
Advanced Studies in Theoretical Physics
Vol. 19, 2025, no. 2, 43 - 54

HIKARI Ltd, www.m-hikari.com
https://doi.org/10.12988/astp.2025.92247

Dirac Equation in Newman Penrose Formalism:

Separation in Schwarzschild Space Time

with Torsion

Antonio Zecca

Dipartimento di Fisica dell’ Universita’ degli Studi di Milano (Retired)
Via Celoria, 16 20133 Milano

GNFM Gruppo Nazionale per la Fisica Matematica of the INdAM, Italy

This article is distributed under the Creative Commons by-nc-nd Attribution License.

Copyright c© 2025 Hikari Ltd.

Abstract

The Dirac equation, previously formulated in a general space time
with torsion by the Newman Penrose formalism, is considered in the
context of the Schwarzschild space time with torsion. Based on a suit-
able null tetrad frame, the equation is separated by a variable separation
method. The separated angular equations are integrated. The separated
radial dependence is reduced, on the base of elementary properties of
the solutions, to the solution of a single non linear one dimensional
differential equation in the wave function and in its complex conjugate.
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1 Introduction

The consideration of torsion in the formulation of field equations in flat and
curved space time is of interest. It generally introduces new degrees of freedom
that are useful to describe further physical interactions [10, 4]. On the other
hand the torsion induced terms are in general non linear terms that heavily
limit the explicit solution of the equations [11, 16]. From a mathematical point
of view, this is indeed a difficult problem.
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The extensions of field equation to include torsion, is of interest on account
of the wide field of theoretical applications that run from cosmology (se,e e.g.
[11, 15]) to particle physics (e. g., see [7, 9]).

In particular, the role of torsion is evident in physical applications of spin
1/2 particle with torsion. Torsion effect on neutrino oscillations can be evalu-
ated [1], in particular in case of axial symmetry [27]. Moreover, by extending
the result of ref. [5] obtained in Schwarzschild metric, resonance and adiabatic
propagation seem possible in vacuum for cosmological neutrinos with torsional
self interaction [18]. Also the modification of the spectrum of the Hydrogen
atom induced by torsion can be evaluated perturbatively [17].

On theoretical grounds, the Dirac equation with torsion is generally formu-
lated by the 4-dimensional spinor formalism [11, 2, 8]. Its form can be obtained,
in the coordinate formalism, from a total action sum of the Einstein-Hilbert-
Cartan action and the Dirac one, by varying with respect to the Dirac spinor
and to the independent components into which the torsion tensor can be de-
composed. The resulting equation, can then be converted into the Newman
Penrose formalism [19]. In a more general way the Dirac equation with torsion
was finally completely derived within the two spinor formalism [20], suitable
to be extended to arbitrary spin field equation [24].

The equation is also of cosmological interest. In that connection, one can see
that the effect of torsion on the Hydrogen energy spectrum in the standard
cosmology is practically negligible at the present time [17]. Some aspects of
the possible solutions in Robertson Walker space time have been discussed in
[26]. Further application, such as the interaction of the gravitational and Dirac
field with torsion, have been considered in general [21] as well as in Minkowski
space time [23, 22], where standing wave solutions have been determined.

In this paper the starting formulation of Dirac equation with torsion is the
one derived from a suitable Lagrangian directly formulated in the two spinor
language [25]. The equation is studied in the Schwarzschild space time with
torsion by the Newman Penrose formalism. The separation method employed
is an application of the one previously adopted to separate the Dirac equation
in RW and Minkowski space-time with torsion [23, 26] that in turn is an exten-
sion of Chandrasekhar method [6], adopted to separate the Dirac equation in
the torsion free Kerr space time case. The Schwarzschild metric being static,
the time dependence of the Dirac wave function factors out also in presence of
torsion and it is easily integrated. The separated angular equations are inte-
grated on the base of the results in the torsion free spherically symmetric space
time case. The radial separated dependence amounts to two non linear differ-
ential equations in the two radial functions. The study of the radial equations
can be reduced to the study of single first order non linear differential equation
involving however a radial function and its complex conjugate function. Such
reduction is possible on the base of some simple results that relate the two
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radial functions solutions. The problem of solving the final separated radial
equation as well of providing particular solutions, is not answered here.

2 Preliminary assumptions

The following considerations are developed within a four dimensional (curved)
space-time of metric tensor gik with associated spinor and tensor formalism.
For notations and mathematical conventions we refer to [15]. The standard
correspondence between complex tensors of rank n and spinors of type (n, n)
(that will be denoted by ↔ ) can be realized by the van derWaerden σ-
matrices. In particular the covariant tensor and spinor derivatives are related
by ∇AA′ = σαAA′∇α. Further more the Newman Penrose formalism [14] is as-
sumed. Accordingly one considers a null tetrad frame {li, ni,mi,m∗i}, with
lµ, nµ and such that m?µ = mµ?. Therefore lµlµ = nµnµ = mµmµ = m?µm?

µ =
0, lµnµ = 1, mµm?

µ = −1. Associated to the null tetrad frame there are then
the directional derivatives:

D = ∂00′ = li∂i, δ = ∂01′ = mi∂i, δ∗ = ∂10′ = m∗i∂i ∆ = ∂11′ = ni∂i (1)

The σ-matrices can be represented by (e.g., [15, 12]):

Gµ ≡ σAµB′ ≡
1√
2

[
m?
µ nµ
−lµ −mµ

]
, G+

µGν +GνG
+
µ = −2gµνI2 (2)

in terms of which the 4-dimensional Dirac gamma matrices can be represented:

γµ =
√

2

[
0 σAB

′
µ

σ+
µCD′ 0

]
, {γµ, γν} = 2gµν I4 (3)

In many applications, as in the case of the present paper, the σ-matrices result
to be selfadjoint. Under such property one can directly check that the expres-
sion JAB′ = PAP̄B′ + Q̄AQB′ is the corresponding of the Dirac 4-current in the
two spinor formalism: JAB′ = σµAB′Jµ where Jµ = ψ†γ0γµψ, γ0 = (0 I2

I2 0).

In the following the object is of separating the Dirac equation in the
Schwarzschild space time with torsion. The equation will be derived by the
two spinor Lagrangian formalism. Hence the four dimensional space time is
endowed by a covariant derivative with torsion ∇̃ and by the Levvi-Civita
connection ∇. They act in the same way on scalars, ∇̃AB′f = ∇AB′f , ∇ the
Levvi-Civita connection. On the contravariant spinor they are related by:

∇̃AB′ξC = ∇AB′ξC + Θ C
AB′Dξ

D (4)

∇̃AA′χPS
′
= ∇AA′χPS

′
+ Θ P

AA′X χXS
′
+ Θ

S′

A′AX′ χPX
′

(5)

ΘAB′CD = ΘAB′DC (∇̃AB′ εCD = 0, ∇AB′ εCD = 0) (6)

ΘA′BC′D′ = ΘBA′C′D′ (7)
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Θ the torsion spinor.

As to the total Lagrangian L, it is defined by the sum of the gravitational
and of the Dirac Lagrangian: L = Lg + Ld.

As usual, Lg is assumed to be the Einstein-Hilbert-Cartan lagrangian den-

sity defined by Lg =
√
g R̃, (g = |det gik|, R̃ = R̃ αβ

αβ , R = R αβ
αβ ). (R̃ the total

scalar curvature, R the torsion free part of R̃). By decomposing the scalar
curvature into the torsion and into the torsion free part [15] one obtains:

Lg =
√
g[R +Q b

ac Q
ac

b −Q b
bc Q

ac
a ] (8)

Qabc ↔ ΘAA′BC εB′C′ + ΘAA′B′C′ εBC (a ≡ AA′, b ≡ BB′, c ≡ CC ′)(9)

Inserting the spinor expression of Q into Lg and using (6), (7) one finally
obtains

Lg =
√
g
{
R +

4

3
(ZB′DZ

B′D + Z̄BD′Z̄BD′
)

−Θ(A|A′|BC)Θ
(A|A′|BC) − Θ̄(A|A′|B′C′)Θ̄

(A|A′|B′C′)
}

(10)

where ZA′B = Θ X
XAB′ ([25], see also [3]). A divergence term in the complete

expression of R̃ has been neglected because no variation of the boundary will
be considered when applying the action principle.

For what concerns the Dirac Lagrangian with torsion in the two spinor
formalism we follow Ref. [25]. Accordingly a spin-(1/2) particle of mass mo is
described by two two spinors P ≡ (PA) and Q ≡ (QA′) of generalized Dirac
Lagrangian

Ld =
√
g
{
i
√

2
[
−QA∇AX′QX′

+ P
X′
∇AX′PA

]
+α

[
Q
A
ZB′AQ

B′
+ PAZB′AP

B′
] + α

[
QA′

ZBA′Q
B

+ P
A′
ZBA′PB]

−mo(−QAP
A + PX′QX′

)
}

(11)

α a complex parameter, mo the mass of the Dirac particle. Such expression is
in the line of Ref. [25], but it is not exactly the same.

3 Dirac equation with torsion

The equation of motion can now be obtained by the Euler-Lagrange equation:

∂L

∂η
−∇XY ′

(
∂L

∂∇
XY ′η

)
= 0, L = Lg + Ld (12)
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for each one of the spinor involved. By applying (12) to L for η = P
A′
, Q

A
,

Θ(A|A′|BC), ZA′A and ZAA′ one has, respectively,

[
∇AB′ − i√

2

(
αZB′A + αZAB′

)]
PA = −iµ∗QB′ (13)

[
∇AB′ +

i√
2

(
αZB′A + αZAB′

)]
QB′

= −iµ∗PA (14)

Θ(A|A′|BC) = 0 (15)

ZA′A = −3

8
α(PAP

A′
+QA′

Q
A

) (16)

Z
AA′

= −3

8
α(PAP

A′
+QA′

Q
A

) (17)

If instead one chooses η = PA, QA′
in (12), one obtains the complex con-

jugate equations of eqs. (13), (14) respectively.

From (16), (17) the spinorial current JAA
′
= PAP

A′
+QA′

Q
A

associated to
the Dirac field results, for α real, such that :

ZA′A = −3α

4
JAA

′
= Z

AA′
(α = α) (18)

Finally, by the further substitution PA → −PA into eqs. (13)-(17) one is left
with the equations

(∇AB′ − icJAB′)PA =
im0√

2
QB′ (19)

(∇AB′ + icJAB′)QB′
=
im0√

2
PA, c = −(3α2)/(4

√
2) (20)

JAB′ = PAP̄B′ + Q̄AQB′ , (21)

m0 the mass of the particle. It will be called Dirac equation with torsion. As to
physical interpretation, since JAB′ is the Dirac current in the two spinor form,
the interpretation is that the effect of torsion amount to a self interaction of
the particle with its own current. Indeed if the current term is dropped in
eqs. (19), (20), one is left with the canonical two spinor form of the spin 1/2
particle equation in curved space time (e.g. [15]). One can also check that the
Dirac spinor current is conserved, even in presence of the non trivial torsion
term:

∇AB′JAB
′
= 0 (22)

as it can be verified from the solution of the Dirac equation.

The equations (19, 20) can be made explicit in the Newman Penrose for-
malism. The covariant spinor derivatives can be expanded in terms of the
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directional derivatives and of the spin coefficients [15, 6]. The equation (19),
(20) can be conveniently written:

(D − ρ+ ε)P1 − (δ∗ − π − α)P0 = i
(m0√

2
+ cQ̄EP

E
)
Q0 (23)

(δ − τ + β)P1 − (∆− γ + µ)P0 = i
(m0√

2
+ cQ̄EP

E
)
Q1 (24)

(D − ρ̄+ ε̄)Q1 − (δ + π̄ − ᾱ)Q0 = i
(m0√

2
− cQEP̄E

)
P0 (25)

(δ∗ − τ̄ + β̄)Q1 − (∆− γ̄ + µ̄)Q0 = i
(m0√

2
− cQEP̄E

)
P1 (26)

In view of the following developments it is useful to set (see [6]):

(P0, P1) = (− F2, F1), (Q0, Q1) = (G1, G2) (27)

so that equations (23)-(26) read:

(D − ρ+ ε)F1 + (δ∗ + π − α)F2 = i
[m0√

2
+ c(Ḡ1F1 + Ḡ2F2)

]
G1 (28)

(∆− γ + µ)F2 + (δ − τ + β)F1 = i
[m0√

2
+ c(Ḡ1F1 + Ḡ2F2)

]
G2 (29)

(D − ρ̄+ ε̄)G2 − (δ + π̄ − ᾱ)G1 = −i
[m0√

2
+ c(G1F̄1 +G2F̄2)

]
F2 (30)

(∆− γ̄ + µ̄)G1 − (δ∗ − τ̄ + β̄)G2 = −i
[m0√

2
+ c(G1F̄1 +G2F̄2)

]
F1 (31)

4 Schwarzschild space time with torsion

The object is now to study Dirac equation with torsions in the Schwarzschild
space time metric gµν of the form

ds2 =
(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1
dr2 − r2(dθ2 + sin2 θdϕ2) (32)

As to the Newman Penrose formalism, it will be based on the null tetrad frame
whose corresponding directional derivatives and non zero spin coefficients are
given by (see, e.g., [6]):

D =
r

r − 2M
∂t + ∂r, ∆ =

1

2
∂t −

r − 2M

2r
∂r (33)

δ =
1

r
√

2
∂θ +

i

sin θ
√

2
∂ϕ, δ∗ = (δ) =

1

r
√

2
− i

r sin θ
√

2
∂ϕ (34)

ρ = −1

r
, µ =

2M − r
2r2

, γ =
M

2r2
, β = −α =

1

2
√

2

cot θ

r
(35)
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The equations (28)-(31) can be separated by setting

(F1, F2) ≡
(
R1(r, t)S1(θ), R2(r, t)S2(θ)

)
eimϕ (36)

(G1, G2) ≡
(
R2(r, t)S1(θ), R2r, t)S2(θ)

)
eimϕ (37)

S1(θ)S1(θ) = S2(θ)S2(θ) = 1 (38)

Accordingly the angular dependence separates . By defining L± = ∂θ ∓ m
sin θ

+
1
2

cot θ, from equation (28), (30) one obtains

L−S2 = −λS1, L+S1 = λS2, (39)

λ the angular separation constant that is the same for the two equation for
which the r, t dependence remains the same. Similarly the equations (29), (31)
separate giving again equation (39) and identical r, t separated equations but
different from those of (28), (30) so that the separated r, t dependent equations
remain (R = R(r, t)):

(D − ρ)R1 =
1√
2

[
im0 + ic

√
2
(
R̄2R1 + R̄1R2

)
+
λ

r

]
R2 (40)

(∆− γ + µ)R2 =
1√
2

[
im0 + ic

√
2
(
R̄2R1 + R̄1R2

)
− λ

r

]
R1 (41)

For what concerns the solution of the angular separated equation (39) they
give rise to the closed equation in S1, S2:

L−L+S1 = −λS1, L+L−S2 = −λS2 (42)

Those equations represent the angular eigenvalue problem for spin 1/2 particle
in spherically symmetric space time (e. g., [13]). The solutions are essentially
given by Si = Slm(θ), i = 1, 2, under the usual regularity condition, the Slm’s
being the Jacobi (m 6= 0) and Chebicheff (m = 0) polynomials [13]. In order
to satisfy the condition (38) we set S2(θ) = exp(is2(θ), s2 ∈ R. Then, e. g.,
cos s2(θ) satisfies the same equation of S2. One can then define cos s2(θ) =
Slm(θ) by choosing the integration constant such that |Slm(θ)| ≤ 1. Hence we
assume:

S2(θ) = exp(i cos−1(Slm(θ)) (43)

Similarly we define S1 = exp(i cos−1(Sl−m(θ)) since the equations (39) inter-
change themselves by the substitution m→ −m. Moreover [13]:

λ2 = (l + 1/2)2, |m| ≥ 1, l = |m|, |m|+ 1, |m|+ 2, ... (44)

λ2 = (l + 1)2, m = 0, l = 0, 1, 2, ... (45)
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4.1 Properties of the radial equations

By further setting Ri = Ri(r)e
ikt, i = 1, 2, the equations (40), (41) read:

(
ik
r2

4
+

1

r
+ ∂r

)
R1 = M+R2 (4 = r2 − 2Mr) (46)

(ik
2

+
M − r

2r2
− 4

2r2
∂r
)
R2 = M−R1 (47)

M± =
1√
2

[
im0 + ic

√
2(R̄2R1 + R̄1R2)±

λ

r

]
(48)

Note that M̄+ = −M− and M̄− = −M+- We have the following two results:
i) By comparing (46) and the complex conjugate of equation (47) gives(

ik r
2

4 + 1
r

)
R1 +R′1

R2

= −

(
− ik

2
+ M−r

2r2

)
R̄2 − 4

2r2
R
′
2

R1

(49)

By developing the equation (49) and summing the result with its complex
conjugate, one finally obtains (′ = d/dr)

[
r2R1R̄1

]′
=
[4

2
R2R̄2

]′
(50)

and by choosing a vanishing integration constant

|R1|2 =
4
2r2
|R2|2 (51)

ii) By multiplying (46) by R̄24/(2r2) one obtains:

4
2r2

[ikr2
4

+
1

r

]
R1R̄2 +R′1R̄2

]
= M+R1R̄1 (52)

On the other hand , by multiplying the complex conjugate of (47) by R1one
has (

− ik

2
+
M − r

2r2

)
R1R̄2 −

4
2r2

R′2R̄2 = −M+R1R̄1 (53)

Summing up (52), (53) one finally obtains

MR1R2 = 4
[
R′1R2 −R

′
2R1

]
(54)

whose integration, gives

R1 = R2

√
4
2r2

, R2 = R1

√
2r2

4
, (55)



Dirac equation in Schwarzschild metric with torsion 51

The multiplicative constant integration factor has being chosen to be 1√
2

so

that the result implies exactly (51).
By the last results and by the identity R2

1 + R̄2
1 = 2|R1|2, the equation (46)

reduces to:(
ik
r2

4
+

1

r
+ ∂r

)
R1 =

1√
2

[
im0 + 2ic

√
2

√
2r2

4
|R1|2 +

λ

r

]√
2r2

4
R1 (56)

One can indeed check that the complex conjugate of (47) gives equation (46)

by the substitution R̄2 → R1

√
2r2

4 R1, R1 → R̄2

√
4
2r2

.
Therefore, once the solution R1 has been determined, the solution R2 will

follows from the second relation in (55). One is then left with one only radial
equation in both R1 and R̄1.

5 Remarks and comments

In this paper the Dirac equation with torsion, in the formulation considered
in previous papers, has been studied in the Schwarzschild metric. The main
result is that the equation can be separated in a similar way to the separation
of the torsion free Dirac equation in spherically symmetrical static space time.
Indeed the time dependence of the wave function can be easily obtained on
account of the fact that the metric is static. The separated angular dependence
is integrated, by a suitable assumption, on the base of the results of the torsion
free spherically symmetrical case. As to the radial separated dependence, it
has been reduced to the single equation (56) that however involves a radial
function with its complex conjugates. [It must be remarked that the generality
of the result depends however on the choice of the integration constant in
(54)]. Once the final radial equation (56) has been separated into the real
and imaginary part, the problem reduces to the solution of two real coupled
non linear equation. This seems a better situation with respect to problem of
solving the two non linear complex coupled equations (46), (47).

The present procedure of separation could also be applied to the study
of the Dirac equation with torsion in case of Minkowski [23] and Robertson
Walker metric [26]. In particular, in the Robertson Walker metric case, one
would have, instead of (55), the further simplification R1 = R2.

The object of the present paper was of providing the separation of the Dirac
equation in the Schwarzschild metric by the Neuman Penrose formalism. This
is of interest as non trivial application of the Neuman Penrose formalism. Of
course the important purpose would be then of providing the final solution
of the equation. Not less important it would be also of providing particular
solutions of eq. (56). They could be of primary interest as they are the standing
plane waves solutions determined in Minkowski space time with torsion (e. g.,
[23]).
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