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Abstract—Identifying optimal join orders (JOs) stands out as
a key challenge in database research and engineering. Owing
to the large search space, established classical methods rely on
approximations and heuristics. Recent efforts have successfully
explored reinforcement learning (RL) for JO. Likewise, quantum
versions of RL have received considerable scientific attention. Yet,
it is an open question if they can achieve sustainable, practical
advantages with improved quantum processors.

In this paper, we present a novel approach that uses quantum
reinforcement learning (QRL) for JO based on a hybrid varia-
tional quantum ansatz. It is able to handle general bushy join
trees instead of resorting to simpler left-deep variants as com-
pared to approaches based on quantum(-inspired) optimisation,
yet requires multiple orders of magnitudes fewer qubits, which
is a scarce resource even for post-NISQ systems.

Despite moderate circuit depth, the ansatz exceeds current
NISQ capabilities, requiring an evaluation by numerical simu-
lations. While QRL may not significantly outperform classical
approaches in solving the JO problem with respect to result
quality (albeit we see parity), we find a drastic reduction in
required trainable parameters. This benefits practically relevant
aspects ranging from shorter training times compared to classical
RL, less involved classical optimisation passes, or better use of
available training data, and fits data-stream and low-latency pro-
cessing scenarios. Our comprehensive evaluation and discussion
delivers a balanced perspective on possible practical quantum
advantage, provides insights for future systemic approaches,
and allows for quantitatively assessing trade-offs of quantum
approaches for a crucial problem of database management
systems.

Index Terms—Quantum Machine Learning, Reinforcement
Learning, Query Optimisation, Database Management Systems

I. INTRODUCTION

In database research and industrial practice, finding good
orders in which joins between table columns are executed
in a query—the so-called join order (JO) problem—counts
amongs the most fundamental issues of database management
systems (DMBS) [1]–[9]. The chosen order substantially im-
pacts query execution time. While the problem does only
need little amounts of input information (the query to be
executed, and characteristics of the payload data obtained
from statistical samples), the problem is know to be NP-hard
in general, and also for common restricted scenarios [10].
An optimal JO cannot be efficiently found deterministically.
The last few decades have seen various classical heuristics
that can find suboptimal JOs in polynomial time [11]–[13].

Recent classical work [14]–[21] explores the application of
reinforcement learning (RL) to tackle the JO problem. RL is
considered to be beneficial in scenarios where the solution
to a problem can be determined by a series of subsequent
decision steps, and where finding one such good sequence for
a problem generalises well to others, or when highly dynamic
problems are considered. By learning from experience of past
query evaluation, RL can find good decision sequences in vast
search spaces, and only requires information about the current
state of the system. This is particularly advantageous for the
JO problem, as very typical scenarios in database systems need
to process information at a high temporal frequency.

In this paper, we approach RL for JO from the perspective of
quantum machine learning (QML), an emerging technique that
leverages the principles of quantum mechanics for potential
computational speed-ups. It has been shown that certain prob-
lems [22], [23] can be solved more efficiently using quantum
algorithms over classical approaches. However, the practical
utility of these algorithms is limited on the current genera-
tion of quantum computers, so-called noisy intermediate-scale
quantum (NISQ) systems [24], as they only offer a limited
amount of qubits and are prone to noise and imperfections [25]
that strongly limit possible circuits depth and thus the length
of quantum computations. To address these limitations, hybrid
quantum-classical algorithms are proposed, where only a lim-
ited number of steps is performed on a quantum computer and
the remaining steps on classical machines. As Pirnay et al. [26]
show, fault-tolerant quantum computers can provably provide
super-polynomial advantage for optimisation problems over
classical algorithms. Hybrid variational algorithms [27]–[29]
are considered key candidates for exploiting advantages of
near-term quantum devices, but could also be beneficial in
post-NISQ systems because of their resource efficiency.

Within the class of hybrid variational algorithms, quantum
machine learning (QML) has shown promise by moving cer-
tain parts of classical machine learning to quantum computers.
QCs will, despite common misperceptions, likely be inapt for
handling large amounts of data [30]. This makes quantum
reinforcement learning (QRL) [31]–[33], which requires little
training data, a promising approach. As established JO ap-
proaches mostly rely on statistical estimates of properties of
the database, JO seems a good match for QRL.

409

2024 IEEE International Conference on Quantum Computing and Engineering (QCE)

979-8-3315-4137-8/24/$31.00 ©2024 IEEE
DOI 10.1109/QCE60285.2024.00055



QML in general has been shown to outperform classical
machine learning for certain tasks [34]–[40]. Specifically, for
QRL it is hypothesised that fewer parameters are required than
for classical neural networks (NNs) to address RL tasks [31],
[41]. Several studies also suggest that QRL can solve tasks that
are intractable to classical machine learning [42], or that it may
have an advantage over classical NNs in terms of sampling
complexity, that is, fewer interactions with the environment
are required to achieve optimality for certain problems [32],
[33]. For these reasons, the application of QML to database
problems is also considered promising [43].

However, as detailed in Ref. [44], many approaches for
QML that claim quantum advantage rest on artificially con-
structed scenarios (e.g., [37], [38], [40]). Consequently, a
practical definition of QML goals is required, which should
not imply an exponential speed-up compared to classical
approaches, but rather is a matter of details.

We have chosen to use a recent classical RL-based approach
to join ordering by Marcus and Papaemmanouil [14] as
baseline that is well aligned with intensively studied quantum
variants of reinforcement learning [45]. It is known that
a careful consideration of various factors is necessary to
gauge potential improvements. This includes a sound classical
baseline, data representation, quantum circuit structure, and
hyperparameters. Further, we provide a high-level evaluation
of hardware requirements. Our detailed contributions are:

• We systematically replicate1 the classical baseline [14]
and generalise it to the quantum case. As the baseline
does not provide source code or hyperparameters, this is
an important prerequisite to ascertain a fair comparison,
and allows us to consider all aspects of the DBMS.

• We comprehensively simulate the performance of our
approach on the join order benchmark (JOB), which
is a universally accepted touchstone in the database
community, and compare it against the classical baseline
and a single-step QML technique [46] that was shown to
outperform established classical approaches. Multi-step
QRL can achieve up to 17% lower median costs than
single-step QML on the selected dataset and cost model.

• We identify potentials for improvement in view of future
hardware development, and carefully address the issue
of judging realistic potentials for practical improvements
over classical heuristics.

• We provide an open-source reproduction package [47]
that makes our code transparent to the community, and
can serve as basis to build further experiments upon, and
benchmark alternative approaches against.

We aim to provide a comprehensive perspective on the
quantum advantage landscape in RL for the JO problem. By
combining optimistic hypotheses with an acknowledgement of
established challenges and limitations, we strive to present a
balanced view. This balance is important to guiding future

1We follow ACM terminology on Artifact Review and Badging: A repli-
cation describes measurements obtained by a different team using a different
experimental setup. The term re-implementation is also common in the
literature, with identical meaning.

research directions and manage expectations regarding the
(near- and far-term) practical benefits of quantum algorithms
in the field of database management systems.

The paper is structured as follows: Sec. II reviews existing
literature on classical approaches for the JO problem and QC
for databases. Sec. III describes the theoretical background
for the application of the JO problem and the method of
classical and quantum RL, followed by an overview of our
methodology in Sec. IV. Sec. V outlines our experiments,
which are discussed in Sec. VI. We conclude in Sec. VII.

II. RELATED WORK

The problem of query optimisation, which is formally
defined in Sec. III-A, has been studied for over 40 years [13],
and new results appear frequently [3], [4], [8], [9]. Since
the search space for the JO problem scales factorial [10], an
exhaustive search for the optimal JO is only feasible for a
small number of relations, even when relying on dynamic
programming (DP) approaches [13], [48]–[51], necessitating
heuristic methods [1], [11], [52]–[55] for large queries.

Heuristics require to calculate costs; for instance, execution
time or number of intermediate results. These, in turn, depend
on estimates of the cardinalities of subqueries. Ref. [56]
reviews cardinality estimation techniques and their impact on
JO optimisation. Some approaches apply machine learning for
cardinality or cost estimation [57]–[59], to improve the DP
optimiser, or to directly determine the JO [14], [16]–[19].

Using quantum approaches to address database problems is
a relatively new field of research, even with early work by
Trummer and Koch on solving multi-query optimisation with
quantum annealers only going back to 2016 [60]. A recent
review [61] summarises existing work and classifies potential
use-cases. For instance, transaction scheduling [43], [62]–[64]
schema matching [65] or tuning index configurations [66] have
been addressed using quantum methods.

The join order problem has been cast as an optimisa-
tion problem in quadratic unconstrained binary optimisation
(QUBO) form by Schönberger et al. based on known trans-
formations to mixed-integer linear programming [67], and
using a direct encoding that has also been evaluated on
quantum-inspired hardware [68]. These two solutions for the
JO problem are restricted to left-deep join trees; alternative
formulations that allow for handling general bushy join trees
were given by Nayak et al. [69] and Schönberger et al. [70]
(we discuss differences in their scalability in Sec. VI). Finally,
Ref. [46] introduces an RL inspired approach for the JO
problem using VQCs. It uses rewards to measure the quality
of different join orders, but creates a join order in a single
step and not over multiple interactions with an environment.

III. PRELIMINARIES

This section introduces the three main concepts relevant to
this work, namely the JO problem (Sec. III-A), and classical
(Sec. III-B) and quantum (Sec. III-C) RL.

A. Background on the Join Order Problem

The JO problem constitutes of three basic elements:
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1) Query: A query formulated in the structured query
language (SQL) (see left of Fig. 2 for an example), can
be represented as an expression of relational algebra to be
optimised before execution [71]. In this work, we focus on
the important problem of JO optimisation with consideration
of selection (i.e., filter) operations while the query, in general,
may also consist of other operations. Here, a query Q can
be characterised by a join graph and predicates, which can
be further decomposed into join predicates and selection
predicates. A join graph for a query is defined by relations
that represent the vertices of the graph and filter on which
two relations can be joined. These are called join predicates
(e.g., a1.a=D.a in Fig. 2) and correspond to the edges of the
join graph. The join graph is given by a symmetric adjacency
matrix G ∈ Fr×r

2 , where r is the number of relations. If there
is a join predicate in Q connecting the relations ri and rj , the
entry gi,j in G is 1. Selection predicates are additional filters
that act on one relation (e.g., D.c > 5 in Fig. 2), and can be
formalised as described in Par. IV-C1b or Par. IV-C2a.

2) Join Tree: In contrast to a query graph, which serves as
the input for the JO problem, a join tree embodies a solution.
Its leaf nodes represent the base relations to be joined, while
its intermediate nodes denote join operations. Each join node,
requiring two operands, has two predecessors: either a) a base
relation or b) another join tree node, which itself will be further
joined. The result of a join serves as an operand for another
join, indicated by an outgoing edge connecting to its successor.
The only exception is the final join, which does not serve as
an operand for any subsequent join. In this study, we refer
to intermediate join trees as "sub-trees". The top of Fig. 3
illustrates the sequence for constructing a complete join tree.

While these requirements apply universally to join trees,
certain JO methods impose additional constraints on their
structure to enhance efficiency by reducing the search space.
Particularly, some methods exclusively consider left-deep join
trees, necessitating at least one base relation as an operand for
each join. Consequently, directly joining two pairs of relations
is precluded, as it necessitates a join operation on the results of
two preceding joins. Valid left-deep join orders must therefore
represent a permutation of relations. This restriction to left-
deep trees was employed in two quantum approaches for
JO [67], [68]. Nonetheless, the detrimental impact of this con-
straint on solution quality can be significant, as demonstrated,
for instance, by the empirical analysis conducted by Neumann
and Radke [3]. Hence, our QML approaches consider general
or bushy join trees, devoid of further structural constraints.
The divergence in scalability between existing quantum-based
left-deep and bushy variants is described in Sec. VI-B.

3) Cost Functions: Finally, a cost function evaluates the
join tree, by assigning it a cost value. The literature proposes
various definitions of cost functions [72]; some are straightfor-
ward yet less precise, while others are more intricate, taking
into account multiple factors and closely reflecting real costs
(i.e., query execution time including I/O costs). To evaluate
the selected join order, we use the established cost function
Cout [10], which considers the cardinalities (i.e., the number

of tuples in a query result set) as an approximation of query
complexity:

Cout(T ) = |T |+ Cout(T1) + Cout(T2), (1)

where n is the maximum number of joins in the query, a join
tree is defined as T = T1 ./ T2, and |T | represents the true
cardinality of T (Cout(T ) = 0 if T ∈ {r1, r2, . . . } is a leaf).

B. Background on Reinforcement Learning

The setup in RL is typically described by the notion of a
Markov decision process (MDP) [73], where an agent interacts
with an environment at discrete time steps t. In each time step,
the current configuration of the agent in the environment is
summarised by the state St ∈ S , where S is the set of all
possible states. Based on this information, the agent selects
an action At from a set of possible actions A according to
a policy π(s, a) = P[At = a | St = s], which gives the
probability P of taking action a in state s. Executing the
selected action causes the environment to transition to a next
state St+1 ∈ S. Simultaneously, the agent receives a scalar
reward Rt+1 ∈ R that quantifies the contribution of the
selected action towards solving the task, with R ⊂ R being
the set of all rewards. St+1 and Rt+1 are determined by the
environment’s dynamics p : S×R×S×A, which characterises
the probability distribution of a transition (St, At, Rt+1, St+1).

The agent’s goal is to maximise the return [73] Gt =∑T
t′=t γ

t′−tRt′+1, that is, the discounted sum of rewards, until
a terminal timestep T is reached, where the discount factor
γ ∈ (0, 1] controls how much the agent favours immediate
over future rewards. The period between the initial time step
and T is often referred to as an episode.

To find a good policy that maximises the return, various
RL methods exist [73]. As our baseline [14], in this work
we focus on Proximal Policy Optimization (PPO) from the
class of policy gradient methods [74]. The goal of policy
gradient methods is to directly learn the parameterised policy
πθ : S × A → [0, 1], where θ denote trainable parameters of
a function approximator, such as a neural network (NN), or a
variational quantum circuit (VQC). In PPO, the parameters θ
can be optimised using a gradient ascent method, maximising
the following objective, consisting of three parts:

Lclip+VF+S
t (θ) = Et

[
Lclip
t (θ)− c1L

VF
t (θ) + c2S(πθ)

]
. (2)

The PPO algorithm alternates between sampling and opti-
misation stages. Therefore, Et indicates the average over
a finite batch of samples, which is gathered prior to each
optimisation stage. c1 and c2 ∈ R+ are hyperparameters.
The clip-objective Lclip(θ), is defined as rt(θ)At, where the
ratio rt(θ) = πθ(at,st)

πθold (at,st)
is clipped in 1 ± ε with θold being

the parameters before the update, ε ∈ R a hyperparameter
and At an advantage estimation of the current policy. The
advantage estimation At itself can be learned by a func-
tion approximator based on the value function in an MDP
V (s) = Et [Gt | St = s], that is an estimation of the return,
and optimised through the objective LVF

t , which is a squared-
error loss function of estimated values from the function
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approximator and target values, collected in the sampling
stage. The third part in Eq. 2 S[πθ] denotes the entropy of πθ,
which is added to ensure sufficient exploration. For a detailed
discussion on PPO, we point readers to Ref. [74].

We refer to the policy function approximator that mainly
contributes to Lclip(θ) as the actor, as it represents the
policy that “acts” in the environment and to the advantage
estimator, which is optimised through LVF(θ) as the critic,
which evaluates a current policy. We investigates classical and
quantum versions of actor/critic in Sec. V-B.

C. Background on Quantum Machine Learning

As a variational quantum circuit (VQC) is proven to be
a universal function approximator [75], similar to a classical
NN [76], it can be employed as a set-in for NNs in a variety of
settings (e.g., [27], [77]), including PPO. A VQC’s structure
often follows the data processing flow of a classical NN
and comprises three fundamental components: In the first
part, a quantum state is prepared to represent the classical
input data x through applying a unitary gate Ûenc(x) to the
initial quantum state, which by convention is ⊗n |0〉 for a
configuration with n qubits [78]. In the second so-called
variational part, the quantum state is then transformed by
applying a parameterised unitary Ûvar(θ). An exemplary gate
sequence for the encoding and the variational part is depicted
in Fig. 4. Finally, classical information 〈Ô〉 is obtained from
the quantum circuit by measuring the state. The notation 〈Ô〉
refers to the expectation value of an observable Ô.

The parameters of the VQC are optimised using classical
approaches such as gradient ascent to maximise an objective
function, where the gradient of a parameter with respect
to the measurement can be calculated using the parameter-
shift rule [77], [79]. As algorithms involving VQCs perform
calculations on both, the quantum processing unit (QPU) and
CPU, they are called hybrid approaches.

1) Data Encoding: The encoding unitary Ûenc(x) depends
on the encoding strategy; Weigold et al. [80], [81] survey
common strategies. Among these, we focus on angle encoding,
which uses a Pauli-rotation gate to encode one real value into
one qubit. The corresponding unitary can comprise one (e.g.,
[32]) or multiple (e.g., [31]) parameterised rotation gates per
qubit. Given that the gates are periodic, each input element
must be scaled to an interval smaller than 2π.

Even if payload data are not required to encode JO prob-
lems, a simple angle encoding scheme for JO exceeds the
capability of NISQ devices for even small instances. We
therefore employ incremental data uploading [82] to spread
the encoding gates for the input elements throughout the
quantum circuit with parameterised unitaries in between them,
which increases circuit depth (i.e., the longest gate sequence),
but decreases qubit count. As there is no limit on the maximum
number of repetitions of input elements, encoding unitaries
can be re-introduced multiple times into the VQC. This ap-
proach, known as data re-uploading (DRU) [75], is suggested
to increase the expressivity of a VQC [83], which in turn
determines the class of functions a VQC can approximate. In

Sec. V-B we empirically evaluate and compare the combina-
tion of incremental data uploading and DRU.

2) Data Decoding: Several techniques are known to map
“outputs” of a VQC (i.e., the expectation value of multiple
measurements) to a set of output values that is smaller than
or equal to the number of qubits [42], [84]. Few existing
approaches [85] decode quantum states to larger output spaces.
As described in Sec. IV-C1, action and output space are
typically larger than the number of qubits for JO. We therefore
determine the expectation value for each qubit individually
using Ẑ observables and feed the outcomes into one classical
NN layer with the correct output size for the actor. For
the critic model, which only requires one output component
to estimate the advantage, circuit outcome is determined by
observable ⊗nẐ. Since the expectation value of Ẑ lies in
[−1, 1] the critic model outcome is scaled using an additional
trainable classical parameter and bias.

IV. METHODOLOGY

To understand how RL can be utilised for the JO problem on
QCs, we commence with discussing the differences between
building the join order step-wise or returning the full join
order within one single step using a machine learning (ML)
model. We also introduce a single-step approach based on
QML. Subsequently, we outline our classical baseline ReJoin
and the adjustments required for quantum RL.

A. Single-Step versus Multi-Step Join Ordering

Agent:
ML model
(black box)

Environment:
Inputs to join
(observation)

Inputs to join (state)

Multi-Step A,B ./ C,D ./ E, F
Single-Step A,B,C,D,E, F

Quality of Join Order (reward)

Join (action)

Multi-Step A ./ (B ./ C), D ./ E, F
Single-Step (A ./ (B ./ C)) ./ ((D ./ E) ./ F )

Multi-Step n× �
Single-Step 1× �

Fig. 1. Single-step versus multi-step approach presented in an RL fashion.
Here, A to F are the relations to join. We neglect selection predicates.

A join tree can be created by an ML model in multiple steps
or in a single step. Fig. 1 summarises the differences: The state
of the environment contains (1) already determined subjoins,
(2) relations to be joined, and (3) selection predicates. An
ML model acts as an agent in the RL context. It predicts and
emits the next best subjoin (i.e., the action) connecting two
of the subjoins and relations of the previous state. Thereby,
the environment of already determined subjoins and to be
joined relations is updated. By determining the quality (i.e.,
the reward) of the intermediate join order, the model can be
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trained to better predict the next best subjoin. In the multi-
step approach, a single join is added to the join tree in each
step until all input relations are joined (i.e., a terminal state is
reached). In the single-step approach [46], the model directly
generates a complete join order without intermediate steps
(i.e., a terminal state is reached after one step).

B. Single-Step QML

In the single-step QML approach [46], all join orders are
enumerated, and each join tree is associated with a quantum
state. The join order associated with the most commonly
measured quantum state is taken as join tree. The quality of
join orders can vary greatly and multiple join orders can have
equal or nearly equal good quality. For instance, the second-
best join order might only be slightly worse, while another
might have a large difference in quality. Thus, it is not a good
approach to make a binary choice between right or wrong
for a join order. Instead, each join order is assigned a reward
depending on its quality. We use the VQC to predict these
rewards and choose the join order with the highest reward.

C. Multi-Step QRL

Fig. 2 visualises our QRL multi-step approach. By using a
state representation based on Ref. [14], a VQC can choose the
next join in an iterative process until a complete join order
is built. The classical baseline as well as the modifications
required for the application of QRL are described below.

1) Classical Baseline—ReJoin: For our multi-step ap-
proach, we utilised the method described in Ref. [14]. Al-
though the literature proposes various RL methods for the JO
problem (cf. Sec. II), we opted for ReJoin as a foundation
because of its compact input feature space. Other approaches,
such as RTOS [19] or JOGGER [18], utilise sophisticated
classical machine learning techniques to represent states of
queries and databases, which lack a direct equivalent in the do-
main of quantum computing. Investigating novel methods that
apply these advanced classical machine learning techniques to
a quantum domain is beyond the scope of this study. Instead,
our QRL approach should evaluate the capabilities of existing
QML methods on small input spaces of the JO problem to
establish a lower bound for the potential of using QRL, or QC
in general. Additionally, due to the limited number of qubits
on current NISQ devices and each quantum circuit gate being
a potential source for noise and imperfections, it is beneficial
to reduce the classical data encoded into the quantum gates
to a minimum. As outlined below, ReJoin employs a total of
a+ 2r2 input features, where r denotes the number of tables
and a represents the total number of attributes in the database
with a > r. As we show in Par. IV-C2a we are able to reduce
the input space even further. In contrast, for example DQ [16]
necessitates roughly r× (a+1) features, resulting in a larger
input space considering that the number of attributes typically
outweighs the number of relations in the database.

a) MDP: The MDP’s state for the JO problem is rep-
resented by a query Q and a set of relations or (sub-)join-
trees F . The PPO agent sequentially combines two sub-trees

Tk, Tl ∈ F , which corresponds to an action, until a complete
join order is build. Building the join order for one query,
represents an episode. The agent aims for a join order that
achieves minimum costs respectively a maximum reward.

b) State Representation: Formally, one part of the state
representation is the join graph G, defined in Sec. III-A. Ad-
ditionally, selection predicates in the query Q are represented
by a vector of length a, which is the number of attributes
in the database. Selection predicates are one-hot encoded: If
a predicate is present in Q, the corresponding value in the
predicate vector P is one; otherwise zero. Furthermore, each
intermediate sub-tree Tk ∈ F , that is the tree structure, is
encoded as a row vector τk of size r. If a relation ri is equal
to Tk (ri is a leaf) or is present in Tk, then the corresponding
value in the row vector τk,i is 1

h(i,k) , where h(i, k) is the
height of ri in Tk. To ensure an evenly sized input space
throughout the training process, for each subtree Tk that is
successfully joined to another subtree Tl, τk is set to ~0. There
exist r sub-tree row vectors T̊ in total, since at the beginning
of each join-process each relation correspond to one sub-tree.
An exemplary sequence of row vectors that is encountered
until a full join order is built is depicted in Fig. 3, which uses
the reduced encoding introduced in Par. IV-C2a. The complete
state for the baseline can be expressed through concatenation,
St = Gf ⊕ P ⊕ (⊕τk∈T̊ τk), where Gf denotes the flattened
join graph as a vector and ⊕ concatenation with |St| = a+2r2.

c) Action Representation: The PPO actor returns a
probability distribution over all actions At ∈ A. The set
of actions A comprises all combinations of two sub-trees
(Tk, Tl)∀Tk, Tl ∈ F , k 6= l, resulting in an action space of
size r × (r − 1). It encompasses actions with relations that
are not present in the query, or lead to a cross join (i.e. a join
between relations that are not connected by a join predicate).
As these typically involve high costs, we apply a mask to the
policy by multiplying each value that represents an invalid
action with zero to prevent them from being sampled.

d) Reward Signal: In previous studies on RL for JO (e.g.,
Refs. [14], [16], [19]) the reward, as function of cost, is only
assigned at the end of each episode when the full join order
is built by the RL policy. Intermediate steps receive a zero
reward. This seems counter-productive, given that one property
of RL is to determine an action based on a current state and
reward signal2. Therefore, we propose a multi-step reward
signal: Assuming the cost difference Ct between timesteps
t and t− 1 with costs ck for subtrees Tk ∈ Ft in a state St is

Ct =

{∑
Tk∈Ft

ck −
∑

Tl∈Ft−1
cl if t > 0

0 if t = 0
, (3)

and the cost assigned to the best join order of the full query
determined by a DP exhaustive search is CDP, we propose the
clipped reward at t as

Rt =
1

n− 1

[
−min

(
Ct

CDP
, n− 1

)
+ 2

]
. (4)

2We provide a comparison to a method, which awards zero to intermediate
steps in the supplementary material in our reproduction package
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Fig. 2. Interplay between data encoding (top) and variational quantum circuit (bottom) processing in our approach. Starting from the query and the baseline
encoding of Ref. [14], we prune unnecessary features and flatten the core input data into a vector that is statically fed into the encoding quantum gates Ûenc.
The variational quantum circuit (using a configurable number of qubits) is initialised with qubits in state |0〉, and iteratively executes block of intermingled
encoding and variational (Ûvar) gates; following a measurement, a classical optimisation procedure delivers new parameter estimates for the variational gates,
and the updated circuit is iteratively re-executed. Following established conventions, solid lines indicate quantum information, double lines concern classical
information (measurement results that may change in each run of the quantum circuit), and dashed lines represent parameters that are statically fed into the
quantum circuit (remaining constant across circuit runs). Grey, thick lines symbolise logical flow.

This requires n−1 joins (and actions) to build the join tree
for a query with n relations. Clipping, shifting and normalising
the ratio reduces the chances of steeper gradients during
training, which is a known cause of suboptimal training [86].

2) Quantum ReJoin: For ReJoin, a VQC can be employed
as the actor-, as well as critic-part of PPO, or both. In both
cases, the VQC encodes the state St. Policy or advantage
estimations are obtained using the approach of Sec. III-C2.

As the number of inputs that a QPU can process is restricted
by the hardware capabilities of QPUs, it is advantageous to
minimise this number. As described in Sec. IV-C1, the state
representation of the classical baseline suggests a state space
with a + 2r2 features for a database with r relations3 and
a attributes. For the JOB, which encompasses 208 attributes
across 39 different aliases throughout the JOB query set, there
are 3 250 input elements for one state.

3We assume r is the number of different aliases occurring in the dataset,
and a is the number of attributes corresponding to these aliases. One author
of Ref. [14] confirmed that multi-aliases were handled as an additional tables.

a) Reducing the Input Size: To reduce the observation
space, we specify a maximum number of relations n that can
be joined. As for the baseline, we employ a join graph and
a tree structure representation, which are defined analogous
to the baseline over the n relations present in a given query.
This leads to n2 elements in both, the join graph and the
sub-tree structure representation. To specify, which tables are
referenced in a query, the tables in the database are enumerated
and assigned with an index I : T → [0, r−1], where T is the
set of all tables and r is the number of tables in the database.
The indices i ∈

⋃
Tq∈Q I(Tq) for a query Q are added to the

input components. To represent the information, which is given
through the selection predicates, we obtain the selectivity (i.e.,
the fraction of tuples present in a result when filtering for the
corresponding selection predicates of a specific table) for every
table in a query and add these to the input components.

The reduced state representation leads to 2(n2 + n) input
elements. For n = 17 as maximum size in the JOB, this results
in 612 elements, over 80% less than in the baseline.
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Fig. 3. Processing sequence to iteratively determine join orders. Once the query has been parsed and encoded, subsequent invocations of the variational
quantum circuit as illustrated in Fig. 2, determine more and more joins, until a complete order has been found.

b) Circuit dimensions: One advantage of quantum algo-
rithms involving VQCs is that they allow for a certain degree
of controllability of the circuit depth and number of qubits,
which is especially desirable for NISQ devices [24]. Utilising
the incremental data-uploading [82] and the DRU [75] ap-
proaches, we can choose the structure of the quantum circuit.
We opted to divide the 2(n2 + n) input features in n equally
sized parts pl. Each feature fi ∈ pl is then scaled to a range
of [0, π] and used as s rotation angle for a R̂x gate acting
on qubit i in the layer l. The input parts are interleaved with
parameterised gates R̂y and R̂z that act on each qubit and
introduce trainable parameters, and a circular sequence of C–Ẑ
gates between two adjacent qubits, which create entanglement.
Fig. 4 visualises this gate sequence for one encoding and
one variational layer. This layer structure is chosen as it is
seen as highly expressive throughout the literature [32], [87].
We considered two types of circuits: In the first, we apply
DRU and repeat the encoding pattern several times, which can
increase quantum expressivity [75]. In the second, we omit the
input encoding part after each input feature is present in the
circuit once, that is, we do not apply DRU, resulting in a flatter
circuit. Both variants are evaluated empirically in Sec. V-B.

R̂x(θ0)

R̂x(θ1)

R̂x(θ2)

R̂x(θ3)

R̂y(γ0)
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R̂z(δ0)

R̂z(δ1)

R̂z(δ2)

R̂z(δ3)

Encoding Ûenc Variational & Entangling Ûvar

Fig. 4. Details of quantum state manipulation: Parametrised rotations around
the x axis (R̂x(θ)) encode information. The variational part comprises
parametrised rotations around the y and z axes, implemented by R̂y(γ) and
R̂z(δ), followed by a cyclic sequence of C–Ẑ gates that create entanglement.

V. EXPERIMENTS

We commence with the experimental setup (fully repro-
ducible with our reproduction package), followed by the train-

ing results for quantum-based versions of ReJoin in Sec. V-B.

A. Experimental Setup

1) Training and Test Data: Following the approaches pre-
sented in Sec. II that evaluate their methods using various
industrial benchmark datasets [88]–[90], for classical ReJoin,
we used the 113 queries from the join order benchmark
(JOB) [88]. As we lack access to a sufficiently large quantum
machine to process data for all queries in the JOB, we
concentrate on training with four relations per query. Since
the JOB only provides three queries with four relations, we
generate new queries based on subplans to enlarge the dataset,
following Krishnan et al. [16]. However, instead of obtaining
subplans from the traditional optimiser, we rely on a single
ReJoin training run, generating over 12 000 subqueries, from
which we randomly select 497 that join four relations, and
combine them with three JOB queries. To the resulting dataset
of size 500, we apply a ten-fold cross-validation scheme [91],
whereby the dataset is split into ten distinct parts. Each part is
excluded from the training set once to be utilised for testing,
leading to ten different train-test-splits.

2) Python Libraries: Since the original source code for
ReJoin is not available, and other implementations for solving
the JO problem by the means of RL [92]–[94] utilise different
RL methods [95], and a different encoding for states and
actions [93], [94] we modified and fine-tuned a third-party
replication [96] based on the descriptions in Ref. [14] in
collaboration with one of the original authors using the Python
machine learning library Tensorflow [97] for the machine
learning specific parts. For the quantum specific parts of our
experiments, we additionally utilised the quantum frameworks
Tensorflow Quantum [98] to simulate ideal quantum systems
and Qiskit [99] to simulate noisy systems. Given the lack
of capable quantum machines, we rely on simulations. The
implementation can be found in our reproduction package.

3) Classical Baseline Replication: We were able to suc-
cessfully replicate ReJoin, despite some minor deviations from
the findings in Ref. [14], which could possibly attained to
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differing hyperparameters or settings that were not specified
in the original study. To further enhance the outcomes of our
replication, and to allow for the reduced encoding described in
Par. IV-C2a, we combined methods from other RL approaches
for JO [16], [19] to improve the learning convergence in cost
training. For more information on the classical replication
and the baseline modification, the reader is referred to the
supplementary material in the reproduction package.

4) PPO Models: We consider the following configurations:
a) Classical Model: As baseline, we use a classical NN

with two hidden layers (128 units each) for actor and critic.
b) Quantum Model—Single-Step [46]: This model uses

one qubit per relation in the query, resulting in 4 qubits for our
dataset. For each relation in the query, the ID of the relation
is encoded with an R̂x gate and the combined selectivity of
all filters on the relation is encoded with a R̂y gate. As there
are at most 15 possible join orders for 4 relations, 24 quantum
states are enough to have a state for each join order.

c) Quantum Models—Multi-Step: We consider three con-
figurations: (a) Q-Critic, where a VQC is employed as the
critic part of PPO, and a classical NN with the same dimen-
sions as for the classical model serves as the actor; (b) Q-
Actor with a VQC as actor in PPO, and classical critic; (c)
Fully Quantum with VQCs for actor and critic. All quantum
models use classical post-processing layer (see Sec. III-C2).

5) Data Re-Uploading (DRU) Setup: For each quantum
model, we evaluate setups with and without DRU. The version
utilising DRU employs 2–5 repetitions of the gates necessary
to encode all input features once. With four relations this
results in 8, 12, 16 and 20 variational layers for the multi-step
QRL approach. To ensure a fair comparison with the single-
step QML approach, we repeat the input features, consisting of
indices and selectivities, every four variational layers for the
configurations with single-step QML and DRU. This results
in the same number of input repetitions and variational layers
as for the multi-step QRL approach. For the second configu-
rations without DRU, we use the same number of variational
layers and introduce an additional experiment with four layers
to encode every input feature once without extra variational
layers for multi-step QRL. Analogously, the configurations for
single-step QML and without DRU encode the input features
once followed by the respective number of variational layers.

6) Training and Evaluation: While incorporating noise
during training, whether through direct execution on real QPUs
or via noisy simulations utilising snapshots of actual devices,
provides the most accurate assessment of our approach’s
performance on present or near-term quantum hardware, the
computational demands of noisy simulation, particularly for
large input sizes during optimisation, are substantial. Given
these constraints, a complete training iteration exceeds the
scope of this study. Nonetheless, to quantify the adverse effects
of noise, we assess models trained in an ideal simulation in
a noisy environment using the same test sets from the ten-
fold cross-validation. Specifically, we introduce depolarising
errors [78], a prevalent error type in noisy simulations, with
a predetermined probability applied to each gate within the

models utilising a quantum actor (i.e., Q-Actor and Fully
Quantum). For this probability, we select values ranging from
1% to 5%, representing upper bounds of gate errors, to which
current QPUs are prone [25]. The findings from our noisy
evaluation are detailed in V-B2.

B. Experimental Results
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Fig. 5. Relative cost median during training. For the methods involving a
quantum part the models with DRU and 20 variational layers are depicted.

1) Training Results from Ideal Simulations: As shown in
Fig. 5, the classical model can achieve the median for optimal
join orders after sampling roughly 8 000 queries (episodes),
while Q-Critic delivers comparable results. Since the single-
step approach surpasses conventional JO heuristics [43], [46]
when trained on query execution times (i.e., true cost), it can
be regarded as quantum baseline. We either outperform or
match it in all three QRL variants. Specifically, the Q-Critic
configuration can achieve up to 17% lower median costs than
single-step QML. This implies that although the configurations
that employ a VQC as an actor, as well as the single-step QML
method, do not achieve an optimal cost median during training,
the QRL approaches are competitive with established classical
heuristics, assuming that careful hyperparameter tuning and
incorporating true costs leads to better join orders. Since our
focus is on the specific implications for quantum computing,
and as training on a cost model may not necessarily translate
to actual query execution times, we consider costs as perfor-
mance indicator, following Refs [14], [16], [19].

Our results suggest that as the classical component of
computation increases, the quality of results improves. This
finding appears to contradict claims for quantum advantage
in QML literature [37], [38], [40]. However, it aligns with
a recent observation by Bowles et al. [100] who conducted
benchmarks across various QML configurations and noted
that models with a substantial portion of classical parameters
often outperform those with a higher quantum component.
Understanding the dynamic between classical and quantum
methods remains an important future challenge.

As illustrated in Fig. 6, the quantity of variational layers
impacts configurations with a higher proportion of VQC
parameters (Q-Actor, Single-Step QML and Fully Quantum
QRL), especially with DRU. We observe, consistent with
findings in the literature [32], [34], [42], [46] that more layers
lead to lower costs. In all other instances, optimal training
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convergence is attainable with fewer variational layers, which
translates to fewer parameters and shallower circuits.

2) Evaluation Results from Noisy Simulations: The con-
figurations utilising a quantum actor (i.e., Q-Actor and Fully
Quantum) demonstrate the capability to achieve nearly optimal
results conducted on ideally simulated QPUs. However, when
incorporating gate errors, the performance of quantum models
tends to deteriorate. Fig. 7 shows that the median relative cost
increases almost linearly across all configurations, with steeper
increases observed for deeper circuits—those with more layers
and DRU–, which inherently present more opportunities for
errors. While this observation is sobering, it aligns with the
expectation that models trained in a ideal environment may
struggle when confronted with noise. Other studies [32], [101]
suggest that incorporating noise during training, coupled with
hyperparameter tuning tailored to such noise models, can yield
successful outcomes even in the presence of noise. The explo-
ration of noise’s impact during training on the JO problem
could be deferred to future investigations. However, as shown
in Fig. 8, a comprehensive examination of results reveals
that significant outliers persist, even in ideal and classical
scenarios, indicating that while median performance appears
reasonable, pronounced instabilities persist within the (Q)RL
approach to the JO problem, necessitating further theoretical
and empirical investigation of the methods itself.
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VI. EVALUATION

While the quantum models may not outperform classical
models in terms of cost efficiency post-training, other factors
are pertinent to assess the effectiveness of QML methods
for JO. This section discusses the influence of the circuit
dimensionality on overall trainability, examining the number
of parameters and scalability of our approaches compared to
alternative quantum approaches for the JO problem.

A. Parameter Efficiency
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Fig. 9. Number of parameters for classical and quantum methods. The pure
quantum case requires substantially less parameters than the classical baseline,
which reduces optimisation complexity. Partial quantum variants (Q-actor, Q-
critic) are less parsimonious, yet retain advantages against the baseline. The
inset shows the optimisation time of the Adam [102] optimiser, to apply
gradients to the parameters. Lines show the median of 1 000 measurements
for each configuration; shaded areas depict first and third quartiles. Note that
gradient calculation is excluded from our measurements.

Fig. 9 shows the total number of parameters (variational
and classical) dependent on the number of relations in a query
for the different methods. We considered the VQC structure
with the dimensions described in Par. IV-C2b, including the
classical post-processing layer and a fully-connected NN with
two hidden layers and a constant hidden dimension of 1284.

4Typically, the number of hidden units grows with input space [103], so
the number of parameters for the classical model gives a lower bound.
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While the classical baseline achieves lower and more stable
costs, the QRL variants require fewer parameters. Considering
the Q-Critic configuration, which achieves costs comparable
to the baseline, we found that 47% less parameters suffice for
four relations using 20 variational layers, that is, five DRU
repetitions, and about 38% less parameters for 30 relations.

The corresponding run-times for the Adam optimiser [102]
are shown in the inset of Fig. 9. We did not consider the time
taken to calculate the gradients in our optimisation time mea-
surements, as (1) gradient calculation or estimation methods
for VQCs are still an ongoing area of research [79], [104],
[105] and (2) our experiments are conducted on simulators
instead of real QPUs, so the execution times may differ
significantly. The parameter-shift rule [79], commonly used
with VQCs, is computationally and necessitates two circuit
executions per shot and parameter. Optimised techniques for
gradient calculations have appeared [106]–[109], similar to
classical ML over the past decades [110]. Yet, a compre-
hensive evaluation is beyond the scope of this paper. Based
on our measurements, it is possible to achieve up to 12%
improvement in median optimisation time for the Q-Critic
configuration with one DRU repetition, in comparison to the
classical model per optimisation step for 30 relations. As ML
methods update parameters over multiple thousand iterations,
this could significantly impact overall training time.

B. Scalability of Quantum Approaches for Join Ordering

101

102

103

104

105

106

107

108

109

10 20 30
# Relations

#
Q

ub
its

(l
og

)

Method
SIGMOD’23 [67]
BiDEDE’23 [69]
QDSM’23 [70]
VLDB’24 [68]
Single-Step QML [46]
Multi-Step QRL

Join Search Space
Bushy
Left Deep

101

102

103

10 20 30C
ir

cu
it

D
ep

th
(l

og
)

Fig. 10. Number of qubits and circuit depth required to encode the JO problem
for different quantum optimisation strategies.

As outlined in Sec. II, other quantum-based techniques
address the JO problem. The number of qubits necessary
to encode up to 30 relations for each of these strategies is
depicted in Fig. 10. Refs. [67]–[70] aim to solve a specific
class of problems, namely quadratic unconstrained binary
optimisation (QUBO) problems, where the number of qubits
required depends on the QUBO formulation. In contrast,
QML approaches provide greater flexibility in the utilisation
of qubits and circuit depth. As shown in the figure, both
proposed QML approaches, single-step QML and multi-step
QRL, are more efficiently in terms of qubit numbers, com-
pared to the QUBO approaches. Furthermore, circuit depth
is a widely accepted quantum runtime proxy, for which we

provide bounds5 in Fig. 10. QRL generally requires only
low circuit depth, comparable to the QUBO approach for
bushy joins presented in Ref. [70]. However, not unlike with
classical machine learning [111], while substantial progress
with understanding capabilities of VQCs has been made [112],
the learning dynamics based on the circuit dimension and
theoretical underpinnings are not yet fully understood [44] and
require further empirical and theoretical evaluation.

VII. DISCUSSION AND OUTLOOK

We introduced a quantum reinforcement learning based ap-
proach to solve the long-standing, seminal join order problem,
and replicated a classical reinforcement learning approach as
suitable baseline to compare against the state of the art. In a
systematic and comprehensive evaluation based on numerical
simulation of quantum systems, we found that our approach at
least matches classical performance in terms of result quality,
which is not universally observed throughout the literature [45]
for quantum algorithms. Apart from significantly reducing
the input feature space of the classical baseline, we could
show that substantially fewer trainable parameters are required,
which is likely rooted in enhanced quantum expressivity. We
believe the resulting reduction in classical optimisation efforts
particularly benefits two scenarios: (a) Frequently changing
data characteristics that necessitate continuous re-computation
of join orders, and (b) low response latency requirements.
Both appear in important commercial settings like stream data
processing and high-frequency operation [113].

We also showed that our approach improves upon the
scalability of existing quantum-RL solutions by nearly ten
orders of magnitude in terms of qubit count. Given that this
is the most scarce resource in current and future QPUs, we
believe this is an important step towards practical utility.

Current NISQ capabilities prevents us from enjoying prac-
tical advantages right now. The limitations might, however, be
circumvented even prior to the arrival of fully error-corrected
hardware that is capable of delivering the behaviour predicted
in our simulations by using custom-designed hardware. Addi-
tionally, it has recently been observed that the JO problem
on quantum-inspired hardware can outperform established
approaches [68]. Similar observations could generalise to other
types of hardware, potentially applicable to the domain of
variational algorithms or machine learning that our approach is
based on. Finally, progress in the foundational understanding
of QML could improve performance using more sophisticated
quantum baseline methods, or data encoding strategies.
Acknowledgements MF, TW, SG and WM were supported by
the German Federal Ministry of Education and Research (BMBF),
funding program “Quantum Technologies—from Basic Research to
Market”, grants #13N15647 and #13NI6092 (MF and WM), and
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Tech Agenda Bavaria.

5Bounds are based on circuit depth for one data uploading block (QML ap-
proaches) and lower bounds on the circuit depth for the respective QAOA [27]
circuit with p = 1 (QUBO-based approaches). We consider the maximum
number of entangling gates/quadratic terms that act on two qubits, and gates
required for initialisation and mixer Hamiltonian.
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