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The strong coupling, αs , governs perturbative Quantum Chromodynamics (QCD) and is one of the free 
parameters of the Standard Model. We introduce a new method that allows a precise extraction of αs(mZ )

from dimensionless ratios of roots of moments of the charm-quark vector correlator. The ratios we use 
in our analysis have a rather weak logarithmic quark-mass dependence, starting at O(α2

s ), and can be 
obtained from experimental data with good precision, since they benefit from positive correlations among 
the individual experimentally determined moments. We perform a careful and conservative error analysis 
with special emphasis on uncertainties related to the truncation of perturbation theory, treating the 
renormalization scales such as to ensure order-by-order convergence. Our final result, with expressions 
at O(α3

s ), is αs(mZ ) = 0.1168 ± 0.0019.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The strong coupling, αs , is one of the fundamental parameters 
of the Standard Model (SM). It is the expansion parameter gov-
erning perturbative QCD expansions and its value cannot be pre-
dicted by theory; the extraction of the coupling always requires the 
comparison of quantities calculated in state-of-the-art QCD with 
experimental — or lattice — data. Apart from its prominent role 
in precision QCD, flavour physics, and the calculation of hadronic 
properties, a good control over the value of αs is key for LHC 
physics, in particular to have a reliable determination of parton 
distribution functions, which are largely correlated with the strong 
coupling. In forthcoming e+e− colliders, with dedicated Higgs and 
top-quark precision measurement programs, αs will remain a cru-
cial input. Additionally, the values of αs and of the top-quark mass 
are behind the fate of the SM vacuum [1].

Significant progress has been made in the past few years to 
extract αs with good precision, which requires effort both in ex-
perimental measurements or lattice simulations, as well as in the-
oretical computations, in order to reach higher levels of accuracy 
which depend, in particular, on calculations at higher loop order. 
Extractions based on lattice data, especially, have improved con-
siderably in the recent past. However, several tensions still remain, 
which has led the Particle Data Group to almost double the uncer-
tainty on its recommended αs(mZ ) world average since the 2016 
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edition [2,3]. It remains, therefore, very important to find reliable 
observables to extract the strong coupling, in which both theory 
and experiment are under very good control. In this paper we de-
scribe for the first time the use of ratios of roots of moments of 
the charm-quark vector correlator in precise extractions of αs .

One of the standard observables in QCD is the total cross sec-
tion for e+e− → hadrons and the associated Rqq̄(s) ratio defined 
as

Rqq̄(s) = 3s

4πα2
σe+e−→qq̄ +X (s) � σe+e−→qq̄ +X (s)

σe+e−→μ+μ−(s)
, (1)

where q = c, b is the quark species, α the fine-structure constant, √
s the e+e− center-of-mass energy, and the right-hand side is ex-

act when the denominator is calculated in the limit of massless 
muons and at leading order in α.1 Integrated moments of Rqq̄(s)
play a prominent role, since they make use of data in broad energy 
regions, as opposed to considering the observable locally, which 
can significantly improve their experimental precision and the re-
liability of their theoretical description. These integrated moments 
can also be, in many cases, rigorously calculated in perturbation 
theory. In this work, the inverse moments of Rcc̄(s) defined as

1 Even though, strictly speaking, the process is mediated both by a photon and a 
Z boson, at the energies relevant for the moments it is overwhelmingly dominated 
by the former, which moreover is a vector current. An estimate of the (small) axial-
vector contribution can be found in Table 8 of Ref. [4].
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M(n)
c =

∞∫
s0

ds

sn+1 Rcc̄(s), (2)

are specially important, where s0 must be smaller than the 
squared mass of the first cc̄ narrow resonance, the J/ψ . They have 
been, so far, mainly used in the precise extraction of the c- and 
b-quark masses from data. In the present work, for reasons that 
will become clear soon, we are interested in dimensionless ratios 
of roots of moments M(n)

c ,

R V ,n
c ≡

(
M(n)

c
) 1

n(
M(n+1)

c
) 1

n+1

, (3)

where V refers to the fact that the moments are related to the vec-
tor charm-quark current correlator. Analogous ratios of moments 
have originally been introduced in the context of the pseudo-scalar 
charm correlator for which only lattice data is available [5]. As we 
will show, the ratios R V ,n

c that we introduce here are particularly 
suitable for αs extractions: for 1 ≤ n ≤ 3 they are known up to 
O(α3

s ), have a very weak dependence on the c-quark mass, and 
can be accurately determined using the experimental values for 
the masses and partial widths of narrow resonances, supplemented 
with continuous data for Rcc̄(s).

Let us start by discussing the perturbative expansion for M(n)
c

and the ratios R V ,n
c . Using analyticity and unitarity, the moments 

M(n)
c can be related to derivatives of the vector charm-quark cur-

rent correlator. The theoretical counterpart to Eq. (2) reads [6,7]

M(n)
c = 12π2 Q 2

c

n!
dn

dsn
�c(s)

∣∣∣
s=0

, (4)

where Q c is the charm-quark electric charge and the correlator is 
formed from the charm vector currents as(

gμν s − pμpν
)
�c(s) = −i

∫
dx ei p·x〈0|T jμc (x) jνc (0)|0〉, (5)

with jμc (x) = c̄(x)γ μc(x). The Taylor coefficients of the �c(s) ex-
pansion in powers of s around s = 0, that participate in Eq. (4), 
can be accurately calculated in perturbation theory with the typ-
ical short-distance scale given by ∼ mc/n > 	QCD (restricting n to 
small values). In full generality, the perturbative expansion of M(n)

c

is written in terms of two renormalization scales, μα and μm , 
at which the strong coupling and the quark-mass are respectively 
evaluated, as first noticed in Ref. [4]:

M(n)
c = 1

[2mc(μm)]2n

∑
i=0

[
α

(n f )
s (μα)

π

]i

(6)

×
i∑

a=0

[i−1]∑
b=0

c(n)

i,a,b(n f ) lna
(

μm

mc(μm)

)
lnb

(
μα

mc(μm)

)
,

with [i − 1] ≡ Max(i − 1, 0), and n f = 4. The running mass mc(μm)

and coupling αs(μα) are calculated in the MS scheme with the 
five-loop QCD γ and β functions, respectively [8–10]. Likewise, we 
use the four-loop matching condition [11–13] to relate αs in the 
four- and five-flavour schemes. (We will often omit the explicit n f

dependence in αs and c(n)

i,a,b .) The leading logarithm in M(n)
c ap-

pears at order αs . Setting the two scales in Eq. (6) to the common 
value μα = μm = mc(mc) the logarithms are resummed and the 
expansion of M(n)

c , in this particular case, exposes the independent 
coefficients c(n)

i,0,0 which must be calculated in perturbation theory. 
Thanks to a tremendous computational effort, the coefficients c(n)

i,0,0
have been calculated (analytically) for n = 1, 2, 3 and 4 [14–16]
up to order α3
s [four loops, or next-to-next-to-next-to-leading or-

der (N3LO)]. For n > 4 only estimates are available at this order 
[17–20]. The logarithms of Eq. (6) with the respective coefficients 
can be generated with the use of renormalization group equations. 
Numerical values of the coefficients c(n)

i,a,b can be found in Ref. [21]. 
The dependence of M(n)

c on mc through the prefactor makes these 
moments ideal for the extraction of the charm-quark mass.

The ratios we are interested in, given in Eq. (3), are constructed 
in such a way as to cancel the mass dependence of the prefactor 
in Eq. (6). Their fixed-order perturbative expansion reads

R V ,n
c =

∑
i=0

[
αs(μα)

π

]i

(7)

×
[i−1]∑
k=0

[i−2]∑
j=0

r(n)

i, j,k ln j
(

μm

mc(μm)

)
lnk

(
μα

mc(μm)

)
,

where now the first logarithm, which brings the dependence on 
mc , appears only at α2

s . The ratios R V ,n
c are, therefore, almost in-

sensitive to the quark mass. The coefficients r(n)

i, j,k can be obtained 

from c(n)
i,0,0 upon re-expansion of R V ,n

c in αs and the use of renor-

malization group equations. For instance, for R V ,2
c at N3LO one 

finds

R V ,2
c = 1.0449

[
1 + 0.57448 as

+ (0.32576 + 2.3937 Lα)a2
s (8)

−
(

2.1093 + 4.7873Lm − 6.4009Lα − 9.9736L2
α

)
a3

s

]
,

where here as = αs(μα)/π , Lα = ln[ μα/mc(μm) ] and Lm =
ln[ μm/mc(μm) ]. The total αs correction to R V ,1

c is about 12.5%, 
7.2% for R V ,2

c , and 5.2% for R V ,3
c . The perturbative contribution to 

R V ,n
c is the first term in its Operator Product Expansion (corre-

sponding to the identity operator). The leading non-perturbative 
correction stems from the gluon condensate and is known to 
O(αs) [22]. This correction is small, but nevertheless included in 
our analysis even though our results are largely dominated by per-
turbative QCD.

Alternatively, one could consider not re-expanding in αs the ra-
tios defined in Eq. (3). In principle, one could even take different 
renormalization scales in the numerator and denominator. Even 
though the pole-mass ambiguity cancels individually in each mo-
ment, subleading renormalons exist and their effect might be soft-
ened by taking the same renormalization scale and re-expanding
the ratios. Furthermore, the physics of R V ,n

c is different from the 
one of each individual moment, and as such they should be con-
sidered as observables in their own right, therefore with their own 
series expansion in terms of a single αs(μα).

We turn now to the experimental determination of the ratios 
R V ,n

c . Our results are based on the obtention of the inverse mo-
ments M(n)

c performed in Ref. [4] and discussed in detail in that 
work. It combines the contribution from the narrow J/ψ and 
ψ ′ resonances, the available threshold data from Refs. [23–37], 
and a remaining contribution modeled with perturbative QCD for 
s > 10.538 GeV where no data is available (the so-called contin-
uum contribution). One also subtracts from the data a non-charm 
background from u, d, and s quarks, as well as a contribution from 
secondary charm production which is not included in the theory. 
(The small singlet contribution has been estimated and can be ne-
glected [38].) The continuum contribution as well as the uds back-
ground, which are implemented at the R-ratio level, use perturba-
tive QCD expressions. Here, since we aim at a precise extraction of 
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αs , we cannot fix its value in these contributions. We have, there-
fore, adapted the extraction of the moments M(n)

c from Ref. [21]
in order to obtain R V ,n

c as a function of the αs value used in the 
continuum and the background. It turns out that the dependence 
with αs , for values not too far from the world average, is highly 
linear, which facilitates the task of obtaining parametrized expres-

sions for the ratios R V ,n
c . In terms of �α = α

(n f =5)
s (mZ ) − 0.1181, 

the three ratios we exploit here read

R V ,1
c = (1.770 − 0.705�α) ± 0.017,

R V ,2
c = (1.1173 − 0.1330�α) ± 0.0022, (9)

R V ,3
c = (1.03535 − 0.04376�α) ± 0.00084.

The associated errors are dominated by data and are fairly small. 
The smallness of the uncertainties is in part due to the strong pos-
itive correlations between the consecutive moments M(n)

c which, in 
the error propagation, lead to a very small uncertainty in the ra-
tios. (For example, moments M(2)

c and M(3)
c are 97.6% correlated.) 

The relative errors in the ratios are of only 0.98%, 0.22%, 0.10% for 
R V ,1

c , R V ,2
c , and R V ,3

c , respectively.
The determination of αs is done by equating the experimen-

tal results of Eq. (9) to the respective expansions of the type of 
Eq. (8), numerically solving for αs . We turn now to a discussion 
of the results we obtain from this analysis. Sound results require a 
careful — and conservative — study of the associated uncertainties, 
in particular those that stem from the truncation of the perturba-
tive series. It has been shown that in quark-mass extractions from 
M(n)

c , a reliable error estimate requires the independent variation 
of the two scales μm and μα [21]. To be fully conservative, even 
though here the dependence on μm is weaker than in the case 
of M(n)

c , we vary both scales in the interval mc ≤ μα,μm ≤ μmax, 
with μmax = 4 GeV, and apply the constraint 1/ξ ≤ (μα/μm) ≤ ξ

with the canonical choice ξ = 2 (the dependence on the value of 
ξ will be discussed below).2 The scale variation we adopt is much 
more conservative than that used in many related works, where 
one often sets μm = μα (or ξ = 1). For the charm mass we adopt 
mc = 1.28(2) GeV. With this setup we have created grids with 3025
points of μm and μα and the respective αs values for each ratio 
R V ,n

c (with n = 1, 2, and 3), order by order in the perturbative ex-
pansion. First, we check the convergence of the αs extractions at 
each order in perturbation theory from the results obtained in the 
grids, neglecting charm-mass, experimental, and non-perturbative 
uncertainties. Therefore the spread in values due to scale variation 
directly measures the perturbative error. The results are shown in 
Fig. 1 for the three ratios we consider. One clearly sees a nice 
convergence for all the moments, which indicates that the pertur-
bative uncertainties are under control.

We continue the investigation of perturbative incertitudes by 
analyzing the αs grids with two-dimensional contour plots at 
N3LO. In Fig. 2 we show the result of such a scan in the case of 
R V ,2

c . What one sees from this plot is that a correlated scale vari-
ation with μα = μm , along the diagonal of the plot, would lead to 
a seriously underestimated theory uncertainty. The consequences 
of a correlated scale variation would be less dramatic for n = 1
but the results of Fig. 2 demonstrate, visually, the need for the in-
dependent scale variation. Finally, to examine systematically the 
consequences of less (and more) conservative scale variations, we 
vary the value of ξ between ξ = 1, which corresponds to μα = μm , 
and ξ = 3, that imposes almost no constraint within our intervals. 

2 We have carefully investigated the convergence of the perturbative expansion 
with an adapted Cauchy test suggested in Ref. [21] and conclude that the use of the 
restriction 1/ξ ≤ (μα/μm) ≤ ξ is sound in our case.
Fig. 1. αs values extracted order by order in perturbation theory from the ratios 
R V ,n

c of Eq. (9). Only perturbative uncertainties are displayed.

Fig. 2. Results for αs from R V ,2
c at O(α3

s ) in the μα × μm plane. Shaded areas are 
excluded from our analysis (see text).

For ξ = 1 we find that the perturbative uncertainties would be un-
derestimated by factors of 3 (n = 1), 2 (n = 2), and 1.5 (n = 3) 
compared to our canonical choice (ξ = 2). On the other hand, 
adopting an even more conservative choice with ξ = 3, would lead 
to increases in the errors between 30% and 60%, which shows that 
our canonical choice is sufficient for a conservative error estimate. 
The central values of αs are rather stable with the choice of ξ and 
the variations are below the percent level for 1 ≤ ξ ≤ 3.

With the perturbative uncertainties under good control, we are 
in a position to extract the final values of our analysis. To study 
the other sources of uncertainties we created additional αs grids 
in the μm × μα plane varying within one sigma the experimental 
value of R V ,n

c , the charm-quark mass, and also adding and remov-
ing twice the gluon-condensate contribution (as an estimate of 
non-perturbative uncertainties). We find, through the analysis of 
these grids,

αs(mZ ) = 0.1168(10)pt(28)exp(6)np = 0.1168(30) [R V ,1
c ],

αs(mZ ) = 0.1168(15)pt(9)exp(7)np = 0.1168(19) [R V ,2
c ],

αs(mZ ) = 0.1173(20)pt(5)exp(6)np = 0.1173(22) [R V ,3
c ],

where the first error is due to the truncation of perturbation the-
ory, obtained from the spread of values arising from the inde-
pendent scale variation with ξ = 2, the second comes from the 
experimental errors given in Eq. (9), and the third is due to non-
perturbative contributions. Perturbative errors grow with n while 
experimental errors become smaller. The error for the result with 
n = 1 is largely dominated by experiment, while for n = 2 and 
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Fig. 3. Comparison of our determination of α
(n f =5)
s (mZ ) (top, in red) with a 

few recent determinations. Event-shape analyses at N3LL′ + O(α3
s ): thrust and 

C-parameter (green) [39–41]; lattice QCD [42–46] and static energy potential [47]
(in dark blue); Electroweak precision observables fits [48] (black); Deep Inelas-
tic Scattering [49] and global PDF fits [50,51] (light blue); and hadronic τ de-
cays [52,53] and e+e− → hadrons [54] (gray). The current world average [3] is 
shown as an orange band.

n = 3 the perturbative error dominates. In all cases the uncer-
tainty associated with the charm-quark mass is 0.0003 and does 
not contribute to the final error. The non-perturbative error is al-
ways subleading, but gives a small contribution to the total error 
for n = 2.

The final results for αs are correlated since they are based on 
ratios of moments obtained from the same data sets. This disfavors 
averaging the results obtained from the different ratios R V ,n

c . In-
stead, we quote as our final value the one obtained from the ratio 
R V ,2

c for the following reasons: a) the experimental uncertainty, in 
the case of the extraction from R V ,1

c , is significantly larger, which 
makes the final error much less competitive; b) the extraction 
from R V ,3

c , on the other hand, relies on M(4)
c , which may have a 

too large value of n and correspondingly a smaller effective scale 
— a fact that is also responsible for the larger perturbative un-
certainty. The most reliable result is therefore the one from R V ,2

c

which yields our final value

α
(n f =5)
s (mZ ) = 0.1168 ± 0.0019. (10)

Our result is fully compatible with the present world average 
[0.1181(11)] [2] although the uncertainty is larger. Our determi-
nation has a very conservative error estimate: with a correlated 
scale variation the uncertainty would be reduced to 0.0013, not 
much larger than the world average. Comparison with other works 
in the literature [42,43,45] show that our perturbative error is also 
more conservative than what is obtained from estimates of higher-
order contributions (as opposed to scale variations). Our treatment 
of the experimental moments is also completely unbiased, since 
we do not fix αs to compute the perturbative contribution, but 
keep it as a free parameter. Using experimental moments with αs

fixed to the world average in the perturbative contribution would 
lead to even smaller errors and central values that change by an 
amount an order of magnitude smaller than the total uncertainty. 
Our procedure is, again, the most conservative alternative. Our re-
sult is compared with other selected recent extractions of αs in 
Fig. 3.

The present analysis can be extended in a number of direc-
tions. First, it can directly be applied to the vector moments of the 
bottom-quark current. Our preliminary results show that the er-
rors on αs in this case are not as competitive as the ones from 
the charm. One can also apply our more conservative treatment 
of perturbative uncertainties to analyze pseudo-scalar current mo-
ments obtained on the lattice. Our results on these additional anal-
yses will be presented elsewhere, together with further details on 
the results from the charm vector-current analysis. On the the-
ory side, one could also investigate alternative ways of organizing 
the perturbative expansion, such as using different powers of R V ,n

c
(re-expanded in αs) or linearized iterative solutions (in the spirit 
of [21]). Additionally, the cancellation of the renormalon associated 
with the pole mass when taking ratios allows for an analysis that 
employs directly the pole mass in the logarithms. One could also 
consider fits using all available information (including correlations) 
in order to extract αs and the quark-masses in a self-consistent 
way. We plan to carry out these analyses in the near future.
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