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Abstract. The elementary particles of Physics are classified according to the behavior of the
multi-particle states under exchange of identical particles: bosonic states are symmetric while
fermionic states are antisymmetric. This manifests itself also in the commutation properties
of the respective creation operators: bosonic creation operators commute while fermionic ones
anticommute. It is natural therefore to study bosons using commuting entities (e.g. complex
variables), whereas to describe fermions, anticommuting variables are more naturally suited. In
this paper we introduce these anticommuting- and at first sight unfamiliar- variables (Grassmann
numbers) and investigate their properties. In particular, we briefly discuss differential and
integral calculus on Grassmann numbers. Work supported in part by DOE contracts No. DE-
AC-0276-ER 03074 and 03075; NSF Grant No. DMS-8917754.

1. Fermionic Analysis
1.1. Grassmann Numbers
Grassmann numbers (θm) are defined to satisfy the following anticommutation rule:

{θm, θn} ≡ θmθn + θnθm ≡ 0 (1)

Note that this implies (by setting m = n) that the square of a Grassmann number is zero. In
addition Grassmann numbers are associative:

[θl, θm, θn] ≡ (θlθm)θn − θl(θmθn) ≡ 0 (2)

This second property is usually implied and not written explicitly, but it is important since it
is possible to construct a system that satisfies eq.(1) but doesn’t satisfy eq.(2). It also allows the
θ’s to have a matrix representation: for instance, in field theory, a fermion operator such as an
electron operator can be represented by an infinite matrix. In general, the matrix representation
can be either finite or infinite.

This abstract number system was introduced by Grassmann[1] who didn’t give a
representation for it. He introduced the system in terms of differential operators in the process
of inventing differential forms, which provide an example of Grassmann variables. For instance,
we see from Maxwell’s equations, expressed in terms of differential forms,
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df = 0 and f = dA ⇒ d2 = 0 (3)

where A is the four-potential, f is the electromagnetic field tensor and d is the differential
operator of the form calculus. We therefore see that d is also a Grassmann operator, although
it can’t be represented by a finite matrix.

There are simpler systems with finite number of θ’s which can be represented by finite

matrices. This was first shown by Clifford[2][3] in 1878. Clifford also discovered Clifford algebra;
in fact, he invented the algebra in order to find a matrix representation of Grassmann numbers.
We will see this explicitly below.

1.2. Grassmann Numbers and the Clifford Algebra
Clifford was a young English mathematician who became a professor at King’s college at a very
early age. He was years ahead of his time in many respects- he thought that gravitation should
be represented as a curvature of Riemannian space, long before Einstein. He also thought that
these anticommutation relations must have a deep physical meaning, and was looking to develop
them when he died at the age of thirty, postponing the advancement of physics by thirty years
or more.

Clifford found that for every Grassmann system, there was a conjugate Grassmann system
that obeyed the equations given above, but did not anticommute with the original set of
Grassmann numbers. That is, Clifford’s conjugate system consists of π’s such that:

θm ↔ πm (4)

{πm, πn} = 0 (5)

[πl, πm, πn] = 0 (6)

but where:

{θm, πn} = δmn (7)

We recognize this last relation as the algebra of fermion operators (i.e. the Heisenberg
uncertainty principle for fermions) where the π’s are the momentum conjugates to the fermion
operator θ’s. Thus Clifford invented the algebra of fermionic operators long before the
development of quantum theory. This principle also contains the Pauli exclusion principle. If
we identify fermionic creation operators with Grassmann numbers, θ2 = 0 implies that a single
state cannot contain two identical fermions. We will see that in general the total fermionic wave
function will naturally be antisymmetrized.

As discussed above, associativity allows us to represent Grassmann numbers in terms of

matrices[4] [5][6][7]. Clifford developed a representation of θ’s and π’s in terms of the elements
of the quaternion algebra. Pauli discovered his matrices not knowing that they were essentially
quaternions (and therefore the building blocks of the Grassmann matrix representation). He has
a footnote to the effect that his friend, Pascual Jordan told him that the matrices he used are

quaternion units. Then, around 1928, Jordan and Wigner[8] found a matrix representation of the
fermion operators. They introduced fermion creation and annihilation operators which satisfied
the Grassmann algebra exactly. They were looking for a fermionic matrix representation, and
rediscovered the Clifford algebra, not knowing that Clifford had done it 50 years previously.

We will employ the Jordan-Wigner matrix representation to explicitly demonstrate the
connection between the Clifford and Grassmann algebras. This name is unfair to Clifford,
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so we will refer to it here as the Clifford-Jordan-Wigner (CJW) representation. We will also see
how this leads to the Berezin calculus.

We start with the Clifford algebra. A special case of this was constructed by Dirac, known
as the Dirac algebra, which corresponds to a Clifford algebra with two sets of quaternion units.
(The CJW representation can be built out of any number of quaternion units).

The Clifford algebra consists of non-anti-commuting associative elements:

{γµ, γν} = 2δµν (8)

[γµ, γν , γλ] = 0 (9)

where µ, ν = 1, · · · ,M . Again, the associative condition is usually not written, but is necessary
for the existence of a matrix representation.

For the purposes of the CJW representation we divide Clifford algebras into two classes:
M = 2N (even) and M = 2N + 1 (odd). We will show that this is an unnecessary distinction,
since every even Clifford algebra (2N) corrsponds to an odd algebra with (2N + 1) defining
elements.

For the case of an even algebra, we divide the set in half:

γ1, · · · , γN and γN+1, · · · , γ2N (10)

We can now explicitly construct two Grassmann sets, by letting:

θm =
1

2
(γm + iγN+m) (11)

and

πm =
1

2
(γm − iγN+m) (12)

It is clear from the anticommutation relations satisfied by the γm’s (note the normalization
factor) that the θ’s and π’s will independently form Grassmann algebras, but will not mutually
anticommute- they will satisfy the conjugate relations above eq.(7). This is the connection
between the Grassmann and Clifford Algebras - the Clifford Algebra has embedded in it two
sets of conjugate Grassmann Algebras, which satisfy the conjugate relations above.

We can always form one or more γ that anticommutes with the first 2N by forming the
product of all 2N γ’s:

γ2N+1 = ε(N)γ1γ2 · · · γ2N (13)

where ε(N) = ±1,±i is a normalization factor discussed below. It is clear that {γ2N+1, γµ} = 0
from the anticommutation relations eq.(8) and the fact that there are even number of γ’s. We
will also use:

(γ2N+1)
2 = 1 (14)

For the case of an odd number of members in the Clifford algebra, we perform the same
construction on the first 2N of them. Then we identify γ2N+1 as the final anticommuting
member. Note that we cannot pull the same trick here and construct another matrix which
anticommutes with all 2N+1 γ’s from a product of these - if we use all 2N+1 in the product, it
will contain an odd number of γ’s and won’t anticommute with them. If we use an even subset
to form a product, any member of the algebra not in the subset will commute with the new γ,
rather than anticommute. In fact, the product of all 2N + 1 γ’s will be proportional to the unit
matrix.
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1.3. Clifford - Jordan - Wigner Construction
A systematic method of constructing representations of Clifford Algebras in N dimensions was
devised by Clifford in 1878 and rediscovered by Jordan and Wigner 50 years later. We will now
consider the first few cases in detail, and then give the general scheme.

For the N = 1 case, we define

γ1 = σ1 =

(
0 1
1 0

)
(15)

γ2 = σ2 =

(
0 −i
i 0

)
(16)

γ3 = σ3 = −iσ1σ2 =

(
1 0
0 −1

)
(17)

These are the familiar Pauli matrices which satisfy:

[σi, σj ] = 2εijkσk (18)

and

(σi)
2 = 1 (19)

The two conjugate Grassmann algebras contain one element each:

θ = θ1 =
1

2
(σ1 + iσ2) =

(
0 1
0 0

)
(20)

and

π = π1 =
1

2
(σ1 − iσ2) =

(
0 0
1 0

)
(21)

where, clearly,

θ2 = π2 = 0 (22)

and

{θ, π} =

(
1 0
0 1

)
= I (23)

A mathematical digression is in order. We see that for N = 1, the γ’s are the generators
of SO(2). In general, for 2N + 1, the γ’s will be generators of SO(2N). For more physically
interesting cases, such as systems invariant under SO(3, 1), we must also deal with antihermitian
matrices. If we modify the Clifford anticommutation relation eq.(8) to

{γµ, γν} = 2ηµν (24)

where ηµν is a metric with signature (p, q), we will have p hermitian and q antihermitian γ’s,
which are invariant under SO(p, q). This corresponds, for the Dirac algebra, to taking iγ4 → γ0.

If γ has a matrix representation, then a similarity transformation

γ → SγS−1 (25)
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is another matrix representation of the Clifford Algebra. Similarity transformations do not in
general preserve positivity conditions. If γ’s are hermitian (γ† = γ), then in order to preserve
hermiticity, the matrices must be transformed by a unitary matrix:

γ → UγU−1 (26)

where

UU † = 1 (27)

If hermiticity is unimportant, S can be any matrix. From the construction above, if γ2N+1 is
to be hermitian, then it is necessary to put a factor of i in front of the product of 2N γ matrices.
It’s always possible to find a matrix representation where the θ’s and π’s are chosen to be real
(this corresponds to Majorana representation) although in this representation they will not be
hermitian, and thus cannot represent observables.

Incidentally, the N = 1 case shows clearly the connection between Pauli matrices, the Clifford
Algebra and quaternions. We construct the three antihermitian matrices from the hermitian
Pauli matrices:

ei = −iσi (28)

These satisfy

eiej = −δij + εijkek (29)

This is precisely the quaternion algebra. It also follows from eq.(8) that

{ei, ej} = −δij (30)

so that two antihermitian matrices give us a metric (0, 2) as expected, and we see that Pauli
matrices are just the hermitian version of quaternion units.

The special case discussed by Dirac[10] in 1928 corresponds to N = 2, or four elements in
the algebra: γ1, γ2, γ3, γ4. These are the Euclidean analog of the more familiar Dirac matrices,
where γ0 = iγ4. Dirac also constructed the fifth anticommuting matrix,

γ5 = γ1γ2γ3γ4 = iγ0γ1γ2γ3 (31)

Dirac needed 4 × 4 matrices to describe the case N = 2. For the general case we will need
2N × 2N dimensional matrices.

For the N = 2 case, Dirac took two sets of N = 1 Clifford algebras (i.e. Pauli matrices, σi,
ρi) which mutually commute:

[σi, ρj ] = 0 (32)

The resulting Clifford matrices will have dimension 22 = 4. we construct them first by taking
σi = σi × I and ρi = I × ρi:

σi =

(
σi o
0 σi

)
= σiI , (33)

ρ1 =

(
0 I
I 0

)
, ρ2 =

(
0 −iI
iI 0

)
, ρ3 =

(
I 0
0 −I

)
(34)

where
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I =

(
1 0
0 1

)
(35)

The σ’s will obviously commute with the ρ’s. for the N = 2 case, if we identify

σ
(1)
i = σi (36)

σ
(2)
i = ρi (37)

we can set up the table

γ1 σ
(1)
1 σ

(1)
2 γ3

γ2 σ
(1)
3 σ

(2)
1 σ

(1)
3 σ

(2)
2 γ4

σ
(1)
3 σ

(2)
3 γ5

(38)

where the γ’s are identified with the product of γ’s in the column they are closest to.
We have used these matrix representations for N=2 case in supersymmetric chiral field

theories developed earlier (see Catto references in the biblography). The matrix forms allow
separation of equations and make calculations clear and more easier. Particular generalization for
quark-diquark symmetries, multiquark systems and their mass predictions as well as applications
to multi instanton processes were shown in Catto and Gürsey’s many papers.

There are actually many different representations possible. Dirac used a unitary
transformation of these, such that his γ’s were

γ1 · · · γ5 → ρ1, ρ3, ρ2σi (39)

Other possibilities are

γ1 · · · γ5 → σ1, σ3, σ3ρi (40)

γ1 · · · γ5 → ρ1, ρ2, ρ3σi (41)

Dirac identified γ4 with ρ3; Weyl used γ5 = ρ3. All of these are specific representations of the
algebra, but the theory is independent of the one used. It is only when an explicit representation
of a wavefunction is needed that a particular representation will be used.

We can continue this construction technique for the N = 3 case. We use three sets of
commuting Pauli matrices (i.e. σ × I × I, I × σ × I, I × I × σ):

γ1 σ
(1)
1 σ

(1)
2 γ4

γ2 σ
(1)
3 σ

(2)
1 σ

(1)
3 σ

(2)
2 γ5

γ3 σ
(1)
3 σ

(2)
3 σ

(3)
1 σ

(1)
3 σ

(2)
3 σ

(3)
2 γ6

σ
(1)
3 σ

(2)
3 σ

(3)
3 γ7

(42)

Recall that σ1, σ3 are real, σ2 is imaginary and all three are hermitian. We see that all the
entries in the first column are real and hermitian, while all the entries in the second column are
imaginary and hermitian. Thus γ1,2,3,7 are real and symmetric, while γ4,5,6 are imaginary and
antisymmetric.

When these are plugged into the relations defining the θ’s and π’s in terms of the γ’s
(eqs.(11,12) it is clear that, by construction, the θ’s and π’s will all be real. This procedure
can be extended indefinitely, yielding the Clifford - Jordan - Wigner construction:
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γ1 σ
(1)
1 σ

(1)
2 γN+1

γ2 σ
(1)
3 σ

(2)
1 σ

(1)
3 σ

(2)
2 γN+2

γ3 σ
(1)
3 σ

(2)
3 σ

(3)
1 σ

(1)
3 σ

(2)
3 σ

(3)
2 γN+3

...
...

...
...

γN σ
(1)
3 · · ·σ

(N−1)
3 σ

(N)
1 σ

(N−1)
3 · · ·σ(N−1)3 σ

(N)
2 γ2N

σ
(1)
3 σ

(2)
3 · · ·σ

(N)
3 γ2N+1

(43)

where, in general, we will have N+1 real and N imaginary matrices. We can also allow N →∞
to have infinite matrices which obey Grassmann Algebra conditions.

There is an alternative formula for γ2N+1 in terms of the θ’s and π’s, rather than the γ’s:

γ2N+1 =
N∏
m=1

[θm, πm] = (−i)N2
γ1γ2 · · · γ2N (44)

This identity including the prefactor can be derived explicitly, although we will not do it here.
As an example, for N = 1,

γ3 = [
σ1 + iσ2

2
,
σ1 − iσ2

2
] =
−i
2

[σ1, σ2] = −iσ1σ2 = σ3 (45)

1.4. Calculus of Grassmann Numbers
We will now begin the study of the calculus of Grassmann numbers, also known as the the
Berezin calculus. Specifically, we will construct a differential operator representation of conjugate
Grassmann (i.e. Heisenberg) algebras. Since we will construct this by analogy to the bosonic
case, let’s consider the bosonic Heisenberg Algebra. We have elements xi and their conjugates
pi such that they obey the uncertainty relation:

[xi, xj ] = [pi, pj ] = 0 (46)

[xi, pj ] = iδij (47)

With this definition, we see that the p’s can be represented as derivatives:

pj ↔ −i
∂

∂xj
(48)

where the operators now act on the space of all functions of x. If we want to work without “i”s,
we can use the associated creation and annihilation operators:

ai =
1√
2

(xi + ipi) (49)

a†i =
1√
2

(xi + ipi) (50)

So that

[ai, aj ] = [a†i , a
†
j ] = 0 (51)

[ai, a
†
j ] = δij (52)
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The [a†j ] can also be represented as derivative operators:

a†j ↔
∂

∂aj
(53)

where the operators act on the space of all functions of a.
For Grassmann Algebras we have anticommutation relations, rather than commutation

relation, but Berezin showed how it was possible to represent the π′s as derivatives of θi’s.
We begin by considering a simple algebra with two θ′s. Then the most general function of

these will be

F (θ1, θ2) = A+B1θ1 +B2θ2 + Cθ1θ2 (54)

All higher powers of θ’s in the power series expansion vanish as a result of θ2i = 0. We see
then that if N <∞, F is a polynomial, terminating after a finite number of terms. Eq.(1) also
allows us to write

F (θ1, θ2) = A+B1θ1 +B2θ2 − Cθ1θ2 (55)

For the moment we will assume that A, B, C are ordinary numbers which commute with θi.
We define left and right derivatives:

∂F

∂θ1
= B1 + Cθ2 (56)

F

←−
∂

∂θ1
= B1 − Cθ2 (57)

where there is a minus sign difference. In everything that follows, we will discuss only the
left derivative, but we could have equivalently selected the right derivative and performed and
analogous derivation. We can first show that the derivatives satisfy a Grassmann Algebra. First,
operating on the eq. (55) from the left we have

∂F

∂θ2
= B2 − Cθ1 (58)

Differentiating eq.(56) with respect θ2 and eq.(58) with respect to θ1 we get

∂

∂θ1

∂F

∂θ2
= −C and

∂

∂θ2

∂F

∂θ1
= C (59)

Thus we have:

{ ∂
∂θ1

∂

∂θ2
+

∂

∂θ2

∂

∂θ1
}F = 0 (60)

It is also obvious that:

∂

∂θ1

∂

∂θ1
F =

∂

∂θ2

∂

∂θ2
F = 0 (61)

All these lead to the fact that the derivatives form a Grassmann Algebra, when acting on the
space of all functions:

{ ∂
∂θi

,
∂

∂θj
}F (θ1, θ2) = 0 (62)
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Now we check that the derivatives anticommute with the θ′s:

θ1
∂

∂θ1
F = B1θ1 + Cθ1θ2 (63)

and

∂

∂θ1
θ1F = A+B2θ2 (64)

so that

{θ1,
∂

∂θ1
}F = A+B1θ1 +B2θ2 + Cθ1θ2 = F (65)

By going through all the remaining relations in the same way we find that the derivatives are
the conjugates of the θ′s.

{θi,
∂

∂θj
}F = δijF (66)

We have shown that the derivatives form a conjugate set for the case of two θ′s, and it generalizes
to any number by induction.

We can work backwards from the Grassmann sets to reconstruct the Clifford Algebra, in
terms of the θ′s and ∂

∂θ ’s. We can invert eq.(11) and (12) so that:

γm = θm +
∂

∂θm
(67)

and

γN+m = −i(θm −
∂

∂θm
) (68)

To construct the final anticommuting matrix γ2N+1, we use eq.(44):

γ2N+1 =
N∏
m=1

[θm,
∂

∂θm
] (69)

This completes the brief discussion of the Berezin differential calculus.
Now that we have discussed the differential calculus we can consider integration. This is

actually rather difficult. We will follow in Berezin’s footsteps, and give a set of rules which,
when applied, yield the right result. Along the way we will try to motivate some of the more
seemingly mysterious aspects of this procedure.

We start by generating the calculus for a set of two Grassmann numbers, which can be easily
extrapolated to an arbitrary set. We have fundamentally,∫

dθi = 0 (70)

∫
θidθi = 1 (71)

where this is for each i (no sum).
At this point we don’t say whether this is a definite or an indefinite integral. We just write

an integral without worrying about it - we cannot take θ from −∞ to +∞; it doesn’t make
sense. We will discuss below what we mean by integrals over Grassmann variables.
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We define multiple integrals by: ∫
dθ1dθ2 =

∫
dθ1

∫
dθ2 (72)

We also use the fact that the differentials anticommute with one another and with the θ′s:

dθmdθn = −dθnθm (73)

and

dθm θn = −θn dθm (74)

We consider again the most general function of two Grassmann numbers, eq.(54):

F (θ1, θ2) = A+B1θ1 +B2θ2 + Cθ1θ2 (75)

When we integrate this over both variables, by eq.(70) above it is clear that only the term with
both θ1and θ2 will be non-zero:∫

Fdθ1dθ2 = C

∫
θ1θ2dθ1dθ2 = −C

∫
θ1dθ1

∫
θ2dθ2 = −C (76)

where the minus sign is due to eq.(74).
We note here the interesting fact that∫

Fdθ1dθ2 =
∂

∂θ1

∂

∂θ2
F = −C (77)

so that differentiation and integration are essentially the same thing. This result is true for all
N .

We will now discuss the connection between Berezin integration and complex integration.
Recall that the γ′s are defined to be hermitian. Hermitian operators correspond to observables
and have real eigenvalues - the γ’s are the generalizations of real numbers.

In the CJW representation, the γj ’s are real, while the γj+N ’s are imaginary, but all have
real eigenvalues. The θ’s are real in this representation, but are not hermitian, so they do
not correspond to observables. They have complex eigenvalues and are the generalization of
complex numbers. This hints at the possibility of analogies between Berezin rules and the rules
of integration of complex variables. For instance, consider Cauchy’s theorem:

1

2πi

∮
C
F (z)dz = 0 (78)

where this is true if F (z) is analytic inside the contour C. For example with F (z) = 1,

1

2πi

∮
C
dz = 0 (79)

This can be compared to the Berezin rule (eq.(70)) above:∫
dθ = 0 (80)

The general correspondence will be:

1

2πi

∮
for z ↔

∫
for θ (81)

Is there a complex analog of eq.(71)
∫
θdθ = 1? We could naively try:
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∮
C
zdz (82)

but this is identically zero. On the other hand,

− 1

2πi

∮
C

dz

1− z
= 1 (83)

if the contour C encloses the point z = 1. Can we find an analog of this in the Berezin Calculus?
Consider the integral:

−
∫
dθ

1

1− θ
(84)

where we choose dθ to the left of 1
1−θ (remember that the order matters for Grassmann variables).

θ has no inverse (θ2 = 0) but 1
1−θ does:

1

1− θ
= 1 + θ (85)

This can be seen either by multiplying directly, or by expanding 1
1−θ in a power series where all

terms of θ2can higher are zero. We can write:

−
∫
dθ

1

1− θ
= −

∫
dθ(1 + θ) = −

∫
dθθ =

∫
θdθ = 1 (86)

We see that the second Berezin rule is the analog of contour integration. This is why we
didn’t write limits on integrals of Grassmann variables, or determine whether they were definite
or indefinite.

We can consider this issue a little further What do we man by dθ? In the case of Riemannian
integration we divide an interval L = xn − xo into N parts and put

xj = x0 + jε , ε = L/N (87)

Then the Riemann integral is defined as the limit of a sum, namely

∫ xN

x0
F (x)dx = lim

N→∞

N∑
j=1

F (xj)(xj − xj−1)

= lim
N→∞

N∑
j=1

F (xj)∆x (88)

where

∆x = ε = L/N (89)

In the case of Grassmann variables we can start by defining the difference of two Grassmann
numbers θj and θj−1 by

∆θ = θj − θj−1 (90)

Since θj and θj−1 anticommute, ∆θ also anticommutes with both θj and θj−1. Indeed,

{θj − θj−1, θj} = {θj − θj−1, θj−1} = 0 (91)
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We generalize this by inserting N − 1 anticommuting Grassmann numbers between θ0 and
θN :

θj = θ0 + j∆θ, ∆θ = (θN − θ0)/N (92)

Let us also define the magnitude of a Grassmann number θ represented by a k × k matrix by
the equation

| θ |2= Tr(θ†θ)

k
(93)

We see that if θ is a Grassmann number with conjugate π rather then λθ is also a Grassmann
number with conjugate λ−1π. We also have

| λθ |=| λ || θ | (94)

so that

| ∆θ |= 1

N
| θN − θ0 | (95)

and as N →∞ the magnitude of ∆θ tend to zero just like ∆x in the Riemannian integral.
After these preliminaries it is clear that there is a possibility of defining the Berezin integral

as a sum of terms
φ =

∑
j

F (θj)∆θ (96)

defined on a contour in the θ plane with anticommuting points and taken in the limit when the
number N of points on the contour increases indefinitely so that the magnitude of the Grassmann
number ∆θ tends to zero.

Note that when N →∞, the Grassmann numbers θj becomes infinite matrices. In this case
θ can vary quasicontinuosly between θ0 and θN and behave like a continuous bosonic variable
x. To each θj corresponds the function F (θj) which in the N → ∞ limit can be regarded as a
continuous function of the fermionic variable θ in the given interval.

1.5. Digression: Grassmann Numbers and Fermion Annihilation and Creation Operators
We now make a point concerning the identification of Grassmann numbers as fermion creation
and annihilation operators. The relation between conjugate Grassmann sets is the same, you
will recall, as the relation between fermionic annihilation and creation operators:

{bi, bj} = {b†i , b
†
j} = 0 (97)

{bi, b†j} = δij (98)

There is a complete symmetry between b and b†; how we decide which is a creation and which
an annihilation operator? We are only able to decide after we define the vacuum state by:

bi | 0 >= 0 (99)

b†j | 0 >=| j > (100)

where | j > is a one particle state with label j. Eqs.(97) and (98) tell us that b is an annihilation
and b† is a creation operator. We can extend eq.(97) to any number of annihilation operators
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bibj ...bn | 0 >= 0 (101)

But if we act with creation operators on the vacuum we don’t get 0. Instead, extending eq.(98)
and using the anticommutation relations:

b†ib
†
j | 0 >= −b†jb

†
i | 0 >=| ij >= − | ji > (102)

Thus the two-particle state is totally antisymmetric. Similarly, we can construct n-particle
states:

b†
i(1)
, b†
i(2)
...b†

i(n)
| 0 >=| i(1)i(2)...i(n) > (103)

which will also be totally antisymmetric. Anticommunitation of the Grassmann numbers leads
directly to the Pauli exclusion principle for fermionic states:

b†ib
†
i | 0 >= 0 (104)

such that we cannot have to identical particles in the same state. Dirac discovered this relation
between the Pauli exclusion principle, the antisymmetry of the state, and the anticommutation
relations.

We see that in order to interpret Grassmann variables as creation and annihilation operators,
we need to find a vacuum. Is it possible for us to construct the vacuum? To do this we will
consider an alternate formulation of quantum mechanics.

In quantum mechanics, physical systems are described in the language of states and operators
which act on states. Quantum operators can be represented by matrices or by differential
operators. States are then represented by vectors (column matrices). In the Dirac notation,
| α > is a state and Mαβ are the matrix elements of an operator M . If we have an orthonormal
basis of states, we can describe these matrix elements by:

Mαβ =< α |M | β > (105)

If M is a hermitian operator, it can always be written as the sum of projection operators:

M =
∑
i

λi | i >< i (106)

where the λi are real and

Pi =| i >< i | (107)

is a projection operator which projects out state | i >. All eigenstates are orthonormal:

< i | j >= δij (108)

If we expand a general state:

| α >=
∑
i

Ψi | i > (109)

then Pi projects out the component along the ith eigenstate:
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Pi | α = | i >< i | α >
= | i >< i |

∑
j

Ψj | j >

= | i >
∑
j

Ψj < i | j >

= | i > Ψi (110)

By construction, Pi is Hermitian:

Pi =| i >< i |= P †i (111)

Projection operators have the unique trait that they are idempotent -they equal themselves
when squared:

P 2
i =| i >< i | i >< i |= Pi (112)

We can thus associate a projection operator with each state: rather then representing states
by vectors, we can represent them by their projection operators. Then instead of having
operators and observables on a different footing, we have hermitian operators that represent
observables, and hermitian projection operators that represent states. This formulation is useful
because both operators and states can be represented by hermitian matrices.

As an example, consider a two state (i.e. spin) system. The most general state will be a
linear combination of spin up and spin down:

| Ψ >= a |↑> +b |↓> (113)

<↑|↓>= 0 <↑|↑>=<↓|↓>= 1 (114)

| a |2 + | b |2= 1 (115)

We usually represent these as column vectors:

|↑>=

(
1
0

)
|↓>=

(
0
1

)
(116)

| Ψ >= a

(
1
0

)
+ b

(
0
1

)
=

(
a
b

)
(117)

Alternatively, we could express these states by their projection operators. The projection
operators for the up state is:

P↑ =|↑><↑|=
(

1
0

)
(1 0)

=

(
1 0
0 0

)
(118)

Equivalently, the down state projection operator is:

P↓ =|↓><↓|=
(

0
1

)
(0 1)

=

(
0 0
0 1

)
(119)

These can be expressed in terms of the Pauli matrices:
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P↑ =
1 + σ3

2
, P↓ =

1− σ3
2

(120)

Now, getting away from quantum mechanics, consider the case of a single Grassmann number
θ with a conjugate π, and N = 1. In the CJW construction, θ and π are represented by linear
combinations of the Pauli matrices:

θ =
σ1 + σ2

2
=

(
0 1
0 0

)
↔ b (121)

π =
σ1 − iσ2

2
=

(
0 0
1 0

)
↔ b† (122)

where we show that we wish to interpret θ as an annihilation and π has a creation operator. We
need the vacuum state, which will satisfy

θ | 0 >= 0 (123)

with normalization

< 0 | 0 >= 1 (124)

In terms of matrices: (
0 1
0 0

)(
a1
a2

)
= 0 (125)

which gives (keeping in mind eq.(124))(
a2
0

)
= 0 ⇒ a2 = 0 ⇒ a1 = 1 (126)

so that the vacuum state is

| 0 >=

(
1
0

)
(127)

Can we descibe the vacuum state by a projection operator? We have:

P (0) =| 0 >< 0 |=
(

1
0

)
(0 1)

=

(
1 0
0 0

)
=

1 + σ3
2

(128)

Using the representation of b from eq.(122) we have:

bP (0) = 0 (129)

and its hermitian conjugate:

P (0)b† = 0 (130)

Eq.(129) correspond to eq.(97), which is one of the defining relations of the vacuum. Eq.(130)
is the mathematical representation of the statement that the 1-particle state is orthogonal to
the vacuum:

b† | 0 >=

(
0 0
1 0

)(
1
0

)
=

(
0
1

)
(131)
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which is clearly orthogonal to the vacuum (eq.(127)).
We can now identify this with our spin system. The vacuum corresponds to the spin up state,

and one particle corresponds to the spin down state. This state is obtained from the vacuum by
acting with a fermionic creation operator defined in eq.(122).

This generalizes very nicely when we use the CJW construction of N dimensions (eq.(43)).
We can generalize the vacuum projection operator to:

| 0 >< 0 |= P (0) = Ω =
1 + σ

(1)
3

2

1 + σ
(2)
3

2
...

1 + σ
(N)
3

2
(132)

The general form for this will be an (N + 1)× (N + 1) matrix:

1 0 0 . . . .
0 0
0 .
. .
. .
. .
. .

0


(133)

This vacuum state projection operator satisfies relation that are generalizations of eqs.(129) and
(130):

θiΩ = 0 , Ωπi = 0 (134)

These can be checked using the explicit form of θ and π in terms of the Pauli matrices from
the CJW construction (eq.(43)) inserted into eqs.(11) and (12) and by using the form of Ω from
eq.(132).

Consider a state with r particles in it. We can represent this by:

| r >= πi(1)πi(2) ...πi(n) | 0 > (135)

To build a projection operator, we need to take | r >< r |. Using the fact that, by construction
and by identification as creation and annihilation operators, π† = θ, we have:

Pr =| r >< r |= πi(1) ...πi(n)Ωθi(n) ...θi(1) (136)

Here we have a general projection operator that clearly demonstrates the symmetry between θ
and π.

We have shown by construction that the vacuum state always exists, allowing us to interpret
a system of Grassmann numbers as the annihilation operator of some particle. Identifying the
vacuum completes the connection between fermions and Grassmann numbers.

1.6. Spinors with Grassmann Components
We have seen that N Grassmann numbers can be constructed out of the Clifford algebra
generated by 2N matrices γµ which satisfy the anticommutation relation eq.(24). This relation
is invariant under SO(p, q) which becomes SO(2N) in the hermitian case. Note that the θj
(j = 1, ..., N) and πj belong respectively to the (N) and (N) representations of the SU(N)
subgroup of SO(2N). Passage from the Clifford numbers to the Grassmann numbers corresponds
to the decomposition of the rotation group SO(2N) with respect to its SU(N) subgroup. The
generators of the Lie algebra of this rotation group are the spin matrices
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Sµν =
1

4i
[γµ, γν ] (137)

where γ, ν = 1, ..., 2N. As we have seen from the CJW construction, these are M ×M matrices,
where

M = 2N (138)

since N commuting sets of Pauli matrices must be accommodated in the γ matrices. The
corresponding SO(2N) group element associated with an M -dimensional representation is

R(ω) = e
i
2
ωµνSµν (139)

which acts on the M -dimensional column ψ, the spinor representation of SO(2N). When a
rotation of 2π is performed around any axis, the spinor changes sign, so that strictly speaking
it is a representation of the double covering of SO(2N) which is called Spin(2N).

In relativistic local quantum field theory there is a theorem (the Spin-Statistics Theorem)
which states that if a local field is associated with an integer spin representation of the Poincaré
group it must be quantized as a boson field, while a local field corresponding to a half-integer
spin representation of the same space-time group must be quantized as a fermion. It follows
that symmetrical or antisymmetrical tensor fields like scalar or vector fields are bosonic, while
spinor fields (s = 1/2 or s = 3/2) are fermionic.

In relativistic theories, spinor fields like the neutrino field or the electron-positron Dirac field
ψ(x) must have Grassmann components that vary “continuously” with x.

In the 2N dimensions the 2N -dimensional spinor representation Ψ is reducible since γ2N+1

commutes with the SO(2N) generators Sµν . It decomposes into left handed and right handed
irreducible spinors (Weyl spinors) given by

ΨL =
1

2
(1 + γ2N+1)Ψ (140)

ΨR =
1

2
(1− γ2N+1)Ψ (141)

each having dimensions M/2.
In the 2N+1 dimensions the SO(2N+1) generators consist of the (2N)2generators Sµν from

eq.(137) and the 2N additional generators

S2N+1,ν =
1

4i
[γ2N+1, γν ] (142)

where ν = 1, ..., 2N. Spin(2N+1) also has a 2N -dimensional representation Ψ but it is irreducible.
When the spinor representation of the O(p, q) is real, it is called Majorana representation.

In field theory it can have as components real Grassmann numbers. The Majorana condition
depends on the dimension as well as the signature of the metric and cannot always be imposed.

As an example let us mention that in Minkowski space O(3, 1) or its covering group SL(2, C)
can have either a 2-component complex Weyl spinor or a 4-component real Majorana spinor as
representations. In the (9+1)-dimensional Minkowski space a spinor can be Weyl and Majorana
spinor simultaneously so that an irreducible spinor of Spin(9,1) has only 16 real components
instead of 32 complex components. In (1+1) dimensions we can choose

γ0 = iσ2, γ1 = σ1, γ3 = σ3 (143)

Here there is no rotation; there is, however, a boost generator
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S01 =
1

4i
[γ0, γ1] =

i

2
σ3 = − i

2
γ3 (144)

The corresponding group element

B = exp(iαS01) = exp(
1

2
σ3α) (145)

is real thus

Ψ =

(
ψ1

ψ2

)
(146)

can be taken as a real Majorana spinor. It is reducible, though, since we are in an even dimension.
We have

ΨL =
1

2
(1 + γ3)Ψ =

1

2
(1 + σ3)Ψ =

(
ψ1

0

)
(147)

ΨR =
1

2
(1− γ3)Ψ =

1

2
(1− σ3)Ψ =

(
0
ψ2

)
(148)

as irreducible componets of Ψ. Hence in (1+1) dimensions an irreducbile spinor has one
component ψ1 = θ, θ being a real Grassman number. In that sense O(1, 1) is like O(9, 1)
since the Weyl and Majorana conditions can be imposed simultaneously. This is an illustration

of the 8-fold Bott periodicity[12]. For the next Weyl-Majorana spinor we have to got to O(17, 1).
The properties of the spinor in (1+1) and (9+1) Minkowski spaces are crucial in superstring
theories.

Consider a function of Grassmann numbers such as eq.(54)

F (θ1, θ2) = A+Bαθα + Cθ1θ2 (α = 1, 2) (149)

We are now in a position to define the invariance properties of F under Lorentz transformations
when the θα are considered to be the Grassmann components of a left-handed Weyl Spinor in
(3+1) dimensions. Let

θ =

(
θ1
θ2

)
(150)

Under the SL(2, C), the covering group of SO(3, 1), θ transforms as

θ
′

= Lθ (151)

with L a unimodular complex 2× 2 matrix

Det L = 1, L = ei
−→σ
2
·(−→ω −i−→ν ) (152)

where −→ω and −→ν are respectively the rotation and boost parameters of the Lorentz group. Define

θ̂ = −iσ2θ∗ =

(
−θ∗2
θ∗1

)
(153)

It is easy to show that the θ̂ transforms as a right-handed spinor, so that

θ̂
′

= L†−1θ̂ (154)
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Hence

θ̂†θ
′

= θ̂†L−1Lθ = θ̂†θ (155)

and

θ̂†θ =
(−θ2 θ1)

(
θ1
θ2

)
= [θ1, θ2] = 2θ1θ2 (156)

is invariant under Lorentz transformations.
By introducing a metric in spinor space, εαβ

εαβ = (iσ2)
αβ (157)

we can also write

θ̂†θ = θαθ
α = θαε

αβθβ = θT (iσ2)θ (158)

displaying the invariance properties of this quantity. Hence if Bα transforms like a spinor we
can write

F (θ1, θ2) = A+Bαε
αβθβ +

1

2
Cθαε

αβθβ (159)

so that if A is a scalar, F (θ1, θ2) is a relativistic scalar. Because we have used a left-handed
spinor, F is called chiral superfield when A, Bα and C are functions of space-time coordinate x.
In order for F to be a bosonic scalar Bα(x) must also be Grassmann valued.

If the θα in relativistic field theories transform like scalars (or vectors) they contradict the
spin-statistics theorem and behave like unphysical degrees of freedom that must disappear in
the expressions of physical observables. In that case they are called ghost fields and are used
as auxiliary quantities to cancel the effects of unphysical bosonic degrees of freedom in order to
give positive energies and positive probabilities.
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