supergravities later.
The action

S ¼ 1

2κ20

Z X
p

ð−1ÞpðD−pÞþ1

�
1

2
F̃pþ2 ∧ ⋆F̃pþ2

þ ð−1ÞDCpþ1 ∧ ⋆jpþ1

�
þ SCS; ð25Þ

with Chern-Simons terms

SCS ¼
1

2κ20

X
p;r

Z
½γp;rCpþ1 ∧ F̃D−p−r−2

þ γ̃p;rð⋆JD−p−2Þ ∧ CD−p−r−3� ∧ Hrþ1 ð26Þ

reproduces the Cpþ1 EOM (10), assuming that the field
strength is defined by Eq. (17) with the Dirac brane current
(18). γp;r, γ̃p;r are some set of constants related to the EOM
coefficients α̃p;r. We have ignored kinetic terms for the
closed field strengths Hrþ1 as well as the gravitational
sector. The canonical coupling between the potential
and electric current in (25) determines the sign of the
source term in (10), and it also gives the WZ action for all
the branes (i.e., there is no need for an additional WZ action
on the branes) up to a factor of the gravitational coupling
2κ20, which can be accommodated by rescaling the brane
charges.
We discuss the invariance of this action and the field

strength (17) under the gauge transformations of Cpþ1 in
the absence of brane sources in Appendix B, arriving at
constraints (B5) and (B12), which also guarantee that the
Bianchi identity and EOM depend only on F̃pþ2 rather than
Cpþ1 (in the absence of currents). We also find the
relationships (B13) between the EOM coefficients αp;r,
α̃p;r and β̃p;r, γp;r in the Appendix.
While the γp;r terms in SCS are familiar from, for

example, the 10D supergravities, the γ̃p;r terms require
some explanation. Without them, the Dirac brane currents
are absent from the field strengths in the α̃p;r terms of the
EOM. That would leave the EOM dependent on the Dirac
brane worldvolumes N including the arbitrary reference
branes M�, which would clearly be inconsistent (in fact,
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that would be a violation of gauge invariance in the
magnetic context). So we consider

δSCS
δCpþ1

¼
X
r

γp;rF̃D−p−r−2 ∧ Hrþ1

þ
X
r

ð−1ÞpðD−p−rÞγD−p−r−4;rðF̃D−p−r−2

− ð−1ÞDβD−p−r−4⋆Jpþrþ2

þ ð−1Þðpþ1ÞðD−p−rÞγ̃D−p−r−4;rð⋆Jpþrþ4ÞÞ ∧ Hrþ1

ð27Þ

assuming the coefficients obey (B12). Therefore, we
require γ̃p;r ¼ ð−1ÞD−pβpγp;r to ensure that the EOM are
written only in terms of the field strengths.
We will later derive these and other new brane-induced

terms for the type II supergravities.

IV. INTEGRATING PATCHED POTENTIALS

It is not immediately clear what it means to integrate over
a quantity including a potential with gauge patching
because the potential is not single valued in the overlap
of coordinate patches: Either gauge is physically accept-
able. As a result, many authors, including [17,29,35] have
suggested writing potential-current couplings in terms of
the gauge-invariant field strength. However, if we attempt
to write an action following that approach without the
explicit appearance of the potentials, the EOM will contain
the arbitrary reference currents j�pþ1 (for electric sources).
Consider, for example, the action (25) above with the
replacement Cpþ1ð⋆jpþ1Þ → ð−1ÞpF̃pþ1ð⋆Jpþ2Þ. Even
ignoring transgression terms by setting Hrþ1 → 0, the
variation of this term is δCpþ1 ∧ ⋆ðjpþ1 − j�pþ1Þ. Here
we give what is to our knowledge the first description of
how to carry out spacetime integrals including gauge-
patched potentials.
The key idea is already present in [2], who gave a

prescription for integrating the vector potential of Maxwell
theory along a charged particle worldline in the presence of
a monopole. In sketch form our new prescription for
integration against other forms over spacetime is as
follows: Pick an arbitrary division where the integrated
potential switches from one gauge to another. Then design
the integral to be invariant under changes of the division, a
choice closely related to gauge invariance. Since we are
integrating over spacetime, we also have to exclude the
locus of magnetic charge, where the potential is undefined.
For simplicity, we work with RR potentials in string

theory. Specifically, we consider a set of potentialsCpþ1 for
p either even or odd (as in the IIA or IIB supergravity
respectively). Written as a formal sum of forms, the gauge-
invariant field strengths are F ¼ dCþ β̃CH3 and the gauge
transformations are δC ¼ dχ − β̃χH3, where β̃ is a single

sign choice. Depending on the application, the formal
sum C could include p ¼ −1 to 8 as in a democratic
formulation of the supergravity or only a subset (e.g.,
p ¼ 0, 2 in type IIA supergravity). Taking p ¼ 0, H3 ¼ 0,
our prescription also applies to standard electrodynamics.
The field strengths do not include Dirac branes, and
the Bianchi identities are dF ¼ ⋆ðβj�Þ þ β̃FH3, where
ðβj�Þ ¼ P

p βpj
�
pþ1 with βp a distinct sign choice for each

potential. Our results apply to any gauge-patched potential,
meaning j� could represent dynamical currents, but we will
take j� to be fixed reference currents. It is worth recalling
that a high-dimension brane with a worldvolume gauge
field or in the presence of nonvanishing B2 contributes to
lower-rank currents, so j�pþ1 may include currents smeared
over worldvolumes with dimension greater than pþ 1.
To define the spacetime integral

R
CK, where K is

another formal sum of forms, we note that the potentials
C are undefined on the collection of branes that contribute
to j�. Contrast this to electric charges where potentials
simply diverge; for the example of a magnetic monopole,
none of the coordinate patches with well-defined potentials
covers the monopole location. Therefore, rather than
integrating over all of spacetime, we excise a small tube
around the worldvolume of each magnetically charged
brane with boundary P. After integrating, we will take the
volume of the excluded tube to vanish, so it becomes
measure zero. In the presence of multiple magnetic brane
sources, P has multiple components.
Now consider the overlap region of two gauge patches

(multiple gauge patches are a straightforward extension,
assuming the configuration is simple enough) of potentials
C� around some magnetic source. On the overlap region,
the two potentials are related by the gauge transformation
Cþ ¼ C− þ dζ − β̃ζH3. We choose a codimension-one
surface Q in the overlap region such that the spacetime
volume Q� on either side of Q is within the coordinate
patch where C� is valid respectively. This is just a partition
of spacetime into regions where each potential is used. Note
that Q will generically intersect the boundary surface P. In
the example of a monopole, this is just related to the fact
that the region where each potential is valid is given by a
range of polar angle. Figure 1 sketches the various surfaces

FIG. 1. Sketch of integration region with magnetic current j�.
Shaded region inside P is excluded; Q,Q0 are possible separa-
tions of two gauge patches.
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for a current j�. Quantities integrated over Q or P are
assumed to be pulled back to the appropriate submanifold.
We now define the spacetime integral as

Z
C ∧ K ≡

Z
Qþ

Cþ ∧ K þ
Z
Q−

C− ∧ K �
Z
Q
ζ ∧ K;

ð28Þ

where the sign on the Q integral depends on the orienta-
tion of the integration measure. We will choose the positive
sign below and take care to account for signs due to the
orientation.
This is sensible provided that the integral is unchanged

under changes of the arbitrary dividing surfaceQ. Consider
then changing Q → Q0. The change in the integral is

Z
Q0

Q
ðC− − CþÞ ∧ K þ

Z
Q0
ζ ∧ K −

Z
Q
ζ ∧ K

¼
Z

Q0

Q
ζ ∧ ½ð−1ÞpdK þ β̃H3 ∧ K� −

Z
P̄
ζ ∧ K; ð29Þ

where
RQ0
Q indicates the region with boundary Q0 −Q − P̄

(that is, the region betweenQ andQ0 in Fig. 1) and P̄ is the
region on P between its intersections with Q, Q0. This will
vanish provided dK þ ð−1Þpβ̃H3K ¼ 0

7 and either K has
no delta-function-like singularity (so the P̄ integral van-
ishes as P shrinks) or ζK ¼ 0 (for example, due to the
legs of each form). It is not a coincidence that dK þ
ð−1Þpβ̃H3K ¼ 0 is the same condition for the integral (28)
to be gauge invariant under gauge transformations χ that are
globally defined over the integration region and vanish on
the boundary at infinity and P.
Maxwell electrodynamics provides some simple exam-

ples. Consider a static monopole of charge g at the
origin. Then the simplest form for P is a sphere of radius
ϵ around the origin. With the typical choices A�

1 ¼
gð�1 − cos θÞdϕ, Q is any surface that intersects P in
the limit ϵ → 0 and does not intersect the z-axis. A simple
choice for Q is the xy-plane with transition function
ζ ¼ 2gϕ. This prescription for integration also works for
harmonic flux with no magnetic sources on a compact
manifold. For example, we can consider a constant mag-
netic field on a square T2, which we can describe by vector
potential A1 ¼ Bydx in the first unit cell 0 ≤ x, y < 2πR.
To make the potential periodic in y, we must work in a
different gauge in each unit cell given by 2πRn ≤ y <
2πRðnþ 1Þ with gauge transition function ζ ¼ −2πRBx,
but of course each gauge is valid over the entire covering
space. To integrate over the first unit cell, we choose any

curve Q that runs from x ¼ 0 to x ¼ 2πR within the unit
cell. A simple choice for Q is the x-axis.
Integration by parts requires some care but is sensible for

formal sumsK ¼ dkþ ð−1Þpβ̃H3k. We start by integrating
by parts in Q� separately to findZ

C ∧ K ¼ ð−1Þp
Z

F ∧ k

þ
Z
Q
½ζ ∧ K þ ð−1ÞpðCþ − C−Þ ∧ k�

− ð−1Þp
Z
Pþ

Cþ ∧ k − ð−1Þp
Z
P−

C− ∧ k;

ð30Þ

where P� ¼ P ∩ Q�. Note that the integrals over P� are
signed based on the orientation of the integration measure.
The integral overQ is simply a surface term−ð−1Þpζk over
P, which combines with the P� integrals. We have

Z
C ∧ K ¼ ð−1Þp

�Z
F ∧ k −

Z
P
C ∧ k

�
: ð31Þ

The first integral on the right-hand side is over the same
region as the original integral, i.e., all spacetime exterior to
P, but it can extend to all spacetime since F is globally
defined (assuming k is globally defined).
It is tempting to think that the P integral in Eq. (31)

vanishes as P shrinks. However, because C does not have a
well-defined limit at the location of j�, that is not always
the case. There are three cases of special interest. First,
suppose that k ¼ ⋆J is given by a Dirac brane current
with boundary at other locations (so J “passes through” P).
As a given component of P shrinks, the pullback of C
approaches the potential of the magnetic source inP, which
reverses orientation compared to the ⋆J on either side of P.
As a second case, suppose k ¼ ⋆J is the Dirac brane
current emanating from the brane source inside P. Then J
is aligned along the worldvolume M� and the radial
direction inside P, so ⋆J has the same components as C
on P as P shrinks, and the integral again vanishes. Finally,
suppose that k ¼ dκ þ ð−1Þpβ̃H3κ. Since P has no boun-
dary, integration by parts gives

ð−1Þp
Z
P
C ∧ k ¼

Z
P
F ∧ κ: ð32Þ

Assuming κ is sufficiently smooth inside P, we can replace
the latter by the integral of ðdFÞκ over the excluded region
inside P in the limit as P shrinks. Then, we can replace dF
using the Bianchi identity and keep only the delta-function-
like term β⋆j�. After careful accounting of signs,Z

C ∧ K ¼ ð−1Þp
Z

F ∧ kþ
Z

ðβ⋆j�Þ ∧ κ; ð33Þ7Note that p is either even or odd for all potentials, so the same
condition holds for all terms in the formal sum.
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where both integrals on the right-hand side are taken over
all spacetime.
In the above, we have ignored possible complications

from brane intersections or overlaps of three or more gauge
patches in a nontrivial configuration. Taking care with these
will potentially reproduce the modifications [17] noted are
necessary for nontransversal intersections.
Finally, we note that a variation of the potential C can

include a variation of the gauge transition function ζ, but it
need not. In particular, if C� → C� þ δC for a globally
defined variation δC, the variation of the integral is well
defined over all of spacetime. No special prescription is
needed for the integration.

V. TYPE IIB SUPERGRAVITY

We now turn to the main result of this paper, the type II
supergravity actions in the presence of D-branes, starting
with the IIB case. We start by reminding the reader of the
bosonic IIB action in the absence of D-branes and using the
result of Sec. III to find the modification to the CS term.
Then we provide a novel derivation of this term and other
new terms involving Dirac brane currents by dualizing the
democratic formulation of the IIB supergravity. Keeping
10D covariance and a self-dual 5-form field strength, we
find agreement with [17], modulo terms involving anoma-
lies on brane intersections and α0 corrections, which we do
not consider. We also give a new analysis of gauge
invariance for this action. Finally, we separate the 4-form
potential and 5-form field strength into electric and
magnetic components and write a noncovariant action with
D-brane contributions in terms of the independent degrees
of freedom only.

A. Action and modified CS terms

The gauge-invariant field strengths of the type IIB
supergravity are

F̃1 ¼ dC0 þ β−1⋆J9; F̃3 ¼ dC2 þ β̃C0H3 þ β1⋆J7;
F̃5 ¼ dC4 þ β̃C2 ∧ H3 þ β3⋆J5; ð34Þ

using the convention that all transgression terms have the
same sign β̃. Recall that β3 ¼ −β1 ¼ β−1. Excluding local
sources, the action of the bosonic sector is

SIIB ¼ 1

2κ20

Z
d10x

ffiffiffiffiffiffi
−g

p
e−2ϕ½Rþ 4ð∂ϕÞ2�

þ 1

2κ20

Z �
1

2
e−2ϕH3 ∧ ⋆H3 þ

1

2
F̃1 ∧ ⋆F̃1

þ 1

2
F̃3 ∧ ⋆F̃3 þ

1

4
F̃5 ∧ ⋆F̃5

þ 1

2
β3β̃C4 ∧ F̃3 ∧ H3

�
: ð35Þ

The coefficient of the CS term is determined by the results
of Sec. II D and Eq. (B13). Note that the F̃5 kinetic term is
halved because it is self-dual and contains duplicate
degrees of freedom.
As in Sec. III, we can add D-brane currents to (35) by

adding Dirac brane currents to the field strengths and
shifting the action by

SIIB → SIIB þ 1

2κ20

Z �
C0 ∧ ⋆j0 þ C2 ∧ ⋆j2

þ 1

2
C4 ∧ ⋆j4 − 1

2
β̃ð⋆J5Þ ∧ C2 ∧ H3

�
: ð36Þ

Here, j0 is a scalar current associated with Dð−1Þ-
instantons, and the last term, the CS term modification,
includes the Dirac 4-brane current as required to make the
EOM gauge invariant. The coupling to C4 has a factor of
1=2 due to the 5-form self-duality. We also note that the
relationship (B13) between coefficients of the action and
EOM implies that we can replace

β̃

2

Z
½β3C4 ∧ F̃3 ∧ H3 − ð⋆J5Þ ∧ C2 ∧ H3�

→ −
β̃

2

Z
½β3C2 ∧ F̃5 ∧ H3 þ ð⋆J7Þ ∧ C4 ∧ H3� ð37Þ

in the action to generate the same EOM for the RR gauge
fields. (We will see below that there are actually other terms
also.) Integration by parts to make this replacement (up to
surface terms) follows along the lines of Sec. IV with a
slight modification to account for the fact that both
potentials C2, C4 are patched. The integral on the boundary
P vanishes, and the replacement (37) holds with both forms
of the CS term following the prescription of Sec. IV for
integration.
Finally, we note that the action is sometimes written with

an additional CS term (see for example [36])

1

2κ20

Z
1

4
B2 ∧ C2 ∧ dB2 ∧ dC2: ð38Þ

In the absence of branes, this term is a total derivative
and does not contribute to the EOM. Even in the presence
of D5-branes, it can be written as the integral of
dðC2

2dðB2Þ2Þ following the integration prescription given
above. However, with both D5- and NS5-branes, this term
seems to be nonvanishing. Understanding its completion in
the presence of all sources and whether it remains topo-
logical is a task we leave to the future.

B. Dualization from democratic formulation

The EOM given in (24) for the RR potentials of type IIB
supergravity in the democratic formulation are given by the
(pseudo)action
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SIIB;dem ¼ 1

2κ20

Z �
1

4
F̃1 ∧ ⋆F̃1 þ

1

4
F̃3 ∧ ⋆F̃3 þ

1

4
F̃5 ∧ ⋆F̃5

þ 1

4
F̃7 ∧ ⋆F̃7 þ

1

4
F̃9 ∧ ⋆F̃9

þ 1

2
C0 ∧ ⋆j0 þ 1

2
C2 ∧ ⋆j2

þ 1

2
C4 ∧ ⋆j4 þ 1

2
C6 ∧ ⋆j6 þ 1

2
C8 ∧ ⋆j8

�
ð39Þ

(dropping the Einstein-Hilbert and dilaton and B2 kinetic
terms for convenience) with the field strengths given by
Eq. (34) and

F̃7 ¼ dC6 þ β̃C4 ∧ H3 þ β5⋆J3;
F̃9 ¼ dC8 þ β̃C6 ∧ H3 þ β7⋆J1: ð40Þ

These also reproduce the Bianchi identities in (24).8 The
EOM must be supplemented by duality relations
between the higher- and lower-rank field strengths. If
we instead enforce the definitions (40) with Lagrange
multipliers and identify those Lagrange multipliers with
the lower-rank field strengths, we can generate an
equivalent action for only the lower-rank potentials.
As in Sec. IV, the terms with potentials are over
spacetime with the reference currents removed, but
other terms can be integrated over the entire spacetime
since they are smooth at the reference currents and the
punctures are zero measure.
Now we turn to removing the extra degrees of

freedom from the action (39). Start by adding Lagrange
multipliers

SIIB;dem → SIIB;dem þ 1

2κ20

Z
1

2
½λ1 ∧ ðF̃9 − dC8

− β̃C6 ∧H3 − β7⋆J1Þ
þ λ3 ∧ ðF̃7 − dC6 − β̃C4 ∧H3 − β5⋆J3Þ� ð41Þ

and treat F̃7;9 as independent degrees of freedom. The F̃7;9

EOM give λ1 ¼ ⋆F̃9, λ3 ¼ ⋆F̃7. Meanwhile, varying C6;8

gives EOM

dλ1 ¼ ⋆j8; dλ3 ¼ ⋆j6 þ β̃H3 ∧ λ1: ð42Þ
These are consistent with λ1 ≡ β−1F̃1 and λ3 ≡ β1F̃3

recalling that β−1 ¼ −β1. Imposing these identifications
is equivalent to imposing the duality relations of the
democratic formulation.
The action is linear in C6;8, so it may seem that imposing

the EOM (42) eliminates them. However, there are non-
trivial surface terms of the form

−
β3
2

Z
P
ðC8 ∧ F̃1 − C6 ∧ F̃3Þ

¼ β3
2

Z
ðβ7C0 ∧ ⋆j�0 − β5C2 ∧ ⋆j�2Þ

¼ 1

2

Z
ðC0 ∧ ⋆j�0 þ C2 ∧ ⋆j�2Þ ð43Þ

from integrating (41) by parts. [In the language of Sec. IV,
we have taken C ¼ C4 þ C6 þ C8 and K ¼ dλ1 þ
ðdλ3 − β̃H3λ1Þ − β̃H3λ3, so P surrounds j�0;2;4.] Note that
the electric reference currents j�0;2 are not excised from the
integrals over C0;2 (though excised higher-dimensional
reference branes may carry these currents). At this point,
the action has become

SIIB ¼ 1

2κ20

Z �
1

2
F̃1 ∧ ⋆F̃1 þ

1

2
F̃3 ∧ ⋆F̃3 þ

1

4
F̃5 ∧ ⋆F̃5 þ

1

2
C0 ∧ ⋆ðj0 þ j�0Þ þ

1

2
C2 ∧ ⋆ðj2 þ j�2Þ

þ 1

2
C4 ∧ ⋆j4 þ 1

2
β3β̃C4 ∧ F̃3 ∧ H3 −

1

2
F̃1 ∧ ⋆J1 − 1

2
F̃3 ∧ ⋆J3

�
: ð44Þ

Finally, the last two terms split into terms involving the potentials and those involving only Dirac brane currents. The
former integrate by parts using Eq. (19) in IIB supergravity form

d⋆Jpþ2 ¼ ⋆ðjpþ1 − j�pþ1Þ − β̃⋆Jpþ4 ∧ H3 ð45Þ
(surface terms on P vanish by reasoning given in Sec. IV), leaving current terms and a remainder involving ⋆J5. All
together, we have

SIIB ¼ 1

2κ20

Z �
1

2
F̃1 ∧ ⋆F̃1 þ

1

2
F̃3 ∧ ⋆F̃3 þ

1

4
F̃5 ∧ ⋆F̃5 þ C0 ∧ ⋆j0 þ C2 ∧ ⋆j2 þ 1

2
C4 ∧ ⋆j4

þ 1

2
β3β̃C4 ∧ F̃3 ∧ H3 −

1

2
β̃C2 ∧ ð⋆J5Þ ∧ H3 þ

1

2
β3⋆J1 ∧ ⋆J9 − 1

2
β3⋆J3 ∧ ⋆J7

�
: ð46Þ

8Note that we are not considering type I supergravity, so we do not include a D9-brane current, but it is a straightforward
generalization since C10 does not have a dual potential.
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Some comments on the action (46) are in order. First, we
note the factor of 1=2 on the C4 − j4 coupling. It is well
known that the D3-brane charge must be reduced by half
for the gauge EOM to work out correctly for the self-dual
5-form (see [37] for example). In fact, we made that choice
for the same reason in Eq. (36). Here we see that it is a
consequence of dualization from the democratic action,
where all the potential-current couplings are halved.
Second, we note the appearance of the usual CS term
and also the Dirac brane modification, both of which are a
consequence of transgression terms in the field strength and
in the divergence of the Dirac brane current. Finally, there
are two new terms involving Dirac brane currents for
electrically and magnetically charged branes. These terms
were also found by [17] for IIB supergravity and by [21] for
monopoles in electrodynamics. In the monopole case, [21]
showed that these terms are topological (do not contribute
to the classical EOM) but are related to charge quantization.
However, in the type II supergravities, the Dirac brane
currents depend not just on the brane positions but also the
brane gauge fields and B2, so they may not be purely
topological (in either IIA or IIB supergravity). In our
discussion of the IIA supergravity, we will see that these
terms can have physical importance even in the classical
theory; specifically, they will reproduce one of the CS
terms of the massive IIA theory. Further discussion of the
contribution of ð⋆JÞ2-type terms to classical EOM will
appear in [27].

C. Gauge invariance

We have now provided two novel derivations of the
modified CS term (and also found J2-type terms when
starting with the democratic action). As it has not been
discussed previously in the literature, it is important to
understand invariance of SIIB from (46) under gauge
transformations of the RR potentials, particularly because
the CS terms are not invariant on their own in the presence
of branes, in contrast to the usual presentation in the
absence of branes. The gauge transformations take the form
δC ¼ dχ − β̃χH3 for globally defined forms χp. Since the
integrals including the potentials C have boundary at
infinity and P, the χp should vanish on P.
Before considering the final action (46), it is worth

commenting on the gauge invariance of (39). The variation
of the action is

δS ¼ 1

2κ20

Z
1

2
½χ1 ∧ ðd⋆j2 − β̃H3 ∧ ⋆j4Þ

þ χ3 ∧ ðd⋆j4 − β̃H3 ∧ ⋆j6Þ
þ χ5 ∧ ðd⋆j6 − β̃H3 ∧ ⋆j8Þ þ χ7 ∧ d⋆j8�: ð47Þ

This vanishes by virtue of Eq. (9) with the identifica-
tion η ¼ β̃.

On the other hand, the variation of the potential-
current couplings in (46) cannot all cancel. Fortunately,
in the presence of branes, the CS terms are also not
gauge invariant on their own. The variation of the action is

δS ¼ 1

2κ20

Z �
χ1 ∧ d⋆j2 þ 1

2
χ3 ∧ d⋆j4

−
1

2
β̃χ1 ∧ H3 ∧ ⋆j4

þ 1

2
β3β̃χ3 ∧ dF̃3 ∧ H3 −

1

2
β̃χ1 ∧ d⋆J5 ∧ H3

�

¼ 1

2κ20

Z �
β̃χ1 ∧ ⋆j4 ∧ H3

�
1 −

1

2
−
1

2

�

þ β̃χ3 ∧ ⋆j6 ∧ H3

�
1

2
−
1

2

��
¼ 0: ð48Þ

The reference current ⋆j�4 does not appear because it lies in
the removed punctures, and surface terms on P vanish
because the χp vanish on P. Note that the CS term with the
Dirac brane current is necessary for invariance under
transformations of C2.

D. Noncovariant formulation for
independent degrees of freedom

To complete the action, [17] used auxiliary variables
with the Pasti-Sorokin-Tonin (PST) formalism [38,39] to
enforce the self-duality condition and maintain 10D
covariance.9 Here, we determine the action for indepen-
dent degrees of freedom only, breaking 10D covariance
and some of the C4 gauge invariance. Making the choice
of degrees of freedom correctly can be useful in
determining the effective theory of a dimensional reduc-
tion; lack of 10D covariance is not necessarily a
disadvantage.
First, we need to identify independent degrees of free-

dom in F̃5, which we do by separating its components into

two sets, “electric” components F̃ð1Þ
5 , which we treat as

independent, and “magnetic” components F̃ð2Þ
5 that satisfy

F̃ð2Þ
5 ¼ β3⋆F̃ð1Þ

5 . The next task is to divide the potential also

into electric and magnetic components Cð1;2Þ
4 . In some

cases, it is possible to make a clean division such that Cð1;2Þ
4

contribute only to F̃ð1;2Þ
5 respectively. This is true, for

example, of the nonvanishing components of C4 for the
Kähler moduli of Calabi-Yau compactifications even in the
presence of background flux and warping [42–44].
However, it is not true in general. What is possible is to

choose a set of magnetic components Cð2Þ
4 that does not

appear in F̃ð1Þ
5 , while the complementary set of electric

9Sen [40,41] has developed an alternate formalism also using
auxiliary fields to describe self-dual field strengths.
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components Cð1Þ
4 appears in both F̃ð1;2Þ

5 . If we ignore gauge
invariance, the numbers of components in these sets are
different.
To proceed, we fix our spacetime coordinates, includ-

ing a spatial coordinate x̃ (with gx̃μ ¼ 0 for μ ≠ x̃ for
simplicity; we consider only the case where we can do
so). Then we label any form with a leg along x̃ with (2)
and any form without a leg on x̃ with (1). A prototype
coordinate for x̃ is a spatial direction in a Minkowski
factor of a (possibly warped) product metric. This choice

for F̃ð1;2Þ
5 follows [37], for example. For notational

convenience, we define d̃ ¼ dx̃∂ x̃ and đ ¼ d − d̃. Then

F̃ð1Þ
5 ¼ đCð1Þ

4 þ β̃ðC2 ∧ H3Þð1Þ þ β3⋆Jð2Þ5 ;

F̃ð2Þ
5 ¼ đCð2Þ

4 þ d̃Cð1Þ
4 þ β̃ðC2 ∧ H3Þð2Þ þ β3⋆Jð1Þ5 : ð49Þ

To find the noncovariant action, we start with action (46)
and project F̃5, ðC2H3Þ, J5, and C4 onto electric and
magnetic components as above. Adding in a Lagrange
multiplier, the relevant part of the action is

S ¼ 1

2κ20

Z �
� � � þ 1

4
F̃ð1Þ
5 ∧ ⋆F̃ð1Þ

5 þ 1

4
F̃ð2Þ
5 ∧ ⋆F̃ð2Þ

5 þ 1

2
Cð1Þ
4 ∧ ⋆jð1Þ4 þ 1

2
Cð2Þ
4 ∧ ⋆jð2Þ4 þ β3β̃C

ð1Þ
4 ∧ ðF̃3 ∧ H3Þ

þ β3β̃C
ð2Þ
4 ∧ ðF̃3 ∧ H3Þ −

1

2
β̃⋆Jð1Þ5 ∧ ðC2 ∧ H3Þ −

1

2
β̃⋆Jð2Þ5 ∧ ðC2 ∧ H3Þ þ

1

2
λ5 ∧ ðF̃ð2Þ

5 − đCð2Þ
4 − d̃Cð1Þ

4

− β̃ðC2 ∧ H3Þð2Þ − β3⋆Jð1Þ5 Þ
�
: ð50Þ

Note that a wedge product Að1;2ÞB chooses the (2,1) components of form B. We can now follow the same procedure as in the

previous subsection, finding λ5 ¼ ⋆F̃ð2Þ
5 from the F̃ð2Þ

5 EOM, and the duality relation λ5 ¼ β3F̃
ð1Þ
5 plus Cð2Þ

4 EOM yield

đF̃ð1Þ
5 ¼ β̃ðF̃3 ∧ H3Þð1Þ þ β3⋆jð2Þ4 ; ð51Þ

which is the Bianchi identity following from (49). It is also the part of the covariant Bianchi identity with no legs along x̃.

There are two remaining finer points in the derivation. First, we assume that Cð1Þ
4 is not patched on the surface surrounding

jð1Þ;�4 even though it appears in F̃ð2Þ
5 . Second, we note that the projection of the relation (45) onto the magnetic components

involves both Dirac brane currents:

đ⋆Jð1Þ5 þ d̃⋆Jð2Þ5 ¼ ⋆ðjð1Þ4 − jð1Þ;�4 Þ − β̃ð⋆J7 ∧ H3Þð2Þ: ð52Þ

In the end, we find

S ¼ 1

2κ20

Z �
� � � þ 1

2
F̃ð1Þ
5 ∧ ⋆F̃ð1Þ

5 þ Cð1Þ
4 ∧ ⋆jð1Þ4 þ 1

2
β3β̃C

ð1Þ
4 ∧ ðF̃3 ∧ H3Þ −

1

2
β3β̃F̃

ð1Þ
5 ∧ ðC2 ∧ H3Þ −

1

2
β3F̃

ð1Þ
5 ∧ d̃Cð1Þ

4

−
1

2
β̃⋆Jð2Þ5 ∧ ðC2 ∧ H3Þ −

1

2
β̃Cð1Þ

4 ∧ ð⋆J7 ∧ H3Þ −
1

2
Cð1Þ
4 ∧ d̃⋆Jð2Þ5 þ 1

2
β3⋆Jð1Þ5 ∧ ⋆Jð2Þ5

�
: ð53Þ

Interestingly, the noncovariant action seems to mix the two
forms for the CS term equated in (37). There are two
entirely new terms.
To validate the action (53), we can check that it gives

the correct equations of motion for the potentials. The

Cð1Þ
4 EOM follows after some substitution; to write the

EOM in terms of field strengths only, we must rewrite

đ d̃Cð1Þ
4 in terms of F̃ð1Þ

5 and recall that ðF̃3H3Þð2Þ ¼
đ ½ðC2H3Þð2Þ� þ d̃½ðC2H3Þð1Þ�. After some cancellation,

đ⋆F̃ð1Þ
5 þ β3d̃F̃

ð1Þ
5 ¼ ⋆jð1Þ4 þ β3β̃ðF̃3 ∧ H3Þð2Þ: ð54Þ

Using the duality relation, this is also the part of the
covariant EOM with one leg along x̃, as expected. The C2

EOM is slightly more subtle, as we must move the
projection from δC2H3 to other factors in wedge products
to get the full variation. In particular, the second CS term
contains ðδC2H3Þð1ÞðC2H3Þ ¼ −δC2ðC2H3Þð2ÞH3. To com-
bine this with other terms to make the gauge-invariant

F̃ð1Þ
5 , we must notice that 0 ¼ C2H2

3 ¼ ðC2H3Þð1ÞH3 þ
ðC2H3Þð2ÞH3. Further, we must notice that the variation

of β̃Cð1Þ
4 F̃3H3 − F̃ð1Þ

5 d̃Cð1Þ
4 yields β̃ðd − d̃ÞCð1Þ

4 H3 ¼
β̃đCð1Þ

4 H3, also required to write the EOM in terms of

F̃ð1Þ
5 . We see that
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d⋆F̃3 ¼ ⋆j2 − β̃⋆F̃ð1Þ
5 ∧ H3 − β3β̃F̃

ð1Þ
5 ∧ H3: ð55Þ

Again, that is exactly as expected from the decomposition
of the usual C2 EOM.
As an alternate derivation, the action (53) is in principle

equivalent to the action in Sec. 5.3 of [17] with the auxiliary
scalarof thePSTformalismgaugefixed toa specific form.The
remaining PST gauge symmetries (discussed for IIB super-
gravity in [45]) eliminate the components Cð2Þ

4 .10 The
companion paper [27] will emphasize applications where it
is important to consider only independent degrees of freedom,
and (53) will play a role there. This derivation highlights the
origin of the new terms in the covariant formulation.

VI. TYPE IIA SUPERGRAVITY

In this section, we give the type IIA supergravity action
with D-brane sources for the first time. We will first derive

the action from the democratic formulation, in which the
brane-current couplings, i.e., the brane WZ terms, are
known, following the same techniques as used for the
IIB theory. We address gauge invariance under the RR
gauge transformations and verify that the action we obtain
is consistent with the constraints discussed in Sec. III. We
then discuss the well-known relation between D8-branes
and the massive IIA supergravity in light of our new action.
We will examine the role that Dirac brane currents play in
generating the couplings of the massive IIA theory,
including terms proportional to the mass parameter in
D-brane WZ actions.

A. Action, gauge invariance, and EOM

As for the IIB theory, we start with a democratic
(pseudo)action (for the RR sector)

SIIA;dem ¼ −
1

2κ20

Z �
1

4
F̃0 ∧ ⋆F̃0 þ

1

4
F̃2 ∧ ⋆F̃2 þ

1

4
F̃4 ∧ ⋆F̃4 þ

1

4
F̃6 ∧ ⋆F̃6 þ

1

4
F̃8 ∧ ⋆F̃8 þ

1

4
F̃10 ∧ ⋆F̃10

þ 1

2
C1 ∧ ⋆j1 þ 1

2
C3 ∧ ⋆j3 þ 1

2
C5 ∧ ⋆j5 þ 1

2
C7 ∧ ⋆j7 þ 1

2
C9 ∧ ⋆j9

�
ð56Þ

and field strengths defined by

F̃0 ¼ mþ β−2⋆J10;
F̃2 ¼ dC1 þ β̃mB2 þ β0⋆J8;
F̃4 ¼ dC3 þ β̃C1 ∧ H3 þ

m
2
B2
2 þ β2⋆J6;

F̃6 ¼ dC5 þ β̃C3 ∧ H3 þ
m
3!
β̃B3

2 þ β4⋆J4;
F̃8 ¼ dC7 þ β̃C5 ∧ H3 þ

m
4!
B4
2 þ β6⋆J2;

F̃10 ¼ dC9 þ β̃C7 ∧ H3 þ
m
5!
β̃B5

2 þ β8⋆J0: ð57Þ

Some of the field strength definitions (57) require an
explanation. First, consistent with the possible presence
of D8-branes, we include the F̃0 and F̃10 field strengths,
and we include a “bare” mass parameter m obeying dm ¼
β−2⋆j�9. This and the choice to add m expðβ̃B2Þ to F̃ ensure

that the Bianchi identities of (23) are satisfied. These
choices are consistent with the massive IIA supergravity
[24]. Second, although F̃10 automatically has a trivial
Bianchi identity simply by index counting, we include
a transgression term consistent with the gauge trans-
formation of C9 that leaves the D8-brane WZ action
invariant. We also include a 0-rank Dirac brane current
though there is not a Dð−2Þ-brane or associated j−1 current.
Instead, we recall that each Dp-brane has a series of
currents jM; jM;F ; jM;F 2=2; � � � and Dirac brane currents
JN ; JN ;F̄ ; JNF̄ 2;=2; � � �; the rank-0 Dirac brane current from
this series contributes to J0, even though there is not a
corresponding D-brane current. To our knowledge, this is
the first appearance of this current in the literature.
From this point, derivation of the action for the lower-

rank potentials follows the same steps as in Sec. V B.
We find

SIIA ¼ −
1

2κ20

Z �
1

2
F̃0 ∧ ⋆F̃0 þ

1

2
F̃2 ∧ ⋆F̃2 þ

1

2
F̃4 ∧ ⋆F̃4 þ C1 ∧ ⋆j1 þ C3 ∧ ⋆j3 þ 1

2
β0β̃C3 ∧ F̃4 ∧ H3

þm
4
β0β̃C3 ∧ B2

2 ∧ H3 −
1

2
β̃C3 ∧ ⋆J6 ∧ H3 −

1

2

�
m
4!
B4
2 − β0⋆J2

�
∧ ðmβ̃β0B2 þ ⋆J8Þ

þ 1

2

�
m
3!
β̃B3

2 þ β0⋆J4
�

∧
�
m
2
β0B2

2 − ⋆J6
�
þ 1

2
F̃0 ∧

�
m
5!
β̃β0B5

2 þ ⋆J0
��

: ð58Þ

10We thank D. Sorokin for this and other provocative comments regarding this subsection.
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As in the IIB theory, we find a modified CS term and
couplings between Dirac brane currents of electrically
charged and magnetically charged D-branes. The last term
is also of this type, but F̃0 could also in principle include
the mass parameter.
It is worth noting that we recover the action of the pure

massive IIA supergravity (i.e., with no D-branes) for
jpþ1; Jpþ2 → 0 [24] (or see also [3]). The meaning of
the mixing between Dirac brane currents and m expðβ̃B2Þ
will become clear below.
Once again, the modified CS term has precisely the

correct coefficients to ensure that the EOM can be
written in terms of the gauge-invariant field strengths.
Of course, this fact is related to gauge invariance of
the action. If we take gauge transformations δC1 ¼ dχ0,
δC3 ¼ dχ2 − β̃χ0H3,

δS ¼ 1

2κ20

Z �
χ0ðd⋆j1 þ β̃⋆j3 ∧ H3Þ

þ χ2 ∧
�
d⋆j3 þ 1

2
β0β̃dF̃4 ∧ H3 −

1

2
β̃d⋆J6 ∧ H3

��
:

ð59Þ
Equation (9) implies that the χ0 terms cancel; the χ2 terms
also require the Bianchi identity and the divergence of the
Dirac brane current. The gauge invariance in fact ensures
that the integral over the potentials C1, C3 is well defined.

B. The massive IIA theory from Dirac branes

It is well known [46,47] that D8-branes are a source for
the mass parameter of the Romans massive supergravity,
which is quantized in units of the D8-brane charge [48]. As
a review, since D8-branes are codimension one, m is
piecewise constant and jumps by one unit of D8-brane
charge at the position of each D8-brane, for example on a
S1=Z2 orientifold. We conjecture that, in fact, the currents
of the associated Dirac 9-branes describe all the additional
couplings of the massive IIA theory, whether described as a
pure supergravity or as the massless IIA theory in the
presence of D8-branes and O8-planes. Here, we present
evidence in favor of this conjecture, point out some
remaining questions, and illuminate consequences.
Start by considering the Bianchi identity dF̃0 ¼ ⋆j9 on

the interval transverse to a set of parallel D8-branes. If we
define F̃0 ¼ mþ β−2⋆J10, where m is the bare mass
parameter, we see that m jumps by �μ8 at the location
of each reference brane but is otherwise constant.
Meanwhile, d⋆J10 ¼ ⋆ðj9 − j�9Þ, so ⋆J10 is also a step
function equal to �μ8 between the physical and reference
branes. On the S1=Z2 orientifold, m ¼ 0 if half of the
reference D8-branes are coincident with each O8-plane.
Alternately, we can generate the massive supergravity by
considering the massless IIA theory on a circle. Then
imagine an instantonic process in which a D8=D̄8-brane

pair appears transverse to the circle, and then the brane and
antibrane move in opposite directions around the circle
before reannihilating. This process leaves behind a closed
Dirac 9-brane extending around the entire circle and
filling spacetime (there is a reference brane/antibrane pair
at the point of initial pair creation, which has no net
effect).11 In both these cases, F̃0 ¼ −β0Nμ8 for integer N,
or ⋆J10 ¼ −β0F̃0.
Since the Dirac 9-brane fills spacetime, it is natural to

treat the WZ couplings on its currents as part of the bulk
action. Ignoring any worldvolume gauge fields, the Dirac
brane currents are given by

⋆J8 ¼ −β0ηF̃0B2; ⋆J6 ¼ −
β0F̃0

2
B2
2;

⋆J4 ¼ −
β0ηF̃0

6
B3
2; ⋆J2 ¼ −

β0F̃0

24
B4
2;

⋆J0 ¼ −
β0ηF̃0

120
B5
2: ð60Þ

As a result, the field strengths become (with η ¼ −β̃ from
the anomaly inflow)

F̃2 ¼ dC1 þ β̃F̃0B2; F̃4 ¼ dC3 þ β̃C1 ∧ H3 þ
1

2
F̃0B2

2;

ð61Þ

standard for the massive supergravity. In terms of these
field strengths, the action (58) in the absence of D-branes
becomes

SIIA ¼ −
1

2κ20

Z �
1

2
F̃0 ∧ ⋆F̃0 þ

1

2
F̃2 ∧ ⋆F̃2 þ

1

2
F̃4 ∧ ⋆F̃4

þ 1

2
β0β̃C3 ∧ dC3 ∧ H3 þ

1

2
β0β̃F̃0C3 ∧ B2

2 ∧ H3

þ 1

40
β0β̃F̃2

0B
5
2

�
: ð62Þ

This precisely matches the action for Romans massive
supergravity given above (there, F̃0 → m). In particular, if
we consider the 10D spacetime as the boundary of an 11D
spacetime, the last three terms together are ðβ0β̃=2ÞF̃2

4H3

integrated in 11D, as expected. So we see that the action for
pure massive IIA supergravity follows from Dirac brane
currents. If we include both a bare mass parameter m and
the Dirac branes (as is necessary generically in the presence
of D8-branes), we have ⋆J10 ¼ −β0ðF̃0 −mÞ, which
adjusts the coefficients in Eq. (60). With this change, the
field strength definitions (61) still hold, and the mixed
terms in the action (58) are unchanged in terms of the
physical F̃0.

11Reference [48] also suggests this brane nucleation process as
a way to generate the bare mass parameter m.
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As a short aside, the last term in (62) is the sum of the
ð⋆JÞ2-type terms. Therefore, these terms have physical
consequences even in the classical theory. They are not
purely topological.
The interpretation of the mass parameter as the conse-

quence of Dirac brane currents raises a question about
gauge transformations in the massive IIA theory. Since the
field strengths (61) contain the potential B2, they are gauge
invariant only if the RR potentials also transform under the
B2 gauge transformations. This still seems to be the case
when F̃0 arises from D8-instantons as above. However, in
the case where D8-branes are present, the Dirac brane
currents depend on F̄ , the extension of the gauge-invariant
D8-brane field strength. In that case, the B2 gauge trans-
formation is compensated by a corresponding transforma-
tion of Ā1. When F̃0 is a mix of bare mass parameterm and
⋆J10 in the presence of D8-branes, it seems that the gauge
transformation of C would depend only on m, not the
physical flux F̃0.
Additional terms in the WZ action arise for D-branes in

backgrounds with F̃0 ≠ 0, which [25,26] demonstrated for
type IIA D-branes via T duality. These take the form

SWZ;F̃0
¼ μp

ðp=2þ 1Þ!
Z
M
½F̃0�ωpþ1; ð63Þ

where ωpþ1 is the Chern-Simons form defined by

d̂ωpþ1 ¼ ðd̂A1Þðpþ2Þ=2. We argue that these terms follow
naturally from the Dirac brane current J0 and see that these
and other related WZ terms appear for all the IIA D-branes.
This Dirac brane current for a D(2n − 2)-brane is

J0 ¼ JN ;F̄ n=n!

¼
X
l

μ2n−2ð2πα0Þl
l!ðn − lÞ!

Z
N
d̄ω̄2l−1 ∧ ½B2�n−lδ10ðx; YÞ

¼ −
X
l

ð2πα0Þl
l!ðn − lÞ! ½jM;ω2l−1½B2�n−l − jM�;ω�

2l−1½B2�n−l

þ ðn − lÞJN ;ω̄2l−1½H3�½B2�n−l−1 þ ⋆d⋆JN ;ω̄2l−1½B2�n−l �:
ð64Þ

The first term, when substituted into the last term of
the action (58), is equivalent to a contribution SWZ ∝
½F̃0�ω2l−1½B2�n−l to the D-brane’s WZ action, where the
l ¼ n term reproduces (63). The remaining terms are a
similar coupling on the reference brane, a Dirac brane
coupling involving H3 flux, and (after integration by parts)
a contact term between the Dirac brane and any D8-brane.12

This observation suggests that the additional WZ terms
(63) are actually properly interpreted as Dirac brane
couplings and should include additional couplings to B2.
They reduce to (63) in the absence of H3 flux and D8-
branes; the additional term on the reference brane does not
contribute to the D-brane gauge field EOM because the
reference potential is fixed. Furthermore, (64) immediately
implies that all type IIA D-branes have such couplings. So
the action (58) leads to a prediction for D-branes in massive
IIA backgrounds. However, there is a puzzle. The F̃0⋆J0
term in the action is multiplied by a factor of 1=2, so we
have actually found half of the WZ term suggested by T
duality. A possible resolution is to note that this term is
analogous to the integration by parts of Cpþ1⋆jpþ1,
suggesting that we should include an extra F̃0⋆J0=2 or
perhaps m⋆J0=2 (since the bare mass parameter depends
on reference D8-branes) already in action (56). The
difficulty, of course, is that adding this term to (58) spoils
agreement with the known action for the massive IIA
theory. Alternately, there could be a subtlety in the
derivation of these WZ terms by T duality in [25,26].
Specifically, it may be that any IIB background dual to an
allowed brane in the massive IIA theory involves an
orientifold, and the T duality rules in the presence of
orientifolds can introduce factors of 2 in bulk fields in
comparison to T duality without orientifolds. This could
change the weight of the new WZ terms. Resolving this
puzzle is a question for the future.

VII. DISCUSSION AND FUTURE DIRECTIONS

We gave a brief introduction to the description of
D-brane WZ actions as they appear in the bulk supergravity
action through D-brane and Dirac brane currents. We
initially went through an anomaly inflow argument in
terms of the nonconservation of D-brane currents and
CS and transgression terms in the EOM and Bianchi
identities for the RR fields (for a generalized version of
the 10D type II supergravities). This discussion made
explicit several points that are implicit in the literature,
including the allowed sign conventions for the type II
supergravity actions—assuming there is a common sign
choice for transgression terms in the field strengths, there is
one independent choice of sign on a magnetic current in the
Bianchi identities. We then showed that reproducing the
EOM in terms of gauge-invariant field strengths requires a
brane-induced modification to CS terms in the action for
the RR gauge fields. Inclusion of α0 corrections in the brane
currents, such as the A-roof genus terms, is explained
implicitly in [17], but an explicit description may be
interesting.
Our main concern was to give actions for the IIB and IIA

supergravities with D-brane sources. As a preliminary, we
explained how to integrate over gauge-patched RR-sector
potentials (or with similar gauge transformations). A
critical feature is the excision of the reference magnetic

12While we presented (64) in terms of a Dirac brane, using the
Chern kernel gives the same contributions with the latter two
terms extended over spacetime.
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currents (around which the potentials are patched), which
leads to new surface terms. We left any subtleties surround-
ing brane intersections to the future, and these may be
important in reproducing additional anomaly terms found
in [17].
Up to those higher α0 corrections and brane intersection

terms, we then reproduced the results of [17] for the action
of IIB supergravity with D-branes by dualizing the dem-
ocratic formulation of the theory. We uncovered the same
brane-induced modification to the CS term as well as
couplings between Dirac brane currents. We also showed
that both the standard CS term and the brane-induced term
are necessary for invariance of the action under gauge
transformations of the RR potentials. With an eye toward
dimensional reduction and other applications where
accounting for degrees of freedom is important, we further
dualized the action, keeping only half the degrees of
freedom of the self-dual 4-form potential.
Finally, we presented the action of IIA supergravity with

D-branes, including the Romans mass parameter. This has a
similarly modified CS term as the IIB supergravity along
with current-current couplings for Dirac brane currents,
though the latter are mixed with additional terms including
the mass parameter. We then demonstrated how Dirac brane
currents carried by a Dirac 9-brane reproduce the entire
action of the massive IIA theory without D-branes. In fact,
Dirac brane currents associated with other D-branes repro-
duce the form of additional WZ couplings on those branes
in the massive theory, which had been found by T duality
[25,26]. However, these results raise some questions: In the
Romans supergravity, RR potentials transform under the
NSNS gauge transformations, but should the Dirac brane
worldvolume potentials absorb those gauge transforma-
tions instead? And what is the origin of the factor of 2
difference between the new WZ couplings in massive
supergravity as deduced from the Dirac brane currents as
opposed to T duality?
As we discussed in the Introduction, Dirac’s formalism

separates the brane and gauge field degrees of freedom.
Identifying the correct degrees of freedom is a critical task
in a number of applications, including determining the
effective field theory of a dimensional reduction, for
example. (In fact, [44] used a variation on Dirac’s formal-
ism to address the effective field theory of D3-branes in
flux compactifications.) We will return to this issue in a
forthcoming companion paper [27], compiling useful for-
mulas for the dimensional reduction of branes and fluxes.
The companion paper will also describe several magnetic
brane configurations, including examples of smoothly
distributed magnetic monopole charge in electrodynamics
and branes ending on branes in string theory.
Looking further afield, other types of magnetic couplings

and magnetically charged branes in string theory are targets
for this analysis. First, a stack of D-branes carries a non-
Abelian gauge theory, so extending our results to non-

Abelian worldvolume F2 and to include noncommuting
worldvolume positions, which appear in the CS action of
[49], is an important task. Further, Lechner and co-workers
[13–16] and Bandos et al. [10] have considered type IIA
NS5-branes and M2- and M5-branes, and type IIB NS5-
branes would be a logical next step. An important issue, as
we noted, is understanding the supergravity action in the
presence of both D-branes and NS5-branes, particularly the
“extra” CS term sometimes included in the IIB supergravity
action and which is topological except in the presence of
both D5- and NS5-branes. We also now know of numerous
types of exotic branes in string theory (along with KK
monopoles), many of which also presumably have asso-
ciated Dirac brane currents. How do these affect any
effective gravitational and gauge action? We leave these
intriguing questions to the future.
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APPENDIX A: CONVENTIONS

We follow the conventions of [50] for forms, in particular
taking ϵ0���D ¼ þ ffiffiffiffiffijgjp

and

ð⋆ApÞμ1���μD−p
¼ 1

p!
ϵμ1���μD−p

ν1���νpAν1���νp : ðA1Þ

This leads to ⋆⋆Ap ¼ ð−1ÞpðD−pÞþsAp in a space of
signature s (¼ 0 Euclidean, ¼ 1 Lorentzian). Other useful
identities include

⋆ðAp ∧ ⋆BqÞμ1���μq−p ¼
ð−1ÞqðD−qÞþs

p!
Bμ1���μq−pν1���νpA

ν1���νp

≡ ð−1ÞqðD−qÞþsðBq · ApÞμ1���μq−p ;
ð⋆d⋆ApÞμ1���μp−1 ¼ ð−1ÞpðD−pþ1Þþsþ1∇νAνμ1���μp−1 :

ðA2Þ

At times we will consider formal sums of forms of different
ranks and products of such sums; integrating over a
manifold of some particular dimension picks out only
the form of that rank. We will suppress explicit wedge signs
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for formulas in text or sub/superscripts for notational
convenience.
We typically use capital letters to denote the embedding

coordinates of branes, taking X for physical branes and Y
for Dirac branes. Exterior derivatives without accents are
spacetime derivatives, hatted exterior derivatives are along
physical branes, and barred exterior derivatives are along
Dirac branes. We denote the pullback of a spacetime form
to a brane worldvolume with square brackets, so

½Ap� ¼
1

p!
Aμ1���μp d̂X

μ1 ∧ � � � d̂Xμp ðA3Þ

(and similarly for Dirac branes). It is worth noting
that ½dA� ¼ d̂½A� because partial derivatives of the form
∂nXμ=∂ξa1 � � � ∂ξan commute.
When integrating forms, we must specify an orientation

for the integration measure in order to determine all signs.
In particular, we choose a worldvolume coordinate trans-
verse to the worldvolume boundary as the last coordinate in
the integration measure. Thus, the integral over a (pþ 1)-
brane M is Z

M
d̂Ap ¼ ð−1Þp

Z
∂M

Ap: ðA4Þ

APPENDIX B: GAUGE INVARIANCE OF THE
EXTENDED THEORY WITHOUT BRANES

In this Appendix, wewill determine an action principle for
the general gauge theory of forms discussed in Secs. II A
and III including relationships between the constants that
appear in the EOM (10) and Bianchi identities (11). We will
be forced to consider the gauge invariance of the potentials
Cpþ1; this is of course related to our discussion of monopole
branes and the Dirac brane formalism, but we consider here
the situation with no brane sources and globally defined
gauge transformations (not gauge patching).
We start with the action

S ¼
Z X

p

�
ð−1ÞpðD−pÞþ1

1

2
F̃pþ2 ∧ ⋆F̃pþ2

þ
X
r

γp;rCpþ1 ∧ F̃D−p−r−2 ∧ Hrþ1

�
ðB1Þ

where the sums run over the values of p, r corresponding to
extant field strengths and potentials. The latter sum is the
Chern-Simons action. The field strength is defined

F̃pþ2 ¼ dCpþ1 þ
X
r

β̃p;rCp−rþ1 ∧ Hrþ1; ðB2Þ

Hrþ1 ¼ dBr are another set of exact field strengths whose
kinetic terms we ignore here. β̃p;r and γp;r are constants,

which we take to vanish for values of p, r where the
corresponding potentials and field strengths do not exist.
Gauge invariance places constraints on these constants.

Consider first gauge invariance of the field strength F̃pþ2

with gauge transformations

δCpþ1 ¼ dΛp −
X
r

β̃p;rΛp−r ∧ Hrþ1: ðB3Þ

Then

δF̃pþ2 ¼ −
X
r;l

β̃p;rβ̃p−r;lΛp−r−l ∧ Hlþ1 ∧ Hrþ1 ðB4Þ

with some cancellation occurring as is familiar in ten-
dimensional supergravity; the remaining terms vanish in
that case because there is only one additional field strength
H3. In general, these terms cannot be canceled by extend-
ing the gauge transformations (B3). Instead, these terms
must cancel among themselves. In the sum, each form
combination Λp−r−lHlþ1Hrþ1 appears twice, leading to the
constraint

β̃p;rβ̃p−r;l þ ð−1Þðrþ1Þðlþ1Þβ̃p;lβ̃p−l;r ¼ 0: ðB5Þ

We can also see this constraint in the requirement that the
Bianchi identity be written in terms of gauge-invariant
variables. Differentiating (B2), we have

dF̃pþ2 ¼
X
r

β̃p;rdCp−rþ1 ∧ Hrþ1

¼
X
r

β̃p;rF̃p−rþ2 ∧ Hrþ1

−
X
r;l

β̃p;rβ̃p−r;lCp−r−lþ1 ∧ Hlþ1 ∧ Hrþ1: ðB6Þ

The additional undesired terms are precisely those given in
(B4) with the substitution Λp−r−l → Cp−r−lþ1, so they also
vanish when (B5) is satisfied. Additionally, the integrability
condition coming from the exterior derivative of the
Bianchi identity is

0 ¼
X
r

β̃p;rdF̃p−rþ2 ∧ Hrþ1

¼
X
r;l

β̃p;rβ̃p−r;lF̃p−r−lþ2 ∧ Hlþ1 ∧ Hrþ1; ðB7Þ

which is again satisfied whenever (B5) is satisfied.
The gauge variation of the action (B1) under (B3) is

δS ¼ −
Z X

p;r;l

γp;r½ð−1Þpβ̃D−p−r−4;lΛp ∧ F̃D−p−r−l−2

þð−1Þðlþ1ÞðD−p−rÞβ̃p;lΛp−l ∧ F̃D−p−r−2�
∧ Hlþ1 ∧ Hrþ1: ðB8Þ
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If we shift the sum over p in the second term, the gauge
variation vanishes if

0 ¼ ð−1Þpγp;rβ̃D−p−r−4;l þ ð−1Þpþðrþ1Þðlþ1Þγp;lβ̃D−p−l−4;r

þ ð−1Þðlþ1ÞðD−p−r−lÞγpþl;rβ̃pþl;l

þ ð−1Þðrþ1ÞðD−p−r−1Þγpþr;lβ̃pþr;r ðB9Þ

including the fact that the double sum over r, l duplicates
terms. Meanwhile, the EOM is

d⋆F̃pþ2 ¼ −
X
r

ð−1ÞDþrðpþ1Þβ̃pþr;rð⋆F̃pþrþ2Þ ∧ Hrþ1

þ
X
r

ðð−1ÞpDγp;r þ ð−1ÞpðpþrÞγD−p−r−4;rÞ

× F̃D−p−r−2 ∧ Hrþ1 ðB10Þ

if

0 ¼
X
r;l

½ð−1ÞD−r−l−pl−1γD−p−r−l−4;rβ̃pþl;l

− γD−p−r−4;rβ̃D−p−r−4;l�CD−p−r−l−3 ∧ Hlþ1 ∧ Hrþ1

ðB11Þ

(so the EOM is in terms of the gauge-invariant field
strength). As usual, we can rewrite (B11) to account for

duplication in the sum and rename p ↔ D − p − r − l − 4
for comparison to (B9). For consistency, we find

ð−1Þpγp;rβ̃D−p−r−4;l þ ð−1Þðlþ1ÞðD−p−r−lÞγpþl;rβ̃pþl;l ¼ 0:

ðB12Þ

We also see that the coefficients in the EOM as defined in
(10) relate to the coefficients in the action as follows:

αp;r ¼ ð−1ÞDþrðpþ1Þþ1β̃pþr;r;

α̃p;r ¼ ð−1ÞpDγp;r þ ð−1ÞpðpþrÞγD−p−r−4;r: ðB13Þ

(If F̃pþrþ2¼D=2 is self-dual, its kinetic term is halved, so αp;r
takes half the value given above. Meanwhile, α̃p;r for self-
dual F̃pþ2¼D=2 is doubled for the same reason.) The
integrability condition from the exterior derivative of the
EOM (10) is

0 ¼
X
r;l

fαp;rαpþr;l⋆F̃pþrþlþ2 þ ðαp;rα̃pþr;l

þ α̃p;rβ̃D−p−r−4;lÞF̃D−p−r−l−2g ∧ Hlþ1 ∧ Hrþ1: ðB14Þ

It is straightforward (but somewhat tedious) to show that
this is satisfied as long as (B5) and (B12) are satisfied for
coefficients (B13).
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